Lista de apéndices

Apéndice A.	Listas	de tablas y figuras de los apéndices	8
Secció	ón A.1.	Lista de tablas de los apéndices	8
Secció	on A.2.	Lista figuras de los apéndices	11
Apéndice B.	Marco	teórico del proyecto de diseño	21
Secció	on B.1.	Fundamentación teórica para el diseño de la máquina	21
	Conce	pto B.1.1: Máquinas formadoras de bandejas de cartón	21
	Conce	pto B.1.2: Diseño de sistemas mecatrónicos electroneumáticos	21
	Conce	pto B.1.3: Selección de materiales y de procesos de manufactura	22
	Conce	pto B.1.4: Modelado analítico	22
	Conce	pto B.1.5: Modelado asistido	22
	Conce	pto B.1.6: Herramientas para gestión de mantenimiento	23
	Conce	pto B.1.7: Análisis de costos y viabilidad de un proyecto de diseño	23
Secció	on B.2.	Sección B.2: Estado del arte para el proyecto de diseño	23
	Refere	nte B.2.1: Fabricantes de máquinas formadoras de bandejas de cartón	23
	Refere	nte B.2.2: Proyectos de diseño de referencia	24
	Refere	nte B.2.3: Diseños patentados	25
	Refere	nte B.2.4: Estudio normativo para el proyecto de diseño	25
Apéndice C.	Defini	ción de requisitos para el proyecto de diseño	27
Secció	on C.1.	Características físicas de la materia a procesar	27
Secció	on C.2.	Requerimientos y restricciones para el proyecto de diseño	28
Apéndice D.	Agrup	ación de funciones y sistemas principales.	29

Apéndice E.	Especi	ficaciones para el diseño de sistemas	. 30
Apéndice F.	Proces	o de diseño conceptual	. 32
Secció	n F.1.	Conceptos de diseño para los sistemas de la máquina	. 32
Secció	n F.2.	Valoración de conceptos	. 35
Secció	n F.3.	Combinación de los mejores conceptos	. 36
Apéndice G.	Linear	nientos y metodología para modelado en detalle	. 38
Secció	n G.1.	Lineamientos para el modelado en detalle	. 38
	Linear	niento G.1.1: Enfoque para cálculo del factor de seguridad	. 38
	Linear	niento G.1.2. Criterios para la selección de componentes prefabricados	. 38
Secció	n G.2.	Enfoque sistemático para la metodología del modelado en detalle	. 39
Apéndice H.	Gestió	n de recursos para el modelado en detalle	. 41
Secció	n H.1.	Gestión de recursos materiales	. 41
	Tablas	H.1.1: Propiedades mecánicas de materiales para fabricación de piezas.	. 41
	Tablas	H.1.2: Fabricantes de materiales y componentes	. 42
	Tablas	H.1.3: Equipos para la manufactura y fabricación de piezas	. 43
Secció	n H.2.	Gestión de recursos computacionales	. 43
Secció	n H.3.	Gestión de modelos matemáticos	. 45
	Model	os H.3.1: Modelos analíticos obtenidos de libros de diseño	. 45
		Modelo H.3.1.1: Dinámica vectorial de las partículas	. 45
		Modelo H.3.1.2: Dinámica vectorial de los cuerpos rígidos	. 46
		Modelo H.3.1.3: Análisis de esfuerzos del sólido deformable	. 49
		Modelo H.3.1.4: Teoría de la máxima energía de distorsión	. 52
		Modelo H.3.1.5: Esfuerzos cíclicos. Falla por fatiga en aceros	. 53

Modelo H.3.1.6: Diseño de columnas con carga centrada 58
Modelo H.3.1.7: Mecánica de los tornillos de potencia 59
Modelo H.3.1.8: Diseño transmisiones de cadena de rodillos 61
Modelo H.3.1.9: Diseño de resortes de espiras helicoidales de torsión 63
Modelo H.3.1.10: Diseño de cuñas paralelas65
Modelos H.3.2: Modelos analíticos obtenidos de know-how de fabricantes 66
Modelo H.3.2.1: Selección de servomotorreductores SIMOTICS S-1FG1
Modelo H.3.2.2: Selección de sistemas lineal de guiado GV371
Modelo H.3.2.3: Selección de cilindros neumáticos C85 (ISO 6432) 74
Modelo H.3.2.4: Selección de acoplamientos de mandíbula SKF75
Modelos H.3.3: Modelos para el uso herramientas de dimensionamiento y selección
de componentes de fábrica76
Modelo H.3.3.1: Selección de rodamientos de bolas de SKF76
Modelo H.3.3.2: Selección de cabezas de articulación de SKF78
Modelo H.3.3.3: Selección de actuadores de giro neumáticos CRB1 80
Modelo H.3.3.4: Selección del sistema de vacío de la empresa SMC 81
Modelo H.3.3.5: Cálculos y selección de componentes SMC para la red
neumática
Modelos H.3.4: Modelos para verificación de precisión numérica de las
simulaciones
Modelo H.3.4.1: Factor de seguridad de piezas en SolidWorks Simulation

		Modelo H.3.4.2: Tamaño de la soldadura SolidWorks Simulation91
		Modelo H.3.4.3: Factor de seguridad de pernos SolidWorks Simulation 94
	Mode	los H.3.5: Modelos adaptados al diseño
		Modelo H.3.5.1: Perfil de velocidad angular trapezoidal para un servomotor
		Modelo H.3.5.2: Modelo dinámico-analítico del movimiento de una lámina
		sobre una superficie cilíndrica circular y sobre un tope fijo 101
		Modelo H.3.5.3: Modelo dinámico-analítico del movimiento tridimensional
		de la solapa S3 durante el proceso de conformación 106
Apéndice I.	Tablas	s y figuras útiles para el dimensionamiento de piezas y componentes 118
Secció	on I.1.	Tablas y figuras de modelos analíticos obtenidos de libros de diseño 118
Secció	on I.2.	Tablas y figuras de modelos analíticos obtenidos de know-how de
fabrica	antes	125
Secció	on I.3.	Tablas y figuras de modelos para el uso de herramientas de
dimen	sionam	iento y selección de componentes de fábrica135
Secció	on I.4.	Tablas y figuras para el dimensionamiento de piezas diversas 137
Apéndice J.	Parám	etros iniciales para el modelado en detalle141
Secció	on J.1.	Parámetros geométricos e inerciales de la bandeja Plaform
	Parám	etros J.1.1. Dimensiones de las solapas expresadas como variables 141
	Parám	etros J.1.2. Masas de las solapas de la bandeja Plaform
Secció	on J.2.	Parámetros de la resistencia al plegado de la bandeja Plaform 143
	Parám	etros J.2.1. Conceptos teóricos relacionados con el plegado del cartón
	corrug	gado
	-	

	Parám	etros J.2.2. Prueba de plegado de la bandeja Plaform 145
Secci	ón J.3.	Parámetros geométricos iniciales de la máquina formadora de cajas 152
Apéndice K.	Result	tados obtenidos del modelado en detalle153
Secci	ón K.1.	Resultados del modelado en detalle del SAMP153
	Result	tados K.1.1. Resultados de simulaciones estáticas de SolidWorks del SAMP
	Result	tados K.1.2. Configuración geométrica final del SAMP156
Secci	ón K.2.	Resultados del modelado asistido del SDOMP 157
	Result	tados K.2.1. Resultados de simulaciones estática de SolidWorks del SDOMP
	Result	tados K.2.2. Resultados de la selección de componentes prefabricados del
	SDOM	AP158
	Result	tados K.2.3. Configuración geométrica final del SDOMP161
Secci	ón K.3.	Resultados del modelado en detalle del SDMP161
	Result	tados K.3.1. Resultados de la selección de componentes prefabricados del
	SDMI	P
	Result	tados K.3.2. Configuración geométrica final del SDMP162
Secci	ón K.4.	Resultados del modelado en detalle del SFCC-Subsistema macho 163
	Result	tados K.4.1. Resultados de simulaciones en SolidWorks del SFCC-
	Subsis	stema macho163
	Result	tados K.4.2. Resultados de selección de componentes del SFCC-Subsistema
	mache	o164

Resultados K.4.3. Configuración geométrica final del SFCC-Subsistema macho
Sección K.5. Resultados del modelado en detalle del SFCC-Matriz de conformación 166
Resultados K.5.1. Resultados de las simulaciones del SFCC-Matriz de
conformación166
Resultados K.5.2. Resultados de la selección de componentes del SFCC-Matriz de
conformación172
Resultados K.5.3. Configuración geométrica final del SFCC-Matriz de
conformación175
Sección K.6. Resultados del modelado en detalle del SDHM 176
Resultados K.6.1. Resultados de las simulaciones en SolidWorks del SDHM 176
Resultados K.6.2. Resultados de la selección de componentes del SDHM 178
Resultados K.6.3. Configuración geométrica final del SDHM 179
Sección K.7. Resultados del modelado en detalle del SGDAC
Resultados K.7.1. Diseño del circuito neumático de la máquina con FluidSIM
Neumática 4.5
Resultados K.7.2. Resultados de la selección de componentes del SDGAC 181
Sección K.8. Resultados del modelado asistido del SECIU
Sección K.9. Resultados del modelado en detalle del SEB
Apéndice L. Configuración final de la máquina formadora de cajas de cartón corrugado 194
Sección L.1. Configuración geométrica final de la propuesta de diseño
Sección L.2. Ficha técnica con especificaciones generales de la máquina formadora de
cajas 195

Apéndice M.	Modelos de análisis para la gestión de mantenimiento197
Sección M.1.	Análisis de criticidad para los sistemas197
Sección M.2.	Análisis de Modos y Efectos de Falla (AMEF) para los sistemas 199
Sección M.3.	Recomendaciones para el mantenimiento de subsistemas y componentes
	201
Apéndice N. Lista d	e costos de la máquina 202
Sección N.1.	Costos de adquisición de materiales, componentes y equipos 202
Sección N.2.	Costo actual del pago de los trabajadores de una empresa 206
Apéndice O. Planos	de la máquina

Apéndice A. Listas de tablas y figuras de los apéndices

Sección A.1. Lista de tablas de los apéndices

Tabla B-1Normas para la selección de componentes móviles y de sujeción.	25
Tabla B-2Normas para la selección de materiales	26
Tabla B-3Normas para el diseño de componentes y sistemas	26
Tabla C-1Especificaciones de la materia prima: bandeja de cartón tipo Plaform	27
Tabla C-2Requerimientos y restricciones para el diseño de la máquina formadora de caja	ıs de
cartón	28
Tabla E-1 <i>Especificaciones para el diseño de los sistemas que componen la máquina</i>	30
Tabla F-1Criterios de evaluación para la valoración de conceptos planteados.	35
Tabla F-2 <i>Ejemplo del esquema de la matriz de decisión ponderada planteada</i>	35
Tabla G-1Valores recomendados del factor de seguridad de un elemento de material dúctil	38
Tabla H-1Propiedades mecánicas de aceros de ingeniería para el diseño y la fabricación de pi	iezas
	41
Tabla H-2Propiedades mecánicas de aceros estructurales para el diseño y la fabricación de pi	iezas
	41
Tabla H-3Propiedades mecánicas de metales no ferrosos y plásticos para el diseño	y la
fabricación de piezas	42
Tabla H-4Fabricantes y/o proveedores para la selección de materiales y componentes	42
Tabla H-5Equipos y máquinas herramienta para la manufactura y fabricación de piezas	43
Tabla H-6	44
Herramientas computacionales para modelado con resolución asistida	44
Tabla H-7Especificaciones técnicas de los servomotorreductores SIMOTICS S-1FG1.	66

Tabla H-8Parámetros operativos de la carga para la selección de servomotorreductores
<i>SIMOTICS S-1FG1</i>
Tabla H-9Parámetros técnicos para la selección de servomotores 67
Tabla H-10Parámetros técnicos para seleccionar reductores de velocidad
Tabla H-11Características de los sistemas de retroalimentación disponibles
Tabla H-12Otras opciones de selección para los servomotorreductores SIMOTICS S-1FG1 70
Tabla H-13Información técnica relevante del sistema lineal de guiado GV3 71
Tabla H-14Características técnicas de cilindros neumáticos C85 de doble efecto y vástago simple
Tabla H-15Carreras estándar para cilindros neumáticos C85 de doble efecto y vástago simple75
Tabla H-16 81
Características técnicas de actuadores de giro neumáticos CRB1 de paleta simple
Datos de entrada del sujetador96
Datos de entrada de la junta96
Tabla I-1 Valores de esfuerzo cortante límite del electrodo AWS D1.1. configurados en SolidWorks.
Tabla I-2 <i>Carta de plegado de chapa metálica. Fuerza de prensado por unidad de longitud</i> kN/m .
Tabla J-1Rango de valores permisibles para las dimensiones de la bandeja de cartón tipo Plaform
Tabla J-2Propiedades elásticas de las capas onduladas del cartón corrugado
Tabla J-3 <i>Cargas de referencia para la prueba de medición de las fuerzas de plegado</i> 147
Tabla J-4

Ángulo de plegado θsi y el torque resistente Tsi , bajo una carga suministrada, mcarga 147
Tabla K-1Especificaciones de la ventosa seleccionada 158
Tabla K-2Especificaciones de la manguera seleccionada para la línea central y la línea de
derivación
Tabla K-3Características de la unidad modular con eyector incorporado seleccionado
Tabla K-4Selección del servomotor a partir de los requerimientos establecidos para el sistema
Tabla K-5Selección del servomotor a partir de los requerimientos establecidos para el sistema
Tabla K-6Selección del reductor a partir de los requerimientos establecidos para el sistema. 164
Tabla K-7Características adicionales del servomotor-reductor 165
Tabla K-8Selección del sistema de guiado lineal GV3 165
Tabla K-9Resultados de la selección del actuador de giro de la matriz de conformación 172
Tabla K-10Acoplamiento seleccionado para el mecanismo plegador de la solapa S4 173
Tabla K-11Selección del cilindro neumático del tope inferior
Tabla K-12Selección del cilindro neumático del plegado de la solapa 5 173
Tabla K-13Valores de salida del modelo analítico de los husillos laterales y transversales de la
<i>matriz</i>
Tabla K-14Referencia de catálogo de los elementos de los husillos
Tabla K-15Características de los equipos del sistema de dosificación Hot Melt ofrecidos por Valco
Melton
Tabla K-16Características del depósito o tanque de aire comprimido seleccionado 183
Tabla K-17Compresor de aire seleccionado para la red 183

Tabla K-18Unidad de mantenimiento FRL seleccionada	
Tabla K-19Racores y mangueras seleccionados para la red	
Tabla K-20Características de la válvula 3 vías seleccionada para la línea principal	v el sistema
Hot Melt	
Tabla K-21 <i>Características del bloque de electroválvulas de 5 vías para los cilindros y</i>	el actuador
de giro	
Tabla K-22Entradas y salidas del diagrama GRAFCET.	
Tabla L-1 <i>Especificaciones generales de la máquina formadora de cajas TFM-01</i>	195
Tabla N-1Costo anual del pago de empleados en una empresa en Colombia	

Sección A.2. Lista figuras de los apéndices

Figura B-1 <i>Ejemplos de máquinas formadoras de cajas de cartón en el mercado</i>
Figura C-1 <i>Dimensiones originales de la caja en condición de lámina o desplegada</i> 27
Figura D-1 <i>Diagrama de agrupación de sistemas y funciones principales</i>
Figura F-1Conceptos formulados para el Sistema de Almacenamiento de la Materia Prima
<i>(SAMP)</i>
Figura F-2Conceptos formulados para el Sistema de Dosificación de la Materia Prima (SDOMP)
Figura F-3Conceptos formulados para el Sistema de Desplazamiento de la Materia Prima (SDMP)
Figura F-4Conceptos para el Subsistema Macho del Sistema de Formado de Cajas de Cartón
<i>(SFCC)</i>

Figura F-5Concepto único para la Matriz de Conformación del SFCC. Conformado de bandejas
<i>Plaform.</i>
Figura F-6Conceptos formulados para el Sistema de Desplazamiento de Cajas de Cartón (SDCC)
Figura F-7 <i>Matriz morfológica para la combinación de conceptos.</i>
Figura F-8Combinaciones de los mejores mecanismos de los sistemas SAMP, SDOMP, SDMP y
<i>SDCC</i>
Figura G-1 <i>Esquema de la metodología sistematizada para el modelado en detalle</i> 39
Figura H-1 <i>Estado de esfuerzo plano</i>
Figura H-2Diagrama S-N de un acero comercial sometido a fatiga axial
Figura H-3Diagrama esfuerzo-tiempo de un esfuerzo fluctuante general de forma sinusoidal 55
Figura H-4 59
Geometría para el diseño de un tornillo de potencia 59
Figura H-5 <i>Esquema de un resorte de torsión con extremos rectos</i>
Esquema de cargas de trabajo de un sistema lineal de guiado GV372
Figura H-7 <i>Esquema de cargas de trabajo en los rodamientos en V de un sistema de guiado GV3</i> .
Figura H-8 <i>Esquema del ángulo de oscilación de la rótula de una cabeza de articulación de SKF</i> .
Figura H-9Esquema básico de un eyector y su funcionamiento por efecto Venturi
Figura H-10Influencia de la presión de alimentación en el funcionamiento de un sistema de vacío
con eyector

Figura H-11 <i>Esquema básico del circuito de vacío para seleccionar los componentes SMC</i> 84
Figura H-12Barra empotrada sometida a cargas multiaxiales. Problema de verificación 86
Figura H-13 $Diagrama$ de fuerza cortante y momento flector en el plano xy para el problema de
verificación
Figura H-14 <i>Estado de esfuerzo plano en el punto A para problema de verificación</i> 88
Figura H-15Estado de esfuerzo plano en el punto B para problema de verificación
Figura H-16Barra mallada con cargas externas y sujeción fija en un extremo para el problema de
verificación
Figura H-17 <i>Esfuerzo de von Mises en los puntos A y B para el problema de verificación</i> 90
Figura H-18Factor de seguridad en los puntos A y B para el problema de verificación90
Figura H-19Sistema de coordenadas y parámetros geométricos del cordón de soldadura de arista
Figura H-20Esquema del problema de verificación de la precisión de la simulación de soldadura
Figura H-21 <i>Trazado de comprobación de soldadura de una unión a tope en T (de arista).</i> 93
Figura H-22Unión apernada no permanente entre dos placas de diferente espesor y sometida a
tensión
Figura H-23 <i>Comprobación de perno de una conexión no permanente a tensión</i>
Figura H-24Parámetros de un perfil de velocidad angular trapezoidal
Figura H-25Perfil de velocidad angular de un servomotor con dos accionamientos 100
Figura H-26Esquema del movimiento de una lámina que desliza sobre una superficie cilíndrica
circular
Figura H-27 <i>Esquema del movimiento de una lámina que se desliza sobre un tope fijo</i>

Figura H-28DCL en forma de equilibrio dinámico del movimiento de una lámina sobre un tope
<i>fijo</i>
Figura H-29DCL en forma de equilibrio dinámico de una lámina sobre una superficie circular
Figura I-1 <i>Fracción de resistencia a la fatiga, f118</i>
Figura I-2Parámetros en el factor de la condición superficial, ka
Figura I-3Diámetros efectivos, de , para perfiles estructurales no rotativos
Figura I-4 <i>Factores de confiabilidad, ke</i>
Figura I-5Sensibilidad a la muesca para esfuerzos normales, q , y para esfuerzos cortantes, qs .
Figura I-6Constantes de condiciones finales de las columnas de Euler, C 121
Figura I-7Factor de servicio, Ks , para transmisiones de flexibles
Figura I-8Esfuerzos flexionantes máximos recomendados para resortes de torsión como
porcentaje de Sut
Figura I-9Dimensiones de cadenas de rodillos serie americana de torón sencillo 122
Figura I-10Perfil de rosca trapezoidal según la norma DIN 103-1 123
Figura I-11Dimensiones para el diseño de chaveteros para chavetas paralelas según la norma
<i>DIN 6885</i>
Figura I-12Factor para temperatura ambiente y altitud de instalación no estándar, kHT 125
Figura I-13Dimensiones de carros estándar AU HepcoMotion para sistema GV3 126
Figura I-14Dimensiones de guías planas de doble canto HepcoMotion para sistema GV3 127
Figura I-15Compatibilidad de lubricadores LB para sistemas GV3

Figura I-16Capacidad de carga máxima de trabajo de carros estándar AU HepcoMotion para
sistemas GV3128
Figura I-17 <i>Capacidad de carga máxima de trabajo de rodamientos en V de un sistema de guiado</i>
<i>GV3</i>
Figura I-18Duración básica del sistema lineal de guiado GV3 de acuerdo con el tipo de
rodamiento
Figura I-19Carrera admisible máxima en función de la flexión del vástago en cilindros neumáticos
<i>C</i> 85
Figura I-20Fuerza radial máxima en función de la carrera máxima de un cilindro neumático C85
Figura I-21Potencias nominales para la selección del tamaño del acoplamiento de mandíbula SKF
Figura I-22 <i>Tamaño de la chaveta para el acoplamiento de mandíbula SKF</i> 133
Figura I-23Dimensiones y designación de pedido para el acoplamiento de mandíbula SKF
seleccionado134
Figura I-24Par efectivo del actuador de giro CBR1 de paleta simple
Figura I-25Paso de rosca métrica ISO 724
Figura I-26Dimensiones de anillos de retención exteriores según la norma DIN 471 138
Figura I-27Dimensiones de anillos de retención interiores según la norma DIN 472 139
Figura I-28Ajustes recomendados por el Sistema Internacional de Ajustes (ISA, en inglés) 140
Figura J-1Dimensiones variables de las solapas de la bandeja Plaform
Figura J-2Variación típica del torque resistente con el ángulo de plegado y la geometría del
hendido144

Figura J-3Relación entre el torque resistente de plegado y la dirección de las capas de ondulantes
del cartón
Figura J-4Diagrama de cuerpo libre general de la prueba (DCL) de doblamiento de las solapas
Tabla J-5 <i>Variación de la carga suministrada</i> mcarga , debido al cambio de la distancia carga –
<i>pliegue,</i> <i>rw</i>
Figura J-9Parámetros geométricos para la configuración geométrica de sistemas 152
Figura K-1Distribución de cargas sobre los apoyos (topes inferiores) del contenedor153
Figura K-2Sujeciones y conexiones del contenedor del SAMP para simulación estática en
SolidWorks
Figura K-3Cargas externas del contenedor del SAMP para la simulación estática en SolidWorks
Figura K-4Reacciones en las sujeciones rígidas, que representa las cargas soportadas por los
husillos
Figura K-5Factor de seguridad mínimo de los topes del contenedor del SAMP 155
Figura K-6Factor de seguridad mínimo de las paredes del contenedor del SAMP 155
Figura K-7Comprobación de pernos y soldaduras156
Figura K-8Configuración geométrica final del sistema de acumulación de la materia prima 156
Figura K-9Malla de la estructura del SDOMP y comprobación del factor de seguridad 157
Figura K-10Comprobación de la resistencia de pernos en la estructura del SDOMP 157
Figura K-11Curvas características de la unidad modular con eyector incorporado
Figura K-12Resultados obtenidos por el software selector de cilindro guiados160
Figura K-13Configuración geométrica final del sistema de dosificación de la materia prima. 161

Figura K-14Configuración geométrica final del sistema de desplazamiento de la materia prima
Figura K-15Vistas de corte del eje motriz y del eje conducido del SDMP
Figura K-16 <i>Resultados del estudio estático de la manivela y de la biela</i>
Figura K-17 <i>Resultados de comprobación de fatiga en la manivela</i> 163
Figura K-18Modelo 3D del subsistema macho. Componentes del subsistema
Figura K-19Resultados del estudio estático del mecanismo plegador de la solapa 4 166
Figura K-20Sujeciones, cargas extenernas, conexiones apernadas y malla del mecanismo del tope
inferior
Figura K-21Factor de seguridad mínimo del mecanismo del tope inferior, comprobación de
<i>pernos</i>
Figura K-22 <i>Sujeciones y fuerzas externas en una esquina de la matriz de conformación</i> 168
Figura K-23Conexiones entre elementos: uniones apernadas y soldadas
Figura K-24 <i>Esfuerzos de Von Mises en los elementos de la matriz de conformación</i> 169
Figura K-25 <i>Comprobación de pernos y de soldaduras en la esquina de conformación</i> 169
Figura K-26Reacciones en las sujeciones establecidas de la esquina de conformación 170
Figura K-27Fuerzas externas, sujeciones y conexiones apernadas del soporte de esquinas 170
Figura K-28Tensión de Von Mises resultante en el soporte de las esquinas de conformación. 170
Figura K-29Comprobación de uniones apernadas en el soporte de las esquinas de conformación.
Figura K-30Reacciones en las sujeciones del bloque de unión de las esquinas de conformación

Figura K-31 <i>Esfuerzo de Von Mises en la barra guía-soporte de la matriz bajo cargas definidas.</i>
Figura K-32 <i>Reacciones en la sujeción de la barra que soporta la matriz, unión matriz – bastidor.</i>
Figura K-33 <i>Actuador de giro neumático seleccionado de la empresa SMC</i> 172
Figura K-34 <i>Esquema 3D del sistema de formado cajas de cartón (matriz + subsistema macho)</i> .
Figura K-35Malla, sujeciones y cargas aplicadas a la estructura de las pistolas de pagamento
caliente
Figura K-36Factor de seguridad mínimo de la estructura que soporta las pistolas de doble módulo.
Figura K-37Factor de seguridad de los pernos conectores de la estructura del SDHM 177
Figura K-38Cargas aplicadas al soporte de la unidad fusora y sujeción al bastidor por medio de
<i>pernos</i>
Figura K-39Factor de seguridad mínimo del soporte de la unidad fusora 177
Figura K-40Comprobación del factor de seguridad de pernos para el SDMH 178
Figura K-41Fusor y pistolas de pegamento caliente (Hot Melt) 179
Figura K-42Circuito neumático de la máquina formadora de cajas de cartón TFM-01 180
Figura K-43Diagrama de tiempos actuación para la selección del depósito de aire comprimido.
Figura K-44Resultados obtenidos en el software de selección del depósito de aire 182
Figura K-45Depósito de aire comprimido seleccionado 183
Figura K-46

Unidad de mantenimiento FRL seleccionada
Figura K-47Esquema tridimensional de la válvula 3 vías de la línea principal de la red y el sistema
<i>Hot Melt</i>
Figura K-48 <i>Esquema tridimensional del bloque de electroválvulas de 5 vías para la red</i> 186
Figura K-49Diagrama GRAFCET para el control de la máquina. Versión con Sensores y
Temporizadores
Figura K-50Diagrama de sensores de la máquina para el diseño del algoritmo de control 189
Figura K-51Diagrama Grafcet para el control de la máquina. VERSION TEMPORIZADORES
Figura K-52 <i>Esquema 3D de la estructura del bastidor diseñada bajo la norma ASTM A500 Gr. C</i> .
Figura L-1Vista lateral izquierda de la máquina con solo el SAMP, el SDOMP, el SDMP y el
<i>SFCC</i>
Figura L-2 <i>Configuración geométrica final de la máquina formadora de cajas TFM-01</i> 195
Figura M-1 <i>Tabla de ponderación para el análisis de criticidad</i> 197
Figura M-2 <i>Matriz de criticidad</i> 198
Figura M-3 <i>Resultados obtenidos del análisis de criticidad</i> 198
Figura M-4Plantilla para el Análisis de Modos y Efectos de Falla
Figura M-5Resultados obtenidos del AMEF para los componentes de los subsistemas
Figura N-1Cotización del sistema de aplicación de pegamento caliente con la empresa Valco
<i>Melton.</i>
Figura N-2Costos de los materiales por sistema
Figura N-3

Costos de la tornillería por sistema	203
Figura N-4Costos de elementos de transmisión por sistema	204
Figura N-5Costos de elementos de neumática por sistema	205

Apéndice B. Marco teórico del proyecto de diseño

Sección B.1. Fundamentación teórica para el diseño de la máquina

Concepto B.1.1: Máquinas formadoras de bandejas de cartón

En la industria del embalaje y exportación de productos cítricos, las máquinas formadoras de cajas de cartón surgen para ofrecer un proceso de formado automatizado de cajas de cartón corrugado, y de esta manera, ahorrar mano de obra, tiempo y dinero.

La labor principal de la máquina consiste en ensamblar cajas de cartón corrugado mediante el plegado y adherencia de sus solapas. En la condición de entrada, la materia prima es suministrada en forma láminas o planchas de cartón, las cuales poseen previamente los hendidos y los cortes necesarios para el proceso de plegado. Este proceso plegado se lleva a cabo en un "sistema de conformación", que cuenta con un elemento macho encargado de introducir la plancha de cartón en una matriz especial. En dicha matriz, diversos elementos realizan la tarea de plegar las solapas de la caja, tales como: superficies curvas, topes físicos y actuadores neumáticos.

Existen otros sistemas adyacentes que automatizan el proceso, desde la recepción y dosificación de planchas, hasta el transporte individual hacia la zona de conformación. Por otra parte, durante el transporte de las bandejas hacia el sistema de conformación, se debe suministrar, a ciertas solapas, un adhesivo temo-plástico conocido como 'termo-cola' (o 'Hot Melt') el cual, a diferencia del proceso manual, permite la construcción de una caja más simple y resistente.

Concepto B.1.2: Diseño de sistemas mecatrónicos electroneumáticos

La maquinaria automática moderna para embalaje de productos cítricos requiere del uso de un Controlador Lógico Programable (PLC), así como de actuadores eléctricos y componentes electroneumáticos. Se aplican conceptos tales como: electroneumática general (redes de aire comprimido, selección de actuadores, sistema de vacío, unidad compresora, unidad FRL, entre otros), electrotecnia (diseño de tableros eléctricos, circuitos de potencia y mando para servomotores, entre otros), diseño de algoritmos de control automático secuencial (lógica combinacional) y diseño de interfaces hombre-máquina (Bolton, 2017; Carnicer Royo, 1994; Majumdar, 1998; Serrano, 2009).

Concepto B.1.3: Selección de materiales y de procesos de manufactura

En el diseño orientado a la manufactura, se aplican conceptos tales como: materiales de ingeniería; fundición de metales; metalurgia de polvos; laminado y forjado de metal; corte y plegado de láminas metálicas; remoción de material (torneado, taladrado y fresado); tratamientos térmicos (recocido, templado y normalizado); tratamientos superficiales (cementación y nitruración); proceso de unión y ensamble (soldadura, ensamble mecánico) (Askeland & Wright, 2016; Groover, 2010).

Concepto B.1.4: Modelado analítico

El diseño mecánico requiere del uso de modelos físicos y de diseño, tales como: estática, dinámica (cinemática y cinética), síntesis de mecanismos, resistencia de materiales, diseño de elementos de máquina (ejes de transmisión de transmisión, uniones acopladas, cuñas, cadenas de rodillos, tornillos de sujeción, tornillos de potencia, soldadura, cojinetes de rodadura, resortes, ajuste y tolerancias, entre otros), termodinámica, mecánica de fluidos, transferencia de calor, entre otros (Beer et al., 2012, 2013; Budynas & Nisbett, 2008; Mott, 2006; Norton, 2011).

Concepto B.1.5: Modelado asistido

Existen diversas herramientas que facilitan el proceso de resolución de modelos. Los softwares CAD/CAE permiten modelar piezas en tres dimensiones y simular comportamientos mecánicos, algunos de ellos, mediante el método de elementos finitos. En el grupo CAE también se incluyen las herramientas de cálculo especializadas en ingeniería, así como herramientas de

dimensionamiento y selección de componentes prefabricados (know-how de fabricantes).

Concepto B.1.6: Herramientas para gestión de mantenimiento

El análisis de modos y efectos de falla (AMEF), y el análisis de criticidad, permiten jerarquizar los componentes y subsistemas. De esta manera, el diseño puede tomar decisiones respecto al mantenimiento de los sistemas, asegurando calidad, fiabilidad y seguridad operacional.

Concepto B.1.7: Análisis de costos y viabilidad de un proyecto de diseño

Implica determinar los costos de la adquisición y la manufactura de componentes, así como del montaje, puesta en marcha, traslado e instalación de la máquina. Finalmente, se debe realizar un estudio de la línea de vida económica de la máquina, con el fin de estudiar la viabilidad técnica y económica para la empresa, así como su amortización.

Sección B.2. Sección B.2: Estado del arte para el proyecto de diseño

Permite tomar decisiones basadas en estudios de caso, experiencias, productos existentes, know-how de fabricantes, patentes, etc.

Referente B.2.1: Fabricantes de máquinas formadoras de bandejas de cartón

En el mercado actual, existen compañías dedicadas a la fabricación y comercialización de este tipo de máquinas, entre ellas, se destacan: Boix, Paxiom, Hughes Enterprise, EndFlex, Tamegar, Combi, SACMI, Meca-Pac, GM Packaging Solutions, Tauras-Fenix y TECNO BOX. Los precios de adquisición de estas máquinas varían entre 30.000 USD a 100.000 USD, dependiendo de la complejidad de la solución y del nivel de automatización implementado.

A continuación, la Figura B-1 muestra algunos modelos comercializados por las empresas BOIX y TECNO BOX.

Figura B-1

Ejemplos de máquinas formadoras de cajas de cartón en el mercado

Nota. a. TECNO BOX modelo TGOX. Reproducido de *Manual de uso y mantenimiento de máquina montadora pegadora de cajas de cartón gama TGOX,* por TECNOBOX ELECTROMECÁNICA S.L, 2023 b. BOIX modelo MB/2M. Reproducido de *Manual de usuario MB/2M*, por BOIX, 2011.

Referente B.2.2: Proyectos de diseño de referencia

El diseño de estás maquinas ha sido objeto de estudio de tesis de graduación tanto a nivel de pregrado como a nivel de postgrado, entre ellos destacan:

1. "Diseño de un sistema de conformado de cajas de cartón para frutas para una máquina formadora de 2700 cajas/hora" (Olivera-Apaza, 2019). Este trabajo presenta consideraciones mecánicas y estructurales para el diseño de un sistema de conformado para cajas tipo P84.

2. "Diseño de un bastidor estructural y mecanismos de regulación para máquina formadora de cajas de cartón para envase de productos agrícolas" (Yana-Quispe, 2020). Este trabajo presenta el diseño del bastidor y de los mecanismos de regulación de una máquina formadora de cajas de cartón, teniendo en cuenta su ergonomía y manufactura.

3. "Propuesta de diseño de una maquina formadora de cajas de cartón" (Montes-Máximo,2016). Este trabajo presenta el desarrollo conceptual de una máquina formadora de cajas, mediante

un proceso de evaluación de conceptos que permite seleccionar la solución idónea para el diseño.

Referente B.2.3: Diseños patentados

La empresa Boix Maquinaria Spain publicó algunas patentes relacionadas con el diseño de máquinas formadoras de cajas de cartón, las cuales sirven de fuente de inspiración para el diseño realizado en este proyecto, a continuación, se listan algunas de ellas:

"Máquina para montar cajas de cartón": Inventor: Boix Jaén, José. Entidad otorgante:
 Oficina Española de Patentes y Marcas. Fecha de publicación: 15 de abril de 2011. Número de publicación: W011161287 (internacional), EP 2586605 (concesión europea).

"Dispositivo para la conformación y armado de cajas de cartón": Inventor: Boix Jaén,
 José. Entidad otorgante: Oficina Española de Patentes y Marcas. Fecha de publicación: 16 de enero
 de 2003. Número de publicación: ES 2179739.

3. "Dispositivos transportador de planchas planas de cartón en máquinas formadoras de cajas de cartón". Inventor: Boix Jaén, José. Entidad otorgante: Oficina Española de Patentes y Marcas. Fecha de publicación: 21 de diciembre de 2011. Número de publicación: ES 2370627

Referente B.2.4: Estudio normativo para el proyecto de diseño

A continuación, la Tabla B-1, B-2 y B-3 presentan las normas o estándares aplicables al diseño y selección de componentes de este proyecto.

Tabla B-1

Pernos	y	ISO 4762 (tornillo de cabeza hueca), ISO 10642 (tornillo de cabeza		
tornillos	•	avellanada), DIN 7991 (tornillo de cabeza avellanada hueca).		
Tuercas		SO 4032 (tuerca hexagonal grado AB), ISO 4034 (tuerca hexagonal		
		grado C).		
Arandelas		ISO 7089 - 8 (arandela plana grado A), DIN 128 (cierre con arandela		
		elástica curvada), DIN 988 (arandela de ajuste o apoyo).		
Pasadores		ISO 2341 - B (cabeza de pasador de horquilla), ISO 2338 (pasador		

Normas para la selección de componentes móviles y de sujeción.

	paralelo sin templar), ISO 1234 – C (pasador partido)
Chavetas	DIN 6885 (chaveta paralela)
Retenedores	DIN 471 (anillo de seguridad para ejes)
Transmisión	DIN 8188 (ISO 606) (cadena de rodillos sencilla serie americana ANSI
de potencia	B29.1), DIN 8192 (Piñón sencillo serie americana)
Componentes	ISO 6432 (Cilindros neumáticos redondos doble efecto, vástago simple)
neumáticos	

Tabla B-2

Normas para la selección de materiales.

Aceros	Ingenieriles	AISI SAE 1045 y 1020 (aceros al carbono), AISI SAE 4140 y 4340
		(Aceros aleados con Cr, Mo y/o Ni), AISI SAE 304/304L, 3Cr12 y
		316 (Aceros inoxidables austeníticos)
	Estructurales	ASTM A500 Gr. C (NTC 4526 – tubería estructural), ASTM A36
		(NTC 1920 – láminas y platinas HR, canales en C estándar
		americano)
Bronces	5	AISI SAE 40 y 65
Plástico	S	NYLON 6 y 6.6

Tabla B-3

Normas para el diseño de componentes y sistemas

Husillos	ANSI/ASME B1.5-1997 (Rosca ASME), DIN103-1 (Rosca trapezoidal)						
Seguridad	ISO 12100:2010 (Diseño de maquinaria segura), UNE-EN 415-10 (Seguridad						
	de las máquinas de embalaje, requisitos generales), ISO 13849-1:2015 -						
	(Seguridad de las máquinas: Partes del sistema de mando relacionadas con la						
	seguridad)						
Sistema	ISO 4414:2010 (Reglas generales y requerimientos de seguridad), ISO 8573-						
neumático	1 (Calidad de aire comprimido), ISO 8778:2003 (Atmósfera de referencia						
	estándar), ISO 1219-1:2012 (Símbolos gráficos)						
Control de	ISO 10816 (Medición y evaluación de la vibración sobre partes no rotativas),						
vibraciones	ISO 2631-1:1997 (Vibraciones transmitidas al conjunto del cuerpo humano)						
Elaboración	NTC 1722:2001 (Tolerancias de dimensiones lineales y angulares), NTC						
de planos de	2129:2001 (Representación de secciones de barras y perfiles), NYC						
diseño	2329:1997 (Soldadura), NTC 2197:1988 (Símbolos gráficos para sistemas de						
	control automático). NTC 2328:1997 (Símbolo gráficos y diagrama de circuito						
	para transmisión de fluidos), NTC 6247:2017 (Documentación técnica de						
	productos, formatos), NTC 4166-1997 (Símbolos gráficos para los planos de						
	protección contra incendios).						

Apéndice C. Definición de requisitos para el proyecto de diseño

Sección C.1. Características físicas de la materia a procesar

A continuación, la Tabla C-1 muestra las propiedades físicas de la materia prima a procesar.

Tabla C-1

Especificaciones de la materia prima: bandeja de cartón tipo Plaform

Tipo de caja		Plaform				
Material		Cartón corrugado, doble pared				
Fabricante		Smurfit Kappa Colombia				
Masa aprox. (me	edida)	325 [<i>g</i>]				
Densidad volum	étrica aprox. (calculada)	$250 [kg/m^3]$				
Resistencia a la compresión vertical		1520 [<i>kgf</i> / <i>m</i>] (14.896 [<i>N</i> / <i>m</i>])				
Resistencia mecánica normal a su superficie		400 kPa (58 psi)				
Dimensiones	Condición de plancha	62.1 cm x 49.9 cm x 0.5 cm				
	Condición formada	11.5 cm x 32.8 cm x 27.5 cm				
Tipo de pegamento termoplástico		Acetato de vinilo etileno (EVA)				

Nota. Información suministrada por la empresa Smurfit Kappa Colombia.

Figura C-1

Dimensiones originales de la caja en condición de lámina o desplegada

Nota. Plano suministrado por la empresa Smurfit Kappa Colombia.

Sección C.2. Requerimientos y restricciones para el proyecto de diseño

Tabla C-2

Requerimientos y restricciones para el diseño de la máquina formadora de cajas de cartón.

Criterios	Requerimientos y/o restricciones
Interoperabilidad	• Retroalimentación de información al algoritmo de control.
	• HMI clara, entendible e intuitiva.
	Compatibilidad entre sistemas electromecánicos.
Prestación	 Servicio mínimo de 8 horas/día durante 350 días/año.
	 Capacidad de producción variable: hasta 1250 cajas/hora.
	 Diseño ergonómico y estético. Buena iluminación
	 Nivel de automatización alto, máximo dos operarios.
	 Modos de operación: automático, de mantenimiento y/o ajuste.
	Adecuada conmutación del compresor.
Robustez frente a	• Alta seguridad para el operario: mecanismos de bloqueo y apagado
interferencias	automático, sistema contraincendios y resguardos de protección.
	 Altos ciclos de vida, diseño suficientemente robusto.
	Solución electroneumática.
Fiabilidad	• Uso de normas ISO, ASTM, ASME, DIN, AWS, ANSI, SAE para
	el diseño y selección de elementos.
	• Selección de mecanismos, actuadores y elementos con la mejor
	calidad y eficiencia posible.
	• Análisis de criticidad para su posterior mantenimiento preventivo.
Escalabilidad	• Diseño flexible. Que permita el cambio de tamaños y de tipo de
	bandeja de cartón.
Capacidad de	• Fácil acceso al servicio de mantenimiento (que permita uso de
diagnostico y	nerramientas). Diseno modular.
mantennnento	• Protección contra accesorios y componentes importantes, tales
Facilidad do	Collocianar y estizar les componentes prefebricades y meterioles
implementación	 Seleccionar y conzar los componentes prenabricados y materiales de fabricación con proveedores pacionales o locales
implementation	 Considerar el sitio en el cual se pueden manufacturar ciertos.
	componentes así como el sitio para el montaje de la máquina
Facilidades para	Considerar la manipulación y el traslado de la máquina, hasta el
la instalación v	sitio de la instalación, así como su adecuado acceso.
puesta en marcha	• Considerar el espacio para abrir las puertas de la máguina.
Restricciones	Considerar condiciones ambientales del sitio de la instalación.
para el diseño	• Meta de costo total del proyecto: 50.000 USD.
•	 Tamaño v peso comparables con máguinas en el mercado.
	• Uso de normas NTC para la elaboración de planos de construcción.

Apéndice D. Agrupación de funciones y sistemas principales.

Figura D-1

Diagrama de agrupación de sistemas y funciones principales

Apéndice E. Especificaciones para el diseño de sistemas

A continuación, la Tabla E-1 establece las especificaciones técnicas para realizar el diseño

conceptual de cada uno de los sistemas mencionados, en base a los requerimientos, a las

restricciones y su funcionalidad dentro de la máquina.

Tabla E-1

Especificaciones para el diseño de los sistemas que componen la máquina.

Sistemas	Especificaciones para el diseño						
	Uso de perfiles y láminas comerciales, materiales de calidad, fácilmente soldables y						
	manejables en la construcción de máquinas.						
	Uso de resguardos de protección para componentes, y para seguridad del usuario por						
	movimientos de componentes y temperaturas altas.						
	Orden estructural adecuado de sistemas y componentes, sin posibilidad de						
	interferencias. Considerar el balanceo estructural. Uso de huellas poka-yoke.						
SFR	Uso de tornillería estándar, tamaños similares para el montaje de elementos.						
SED	Señalización adecuada por altas temperaturas o peligros eléctricos.						
	Diseño para el montaje. Que permita la correcta alineación do componentes.						
	Uso de canaletas para el cableado eléctrico y para las mangueras neumáticas.						
	Consideración del espacio para apertura de puertas y resguardos en la operación de						
	mantenimiento. Uso de luminaria. Fácil acceso de herramientas.						
	Uso elementos para la manipulación y traslado de la máquina: eslingas, canales para						
	montacarga, ruedas, cáncamos y pies de nivelación.						
	Diseño ergonómico para la alimentación de planchas de cartón.						
SAMP	Contenedor de planchas ajustable a planchas de distinto tamaño.						
57 1011	Topes físicos efectivos para sostener la pila de planchas de cartón y que permita la						
	extracción individual de planchas.						
	Sistemas de extracción de planchas efectivo, sin posibilidad interferencias o retardos, y						
	ajustable a planchas de distinto tamaño.						
	Sistema de transmisión de bajo consumo, regulables en su velocidad de operación y que						
SDOMP	permita movimientos rápidos con alta precisión.						
	Requerimiento mínimo de mantenimiento y alta seguridad para el operario.						
	Diseño para fácil manufactura y montaje. Número de piezas reducido. Acoplamientos						
	sencillos, de fácil obtención.						
	Sistema de transmisión efectivo para transportar las planchas, regulable en su velocidad						
SDMP	de operación. Movimientos rápidos con alta precisión.						
	Ajustable a planchas de distinto tamaño. Sin posibilidad de interferencias o retardos.						
	Alta seguridad para el operario.						
	Requerimiento minimo de mantenimiento y facilidad de acceso.						
	Actuador de alta precisión con capacidad de control de velocidad y posición.						
	Número de piezas reducido. Acoplamientos sencillos, de fácil obtención.						

SFCC	Mecanismo de empuje efectivo. Actuador de alta precisión, con capacidad de control de velocidad y posición. Movimientos rápidos con alta precisión. Acoplamientos sencillos, de fácil obtención. Uso de mecanismos de bloqueo. Matriz de conformación ajustable a cajas de distinto tamaño. Piezas de fácil manufactura y montaje. Superficies lisas. Mecanismos de sujeción y plegado efectivos. Requerimiento mínimo de mantenimiento. Diseño modular que permita el intercambio de piezas para formar otros tipos de caja. Diseño funcional sin posibilidad de interferencias mecánicas.						
SDCC	Mecanismo de transmisión efectivo para expulsar las cajas formadas. Diseño de bajo costo, que no requiera energía eléctrica de ser posible. Requerimiento mínimo de mantenimiento.						
SGDAC	 Tanque de aire comprimido con un tamaño adecuado para la conmutación del compresor. Válvulas electroneumáticas de fácil operación y mantenimiento. Unidad FRL dimensionada para suministrar aire con la calidad adecuada. Uso de sensores y finales de carrera para monitoreo de condición. Montaje de fácil acceso al mantenimiento. 						
SDHM	Sistema seleccionado bajo las condiciones de operación requeridas. Uso de mangueras termorresistentes y aplicadores de alta precisión. Montaie de fácil acceso al mantenimiento y que permita el monitoreo.						
SCIU	 HMI amigable con el usuario, de fácil manejo, diseño sencillo. Debe proporcionar información del estado de los componentes y del proceso. Debe poder configurarse para el modo de mantenimiento y ajuste. Tablero eléctrico organizado, con fácil distinción entre el circuito de mando y de potencia. Uso de borneras, y símbolos de señalización. Uso de luminaria que indique el estado actual de máquina, así como alarmas que indiquen problemas de funcionamiento, interferencias mecánicas y bajo nivel de planchas en el contenedor. Fácil acceso al mantenimiento y buena iluminación. Sensores y transductores de calidad, compatibles con actuadores y PLC. PLC compatible con la instrumentación dispuesta en la máquina. Algoritmo de control reprogramable. 						

Apéndice F. Proceso de diseño conceptual

Sección F.1. Conceptos de diseño para los sistemas de la máquina

A continuación, las Figuras F-1 a F-6 muestran los conceptos concebidos para el diseño de los sistemas principales. En rojo se enmarcan los mejores conceptos determinados en la valoración.

Figura F-1

Conceptos formulados para el Sistema de Almacenamiento de la Materia Prima (SAMP)

Figura F-2

Conceptos formulados para el Sistema de Dosificación de la Materia Prima (SDOMP)

Figura F-3

Conceptos formulados para el Sistema de Desplazamiento de la Materia Prima (SDMP)

Figura F-4

Conceptos para el Subsistema Macho del Sistema de Formado de Cajas de Cartón (SFCC)

Figura F-5

Concepto único para la Matriz de Conformación del SFCC. Conformado de bandejas Plaform.

Nota. Adaptado de Dispositivo para la Conformación y Armado de Cajas de Cartón, por J. Boix, 2003, OEPM (<u>https://patentscope.wipo.int/search/es/detail.jsf?docId=ES31989161</u>). CC BY 2.0.

Figura F-6

Conceptos formulados para el Sistema de Desplazamiento de Cajas de Cartón (SDCC)

Sección F.2. Valoración de conceptos

A continuación, la Tabla F-1 presenta los criterios de evaluación escogidos.

Tabla F-1

Criterios de evaluación para la valoración de conceptos planteados.

Criterios de evaluación, <i>i</i>	% peso de			
	importancia, W _i			
Funcionalidad y productividad	30			
Facilidad de manufactura y montaje	5			
Facilidad de instalación y puesta en marcha	5			
Facilidad de mantenimiento y cambio de partes	5			
Costo de adquisición	25			
Costo de mantenimiento	5			
Alta seguridad para el operario	15			
Consumo energético	3			
Eficiencia mecánica	2			
Rigidez estructural	2			
Manipulación	0.5			
Facilidad de modelamiento	1			
Cantidad de piezas	1			
Bajo nivel de ruido	1			

A continuación, la Tabla F-2 muestra el esquema de la matriz de decisión planteada.

Tabla F-2

Ejemplo del esquema de la matriz de decisión ponderada planteada

Conceptos del sistema, n		C	oncepto 1	Concepto 2			
Criterios, <i>i</i>	% peso, W _i	Calif. j _{i1}	Valor, $W_i \cdot j_{i1}$	Calif. j _{i2}	Valor, $W_i \cdot j_{i2}$		
Criterio 1	W_1	j ₁₁	$W_1 \cdot j_{11}$	j ₁₂	$W_1 \cdot j_{12}$		
Criterio 2	W_2	j ₂₁	$W_2 \cdot j_{21}$	j ₂₂	$W_2 \cdot j_{22}$		
Suma ponderada			$\sum W_i \cdot j_{i1}$		$\sum W_i \cdot j_{i2}$		

Nota. Se asumen dos conceptos planteados para el sistema y dos criterios de evaluación.

Sección F.3. Combinación de los mejores conceptos.

Los conceptos con mayor puntaje en la valoración fueron los siguientes: SAMP (conceptos 1, 3 y 4), SDOMP (conceptos 1, 2, 6, 7 y10), SDMP (conceptos 3, 4 y 6), SFCC-macho (concepto 2), SDCC (conceptos 2 y 3). La Figura F-7 presenta la matriz morfológica planteada.

Figura F-7

Matriz morfológica para la combinación de conceptos.

	Conceptos planteados para los sistemas									
Sistemas	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
SAMP			"		-		1	-	-	-
SDOMP			1							٨
SDMP							-	-	-	-
SDCC				-	-	-	-	-	-	-

Nota. Cinco posibles combinaciones para los sistemas SAMP, SDOMP, SDMP y SDCC.

A continuación, la Figura F-8 muestra las cinco combinaciones obtenidas de la matriz.

Figura F-8

Combinaciones de los mejores mecanismos de los sistemas SAMP, SDOMP, SDMP y SDCC.

Nota. La figura muestra las soluciones creadas a partir de la combinación de los mejores mecanismos (conceptos) de los sistemas SAMP, SDOMP, SDMP y SDCC.

Se determinó que la combinación número 1 es la más conveniente ya que posee ventajas a nivel de funcionalidad, simplicidad, modularidad, regulación de mecanismos, facilidad de mantenimiento, facilidad de modelamiento e independencia en el movimiento entre sistemas.

Apéndice G. Lineamientos y metodología para modelado en detalle

Sección G.1. Lineamientos para el modelado en detalle.

Lineamiento G.1.1: Enfoque para cálculo del factor de seguridad

El enfoque de diseño de piezas para manufactura se basa en determinar, por iteración, el factor de seguridad, N, a partir del conocimiento de: las cargas aplicadas, las propiedades del material y la geometría completa del elemento.

El factor de seguridad debe relacionar la resistencia del material (a la fluencia, última o la fatiga) con el valor del esfuerzo mecánico (estático, dinámico, de cargas multiaxiales o combinadas) al que el elemento se ve sometido. De acuerdo con el libro "Diseño de Elementos de Máquinas" (Mott, 2006), se recomienda utilizar los siguientes valores listados en la Tabla G-1.

Tabla G-1

Factos de seguridad, N	Nivel de confianza en los datos de diseño (cargas, propiedades de materiales, análisis de esfuerzos o ambiente)
1.25 a 2.0	Alto
2.0 a 2.5	Medio
2.5 a 4.0	Вајо
4.0 o más	Muy bajo

Valores recomendados del factor de seguridad de un elemento de material dúctil

Nota. Adaptado de Diseño de elementos de máquinas (p.185), por R. Mott, 2006.

Lineamiento G.1.2. Criterios para la selección de componentes prefabricados

Es indispensable verificar los parámetros de diseño bajo los cuales se sustenta la selección de un componente. Se debe indagar si el fabricante ofrece alguna guía para determinar el factor de seguridad que se debe aplicar a las cargas a las que el componente se ve sometido. Por otra parte, también se deben verificar los estándares de calidad, tamaños preferidos, costos de adquisición, disponibilidad y garantía de soporte técnico que ofrece el fabricante para sus productos.

Sección G.2. Enfoque sistemático para la metodología del modelado en detalle.

El modelado en detalle consta de tres etapas: formulación, resolución y especificación. Cada etapa debe ser ejecutada de forma consecutiva en el orden descrito, sin embargo, también debe existir retroalimentación entre ellas lo cual permite optimizar el diseño del elemento/componente. A continuación, la Figura G-1 muestra un esquema del proceso.

RESOLUCIÓN

Figura G-1

Esquema de la metodología sistematizada para el modelado en detalle

RETROALIMENTACIÓN

A partir de la figura anterior, se definen las siguientes abreviaciones, correspondientes a los elementos que constituyen cada etapa del proceso de modelado:

Bloque de Formulación: Modelo de Diseño de Libro (MDL), Know-How de Fabricante (KHF), Modelo Analítico (MA), Parámetros Geométricos (PG), Parámetros Operativos (PO),

Selección de Materiales (SM), Parámetros Iniciales para el Modelado (PIM).

Bloque de Resolución: Métodos Analíticos Tradicionales (MAT), Herramientas Computacionales No Especializadas (HCNE), Hojas de Cálculo (HC), Solucionadores Matemáticos (SM), Ingeniería Asistida por Computador (CAE, en inglés), Herramientas de Modelado Bidimensional y Tridimensional (HM2D3D), Herramientas Especializadas de Cálculo y Simulación (HECS), Herramientas de Dimensionamiento y Selección de Componentes de Fábrica (HDSCF).

Bloque de Especificación: Parámetros Finales del Modelado (PFM), Selección de Componentes (SC), Especificación Completa (EC), Planos de Construcción (PC), Análisis de Modos y Efectos de Falla – Análisis de Criticidad (AMEF-AC), Costo de Adquisición/Costo de Fabricación (CA/CF).

El proceso de optimización se logra mediante un análisis minucioso de los resultados obtenidos en cada etapa del modelado, tratando de disminuir los costos de adquisición o fabricación del elemento/componente, sin perder su funcionalidad o mucha robustez. Es indispensable analizar la calidad de los datos con que se alimenta el modelo (cargas, materiales, etc.), la afinidad de dicho modelo para representar el fenómeno, y la fidelidad de los resultados obtenidos en la resolución del modelo.

Apéndice H. Gestión de recursos para el modelado en detalle

Sección H.1. Gestión de recursos materiales

Tablas H.1.1: Propiedades mecánicas de materiales para fabricación de piezas

A continuación, la Tabla H-1 lista los aceros de ingeniería, la Tabla H-2 lista los aceros estructurales y la Tabla H-3 lista los metales no ferrosos y plásticos de ingeniería. Los valores del punto de fluencia, S_y , y de la resistencia última a la tracción, S_u , son valores promedio basados en libros de diseño consultados y catálogos de fabricantes a nivel local (ver Tabla H-4).

Tabla H-1

Categoría	Material	Condición	Límite elástico, S _y [MPa]	Resistencia última, S _u [MPa]
Al carbono	AISI SAE	HR	210	380
	1020	Calibrado	441	539
		Recocido	294	441
		Normalizado	343	490
		Cementado y	441	686
		WQT a 200°C		
	AISI SAE	HR	313	588
	1045	Calibrado	510	610
		Recocido	379	620
		Normalizado	413	655
		WQT a 540°C	621	827
Aleados	AISI SAE	HR + Recocido	392	655
	4140	Calibrado	588	735
		OQT a 600°C	735	930
	AISI SAE	HR + Recocido	441	686
	4340	Calibrado	637	784
		OQT a 600°C	784	980
Inoxidables	AISI SAE 304	Recocido	245	568

Propiedades mecánicas de aceros de ingeniería para el diseño y la fabricación de piezas

Tabla H-2

Propiedades mecánicas de aceros estructurales para el diseño y la fabricación de piezas

Material	Presentación	Límite elástico, S _y [MPa]	Resistencia última, S _u [MPa]
ASTM A500 Gr.	Tuberías cuadrada y	345	430
C / NTC 4526	rectangular		
ASTM A36 /	Láminas y platinas	250	450
NTC 1920	HR; Canales en C		
	estándar americano.		
ASTM A589	Láminas HR de alfajor	250	365
	(antideslizante)		

Tabla H-3

Propiedades mecánicas de metales no ferrosos y plásticos para el diseño y la fabricación de piezas

Categoría	Material	Presentación	Límite elástico, S _y [MPa]	Resistencia última, S _u [MPa]
Metales no ferrosos	AISI SAE 40	Barra o tubo circular	117 (73 a la fatiga)	255
Plásticos	Poliamida 6 (nylon)	Lámina o barra circular		80

Tablas H.1.2: Fabricantes de materiales y componentes

A continuación, la Tabla H-4 presenta los fabricantes/proveedores utilizados para la

selección de los materiales y los componentes de la máquina.

Tabla H-4

Fabricantes y/o proveedores para la selección de materiales y componentes

Categoría	Componentes o materiales	Fabricante / Proveedor
Materiales	Aceros estructurales: tubería estructural,	Agofer, Compañía General de
para	láminas, platinas, canales.	Aceros, Ferrocortes, Ternium
manufactura	Aceros de ingeniería: al carbono,	Compañía general de aceros,
de piezas	aleados, inoxidables	Ferrocortes
	Metales no ferrosos: bronces	Acefer
	Plásticos: nylon	-
Sujeción y	Pernos, tornillos, tuercas, arandelas,	Mundial de tornillos
especiales	cáncamos	
	Carril de fijación tipo C	MAS FIJACION
	Bisagras, ruedas industriales, pies de	ELESA + GANTER
	nivelación, volantes de maniobra,	

	indicadores de posición, pomos de apriete, cerraduras	
	Resortes	Nacional de Resortes
Transmisión de potencia	Cabezas de unión, acoplamientos, cojinetes de rodadura	SKF
	Sistemas de guiado lineal	Hepco Motion
	Catarinas y cadenas de rodillos	Intermec
	Servomotores y servomotorreductores	Siemens
	Cuñas, chavetas, anillos de retención,	
	pasadores, bujes	
Neumática	Unidad compresora	Kaeser Compresores
	Electroválvulas:3 vías, bloque;	SMC Colombia
	mangueras; racores; actuadores: de giro	
	y cilindros; unidad FRL; purgas	
Eléctricos y de	PLC, borneras, contactores, térmico,	Siemens
control	relés, cables, servodrive	

Tablas H.1.3: Equipos para la manufactura y fabricación de piezas

A continuación, la Tabla H-5 presenta los equipos y máquinas herramienta disponibles para

la manufactura y fabricación de piezas del proyecto de diseño.

Tabla H-5

Г ·	, .	1	1	C ,		C 1 · · · /	1	•
Eannos 1	, maaunas	herramienta	nara la	manufactura	12	tahricacion	dp	n10705
Lynpos y	magninas	ner i annienia j	our a ra	mannjacina	У.,	adricación	uc	picaus

Tipo de proceso	Equipo	Características
Fresado,	Centro de mecanizado vertical	Tolerancias hasta $\pm 0.05 \ [mm]$
torneado y	Z-MAT Power V6	
taladrado		
Rectificado	Rectificadora CNC	
Plegado de	Plegadora hidráulica DXTECH	Longitud de la mesa: 6000 [mm]
chapa metálica		Precisión de control: $\pm 0.01 \ [mm]$
		Ángulo: 10 – 180 [°]
Pulido	Pulidora	
Corte de láminas	Máquina de corte por plasma	

Nota. Información suministrada por la empresa Metalmecánica Torfres.

Sección H.2. Gestión de recursos computacionales

La Tabla H-6 presenta las herramientas computacionales para el modelado asistido.

Tabla H-6

Herramientas computacionales para modelado con resolución asistida.

Tipo de l	nerramienta	Software	Uso en el proyecto de diseño	
Herramientas	Hojas de cálculo	Microsoft Excel	Manejo básico de datos: cálculos aritméticos, representación visual de datos	
de cálculo no	(HC)	18.0		
especializadas	Solucionadores	Matlab R2020a	Entorno de programación. Manipulación de matrices, datos, funciones y	
(HCNE)	matemáticos		algoritmos.	
	(SM)			
Herramientas	Herramientas de	SolidWorks 2023	Creación de modelos 3D y ensambles, creación de dibujos 2D. Diseño de	
especializadas	modelado 2D y	SP5 – Design &	esquemas eléctricos.	
en ingeniería	3D (HM2D3D)	Electrical		
(CAE)	Herramientas	SolidWorks 2023	Análisis de esfuerzos a partir de modelos 3D mediante FEA.	
	especializadas de	SP5 – Simulation		
	cálculo y	FluidSIM 6	Diseño y simulación de circuitos neumáticos. Creación de diagramas	
	simulación	Neumática	GRAFCET.	
	(HECS)	TIA Portal V18	Programación de PLC, simulación e implementación de programas de control.	
		LabVIEW 2018	Diseño de interfaz gráfica HMI	
	Herramientas de	SMC Herramientas	Configuradores: bloques de electroválvulas, cilindros, sensores.	
	dimensionamiento	de Ingeniería	Dimensionamiento y selección: depósito de aire, cilindros guiados, actuadores	
	y selección de		de giro, sistemas de vacío, válvulas de 2 vías, unidades FRL.	
	componentes de		Cálculo: tiempos de carga/descarga del depósito, consumo de aire,	
	fábrica (HDSCF)		características de caudal, cantidad de agua condensada, caídas de presión,	
			estados de aire.	
		SKF Bearing Select	Dimensionamiento y selección de rodamientos y cabezas de articulación.	
		SIEMENS Product	Configurador de servomotores, servo convertidores y PLC	
		Configurator		
		PFERD	Tolerancias para ejes y agujeros	

Sección H.3. Gestión de modelos matemáticos

Modelos H.3.1: Modelos analíticos obtenidos de libros de diseño

Modelo H.3.1.1: Dinámica vectorial de las partículas.

El modelo analítico descrito a continuación se basa en los capítulos 11 y 12 del libro 'Vector Mechanics for Engineers' (Beer et al., 2013).

Cinemática de partículas:

Movimiento curvilíneo de partículas:

$$\vec{v} = \frac{d\vec{r}}{dt}; \quad \vec{a} = \frac{d\vec{v}}{dt} \tag{1}$$

Donde t es el tiempo, \vec{r} es el vector de posición de la partícula con respecto al sistema de referencia newtoniano O_{xyz} , \vec{v} es la velocidad instantánea absoluta de la partícula y \vec{a} es la aceleración instantánea absoluta de la partícula.

Movimiento relativo de un sistema de referencia en traslación:

Sea un punto A y un punto B en movimiento en el espacio:

$$\vec{r}_B = \vec{r}_A + \vec{r}_{B/A}; \quad \vec{v}_B = \vec{v}_A + \vec{v}_{B/A}; \quad \vec{a}_B = \vec{a}_A + \vec{a}_{B/A}$$
 (2)

Donde $\vec{r}_{B/A}$, $\vec{v}_{B/A}$ y $\vec{a}_{B/A}$ son los vectores de posición, velocidad y aceleración relativas de la partícula *B* con respecto a la partícula *A*, es decir, respecto al sistema en traslación $A_{x'y'z'}$.

Componentes tangencial y normal en el plano:

$$\vec{v} = v \cdot \hat{e}_t; \quad \vec{a} = \frac{dv}{dt} \cdot \hat{e}_t + \frac{v^2}{\rho} \cdot \hat{e}_n \tag{3}$$

Donde \hat{e}_t es el vector unitario en dirección tangencial curvatura de la trayectoria, \hat{e}_n es el vector unitario en dirección normal a la curvatura de la trayectoria (hacia el centro de la curvatura), v es la velocidad tangencial absoluta de la partícula, y ρ es el radio de curvatura de la trayectoria.

Componentes radial y transversal en el plano:

$$\vec{r} = r \cdot \hat{e}_r; \quad \vec{v} = \dot{r} \cdot \hat{e}_r + (r \cdot \dot{\theta}) \cdot \hat{e}_\theta;$$

$$\vec{a} = (\ddot{r} - r \cdot \dot{\theta}^2) \cdot \hat{e}_r + (r \cdot \ddot{\theta} + 2\dot{r} \cdot \dot{\theta}) \cdot \hat{e}_\theta$$
(4)

Donde \hat{e}_r es el vector unitario en dirección radial, \hat{e}_{θ} es el vector unitario en dirección transversal. r, \dot{r} y \ddot{r} son la posición, velocidad y aceleración radiales del punto P con respecto al origen de coordenadas. $\theta, \dot{\theta}$ y $\ddot{\theta}$ son la posición, velocidad y aceleración angulares del punto P con respecto a la horizontal.

Cinética de partículas:

Segunda ley de newton aplicada a una partícula en movimiento:

$$\sum \vec{F} = \frac{d}{dt} (\vec{L}) = \frac{d}{dt} (m \cdot \vec{v}) = m \cdot \vec{a}$$
⁽⁵⁾

Donde $\sum \vec{F}$ es la sumatoria de todas las fuerzas internas y externas sobre la partícula, \vec{L} es la cantidad de movimiento lineal de la partícula, m es la masa de la partícula, \vec{a} es la aceleración absoluta de la partícula. Estas ecuaciones solo se cumplen respecto a un sistema de referencia absoluto (newtoniano).

Modelo H.3.1.2: Dinámica vectorial de los cuerpos rígidos

El modelo analítico descrito a continuación se basa en los capítulos 15, 16 y 18 del libro 'Vector Mechanics for Engineers' (Beer et al., 2013)

Cinemática de cuerpos rígidos:

Movimiento general: sean A y B dos partículas de un mismo cuerpo rígido en el espacio

$$\vec{r}_B = \vec{r}_A + \vec{r}_{B/A}; \quad \vec{v}_B = \vec{v}_A + \vec{v}_{B/A}; \quad \vec{a}_B = \vec{a}_A + \vec{a}_{B/A}; \quad (6)$$
$$\vec{v}_{B/A} = \vec{\omega} \times \vec{r}_{B/A}; \quad \vec{a}_{B/A} = \vec{\alpha} \times \vec{r}_{B/A} + \vec{\omega} \times \left(\vec{\omega} \times \vec{r}_{B/A}\right)$$

Donde $\vec{r}_{B/A}$, $\vec{v}_{B/A}$ y $\vec{a}_{B/A}$ son los vectores de posición, velocidad y aceleración relativas del punto *B* con respecto al punto *A*; $\vec{\omega}$ es la velocidad angular del cuerpo rígido; $\vec{\alpha} = \alpha \cdot \hat{k}$ es la aceleración angular del cuerpo rígido. En caso de un movimiento en el plano, $\vec{\omega} = \omega \cdot \hat{k}$ y $\vec{\alpha} = \alpha \cdot \hat{k}$, por lo tanto: $\vec{\omega} \times (\vec{\omega} \times \vec{r}_{B/A}) = -\omega^2 \cdot \vec{r}_{B/A}$.

Cálculo de velocidades con el análisis del centro instantáneo de rotación, C:

$$\omega = \frac{v_A}{r_{A/C}} = \frac{v_B}{r_{B/C}} \tag{7}$$

Donde $r_{A/C}$ es la magnitud del vector de posición del punto A con respecto al centro instantáneo de rotación C, y $r_{B/C}$ es la magnitud del vector de posición del punto B con respecto al centro instantáneo de rotación C.

Sistema de referencia en movimiento general:

Movimiento de una partícula P relativa a un sistema de referencia \mathcal{F} en rotación y traslación. Sea: *OXYZ* el sistema de referencia fijo y*Axyz* (\mathcal{F}) el sistema de referencia con un movimiento traslacional y rotacional definido con respecto a *OXYZ* con una velocidad angular $\vec{\Omega}$. Si se conoce el movimiento de la partícula con respecto al sistema de referencia en movimiento \mathcal{F}

$$\vec{r}_P = \vec{r}_A + \vec{r}_{P/A}; \quad \vec{v}_P = \vec{v}_A + \vec{v}_{P/A};$$
(8)

$$\vec{v}_{P/A} = \vec{v}_{P'/A} + \vec{v}_{P/F}; \quad \vec{v}_{P'/A} = \vec{\Omega} \times \vec{r}_{P/A}; \quad \vec{v}_{P/F} = \left(\vec{r}_{P/A}\right)_{Axyz}$$

$$\vec{q}_{P/F} = \vec{q}_{P/F} + \vec{q}_{P/F}; \quad \vec{q}_{P/F} = \vec{q}_{P/F} + \vec{q}_{P/F}; \quad \vec{v}_{P/F} = \vec{q}_{P/F}; \quad \vec{v}_{P/F} = \left(\vec{r}_{P/A}\right)_{Axyz}$$

$$a_P = a_A + a_{P/A}; \quad a_{P/A} = a_{P'/A} + a_{P/F} + a_c;$$

 $\vec{a}_{P'/A} = \vec{\Omega} \times \vec{r}_{P/A} + \vec{\Omega} \times (\vec{\Omega} \times \vec{r}_{P/A}); \quad \vec{a}_{P/F} = (\vec{r}_{P/A})_{Axyz}; \quad \vec{a}_c = 2 \cdot \vec{\Omega} \times \vec{v}_{P/F}$

Donde $\vec{v}_{P/\mathcal{F}}$ es la velocidad relativa del punto *P* con respecto al sistema en rotación \mathcal{F} ; $\vec{a}_{P/\mathcal{F}}$ es la aceleración relativa del punto *P* con respecto al sistema en rotación \mathcal{F} ; \vec{a}_c es la aceleración de Coriolis.

Cinética de cuerpos rígidos en el plano.

Rotación respecto al centroide del cuerpo:

$$\sum \vec{F} = m \cdot \vec{a}_G; \quad \sum \vec{M}_G = \frac{d}{dt} (\vec{H}_G) = I_G \cdot \vec{\alpha}$$
⁽⁹⁾

Donde $\sum \vec{F}$ es la sumatoria de todas las fuerzas externas e internas aplicadas sobre cuerpo rígido, m es la masa del cuerpo rígido, \vec{a}_G es la aceleración del centro de masa G del cuerpo rígido, $\sum \vec{M}_G$ es la sumatoria de todos los momentos externos aplicados sobre el cuerpo rígido con respecto a G, \vec{H}_G es la cantidad de movimiento angular del cuerpo rígido, I_G es el momento de inercia del cuerpo rígido alrededor de G y $\vec{\alpha}$ es la aceleración angular del cuerpo rígido.

Rotación no centroidal:

$$\sum \vec{F} = m \cdot \vec{a}_G; \quad \sum \vec{M}_O = I_O \cdot \vec{\alpha} \tag{10}$$

Donde $\sum \vec{M}_0$ es la sumatoria de todos los momentos externos aplicados sobre el cuerpo rígido con respecto al punto de rotación O, $I_0 = I_G + m \cdot r_{G/O}^2$ es el momento de inercia del cuerpo rígido respecto a O, siento $r_{G/O}$ la distancia entre el punto G y el punto O.

Cinética de cuerpo rígido en tres dimensiones:

$$\sum \vec{F} = m \cdot \vec{a}_G; \quad \sum \vec{M}_G = \frac{d}{dt} (\vec{H}_G)$$
(11)

Donde \vec{H}_G es la cantidad de movimiento angular con respecto al sistema de referencia fijo Gxyz, y se calcula así:

$$\vec{H}_{G} = \begin{pmatrix} \bar{I}_{x} & -\bar{I}_{xy} & -\bar{I}_{xz} \\ -\bar{I}_{yx} & \bar{I}_{y} & -\bar{I}_{yz} \\ -\bar{I}_{zx} & -\bar{I}_{zy} & \bar{I}_{z} \end{pmatrix} \cdot \vec{\omega}$$
(12)

Donde \bar{I}_x , \bar{I}_y , \bar{I}_z son los momentos de inercia masa centroidales del cuerpo rígido alrededor

de G, y $\bar{I}_{xy} = \bar{I}_{yx}$, $\bar{I}_{xz} = \bar{I}_{zx}$, y $\bar{I}_{yz} = \bar{I}_{zy}$ son los productos de inercia masa centroidales; $\vec{\omega}$ es la velocidad angular del cuerpo rígido.

Si se elige un sistema de referencia Gx'y'z' tal que los momentos y productos de inercia permanezcan constantes en el tiempo, entonces \vec{H}_G y su derivada en el tiempo, \vec{H}_G se calculan así:

$$\vec{H}_{G} = \begin{pmatrix} \bar{I}_{x'} & -\bar{I}_{x'y'} & -\bar{I}_{x'z'} \\ -\bar{I}_{y'x'} & \bar{I}_{y'} & -\bar{I}_{y'z'} \\ -\bar{I}_{z'x'} & -\bar{I}_{z'y'} & \bar{I}_{z'} \end{pmatrix} \cdot \begin{pmatrix} \omega_{x'} \\ \omega_{y'} \\ \omega_{z'} \end{pmatrix}; \quad \vec{H}_{G} = \left(\vec{H}_{G}\right)_{Gx'y'z'} + \vec{\Omega} \times \vec{H}_{G}$$
(13)

Donde $\left(\vec{H}_{G}\right)_{Gx'y'z'}$ es la razón de cambio de \vec{H}_{G} con respecto al sistema de referencia en

rotación Gx'y'z'; $\vec{\Omega}$ es la velocidad angular del sistema de referencia en rotación Gx'y'z', y si el origen de dicho sistema está en el cuerpo, entonces $\vec{\Omega}$ es idénticamente igual a la velocidad angular $\vec{\omega}$ del cuerpo rígido. Por otra parte, si los ejes coordenados rotatorios x'y'z' coinciden con los ejes principales del cuerpo rígido, entonces los productos de inercia serán cero.

Modelo H.3.1.3: Análisis de esfuerzos del sólido deformable

El modelo analítico descrito a continuación se basa en los capítulos 2, 3, 4, 5, 6 y 7 del libro 'Mechanics of Materials' (Beer et al., 2012).

Esfuerzo normal debido a cargas axiales:

$$\sigma_n = \frac{F_a}{A_t} \tag{14}$$

Donde σ_n es el esfuerzo normal en la dirección axial, F_a es la fuerza axial y A_t es el área de la sección transversal del elemento.

Esfuerzo cortante debido a cargas cortantes directas:

$$\tau_c = \frac{V_d}{A_c} \tag{15}$$

Donde τ es el esfuerzo cortante en la dirección transversal, V_d es la fuerza cortante directa y A_c es el área de la sección transversal o cortante del elemento.

Concentración de esfuerzos normales por carga axial:

$$K_n = \frac{\sigma_{m\acute{a}x}}{\sigma_{prom}} \tag{16}$$

Donde K_n es el factor de concentración de esfuerzos normales (Beer et al, 2012, Fig.2.60, p.116), $\sigma_{máx}$ es el esfuerzo normal máximo en el punto de concentración y σ_{prom} es el esfuerzo normal promedio.

Esfuerzo cortante debido a momentos de torsión en ejes de sección circular:

$$\tau_T = \frac{T \cdot c}{I} \tag{17}$$

Donde τ_T es el esfuerzo cortante por torsión, *T* es el momento de torsión o torque aplicado, *c* es el radio externo de la sección circular y *J* es el momento polar de inercia de la sección circular.

Concentración de esfuerzos cortantes por momentos de torsión en ejes circulares:

$$\tau_{máx} = K_T \cdot \frac{T \cdot c}{J} \tag{18}$$

Donde $\tau_{máx}$ es el esfuerzo cortante máximo en el punto de concentración y K_T es el factor de concentración de esfuerzos cortantes (Beer et al, 2012, Fig.3.29, p.179).

Esfuerzo normal debido a momentos flectores:

$$\sigma_f = \frac{M \cdot c}{I_z} \tag{19}$$

Donde σ_f es el esfuerzo normal por flexión, *M* es el momento de flexión, *c* es la distancia de la fibra más lejana respecto del eje neutro y I_z es el momento de inercia de la sección circular.

Esfuerzo cortante debido a fuerzas cortantes de flexión:

$$\tau_f = \frac{V_f \cdot Q}{I_z \cdot t}; \quad Q = A_s \cdot \bar{y} \tag{20}$$

Donde τ_f es el esfuerzo cortante por flexión (valor máximo en el eje neutro de la sección transversal), V_f es la fuerza cortante por flexión, Q es el momento estático del área de la sección transversal arriba del eje neutro, A_s es área de dicha sección, \bar{y} es la distancia del centroide de dicha sección respecto al eje neutro y t es el ancho mayor de dicha sección en dirección z. Para secciones transversales rectangulares, se tiene que: $\tau_f = 1.5 \cdot V/A$.

Análisis de esfuerzos combinados:

Sea un punto infinitesimal de un cuerpo deformable es cual está sometido a una combinación de esfuerzos normales y cortantes debido a fuerzas (axiales y cortantes) y momentos (torsionales y flectores).

A continuación, la Figura H-1 representa el estado de esfuerzo plano sobre dicho punto:

Figura H-1

Estado de esfuerzo plano

Nota. Los valores de las cargas pueden generar esfuerzos positivos o negativos.

Un estudio detallado permite demostrar que el esfuerzo normal máximo y el esfuerzo normal mínimo se encuentran en un plano cuyo ángulo de inclinación con respecto al plano vertical yz es: $\theta_1 = 0.5 \cdot \tan^{-1} \left(2\tau_{xy} / (\sigma_x - \sigma_y) \right)$. Los valores de dichos esfuerzos se calculan así:

$$\sigma_{1,2} = \left(\frac{\sigma_x + \sigma_y}{2}\right) \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
(21)

Estos esfuerzos son llamados esfuerzos principales. Por otra parte, el esfuerzo cortante máximo siempre se encuentra a 45 [°] con respecto dicho plano, y su valor se calcula así:

Si σ_1 y σ_2 son ambos positivos: $\tau_{max} = \sigma_1/2$

Si σ_1 es positivo y σ_2 es negativo: $\tau_{max} = (\sigma_1 - \sigma_2)/2$

Si σ_1 y σ_2 son ambos negativos: $\tau_{max} = \sigma_2/2$

Modelo H.3.1.4: Teoría de la máxima energía de distorsión

El modelo analítico descrito a continuación se basa en la sección 5-5 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008). Esta teoría fue desarrollada por von Mises–Hencky, y expresa que el estado de esfuerzo (plano o tridimensional) de un punto infinitesimal de un cuerpo deformable (sometido a cargas combinadas) puede ser representado en un solo esfuerzo equivalente, σ' , que se calcula de la siguiente manera:

Esfuerzo de von Mises tridimensional:

$$\sigma' = \frac{1}{\sqrt{2}} \cdot \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{\frac{1}{2}}$$
(22)

$$\sigma' = \frac{1}{\sqrt{2}} \cdot \left[\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + \left(\sigma_z - \sigma_x \right)^2 + 6 \left(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2 \right) \right]^{\frac{1}{2}}$$

Para esfuerzo plano: $\sigma_z = \tau_{yz} = \tau_{zx} = 0 \rightarrow \sigma' = (\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2)^{1/2}$

Ecuación para el diseño de elementos:

$$\sigma'_{m\acute{a}x} \le S_y \to \ \sigma'_{m\acute{a}x} = S_y / N_{m\acute{n}}$$
⁽²³⁾

Donde σ'_{max} es el esfuerzo máximo de von Mises en el elemento, S_y es esfuerzo de fluencia

del material del elemento y N_{min} es el factor de seguridad mínimo para el diseño del elemento.

Modelo H.3.1.5: Esfuerzos cíclicos. Falla por fatiga en aceros.

El modelo analítico descrito a continuación se basa en el capítulo 6 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008). El método utilizado para el diseño de elementos sometidos a esfuerzos cíclicos es el método de esfuerzo-vida, en el cual se debe tener en cuenta la resistencia a la fatiga del material. A continuación, se describe este método.

Resistencia a la fatiga, S_f:

La resistencia a la fatiga, S_f , de un elemento hecho en acero varía con el número de ciclos de esfuerzo, N. La Figura H-2 ilustra este comportamiento. Observe que:

Para $N < 10^3$ [ciclos]: $S_f \approx S_{ut}$ (resistencia a la tracción)

Para $10^3 < N < 10^6$: S_f disminuye linealmente hasta un valor S_e .

Para $N > 10^6$: $S_f = S_e$ (límite de la resistencia a la fatiga).

Figura H-2

Diagrama S-N de un acero comercial sometido a fatiga axial

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.266) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

A continuación, se presenta la relación entre S_f , S_{ut} y S_e para el rango $10^3 < N < 10^6$:

$$S_f = a \cdot N^b; \quad a = \frac{(f \cdot S_{ut})^2}{S_e}; \quad b = -\frac{1}{3} \log\left(\frac{f \cdot S_{ut}}{S_e}\right)$$
(24)

Donde f es la fracción de resistencia a la fatiga (Apéndice I, Figura I-1). Por otra parte, el límite de resistencia a la fatiga, S_e , para más de 10⁶ ciclos (vida infinita), depende de diferentes factores, tal y como se describe a continuación:

$$S_e = k_a \cdot k_b \cdot k_c \cdot k_d \cdot k_e \cdot k_f \cdot S'_e \tag{25}$$

Donde S'_e es el límite de resistencia a la fatiga en viga rotatoria ($S'_e = 0.5S_{ut}$ para $S_{ut} \le$ 1400 [*MPa*] y $S'_e = 700$ [*MPa*] para $S_{ut} > 1400$ [*MPa*]). A continuación, se describe cómo determinar los demás factores de la ecuación 25:

Factor de superficie, ka: se puede calcular utilizando la siguiente ecuación.

$$k_a = a \cdot S_{ut}^b \tag{26}$$

Donde *a* y *b* son constante que dependen del acabado superficial (Apéndice I, Figura I-2) *Factor de tamaño, k_b:*

Para carga de flexión o torsión:

$$k_b = 1.24 d_e^{-0.107}$$
 para $2.79 \le d_e \le 51 \ [mm]$
 $k_b = 1.51 d_e^{-0.157}$ si $51 < d_e < 254 \ [mm]$

Para carga axial: $k_b = 1$

Donde d_e es la dimensión efectiva, cuyo valor depende de la geometría de la sección transversal del elemento, así, para una barra redonda sólida en rotación $d_e = d$ (diámetro), para perfiles estructurales no rotativos consultar Apéndice I, Figura I-3.

Factor de carga, k_c : (aplicable solo para cargas simples o uniaxiales)

 $k_c=1$ para flexión, $k_c=0.85$ para axial y $k_c=0.59$ para torsión.

Factor de temperatura, k_d : se calcula utiliza utilizando la siguiente ecuación:

$$k_d = 0.975 + 0.432 \cdot 10^{-3} T_F - 0.115 \cdot 10^{-5} T_F^2 + 0.104 \cdot 10^{-8} T_F^3 - 0.595$$
⁽²⁷⁾

 $\cdot 10^{-12} T_F^4$; para $70 \le T_F \le 1000 [°F]$

Donde T_F es la temperatura ambiente de la operación.

Factor de confiabilidad, ke: consultar Apéndice I, Figura I-4.

Factor de efectos varios, k_f : su valor depende de manufactura y metalúrgicos utilizados. Estos factores generan esfuerzos residuales que pueden aumentar o disminuir el límite de resistencia a la fatiga. Para más información se deben consultar libros especializados en fatiga.

Caracterización de esfuerzos fluctuantes o cíclicos:

A continuación, la Figura H-3 muestra un diagrama esfuerzo-tiempo de un esfuerzo fluctuante general (su forma sinusoidal simplifica su análisis).

Figura H-3

Diagrama esfuerzo-tiempo de un esfuerzo fluctuante general de forma sinusoidal.

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.293) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Los esfuerzos fluctuantes generan esfuerzos medios y alternantes, los cuales se pueden determinar mediante la siguiente ecuación:

$$\sigma_m = \frac{\sigma_{m\acute{a}x} + \sigma_{m\acute{n}}}{2}; \quad \sigma_a = \left|\frac{\sigma_{m\acute{a}x} - \sigma_{m\acute{n}}}{2}\right|$$

$$\tau_m = \frac{\tau_{m\acute{a}x} + \tau_{m\acute{n}}}{2}; \quad \tau_a = \left|\frac{\tau_{m\acute{a}x} - \tau_{m\acute{n}}}{2}\right|$$
(28)

Donde $\sigma_{m \dot{a}x}$ y $\sigma_{m \dot{n}n}$ son los esfuerzos normales máximo y mínimo, σ_m y σ_a son los esfuerzos normales medio y alternante, $\tau_{m \dot{a}x}$ y $\tau_{m \dot{n}n}$ son los esfuerzos cortantes máximo y mínimo, y τ_m y τ_a son los esfuerzos cortantes medio y alternante.

Los esfuerzos fluctuantes o cíclicos se pueden clasificar en tres tipos:

Esfuerzo totalmente invertido: $\sigma_m = 0$ y $\sigma_a \neq 0$ (o $\tau_m = 0$ y $\tau_a \neq 0$) Esfuerzos repetidos: $\sigma_m = \sigma_a (o \tau_m = \tau_a)$. Esfuerzos fluctuantes generales: $\sigma_m \neq \sigma_a \neq 0$ (o $\tau_m \neq \tau_a \neq 0$) Concentración del esfuerzo y sensibilidad a la muesca:

Debido a que un elemento puede presentar irregularidades o cambios de sección en su geometría, se deben determinar los factores de concentración de esfuerzo por fatiga, K_f (o K_{fs}). Estos factores permiten incrementar el esfuerzo en la muesca o entalladura. Estos esfuerzos se calculan mediante la siguiente ecuación:

$$K_f = 1 + q(K_t - 1); \quad K_{fs} = 1 + q_s(K_{ts} - 1)$$
 (29)

Donde K_f y K_{fs} son los factores de concentración de esfuerzo por fatiga para esfuerzos normales (axial y flexión) y para cortantes (torsión), respectivamente, K_t y K_{ts} son los factores de concentración de esfuerzo estático para esfuerzos normales y para cortantes, respectivamente (Budynas & Nisbett, 2008, Tablas A-15 y A16, p. 1006-1014), y q y q_s son la sensibilidad a la muesca para esfuerzos normales y para cortantes, respectivamente (Apéndice I, Figura I-5). Para el caso de cargas simples o uniaxiales, si el material entra en plasticidad, es decir, $K_f |\sigma_{max}| > S_y$, entonces se debe distinguir el factor de concentración de esfuerzo de la componente uniforme así: $K_{fm} = (S_y - K_f \sigma_a)/|\sigma_m|$.

Criterio de falla por fatiga

Existen distintos criterios de falla por fatiga que tiene como fin encontrar el factor de seguridad por fatiga, N_f . En el presente diseño se utiliza el criterio de Soderberg para vida infinita.

$$\frac{\sigma_a'}{S_e} + \frac{\sigma_m'}{S_y} = \frac{1}{N_f} \tag{30}$$

Procedimiento para abordar problemas determinísticos de esfuerzo-vida:

Carga simple (uniaxial) totalmente invertida ($\sigma_m = 0 \ o \ \tau_m = 0$ *):*

Se determina S_e (aplicando en k_c respectivo) y K_f (o K_{fs} si la carga es de torsión pura), luego se determina el factor de seguridad por fatiga para vida infinita, N_f , con la ecuación 30, reemplazando $\sigma'_m = 0$ y $\sigma'_a = K_f \sigma_a$ (o $\sigma'_a = K_{fs} \tau_a$). Para determinar el número de ciclos hasta la falla: $N = (\sigma'_a/a)^{1/b}$ usando la ecuación 24 para determinar las constantes *a* y *b*.

Carga simple (uniaxial) fluctuante general ($\sigma_m \neq \sigma_a \neq 0$ *o* $\tau_m \neq \tau_a \neq 0$ *):*

Se determina S_e (aplicando en k_c respectivo) y K_f (o K_{fs} si la carga es de torsión pura), se determina el esfuerzo medio σ_m (o τ_m) y el esfuerzo alternante σ_a (o τ_a), luego se determina el factor de seguridad por fatiga para vida infinita, N_f , con la ecuación 30, reemplazando $\sigma'_m = K_f \sigma_m$ (o $\tau'_m = K_{fs} \tau_m$) y $\sigma'_a = K_f \sigma_a$ (o $\tau'_a = K_{fs} \tau_a$).

Se verifica el factor de seguridad por fluencia localizada, N_{y} así:

$$\sigma_a + \sigma_m = \frac{S_y}{K_f \cdot N_y} \quad \text{o} \quad \tau_a + \tau_m = \frac{0.577S_y}{K_{fs} \cdot N_y} \tag{31}$$

Para determinar el número de ciclos, N, con un factor de seguridad $N_{f,finita}$ se aplica:

$$N = \left(\frac{S_f}{a \cdot N_{f,finita}}\right)^b; \quad S_f = \frac{\sigma'_a}{1 - (\sigma'_m/S_{ut})} \tag{32}$$

Donde para el caso de torsión pura S_{ut} se reemplaza por $0.67S_{ut}$.

Carga combinada (multiaxial):

Se determina S_e (sin usar k_c), se determinan los K_f y K_{fs} para cada tipo de carga aplicada (axial, flexión y torsión), se determinan los esfuerzos medios y alternantes por esfuerzos normales σ_m y σ_a (axial y flexión) y por esfuerzo cortante τ_m y τ_a (torsión). luego se determina el factor de seguridad por fatiga para vida infinita, N_f , con la ecuación 30, reemplazando σ'_a y σ'_m por los esfuerzos de von Mises de los estados de esfuerzo alternante y medio, así:

$$\sigma_{a}' = \left[\left(K_{f,f} \cdot \sigma_{a,f} + K_{f,a} \cdot \frac{\sigma_{a,a}}{0.85} \right)^{2} + 3 \left(K_{fs,t} \cdot \tau_{a,t} \right)^{2} \right]^{1/2}$$
(33)
$$\sigma_{m}' = \left[\left(K_{f,f} \cdot \sigma_{m,f} + K_{m,a} \cdot \sigma_{m,a} \right)^{2} + 3 \left(K_{fs,t} \cdot \tau_{m,t} \right)^{2} \right]^{1/2}$$

Donde $K_{f,f}$, $K_{f,a}$, $K_{fs,t}$ son los concentradores de esfuerzo por fatiga para cargas de flexión, axiales y de torsión, respectivamente, $\sigma_{a,f}$ y $\sigma_{m,f}$ son los esfuerzos alternante y medio para cargas de flexión, $\sigma_{a,a}$ y $\sigma_{m,a}$ son los esfuerzos alternante y medio para cargas axiales, y $\tau_{a,t}$ y $\tau_{m,t}$ son los esfuerzos alternante y medio para cargas de torsión.

Finalmente, se verifica de manera conservadora la fluencia localizada, así:

$$\sigma_a' + \sigma_m' = \frac{S_y}{N_y} \tag{34}$$

Modelo H.3.1.6: Diseño de columnas con carga centrada

El modelo analítico descrito a continuación se basa en las secciones 4-12 y 4-13 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008).

Cálculo de la esbeltez crítica:

$$\left(\frac{l}{k}\right)_{1} = \left(\frac{2\pi^{2}C \cdot E}{S_{y}}\right)^{1/2}$$
(35)

Donde $\left(\frac{l}{k}\right)_1$ es la relación de esbeltez crítica, *C* es la constante de conficiones en extremos (Apéndice I, Figura I-6), *E* es el módulo de elasticidad del material, *S*_y es el esfuerzo de fluencia del material de la columna.

Condición de equilibrio inestable en la columna:

Sea *l* la longitud de la columna y $k = (I/A)^{1/2}$ es el radio de giro, siendo *I* el momento de inercia de área y *A* es el área de la sección transversal de la columna. Entonces la carga crítica unitario viene dada por:

Para una relación de esbeltez $l/k \le (l/k)_1$, se utiliza la fórmula de J.B. Johnson:

$$\left(\frac{F}{A}\right)_{crit} = S_y - \left(\frac{S_y}{2\pi} \cdot \frac{l}{k}\right)^2 \cdot \frac{1}{C \cdot E}$$
(36)

Para una relación de esbeltez $l/k > (l/k)_1$, se utiliza la fórmula de Euler:

$$\left(\frac{F}{A}\right)_{crit} = \frac{C \cdot \pi^2 E}{(l/k)^2} \tag{37}$$

Modelo H.3.1.7: Mecánica de los tornillos de potencia

El modelo analítico descrito a continuación se basa en la sección 8-2 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008).

La Figura H-4 presenta los parámetros geométricos para diseño de un tornillo de potencia.

Figura H-4

Geometría para el diseño de un tornillo de potencia

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.401, 403 y 404) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Par de torsión para elevar la carga, T_R , y par de torsión para bajar la carga, T_L :

$$T_{R} = \frac{F_{TP} \cdot d_{m}}{2} \cdot \left(\frac{l + \pi \cdot f \cdot d_{m} \cdot \sec \alpha}{\pi \cdot d_{m} - f \cdot l \cdot \sec \alpha}\right);$$

$$T_{L} = \frac{F_{TP} \cdot d_{m}}{2} \cdot \left(\frac{\pi \cdot f \cdot d_{m} \cdot \sec \alpha - l}{\pi \cdot d_{m} + f \cdot l \cdot \sec \alpha}\right)$$
(38)

Donde F_{TP} es la fuerza axial en el tornillo, d_m es el diámetro medio del tornillo, f es el coeficiente de fricción (f = 0.2 para tuerca de bronce y tornillo de acero seco), 2α es el ángulo de la rosca (para rosca trapezoidal, ver Apéndice I, Figura I-10), $l = N_e \cdot p$ es el avance del tornillo, siendo N_e es el número entradas y p es el paso de la rosca.

Condición de autobloqueo:

$$\pi \cdot f \cdot d_m \cdot \sec \alpha > l \to f \cdot \sec \alpha > \tan \lambda \tag{39}$$

Donde λ es el ángulo de avance (relacionado con l, así:tan $\lambda = l/(\pi \cdot d_m)$)

Eficiencia mecánica del tornillo, e_{TP}:

$$e_{TP} = \frac{F_{TP} \cdot l}{2\pi \cdot T_R} \tag{40}$$

Esfuerzos en el cuerpo del tornillo: esfuerzo cortante, τ , y esfuerzo axial, σ :

$$\tau = \frac{16 \cdot T}{\pi \cdot d_r^3}; \ \sigma = \frac{4 \cdot F_{TP}}{\pi \cdot d_r^2}$$
(41)

Esfuerzos en la rosca del tornillo: esfuerzo de apoyo, σ_B , esfuerzo flexionante, σ_b :

$$\sigma_B = \frac{2F_{TP}}{\pi \cdot d_m \cdot n_t \cdot p}; \quad \sigma_b = \frac{6F_{TP}}{\pi \cdot d_r \cdot n_t \cdot p}$$
(42)

Donde n_t es el número de roscas en contacto.

Esfuerzo cortante transversal, τ *, en el centro de la raíz de la tuerca:*

$$\tau = \frac{3F_{TP}}{\pi \cdot d_r \cdot n_t \cdot p} \tag{43}$$

Se debe evaluar la posibilidad pandeo en el tornillo con radio de giro: $k = \frac{\sqrt{2}}{4} \cdot d_r^2$.

Modelo H.3.1.8: Diseño transmisiones de cadena de rodillos

El modelo analítico descrito a continuación se basa en la sección 17-5 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008), el cual se basa en la norma ANSI B29.1 (equivalente a la norma DIN 8188).

Las dimensiones de cadenas estándares de rodillos americanos se pueden consultar en el Apéndice I, Figura I-9, de acuerdo con el número de cadena (del 25 al 240).

Diámetro de paso, D_p:

$$D_p = \frac{p}{\sin(180^\circ/N_{dts})} \ [mm] \tag{44}$$

Donde p [mm] es el paso de la cadena y N_{dts} es el número de dientes de la catarina. Velocidad de la cadena, V_{chain} :

$$V_{chain} = N_{dts} \cdot p \cdot n_{sprocket} \ [mm/s] \tag{45}$$

Donde $n_{sprocket} [rev/s]$ es la velocidad angular de la catarina.

Para evitar alta vibraciones bajo velocidades moderadas y altas, se debe seleccionar una catarina de al menos 17 dientes.

Según la American Chain Association (ACA), Chains for Power Transmission and Materials Handling (1982) la potencia nominal de la cadena está limitada por la resistencia a la fatiga de las placas del eslabón y la de los rodillos. Para una cadena de torón único se tiene:

Potencia nominal limitada por placa del eslabón (fatiga de las placas a bajas velocidades):

$$H_1 = 0.004 N_1^{1.08} \cdot n_1^{0.9} \cdot p^{(3-0.07p)} \ [hp] \tag{46}$$

Potencia nominal limitada por los rodillos (fatiga por impacto):

$$H_2 = \frac{1000K_r \cdot N_1^{1.5} \cdot p^{0.8}}{n_1^{1.5}} \ [hp] \tag{47}$$

Donde:

 N_1 : número de dientes en la catarina menor.

 n_1 : velocidad de la catarina [rpm].

p: paso de la cadena [pulg].

 $K_r = 29$ para números de cadena 25, 35; 3.4 para cadena 41; y 17 para cadenas 40-240.

Potencia admisible:

$$H_a = min(H_1, H_2) \tag{48}$$

Potencia que se debe transmitir:

$$H_d = H_a \cdot K_s \cdot n_d \tag{49}$$

Donde K_s es el factor de servicio (Apéndice I, Figura I-7) y n_d es el factor de diseño.

Longitud de la cadena en pasos, L/d:

$$\frac{L}{p} = \frac{2C_{sp}}{p} + \frac{N_1 + N_2}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 C_{sp}/p}$$
(50)

Donde C_{sp} es la distancia entre centros y está dada por:

$$C_{sp} = \frac{p}{4} \left[-A + \sqrt{A^2 - 8\left(\frac{N_2 - N_1}{2\pi}\right)^2} \right]; \quad A = \frac{N_1 + N_2}{2} - \frac{L}{p}$$
(51)

Se recomienda utilizar un número impar de dientes en la catarina y un número par de pasos en la cadena, lo cual evita utilizar eslabones especiales.

Modelo H.3.1.9: Diseño de resortes de espiras helicoidales de torsión

El modelo analítico descrito a continuación se basa en la sección 10-12 del libro "Diseño en Ingeniería Mecánica de Shigley" (Budynas & Nisbett, 2008). A continuación, la Figura H-5 muestra un esquema sencillo de un resorte de torsión con extremos rectos.

Figura H-5

Esquema de un resorte de torsión con extremos rectos

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.534) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Número de vueltas que pueden contarse en el cuerpo del resorte, N_b:

$$N_b = entero + N_p; \quad N_p = \beta/360 \tag{52}$$

Donde N_p es el número de vueltas parciales en el resorte y β es el ángulo de la ubicación

del extremo libre del resorte.

Esfuerzo de flexión máximo en el resorte de torsión, $\sigma_{f,máx}$:

$$\sigma_{f,max} = K_i \cdot \frac{32M_r}{\pi d^3}; \quad K_i = \frac{4C^2 - C - 1}{4C \cdot (C - 1)}; \quad C = \frac{D}{d}$$
(53)

Donde K_i es el coeficiente de concentración de esfuerzos debido a la curvatura del alambre, $M_r = F \cdot l$ es el momento flexionante del resorte, d es el diámetro del alambre del resorte, C es el índice del resorte y D es el diámetro de la hélice de la espira.

Razón del resorte en par de torsión por unidad de vuelta, k':

$$k' = \frac{M_r}{\theta'_t} = \frac{d^4 \cdot E}{10.8D \cdot N_a}; \quad N_a = N_b + \frac{l_1 + l_2}{3\pi \cdot D}$$
(54)

Donde θ'_t [vueltas] es la deflexión angular total del resorte, *E* es el módulo de elasticidad del material del resorte, N_a es el número equivalente de vueltas activas, l_1 es la longitud del brazo 1 y l_2 es la longitud del brazo 2.

Diámetro de la hélice después del enrollamiento, D':

$$D' = \frac{N_b \cdot D}{N_b + \theta_c'}; \quad \theta_c' = \frac{10.8M_r \cdot D \cdot N_b}{d^4 \cdot E}$$
(55)

Donde θ'_c [vueltas] es la deflexión angular del cuerpo de la espira. El nuevo diámetro interior de la hélice es $D'_i = D' - d$ y, por consiguiente, si el diámetro del pasador es D_p , se debe asegurar que la holgura diametral $\Delta = D'_i - D_p$ sea siempre mayor que cero.

Resistencia estática:

Al aplicar el modelo de falla por energía de distorsión, se debe aplicar:

 $S_y = 0.78S_{ut}$ para alambre de piano y aceros al carbono estirados en frío

 $S_y = 0.87S_{ut}$ para aceros al carbono y de baja aleación OQT.

 $S_y = 0.78S_{ut}$ para aceros inoxidables austeníticos y aleaciones no ferrosas.

Resistencia a la fatiga

Si existen esfuerzos flexionante repetido (R = 0), entonces la resistencia a la fatiga, S_e , es:

$$S_{e} = \frac{S_{r}/2}{1 - \left(\frac{S_{r}/2}{S_{ut}}\right)^{2}}$$
(56)

Donde S_r es el esfuerzo flexionante máximo recomendado por la Associated Spring (Apéndice I, Figura I-8), S_{ut} es el esfuerzo último a la tracción del material del resorte.

Al aplicar el criterio de falla por fatiga de Gerber, se obtiene el factor de seguridad, n_f :

$$n_f = \frac{1}{2} \frac{\sigma_a}{S_e} \cdot \left(\frac{S_{ut}}{\sigma_m}\right)^2 \left[-1 + \sqrt{1 + \left(2\frac{\sigma_m}{S_{ut}} \cdot \frac{S_e}{\sigma_a}\right)^2} \right]$$
(57)

Modelo H.3.1.10: Diseño de cuñas paralelas

El modelo analítico descrito a continuación se basa en la sección 11.6 del libro "Elementos de máquinas" (Hamrock et al., 2000). De acuerdo con el modelo, las cuñas paralelas, también conocidas como lengüetas, pueden fallar por corte o por compresión (aplastamiento).

Cálculo de la longitud de la cuña, l, por falla al corte:

$$l = \frac{2n_s \cdot F_s}{b \cdot S_y}; \quad F_s = \frac{2T_d}{d}; \quad T_d = \frac{Pot_d}{\omega}$$
(58)

Donde n_s es el factor de seguridad, *b* es el ancho de la cuña (Apéndice I, Figura I-11), S_y es límite de fluencia del material de la cuña, F_s es la fuerza cortante, T_d es el torque diseño que soporta la cuña, *d* es el diámetro del eje en el que se incrusta la cuña, *Pot_d* es la potencia de diseño de la transmisión y ω es la velocidad angular del eje.

Cálculo de la longitud de la cuña, l, por falla al aplastamiento:

$$l = \frac{2n_s \cdot F_a}{h \cdot S_v}; \quad F_a = \frac{2T_d}{d - h/2}; \quad T_d = \frac{Pot_d}{\omega}$$
(59)

Donde *h* es la altura de la cuña (Apéndice I, Figura I-11).

La longitud de la cuña adecuada debe estar en el rango: $l_{min} = 1.25d$ a $l_{max} = 2.4d$.

Modelos H.3.2: Modelos analíticos obtenidos de know-how de fabricantes

Modelo H.3.2.1: Selección de servomotorreductores SIMOTICS S-1FG1

Este es un modelo para el dimensionamiento y selección de servomotores con reductores incorporados. El modelo se basa en el catálogo "SIMOTICS S-1FG1 Servo geared motors" (SIEMENS, 2023). A continuación, la Tabla H-7 presenta características de estos dispositivos.

Tabla H-7

Especificaciones técnicas de los servomotorreductores SIMOTICS S-1FG1.

Tipo de motor	Síncrono, de imanes permanentes.		
1	Engranajes helicoidales		
	Engranajes rectos con ejes paralelos		
l ipos de reductores disponibles	Engranajes cónicos		
	Tornillo sin fin helicoidal		
Varsianas dispanibles	Compact (CT)		
versiones disponibles	High Dynamic (HD), bajo momento de inercia		
Refrigeración	Convección natural		
Monitoreo de temperatura	Sensor ubicado en el devanado del estator		
Severidad de vibración	Grado A (EN60034-5) 60 [<i>dB</i>] - 75 [<i>dB</i>] (DIN EN ISO 1680)		
Nivel de presión sonora			
Sistema de Interfaz	DRIVE-CLiQ		
Sarva Driva (Invarsar – Canvartidar)	SINAMICS S110 integrable con TIA Portal		
Servo Drive (miversor – Convertidor)	SINAMICS S120 integrable con TIA Portal		
Protocolo de comunicación (PLC – Servo Drive)	PROFINET (Ethernet)		
Tanzién da anlasa	de 510 a 720 [V] DC		
l'ension de enface	de 270 a 360 [V] DC		
Tangién da línaa	Monofásica de 200 a 240 [V] AC		
	Trifásica de 380 a 480 [V] AC		
Cables de señal y alimentación	Prefabricados MOTION-CONNECT		

Nota. Adaptado de SIEMENS (2023).

Parámetros operativos de la carga:

La Tabla H-8 muestra los parámetros operativos de la carga impulsada por el servomotorreductor, los cuales debe ser determinados a partir del análisis de su perfil dinámico.

Tabla H-8

Parámetros operativos de la carga para la selección de servomotorreductores SIMOTICS S-1FG1

Símbolo	Nombre del parámetro de entrada
M _{2maxA}	Torque máximo demandado por la carga $[N \cdot m]$
n _{2maxA}	Velocidad angular máxima de la carga durante el ciclo de trabajo [rad/s o rpm]
P_L	Potencia requerida por la aplicación ($P_L = M_{2maxA} \cdot n_{2max}$) [kW]
J_L	Momento de inercia de la carga $[kg \cdot m^2]$
T _{amb}	Temperatura ambiental [°C]
H _{amb}	Altitud de la instalación $[m]$

Selección del servomotor:

Las Tabla H-9 muestra los parámetros de selección para consultar en el catálogo.

Tabla H-9

Parámetros técnicos para la selección de servomotores

Símbolo	Nombre del parámetro de selección		
$n_{N,M}$	Velocidad nominal del servomotor [rpm] (disponibles:		
	2000, 3000, 4500 <i>y</i> 6000 [<i>rpm</i>])		
SH	Altura del eje del motor [mm]		
$\boldsymbol{P}_{N,M}$	Potencia nominal del servomotor [kW]		
M _{max,M}	Torque máximo a la salida del servo $[N \cdot m]$		
<i>M</i> _{0,<i>M</i>}	Torque estático a la salida del servo $[N \cdot m]$		
M _{N,M}	Torque nominal a la salida del servo $[N \cdot m]$		
$J_{M,Br}$	Momento de inercia del servomotor con freno $[kg \cdot m^2]$		
η_M	Eficiencia mecánica del servo [%]		
<i>I</i> _{0,<i>M</i>}	Corriente de parada [A]		
$I_{N,M}$	Corriente nominal [A]		
р	Número de pares de polos		

Nota. Sus valores se deben consultar en el capítulo 7, tablas 'Technical specifications', del catálogo D41 de referencia SIMOTICS S-1FG1 Servo geared motors, (p. 7/4 – 7/9), SIEMENS (2023).

Para una aplicación con torques de corta duración, el tamaño del servomotor seleccionado debe satisfacer las siguientes condiciones dadas en la ecuación 22:

$$\frac{M_{2maxA}}{i \cdot \eta_G} < k_{HT} \cdot M_{max}; \quad n_{N,M} = i \cdot n_{2maxA}; \quad P_{rated} > \frac{P_L}{\eta_G}$$
(60)

Donde k_{HT} es el factor para temperatura ambiental y altitud de la instalación no estándares

(Apéndice I, Figura I-12), i es la relación de velocidades del reductor (ver Tabla H-10) y η_G es la

eficiencia mecánica del reductor, el cual depende de su tipo, así:

Helicoidales, de ejes paralelos y de engranajes cónicos:

 $\eta_G = 96$ % para 2 etapas de reducción

 $\eta_G = 94$ % para 3 etapas de reducción

De tornillo sin fin helicoidal: $\eta_G = 65 \% - 90 \%$

Selección del reductor de velocidad:

La Tabla H-10 muestra los parámetros de selección para consultar en el catálogo.

Tabla H-10

Símbolo	Nombre del parámetro de selección
i	Relación de velocidades del reductor
$M_{2N,G}$	Torque máximo permisible a la salida del reductor en trabajo continuo $[N \cdot m]$
$M_{2max,G}$	Torque máximo permisible a la salida del reductor para breves periodos $[N \cdot m]$
$M_{2Em.Off,G}$	Torque de parada de emergencia a la salida del reductor $[N \cdot m]$
$n_{2max,G}$	Velocidad máxima permisible a la salida del reductor para breves periodos [rpm]
$n_{1max,G}$	Velocidad máxima permisible a la entrada del reductor para breves periodos [rpm]
$F_{R2,G}$	Fuerza radial máxima permisible a la salida del reductor en trabajo continuo [N]
F _{R2max,G}	Fuerza radial máxima permisible a la salida del reductor para breves periodos [N]
JG	Momento de inercia del reductor $[kg \cdot m^2]$

Nota. Sus valores se deben consultar en capítulos 3, 4, 5 y 6 de acuerdo con el tipo de reductor requerido (helicoidales, de ejes paralelos, engranajes cónicos, y tornillo sin fin helicoidal), tablas

'Technical specifications', del catálogo D41 de referencia SIMOTICS S-1FG1 Servo geared motors, (p. 3/3 - 3/93, 4/3 - 4/77, 5/3 - 5/69, 6/3 - 6/41). SIEMENS (2023).

Para una aplicación con torques de corta duración, el tamaño del reductor seleccionado debe satisfacer las siguientes condiciones dadas en la ecuación

$$i = \frac{n_{N,G}}{n_{2maxA}}; \quad M_{2maxA} < M_{2max,G}; \quad n_{2maxA} < n_{2max,G}; \quad n_{N,G} < n_{1max,G}$$
(61)

Donde $n_{N,G}$ es la velocidad nominal del servomotor (ver Tabla H-9).

Selección del sistema de retroalimentación:

Se debe verificar que la resolución del sistema de retroalimentación de posición cumpla con la precisión requerida por la aplicación. A continuación, la Tabla H-11 presenta los tres tipos de sistemas de retroalimentación que ofrece Siemens para sus servomotorreductores 1FG1. Todos los sistemas trabajan con 24 [V] de tensión de alimentación.

Tabla H-11

Características de los sistemas de retroalimentación disponibles

Tipo de sistema de retroalimentación	Resolución disponible	Designación
Encoder Absoluto Multivuelta	20 bits (1048576 datos por revolución, 512 S/R internos) + 12 bits multivuelta (4096 revoluciones)	AM20DQI
Encoder Absoluto de única vuelta	20 bits (1048576 datos por revolución, 512 S/R internos)	AS20DQI
Decelver	15 bits (32768 datos por revolución, multi polo interno)	R15DQ
Kesulvers	14 bits (16384 datos por revolución, dos polos internos)	R14DQ

Nota. Adaptado de SIEMENS (2023).

Verificación de la relación de inercia, k_I:

Para un control óptimo del posicionamiento de la carga, así como para evitar vibraciones y sobrecalentamiento en el servomotor, se debe verificar que:

$$k_J = \frac{J_x + J_G}{J_{M,Br}} < 10; \quad J_x = \frac{J_L}{i^2}$$
 (62)

Donde J_x es la inercia de la carga referida al eje de salida del servomotor.

Fuerza radial permisible sobre el eje de salida del reductor:

 $F_{R2max,G}$ es la fuerza radial máxima permisible para breves periodos, la cual se supone que aplicada en el centro de la extensión del eje de longitud *l* (ver Tabla H-9). Cuando la fuerza radial está ubicada a una distancia *x* de la base del eje, su valor se modifica de la siguiente manera:

De acuerdo con la vida de servicio de los rodamientos:

$$F_{xperm1} = F_{R2max,G} \cdot \frac{y}{z+x} \tag{63}$$

De acuerdo con la resistencia del eje del servomotor:

$$F_{xperm2} = \frac{a}{b+x} \tag{64}$$

Las constantes y, z, a y b se consultan en el capítulo 2, en la tabla 'Radial force conversion for out of the center force application point', del catálogo de referencia (SIEMENS, 2023).

Otras opciones de selección:

A continuación, la Tabla H-12 presenta otras opciones de selección para completar el pedido del servomotorreductor.

Tabla H-12

Otras opciones de selección para los servomotorreductores SIMOTICS S-1FG1.

	Montado en los pies
	Montado en brida
i ipo de montaje	Montado en eje
	Brida de carcasa

	Estándar (anillo radial de NBR)
Sistema de sellado para el	Larga vida útil (sello axial adicional)
eje	Larga vida útil y estrés ambiental (disco de
	fibra adicional)
Lubricante	DIN 51502
	RAL No.:7016, 9005, 9001, 6011, 7032,
Colores disponibles	5015, 1015, 7000, 9006, 5002, 6019, 5010,
Colores disponibles	9010, 6018, 2004, 7001, 5009, 5007, 9016,
	2003, 3000, 7035, 5012, 7030, 7031, 7011
Evene de vetención	Freno de imán permanente
Freno de retención	Freno de accionamiento por resorte
Control del nivel de aceite	Mirilla de nivel de aceite

Nota. Estas opciones de selección se deben consultar en el capítulo 8 del catálogo D41 de referencia SIMOTICS S-1FG1 Servo geared motors. SIEMENS (2023).

Modelo H.3.2.2: Selección de sistemas lineal de guiado GV3

Este es un modelo para el dimensionamiento y selección de sistemas lineal de guiado GV3,

en el catálogo "GV3 Sistema lineal de guiado y transmisión" (HepcoMotion, 2022). A

continuación, Tabla H-13 muestra información técnica relevante de estos sistemas de guiado.

Tabla H-13

Información técnica relevante del sistema lineal de guiado GV3

Ítem	Característica
Guías planas en V	Material: AISI 52100
	Acabado de superficie: N5
Rodamientos	Material: AISI 52100 (superficie de rodadura y bolas),
	caucho de nitrilo (retenes), plástico (jaula).
Carro	Material: Aleación de aluminio de alta resistencia
	Acabado: Anodizado transparente a un grosor de 15 $[\mu m]$
Coeficiente de fricción	$\mu = 0.02$
Lubricadores	Lubricar con aceite de viscosidad 68 cSt o similar
Velocidades lineales	Sin lubricación: 2 [m/s]
máximas del sistema	Con lubricación: 8 [m/s]

Nota. Información adaptada de HepcoMotion (2022).

A continuación, se presenta el proceso de selección enfocado en el dimensionamiento de

un conjunto de carro estándar y guía plana de doble canto.

Carros estándar tipo AU: para determinar la compatibilidad del carro seleccionado con la guía plana en base sus las dimensiones se debe consultar el Apéndice I, Figura I-13.

Guías planas de doble canto: para determinar la compatibilidad de la guía plana con tipo de rodamiento en base sus las dimensiones se debe consultar el Apéndice I, Figura I-14.

Lubricadores de guía LB: para determinar la compatibilidad del lubricador con el sistema de guiado seleccionado, se debe consultar el Apéndice I, Figura I-15.

Cálculos de carga/duración:

Factor de carga del carro: la Figura H-6 muestra un esquema de las cargas de trabajo del sistema de guiado GV3.

Figura H-6

Esquema de cargas de trabajo de un sistema lineal de guiado GV3

Nota. Reproducido de GV3 Sistema lineal de guiado y transmisión (p. 50) por HepcoMotion, 2022.

Una vez se han determinado las fuerzas de trabajo máximas L_1 y L_2 , y los momentos de trabajo máximos M_S , M_V y M, a partir del perfil dinámico de trabajo del sistema lineal, se debe calcular el factor de carga del carro, $L_{F,c}$, así:

$$L_{F,c} = \frac{L_1}{L_{1,m\acute{a}x}} + \frac{L_2}{L_{2,m\acute{a}x}} + \frac{M_S}{M_{S,m\acute{a}x}} + \frac{M_V}{M_{V,m\acute{a}x}} + \frac{M}{M_{m\acute{a}x}}$$
(65)
Donde los valores $L_{1,máx}$, $L_{2,máx}$, $M_{S,máx}$, $M_{V,máx}$ y $M_{máx}$ correspondientes a la capacidad de carga de trabajo del carro se deben consultar en el Apéndice I, Figura I-16.

Factor de carga de los rodamientos en V: la Figura H-6 muestra un esquema de las cargas de trabajo de los rodamientos del sistema GV3.

Figura H-7

Esquema de cargas de trabajo en los rodamientos en V de un sistema de guiado GV3.

Nota. Reproducido de Reproducido de GV3 Sistema lineal de guiado y transmisión (p. 51) por HepcoMotion, 2022.

Una vez se han determinado las fuerzas de trabajo máximas L_A y L_R , a partir del perfil dinámico de trabajo del sistema lineal, se debe calcular el factor de carga del carro, $L_{F,r}$, así:

$$L_{F,r} = \frac{L_A}{L_{A,m\acute{a}x}} + \frac{L_R}{L_{R,m\acute{a}x}}$$
(66)

Donde los valores $L_{A,máx}$ y $L_{R,máx}$ correspondientes a la capacidad de carga de trabajo del rodamiento individual se deben consultar en el Apéndice I, Figura I-17.

Duración de un carro o un rodamiento en V individual:

Una vez se han determinado el factor de carga del carro, $L_{F,c}$, y el factor de carga para el rodamiento, $L_{F,r}$, se determina la duración en kilómetros [km] del carro y el rodamiento, así:

Para un sistema en seco (sin lubricación):

$$Duración [km] = \frac{Duració básica}{(0.03 + 0.97L_F)^2}$$
(67)

Para un sistema lubricado:

$$Duración [km] = \frac{Duració básica}{(0.03 + 0.97L_F)^3}$$
(68)

Donde L_F se reemplaza por $L_{F,c}$ (para el carro), o por $L_{F,r}$ (para el rodamiento en V individual). Los valores de la *Duración básica* se debe consultar en el Apéndice I, Figura I-18.

Modelo H.3.2.3: Selección de cilindros neumáticos C85 (ISO 6432)

Este es un modelo para el dimensionamiento y selección de cilindros neumáticos C85 de doble efecto y vástago simple (diseñados bajo estándar ISO 6432), basado en el catálogo "Cilindros neumáticos Serie C85/C75" (SMC, 2023b).

A continuación, Tabla H-14 muestra información técnica relevante de estos dispositivos.

Tabla H-14

Características técnicas de cilindros neumáticos C85 de doble efecto y vástago simple

Diámetro	o [mm]	8	10	12	16	20	25
Presión r	náx. de trabajo	de trabajo 1 [MPa]					
Presión	Amortiguación	0.1 [<i>MPa</i>]	0.08 [[MPa]	().05 [<i>MPa</i>]
mín. de	elástica						
trabajo	Amortiguación	_	0.08 [[MPa]	().05 [<i>MPa</i>]
	neumática						
Tempera	tura ambiente y	Sin detección magnética: -20 a 80 [°C] (sin congelación			elación)		
de fluido		Con detección magnética: $-10 a 60 [°C]$ (sin congelación)					
Lubricante No necesario (sin lubricació			ión)				
Tolerancia de longitud de		+1.0 [mm]				+1.4 [mm]	
carrera		0 []			0	[mm]	
Velocida	d del émbolo	50 a 1500 [<i>mm/s</i>]					
Amortiguación Amortiguación elástica							
		– Amortiguación neumática					
Energía	Amortiguación	0.02 [<i>J</i>]	0.03 [J]	0.04 [<i>J</i>]	0.09 [<i>J</i>]	0.27 [J]	0.4 [J]
cinética	elástica						
admisible	e Amortiguación neumática	_	0.17 [<i>J</i>]	0.19 [<i>J</i>]	0.4 [<i>J</i>]	0.66 [<i>J</i>]	0.97 [<i>J</i>]

Nota. Adaptado de Cilindros neumáticos serie C85/C75 (p.3) por SMC, 2023.

Opciones de fijación de montaje: SMC ofrece cinco tipos de fijación: escuadra simple,

escuadra doble, brida, muñón y fijación oscilante.

Selección de la carrera:

A continuación, la Tabla H-15 muestra las carreras estándar que ofrece la empresa SMC.

Tabla H-15

Carreras estándar para cilindros neumáticos C85 de doble efecto y vástago simple

Diámetro	Carrera estándar [mm]	Carrera máxima [<i>mm</i>]	
8	10 25 40 50 80 100	200	
10	10, 23, 40, 50, 80, 100		
12	10 25 40 50 80 100 125 160 200	400	
16	10, 23, 40, 50, 80, 100, 125, 100, 200		
20	10 25 40 50 80 100 125 160 200 250 200	1000	
25	10, 23, 40, 50, 80, 100, 125, 100, 200, 250, 500	1000	

Nota. Adaptado de SMC (2023).

Carrera máxima en función del pandeo del vástago:

La tabla del Apéndice I, Figura I-19, permite determinar la carrera máxima en función del tipo de montaje, del diámetro del cilindro y de la presión de trabajo (provocada por la carga axial, F_a , aplicada sobre el extremo del vástago).

Carrera máxima en función de la flexión del vástago:

La tabla del Apéndice I, Figura I-20, permite determinar la carrera máxima en función del diámetro del cilindro y de la carga radial, F_R , aplicada sobre el extremo del vástago.

Modelo H.3.2.4: Selección de acoplamientos de mandíbula SKF

Este es un modelo para la selección de acoplamientos de mandíbula, basado en el catálogo "SKF Couplings" (SKF, 2018). Este tipo de acoplamientos son ideales para aplicaciones con cargas de impacto moderadas, son libres de mantenimiento y de fácil instalación. *Factor de servicio, K_s*: se deben consultar las tablas 9 y 10 del catálogo de referencia (SKF, 2018, p. 87 y 88).

Potencia de diseño, P_{dis}: se calcula con la siguiente fórmula

$$P_{dis} = \frac{K_s \cdot P_{nom}}{K_e} \tag{69}$$

Donde P_{nom} es la potencia nominal de la aplicación y K_e es un factor de corrección de acuerdo con el tipo de elemento utilizado en el acoplamiento ($K_e = 1$ para nitrilo, $K_e = 1.5$ para uretano, y $K_e = 3$ para Hytrel).

Selección del tamaño del acoplamiento: se utiliza la Figura I-21 (Apéndice I, Sección I.2) en donde se selecciona un tamaño de acoplamiento que cumpla con las condiciones de velocidad de rotación de la aplicación, potencia de diseño calculada, y par máximo de corta duración.

Tamaño del agujero y dimensiones de la chaveta asociada: se utiliza la Figura I-22 (Apéndice I, Sección I.2). Se determinan las dimensiones de la chaveta asociada para cada eje, de acuerdo con el tamaño del eje de entrada y de salida, sí como del tamaño del acoplamiento.

Dimensiones y designación de pedido del acoplamiento seleccionado: se utiliza la Figura I-23 (Apéndice I, Sección I.2), en donde aprecian las dimensiones, peso aproximado y la designación del acoplamiento para el pedido de fábrica.

Modelos H.3.3: Modelos para el uso herramientas de dimensionamiento y selección de componentes de fábrica

Modelo H.3.3.1: Selección de rodamientos de bolas de SKF

El presente modelo está basado en su catálogo 'Rodamientos' (SKF, 2019) y busca establecer los parámetros para el uso de la herramienta de dimensionamiento y la selección de

rodamientos denominada SKF Bering Select¹. Para utilizar correctamente esta herramienta es necesario consultar los siguientes capítulos del catálogo de referencia:

Capítulo A. Principios para la selección de rodamientos: Se obtiene información de las nociones básicas sobre rodamientos (tipos, terminología, componentes, materiales, etc.), tolerancias y almacenamiento.

Capítulo B. Proceso de selección de rodamientos: Se obtiene información sobre la idoneidad de los rodamientos, disposición y combinaciones típicas, criterios de selección (cargas, velocidad, desalineación, rigidez, montaje y desmontaje).

También se obtiene información acerca de la selección del tamaño del rodamiento en función de la vida nominal de este. SKF recomienda una vida de 10×10^3 a 25×10^3 horas de funcionamiento continuo para máquinas que trabajan 8 horas diarias y no siempre son utilizadas al máximo de su capacidad (similar al caso del presente diseño).

Vida nominal básica ISO 281: SKF calcula este valor en base a la siguiente fórmula.

$$L_{10} = \left(\frac{C}{P}\right)^p \tag{70}$$

Donde L_{10} [*millones de revoluciones*] es la vida nominal básica (confiabilidad del 90%), *C* [*kN*] es la capacidad de carga dinámica básica (valor característico del rodamiento), *p* es el exponente de la ecuación de vida (3 para rodamientos de bolas) y *P* [*kN*] es la carga dinámica equivalente del rodamiento, la cual es calculada utilizando la siguiente ecuación:

$$P = X \cdot F_r + Y \cdot F_a \tag{71}$$

¹ Para acceder al software, consultar el siguiente enlace: <u>https://www.skf.com/co/support/engineering-tools/bearing-select</u>

Donde X y Y son los factores de carga axial y radial del rodamiento, respectivamente (valores característicos del rodamiento), F_r [kN] es la carga radial real del rodamiento y F_a [kN] es la carga axial real del rodamiento.

Vida nominal SKF: la vida nominal básica se ve modificada por algunos factores que tiene en cuenta el nivel de carga en relación con la carga límite de fatiga, P_u , de un rodamiento, así como su condición de lubricación y el nivel de contaminación al que puede estar expuesto, así

$$L_{nm} = a_1 \cdot a_{SKF} \cdot L_{10} \tag{72}$$

Donde L_{nm} [*millones de revoluciones*] es la vida nominal SKF, a_1 es el factor de ajuste de la vida útil para mayor confiabilidad y a_{SKF} es el factor de modificación de la vida útil.

Factor de seguridad estático, s₀:

En caso de que el rodamiento gire a bajas velocidades y esté sometido a cargas máximas intermitentes, se debe tener en cuenta el factor de seguridad estático, el cual es calculado así:

$$s_0 = \frac{C_0}{P_0} \tag{73}$$

Donde C_0 [*kN*] es la capacidad de carga estática básica requerida (valor característico del rodamiento) y P_0 [*kN*] es la carga estática equivalente del rodamiento, la cual es calculada así:

$$P_0 = X_0 \cdot F_r + Y_0 \cdot F_a \tag{74}$$

Donde X_0 y Y_0 son los factores de carga axial y radial del rodamiento, respectivamente (para rodamientos de una sola hilera de bolas: $X_0 = 0.6$ y $Y_0 = 0.5$).

Carga mínima requerida, F_{rm} : por lo general, para rodamientos de bolas, es 0.01C.

Finalmente, este capítulo también aborda termas de lubricación, temperatura y velocidad de funcionamiento, interfaces, versión del rodamiento y sellado, montaje y desmontaje.

Modelo H.3.3.2: Selección de cabezas de articulación de SKF

El presente modelo está basado en su catálogo 'SKF spherical plain bearings and rod ends' (SKF, 2013) y busca establecer los parámetros para el uso de la herramienta de dimensionamiento y la selección de rodamientos denominada SKF Bering Select².

Las cabezas de articulación de SKF poseen rodamientos lisos esféricos (rótula), las cuales pueden requerir o no mantenimiento. Para utilizar correctamente esta herramienta es necesario consultar el capítulo 1 del catálogo de referencia el cual posee los principios para la selección del tamaño del rodamiento. Un parámetro importante para realizar dicha selección es el ángulo de oscilación de la rótula, φ , la Figura H-8 muestra un esquema de dicho ángulo.

Figura H-8

Esquema del ángulo de oscilación de la rótula de una cabeza de articulación de SKF.

Nota. Reproducido de Spherical plain bearings and rod ends (p. 39) por SKF, 2013.

Carga dinámica equivalente de rodamientos lisos esféricos, P:

$$P = y \cdot F_r \tag{75}$$

Donde F_r es la carga radia real del rodamiento, y y es el factor de carga el cual depende de

² Para acceder al software, consultar el siguiente enlace: <u>https://www.skf.com/co/support/engineering-tools/bearing-select</u>

la razón F_a/F_r , siendo F_a la carga axial real del rodamiento.

Carga permisible en cabezas de articulación, Pperm:

$$P_{perm} = C_0 \cdot b_2 \cdot b_6 [kN] \tag{76}$$

Donde C_0 [*kN*] es la capacidad carga estática básica (característica del rodamiento), b_2 es el factor de temperatura y b_6 es el factor de tipo de carga (carga constante, pulsante o alternante).

Vida nominal básica, G_h:

$$G_{h} = b_{1} \cdot b_{2} \cdot b_{3} \cdot b_{4} \cdot b_{5} \cdot \frac{330}{p^{2.5} \cdot v} [h]$$
(77)

Donde b_1 es el factor de condición de carga, b_3 es el factor de deslizamiento, b_4 es el factor de velocidades, b_5 es el factor del ángulo de oscilación. p [N/mm] es la carga específica del rodamiento, la cual es calculada así:

$$p = K \cdot \frac{P}{C} \tag{78}$$

Donde $K [N/mm^2]$ es el factor de carga específica y C [kN] es la capacidad de carga dinámica básica (característica del rodamiento).

Por otra parte, v es la velocidad media de deslizamiento, cuyo valor, para carga intermitente, es calculado así:

$$\nu = 8.73 \times 10^{-6} d_m \cdot \frac{4\beta}{t} \tag{79}$$

Donde $d_m [mm]$ es el diámetro medio del anillo interior del rodamiento, $\beta = \varphi/2$ [°] es la mitad del ángulo de oscilación y t [s] es el tiempo de una oscilación completa.

Modelo H.3.3.3: Selección de actuadores de giro neumáticos CRB1

El presente modelo está basado en el catálogo 'Actuador de giro modelo de paleta Serie CRB1'(SMC, 2023a) y busca establecer los parámetros para el uso de la herramienta 'Selector de

actuadores de giro³' de la empresa SMC.

A continuación, la Tabla H-16 muestra información técnica relevante de estos dispositivos.

Tabla H-16

Características técnicas de actuadores de giro neumáticos CRB1 de paleta simple

Tamaño	,	50	63	80	100
Ángulo	Estándar	90 [°] ⁺⁴ , 180 [°] ⁺⁴ , 270 [°] ⁺⁴			
de giro	Semi-estándar	$100 [\circ]^{+4}_{0}, 190 [\circ]^{+4}_{0}, 280 [\circ]^{+4}_{0}$			
Tempera	atura ambiente y de fluido	5 a 60 [° <i>C</i>]			
Lubrica	nte	No necesario (sin lubricación)			on)
Presione	es límite de trabajo	0.15 [<i>MPa</i>] (mínima), 1.0 [<i>MPa</i>] (máxima)			
Rango d	e ajuste de la duración del	0.1 a 1 [<i>s</i> /90°]			
giro					
Energía cinética admisible		0.082 [<i>J</i>]	0.12 [<i>J</i>]	0.398 [<i>J</i>]	0.6 [<i>J</i>]
Carga	Carga radial admisible	245 [N]	390 [N]	490 [N]	588 [N]
del eje	Carga axial admisible	196 [N]	340 [N]	490 [N]	539 [<i>N</i>]
Montaje		Básico o escuadra			

Nota. Adaptado de Actuador de giro modelo de paleta serie CRB1 (p.4) por SMC, 2023.

El software selector permite calcular el par y la energía cinética requeridos por la aplicación, en base a la posición del montaje, la posición de la carga a mover, el momento de inercia de la carga, la fuerza a aplicar, el ángulo de giro, el tiempo de giro y la presión de alimentación. Estos valores son comparados con los valores admisibles de energía cinética (ver Tabla H-16) y de par efectivo del actuador de giro (consultar Apéndice I, Figura I-24), y de esta manera, el software selecciona el actuador de giro idóneo para la aplicación.

Modelo H.3.3.4: Selección del sistema de vacío de la empresa SMC

El presente modelo busca establecer los parámetros para el uso de la herramienta 'Selector

³ Para acceder al software, consultar el siguiente enlace: <u>https://www.smc.eu/es-es/productos/herramientas-</u> <u>de-ingenieria/selector-de-actuadores-de-giro</u>

de componentes de vacío⁴' de la empresa SMC. Este software seleccionador permite diseñar el circuito neumático de un sistema de vacío, en base a componentes de la empresa SMC.

Dispositivo generador de vacío: El dispositivo idóneo para el SDOMP, es un eyector modular, ya que este dispositivo, a diferencia de la bomba de vacío, posee una gran eficiencia para trabajar con ciclos cortos y repetitivos, así como para realizar una conexión y desconexión prácticamente instantánea, con un diseño más simple, liviano y económico.

En la Figura H-9 se observa el esquema básico del interior de un eyector, cuyo principio de funcionamiento se basa en el efecto Venturi, incrementando la velocidad del aire de alimentación (P) mediante su estrangulación en un orificio de sección reducida para luego expulsarlo al ambiente (R). Esto genera una depresión (cámara 3) que se aprovecha para succionar aire del exterior (U), que mediante la conexión de ventosas (copas de succión) es posible agarrar y desplazar objetos.

Figura H-9

Esquema básico de un eyector y su funcionamiento por efecto Venturi

Nota. Reproducido de Neumática práctica (p. 205) por Serrano, 2009.

⁴ Para acceder al software, consultar el siguiente enlace: <u>https://www.smc.eu/es-es/productos/herramientas-</u> <u>de-ingenieria/selector-de-componentes-de-vacio</u> Los diámetros más comunes de la boquilla interna del eyector (orificio estrangulador) son: 0.7, 1, 1.2 y 1.5 [mm], los cuales requieren un consumo de aire mayor, en el orden mencionado. Por otra parte, estos sistemas suelen trabajar con una presión de alimentación entre 4 y 5.5 [bar], ya que es en este rango donde se genera una mayor depresión (grado de vacío) y, por consiguiente, una mayor fuerza de sujeción en las ventosas. De igual forma, también en ese rango de presiones se consigue un mayor caudal de aire aspirado, lo cual influye en la rapidez con la que se alcanza el nivel de vacío esperado (Serrano, 2009). La Figura H-10 ilustra los principios mencionados.

Figura H-10

Influencia de la presión de alimentación en el funcionamiento de un sistema de vacío con eyector

Nota. Se muestran los parámetros de funcionamiento de un eyector en función de la presión de alimentación y del diámetro interior de su boquilla. a. Depresión, b. Caudal de aire aspirado, c. Caudal de aire consumido. Reproducido de *Neumática Práctica* (p.206) por Serrano, 2009.

Ahora bien, los eyectores de unidad modular incorporan los accesorios necesarios para su funcionamiento, como lo son: la válvula de paso, el filtro de línea, un silenciador, y algunos poseen un sistema expulsión que, mediante la acumulación y descarga de aire a presión, permite liberar aún más rápidamente la pieza, una vez se haya detenido el vacío.

Ventosas de fuelle: el uso de eyectores junto con ventosas de fuelle permite trabajar de forma segura con superficies rugosas, como la del cartón corrugado de las planchas, manteniendo estanqueidad y, por ende, la depresión necesaria para sujetar la plancha al extraerla del contenedor.

Estas ventosas pueden ser de caucho natural, silicona o nitrilo, y tanto la selección se su diámetro como la cantidad de ventosas en el sistema, influye directamente en el consumo de aire aspirado y, en consecuencia, en el consumo de aire de alimentación y los costes del sistema. El principio es que, si se pretende alcanzar con gran rapidez un cierto nivel de vacío, tanto el diámetro de la ventosa como el del orificio del eyector deben ser altos, y por ende el costo aumenta.

Se presenta ahora una ecuación para determinar la fuerza de sujeción de la ventosa, F_{ν} [N], en base a la presión de vacío, P [Pa], y al diámetro de la ventosa, d_{ν} [m].

$$F_{\nu} = P \cdot \frac{\pi \cdot d_{\nu}^2}{4n_{\nu}} \tag{80}$$

Donde n_v representa un factor de seguridad que tiene en cuenta la orientación de la carga y las características del material (rugosidad, porosidad y la forma de la superficie).

Esquema básico del circuito del sistema de vacío:

La Figura H-11 muestra un esquema básico del circuito de vacío sobre el cual se seleccionarán los componentes SMC. Nótese que la unidad modular con eyector integrado posee una válvula de paso 2/1 normalmente cerrada, con el fin de activarla con la señal del PLC. Por otra parte, no se incluye una línea de presión de descarga, por lo que la rotura de vacío se generará a la presión atmosférica. Además, en la línea que conecta la unidad modular con las ventosas, es posible instalar un vacuómetro que permita observar la depresión con la que trabaja el sistema.

Figura H-11

Esquema básico del circuito de vacío para seleccionar los componentes SMC

Nota. Imágenes reproducidas del software seleccionador de sistemas de vacío SMC.

Una vez se ha seleccionado el circuito a trabajar, el software selecciona la ventosa, las mangueras y el eyector idóneo en base a las condiciones trabajo del sistema. Se debe, por ende, especificar el tiempo de respuesta de adsorción (de 0.1 a 100 [s]), el factor de seguridad n_v , la masa de la pieza, W [kg] (equivalente a la fuerza de succión que debe generar), la presión de vacío (de -80 a -1 [kPa]), el número de ventosas, la fuga por ventosa [L/min] (la cual depende del tipo, forma y manterial de la ventosa, así como del material de la pieza a succionar), la longitud de las manguera L_1 y L_2 (entre el eyector y la ventosa), y de la presión de alimentación [MPa].

Modelo H.3.3.5: Cálculos y selección de componentes SMC para la red neumática

Dimensionamiento y selección: depósito de aire, cilindros guiados, válvulas de 2 vías, unidades FRL. Cálculo: tiempos de carga/descarga del depósito, consumo de aire, características de caudal, cantidad de agua condensada, caídas de presión, estados de aire.

Modelos H.3.4: Modelos para verificación de precisión numérica de las simulaciones

Modelo H.3.4.1: Factor de seguridad de piezas en SolidWorks Simulation

En el análisis estático que realiza SolidWorks, el método numérico de elementos finitos (FEA, en inglés) permite generar una malla de la geometría de la pieza (o ensamblaje). Esto permite, a su vez, determinar un factor de seguridad, *FDS*, al comparar el estado de esfuerzos multiaxiales de un elemento de la malla, con la resistencia mecánica del material. Este proceso se realiza en base a el criterio de falla de la energía máxima de distorsión de von Mises⁵ (descrito en el Apéndice H, Sección H.3, Modelos H.3.1, Modelo H.3.1.4).

El problema de verificación: Encuentre el factor de seguridad para los puntos A y B, de la barra de la Figura H-12, utilizando la teoría de energía de distorsión.

Figura H-12

Barra empotrada sometida a cargas multiaxiales. Problema de verificación.

⁵ Este modelo se encuentra en el centro de ayuda de SolidWorks y se puede consultar en el siguiente enlace: <u>https://help.solidworks.com/2021/spanish/SolidWorks/cworks/r_Maximum_von_Mises_Stress_Criterion.htm?id=a0</u> <u>aba8e0ff3d431fbee3d1b6c499f2c5#Pg0</u> Nota. Adaptado de *Diseño en ingeniería mecánica de Shigley* (p.250) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Método analítico tradicional:

Resistencia a la fluencia: a partir de la Tabla A-20 del libro de referencia (Budynas & Nisbett, 2008, p. 1004), se obtiene: $S_y = 280 \ [MPa]$.

Análisis estático:

Al aplicar la primera ley de Newton (Ecuación 11, sin aceleraciones), se obtiene la fuerza de reacción, \vec{R}_0 , y el momento de reacción, \vec{M}_0 , en el punto 0 de la sujeción empotrada.

$$\sum \vec{F} = 0 \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} R_{Ox} \\ R_{Oy} \\ R_{Oz} \end{pmatrix} = \begin{pmatrix} -P \\ F \\ 0 \end{pmatrix} \to \ \vec{R}_{O} = < -P \ \hat{\imath} + F \ \hat{\jmath} + 0 \ \hat{k} >$$

$$\sum \vec{M}_{O} = 0 \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} M_{Ox} \\ M_{Oy} \\ M_{Oz} \end{pmatrix} = \begin{pmatrix} -T \\ 0 \\ 0.1F \end{pmatrix} \to \ \vec{M}_{O} = < -T \ \hat{\imath} + 0 \ \hat{\jmath} + 0.1F \ \hat{k} >$$

Diagramas de fuerza cortante y momento flector en el plano xy: ver Figura H-13.

Figura H-13

Diagrama de fuerza cortante y momento flector en el plano **xy** para el problema de verificación.

A partir del diagrama anterior, se obtiene la fuerza cortante máxima, $V_{máx} = +F$, y el momento flector máximo, $M_{máx} = -0.1F$.

Ahora, a partir de las ecuaciones 14, 17, 19 y 20 se determinan los esfuerzos normales, σ , y los esfuerzos cortantes, τ , sobre los puntos de interés.

Estado de esfuerzo plano en el punto A: ver Figura H-14.

Figura H-14

Estado de esfuerzo plano en el punto A para problema de verificación.

Los esfuerzos en el punto A, son:

$$\sigma_x = \frac{4P}{\pi d^2} + \frac{32M_{max}}{\pi d^3} \cong 95.5 \ [MPa]$$
$$\tau_{zy} = \frac{16T}{\pi d^3} \cong 19.1 \ [MPa]$$

Estado de esfuerzo plano en el punto B: ver Figura H-15.

Figura H-15

Estado de esfuerzo plano en el punto B para problema de verificación.

Los esfuerzos en el punto B, son:

$$\sigma_x = \frac{4P}{\pi d^2} \approx 25.5 \ [MPa]$$
$$\tau_{xy} = \frac{16T}{\pi d^3} - \frac{16V_{m\acute{a}x}}{3\pi d^2} \approx 16.76 \ [MPa]$$

Esfuerzo equivalente de von Mises: se aplica la ecuación 22.

En el punto A: $\sigma'_{A} = (\sigma^{2}_{x} + 3\tau^{2}_{zy})^{1/2} \approx 101.07 \, [MPa]$

En el punto B: $\sigma'_B = (\sigma_x^2 + 3\tau_{xy}^2)^{1/2} \cong 38.64 \, [MPa]$

Factor de seguridad: se aplica la ecuación 23

Para el punto A:
$$N_A = S_V / \sigma'_A = 280 / 101.07 \approx 2.77$$
.

Para el punto A:
$$N_B = S_v / \sigma'_B = 280/38.64 \approx 7.25$$
.

Comprobación mediante simulación estática en SolidWorks:

Como primer paso, se genera el sólido 3D, luego se agrega el material correspondiente. En el análisis estático, se agregan las cargas, y se establece una sujeción fija en el extremo opuesto. Seguidamente se genera la malla. La Figura H-16 muestra un esquema de los pasos mencionados.

Figura H-16

Barra mallada con cargas externas y sujeción fija en un extremo para el problema de verificación.

Ahora, la Figura H-17 y H-18 muestran los resultados obtenidos al ejecutar la simulación.

Figura H-17

Esfuerzo de von Mises en los puntos A y B para el problema de verificación.

Nota. Elaborado en SolidWorks Simulation.

Figura H-18

Factor de seguridad en los puntos A y B para el problema de verificación.

Nota. Elaborado en SolidWorks Simulation.

Observaciones finales: los resultados obtenidos en la simulación son muy próximos a los obtenidos bajo el modelo teórico resuelto por método analítico tradicional, con porcentajes de error que rondan en el entre el 5 % y el 10 % (para los factores de seguridad). Esto permite concluir que SolidWorks realiza simulaciones bastante acertadas y fieles al modelo teórico que las sustenta.

Modelo H.3.4.2: Tamaño de la soldadura SolidWorks Simulation

A continuación, se presenta el modelo⁶ teórico que sustenta las simulaciones numéricas que realiza SolidWorks Simulation para calcular el tamaño de la soldadura para todos los nodos de malla en la arista que interseca las superficies de dos piezas a unir. Este modelo resulta ser de gran similitud con el modelo presentado en el capítulo 9 del libro '*Diseño en Ingeniería mecánica de Shigley*' (Budynas & Nisbett, 2008). A continuación, la Figura H-19 muestra un sistema de coordenadas conveniente para el cálculo.

Figura H-19

Sistema de coordenadas y parámetros geométricos del cordón de soldadura de arista

A partir de la figura anterior, se definen las variables: U_s es el eje normal a la superficie del vaciado, U_i es el eje normal con respecto a la arista del vaciado, U_w es el eje paralelo a la

⁶ Este modelo se encuentra en el centro de ayuda de SolidWorks y se puede consultar en el siguiente enlace: <u>https://help.solidworks.com/2021/spanish/SolidWorks/cworks/t_weld_size_calculations.htm?verRedirect=1</u>

dirección de la costura de la soldadura, t_b es el espesor del material base, t_w es la longitud de la garganta de la soldadura, y *s* es el tamaño de la soldadura.

Área de la soldadura, A_w:

Soldadura de un lado (SS): $A_w = t_w$; Soldadura de dos lados (DS): $A_w = 2t_w$ (81)

Módulo de la sección de soldadura, S_w:

Soldadura de un lado (SS):
$$S_w = t_w^2/6$$
 (82)

Soldadura de dos lados (DS): $S_w = t_w \cdot t_b$

Tensiones por unidad de longitud nodal para cada nodo:

$$f_{s} = (F_{s}/L_{n})/A_{w}$$

$$f_{w} = (F_{w}/L_{n})/A_{w}$$

$$f_{j} = (F_{j}/L_{n})/A_{w} + (M_{w}/L_{n})/S_{w}$$
(83)

Donde: F_s y F_w son las fuerzas cortantes a lo largo del eje U_s y U_w , respectivamente; F_j es la fuerza normal a lo largo del eje U_j ; M_w es el momento flexor alrededor del eje de soldadura local U_w ; y L_n es la longitud nodal.

Tensión resultante por unidad de longitud en la soldadura, f_{weld}:

$$f_{weld} = \sqrt{f_s^2 + f_w^2 + f_j^2}$$
(84)

Criterio de diseño: SolidWorks determina el valor t_w aplicando el siguiente criterio

$$f_{weld} = f_{perm} = \frac{S_{ys,elect}}{n}$$
(85)

Donde *n* es el factor de seguridad establecido por el usuario, y $S_{ys,elect}$ es el esfuerzo cortante límite permitido para el material del electrodo (ver Apéndice I, Sección I.3, Tabla I-1).

Tamaño de la soldadura, s: Una vez obtenido t_w el software calcula s así.

$$s = \sqrt{2}t_w = 1.414t_w$$
 (86)

A continuación, se realiza una verificación de la precisión de las simulaciones de soldadura de arista que realiza SolidWorks Simulation.

Problema de verificación: Calcular el tamaño de la soldadura mínimo para la junta mostrada en la Figura H-20, con un factor de seguridad de n = 3.

Figura H-20

Esquema del problema de verificación de la precisión de la simulación de soldadura

Método analítico tradicional:

A partir de la figura anterior, se identifica: $F_s = 1500 [N]$, $F_j = 2000 [N]$ y $M_w = 0.02F_s = 30 [N \cdot m]$ y suponiendo $L_n = 0.02 [m]$ (ancho de la lámina). Al aplicar de forma iterativa las ecuaciones 81 a 86, se obtiene: $t_w = 2.116 [mm]$ y s = 2.992 [mm].

Comprobación mediante simulación estática en SolidWorks:

Mediante un análisis estático en SolidWorks se aplican las cargas a las láminas metálicas generadas en 3D, con la condición de que la lámina que se suelda a tope debe representarse como un vacío con espesor establecido. Los resultados obtenidos se muestran en la

Figura H-21

Trazado de comprobación de soldadura de una unión a tope en T (de arista).

Nota. Elaborado en SolidWorks Simulation.

Se observa que el tamaño de la soldadura determinado en SolidWorks Simulation presenta un porcentaje de error alrededor del 11.7 % con respecto al modelo teórico que lo sustenta. Por lo tanto, se considera un porcentaje aceptable para el presente diseño.

Modelo H.3.4.3: Factor de seguridad de pernos SolidWorks Simulation

A continuación, se presenta el modelo⁷ analítico que sustenta las simulaciones numéricas que realiza SolidWorks Simulation para calcular el factor de seguridad de conexiones apernadas.

Ecuación de diseño para el cálculo del factor de seguridad, SF:

$$(R_a + R_b)^2 + R_s^3 \le 1; \quad R_a = m \acute{a}x \left\{ \frac{SF \cdot F}{A_t \cdot S}, \frac{F_i}{A_t \cdot S} \right\};$$

$$R_b = \frac{SF \cdot d \cdot M}{2S \cdot I}; \quad R_s = \frac{SF \cdot V}{0.5 \cdot A_t \cdot S}$$
(87)

⁷ Este modelo se encuentra en el centro de ayuda de SolidWorks y se puede consultar en el siguiente enlace: <u>https://help.solidworks.com/2021/spanish/SolidWorks/cworks/c_Pin_Bolt_Safety_Check.htm?id=7c5f547fb2f8462</u> <u>2bf2fc76dc7540c81#Pg0</u>

Donde R_a es la relación de carga axial, R_b es relación de carga de flexión, R_b es relación de carga de cortadura, d es el diámetro del vástago nominal, $I = \pi/64 \cdot d^4$ es el momento de inercia del área transversal del vástago sin rosca, F es la fuerza axial externa, M es el momento de flexión, V es la fuerza cortante (calculados el software), $A_t = 0.7854 \cdot (d - 0.9382p)^2 [mm^2]$ es la zona del límite de tensión del perno, la cual, para rosca métrica ISO 724, siendo p el paso de la rosca (ver Apéndice I, Sección I.3, Figura I-25), S es la resistencia del perno, cuyo valor es definido por el usuario de acuerdo con la clase métrica del perno, F_i es el valor de la precarga, cuyo valor también es proporcionado por el usuario.

Conversión automática de cierres de Toolbox a pernos: el programa asume lo siguientes valores: $S = S_y = 620.422 \ [MPa]$ (límite elástico de un acero aleado) y $F_i = 0.75 \cdot A_t \cdot S_p$ con $S_p = 0.2S_y$ (valor conservador del límite elástico de prueba).

Problema de verificación: determine el mínimo factor de seguridad para una unión no permanente entre dos placas, la cual, es soportada por un tornillo y sometida a una fuerza 40 [*kN*] que intenta separar las placas, tal y como se muestra en la figura X.

Figura H-22

Unión apernada no permanente entre dos placas de diferente espesor y sometida a tensión.

Los valores de entrada del problema se muestran en las Tabla H-18 y H-19.

Tabla H-17

Datos de entrada del sujetador

Clase	у	Resistencia	Diámetro	Longitud	Longitud	Paso de	Altura de la
grado		mínima de	nominal,	total, L	roscada,	rosca, p	tuerca, H
		prueba, S _p	d		L_T		
		- r			= 2d + 6		
Métrica 8.8	}	600 [<i>MPa</i>]	12 [<i>mm</i>]	65 [<i>mm</i>]	30 [<i>mm</i>]	1.75 [<i>mm</i>]	10.8 [<i>mm</i>]

Nota. Datos tomados de Diseño en ingeniería mecánica de Shigley (p. 398, 412, 420 y 1035) R.

Budynas & K. Nisbett, 2008, McGraw-Hill.

Tabla H-18

Datos de entrada de la junta

	Material	Módulo de elasticidad, E	Espesor, <i>e_{ji}</i>
Placa superior	Acero A36	207 [GPa]	$e_{j1} = 20 \ [mm]$
Placa inferior	_		$e_{j2} = 30 \ [mm]$

Método analítico tradicional: (basado en el capítulo 8 del libro Diseño en ingeniería mecánica de Shigley de R. Budynas & K. Nisbett, 2008, McGraw-Hill)

Cálculo del área de esfuerzo sometida a tensión:

$$A_t = \frac{\pi}{4} \cdot \left[\frac{d_r + d_m}{2}\right]^2 = \frac{\pi}{4} \cdot (d - 0.93815p)^2 \cong 84.2678 \ [mm^2]$$

Cálculo de la precarga, F_i:

$$F_i = 0.75S_p \cdot A_t = 37920.51 \, [N]$$

Cálculo de la rigidez del sujetador:

$$k_b = \frac{A_d \cdot A_t \cdot E}{A_d \cdot l_t + A_t \cdot l_d}$$

Donde: $A_d = 0.25 \cdot d^2 = 113.097 \ [mm^2]; \ l_d = L - L_T = 35 \ [mm]; \ l_t = e_{j1} + e_{j2} - L_T = 1000 \ [mm]; \ l_t = 0.000 \ [mm]; \ l_t = 0.00$

$l_d = 15 \ [mm]$. Por lo tanto, $k_b = 42469.079 \ [N/mm]$

Cálculo de la rigidez de la junta:

$$\frac{1}{k_m} = \sum_{i=1}^{3} \frac{1}{k_{mi}} \ con \ k_{mi} = \frac{\pi \cdot E_i \cdot d \cdot tan \, 30^\circ}{\ln\left[\frac{(2t_i \cdot tan \, 30^\circ + D_i - d)(D_i + d)}{(2t_i \cdot tan \, 30^\circ + D_i + d)(D_i - d)}\right]}$$

Donde: $t_1 = 20 \ [mm]; t_2 = t_3 = 15 \ [mm]; d_1 = d_3 = 1.5d = 18 \ [mm]; d_2 = 1.5d + 2 \tan 30^\circ = 41.094 \ [mm]$. Por lo tanto, $k_{m1} = 4470136.19 \ [N/mm], k_{m2} = 24387585.05 \ [N/mm], k_{m3} = 4995942.09 \ [N/mm] \ y \ k_m = 2151121.831 \ [N/mm]$

Cálculo de la constante de rigidez, *C*:

$$C = \frac{k_b}{k_b + k_m} = 0.16486$$

Cálculo de carga resultante en el perno:

$$F_b = CP + F_i = 0.16486 \cdot 40000 [N] + 37920.51 [N] = 44514.91 [N]$$

Cálculo del factor de seguridad de falla del perno:

$$n_b = \frac{S_p A_t}{F_b} = \frac{600[N/mm^2] \cdot 84.2678[mm^2]}{44514.91[N]} = 1.1358$$

Cálculo del factor de seguridad contra la separación de la unión:

$$n_0 = \frac{F_i}{P(1-C)} = \frac{37920.51[N]}{40000[N] \cdot (1-0.16486)} = 1.1351$$

Comprobación mediante simulación estática en SolidWorks: A continuación, la Figura

H-23 se presenta los resultados de la simulación realizada, utilizando la conversión automática de cierres de Toolbox. Observe que el factor de seguridad obtenido es equivalente a utilizar la ecuación 87:

$$SF = \frac{84.265[mm^2] \cdot 620.422 \ [MPa]}{40000[N]} = 1.307$$

Figura H-23

Comprobación de perno de una conexión no permanente a tensión

Se observa que el factor de seguridad determinado en SolidWorks Simulation presenta un porcentaje de error alrededor del 13.1 % con respecto al método tradicional. Por lo tanto, se considera un porcentaje aceptable para el presente diseño.

Modelos H.3.5: Modelos adaptados al diseño

Modelo H.3.5.1: Perfil de velocidad angular trapezoidal para un servomotor

La Figura H-24 se observa un perfil trapezoidal de velocidad angular para un servomotor con un único accionamiento, siento éste el perfil más común para este tipo de dispositivos. A partir de la figura se obtiene: $\Delta t_{acc} = 2t_1 + t_2$. También se debe asegurar que:

$$\Delta \theta_{a-b} = \Delta \theta_{c-d} = \int_{t_a}^{t_b} \dot{\theta}_{a-b} \, dt = \frac{1}{2} \cdot \dot{\theta}_{nom} \cdot t_1$$

$$\Delta \theta_{b-c} = \int_{t_b}^{t_c} \dot{\theta}_{b-c} \, dt = \dot{\theta}_{nom} \cdot t_2$$
(88)

Donde $\Delta \theta_{a-b}$ es el desplazamiento angular total entre t_a y t_b , $\Delta \theta_{c-d}$ es el desplazamiento

angular total entre t_c y t_d , y $\Delta \theta_{b-c}$ es el desplazamiento angular total entre t_b y t_d .

Figura H-24

Se establece ahora un factor de saturación, dado por: $\xi = t_2/\Delta t_{acc}$. Si $\xi = 0$ el perfil es triangular (no se alcanza la velocidad de saturación) y si $0 < \xi < 1$ el perfil es trapezoidal (se alcanza la velocidad de saturación). Por otra parte, este factor también está limitado por el torque máximo permisible del servomotor, ya que cuanto mayor sea ξ , mayor será la aceleración angular, $\ddot{\theta}_{acc}$, y, por ende, el torque inercial que debe ejercer el servo para mover la carga se incrementa.

Desplazamiento total de accionamiento, $\Delta \theta_{acc}$, y aceleración de accionamiento, $\ddot{\theta}_{acc}$:

$$\Delta\theta_{acc} = \Delta\theta_{a-b} + \Delta\theta_{b-c} + \Delta\theta_{c-d} = \dot{\theta}_{nom} \cdot (t_1 + t_2) = \frac{1}{2}\dot{\theta}_{nom} \cdot \Delta t_{acc}(1+\xi)$$
⁽⁸⁹⁾

$$\ddot{\theta}_{acc} = \frac{d\theta_{a-b}}{dt} = \frac{\theta_{nom}}{t_1} = \frac{2\theta_{nom}}{\Delta t_{acc} \cdot (1-\xi)}$$

Perfil de un servomotor con dos accionamientos: actuación y retorno

Ahora, Figura H-25 se muestra el esquema general del perfil de velocidad angular de un servomotor que gira en un solo sentido y posee dos accionamientos: una actuación y un retorno.

Figura H-25

Perfil de velocidad angular de un servomotor con dos accionamientos

Parámetros de diseño del perfil dinámico:

En la actuación:

$$\Delta t_{act} = 2t_{1,act} + t_{2,act} = t_d - t_a; \quad \xi_{act} = \frac{t_{2,act}}{\Delta t_{act}};$$
(90)

$$\Delta \theta_{act} = \frac{1}{2} \dot{\theta}_{act} \cdot \Delta t_{act} (1 + \xi_{act}); \quad \ddot{\theta}_{act} = \frac{2\theta_{act}}{\Delta t_{act} \cdot (1 - \xi_{act})}$$

En el retorno:

$$\Delta t_{ret} = 2t_{1,ret} + t_{2,ret} = t_h - t_e; \quad \xi_{ret} = \frac{t_{2,ret}}{\Delta t_{ret}};$$

$$\Delta \theta_{ret} = \frac{1}{2}\dot{\theta}_{ret} \cdot \Delta t_{ret} (1 + \xi_{ret}); \quad \ddot{\theta}_{ret} = \frac{2\dot{\theta}_{ret}}{\Delta t_{ret} \cdot (1 - \xi_{ret})}$$
(91)

Condiciones de frontera en el tiempo:

$$t_a = 0; t_b = t_{1,act}; t_c = t_{1,act} + t_{2,act}; t_d = \Delta t_{act}; t_e = \Delta t_{act} + t_{m,act};$$
(92)

$$t_f = t_e + t_{1,ret}; t_g = t_f + t_{2,ret}; t_h = t_e + \Delta t_{ret}; t_i = T$$

Condiciones de frontera en el desplazamiento:

$$\theta_{a-b}(t_a) = \theta_1; \ \theta_{a-b}(t_b) = \theta_{b-c}(t_b); \ \theta_{b-c}(t_c) = \theta_{c-d}(t_c); \ \theta_{d-e}(t_d) = \theta_2$$
(93)

$$\theta_{d-e}(t_e) = \theta_{e-f}(t_e); \quad \theta_{e-f}(t_f) = \theta_{f-g}(t_f)$$
$$\theta_{f-g}(t_g) = \theta_{g-h}(t_g); \quad \theta_{h-i}(t_h) = \theta_4$$

Funciones en el tiempo de θ , $\dot{\theta}$ y r $\ddot{\theta}$ son las siguientes:

Para $t_a \leq t \leq t_b$: $\theta = \dot{\theta}_{act}/(2t_b) \cdot t^2 + \theta_1$; $\dot{\theta} = (\dot{\theta}_{act}/t_b) \cdot t$; $\ddot{\theta} = \dot{\theta}_{act}/t_b$ (94) Para $t_b \leq t \leq t_c$: $\theta = \dot{\theta}_{act} \cdot (t - t_b/2) + \theta_1$; $\dot{\theta}_m = \dot{\theta}_{act}$; $\ddot{\theta} = 0$ Para $t_c \leq t \leq t_d$: $\theta = -\dot{\theta}_{act} \cdot (t - t_b/2) + (t - t_b/2$

$$\theta = -\theta_{act} \cdot [t^2/(2t_b) - (t_c/t_b + 1) \cdot t + t_c^2/(2t_b) + t_b/2] + \theta_1;$$

$$\dot{\theta} = -\dot{\theta}_{act} \cdot (t/t_b - t_c/t_b - 1); \qquad \ddot{\theta} = -\dot{\theta}_{act}/t_b$$

Para $t_d \leq t \leq t_e$: $\theta = \theta_2$; $\dot{\theta} = 0$; $\ddot{\theta} = 0$

Para $t_e \leq t \leq t_f$:

$$\theta = \dot{\theta}_{ret} / \left[2 \cdot \left(t_f - t_e \right) \right] \cdot \left(t^2 - t_e^2 \right) + \dot{\theta}_{ret} \cdot \left[1 - t_f / \left(t_f - t_e \right) \right] \cdot \left(t - t_e \right) + \theta_2$$

$$\dot{\theta} = \dot{\theta}_{ret} / \left(t_f - t_e \right) \cdot t + \dot{\theta}_{ret} \cdot \left[1 - t_f / \left(t_f - t_e \right) \right]; \qquad \ddot{\theta} = \dot{\theta}_{ret} / \left(t_f - t_e \right)$$

Para $t_f \leq t \leq t_g$:

$$\theta = \dot{\theta}_{ret} \cdot \left(t + \left(t_f + t_e \right) / 2 - t_e - t_f \right) + \theta_2 ; \qquad \dot{\theta} = \dot{\theta}_{ret} ; \qquad \ddot{\theta} = 0$$

Para $t_g \leq t \leq t_h$:

$$\begin{aligned} \theta &= -\dot{\theta}_{ret} / \left[2 \cdot \left(t_f - t_e \right) \right] \cdot \left(t^2 - t_g^2 \right) + \dot{\theta}_{ret} \cdot \left[1 + t_g / \left(t_f - t_e \right) \right] \cdot \left(t - t_g \right) \\ &+ \dot{\theta}_{ret} \cdot \left(t_g - t_e - t_f + \left(t_f + t_e \right) / 2 \right) + \theta_2 \\ \dot{\theta} &= -\dot{\theta}_{ret} / \left(t_f - t_e \right) \cdot t + \dot{\theta}_{ret} \cdot \left[1 + t_g / \left(t_f - t_e \right) \right]; \qquad \ddot{\theta} &= -\dot{\theta}_{ret} / \left(t_f - t_e \right) \\ \end{aligned}$$
Para $t_h \le t \le t_i: \quad \theta = \theta_4; \qquad \dot{\theta} = 0; \qquad \ddot{\theta} = 0$

 $aa t_h \leq t \leq t_1$. $b = b_4$, b = b, b = b

Modelo H.3.5.2: Modelo dinámico-analítico del movimiento de una lámina sobre una superficie cilíndrica circular y sobre un tope fijo

Este modelo representa el doblamiento de una lámina (conjunto de solapas) durante el proceso de conformación de la bandeja. Las solapas entran en contacto con diversas superficies cilíndricas circulares, así como topes. Ver Figura H-24 y Figura H-25.

Figura H-26

Esquema del movimiento de una lámina que desliza sobre una superficie cilíndrica circular

Figura H-27

Esquema del movimiento de una lámina que se desliza sobre un tope fijo

Sistema en traslación *Axyz*. Lámina simétrica respecto al plano *xy*.

A: pliegue de la lámina (eje de rotación de la lámina). Colineal con el eje *z*.

B': eje de contacto entre la superficie de la lámina y el tope de ancho l_t .

Nota. Lámina (conjunto de solapas) en rotación con respecto al pliegue *A*, debido al movimiento

forzado por el macho y al deslizamiento sobre un tope. Elaboración propia.

Análisis geométrico: θ_{si} : Ángulo de doblamiento de la solapa *i* (o del conjunto de solapas), medido respecto al eje *x*.

Para el caso de la superficie cilíndrica: $\theta_{si} = \frac{\pi}{2} - \varphi$; (95)

$$\tan(\theta_{si}) = \frac{R\sin\varphi + (\Delta s_A - R)}{d - R\cos\varphi} \to \Delta s_A = d\tan\theta_{si} + R \cdot (1 - \sec\theta_{si})$$

$$\theta_{si} = 2 \cdot \tan^{-1} \left(\frac{d - \sqrt{d^2 - 2R \cdot \Delta s_A + \Delta s_A^2}}{2R - \Delta s_A} \right) \ con \ 0^\circ < \theta_{si} < 90^\circ$$

Para el caso del tope fijo: $\tan(\theta_{si}) = \Delta s_A / (l - l_t) \rightarrow \Delta s_A' = (l - l_t) \cdot \tan(\theta_{si})$

 Δs_A y $\Delta s_A'$ es el desplazamiento de *A* y φ es el ángulo del segmento \overline{CB} respecto al eje *x*.

Análisis cinemático: en ambos casos se debe cumplir las siguientes ecuaciones.

Velocidad y aceleración absoluta del punto A:

$$\vec{v}_A = <0\,\hat{\imath} + \dot{s}_A\,\hat{\jmath} + 0\,\hat{k} >; \quad \vec{a}_A = <0\,\hat{\imath} + \ddot{s}_A\,\hat{\jmath} + 0\,\hat{k} >$$
(96)

Velocidad y aceleración absoluta del centroide de la lámina G:

$$\vec{v}_{G} = \vec{v}_{A} + \vec{\omega} \times \vec{r}_{G/A} = \langle v_{G,x} \,\hat{\iota} + v_{G,y} \,\hat{j} + 0 \,\hat{k} >$$
(97)

$$\vec{a}_{G} = \vec{a}_{A} + \vec{\alpha} \times \vec{r}_{G/A} - |\vec{\omega}|^{2} \cdot \vec{r}_{G/A} = \langle a_{G,x} \hat{\iota} + a_{G,y} \hat{j} + 0 k \rangle$$

Donde: $\vec{\omega} = <0\,\hat{\imath} + 0\,\hat{\jmath} + \dot{\theta}_{si}\,\hat{k} >; \vec{\alpha} = <0\,\hat{\imath} + 0\,\hat{\jmath} + \ddot{\theta}_{si}\,\hat{k} >$

$$\vec{r}_{G/A} = \frac{l}{2} < -\cos\theta_{si} \ \hat{\iota} - \sin\theta_{si} \ \hat{\jmath} >$$

Por lo cual, se obtienen los siguientes sistemas lineales de ecuaciones:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \nu_{G,x} \\ \nu_{G,y} \end{bmatrix} = \begin{bmatrix} \dot{\theta}_{si} \cdot l/2 \cdot \sin \theta_{si} \\ \dot{s}_A - \dot{\theta}_{si} \cdot l/2 \cdot \cos \theta_{si} \end{bmatrix}$$
(98)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{G,x} \\ a_{G,y} \end{bmatrix} = \begin{bmatrix} \ddot{\theta}_{si} \cdot l/2 \cdot \sin \theta_{si} + \dot{\theta}_{si}^2 \cdot l/2 \cdot \cos \theta_{si} \\ \ddot{s}_A - \ddot{\theta}_{si} \cdot l/2 \cdot \cos \theta_{si} + \dot{\theta}_{si}^2 \cdot l/2 \cdot \sin \theta_{si} \end{bmatrix}$$

Los valores de $\dot{\theta}_{si}$ y $\ddot{\theta}_{si}$ dependen de la velocidad y aceleración lineal del punto A:

$$\dot{s}_{A} = \frac{d\Delta s_{A}}{dt} = \frac{d\Delta s_{A}}{d\theta_{si}} \cdot \dot{\theta}_{si}; \qquad \ddot{s}_{A} = \frac{d^{2}\Delta s_{A}}{dt^{2}} = \frac{d^{2}\Delta s_{A}}{d\theta_{si}^{2}} \cdot \dot{\theta}_{si}^{2} + \frac{d\Delta s_{A}}{d\theta_{si}} \cdot \ddot{\theta}_{si}$$
(99)

Donde:

Para el caso de la superficie cilíndrica:

$$\frac{d\Delta s_A}{d\theta_{si}} = d \sec^2 \theta_{si} - R \sec \theta_{si} \cdot \tan \theta_{si}$$

$$\frac{d^2\Delta s_A}{d\theta_{si}^2} = 2d \sec^2 \theta_{si} \cdot \tan \theta_{si} - R \cdot (\sec \theta_{si} \cdot \tan^2 \theta_{si} + \sec^3 \theta_{si})$$

Para el caso del tope fijo:

$$\frac{d\Delta s_A}{d\theta_{si}} = (l - l_t) \cdot \sec^2 \theta_{si} ; \quad \frac{d^2 \Delta s_A}{d\theta_{si}^2} = 2 \cdot (l - l_t) \cdot \sec^2 \theta_{si} \cdot \tan \theta_{si}$$

Análisis cinético: A continuación, se presenta el diagrama de cuerpo libre (DCL) de cada caso

Figura H-28

DCL en forma de equilibrio dinámico del movimiento de una lámina sobre un tope fijo

Nota. DCL lámina sobre un tope fijo. Se observan las variables de estudio.

Figura H-29

DCL en forma de equilibrio dinámico de una lámina sobre una superficie circular

Nota. DCL del movimiento de una lámina sobre una superficie circular.

Para ambos casos, el vector de la reacción de contacto viene dado por: $\vec{N} = N < \sin \theta_{si} \ \hat{i} - \cos \theta_{si} \ \hat{j} >$. El vector de fricción viene dado por: $\vec{F_r} = \mu_k N < -\cos \theta_{si} \ \hat{i} - \sin \theta_{si} \ \hat{j} >$.

El vector \vec{M}_A representa el momento de reacción del pliegue, y viene dado por: $\vec{M}_A = \langle 0 \hat{i} + 0 \hat{j} - (T_{si,dis}) \hat{k} \rangle$ donde $T_{si,dis}$ es el torque de diseño de la solapa en cuestión (ecuación 3). Al aplicar la segunda ley de Newton sobre los DCL expuestos en las figuras anteriores, se obtiene:

$$+\downarrow \sum F_{y} = m \cdot a_{G,y} = -N \cos \theta_{si} - \mu_{k} N \sin \theta_{si} + mg + A_{y}$$
(100)
$$\overrightarrow{+} \sum F_{x} = m \cdot a_{G,x} = N \sin \theta_{si} - \mu_{k} N \cos \theta_{si} + A_{x}$$

$$+ \upsilon \sum M_G = I_G \cdot \ddot{\theta}_{si}$$

= $Q_1(N \cos \theta_{si} + \mu_k N \sin \theta_{si}) + Q_2(N \sin \theta_{si} - \mu_k N \cos \theta_{si})$
+ $\frac{l}{2} (A_y \cos \theta_{si} - A_x \sin \theta_{si}) - M_A$

Por lo cual, se obtiene el siguiente sistema lineal de ecuaciones:

$$\begin{bmatrix} Q_3 & 0 & 1\\ Q_4 & 1 & 0\\ \left[-Q_1Q_3 + Q_2Q_4\right] & \left(-\frac{l}{2}\sin\theta_{si}\right) & \left(\frac{l}{2}\cos\theta_{si}\right) \end{bmatrix} \cdot \begin{bmatrix} N\\ A_x\\ A_y \end{bmatrix} = \begin{bmatrix} m \cdot a_{G,y} - m \cdot g\\ m \cdot a_{G,x}\\ I_G \cdot \ddot{\theta}_{si} + M_A \end{bmatrix}$$
(101)
Donde: $Q_3 = (-\cos\theta_{si} - \mu_k \sin\theta_{si}); \qquad Q_4 = (\sin\theta_{si} - \mu_k \cos\theta_{si})$

Para el caso de la superficie cilíndrica:

$$Q_1 = d - R \sin \theta_{si} - \frac{l}{2} \cdot \cos \theta_{si}$$
; $Q_2 = \Delta s_A - R + R \cos \theta_{si} - \frac{l}{2} \sin \theta_{si}$

Para el caso de un tope fijo: $Q_1 = l - l_t - \frac{l}{2} \cdot \cos \theta_{si}$; $Q_2 = \Delta s_A - \frac{l}{2} \sin \theta_{si}$

Modelo H.3.5.3: Modelo dinámico-analítico del movimiento tridimensional de la solapa S3 durante el proceso de conformación

En el instante en que la solapa 1 entra en contacto con la matriz de conformación la solapa 2 ya posee un ángulo $\theta_{s2} = 3.384^{\circ}$, tal y como se muestra en la Figura H-30. La Figura H-31 muestra el punto de contacto *P'* entre la solapa 1 y su superficie de plegado.

Figura H-30

Contacto entre la plancha y la superficie de plegado de la solapa 1

Figura H-31

Punto de contacto P' entre la solapa 1 y la matriz de conformación.

Nota. El punto P' de la matriz está en el plano Y'Z' sobre la línea anaranjada.

Una vez que la solapa 1 entra en contacto con la matriz de conformación, ésta empieza su movimiento tridimensional. La Figura H-29 muestra el punto de contacto entre la solapa 1 y la matriz de conformación, el cual se encuentra siempre en el plano Y'Z'.

A continuación, la Figura H-30 muestra una representación matemática aproximada de la solapa 1 como un sólido acotado por seis planos en el espacio.

Figura H-32

Solapa 1 en su movimiento tridimensional durante su plegado. Sólido acotado por seis planos.

Nota. Solapa 1 rotando respecto a su propia línea de hendido (colineal con \overline{AB}) y rotando

respecto a la línea de hendido de la solapa 2 (eje W). Elaborado en GeoGebra 3D.

El ángulo θ_{s2} y el ángulo ϕ dependen de la geometría de las superficies de plegado de las solapas 2 y 1, respectivamente. Por lo tanto, el ángulo de doblamiento de la solapa 1, θ_{s1} , se relaciona con θ_{s2} y ϕ de la siguiente manera:

$$\theta_{s1} = \tan^{-1}(\tan\phi / \cos\theta_{s2}) \tag{102}$$

Y sus derivadas temporales vienen dadas por:

~

$$\dot{\theta}_{s1} = \frac{\partial \theta_{s1}}{\partial \phi} \cdot \dot{\phi} + \frac{\partial \theta_{s1}}{\partial \theta_{s2}} \cdot \dot{\theta}_{s2} \quad \wedge \quad \ddot{\theta}_{s1} = \frac{\partial^2 \theta_{s1}}{\partial \phi^2} \dot{\phi}^2 + \frac{\partial \theta_{s1}}{\partial \phi} \ddot{\phi} + \frac{\partial^2 \theta_{s1}}{\partial \theta_{s2}^2} \dot{\theta}_{s2}^2 + \frac{\partial \theta_{s1}}{\partial \theta_{s2}} \ddot{\theta}_{s2} \qquad (103)$$

Donde:

$$\frac{\partial \theta_{s1}}{\partial \phi} = \frac{\sec^2 \phi}{\cos \theta_{s2} \cdot \sqrt{1 + (\tan \phi / \cos \theta_{s2})^2}} \wedge \frac{\partial \theta_{s1}}{\partial \theta_{s2}} = \frac{\tan \phi \cdot \sec \theta_{s2} \cdot \tan \theta_{s2}}{\sqrt{1 + (\tan \phi / \cos \theta_{s2})^2}}$$

$$\frac{\partial^2 \theta_{s1}}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(\frac{\sec^2 \phi}{\cos \theta_{s2} \cdot \sqrt{1 + (\tan \phi / \cos \theta_{s2})^2}} \right)$$

$$= \frac{1}{\cos^2 \theta_{s2} + \tan^2 \phi}$$

$$\cdot \left[-\frac{\tan \phi \cdot \sec^4 \phi}{\cos \theta_{s2} \cdot (1 + (\tan \phi / \cos \theta_{s2})^2)^{3/2}} - 2 \cdot \sec^3 \phi \cdot \tan \phi \cdot \cos \theta_{s2}} \right]$$

$$\cdot \sqrt{1 + (\tan \phi / \cos \theta_{s2})^2}$$
$$\frac{\partial^2 \theta_{s1}}{\partial \theta_{s2}^2} = \frac{\partial}{\partial \phi} \left(\frac{\tan \phi \cdot \sec \theta_{s2} \cdot \tan \theta_{s2}}{\sqrt{1 + (\tan \phi / \cos \theta_{s2})^2}} \right)$$
$$= \frac{1}{\cos^2 \theta_{s2} + \tan^2 \phi}$$
$$\cdot \left[-\frac{\tan^2 \phi \cdot \sec^3 \theta_{s2} \cdot \tan^2 \theta_{s2}}{(1 + (\tan \phi / \cos \theta_{s2})^2)^{3/2}} - \tan \phi \cdot \sqrt{1 + (\tan \phi / \cos \theta_{s2})^2} \cdot (\sec \theta_{s2} + \tan^2 \theta_{s2} + \sec^3 \theta_{s2}) \right]$$

A partir del modelo dinámico del movimiento de la solapa 1, se determina a partir de la dinámica vectorial para los cuerpos rígidos descrita en el Apéndice H, Sección H.3, Modelos H.3.1, Modelo H.3.1.2. Ahora, teniendo en cuenta los puntos A, A' y G de la Figura H-32, se establecen los sistemas de coordenadas:

 O_{XYZ} : Sistema fijo ubicado en el eje de salida del servomotor-reductor.

 $A_{X'Y'Z'}$: Sistema en traslación con centro en el punto A

 A_{xyz} : Sistema en rotación con centro en el punto A y velocidad angular $\vec{\Omega} = \vec{\omega}_{total,s1}$ (la velocidad angular de la solapa 1 coincide con la velocidad angular del sistema de referencia debido a que el punto A se encuentra unido rígidamente a la solapa, que es el cuerpo rígido en cuestión).

A continuación, se plantean los vectores de posición, velocidad y aceleración res pecto al sistema en traslación $A_{X'Y'Z'}$ (de la misma orientación de O_{XYZ}), y también respecto al sistema en rotación A_{XYZ} .

Vector de posición del punto G de la solapa 1, \vec{r}_G :

$$\vec{r}_G = \vec{r}_A + \vec{r}_{G/A}; \quad \vec{r}_{G/A} = \vec{r}_{A'/A} + \vec{r}_{G/A'}$$
 (104)

Respecto a $A_{X'Y'Z'}$:

$$\vec{r}_{A} = <\frac{L_{b}}{2} \cdot \hat{I} - s \cdot \hat{J} + \frac{W_{b}}{2} \cdot \hat{K} >$$

$$\vec{r}_{A'/A} = \frac{C_{b}}{2} \cdot <\cos\theta_{s2} \cdot \hat{I} + \sin\theta_{s2} \cdot \hat{J} >$$

$$\vec{r}_{G/A'} = \frac{P_{b}}{2} \cdot <(-\sin\theta_{s1} \cdot \sin\theta_{s2}) \cdot \hat{I} + (\sin\theta_{s1} \cdot \cos\theta_{s2}) \cdot \hat{J} + (\cos\theta_{s1}) \cdot \hat{K} >$$

Respecto a A_{xyz} :

$$\begin{split} \vec{r}_A = &< \left(\frac{L_b}{2} \cdot \cos \theta_{s2} - s \cdot \sin \theta_{s2}\right) \cdot \hat{\imath} \\ &+ \left(-\frac{L_b}{2} \cdot \cos \theta_{s1} \sin \theta_{s2} - s \cdot \cos \theta_{s1} \cos \theta_{s2} - \frac{W_b}{2} \cdot \sin \theta_{s1}\right) \cdot j \\ &+ \left(-\frac{L_b}{2} \cdot \sin \theta_{s1} \sin \theta_{s2} - s \cdot \sin \theta_{s1} \cos \theta_{s2} + \frac{W_b}{2} \cdot \cos \theta_{s1}\right) \\ &\cdot \hat{k} >; \quad \vec{r}_{A'/A} = < \frac{C_b}{2} \cdot \hat{\imath} >; \quad \vec{r}_{G/A'} = < \frac{P_b}{2} \cdot \hat{k} > \end{split}$$

Donde $\vec{r}_{G/A}$ es la posición de *G* relativo a *A*; \vec{r}_A es el vector de posición del punto *A* (siendo *s* la posición vertical del macho); $\vec{r}_{A'/A}$ es el vector de posición de *A'* relativo a *A*; y $\vec{r}_{G/A'}$ es el vector de posición de *G* relativo a *A'*.

Vector velocidad angular total de la solapa 1, $\vec{\omega}_{total,s1}$:

$$\vec{\omega}_{total,s1} = \vec{\omega}_{s1} + \vec{\omega}_{s2} \tag{105}$$

Respecto a $A_{X'Y'Z'}$: $\vec{\omega}_{s1} = -\dot{\theta}_{s1} \cdot \langle \cos \theta_{s2} \cdot \hat{I} + \sin \theta_{s2} \cdot \hat{J} \rangle$

$$\vec{\omega}_{s2} = \dot{\theta}_{s2} \cdot \hat{K}$$

Respecto a A_{xyz} : $\vec{\omega}_{s1} = \langle -\dot{\theta}_{s1} \cdot \hat{\iota} \rangle$

$$\vec{\omega}_{s2} = < -\dot{\theta}_{s2} \sin \theta_{s1} \cdot \hat{j} + \dot{\theta}_{s2} \cos \theta_{s1} \cdot \hat{k} >$$

Donde: $\vec{\omega}_{s1}$ es el vector de velocidad angular de la solapa 1 y $\vec{\omega}_{s2}$ es el vector velocidad

angular de la solapa 2.

Vector aceleración angular total de la solapa 1, $\vec{\alpha}_{total,s1}$:

$$\vec{\alpha}_{total,s1} = \frac{d}{dt} \left(\vec{\omega}_{total,s1} \right) = \vec{\alpha}_{s1} + \vec{\alpha}_{s2} = \vec{\dot{\Omega}}$$
(106)

Respecto a $A_{X'Y'Z'}$:

$$\vec{\alpha}_{s1} = < \left(-\vec{\theta}_{s1} \cdot \cos \theta_{s2} + \dot{\theta}_{s1} \cdot \dot{\theta}_{s2} \cdot \sin \theta_{s2}\right) \cdot \hat{I} + \left(-\vec{\theta}_{s1} \cdot \sin \theta_{s2} - \frac{1}{2}\right)$$

 $\dot{\theta}_{s1} \cdot \dot{\theta}_{s2} \cdot \cos \theta_{s2} \cdot \hat{J} >; \quad \vec{\alpha}_{s2} = \ddot{\theta}_{s2} \cdot \hat{K}$

Respecto a A_{xyz} : $\vec{\alpha}_{s1} = < -\ddot{\theta}_{s1} \cdot \hat{\iota} >$

$$\vec{\alpha}_{s2} = < (-\vec{\theta}_{s2}\sin\theta_{s1} - \dot{\theta}_{s1}\cdot\dot{\theta}_{s2}\cdot\cos\theta_{s1})\cdot\hat{j} + (\ddot{\theta}_{s2}\cos\theta_{s1} - \dot{\theta}_{s1}\cdot\dot{\theta}_{s2}\cdot\sin\theta_{s1})\cdot\hat{k} >$$

Donde: $\vec{\alpha}_{s1}$ es el vector de aceleración angular de la solapa 1 y $\vec{\alpha}_{s2}$ es el vector de aceleración angular de la solapa 2.

Velocidad absoluta del punto G de la solapa 1, $\vec{v}_{G,s1}$:

$$\vec{v}_{G,s1} = \vec{v}_A + \vec{v}_{G/A}; \quad \vec{v}_{G/A} = \vec{\Omega} \times \vec{r}_{G/A} + \left(\vec{r}_{G/A}\right)_{A_{xyz}}$$
 (107)

Respecto a $A_{X'Y'Z'}$: $\vec{v}_A = -\dot{s}\hat{f}$

Respecto a A_{xyz} :

$$\vec{v}_A = -\dot{s} < \sin\theta_{s2} \cdot \hat{\iota} + \cos\theta_{s1} \cos\theta_{s2} \cdot \hat{\jmath} + \sin\theta_{s1} \cos\theta_{s2} \cdot \hat{k} >$$

Donde: \vec{v}_A es la velocidad absoluta del punto *A*; $\vec{v}_{G/A}$ es la velocidad de *G* respecto al sistema en traslación $A_{X'Y'Z'}$ de la misma orientación que O_{XYZ} ; y $(\vec{r}_{G/A})_{A_{XYZ}}$ es la velocidad relativa de *G* respecto al sistema en rotación A_{XYZ} .

Aceleración absoluta del punto G de la solapa 1, $\vec{a}_{G,s1}$:

$$\vec{a}_{G,S1} = \vec{a}_A + \vec{a}_{G/A};$$
(108)
$$\vec{a}_{G/A} = \vec{\Omega} \times \vec{r}_{G/A} + \vec{\Omega} \times (\vec{\Omega} \times \vec{r}_{G/A}) + 2\vec{\Omega} \times (\vec{r}_{G/A})_{A_{XYZ}} + (\vec{r}_{G/A})_{A_{XYZ}}$$

Respecto a $A_{X'Y'Z'}$:

$$\vec{a}_A = -\vec{s}\hat{J}$$

Respecto a A_{xyz} :

$$\vec{a}_A = -\vec{s} \cdot < \sin\theta_{s2} \cdot \hat{\iota} + \cos\theta_{s1}\cos\theta_{s2} \cdot \hat{\jmath} + \sin\theta_{s1}\cos\theta_{s2} \cdot \hat{k} >$$

Donde: $\vec{a}_A = -\ddot{s}\hat{f}$ es la aceleración absoluta del punto A; $\vec{a}_{G/A}$ es la aceleración de G respecto al sistema en traslación $A_{X'Y'Z'}$ de la misma orientación que O_{XYZ} ; y $(\ddot{r}_{G/A})_{A_{XYZ}}$ es la aceleración relativa de G respecto al sistema en rotación A_{XYZ} .

Se observa que $(\vec{r}_{G/A})_{A_{XYZ}} = (\vec{r}_{G/A})_{A_{XYZ}} = 0$, debido a que, como se describe en la ecuación 48, $(\vec{r}_{G/A})_{A_{XYZ}}$ es constante.

Vector de posición $\vec{r}_{P'/A}$ del punto de contacto P' relativo al sistema en traslación $A_{X'Y'Z'}$: Respecto a $A_{X'Y'Z'}$: $\vec{r}_{P'/A} = < (\Delta s_A - R \cdot (1 - \cos \phi))\hat{J} + (d - R \cdot \sin \phi)\hat{K} >$ (109)

Respecto a A_{xyz} :

$$\vec{r}_{P'/A} = < \left[\left(\Delta s_A - R \cdot (1 - \cos \phi) \right) \sin \theta_{s2} \right] \hat{\iota} + \left[\left(\Delta s_A - R \cdot (1 - \cos \phi) \right) \cos \theta_{s1} \cos \theta_{s2} - \left(d - R \cdot \sin \phi \right) \sin \theta_{s1} \right] \hat{\jmath} + \left[\left(\Delta s_A - R \cdot (1 - \cos \phi) \right) \sin \theta_{s1} \cos \theta_{s2} + \left(d - R \cdot \sin \phi \right) \cos \theta_{s1} \right] \hat{k}$$

Cinética de la de la solapa 1 sobre su superficie plegado:

A continuación, la Figura H-33 muestra un DCL de la solapa 1 en su movimiento tridimensional. En ella se observa la fuerza de fricción $\vec{F}_{r,s1}$, cuya dirección coincide con el vector director de la velocidad $\vec{v}_{P'}$ del punto de contacto P', sin embargo, su cálculo requiere determinar el vector $(\vec{r}_{P'/A})_{A_{xyz}}$ relativo al sistema en rotación A_{xyz} , y al tratarse de un movimiento tridimensional, dicho cálculo se torna de una complejidad que no vale la pena realizar. Por lo tanto, en el análisis cinético se ignorará dicha fuerza de fricción.

Figura H-33

A continuación, se expresan las fuerzas respecto al sistema en traslación $G_{X'Y'Z'}$ (de la misma orientación que el sistema en traslación $A_{X'Y'Z'}$ como del sistema fijo $O_{X'Y'Z'}$), y también respecto al sistema en rotación G_{XYZ} .

El vector de fuerza normal, \vec{N}_{s1} , viene dado por:

Respecto a
$$G_{X'Y'Z'}$$
: (110)

$$\vec{N}_{s1} = N_{s1} \cdot \langle (-\cos\theta_{s1} \cdot \sin\theta_{s2}) \hat{I} + (\cos\theta_{s1} \cdot \cos\theta_{s2}) \hat{J} - \sin\theta_{s1} \hat{K} \rangle$$

Respecto a G_{xyz} : $\vec{N}_{s1} = \langle N_{s1} \cdot \hat{j} \rangle$

El vector de fuerza de reacción en el punto A' (centro de la línea de hendido) es:

Respecto a
$$G_{X'Y'Z'}$$
: (111)

$$\vec{R}_{A'} = < (R_{x,s1} \cdot \cos \theta_{s2} - R_{y,s1} \cdot \cos \theta_{s1} \cdot \sin \theta_{s2} - R_{z,s1} \cdot \sin \theta_{s1} \cdot \sin \theta_{s2})\hat{I} + (R_{x,s1} \cdot \sin \theta_{s2} + R_{y,s1} \cdot \cos \theta_{s1} \cdot \cos \theta_{s2} + R_{z,s1} \cdot \sin \theta_{s1} \cdot \cos \theta_{s2})\hat{J} + (-R_{y,s1} \cdot \sin \theta_{s1} + R_{z,s1} \cdot \cos \theta_{s1})\hat{K} >$$

Respecto a G_{xyz} : $\vec{R}_{A'} = \langle R_{x,s1} \cdot \hat{i} + R_{y,s1} \cdot \hat{j} + R_{z,s1} \cdot \hat{k} \rangle$

El vector de momento de reacción en el punto A' es:

Respecto a
$$G_{X'Y'Z'}$$
: $\vec{M}_{A'} = \langle T_{s1,dis} \cdot \cos \theta_{s2} \cdot \hat{I} + T_{s1,dis} \cdot \sin \theta_{s2} \cdot \hat{j} \rangle$ (112)
Respecto a G_{XYZ} : $\vec{M}_{A'} = \langle T_{s1,dis} \cdot \hat{i} \rangle$

El vector de fuerza del peso de la solapa 1, \vec{W}_{s1} , viene dado por:

Respecto a
$$G_{X'Y'Z'}$$
: $\vec{W}_{s1} = -9.81m_{s1} \cdot \hat{j}$ (113)

Respecto a G_{xyz} :

$$\vec{W}_{s1} = -9.81m_{s1} < \sin\theta_{s2} \cdot \hat{\imath} + \cos\theta_{s1} \cdot \cos\theta_{s2} \cdot \hat{\jmath} + \sin\theta_{s1} \cdot \cos\theta_{s2} \hat{k} > 0$$

A continuación, se aplica la segunda ley de Newton: (ignorando la fuerza de fricción)

$$\sum \vec{F} = \vec{N}_{s1} + \vec{R}_{A'} + \vec{W}_{s1} = m_{s1} \cdot \vec{a}_{G,s1}$$
(114)
$$\sum \vec{M}_{G} = \vec{r}_{P'/G} \times \vec{N}_{s1} + \vec{r}_{A'/G} \times \vec{R}_{A'} + \vec{M}_{A'} = \vec{H}_{G} = \frac{d}{dt} (\vec{H}_{G})$$

Donde el vector de posición $\vec{r}_{P'/G}$ viene dado por:

$$\vec{r}_{P'/G} = \vec{r}_{P'/A} - \vec{r}_{G/A} \text{ y } \vec{r}_{A'/G} = -\vec{r}_{G/A'}$$
(115)

Ahora bien, el vector \overrightarrow{H}_{G} se puede determinar de dos formas:

La primera forma es derivando directamente el vector $\overrightarrow{H_G}$ generado por el producto punto entre el tensor de inercia (que incluye los productos de inercia de la solapa) y el vector de velocidad angular de la solapa. Por ejemplo, para la componente en y se tiene:

$$\dot{H}_{y} = \dot{I}_{yy} \cdot \omega_{tot,s1,y} + I_{yy} \cdot \alpha_{tot,s1,y} - \left(\dot{I}_{yx} \cdot \omega_{tot,s1,x} + I_{yx} \cdot \alpha_{tot,s1,x}\right)$$

$$- \left(\dot{I}_{yz} \cdot \omega_{tot,s1,z} + I_{yz} \cdot \alpha_{tot,s1,z}\right)$$

$$(116)$$

Donde las inercias se calculan así:

$$I_{yy} = \iiint (z^{2} + x^{2}) \cdot \rho \cdot dV = \rho \cdot \int_{0}^{a_{0}} \int_{a_{1}z}^{a_{1}z + a_{2}} \int_{a_{3}z + a_{4}x}^{a_{3}z + a_{4}x} (z^{2} + x^{2}) \, dy \, dx \, dz$$
$$I_{xy} = I_{yx} = \iiint (x \cdot y) \cdot \rho \cdot dV = \rho \cdot \int_{0}^{a_{0}} \int_{a_{1}z}^{a_{1}z + a_{2}} \int_{a_{3}z + a_{4}x - t}^{a_{3}z + a_{4}x} (x \cdot y) \, dy \, dx \, dz$$
$$I_{zy} = I_{yz} = \iiint (z \cdot y) \cdot \rho \cdot dV = \rho \cdot \int_{0}^{a_{0}} \int_{a_{1}z}^{a_{1}z + a_{2}} \int_{a_{3}z + a_{4}x - t}^{a_{3}z + a_{4}x} (z \cdot y) \, dy \, dx \, dz$$

Los valores $a_0 = P_b \cdot \cos \theta_{s1}$, $a_1 = \tan \theta_{s1} \cdot \sin \theta_{s2}$, $a_2 = C_b \cdot \cos \theta_{s2}$, $a_3 = \cos 2\theta_{s2} / \cos^2 \theta_{s2}$ y $a_4 = \cot \theta_{s1} \cdot \sin \theta_{s2} / \cos^2 \theta_{s2}$, se podrían determinar a partir de una aproximación matemática, acotando el sólido por planos en el espacio (ver Figura H-30), de esta manera:

Vectores directores:

$$\hat{\lambda}_{B/A} = \langle \cos \theta_{s2} \ \hat{\imath} + \sin \theta_{s2} \ \hat{\jmath} + 0 \ \hat{k} \rangle;$$

$$\hat{\lambda}_{D/A} = \langle (-\sin \theta_{s1} \cdot \sin \theta_{s2}) \ \hat{\imath} + (\sin \theta_{s1} \cdot \cos \theta_{s2}) \ \hat{\jmath} + \cos \theta_{s1} \ \hat{k} \rangle$$

$$\vec{n}_{1} = \langle (-\cos \theta_{s1} \cdot \sin \theta_{s2}) \ \hat{\imath} + (\cos \theta_{s1} \cdot \cos \theta_{s2}) \ \hat{\jmath} - \sin \theta_{s1} \ \hat{k} \rangle$$
(117)

$$\vec{n}_2 = < -\cos\theta_{s1} \hat{\imath} + 0\hat{\jmath} + (-\sin\theta_{s1} \cdot \sin\theta_{s2})\hat{k}$$

Donde $\hat{\lambda}_{B/A}$ es el vector director de \overline{AB} , $\hat{\lambda}_{D/A}$ es el vector director de \overline{AD} , $\vec{n}_1 = \hat{\lambda}_{D/A} \times \hat{\lambda}_{B/A}$ es el vector normal a $\hat{\lambda}_{B/A}$ y a $\hat{\lambda}_{D/A}$, y $\vec{n}_2 = \hat{\lambda}_{D/A} \times <0$ $\hat{\imath} + 1$ $\hat{\jmath} + 0$ $\hat{k} >$ es el vector normal a $\hat{\lambda}_{D/A}$, y a $\hat{\lambda}_{D/A}$, y $\vec{n}_2 = \hat{\lambda}_{D/A} \times <0$ $\hat{\imath} + 1$ $\hat{\jmath} + 0$ $\hat{k} >$ es el vector normal a $\hat{\lambda}_{D/A}$ y al eje y. A continuación, se calculan las ecuaciones cartesianas de los planos:

Primer plano α_1 : pasa por el origen A(0,0,0) y su vector normal es \vec{n}_1 :

$$-\cos\theta_{s1}\cdot\sin\theta_{s2}\cdot x + \cos\theta_{s1}\cdot\cos\theta_{s2}\cdot y - \sin\theta_{s1}\cdot z = 0$$
(118)

Segundo plano α_2 : pasa por el punto $Q_1(0, -e, 0)$ y su vector normal es \vec{n}_1 :

$$-\cos\theta_{s1} \cdot \sin\theta_{s2} \cdot x + \cos\theta_{s1} \cdot \cos\theta_{s2} \cdot y - \sin\theta_{s1} \cdot z$$
(119)
$$= -e \cdot \cos\theta_{s1} \cdot \cos\theta_{s2}$$

Tercer plano α_3 : pasa por el origen A(0,0,0) y su vector normal es \vec{n}_2 :

$$-\cos\theta_{s1} x - \sin\theta_{s1} \cdot \sin\theta_{s2} \cdot z = 0 \tag{120}$$

Cuarto plano α_4 : pasa por el punto $Q_2(C_b \cdot \cos \theta_{s2}, C_b \cdot \sin \theta_{s2}, 0)$ con vector normal \vec{n}_2 :

$$-\cos\theta_{s1} x - \sin\theta_{s1} \cdot \sin\theta_{s2} \cdot z = -C_b \cdot \cos\theta_{s1} \cdot \cos\theta_{s2}$$
(121)

Quinto plano α_5 : pasa por el origen A(0,0,0) y su vector normal es el eje y: z = 0

Sexto plano α_6 : pasa por el punto $Q_3(0,0,P_b \cdot \cos \theta_{s1})$ y su vector normal es el eje z:

$$z = P_b \cdot \cos \theta_{s1} \tag{122}$$

Otra forma de obtener \vec{H}_G es eligiendo convenientemente el sistema en rotación G_{xyz} , cuyos ejes coordenados xyz coincidan con los ejes principales de inercia de la solapa, de esta manera los productos de inercia desaparecen y el tensor de inercia permanece constante en el tiempo. En este caso se tiene que: $\vec{H}_G = \langle (\bar{I}_{xx} \cdot \omega'_x) \cdot \hat{i} + (\bar{I}_{yy} \cdot \omega'_y) \cdot \hat{j} + (\bar{I}_{zz} \cdot \omega'_z) \cdot \hat{k} \rangle$ y entonces:

$$\vec{H}_G = \left(\vec{H}_G\right)_{G_{XYZ}} + \vec{\Omega} \times \vec{H}_G \tag{123}$$

Donde \vec{H}_{G} es la razón de cambio de \vec{H}_{G} con respecto al sistema en traslación $G_{X'Y'Z'}$ de la misma orientación que O_{XYZ} ; y $\left(\vec{H}_{G}\right)_{G_{XYZ}} = \langle (\bar{I}_{xx} \cdot \alpha'_{x}) \cdot \hat{\imath} + (\bar{I}_{yy} \cdot \alpha'_{y}) \cdot \hat{\jmath} + (\bar{I}_{zz} \cdot \alpha'_{z}) \cdot \hat{k} \rangle$ es la razón de cambio de \vec{H}_{G} con respecto al sistema en rotación G_{xyz} . En este caso, se tiene que: $\bar{I}_{xx} = 1/12 \cdot m_{s1} \cdot (C_{b}^{2} + e_{b}^{2}); \quad \bar{I}_{yy} = 1/12 \cdot m_{s1} \cdot (C_{b}^{2} + P_{b}^{2}); \quad y \quad \bar{I}_{zz} = 1/12 \cdot m_{s1} \cdot (P_{b}^{2} + e_{b}^{2}).$

Apéndice I. Tablas y figuras útiles para el dimensionamiento de piezas y componentes

Sección I.1. Tablas y figuras de modelos analíticos obtenidos de libros de diseño

Figura I-1

Fracción de resistencia a la fatiga, **f**.

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.277) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Figura I-2

Parámetros en el factor de la condición superficial, k_a

Acabado	Fac	Exponente		
superficial	S _{ut} , kpsi	S _{ut} , MPa	Ь	
Esmerilado	1.34	1.58	-0.085	
Maquinado o laminado en frío	2.70	4.51	-0.265	
Laminado en caliente	14.4	57.7	-0.718	
Como sale de la forja	39.9	272.	-0.995	

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.280) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Diámetros efectivos, d_e , para perfiles estructurales no rotativos

Nota. Reproducido de Diseño en ingeniería mecánica de Shigley (p.282) R. Budynas & K. Nisbett,

2008, McGraw-Hill.

Figura I-4

Factores de confiabilidad, k_e

Confiabilidad, %	Variación de transformación z _a	Factor de confiabilidad $k_{\rm e}$
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.258) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

Figura I-5

Sensibilidad a la muesca para esfuerzos normales, q, y para esfuerzos cortantes, q_s .

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.87 y 288) R. Budynas & K. Nisbett, 2008, McGraw-Hill.

	Constante C de condición de extremos									
Condiciones de extremos de columnas	Valor teórico	Valor conservador	Valor recomendado*							
Empotrado-libre	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$							
Articulado-articulado	1	1	1							
Empotrado-articulado	2	1	1.2							
Empotrado-empotrado	4	1	1.2							

Constantes de condiciones finales de las columnas de Euler, **C**.

*Para usarse sólo con factores de segundad amplios cuando la carga de la columna se conozca con exactitud.

Nota. Reproducido de Diseño en ingeniería mecánica de Shigley (p.175) R. Budynas & K. Nisbett,

2008, McGraw-Hill.

Figura I-7

Factor de servicio, K_s , para transmisiones de flexibles

	Fuente d	e potencia
Maquinaria impulsada	Características del par de torsión normal	Par de torsión alto o no uniforme
Uniforme	1.0 a 1.2	1.1 a 1.3
Impacto ligero	1.1 a 1.3	1.2 a 1.4
Impacto medio	1.2 a 1.4	1.4 a 1.6
Impacto pesado	1.3 a 1.5	1.5 a 1.8

Nota. Reproducido de Diseño en ingeniería mecánica de Shigley (p.882) R. Budynas & K. Nisbett,

2008, McGraw-Hill.

Figura I-8

Esfuerzos flexionantes máximos recomendados para resortes de torsión como porcentaje de S_{ut}

Vida a	ASTM A inoxidable AS1	A228 Acero M A228 y tipo 302	ASTM A230 y A232				
la fatiga, ciclos	Sin martillar	Martillado*	Sin martillar	Martillado*			
105	53	62	55	64			
10 ⁶	50	60	53	62			

Nota. Reproducido de Diseño en ingeniería mecánica de Shigley (p.537) R. Budynas & K. Nisbett,

2008, McGraw-Hill.

Figura I-9

Dimensiones de cadenas de rodillos serie americana de torón sencillo

Número	Paso	Ancho	Resistencia	Peso	Diámetro	Espaciamiento de torones
cadena	pulg	pula	la tensión,	lbf/pie	del rodillo,	múltiples,
ANSI	(mm)	(mm)	lbf (N)	(N/m)	pulg (mm)	pulg (mm)
25	0.250	0.125	780	0.09	0.130	0.252
35	0.375 (9.52)	0.188 (4.76)	1 760 (7 830)	0.21 (3.06)	0.200 (5.08)	0.399 (10.13)
41	0.500 (12.70)	0.25 (6.35)	1 500 (6 670)	0.25 (3.65)	0.306 (7.77)	_
40	0.500	0.312	3 130	0.42	0.312	0.566
	(12.70)	(7.94)	(13 920)	(6.13)	(7.92)	(14.38)
50	0.625	0.375	4 880	0.69	0.400	0.713
	(15.88)	(9.52)	(21 700)	(10.1)	(10.16)	(18.11)
60	0.750	0.500	7 030	1.00	0.469	0.897
	(19.05)	(12.7)	(31 300)	(14.6)	(11.91)	(22.78)
80	1.000	0.625	12 500	1.71	0.625	1.153
	(25.40)	(15.88)	(55 600)	(25.0)	(15.87)	(29.29)
100	1.250	0.750	19 500	2.58	0.750	1.409
	(31.75)	(19.05)	(86 700)	(37.7)	(19.05)	(35.76)
120	1.500	1.000	28 000	3.87 (56.5)	0.875	1.789
140	1.750 (44.45)	1.000 (25.40)	38 000 (169 000)	4.95 (72.2)	1.000 (25.40)	1.924 (48.87)
160	2.000	1.250	50 000	6.61	1.125	2.305
	(50.80)	(31.75)	(222 000)	(96.5)	(28.57)	(58.55)
180	2.250	1.406	63 000	9.06	1.406	2.592
	(57.15)	(35.71)	(280 000)	(132.2)	(35.71)	(65.84)
200	2.500	1.500	78 000	10.96	1.562	2.817
	(63.50)	(38.10)	(347 000)	(159.9)	(39.67)	(71.55)
240	3.00	1.875	112 000	16.4	1.875	3.458
	(76.70)	(47.63)	(498 000)	(239)	(47.62)	(87.83)

Nota. Reproducido de *Diseño en ingeniería mecánica de Shigley* (p.888) R. Budynas & K. Nisbett,

2008, McGraw-Hill.

Perfil de rosca trapezoidal según la norma DIN 103-1

Nota. Adaptado de la norma DIN 103-1. Deutsches Institut für Normung, 2023^a.

Dimensiones en mm. Another by television b telev														
Dián	netro	Sección		Class	Ancho	b, tole	erancia	tado		Profu	ndidad		Cho	iflán
der	d	chaveta	Nomi-	Libre		Nor	mal	Aiustodo	— Ej	e h ₁	Cube	o h ₂		`1
Más de	hasta	ьхь	10	Eje h9	Cubo D10	Eje n 9	Cubo 459	Eje y Cubo p9/P9	Nomi- nal	Toler.	Nomi- nal	Toler.	Mín.	Máx.
10 12 17	12 17 22	4X4 5X5 6X6	4 5 6	+0,030	+0,078 +0,030	-0,030	±0,015	-0,012 -0,042	2,5 3 3,5	+0,1 0	1,8 2,3 2,8	+0,1 0	0,08 0,16 0,16	0,16 0,25 0,25
22 30	30 38	8X7 10X8	8 10	+0.036	+0.098 +0.040	-0,036	±0,018	-0,015 -0,051	4 5		3,3 3,3		0,16 0,25	0,25 0,40
38 44 50 58	44 50 58 65	12X8 14X9 16X10 18X11	12 14 16 18	+0,043	+0,120 +0,050	-0,043	<u>+</u> 0,0215	-0,018 -0,061	5 5,5 6 7	+0,2	3,3 3,8 4,3 4,4	+0,2	0,25 0,25 0,25 0,25	0,40 0,40 0,40 0,40
65 75 85 95	75 85 95 110	20X12 22X14 25X14 28X16	20 22 25 28	+0.052	+0,149 +0,065	-0,052	±0,026	-0.022 -0,074	7,5 9 9 10	0	4,9 5,4 5,4 6,4	0	0.40 0.40 0.40 0,40	0,60 0,60 0,60 0,60
130 150 170 200 230	150 170 200 230 260	36X20 40X22 45X25 50X28 56X32	32 36 40 45 50 56	+0,062 0	+0,180 +0.080	-0,062	±0.031	-0.026 -0.088	11 12 13 15 17 20	+0.3	7,4 8,4 9,4 10,4 11,4 12,4	+0.3	0,40 0,70 0,70 0,70 0,70 0,70	1,00 1,00 1,00 1,00 1,00
260 290 330	290 330 380	63X32 70X36 80X40	63 70 80	+0,074	+0,220 +0,100	-0,074	±0,037	-0,032 -0,106	20 22 25	0	12,4 14,4 15,4	0	1,20 1,20 2,00	1,60 1,60 2,50
380	440 500	90X45 100X50	90 100	+0.087	+0,260	-0.087	±0,0435	-0.037	28 31		17,4		2,00	2,50

Dimensiones para el diseño de chaveteros para chavetas paralelas según la norma DIN 6885.

Nota. Reproducida de la norma DIN 6885. Deutsches Institut für Normung, 2023b.

Sección I.2. Tablas y figuras de modelos analíticos obtenidos de know-how de fabricantes

Figura I-12

Factor para temperatura ambiente y altitud de instalación no estándar, k_{HT} .

Installa-	Ambient ter	nperature			
tion alti-	< 30 °C	30 40 °C	45 °C	50 °C	55° C
1000	Factor for n altitude	on-standard a	ambient temp	perature and	linstallation
m	k _{HT}				
1000	1.07	1.00	0.96	0.92	0.87
1500	1.04	0.97	0.93	0.89	0.84
2000	1.00	0.94	0.90	0.86	0.82
2500	0.96	0.90	0.86	0.83	0.78
3000	0.92	0.86	0.82	0.79	0.75
3500	0.88	0.82	0.79	0.75	0.71
4000	0.82	0.77	0.74	0.71	0.67

Nota. Reproducido de SIMOTICS S-1FG1 Servo geared motors (p. 2/10), SIEMENS, 2023.

Dimensiones de carros estándar AU HepcoMotion para sistema GV3.

	de pieza		-7	Q	K _v s		arro	о соі	rto^2		arro	o me	edio		Carr	o la	rgo	Capacidad de Carga máxima (N)*1							
	de	e pie	za	2nd		\leq	IJ.	Ø x profundidad		L	D	S	Т	L	D	S	T	L	D	S	Т	DR L1	DR L2	Doble L1	Doble L2
	AU 12	2P1/P2	2 13	NMS	12	MS	12	12.5 x 4.8	7.34	50	35	17	4 x M4	75	60	25	4 x M4	100	85	50	4 x M4			240	240
l	AU 1	12P3	13																						
	AU	20	18	NV	20	V	20	16x7	10	65	43	20	4	100	55	44	6 × M5	140	95	62	6 × M5	760	1200	500	400
	AU	28	18	NV	28	V	28	16×8	- 11	75	52	25	4 x MJ	125	80	55	O X MJ	175	130	80	0 x MJ	700	1200	500	400
I	AU	25	25	NS	25	S	25	22×8.4	11.5	80	51	24		135	74	60		180	120	82					
Ì	AU	35	25	NS	35	S	35	22 x 9.4	12.5	100	70	40	4 x M6	150	90	65	6 x M6	200	140	90	6 x M6	1600	3000	1280	1200
Ì	AU	50	25	NS	50	S	50	22 x 10.9	14	110	80	50	1	160	100	70	1	220	160	100					
	AU	44	34	NM	44	Μ	44	25×8.7	14.5	125	88	50		180	103	80		225	153	103					
	AU	60	34	NM	60	Μ	60	25 x 11	17	150	110	60	4 x M8	200	125	90	6 x M8	280	205	130	6 x M8	3600	6000	3200	2800
	AU	76	34	NM	76	Μ	76	25 x 12.5	18	170	130	80		240	165	110		340	265	160					
	AU	76	54	NL	76	L	76	32 x 13.5	20	200	140	90	4	300	198	135	4 1410	400	298	185	4 1410	10000	10000	7200	6400
ĺ	AU	120	54	NL	120	L	120	32 x 17.5	24	240	180	120	4 x MIU	360	258	165		480	378	225	0 x MIU	10000	10000	/200	0400

Nota. Adaptado de GV3 Sistema lineal de guiado y transmisión (p.22 y 23) por HepcoMotion,

2022.

Dimensiones de guías planas de doble canto HepcoMotion para sistema GV3

Nota. Adaptado de GV3 Sistema lineal de guiado y transmisión (p.30 y 31) por HepcoMotion,

8.0

10.0

25

32

25.46

32.46

26.0

33.0

7

11.5

9

M6

M10

M8

4046

4046

11.5

9

M10 x 20

M8 x 20

FS1020

FS820

8.2

10.2

2022.

-/

4

MS 12

V 20

V 28

S 25 S 35

S 50

M 44

M 60

M 76

L 76 .

L 120

ME.

LE.

... J54 ...

... J 580 ...

Ν

Ø x profundida

8 x 2.8

10 x 3.5

11 x 4

18 x 6

15 x 6

Número	Usar con	✓=Opción preferida, ✓= Compatible, X = Tipos disponibles											
de		Aprop	oiado par	a las sec	Types Available								
Pieza		MS	V	S	Μ	L	Con brida (F)	Compacto(C)					
LB 12 *4	J 13	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark					
LB 20 *4	J 18	x	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
LB 25	J 25	×	\checkmark	\checkmark	x	×	\checkmark	\checkmark					
LB 44	J 34	x	x	x	\checkmark	x	\checkmark	\checkmark					
LB 76	J 54	x	x	x	x	\checkmark	\checkmark	\checkmark					
LB 195	J 195	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×					
LB 265	J 265	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×					
LB 360	J 360	×	×	\checkmark	\checkmark	\checkmark	\checkmark	×					
LB 580	J 580	x	×	x	\checkmark	\checkmark	\checkmark	×					

Compatibilidad de lubricadores LB para sistemas GV3

Nota. Adaptado de GV3 Sistema lineal de guiado y transmisión (p.40) por HepcoMotion, 2022.

Figura I-16

Capacidad de carga máxima de trabajo de carros estándar AU HepcoMotion para sistemas GV3

		C	apaci	dad de	Carga	máxi	ima d	e tral	bajo – C	arros e	stándo	ar ^{*4,6}			
Carro	Sisten	na en sec	o, Rodami	ento Doble y	y tipo DR	Sistema lubricado, Rodamiento Doble					Sistema lubricado, Rodamiento DR				
Número de	L1(máx)	L2(máx)	Ms(máx)	Mv(máx)	M(máx)	L1(máx)	L2(máx)	Ms(máx)	Mv(máx)	M(máx)	L1(máx)	L2(máx)	Ms(máx)	Mv(máx)	M(máx)
TICIU	N	Ν	Nm	Nm	Nm	Ν	N	Nm	Nm	Nm	N	Ν	Nm	Nm*6	Nm
AU12 13	90	90	0.5	45xD	45xD	240	240	1.3	120xD	120xD		N	o dispo	nible	
AU 20 18	180	180	1.6	90xD	90xD	500	400	4.5	200xD	250xD	760	1200	7	600xD	380xD
AU 28 18	180	180	2.3	90xD	90xD	500	400	6.5	200xD	250xD	760	1200	10	600xD	380xD
AU 25 25	400	400	4.5	200xD	200xD	1280	1200	14	600xD	640xD	1600	3000	18	1500xD	800xD
AU 35 25	400	400	6.5	200xD	200xD	1280	1200	21	600xD	640xD	1600	3000	26	1500xD	800xD
AU 50 25	400	400	9.5	200xD	200xD	1280	1200	30	600xD	640xD	1600	3000	38	1500xD	800xD
AU 44 34	800	800	16	400xD	400xD	3200	2800	65	1400xD	1600xD	3600	6000	73	3000×D	1800xD
AU 60 34	800	800	22	400xD	400xD	3200	2800	90	1400xD	1600xD	3600	6000	100	3000×D	1800xD
AU 76 34	800	800	29	400xD	400xD	3200	2800	115	1400xD	1600xD	3600	6000	130	3000×D	1800xD
AU 76 54	1800	1800	64	900xD	900xD	7200	6400	250	3200xD	3600xD	10000	10000	360	5000×D	5000xD
AU 120 54	1800	1800	100	900xD	900xD	7200	6400	410	3200xD	3600xD	10000	10000	580	5000xD	5000xD

Nota. El valor *D* corresponde a la distancia entre centros de los rodamientos en la dirección longitudinal del carro. Reproducido de *GV3 Sistema lineal de guiado y transmisión* (p.50) por HepcoMotion, 2022.

Capacidad de Carga máxima de trabajo - Rodamientos Dobles, de Doble Hilera y Slimline (N)*1.4 **Rodamiento tipo Doble** Rodamiento tipo Doble Hilera (DR) **Rodamiento Slimline** Número de Sistema en seco Lubricado Número de Sistema en seco Lubricado Sistema en seco Lubricado Part LR(máx) Pieza LA(máx) LR(máx) LA(máx) LR(máx) Pieza LA(máx) LR(máx) LA(máx) LR(máx) Number LA(máx) LA(máx) LR(máx) ...J13... 22.5 45 60 120 . ----. ---. ...J18... 45 90 125 200 ...J18 DR... 45 90 190 600 ...J195... 45 90 100 240 1500 ...J25... 100 200 320 600 ...J25 DR... 100 200 400 ...J265... 100 200 235 575 ...J34... 200 400 800 1400 ...J34 DR.. 200 400 900 3000 ...J360... 200 400 500 1200 450 900 1800 3200 ...J54 DR... 450 900 2500 5000 450 900 1060 ...J54... ...J580... 2600

Capacidad de carga máxima de trabajo de rodamientos en V de un sistema de guiado GV3

Nota. Adaptado de GV3 Sistema lineal de guiado y transmisión (p.51) por HepcoMotion, 2022.

Figura I-18

Duración básica del sistema lineal de guiado GV3 de acuerdo con el tipo de rodamiento.

	Duración básica* ^{1,4}													
Rodam	niento tipo D	oble	Rodamiento	tipo Doble I	Hilera (DR)	Rodamiento tipo Slimline								
Número de Pieza	Sistema en seco	Lubricado	Número de Pieza	Sistema en seco	Lubricado	Número de Pieza	Sistema en seco	Lubricado						
J13	40	50	-	-	-	-	-	-						
J18	50	100	J18 DR	50	100	J195	50	100						
J25	70	50	J25 DR	70	70	J265	70	50						
J34	100	100	J34 DR	100	250	J360	100	250						
J54	150	250	J54 DR	150	500	J580	150	200						

Nota. Adaptado de GV3 Sistema lineal de guiado y transmisión (p.51) por HepcoMotion, 2022.

									[cm]	
Mont	aje		o[MPa]	en fu	Carrera máxima aplicable en función de la flexión del vástago					
Tipo de s	ujeción	lción	de trabaj			C	8 5			
Representacion	resquematica	Eject	Presión	8	10	12	16	20	25	
Escuadra: M Brid anterio	a Brida or: G posterior: G	м	0.3	24	18	36	26	38	48	
: M : M		G Lado	0.5	18	14	27	19	29	36	
		ante- rior	0.7	14	11	22	16	23	30	
	بر ۲		0.3	9	6	15	10	15	20	
		Lado	0.5	6	4	10	6	10	14	
		rior	0.7	4	3	8	4	8	11	
Fijación oscilante: N	Muñón anterior: U		0.3	22	17	35	24	36	46	
	Pa l	Ν	0.5	16	12	26	18	27	34	
			0.7	13	10	21	14	22	28	
ļ Į	Ĩ		0.3	(40)*1	(40)*1	(40)*1	(40) ^{*1}	80	(100)*1	
Muñ	ón	Lado	0.5	38	30	(40)*1	(40) ^{*1}	61	77	
posteri	posterior: U		0.7	32	25	(40)*1	35	51	64	
	6		0,3	22	17	35	24	37	47	
背	-	Lado	0,5	16	12	26	18	27	35	
		rior	0,7	13	10	21	14	22	28	
Escuadra: M Brid anterio	a Brída r: G posterior: G	м	0,3	(40) ^{*1}	(40) ^{*1}	(40)*1	(40) ^{*1}	(100)*1	(100)*1	
		G (Lado)	0,5	(40) ^{*1}	(40) ^{*1}	(40) ^{*1}	(40) ^{*1}	89	(100)*1	
		ante- rior	0,7	(40) ^{*1}	36	(40) ^{*1}	(40) ^{*1}	74	93	
	er 86		0,3	33	26	(40) ^{*1}	37	54	69	
		Lado	0,5	25	19	39	27	41	52	
		rior	0,7	20	15	32	22	33	43	
Escuadra: M Brid anterio	a Brida r: G posterior: G	м	0,3	(40)*1	(40) ^{*1}	(40)*1	(40) ^{*1}	(100)*1	(100)*1	
		G (Lado)	0,5	(40) ^{*1}	(40) ^{*1}	(40)*1	(40) ^{*1}	(100)*1	(100)*1	
		ante- rior	0,7	(40)*1	(40)*1	(40)*1	(40)*1	(100)*1	(100)*1	
	# \$	6	0,3	(40)*1	38	(40)*1	(40)*1	79	(100)*1	
		Lado	0,5	37	29	(40)*1	(40)*1	60	76	
		rior	0,7	30	23	(40)*1	34	50	63	

Carrera admisible máxima en función de la flexión del vástago en cilindros neumáticos C85

*1 Los datos entre () están limitados por la longitud máx. de carrera.

Nota. Reproducido de Cilindros neumáticos (p. 5) por SMC, 2023.

Fuerza radial máxima en función de la carrera máxima de un cilindro neumático C85

Nota. Reproducido de Cilindros neumáticos (p. 5) por SMC, 2023.

										Table 2
Power ra	tings –	Nitril	e elem	ents						
Speed	Couplin 50	ng sizes 70	75	90	95	100	110	150	190	225
r/min	kW									
50	0,018	0,030	0,06	0,10	0,14	0,3	0,5	0,8	1,1	1,5
100	0,037	0,060	0,12	0,20	0,27	0,6	1,1	1,6	2,1	2,9
200	0,074	0,121	0,25	0,40	0,54	1,2	2,2	3,1	4,2	5,9
300	0,110	0,181	0,37	0,60	0,81	1,7	3,3	4,7	6,3	8,8
400	0,147	0,242	0,50	0,80	1,08	2,3	4,4	6,3	8,4	11,7
500	0,184	0,302	0,62	1,01	1,35	2,9	5,5	7,9	10,5	14,7
600	0,221	0,363	0,75	1,21	1,62	3,5	6,6	9,4	12,6	17,6
700	0,257	0,423	0,87	1,41	1,89	4,1	7,7	11,0	14,7	20,5
720	0,265	0,435	0,90	1,45	1,95	4,2	7,9	11,3	15,1	21,1
800	0,294	0,483	1,00	1,61	2,16	4,6	8,8	12,6	16,8	23,5
900	0,331	0,544	1,12	1,81	2,43	5,2	9,9	14,1	18,8	26,4
960	0,353	0,580	1,20	1,93	2,59	5,6	10,6	15,1	20,1	28,1
1 000	0,368	0,604	1,25	2,01	2,70	5,8	11,0	15,7	20,9	29,3
1 200	0,441	0,725	1,50	2,41	3,24	7,0	13,2	18,8	25,1	35,2
1 400	0,515	0,846	1,74	2,81	3,78	8,1	15,4	22,0	29,3	41,1
1 440	0,529	0,870	1,79	2,90	3,89	8,4	15,8	22,6	30,2	42,2
1 600	0,588	0,967	1,99	3,22	4,32	9,3	17,6	25,1	33,5	46,9
1 800	0,662	1,088	2,24	3,62	4,86	10,4	19,8	28,3	37,7	52,8
2 000	0,735	1,208	2,49	4,02	5,40	11,6	22,0	31,4	41,9	58,6
2 200	0,809	1,329	2,74	4,42	5,94	12,8	24,2	34,6	46,1	64,5
2 400	0,882	1,450	2,99	4,83	6,48	13,9	26,4	37,7	50,3	70,4
2 600	0,956	1,571	3,24	5,23	7,02	15,1	28,6	40,8	54,5	76,2
2 800	1,029	1,692	3,49	5,63	7,56	16,2	30,8	44,0	58,6	82,1
2 880	1,059	1,740	3,59	5,79	7,78	16,7	31,7	45,2	60,3	84,4
3 000	1,103	1,813	3,74	6,03	8,10	17,4	33,0	47,1	62,8	88,0
3 600	1,323	2,175	4,49	7,24	9,73	20,9	39,6	56,5	75,4	105,5
Nominal torque Nm	3,51	5,77	11,9	19,2	25,8	55,4	105	150	200	280

Potencias nominales para la selección del tamaño del acoplamiento de mandíbula SKF

Nota. Reproducido de SKF Couplings (p. 78) por SKF, 2018.

											Table 3
Stand	dard bore	and ke	eyway	/ chai	rt						
Bore	Keyway	Coup 050	ling siz 070	e 075	090	095	100	110	150	190	225
mm	mm	-									
9 10 11	3×1,4 3×1,4 4×1,8	X X X	X X X	X X X	X X X						-
12 14 15	4×1,8 5×2,3 5×2,3	X X -	X X X	X X X	X X X	X X X	x x				
16 17 18	5×2,3 5×2,3 6×2,8	-	X X X	X X X	X X X	X X X	X X X	X X X	X X X		
19 20 22	6×2,8 6×2,8 6×2,8		× -	X X X	- -						
24 25 28	8×3,3 8×3,3 8×3,3				× - -	X X X	X X X	X X X	X X X	X X X	× × ×
30 32 35	8×3,3 10×3,3 10×3,3		-				X X X	X X X	X X X	X X X	× × ×
38 40 42	10×3,3 12×3,3 12×3,3						× - -	X X X	X X X	X X X	× × ×
45 48 50	14×3,8 14×3,8 14×3,8		-		-	-		-	X X -	X X X	× × ×
55 60	16×4,3 18×4,4	-	_	_	_	_	_	_	_	X -	X X

Tamaño de la chaveta para el acoplamiento de mandíbula SKF

Nota. Reproducido de SKF Couplings (p. 78) por SKF, 2018.

Dimensiones y designación de pedido para el acoplamiento de mandíbula SKF seleccionado

Size	Dimensions					Set screw	Approx. mass ²⁾	Speed	Designation			
	B	Max.	OD	OD11)	L	E	н	G			Max.	
-	mm								-	kg	r/min	-
035 050 070	3,20 6,35 6,35	9,5 14,0 19,0	15,9 27,5 35,0	- -	20,6 44,0 51,0	6,7 16,0 19,0	15,9 27,5 35,0	- 6,5 9,5	– M6 M6	0,03 0,05 0,12	31 000 18 000 14 000	PHE L035HUB PHE L050HUB PHE L070HUB
075 090 095	6,35 6,35 11,11	24,0 24,0 28,0	44,5 54,0 54,0	- - 64	54,0 54,0 64,0	21,0 21,0 25,0	44,5 54,0 54,0	9,0 8,7 11,0	M6 M6 M8	0,22 0,28 0,31	11 000 9 000 9 000	PHE L075HUB PHE L090HUB PHE L095HUB
100 110 150	12,70 15,87 15,87	35,0 42,0 48,0	65,0 84,0 96,0	77 97 112	89,0 108,0 115,0	35,0 43,0 45,0	65,0 84,0 96,0	11,0 19,0 22,0	M8 M10 M10	0,75 1,50 2,40	7 000 5 000 4 000	PHE L100HUB PHE L110HUB PHE L150HUB
190 225	19,05 19,05	55,0 60,0	115,0 127,0	130 143	133,0 153,0	54,0 64,0	102,0 108,0	22,0 29,0	M12 M12	3,50 4,50	3 600 3 600	PHE L190HUB PHE L225HUB

Nota. Reproducido de SKF Couplings (p. 80) por SKF, 2018.

Sección I.3. Tablas y figuras de modelos para el uso de herramientas de dimensionamiento

y selección de componentes de fábrica

Figura I-24

Par efectivo del actuador de giro CBR1 de paleta simple

Nota. Reproducido de Actuador de giro modelo de paleta serie CRB1 (p.5) por SMC, 2023.

Tabla I-1

Número de electrodo AWS	Esfuerzo cortante límite, S _{ys,elect} [MPa]				
E60xx	273.032				
E70xx	318.538				
E80xx	364.043				
E90xx	409.549				
E100xx	455.054				

Valores de esfuerzo cortante límite del electrodo AWS D1.1. configurados en SolidWorks.

Nota. Valores tomados de SolidWorks Simulation (2023). Estos valores son aproximadamente un

65 % del valor de la resistencia última a la tensión del material de cada electrodo.

Figura I-25

Paso de rosca métrica ISO 724

Diámetro nominal - d (mm)	Paso de rosca - P (mm)
M 1,60	0,35
M 2,00	0,40
M 2,20	0,45
M 3,00	0,50
M 4,00	0,70
M 4,50	0,75
M 5,00	0,80
M 6,00	1,00
M 8,00	1,25
M 10,00	1,50
M 12,00	1,75
M 16,00	2,00
M 20,00	2,50
M 24,00	3,00
M 30,00	3,50
M 36,00	4,00
M 42,00	4,50
M 48,00	5,00
M 56,00	5,50
M 64,00	6,00

Nota. Reproducido de Zona del límite de tensión del perno por Centro de ayuda SolidWorks (2021)

Sección I.4. Tablas y figuras para el dimensionamiento de piezas diversas

Tabla I-2

Carta de plegado de chapa metálica. Fuerza de prensado por unidad de longitud [kN/m].

V	B	R						Espes	or, s [1	mm]				
[mm]	[mm]	[mm]	1.5	2	2.5	3	4	4.5	6	8	12	19	25	32
12	7.8	2	120	215										
16	10.4	2.7	90	160	250									
20	13	3.4		130	200	290								
24	3.9	15.6			160	240	430							
30	20	5				190	340	430						
36	25	6					290	360	640					
50	32	8.5						260	460	820				
60	39	10							390	690	1540			
100	65	17								410	930	2320		
160	104	25									580	1450	2510	
200	130	31										1160	2010	3290
250	163	39											1610	2630

Nota. Adaptada de *Tablas de plegado* por Metalmag, 2018, de acuerdo con los espesores de láminas y planchas más comercializados por la empresa Agofer.

Donde V es el ancho de la ranura del troquel, B es la longitud mínima de la pestaña de la chapa (plegado a 90°), R es el radio mínimo del pliegue y s es el espesor de la chapa metálica. La fuerza de prensado por unidad de longitud, tabulada en la tabla anterior, es calculada mediante la ecuación 42 (Groover, 2010), la cual se deduce de un análisis de flexión.

$$F = \frac{1.33 \cdot S_u \cdot s^2}{V} \left[\frac{kN}{m}\right]; \quad S_u = 450 \left[MPa\right]$$
(124)

d1= 3+9 mm.a d1 = 3+9 mm.d1 = d5d1 = d5d1 = d5d1 = d5d3 = $n = \frac{d1-d2}{2} \cdot 3$

Med.Nom.			ANILLO			RANURA			
d1	sh 11	d3	Tolerancia d3	a≈	b≈	d5 Min.	d2	Tolerancia d2	m Min.
3	0.4	2,7		1,9	0,8		2,8		0.50
4	\$,1	3,7	+0,04	2,2	0,9	1,0	3,8	-0.04	0,00
5	0,6	4,7	-0,15	2,5	1,1		4,8	0,04	0,70
6	0,7	5,6		2,7	1,3		5,7		0,80
7	0.8	6,5	+0.06	3,1	1,4	12	6,7		0.90
8	0,0	7,4	-0.18	3,2	1,5	1,2	7,6	-0,06	0,30
9		8,4	-0,10		1,7		8,6		
10		9,3		33		15	9,6		
11		10,2		3,5	1,8	1,5	10,5		
12		11,0					11,5		
13	1,0	11,9		3,4	2,0		12,4		1,10
14		12,9	+0,10	3,5	2,1		13,4	-0.11	
15		13,8	-0,36	3,6	22	1,7	14,3	-0,11	
16		14,7		3,7	2,2		15,2		
17		15,7		3,8	2,3		16,2		
18		16,5		3.0	2,4		17,0		
19		17,5		3,9	2,5		18,0		
20		18,5		4,0	2,6		19,0		
16 17 18 19 20		14,7 15,7 16,5 17,5 18,5		3,7 3,8 3,9 4,0	2,3 2,4 2,5 2,6		15,2 16,2 17,0 18,0 19,0		

Nota. Reproducida parcialmente de la norma DIN 471.

Dimensiones de anillos de retención exteriores según la norma DIN 471.

Dimensiones de anillos de retención interiores según la norma DIN 472.

Nota. Reproducida parcialmente de la norma DIN 472.

Ajustes recomendados por el Sistema Internacional de Ajustes (ISA, en inglés)

ELECCION	DE AJUSTES «ISA»	ELECCION DE AJUSTES I.S.A.					
AGUJERO H 6 AJU Para los ejes corres- ponden esta serie de ajustes	Ajuste forzado n 5. » de arrastre m 5. » de adherencia k 5. » de entrada suave j 5. » de deslizamiento h 5. » de juego libre g 5.	EJE h 5 AJUSTE DE Para los agujeros co- rresponden esta serie o de ajustes	PRECISION Ajuste forzado N 6. » de arrastre M 6. » de adherencia K 6. » de entrada suave J 6. » de deslizamiento H 6 y G 6.				
AGUJERO H 7 AJU	ISTE FINO	EJE h 6 AJUSTE FINO					
Para los ejes corres- ponden esta serie de ajustes	Ajuste a presión s 6 y r 6. » forzado n 6. » de arrastre m 6. » de adherencia k 6. » de entrada suave j 6. » de deslizamiento h 6. » de juego libre justo g 6. » de juego libre f 7. » de juego ligero e 8. » juego fuerte d 9.	Para los agujeros co- rresponden esta serie de ajustes	Ajuste a presión S 7 y R 7. »* forzado N 7. » de arrastre M 7. » de adherencia K 7. » de entrada suave J 7. » de deslizamiento H 7. » de juego libre justo G 7. » de juego libre F 7. » de juego ligero E 8. » juego fuerte D 9.				
AGUJERO H 8 AJU Para los ejes corres- ponden esta serie de ajustes.	STE CORRIENTE Ajuste con deslizamiento h 8 y h 9. » con juego libre f 8 y e 9. » gran juego libre d 10.	EJE h 8 y h 9 AJUSTE CORRIENTE Para los agujeros co- rresponden esta serie » de juego libre F 8 y E 9.					
AGUJERO H 11 AJ Para los ejes corres- ponden esta serie de ajustes	USTE ORDINARIO O BASTO Ajuste basto según h 11, d 11, e 11, b 11, a 11. (Véanse ejemplos de aplicación)	EJE h 11 AJUSTE ORDINARIO O BASTO Para los agujeros co- rresponden esta serie de ajustes					

Nota. Tolerancias según la norma DIN ISO 286:1998. Reproducido de Sistema Internacional de

Ajustes (ISA).

Apéndice J. Parámetros iniciales para el modelado en detalle

Sección J.1. Parámetros geométricos e inerciales de la bandeja Plaform

Parámetros J.1.1. Dimensiones de las solapas expresadas como variables

A continuación, la Figura J-1 presenta las dimensiones de las solapas de la bandeja Plaform expresadas como variables, y la Tabla J-1 presenta sus rangos de valores.

Figura J-1

Dimensiones variables de las solapas de la bandeja Plaform

Nota. Cotas principales de la bandeja expresadas como variables y la numeración establecida para las solapas de la bandeja (*S*1, *S*2, *S*3, *S*4 y *S*5).

Tabla J-1

Rango de valores permisibles para las dimensiones de la bandeja de cartón tipo Plaform

Dimensión	Valor mínimo [<i>mm</i>]	Valor máximo [<i>mm</i>]
X _b	620	1060
Y _b	500	850

L _b	328	558
W _b	275	468
C _b	115	196
P _b	115	196
E _b	58	100
F _b	38	65
H _b	20	34
e _b	5	8.5

Nota. Los valores máximos son aproximadamente un 170% de los valores mínimos. Los valores mínimos corresponden a las dimensiones originales de bandeja (ver Apéndice C, Sección C.1).

Parámetros J.1.2. Masas de las solapas de la bandeja Plaform

De forma simplificada, el área de cada solapa viene dada por:

$$A_{base} = L_b \cdot W_b; A_{s1} = P_b \cdot C_b; A_{s2} = W_b \cdot C_b;$$

$$A_{s3} = L_b \cdot C_b; A_{s4} = F_b \cdot W_b; A_{s5} = F_b \cdot E_b;$$

$$A_b = A_{base} + 4A_{s1} + 2A_{s2} + 2A_{s3} + 2A_{s4} + 4A_{s5}$$
(125)

Donde A_{base} es el área de base de la bandeja, A_{s1} , A_{s2} , A_{s3} , A_{s4} y A_{s5} son las áreas de la solapa 1, 2, 3, 4 y 5, respectivamente; y A_b es el área total de la bandeja. Además, la densidad de área de la bandeja, $\sigma_{A,b}$, viene dada por:

$$\sigma_{A,b} = \frac{m_b}{A_{b,total}} = \frac{m_{s1}}{A_{s1}} = \frac{m_{s2}}{A_{s2}} = \frac{m_{s3}}{A_{s3}} = \frac{m_{s4}}{A_{s4}} = \frac{m_{s5}}{A_{s5}} \left[\frac{kg}{m^2}\right]$$
(126)

Donde m_b es el área total de la bandeja, y m_{s1} , m_{s2} , m_{s3} , m_{s4} y m_{s5} son las áreas de la solapa 1, 2, 3, 4 y 5, respectivamente. Entonces, para cálculos posteriores, conviene hallar los valores máximos de estas masas. Al reemplazar $m_{b,máx} = 1.7 \cdot m_{b,min} = 1.7 \cdot 0.325 [kg] = 0.5525 [kg]$, y los valores máximos de las dimensiones de la solapa (ver Figura J-1)se obtiene: $A_{b,máx} = 0.90384 [m^2]$, $\sigma_{A,b} = 0.61128 [kg/m^2]$, $m_{s1,máx} = 0.0235 [kg]$, $m_{s2,máx} = 0.0056073 [kg]$, $m_{s3,máx} = 0.06686 [kg]$, $m_{s4,máx} = 0.0186 [kg]$ y $m_{s5,máx} = 0.00397 [kg]$.

Sección J.2. Parámetros de la resistencia al plegado de la bandeja Plaform

Parámetros J.2.1. Conceptos teóricos relacionados con el plegado del cartón corrugado

En general, el cartón corrugado presenta comportamientos no lineales durante su deformación (Aboura et al., 2004). En consecuencia, durante el proceso de plegado se presenta una compleja distribución de esfuerzos a lo largo de la línea de hendido que es donde se produce la deformación plástica.

Torque resistente y capacidad de plegado: existen algunas normas que permiten evaluar la calidad técnica del hendido (DIN 19304), así como la resistencia y rigidez a la flexión del cartón corrugado (DIN 2493 y DIN 5628). Un criterio típico para evaluar la capacidad de plegado del cartón es utilizar un factor de plegado, f_p , el cual permite evaluar cómo la presencia de hendidos afecta la rigidez o resistencia a la flexión del cartón corrugado. Su ecuación es la siguiente:

$$f_p = \frac{T_{nh} - T_h}{T_{nh}} \tag{127}$$

Donde T_{nh} es el torque o momento flector resistente del cartón sin la presencia de hendidos, y T_h es el torque o momento flector resistente con la presencia de hendidos. Las bandejas de cartón corrugado con buena capacidad de plegado poseen un factor de plegado entre 0.5 y 0.7 lo que genera un equilibrio entre la flexibilidad buscada y la rigidez estructural.

Torque resistente durante el proceso de plegado: en general, el torque resistente de plegado, T_r , varía con la geometría del hedido (profundidad, geometría de los cortes), las condiciones del proceso de plegado (dirección y velocidad de la carga externa, ángulo de plegado) y las condiciones ambientales (temperatura y humedad).

A continuación, la Figura J-2 se muestra la variación típica del torque resistente con el ángulo de plegado y la geometría del hendido.

Figura J-2

Variación típica del torque resistente con el ángulo de plegado y la geometría del hendido

Nota. Adaptado de Paperboard Reference Manual, IGGESUND, 2020, p. 188 y 190.

Como se observa en la figura anterior, T_r suele aumentar rápidamente hasta los 15 [°] o 40 [°] para luego mantenerse prácticamente constante hasta los 90 [°], y una vez se remueve la carga externa, la solapa disminuye su ángulo de plegado hasta los 30 [°] o 55 [°].

Por otra parte, también se conoce que el torque resistente de plegado, T_r , depende de la dirección de las capas onduladas del cartón corrugado, así, el torque resistente es mayor cuando el cartón se pliega en la dirección de manufactura (MD), que cuando se pliega en la dirección transversal (CD). Las Figura J-3 ilustra este comportamiento.

Figura J-3

Relación entre el torque resistente de plegado y la dirección de las capas de ondulantes del cartón.

Nota. Adaptado de *Elastic behavior of corrugated cardboard: experiments and modeling* (Aboura et al., 2004, p. 54) y de *Creasing and Folding* (Coffin & Nygards, 2017, p. 97 y 127).

Propiedades elásticas del cartón corrugado: como es de esperarse, el módulo de elasticidad de las capas onduladas tiene un comportamiento diferente cuando se aplican cargas en la dirección MD o en la dirección CD. A continuación, la Tabla J-2 presenta algunos valores experimentales del módulo de elasticidad y del módulo de Poisson de dichas capas onduladas.

Tabla J-2

Propiedades elásticas de las capas onduladas del cartón corrugado

	Módulo de elasticidad	Coeficiente de Poisson
Dirección MD	863.05 <u>+</u> 99.5	$v_{xy} = 0.27 \pm 0.03$
Dirección CD	554.97 <u>+</u> 85.89	$v_{yx} = 0.22 \pm 0.03$

Nota. Adaptado de *Elastic behavior of corrugated cardboard: experiments and modeling* (Aboura et al., 2004, p.55).

Parámetros J.2.2. Prueba de plegado de la bandeja Plaform

El objetivo es observar la relación existente entre torque resistente, T_{si} , el ángulo de doblamiento de la solapa, θ_{si} , la carga impuesta, W_p , el punto de aplicación de la carga, r_w , y la longitud de la línea de hendido $l_{h.si}$. La realizado.

Figura J-4 presenta un DCL del procedimiento realizado.

Figura J-4

Diagrama de cuerpo libre general de la prueba (DCL) de doblamiento de las solapas

Nota. DCL del doblamiento de la solapa i de la caja tipo Plaform. Elaboración propia.

Al aplicar la primera ley de Newton sobre el DCL de la figura anterior, se obtiene:

$$\mho + \sum M_P = 0; \quad T_{si} = r_w \cdot W_p \cdot \cos(\theta_{si}) = r_w \cdot m_{carga} \cdot g \cdot \cos(\theta_{si})$$
(128)

Procedimiento:

Paso 1: Medir las masas de referencia, $m_{ref,i}$, utilizando una báscula digital.

Paso 2: Ubicar un contrapeso sobre la base correspondiente, *B*, con una masa mayor que la suma de todas las masas de referencia ($m_{contrapeso} > \sum m_{ref,i}$).

Paso 3: Colgar el recipiente de las masas de referencia (cuya masa es igual a $m_{ref,1}$) en el centro de masa de la solapa S_i en cuestión y en dirección perpendicular a la base B.

Paso 4: Añadir masas sobre el recipiente de masas (de ser necesario y con valores en orden creciente) y registrar el ángulo de plegado θ_{si} obtenido con cada masa añadida, hasta lograr un ángulo de plegado $\theta_{si} \ge 70$ [°] o una carga de $W_p = 5$ [kg].

Paso 5: Calcular el torque resistente $T_{r,si}$ con los valores obtenidos en el paso 4, haciendo uso de la ecuación 106. Registrar el valor correspondiente.

Paso 6: Repetir el paso 2 y luego colgar masas en la solapa en cuestión, a una distancia r_w variable

y creciente a partir del pliegue, hasta lograr un ángulo de plegado de $\theta_{si} = 45$ [°]. Registrar el valor total de la carga impuesta sobre la solapa para cada posición de la carga.

Paso 7: Calcular el torque resistente con los valores obtenidos en el paso 6, haciendo uso de la ecuación 106 y con un ángulo de plegado fijo de $\theta_{si} = 45$ [°]. Registrar el valor obtenido.

Resultados:

A continuación, la Tabla J-3 presenta los resultados obtenidos en el primer paso del procedimiento, es decir, el valor de las masas de referencia.

Tabla J-3

Cargas de referencia para la prueba de medición de las fuerzas de plegado

Cargas de referencia	Masa 1	Masa 2	Masa 3	Masa 4	Masa 5	Masa 6	Masa 7	Masa 8
Masa [<i>g</i>]	15 g	5 g	20 g	50 g	100 g	200 g	500 g	1000 g

A continuación, la Tabla J-4 presenta los resultados obtenidos en el cuarto y quinto paso del procedimiento, es decir, el valor del ángulo de plegado θ_{si} y el valor del torque resistente T_{si} correspondiente, generados por la carga impuesta en la solapa m_{carga} . Por otra parte,

Tabla J-4

Ángulo de plegado θ_{si} y el torque resistente T_{si} , bajo una carga suministrada, m_{carga}

	Sol	apa 1	Sol	apa 2	Sol	apa 3	Sol	apa 4	Sola	apa 5
<i>l_{h,si}</i> [<i>cm</i>]	1	1.5	2	7.5	3	2.8	2	7.5	3	3.8
$r_w [cm]$	5	.75	5	.75	5	.75]	1.9	2	2.9
$m_{carga}\left[g ight]$	$oldsymbol{ heta}_{s1}[^\circ]$	$T_{r,s1}$ [N · cm]	$oldsymbol{ heta}_{s2}[^\circ]$	$T_{r,s2}$ [N · cm]	$oldsymbol{ heta}_{s3}[^\circ]$	$T_{r,s3}$ [N · cm]	$oldsymbol{ heta}_{s4}[^\circ]$	$T_{r,s4}$ [N · cm]	$oldsymbol{ heta}_{s5}[^\circ]$	$\frac{T_{r,s5}}{[N \cdot cm]}$
15	0,5	0,8461	0,5	0,8461	0,5	0,8461	0	0,2796	1	0,4267
35	1,5	1,9736	0,5	1,9742	0,5	1,9742	0	0,6524	2	0,9951
75	3	4,2248	1,5	4,2291	1	4,2299	0,5	1,3979	4,5	2,1271
150	6	8,4148	2,5	8,4531	2	8,4560	1	2,7954	9	4,2148
350	13	19,237	5,5	19,652	5	19,668	2	6,5197	19,5	9,3860
500	18	26,823	8	27,929	6,5	28,023	3	9,3067	28	12,56

_											
	750	27,5	37,525	11,5	41,456	9,5	41,725	4	13,945	45	15,087
	1000	38	44,45	15	54,486	13	54,962	5,5	18,553	57,5	15,286
	1500	56,5	46,7	22,5	78,171	19	80,002	8	27,686	69	15,293
	2500	71	45,911	40,5	107,23	33,5	117,59	12,5	45,493	77,5	15,394
	3500	76,5	46,088	55,5	111,82	48,5	130,82	17,5	62,217	81	15,576
	5000	80,5	46,55	67	110,20	62	132,41	25	84,463	84	14,869

Nota. Valores medidos del ángulo de plegado, θ_{si} , y valores calculados del torque resistente $T_{r,si}$ debido al aumento de carga impuesta, m_{carga} , con un valor r_w constante.

A continuación, se presentan los resultados obtenidos en el sexto y séptimo paso del procedimiento, es decir, el valor de la carga impuesta, m_{carga} , y el valor del torque resistente $T_{r,si}$ correspondiente, necesarios para generar un doblez de $\theta_{si} = 45^{\circ}$ en la solapa *i*, debido al cambio en el punto de aplicación de la carga, r_w (distancia carga – línea de hendido).

Tabla J-5

Variación de la carga suministrada m_{carga} , debido al cambio de la distancia carga – pliegue, r_w

$\theta_{si} = 45^{\circ}$	Sol	apa 1	Sol	apa 2	Sol	apa 3	Sol	apa 4	Sol	apa 5
$l_{h,si} [cm]$	1	1.5	2	27.5		2.8	2	27.5	3.8	
r _w [mm]	m _{car} [kg]	$\frac{T_{r,s2}}{[N \cdot cm]}$	m _{car} [kg]	$\frac{T_{r,s2}}{[N \cdot cm]}$	m _{car} [kg]	$T_{r,s3}$ [N · cm]	m _{car} [kg]	$T_{r,s4}$ [N · cm]	m _{car} [kg]	$T_{r,s5}$ [N · cm]
10									2,185	15,157
20	3,335	46,268							1,095	15,191
30	2,225	46,303							0,73	15,191
40	1,67	46,337	3,96	109,88	4,65	129,02	3,96	109,88	0,545	15,122
50	1,335	46,303	3,17	109,95	3,72	129,02			0,435	15,087
60	1,11	46,199	2,64	109,88	3,1	129,02			0,31	12,902
70	0,955	46,372	2,265	109,98	2,655	128,92				
80	0,835	46,337	1,98	109,88	2,325	129,02				
90	0,74	46,199	1,76	109,88	2,065	128,92				
100	0,665	46,129	1,585	109,95	1,85	128,33				
110	0,605	46,164	1,44	109,88	1,69	128,95				

Nota. Valores medidos de la carga, m_{carga} , y valores calculados del torque resistente $T_{r,si}$ debido

al aumento de la distancia carga-línea de hendido, r_w , con $\theta_{si} = 45^\circ$ constante.

Análisis de los resultados obtenidos en la prueba de doblamiento:

Los resultados indican que el ángulo de doblamiento θ_{si} es proporcional a la carga aplicada m_{carga} , cuando r_w es constante. La Figura J-5 ilustra este comportamiento.

Figura J-5

Variación del ángulo de doblamiento θ_{si} [°] *con respecto a la carga aplicada* m_{carga} [g].

Nota. θ_{si} vs m_{carga} para las cinco solapas de la caja (s1, s2, s3, s4 y s5). Elaborado en Excel.

Por otra parte, para un θ_{si} constante, la carga aplicada m_{carga} es inversamente proporcional a la distancia carga - pliegue r_w . La Figura J-6 ilustra este comportamiento.

Figura J-6

Variación de la carga m_{carga} [kg] con respecto a la distancia carga – hendido r_w [mm].

Nota. $m_{carga} vs r_w$ para cada solapa (s1, s2, s3, s4 y s5), cuando $\theta_{si} = 45^{\circ}$. Elaborado en Excel.

Cálculo del torque resistente a partir de la prueba de plegado:

También se observó que el torque resistente $T_{r,si}$ es proporcional al ángulo de plegado θ_{si} cuando r_w es constante. Ver Figura J-7 para el caso de la solapa S1.

Figura J-7

Variación del torque resistente $T_{r,s1}$ [$N \cdot m$] *con respecto al ángulo de plegado* θ_{s1} [rad].

Nota. Observe el ajuste cuadrático entre $T_{r,s1}$ vs θ_{s1} , cuando $r_w = 5.75$ cm. Elaborado en Excel.

Se observa que el torque resistente se puede ajustar a una relación cuadrática con el ángulo de plegado, así: $T_{si} = a_{si} \cdot \theta_{si} + b_{si} \cdot \theta_{si}^2$ donde para las constantes a_{si} y b_{si} para cada solapa *i* son las siguientes: $a_{s1} = 0.9569$, $a_{s2} = a_{s4} = 2.3816$, $a_{s3} = 2.8268$, $a_{s5} = 0.3015$, $b_{s1} = -0.4586$, $b_{s2} = b_{s4} = -1.2391$, $b_{s3} = -1.4842$ y $b_{s5} = -0.1385$.

Ahora se analiza la relación entre el torque resistente $T_{r,si}$ con la longitud de la línea de hendido, $l_{h,si}$, cuyos valores para solapa *i* en particular son: $l_{h,s1} = C_b$, $l_{h,s2} = l_{h,s4} = W_b$, $l_{h,s3} = L_b$ o $l_{h,s5} = F_b$. Los resultados permiten afirmar que existe una relación directamente proporcional entre estas variables, cuando θ_{si} y r_w son constantes. La Figura J-8 ilustra este comportamiento.

Figura J-8

Variación del toque resistente $T_{r,si}$ $[N \cdot m]$ *con respecto a la longitud del hendido* $l_{h,si}$ [m].

Nota. Cada punto sobre la gráfica representa el torque resistente y la longitud de la línea de hendido de una solapa *i* en particular, (l_{pi}, T_{si}) , cuando $\theta_{si} = 45^{\circ}$ y $r_w = 40 mm$. Elaborado en Excel.

Aplicando una regresión lineal sobre la curva anterior, se obtiene: $T_{r,si} = k_{lh} \cdot l_{h,si}$ donde $k_{lh} = k_{lh}^{45^{\circ}} = 3.9727$ cuando $\theta_{si} = 45^{\circ}$. Ahora bien, si suponemos una relación lineal entre el torque resistente y el espesor de la plancha $(T_{r,si} \propto e_b)$, entonces, deben existir las constantes $k_{r,si}$ y $k_{\theta,si}$, tales que cumplan con la siguiente ecuación:

$$T_{r,si} = k_{r,si} \cdot l_{h,si} \cdot e_b \cdot \left(\theta_{si} + k_{\theta,si} \cdot \theta_{si}^2\right) = k_{lh} \cdot l_{h,si} = a_{si} \cdot \theta_{si} + b_{si} \cdot \theta_{si}^2$$
(129)

Por lo tanto, a partir de esta ecuación, se obtiene:

$$k_{r,si} = \frac{1}{2} \cdot \left[\frac{a_{si}}{l_{h,si} \cdot e_b} + \frac{k_{lh}^{45^{\circ}}}{e_b \cdot 0.25\pi \cdot (1 + 0.25\pi \cdot k_{\theta,si})} \right]; \quad k_{\theta,si} = \frac{b_{si}}{a_{si}}$$
(130)

La Tabla J-6 muestra los factores $k_{r,si}$ y $k_{\theta,si}$ de acuerdo con los valores de a_{si} y b_{si} determinados, de esta manera, se pretende establecer un valor promedio para estos factores.

Tabla J-6

Valores de las constantes de proporcionalidad $\mathbf{k}_{r,si}$ y $\mathbf{k}_{\theta,si}$.

Solono ci	C1	67	62	S1	85	Media
Solapa St	51	52	33	54	33	aritmética

$k_{ heta,si} \left[rad^{-1} ight]$	-0.4793	-0.5203	-0.525	-0.5203	-0.4594	-0.5
$k_{r,si}\left[rac{N\cdot m}{m^2\cdot rad} ight]$	1643.27	1721.391	1722.557	1721.391	1584.769	1678.676

Para cálculos posteriores, se utilizará la siguiente ecuación para el torque resistente.

$$T_{r,si} = 1680 \cdot l_{h,si} \cdot e_b \cdot (\theta_{si} - 0.5 \cdot \theta_{si}^2) [N \cdot m]$$
(131)

Sección J.3. Parámetros geométricos iniciales de la máquina formadora de cajas

A continuación, la Figura J-9 presenta algunos parámetros geométricos que.

Figura J-9

Parámetros geométricos para la configuración geométrica de sistemas

Nota. Las cotas $Y_{b,máx}$, $Y_{b,mín}$, $X_{b,máx}$, $X_{b,mín}$ corresponden a los valores máximos y mínimos de X_b y Y_b listados en la Tabla J-1 del Apéndice J, Sección J.1, Parámetros J.1.1.

A partir de la figura anterior, se define: b_{TFM} y l_{TFM} son el ancho total y el largo total del bastidor de máquina del bastidor de la máquina, respectivamente, y d_{ac} es la distancia entre la zona de almacenamiento y la zona de conformación.

Apéndice K. Resultados obtenidos del modelado en detalle

Sección K.1. Resultados del modelado en detalle del SAMP

Resultados K.1.1. Resultados de simulaciones estáticas de SolidWorks del SAMP

Figura K-1

Distribución de cargas sobre los apoyos (topes inferiores) del contenedor

Nota. Se considera el peso de la pila de planchas grandes ($W_{pila} = 379.4 [N]$), y un módulo elástico del cartón corrugado de E = 700 [MPa]. Elaborado en SolidWorks Simulation.

Figura K-2

Sujeciones y conexiones del contenedor del SAMP para simulación estática en SolidWorks

Nota. Elaborado en SolidWorks Simulation.

 Fuerza-1
 Dir2 : -33,4N

 Dir3 : -21,2N
 Dir3 : -21,2N

 Dir3 : -21,2N
 Dir4 : -21,2N

 Dir4 : -21,2N

Cargas externas del contenedor del SAMP para la simulación estática en SolidWorks

Nota. Elaborado en SolidWorks Simulation.

A continuación, se presentan los resultados obtenidos en la simulación. La Figura K-4

muestra las reacciones en las sujeciones, que representan las cargas soportadas por los husillos.

Figura K-4

Reacciones en las sujeciones rígidas, que representa las cargas soportadas por los husillos.

Nota. De izquierda a derecha, tuerca husillo superior,

tuerca husillo inferior posterior, y tuerca husillo inferior frontal. Elaborado en SolidWorks Simulation.

Figura K-5

Factor de seguridad mínimo de los topes del contenedor del SAMP

Nota. Elaborado en SolidWorks Simulation.

Figura K-6

Factor de seguridad mínimo de las paredes del contenedor del SAMP

Nota. Elaborado en SolidWorks Simulation.

Figura K-7

Comprobación de pernos y soldaduras

Nota. Elaborado en SolidWorks Simulation.

Resultados K.1.2. Configuración geométrica final del SAMP

Figura K-8

Configuración geométrica final del sistema de acumulación de la materia prima

Nota. Se observa el SAMP con las planchas de cartón más grandes. Elaborado en SolidWorks.

Sección K.2. Resultados del modelado asistido del SDOMP

Resultados K.2.1. Resultados de simulaciones estática de SolidWorks del SDOMP

Figura K-9

Malla de la estructura del SDOMP y comprobación del factor de seguridad

Figura K-10

Comprobación de la resistencia de pernos en la estructura del SDOMP

Resultados K.2.2. Resultados de la selección de componentes prefabricados del SDOMP

Tabla K-1

Especificaciones de la ventosa seleccionada

Código de designación	ZPT 40BSJ10-B01-A14
Tipo de ventosa	De fuelle, con telescópico (sin anti-giro)
Material	Silicona
Diámetro de ventosa	40 [<i>mm</i>]
Dirección de la entrada de vacío	Vertical
Entrada de vacío	Rosca hembra Rc1/8 (para racor 8 [mm])
Montaje	Rosca macho M14x1
Recorrido telescópico	10 [<i>mm</i>]
Factor de seguridad calculado	$n_{v} = 4.6$
Cantidad de ventosas	4
Peso total	151 [<i>g</i>]
Fuerza de reactivación del muelle	2[N] (carrera 0), $5[N]$ (final de carrera)

Nota. Especificaciones obtenidas del software selector y del catálogo de referencia de SMC.

Tabla K-2

Especificaciones de la manguera seleccionada para la línea central y la línea de derivación.

Código de designación	TS806BU-20
Material	Nylon flexible
Longitud de rollo	20 [<i>m</i>]
Diámetro exterior	8 [<i>mm</i>]
Diámetro interior	6 [<i>mm</i>]

Mínimo radio de curvatura	45 [<i>mm</i>]
Presión máxima de trabajo	1.3 [<i>MPa</i>]

Nota. Especificaciones y valores obtenidos del software selector de componentes de vacío SMC.

Figura K-11

Curvas características de la unidad modular con eyector incorporado

Nota. A la izquierda, curva característica de escape reproducida de *Unidad de vacío sistema de eyector* (p. 20) por SMC (2023). A la derecha curva característica de respuesta de vacío obtenida del software selector de componentes de vacío SMC.

Tabla K-3

Características	de la	unidad	modular	con evector	incorporado	seleccionado
				~	1	

Código de designación del	ZK2 C12J5ALA-08
eyector individual	
Código de designación de la	ZZK204A-A1F-B
placa base del bloque	
Tipo de unidad	Para bloque manifold
Diámetro de boquilla	1.2 [<i>mm</i>]
Rango de presión de trabajo	0.3 a 0.6 [MPa] (0.35 [MPa] estándar)
Máxima presión de vacío	-59.7 [<i>kPa</i>]

Caudal de succión	65 [N L/min]
Consumo de aire	65 [N L/min]
Presión de adsorción	-56.7 [<i>kPa</i>]
Tiempo para alcanzar la	0.114 [s] (ver Figura 18)
presión de adsorción	
Modo de escape	Silenciador de escape común integrado (75 [dB]
Tipo de válvula de paso	Electroválvula 2/1 NC
Conexión de vacío	Conexión instantánea 8 [mm]
Conexionado de alimentación	Conexión instantánea 8 [mm]
Línea de descarga o expulsión	Sin presión de descarga, ni válvula de soplado
Filtro de succión	Grado de filtración: 30 [μm]
Tensión nominal	24 [V] DC
Consumo de energía	0.4 [W]
Cable	ZK2-LV**-A
Cantidad de unidades	4
Peso total (todas las unidades	534 [g]
+ placa base del bloque)	-

Nota. Características y valores obtenidos del software selector de componentes de vacío SMC.

Figura K-12

Resultados obtenidos por el software selector de cilindro guiados

Nota. Valores obtenidos del software selector de cilindro guiados SMC. Deginación: MGPL25-150AZ. Peso total: 2.18 [kg]. Esfuerzo teórico: 247 [N] (catálogo de referencia).

Resultados K.2.3. Configuración geométrica final del SDOMP

Figura K-13

Configuración geométrica final del sistema de dosificación de la materia prima

Nota. Adaptado del catálogo *Ventosa de vacío Serie ZP* (p.4-187) de SMC (2023). Se observa la unidad modular con eyector incorporado y su respectivo manifold. Elaborado en SolidWorks.

Sección K.3. Resultados del modelado en detalle del SDMP

Resultados K.3.1. Resultados de la selección de componentes prefabricados del SDMP

Tabla K-4

Selección del servomotor a partir de los requerimientos establecidos para el sistema

Designación del Servomotor	1FK7042-2AC71-1RB0-Z B02 + N05 + Q31	
Velocidad nominal	n _{1rated}	2000 [rpm]
Altura del eje	SH	48
Potencia nominal	P _{rated}	0.6 <i>kW</i>
Corriente nominal	<i>I_{rated}</i>	1.55 [<i>A</i>]
Número de polos	#polos	4
Momento de inercia del rotor (con freno)	J _M	$3.2 \times 10^{-4} kg \cdot m^2$

Eficiencia mecánica	η_M	88 %
Torque estático	M ₀	$3[N \cdot m]$
Torque nominal	M _{rated}	$2.8[N \cdot m]$
Torque máximo	$M_{m cuta x}$	$10.5 [N \cdot m]$
Refrigeración	Natural	
Convertidor	SINAMICS	\$\$110 / \$120
(servodrive)	511NAIVIIC5 51107 5120	
Módulo de línea	ALM 400 V	
Sistama da	AM20DQI: encód	der absoluto 20 bits
Sistema de	(resolución1048576, internamente 512 S/R) +	
nosición	12 bits multivuelta (1	rango desplazamiento:
posición	4096	vueltas)
Condición del eje	Con chaveta y freno de parada	
Grado de protección	IP64	
Color	Estándar (gris antracita RAL 1076)	

Resultados K.3.2. Configuración geométrica final del SDMP

Configuración geométrica final del sistema de desplazamiento de la materia prima

Nota. Elaborado en SolidWorks.

Vistas de corte del eje motriz y del eje conducido del SDMP

Nota. Se observa la configuración axial de componentes en los ejes. Elaborado en SolidWorks.

Sección K.4. Resultados del modelado en detalle del SFCC-Subsistema macho

Resultados K.4.1. Resultados de simulaciones en SolidWorks del SFCC-Subsistema macho

Figura K-16

Resultados del estudio estático de la manivela y de la biela

Nota. a. Manivela. b. Biela. Elaborado en SolidWorks Simulation.

Figura K-17

Resultados de comprobación de fatiga en la manivela

Nota. Comprobación de fatiga en: a. Manivela. b. Biela. Elaborado en SolidWorks Simulation.

Resultados K.4.2. Resultados de selección de componentes del SFCC-Subsistema macho

Tabla K-5

Selección del servomotor a partir de los requerimientos establecidos para el sistema

Designación	1FG1F43-2	
Velocidad nominal	n _{1rated}	3000 [<i>rpm</i>]
Altura del eje	SH	80
Potencia nominal	P _{rated}	3.14 <i>kW</i>
Corriente nominal	I _{rated}	11.4 [<i>A</i>]
Número de polos	#polos	4
Momento de inercia del rotor (con freno)	J_M	$35.5 \times 10^{-4} kg \cdot m^2$
Eficiencia mecánica	η_M	93%
Torque máximo	M_{max}	$50 [N \cdot m]$
Torque estático	M ₀	$15.5 [N \cdot m]$

Nota. Tipo de servomotor seleccionado. A partir del catálogo Siemens SIMOTICS S-1FG1.

Tabla K-6

Selección del reductor a partir de los requerimientos establecidos para el sistema

Designación	1FG1604	F43-2.V1
Relación de transmisión	i	70
Torque máximo a la salida	M_{2max}	690 [<i>N</i> · <i>m</i>]
Velocidad máxima a la salida	n_{2max}	60 [<i>rpm</i>]
Velocidad máxima a la entrada	n_{1max}	4216 [rpm]
Fuerza radial permisible en el centro del eje	F _{R2max}	6650 [<i>N</i>]

Momento de inercia del reductor	J _G	$0.18 imes 10^{-4} [kg \ \cdot m^2]$
Eficiencia mecánica	η_M	75%
	1 1 1 . /1 a'	

Nota. Tipo de reductor seleccionado. A partir del catálogo Siemens SIMOTICS S-1FG1

Tabla K-7

Características adicionales del servomotor-reductor

Designación completa del	1FG1604-1PF43-2AV1-Z
servomotor-reductor	B02+D11+G23+G34+K08+K23+N23
Refrigeración	Natural
Convertidor (servodrive)	SINAMICS S110 / S120
Módulo de línea	ALM 400 V
	AM20DQI: Encoder absoluto 20 bits
Sistema de retroalimentación	(resolución1048576, internamente 512 S/R) +
de la posición	12 bits multivuelta (rango desplazamiento:
	4096 vueltas). Interface DRIVE-CLiQ.
Tipo de montaje	Montado en los pies en posición M1-A
Diseño y condición del eje	Eje macizo con chavetero y freno de parada
Freno de retención	De imanes permanentes (estándar)
Control de nivel de aceite	Mirilla de nivel de aceite
Lubriconto	DIN 51502, aceite mineral \rightarrow CLP ISO PG
	VG 460 (-10°C a 60°C)
Sellada	Retén radial de eje con labio de protección
Sellado	contra el polvo y retén axial adicional
Grado de protección	IP64
Color	Estándar (gris antracita RAL 1076)

Tabla K-8

Selección del sistema de guiado lineal GV3

Designación del carro estándar	AU7634L170+BK7634 (tipo AU 7654)
Designación de la guía plana en V,	M76L896P3C20D66 (tipo L76)
Tipo de rodamientos	Dobles auto lubricados J54 con $D = 0.198 [m]$
Parámetros de vida útil para el carro	$L_{2(máx)} = 6400 [N] ; M_{v(máx)} = 3200 \cdot D [N \cdot$
	m] y Duración básica = 100
Factor de carga del carro	$L_{F} = 0.157$
Vida útil calculada para el carro	$Duración_{guia} \ [km] \cong 16775 \ [km]$

Resultados K.4.3. Configuración geométrica final del SFCC-Subsistema macho

Figura K-18

Modelo 3D del subsistema macho. Componentes del subsistema.

Nota. Se aprecian los componentes del subsistema macho. Elaborado en SolidWorks.

Sección K.5. Resultados del modelado en detalle del SFCC-Matriz de conformación

Resultados K.5.1. Resultados de las simulaciones del SFCC-Matriz de conformación

Figura K-19

Resultados del estudio estático del mecanismo plegador de la solapa 4.

Elaborado en SolidWorks Simulation.

Sujeciones, cargas extenernas, conexiones apernadas y malla del mecanismo del tope inferior.

Nota. Elaborado en SolidWorks Simulation

Figura K-21

Factor de seguridad mínimo del mecanismo del tope inferior, comprobación de pernos.

Nota. Elaborado en SolidWorks Simulation

Sujeciones y fuerzas externas en una esquina de la matriz de conformación.

Nota. Las cargas se aplican en el punto en donde la fuerza normal de contacto es máxima. Elaborado en SolidWorks Simulation.

Figura K-23

Conexiones entre elementos: uniones apernadas y soldadas.

Nota. Soldaduras y persnos, esquina de conformación. Elaborado en SolidWorks Simulation.

Esfuerzos de Von Mises en los elementos de la matriz de conformación

Nota. Esfuerzos de Von Mises en la esquina de la matriz. Elaborado en SolidWorks Simulation.

Figura K-25

Comprobación de pernos y de soldaduras en la esquina de conformación

Nota. Comprobación de pernos y soldadura de la esquina. Elaborado en SolidWorks Simulation.

625 N FX: FY: -0,000676 N 0 FX: -0,0246 N 0,00299 N FZ: 1,85e + 03 N FY: Momento de cuerpo libre (N.m) FRes: 625 N FZ: -2,88e+03 N Componente Selección Todo el modelo -13,723 FRes: 3,42e+03 N Sum X: 0, 0, 1,1807 Sum Y: 0,87848 Sum Z: 0, 0. 13,801 Resultante:

Reacciones en las sujeciones establecidas de la esquina de conformación.

Figura K-27

Fuerzas externas, sujeciones y conexiones apernadas del soporte de esquinas

Nota. Estudio estático del soporte de las esquinas. Elaborado en SolidWorks Simulation

Figura K-28

Tensión de Von Mises resultante en el soporte de las esquinas de conformación.

Nota. Tensión Von Mises soporte de esquinas de la matriz. Elaborado en SolidWorks Simulation

Comprobación de pasador/perno Comprobación de pasador/perno Comprobación de pasador/perno Necesita atención (0) Comprobación de pasador/perno Necesita

Comprobación de uniones apernadas en el soporte de las esquinas de conformación.

Nota. Comprobación pernos en el soporte de las esquinas. Elaborado en SolidWorks Simulation.

Figura K-30

Reacciones en las sujeciones del bloque de unión de las esquinas de conformación

Nota. Reacciones en las sujeciones del soporte de esquinas. Elaborado en SolidWorks Simulation.

Figura K-31

Esfuerzo de Von Mises en la barra guía-soporte de la matriz bajo cargas definidas.

Nota. Incluye el peso de los elementos. Elaborado en SolidWorks Simulation.

Figura K-32

Reacciones en la sujeción de la barra que soporta la matriz, unión matriz – bastidor.

Nota. Reacciones resultantes en la unión matriz-bastidor. Elaborado en SolidWorks Simulation.

Resultados K.5.2. Resultados de la selección de componentes del SFCC-Matriz de conformación

Figura K-33

Actuador de giro neumático seleccionado de la empresa SMC

Nota. Reproducida del software selector de actuadores de giro SMC.

Tabla K-9

Resultados de la selección del actuador de giro de la matriz de conformación.

Designación	CRB1LW100-180SE-XF	Rango admisible
Presión de alimentación	0.6 [<i>MPa</i>]	0.15~1
Momento requerido	$5.1 [N \cdot m]$	0~35.9
Carga M (de flexión)	29.724 $[N \cdot m]$ 0~30.28	
Carga Fr (radial)	57.27 [<i>N</i>]	0~588
Energía cinética	0.4057 [<i>J</i>]	0~0.6
Tipo de amortiguación	Elástica	
Conexionado	Conexiones axiales, rosca tipo G 1/4	

Peso total	3.88 [kg]	
Montaje	Modelo con escuadra	
Tipo de eje	W Doble eje (vástago largo con chaveta y vástago corto con 4 biseles)	

Nota. Resultados obtenidos en el software selector de alteradores de giro SMC.

Tabla K-10

Acoplamiento seleccionado para el mecanismo plegador de la solapa S4

Designación	PHE L095HUB
Potencia nominal	0.81 [kW]
Velocidad nominal	300 [rpm]
Chaveta eje actuador de giro	$8x3.3$ para con $\phi = 25 [mm]$
Chaveta barra giratoria	$5x2.3 \operatorname{con} \phi = 15 [mm]$

Nota. Resultados obtenidos del catálogo SKF Couplings.

Tabla K-11

Selección del cilindro neumático del tope inferior

Designación	C85N12-25CW
Тіро	Doble efecto, vástago simple
Norma	ISO 6432
Carrera máxima admisible por	44.45 [<i>mm</i>]
flexión del vástago	$(\text{máxima para } 8.92/0.85A_{cil} \cong 0.09 \ [MPa])$
Diámetro	12 [<i>mm</i>]
Tipo de culata	Modelo básico (charnela integrada)
Amortiguación	Neumática
Energía cinética admisible	0.19 [<i>J</i>]
Tipo de fijación	Oscilante
Velocidad del émbolo admisible	50 a 1500 [<i>mm/s</i>]
Fuerza radial máxima	1.2 [N] (para carrera = 25 [mm])
Fijación del extremo del vástago	Horquilla hembra
Masa aproximada	111.5 [<i>g</i>]

Nota. Características obtenidas del catálogo 'Cilindros neumáticos Serie C85/75' de SMC.

Tabla K-12

Selección del cilindro neumático del plegado de la solapa 5

Designación	C85N25-25CW		
Тіро	Doble efecto, vástago simple		

Norma	ISO 6432
Carrera máxima admisible por	57.4 [<i>mm</i>]
flexión del vástago	(máxima para 10.89/0.85 <i>A_{cil}</i> ≅ 0.11 [<i>MPa</i>])
Diámetro	25 [<i>mm</i>]
Tipo de culata	Modelo básico (charnela integrada)
Amortiguación	Neumática
Energía cinética admisible	0.97 [<i>J</i>]
Tipo de fijación	Oscilante
Velocidad del émbolo admisible	50 a 1500 [<i>mm/s</i>]
Fuerza radial máxima	12.5 [N] (para <i>carrera</i> = 25 [<i>mm</i>])
Fijación del extremo del vástago	Horquilla hembra
Masa aproximada	454.25 [<i>g</i>]

Nota. Características obtenidas del catálogo 'Cilindros neumáticos Serie C85/75' de SMC.

Tabla K-13

Valores de salida del modelo analítico de los husillos laterales y transversales de la matriz.

		Husillos longitudinales	Husillos transversales
Torque de subida	T_R	10.8128	10.8128
Toque de bajada	T_L	5.0753	5.0753
Eficiencia	e_{TP}	0.2543	0.2543
	τ_{cuerpo}	104 [kPa]	104 [kPa]
Estuerzos en el cuerpo	σ_{cuerpo}	6.93 [<i>Mpa</i>]	6.93 [<i>Mpa</i>]
Esturras en la reía	σ_B	1.898 [MPa]	1.66 [<i>MPa</i>]
Estuerzos en la raiz	σ_b	5.694 [<i>MPa</i>]	4.982 [<i>MPa</i>]
Esfuerzo en el centro de la raíz	$ au_{centro,raiz}$	2.847 [<i>Mpa</i>]	2.491 [<i>MPa</i>]
Esfuerzo de von Mises	σ'	10.97 [<i>MPa</i>]	10.39[<i>MPa</i>]
Factor de seguridad von Mises	n _{mises}	46.5	49.1
Relación de esbeltez	l/k	2.33	2.61
Pandeo (J.B. Johnson)	$(F/A)_{crit}$	510 [<i>Mpa</i>]	510 [<i>Mpa</i>]
Factor de seguridad pandeo	n _{pandeo}	73.6	73.6

Nota. Esfuerzos calculados con el mayor valor entre T_R y T_L .

Tabla K-14

Referencia de catálogo de los elementos de los husillos

Volante	GN 924-125-K12-R-SW - Volante de banda diametral (ELESA)
Indicador de	DD51 - AN - 01.00 - D - C2 - LB (Código de Fábrica: CE.84007 - LB) - Indicador
posición	de posición de lectura directa + dispositivo de bloqueo (ELESA)

Catavina	DNI 8102 D 217 04C 1 (ASA 25) Disting an aille sonie amaniana ting D 25
Catarina	DIN 8192 - B 21Z 04C-1 (ASA 23) - Pinon sencino serie americana upo B, 23
	dientes - (Intermec o Cadenas y Bandas SAS)
Cadena	DIN 8188 04C-1 (ASA 25) - Long aprox: 2114,55 mm (333 pasos) - Cadena de
	rodillos sencilla serie americana ANSI B29.1 (Intermec o Cadenas y Bandas
	SAS)
Unidades de	Para husillos longitudinales: FY 20 TF - Incluye: soporte FY 504 M y rodamiento
Rodamientos	YAR 204-2F - Unidad de rodamiento de bolas con pestaña cuadrada (SKF).
	Para husillos transversales: UCFB 204 - Incluye: soporte FB 204/Y y rodamiento
	UC 204 - Unidad de rodamiento de bolas con abrazadera de 3 tornillos (SKF).

Resultados K.5.3. Configuración geométrica final del SFCC-Matriz de conformación

Figura K-34

Esquema 3D del sistema de formado cajas de cartón (matriz + subsistema macho).

Sección K.6. Resultados del modelado en detalle del SDHM

Resultados K.6.1. Resultados de las simulaciones en SolidWorks del SDHM

Figura K-35

Malla, sujeciones y cargas aplicadas a la estructura de las pistolas de pagamento caliente.

Nota, la fuerza externa aplicada corresponde al peso individual de las pistolas de 2 módulos.

Figura K-36

Factor de seguridad mínimo de la estructura que soporta las pistolas de doble módulo.

Nota. Elaborado en SolidWorks Simulation.

Factor de seguridad de los pernos conectores de la estructura del SDHM

Nota. Elaborado en SolidWorks Simulation.

Figura K-38

Cargas aplicadas al soporte de la unidad fusora y sujeción al bastidor por medio de pernos.

Nota. Según el fabricante, pesa 50 kg vacía y alrededor de 83 kg llena de pegamento. Elaborado en SolidWorks Simulation.

Figura K-39

Factor de seguridad mínimo del soporte de la unidad fusora

Nota. Elaborado en SolidWorks Simulation.

Ahora se presenta la comprobación de pernos

Figura K-40

Comprobación del factor de seguridad de pernos para el SDMH.

		Comprobación de pasador/perno X
Refrentado con tuerca FDS calculado:	a-1: Aceptar 3,23244	Necesita atención (0) Aceptar (2) Refrentado con tuerca-1 Refrentado con tuerca-4
FDS deseado:	2	

Nota. Elaborado en SolidWorks Simulation.

Resultados K.6.2. Resultados de la selección de componentes del SDHM

Tabla K-15

Características de los equipos del sistema de dosificación Hot Melt ofrecidos por Valco Melton

	Nombre	Designación	Cant	Especificación
Unidad fusora	Fusor + Bomba de lóbulos para pegamento caliente	NC8 MELT UNIT	1	230VAC, LOW FLOW PUMP, 4 EXITS
Pistola de	Pistola neumática	MS2X2-66-X-N	2	AO/SC, Ni120, 2,60 centers
pegamento neumática	Pistola neumática	MS1-XXX-EMI- N	2	AO/SC, Ni120, high performance
- Accesorios -	Racor	943XX002	4	45° FITTING 9/16 MALE-MALE
	Manguera termorresistente	981XX005	2	DI: 8 mm, L: 1.8m (sensor Ni120)
		981XX006	2	DI: 8 mm, L: 2.4m (sensor Ni120)
	Boquilla	974XX208	4	D: 0.6 mm (2 salidas) Nozzle, 90°, 2 exits, Ø 0.60 mm, 15° (OR-2S- 0,60-15)
		974XX008	2	D: 0.6 mm (1 salida) Nozzle, 90°, 1 exit, Ø 0.60 mm (OR-15-0,60-E2)
	Filtro de línea	959XX052	4	(malla 50) S.F. inline filter assembly, straight, 50 mesh
	Válvula solenoide para pistola	988XX013	6	SV 3 channels/2 positions, 24VDC, 8,5W, 100 Series (Mac)

Nota. Información obtenida de la empresa Valco Melton.

Resultados K.6.3. Configuración geométrica final del SDHM

Figura K-41

Fusor y pistolas de pegamento caliente (Hot Melt)

Debido a que no fue posible obtener el archivo CAT de los equipos Valco Melton se optó por usar los dibujos 3D de los equipos de la empresa Nordson para realizar las simulaciones estáticas de la estructura.

Sección K.7. Resultados del modelado en detalle del SGDAC

Resultados K.7.1. Diseño del circuito neumático de la máquina con FluidSIM Neumática 4.5

Figura K-42

Circuito neumático de la máquina formadora de cajas de cartón TFM-01.

Nota. Diagrama del circuito elaborado en FluidSIM Neumática 4.5.
Resultados K.7.2. Resultados de la selección de componentes del SDGAC

Figura K-43

Diagrama de tiempos actuación para la selección del depósito de aire comprimido.

Resultados del cálculo		
Capacidad de caudal max. requerida Qmax 💡	271.7	L/min(ANR)
Capacidad de caudal min. requerida Qmin 🕜	0	L/min(ANR)
Consumo de aire total qt [6.6	L(ANR)
Tiempo del ciclo completo tt 😢	4.1	s
Caudal medio Qave 😢	97.2	L/min(ANR)

Figura K-44

Resultados obtenidos en el software de selección del depósito de aire

Tabla K-16

Características del depósito o tanque de aire comprimido seleccionado

Designación	VBAT05A1-SV-X3048 (Small Air Tank)		
Capacidad	5 [<i>L</i>]		
Volumen mínimo requerido	2.844 [<i>L</i>]		
Material	Acero al carbono (SS400)		
Caudal de suministro	107 [N L/min]		
Consumo máximo de aire	271.7 [N L/min]		
Consumo medio de aire	97.2 [N L/min]		
Tamaño conexiones de entrada y salida	Rc 3/8		
Peso	6.6 [<i>kg</i>]		
Presión de trabajo	0.8 [MPa]		
Presión mínima del ciclo	0.751 [<i>MPa</i>]		
Presión válvula de seguridad	2 [MPa]		
Válvula de drenado	Automática		

Figura K-45

Depósito de aire comprimido seleccionado

Tabla K-17

Compresor de aire seleccionado para la red

Designación	QR-25 216
Rango de potencia típica a 100 [<i>psi</i>]	1.5 a 3 [<i>HP</i>]
Número de etapas	Una
Consumo de aire mínimo a 100 [<i>psi</i>]	4.74 [FAD cfm]
Consumo de aire máximo a 100 [<i>psi</i>]	10.7 [FAD cfm]

Tamaño $[pulg]$ $17x13x21$	
----------------------------	--

Tabla K-18

Unidad de mantenimiento FRL seleccionada

Designación	AC30-03M-23-D
Grado de filtración nominal	5 [µm]
Presión regulada	0.65 [<i>MPa</i>]
Lubricante recomendado	Aceite de turbina de clase 1 (ISO VG32)
Manómetro presostato digital	Redondo (con zona de colores)
Mecanismo de descarga de purga	Con grifo de purga (manual)
Conexión	Rc 3/8

Figura K-46

Unidad de mantenimiento FRL seleccionada

Tabla K-19

Racores y mangueras seleccionados para la red

Elementos	Designación	Cant.
Tanque	Racor: KQ2LF12-03A (Rc3/8, hembra)	2
	Tubo: TS162B	
Cilindro tope	Racor: KQ2H04-M5A (M5x8, macho)	8
	Tubo: TS0425	
Cilindro solapa S5	Racor: KQ2H04-01AS (G1/8, macho)	8
	Tubo: TS0425	
Cilindro guiado	Racor: KQ2H06-01AS (R1/8, macho)	2
	Tubo: TS0604	
Actuador de giro	Racor: KQ2H06-G02A (G1/4, macho)	4
	Tubo: TS0604	

Sistema de vacío	Racor: KQ2E08-01A (Rc1/8, hembra)	9
	Tubo: TS0806	
Electroválvulas y	Racor: KQ2E08-01A (Rc1/8, hembra)	26
línea principal	Tubo: TS0806	

Tabla K-20

Características de la válvula 3 vías seleccionada para la línea principal y el sistema Hot Melt.

Designación	VX3130-01-5G1	
Tipo	3/2 NC de acción directa	
Tipo de conexión	Rc1/8	
Voltaje nominal	DC24V, salida directa a cable	
Tipo de aislamiento de la bobina	Clase B	
Material	Latón (C37)	
Coeficiente de caudal	Cv = 0.2	
Tasa de fuga interna	1 [<i>cm</i> ³ / <i>min</i>]	

Figura K-47

Esquema tridimensional de la válvula 3 vías de la línea principal de la red y el sistema Hot Melt.

Nota. Reproducido del software selector de válvulas SMC.

Tabla K-21

Características del bloque de electroválvulas de 5 vías para los cilindros y el actuador de giro

VV5QC21-04L6TD0-DNS
Bloque con caja de bornas
Común positivo
DC24V
Biestable (estándar)
Cuatro válvulas 5/2

Tamaño de las salidas Ay B	Conexión superior acotada, instantánea $\phi = 6 \ [mm]$
Montaje del bloque	Sobre raíl DIN
Pilotaje	Interno, escapes con silenciador incorporado

Figura K-48

Esquema tridimensional del bloque de electroválvulas de 5 vías para la red

Nota. Reproducido del software selector de válvulas SMC.

Sección K.8. Resultados del modelado asistido del SECIU

Figura K-49

Diagrama GRAFCET para el control de la máquina. Versión con Sensores y Temporizadores

Figura K-50

Diagrama de sensores de la máquina para el diseño del algoritmo de control.

Tabla K-22

Entradas y salidas del diagrama GRAFCET.

Entradas		Salidas	
Cilindro guiado	Q.11 (-)	Sensores magnéticos	I.11 (-)
	Q.12 (+)	Cilindro guiado	I.12 (+)
Cilindro tope	Q.21 (-)	Sensores magnéticos	I.21 (-)
	Q.22 (+)	Cilindro tope	I.22 (+)
Cilindro S5	Q.31 (-)	Sensores magnéticos	I.31 (-)
	Q.32 (+)	Cilindro S5	I.32 (+)
Actuador de Giro	Q.41 (-)	Sensores magnéticos	I.41 (-)
	Q.42 (+)	Actuador de giro	I.42 (+)
	Q.05 (+)	Posiciones del Encoder del	I.51 (P5.1)
Servomotor SDMP			I.52 (P5.2)
		Servomotor SDMP	I.53 (P5.3)
Servomotor SFCC	Q.06 (+)	Posiciones del Encoder del	I.61 (P6.1)
		Servomotor SFCC	I.62 (P6.2)
Ventosas	0.07(1)	Posición de la plancha	I.71 (P7.1)
	Q.07 (+)	detectada por el sensor de	I.72 (P7.2)

		proximidad	I.73 (P7.3)
		Presión de activación del	$I \cap Q (\mathbf{D}_{\mathbf{Y}})$
		Vacuostato	1.00 (FV)
Pistolas HM Centrales	Q.08 (+)	Detección de la plancha por	I_{00} (D7 1)
Pistolas HM Periféricas	Q.09 (+)	el sensor de proximidad	1.09 (P7.1)

Nota. Accionamiento (+), Retroceso (-). Los puntos de detección P5.i, P6.i y P7.i (con i=1, 2 y 3)

están asociados a los diagramas de ciclo de trabajo de cada sistema.

Figura K-51

Diagrama Grafcet para el control de la máquina. VERSION TEMPORIZADORES

Sección K.9. Resultados del modelado en detalle del SEB

Figura K-52

Esquema 3D de la estructura del bastidor diseñada bajo la norma ASTM A500 Gr. C.

Perfiles usados: 120x60x3, 70x40x5, 80x40x2, 200x100x5, 40x40x4 (AGOFER)

Apéndice L. Configuración final de la máquina formadora de cajas de cartón corrugado

Sección L.1. Configuración geométrica final de la propuesta de diseño

Figura L-1

Vista lateral izquierda de la máquina con solo el SAMP, el SDOMP, el SDMP y el SFCC

Nota. Elaborado en SolidWorks.

Figura L-2

<image>

Configuración geométrica final de la máquina formadora de cajas TFM-01

Nota. Elaborado en SolidWorks.

Sección L.2. Ficha técnica con especificaciones generales de la máquina formadora de cajas

Tabla L-1

Especificaciones generales de la máquina formadora de cajas TFM-01

Producción máxima	1250 [cajas/hora]
Peso neto (con compresor)	1930 [<i>kg</i>]
Potencia instalada (con compresor)	12 [<i>kW</i>]
Dimensiones (puertas cerradas)	
Conexión eléctrica	440 [V] trifásica a 60 [Hz]
Tensión de mando	24 [V]
Consumo de aire	345 [N L/min]
Presión del compresor	8 [bar]
Sistema de cola (Hot Melt)	Valco Melton
componentes neumáticos	SMC
Sistema de vacío	SMC, unidad modular con eyector
Sistema de purga	Grifo de decantación de agua
Servomotores	SIEMENS
Chasis-bastidor	Tubo estructural rectangular ASTM A500

	Gr. C y chapa metálica ASTM A36
Cojinetes y cabezas de articulación	SKF
Sistema de guiado lineal	Hepco Motion
Pantalla HMI	SIEMENS, 5.5''
Controlador	SIEMENS

Apéndice M. Modelos de análisis para la gestión de mantenimiento

Sección M.1. Análisis de criticidad para los sistemas

El análisis de criticidad es una herramienta usada para determinar los eventos potencialmente indeseados, en el contexto de la flexibilidad operacional y responde al siguiente análisis:

$$Criticidad \ total = Frecuencia \ de \ fallas * Consecuencia$$
(132)

Consecuencia

= ((impacto operacional x Flexibilidad) + costo Mtto

+ impacto SAH)

Cada valor mencionado en la ecuación anterior se evalúa en base a la Tabla M-1

Figura M-1

Tabla de ponderación para el análisis de criticidad

Frecuencia de Fallas: Pobre mayor a 2 fallas/año	4	Costo de Mtto.:	2
Promedio 1 - 2 fallas/año	3	Mayor o igual a COP \$ 500,000	2
Buena $0.5 - 1$ fallas/año	2	Inferior a COP \$ 500.000	1
Excelente menos de 0.5 falla/año	1		
Impacto Operacional:		Impacto en Seguridad Ambiente Higiene (SAH):	
Pérdida de todo el despacho	10	Afecta la seguridad humana tanto externa como interna y requiere la notificación a entes	8
Parada del sistema o subsistema y tiene repercusión en otros sistemas.	7	Afecta el ambiente /instalaciones	7
Impacta en niveles de inventario o calidad	4	Afecta las instalaciones causando daños severos	5
No genera ningin efecto significativo sobre	1	Provoca daños menores (ammbiente - seguridad)	3
operaciones y producción		No provoca ningún tipo de daños a personas,	1
		instalaciones o al ambiente	
Flexibilidad Operacional:			
No existe opción de producción y no hay función de repuesto.	4		
Hay opción de repuesto compartido/almacen	2		
Función de repuesto disponible	1		

Con el valor de criticidad obtenido se determina si un subsistema es No Crítico (NC), Medianamente Crítico (MC) o Crítico (C) a partir de la siguiente matriz de criticidad (Figura M-2).

Figura M-2

Matriz de criticidad

A continuación, la Figura M-3 presenta los resultados obtenidos del análisis de criticidad.

Figura M-3

Resultados obtenidos del análisis de criticidad

SISTEMA	SUBSITEMA	FF	10	FO	СМ	IA	CONSECUENCIA	CRITICIDAD	ZONA
	GENERAL	1	10	4	1	3	44	44	С
CANAD	1 CONTENEDOR	1	4	4	1	3	20	20	NC
SAIVIP	2 HUSILLOS	3	7	2	1	З	18	54	MC
	3 TOPES	3	7	4	1	3	32	96	С
	GENERAL	2	10	2	2	3	25	50	MC
	1 SIST. VACIO	3	7	1	1	3	11	33	MC
SDOIVIP	2 ACTUADOR	1	10	2	2	3	25	25	MC
	3 ESTRUCTURA	1	10	4	2	7	49	49	С
	GENERAL	1	10	2	2	3	25	25	MC
CDMD	1 TRANS.CADENA	3	7	2	1	5	20	60	MC
SDIVIP	2 MOTOR	1	7	4	2	3	33	33	MC
	3 HUSILLO AJUSTE	2	4	2	1	3	12	24	NC
	GENERAL	1	7	4	2	3	33	33	MC
SECC	1 REDUCTOR/SERV	2	10	4	2	3	45	90	С
SFUU	2 MANIVELA	1	7	1	1	3	11	11	NC
	3 CORREDERA	2	7	2	1	3	18	36	NC
SDCC	GENERAL	1	1	2	2	1	5	5	NC
SUCC	1 RODILLOS	1	4	2	1	1	10	10	NC

	2 RODAMIENTOS	1	4	1	1	1	6	6	NC
	3 ESTRUCTURA	1	4	4	2	3	21	21	NC
	GENERAL	1	10	4	2	3	45	45	С
65D	1. ESTRCUTURA SAMP	1	7	4	2	3	33	33	MC
SEB	2.ESTRUCTURA SDCC	1	10	4	2	3	45	45	С
	3. ESTRUCTURA SFCC	1	7	4	2	3	33	33	MC

Sección M.2. Análisis de Modos y Efectos de Falla (AMEF) para los sistemas

Este proceso considera toda la estructura del sistema, analizando las funciones internas (propias del elemento), funciones entrantes (relacionadas con las causas de falla) y funciones salientes (relacionadas con los efectos de falla). Se debe analizar los modos de falla por los usos y abusos que pueda tener la máquina. Hay que saber que, un modo de falla puede tener diferente número de efectos y de causas (Villamil & García, 2003). Se deben considerar tres parámetros importantes: el índice de severidad *S*, la tasa de ocurrencia *O* y la tasa de detección *D*, con los cuales se puede obtener el índice de prioridad del riesgo, *RPN*, mediante la siguiente ecuación.

$$RPN = S \cdot O \cdot D \tag{133}$$

A continuación, la Figura M-4 presenta la plantilla para realizar el AMEF.

Figura M-4

Componente Operación o Fu		aración o Eunción	Falla Funcional o		OCURRENCIA	Efecto de la	SEVERIDAD	Causas de	DETECCIÓN	PDN	RPN	ACCIONES CORRECTIVAS O
componente	Ορί		M	lodo de falla	(O)	falla	(S)	falla	(D)		TOTAL	PREVENTIVAS
X1			1	MODO DE	OA1	EFECTO A11	SA11	CAUSA A11	DA11	RA11	RA1	ACCIONES A1
Ë						EFECTO A12	SA12			RA12		
	^		h	MODO DE	042		6421	CAUSA A21	DA21	RA21		
Į0	А	OPERACION A	2	FALLA A2	UAZ	EFECTO AZI	SAZI	CAUSA A22	DA22	RA22	RAZ	ACCIONES AZ
W						EFECTO A31	SA31		DA 21	RA31		
8			3		OA3	EFECTO A32	SA32	CAUSA ASI	DASI	RA32	RA3	ACCIONES A3
				FALLA AS		EFECTO A33	SA33	CAUSA A32	DA32	RA33		
X2			1	MODO DE	OB1	EFECTO B11	SB11	CAUSA B11	DB11	RB11	RB1	ACCIONES A4
Ë				FALLA BI		EFECTO B12	SB12			RB12		
NEN VE	р		2	MODO DE	0.02		5021	CAUSA B21	DB21	RB21	000	
10 L	D	OPERACIÓN B	2	FALLA B2	OBZ	EFECTO BZ1	3821	CAUSA B22	DB22	RB22	NDZ	ACCIONES AS
M						EFECTO B31	SB31		DP21	RB31		
Ŭ			3		OB3	EFECTO B32	SB32	CAUSA BSI	16021	RB32	RB3	ACCIONES A6
				TALLA BS		EFECTO B33	SB33	CAUSA B32	DB32	RB33		

Plantilla para el Análisis de Modos y Efectos de Falla

A cotinuación, la Figura M-5 presenta los resultados obtenidos del AMEF.

Figura M-5

Resultados obtenidos del AMEF para los componentes de los subsistemas.

	Componente	Operación	ł	Falla Funcional o Modo de falla	Ocurrencia (O)	Efecto de la falla	Severidad (S)	Causas de falla	Detecció n (D)	RPN	RPN Total
		Montoner	1	Rotura de topes	1	Desordenamiento en cartones	1	Material deteriorado	3	3	3
		orden v	2	Rotura de cadena	3	Volcamiento de cartones	3	Mala lubricación	1	9	9
	SAMP Topes	lugar				Mal tam año de cajas	4	Husillo Equivocado	2	16	
		adecuado del	3	Atascamiento busillos	2	Mal form ación en matriz	4	Rosca dañada	1	8	12
ÓN		canon		maanos		Altura de pila inadecuado	2	Acumulación mugre	3	12	
RT.			1	Deño en ventore	5	Mala succión en cartón	3	Muchomugre en el sistema succión	3	45	72 22
СA	SDOMP	Succionar el	1	Dano en ventosa	,	No conformado caja	5	Vida útil pieza	1	25	22,02
DE	Estructura	cartón	2	Rotura en pasador	2	Daño estructural	3	Cargasno deseadas	5	30	30
AS I			3	Daño Cilindro	1	Poca fuerza y velocidad	2	Falta presión en el aire	5	10	10
CAJ		Transportar	1	Rotura cadena	2	No transporte cartón	5	Mala lubricación	3	30	30
DE	SDMP Trans Cadena	el cartón a la posición de	2	Atascamiento cadena	3	Obstrucción del movimiento	2	Partículas extrañas	1	6	6
0R.A		conform ado	3	Daño en piñón	1	No transporte cartón	No transporte cartón 5 Vida útil		4	20	20
Å		Mover el	1	Rotura de la	1	Mala form ación caja	3	Fuerzas inadecuadas	5	15	175
ZMZ	araa	brazo	1	viela	1	No fuerza suficiente	4	Falta presión en el aire	5	20	17,2
FOF	Estructura	actuacior para el	2	Rotura de matriz	1	Caja en mal estado ensamble	2	Daño en material	4	8	8
٧ł	Donadorand	conformado	2	Atascamiento	2	No sale caja	5	Mucha fricción en materiales	3	45	27
5		de cajas		en matriz	د ا	Detención proceso	3	Macho conmucho deterioro	1	9	27
MAQ	SDCC	Transportar las cajas a la	1	Atascamiento de rodillo	3	No transporte de cajas	2	Mala lubricación	3	18	18
EMA	Estructura	posición final	2	Desensamble de rodillo	1	Caída de cajas en lugar no deseado	1	Desgaste en puntas de ejes	3	3	3
IST		-	1	Rotura elem ento	1	Daño total máquina	5	Cargasno deseadas	5	25	155
02		Dar soporte	1	crucia1	1	Atascamiento grave cajas	3	Mal movimiento estructural	2	6	12,2
	SEB Sistem a general	a los	2	Atascamiento elemento	2	Detención del proceso	2	Mal material cartón	2	8	8
		totales	3	Fallo elemento	3	Mal form ación cajas	3	Material no deseado	1	9	7.5
				estructural	,	Demora en el proceso	2	Partículas extrañas	1	6	مور

Sección M.3. Recomendaciones para el mantenimiento de subsistemas y componentes

Rodamientos de sistemas: la mayoría de los rodamientos presentan lubricación de por vida, sin embargo, las cabezas de articulación de la manivela y biela se deben lubricar semanalmente. También se debe realizar una operación de montaje adecuada, para evitar cargas no deseadas.

Husillos de sistemas: estos deberán se deben montar adecuadamente, de manera que se produzca sincronización en los elementos que los soportan, de igual forma, se deben lubricar antes de realizar las operaciones de regulación de los sistemas. En la operación de regulación, se debe asegurar que los elementos de la matriz están correctamente distanciados de acuerdo con el tamaño de la bandeja requerido.

Cadenas y catarinas: se deben lubricar adecuadamente cada semana, con el fin de evitar ruidos en el sistema y cargas no deseadas.

Elementos neumáticos: para todos los componentes, es crucial realizar un montaje preciso, verificando las conexiones en los racores y las condiciones de operación (presión, caudal, unidad FRL), por lo tanto, se deben realizar inspecciones semanales de estos componentes. Esto evitará accidentes y mal funcionamiento de los sistemas. Para el caso de las ventosas del SDOMP, éstas deben presentar una superficie sin suciedad, por lo cual se deben inspeccionar todos los días.

Apéndice N. Lista de costos de la máquina

Sección N.1. Costos de adquisición de materiales, componentes y equipos

A continuación, se listan los costos^{§§§} relacionados con la adquisición de materiales y

componentes, procesos de manufactura, montaje, puesta en marcha, trasporte e instalación.

Figura N-1

Cotización del sistema de aplicación de pegamento caliente con la empresa Valco Melton.

VALCO MELTON Valco Melton Colombia. Comporate Offices 497 Circle Freeway Drive Cincinnati OH 45246 Tel +57 313 421 0926

COTIZACION

DOC. REVISION 10/23/14

ORANGE EXPORT SAS Bodegas Colmuebles, módulo 1 KM 4 Anillo Bucaramanga, Santander Colombia FECHA DOC. NO. CLASE DE CLIENTE 3/17/2022 7H ENTREGA ESTIMADA 5-6 weeks FORMA DE PAGO 50% Anticipado, 50% Contraentrega NOMBRE DE VENDEDOR

COTIZACION DEL SISTEMA DE DOSIFICACION DE ADHESIVO HOT MELT DE VALCO MELTON PARA SU MAQUINA DE CIERRE DE CAJAS QUE CONSTA DE: UNIDAD FUSORA NC08, PISTOLAS NEUMATICAS MS SENCILLA Y DOBLE, BOQUILLA SENCILLA Y DOBLE, ELECTROVALVULA Y FILTRO DE LINEA.

QTY	PARL NO.	DESCRIPTION
1	946XX179	NC8 MELT UNIT 230VAC , LOW FLOW PUMP, 4 EXITS
4	943XX002	45 FITTING 9/16 MALE-MALE
2	968XX243	MS1-XXX-EMI-N
2	968XX086	MS2X2-66-X-N
2	981XX005	Heated hose, Ni120, I.D. 8 mm, 1.8 m (HHN-X/X-Ã8-1,8)
2	981XX006	HHN-X/X-Ã8-2,4
4	974XX208	OR-2S-0,60-15
2	974XX008	OR-1S-0,60-E2
4	959XX052	SF INLINE FILTER 0§ 50 MESH
6	988XX013	SOLENOID VALVE 3 WAY 24V DC
		TOTAL DDP Giron

\$60,740,224.82

^{§§§} La lista completa se puede consultar en el siguiente enlace:

https://drive.google.com/drive/folders/1sB4f1zbAO4YkEJRWJqs XUNvCVI bVpF?usp=sharing

Figura N-2

Costos de los materiales por sistema

		5	SFCC	SI	OMP	S.	AMP	SD	OMP	SI	DHM	5	SEB
Precio/mm3	Material	Volumen total	Precio	Volumen total	Precio	Volumen total	Precio	Volumen total	Precio	Volumen total	Precio	Volumen total	Precio
0,04	Lámina ASTM A36	3821352,96	\$ 141.390,06	2394824,96	\$ 88.608,52	4587477,84	\$ 169.736,68			2859766,22	\$ 105.811,35		
0,118	Placas AISI SAE 1045	7960778,67	\$ 936.983,65	817781,70	\$ 96.252,91	613619,40	\$ 72.223,00	823178,82	\$ 96.888,15	188190,18	\$ 22.149,98		
0,0031	Placas AISI SAE Naylon 6.6	326168,26	\$ 1.011,12	16824,09	\$ 52,15					465156,29	\$ 1.441,98		
1,752	Placas Bronce AISI SAE 40					287926,40	\$ 504.447,05						
25	Barra AISI SAE 1020	5544723,88	\$ 138.618,10	645306,40	\$ 16.132,66					20412,50	\$ 510,31		
0,0	Barra AISI SAE 1045	1566225,91	\$ 39.155,65			2079251,87	\$ 51.981,30						
0,0457	Tubería Estructural Rectangular ASTM A500											40672676,04	\$ 1.858.741,30
	Precio total p recio total de	or sistema materiales	\$ 1.257.158,58 \$ 4.342.135.93		\$ 201.046,24		\$ 798.388,03		\$ 96.888,15		\$ 129.913,63		\$ 1.858.741,30

Figura N-3

Costos de la tornillería por sistema

	-				SFCC		SDMP		SAMP		МР	s		SDOMP		SDH	IM	
	CODIGO	Proveedor	P ur	'recio nitario	Cant	Pre	cio total	Can t	Precio total	Can t	1	Precio total	Can t	P	recio total	Can t	P	recio total
ABRAZADERAS DE	MSX.56-C-10-12	ELESA	\$	500		\$	-		\$ -		\$	-		\$	-	2	\$	1.000
CONECTORES	MSX.56-C-12-14	ELESA	\$	500		\$	-		\$ -		\$	-		\$	-	2	\$	1.000
	VC.692/25 SST-p-M6x25-SV15	ELESA	\$	1.000	4	\$	4.000		\$ -		\$	-		\$	-		\$	-
	VC.692/25 p-M4x10	ELESA	\$	1.000		\$	-		\$ -	4	\$	4.000		\$	-		\$	-
	GN 535-20-M5-10-MT	ELESA	\$	1.000	4	\$	4.000		\$ -		\$	-		\$	-		\$	-
	TBOLT 0.3750-16x0.875x0.875C	Mundial de tornillos	\$	1.200		\$	-		\$ -	4	\$	4.800		\$	-		\$	-
	ISO 4028 - M5x12	Mundial de tornillos	\$	350		\$	-		\$ -		\$	-	6	\$	2.100		\$	-
	ISO 4162 - M10x30x30-C	Mundial de tornillos	\$	1.020	2	\$	2.040		\$ -		\$	-		\$	-		\$	-
	ISO 4162 - M12x30x30-C	Mundial de tornillos	\$	1.020	1	\$	1.020		\$ -		\$	-		\$	-		\$	-
	ISO 7380 -M3x6-6C	Mundial de tornillos	\$	200		\$	-	1	\$ 200		\$	-		\$	-		\$	-
	ISO 7380 -M3x8-8C	Mundial de tornillos	\$	200		\$	-	1	\$ 200		\$	-		\$	-		\$	-
	MF.40P-M6x16-C3	Mundial de tornillos	\$	100		\$	-		\$ -		\$	-		\$	-	2	\$	200
	ISO 4762 - M4x10 - 10C	Mundial de tornillos	\$	200	16	\$	3.200		\$ -	4	\$	800		\$	-		\$	-
	ISO 4762 - M4x12 - 12C	Mundial de tornillos	\$	200	16	\$	3.200		\$ -		\$	-		\$	-		\$	-
	ISO 4762 - M3x10-10C	Mundial de tornillos	\$	200		\$	-		\$ -				8	\$	1.600		\$	-
	ISO 4762 M5x8-8C	Mundial de tornillos	\$	200		\$	-	1	\$ 200		\$	-		\$	-		\$	-
	ISO 4762 - M5x12 - 12C	Mundial de tornillos	\$	200	2	\$	400		\$ -		\$	-		\$	-	8	\$	1.600
	ISO 4762 M5x16-16C	Mundial de tornillos	\$	200		\$	-	10	\$ 2.000		\$	-		\$	-		\$	-
	ISO 4762 - M5x20 - 20C	Mundial de tornillos	\$	200	1	\$	200	8	\$ 1.600		\$	-		\$	-		\$	-
	ISO 4762 - M5x25 - 25C	Mundial de tornillos	\$	200	4	\$	800	4	\$ 800		\$	-		\$	-		\$	-
DEDNOS	ISO 4762 - M5x30 - 22C	Mundial de tornillos	\$	200	1	\$	200	4	\$ 800		\$	-		\$	-		\$	-
FERNOS	ISO 4762 - M6x12 - 12C	Mundial de tornillos	\$	200	16	\$	3.200		\$-	24	\$	4.800		\$	-		\$	-
	ISO 4762 - M6x25 - 25C	Mundial de tornillos	\$	200	6	\$	1.200	4	\$ 800		\$	-		\$	-		\$	-
	ISO 4762 M6x55-22C	Mundial de tornillos	\$	200		\$	-	6	\$ 1.200		\$	-		\$	-		\$	-
	ISO 4762 - M8x20 - 20C	Mundial de tornillos	\$	200	25	\$	5.000		\$-		\$	-		\$	-	4	\$	800
	ISO 4762 - M8x25 - 25C	Mundial de tornillos	\$	200		\$	-		\$ -		\$	-		\$	-	4	\$	800
	ISO 4762 - M8x35 - 35C	Mundial de tornillos	\$	200	16	\$	3.200		\$ -		\$	-		\$	-		\$	-
	ISO 4762 - M8x40 - 28C	Mundial de tornillos	\$	200	12	\$	2.400		\$ -		\$	-		\$	-		\$	-
	ISO 4762 - M8x45 - 28C	Mundial de tornillos	\$	200	1	\$	200		\$ -		\$	-		\$	-		\$	-
	ISO 4762 M8x45-45C	Mundial de tornillos	\$	200		\$	-	2	\$ 400		\$	-		\$	-		\$	-

	ISO 4762 - M10x25 - 25C	Mundial de tornillos	\$	200	8	\$	1.600		\$	-		\$ -	[\$ -		\$ -
	ISO 4762 - M10x30 - 30C	Mundial de tornillos	\$	200	4	\$	800		\$	-		\$ -		\$ -		\$ -
	ISO 4762 - M10x35 -35C	Mundial de tornillos	\$	200	8	\$	1.600		\$	-		\$ -		\$ -		\$ -
	ISO 4762 - M10x45 - 32C	Mundial de tornillos	\$	200	16	\$	3.200		\$	-		\$ -		\$ -		\$ -
	ISO 4762 - M12x30 -30C	Mundial de tornillos	\$	200	8	\$	1.600		\$	-		\$ -		\$ -		\$ -
	ISO 7380 - M8x20 - 20C	Mundial de tornillos	\$	200	12	\$	2.400		\$	-		\$ -		\$ -		\$ -
	DIN 7991 - M4x10 - 10C	Mundial de tornillos	\$	750	3	\$	2.250	1	\$	750		\$ -		\$ -		\$ -
	ISO 10642 - M3x8 - 8C	Mundial de tornillos	\$	3.950	8	\$	31.600		\$	-		\$ -		\$ -		\$ -
	ISO 10642 - M5x30 - 30C	Mundial de tornillos	\$	3.950	8	\$	31.600		\$	-		\$ -		\$ -		\$ -
	ISO 10642 - M8x25 - 25C	Mundial de tornillos	\$	3.950	4	\$	15.800		\$	-		\$ -		\$ -		\$ -
	ISO 4034 - M8 -N	Mundial de tornillos	\$	500	5	\$	2.500		\$	-		\$ -		\$ -		\$ -
	HNUT 0.3750-24-D-N	Mundial de tornillos	\$	1.200		\$	-		\$	-	4	\$ 4.800		\$ -		\$ -
	ANSI B18.2.4.5M - M8x1.25-D-C	Mundial de tornillos	\$	900		\$	-	1	\$	900		\$ -		\$ -		\$ -
	ISO 4032 - M10 - D - N	Mundial de tornillos	\$	400	24	\$	9.600		\$	-		\$ -		\$ -		\$ -
	ISO 4032 - M4 -W	Mundial de tornillos	\$	400	1	\$	400		\$	-		\$ -		\$ -		\$ -
TUERCAS	ISO 4032 - M4 - W - N	Mundial de tornillos	\$	400	2	\$	800		\$	-	4	\$ 1.600		\$ -		\$ -
	ISO 4032 - M5 - W - N	Mundial de tornillos	\$	400	2	\$	800	24	\$	9.600		\$ -		\$ -	8	\$ 3.200
	ISO 4032 - M6 - D - N	Mundial de tornillos	\$	400	4	\$	1.600	10	\$	4.000	8	\$ 3.200		\$ -		\$ -
	ISO 4032 - M8 - D - N	Mundial de tornillos	\$	400	7	\$	2.800	2	\$	800		\$ -		\$ -	8	\$ 3.200
	ISO 4032 - M12 - D - N	Mundial de tornillos	\$	400	8	\$	3.200		\$	-		\$ -		\$ -		\$ -
	ISO 4161 - M10 - N	Mundial de tornillos	\$	300	2	\$	600		\$	-		\$ -		\$ -		\$ -
	ISO 7089 - 10	Mundial de tornillos	\$	300	48	\$	14.400		\$	-		\$ -		\$ -		\$ -
	ISO 7089 - 6	Mundial de tornillos	\$	300	4	\$	1.200	16	\$	4.800	8	\$ 2.400		\$ -		\$ -
	ISO 7089 - 4	Mundial de tornillos	\$	300		\$	-				8	\$ 2.400		\$ -		\$ -
	ISO 7089 - 5	Mundial de tornillos	\$	300	2	\$	600	32	\$	9.600		\$ -		\$ -	16	\$ 4.800
AD ANDEL AS	ISO 7089 - 8	Mundial de tornillos	\$	300	8	\$	2.400		\$	-		\$ -		\$ -	16	\$ 4.800
ARAIDELAS	ISO 7089 - 12	Mundial de tornillos	\$	300	16	\$	4.800		\$	-		\$ -		\$ -		\$ -
	DIN 128 - A10	Mundial de tornillos	\$	550	24	\$	13.200		\$	-		\$ -		\$ -		\$ -
	DIN 988 - S20x28	Mundial de tornillos	\$	3.150	4	\$	12.600	24	\$	75.600		\$ -		\$ -		\$ -
	DIN 6798 - A8.4	Mundial de tornillos	\$	150		\$	-	2	\$	300		\$ -		\$ -		\$ -
	GN 184-20	ELESA	\$	600	3	\$	1.800		\$	-	1	\$ 600		\$ -		\$ -
CARRILES DE FIJACIÓN	27x18(15)x1100	Mundial de tornillos	\$	1.100		\$	-		\$	-	2	\$ 2.200		\$ -		\$ -
PRECIO TOTAL TORNILLERIA POR SISTEMA						S	200.010		\$ 1	14.550		\$ 31.600		\$ 3.700		\$ 21.400
	PRECIO TOTAL DE TORNILLERIA					\$			2	371.260						

Figura N-4

Costos de elementos de transmisión por sistema

				recio unitario Cant Precio to			SFCC		SE	OMP		SA	MP
	Proveedor	CODIGO	Pre	cio unitario	Cant		Precio total	Cant	Pı	recio total	Cant	Pr	ecio total
GUIA LINEAR	HepcoMotion	AU7634L170+BK7634 (P3,170)S (Carro estandar) M76L896P3 Standard J34 - 1 (Guía plana)	\$	58.650,00	2	\$	117.300,00		\$	-		\$	-
	SKF	PHE L100HUB - 20MM + PHE 100HUB - 20MM + PHE L100UR	\$	24.500,00	1	\$	24.500,00		\$	-		\$	-
ACOPLAMIENTOS	SKF	PHE L095HUB - 15MM + PHE L095HUB - 25MM + PHE L090/095NR	\$	24.500,00	2	\$	49.000,00		\$	-		\$	-
	SKF	PHE L095HUB - 15MM + PHE L095HUB - 25MM + PHE L095NR	\$	24.500,00	1	\$	24.500,00		\$	-		\$	-
	SKF	FY 20 TF - Incluye: soporte FY 504 M y rodamiento YAR 204-2F	\$	2.000,00	4	\$	8.000,00		\$	-		\$	-
UNIDAD DE BODAMIENTO	SKF	UFCB 204 - Soporte: FB204/Y - Rodamiento: UC 204	\$	2.000,00	4	\$	8.000,00		\$	-		\$	-
RODAMIENTO	SKF	FYTB 20 TF - PestañaOvalada - Incluye: Sop. FYTB 504 M; Rod. YAR 204-2F	\$	2.000,00	4	\$	8.000,00		\$	-		\$	-
	SKF	R0668 040 00	\$	2.000,00	4	\$	8.000,00		\$	-		\$	-
	SKF	REF:61800-2RS1	\$	650,00		\$	-	2	\$	1.300,00			
RODAMIENTOS	SKF	6003-2RSH - Rodamiento rígido de una hilera de bolas, sello rozante en ambos lados	\$	650,00		\$	-		\$	-	3	\$	1.950,00
	Cadenas y Bandas S.A.S	DIN 6885 - A 6x6x32	\$	100,00	1	\$	100,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 6885 A - 5x5x12	\$	100,00	1	\$	100,00	1	\$	100,00		\$	-
CHAVETAS	Cadenas y Bandas S.A.S	DIN 6885 - A 5x5x16	\$	100,00	1	\$	100,00		\$	-		\$	-
CHITCHE	Cadenas y Bandas S.A.S	DIN 6885 - A 5x5x20	\$	100,00	2	\$	200,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 6885 A - 4x4x14	\$	100,00	3	\$	300,00		\$	-	6	\$	600,00
	Cadenas y Bandas S.A.S	DIN 6885 A - 6x6x16 (parallel key)	\$	100,00		\$	-		\$	-	2	\$	200,00
CADENA	Cadenas y Bandas S.A.S	DIN 8188 04C-1 (ASA 25) - Long aprox: 2114,55 mm (333 pasos) - Cadena de rodillos sencilla serie americana ANSI B29.1	\$	60.000,00	1	\$	60.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ANSI B29.1-25-L=2857.5 (454 pasos)	\$	75.000,00		\$	-	1	\$	75.000,00		\$	-

CATARINAS	Cadenas y Bandas S.A.S	DIN 8192 - B 21Z 04C-1 (ASA 25)	\$	35.000,00	1	\$	35.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	25 dientes tipo B	\$	40.000,00		\$	-	2	\$	80.000,00		\$	-
	Cadenas y Bandas S.A.S	DIN 8192 - B 25Z 04C-1 (ASA 25) - Piñón	\$ 40,000,00		¢	\$ -		¢		6	¢	240.000.00	
		sencillo serie americana tipo B, 25 dientes	\$ 40.000,00		э			3	-	0	9	240.000,00	
ANILLOS DE RETENCIÓN	Cadenas y Bandas S.A.S	DIN - 471 - 10 x 1	\$	100,00	7	\$	700,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN - 471 - 5 x 0.6	\$	100,00	7	\$	700,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 471 - 12 x 1	\$	100,00	3	\$	300,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 471 - 17x1	\$	100,00	4	\$	400,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 471 - 30x1.5	\$	100,00	1	\$	100,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 471 - 9 x 1	\$	100,00	1	\$	100,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 471 14x1	\$	100,00		\$	-	1	\$	100,00		\$	-
	Cadenas y Bandas S.A.S	DIN 471 - 20x1.2	\$	100,00	6	\$	600,00		\$	-	6	\$	600,00
	Cadenas y Bandas S.A.S	DIN 471 - 17x1	\$	100,00	4	\$	400,00		\$	-	4	\$	400,00
	Cadenas y Bandas S.A.S	DIN 472 - 35X1.5	\$	3.950,00	4	\$	15.800,00		\$	-	4	\$	15.800,00
PASADORES	Cadenas y Bandas S.A.S	ISO 1234 - 2x10 - C	\$	4.950,00	4	\$	19.800,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 1234 - 1.6x8 - C	\$	4.950,00	4	\$	19.800,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2338 - 2 h8x10 - St	\$	17.000,00	4	\$	68.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2338 - 1 h8x6 - St	\$	17.000,00	4	\$	68.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2341 - B - 8x45x2 - St	\$	8.000,00	4	\$	32.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2341 - B - 4x40x1 - St	\$	8.000,00	4	\$	32.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2341 - B - 6x55x1.6 - St	\$	8.000,00	4	\$	32.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	ISO 2341 - B - 8x50x2 - St	\$	8.000,00	4	\$	32.000,00		\$	-		\$	-
	Cadenas y Bandas S.A.S	DIN 7341-A3x14-St-AF-14.4	\$	6.500,00		\$	-	2	\$	13.000,00		\$	-
	Cadenas y Bandas S.A.S	DIN 7341-A3x14-St-AF-12.8	\$	6.500,00	-	\$	-	2	\$	13.000,00		\$	-
MOTORES ELEMENTOS DE POSICIONAMIENTO	SIEMENS	1FG1601-1QD43-4AT1-Z											
		D11+G23+K08+N23 - Servomotorreductor		1	\$ 4.800.000,00			\$-					
		helicoidal de tornillo sin fin tipo High	\$ 4.800.000,00				\$			\$	-		
		Dynamic - 1FG1604-1PF43-2AV1-Z											
	000000000	B02+D11+G23+G34+K08+K23+N23							6 7 000 000 00			<u>_</u>	
	SIEMENS	1FK/042-2AC/1-1RB0-Z-B02+N05+Q31	\$ 7	.000.000,00		\$	-	1	\$	/.000.000,00		\$	-
	ELESA	GN 924-125-K12-R-SW	\$	213.500,00	3	\$	640.500,00		\$	-	1	\$	213.500,00
	ELESA	DD51 - AN - 01.00 - D - C2 - LB (Código de Fábrica: CE.84007 - LB)	\$	136.500,00	3	\$	409.500,00		\$	-	1	\$	136.500,00
		PRECIO TOTAL TRASMISIÓN POR SISTEMA				\$	6.515.800,00		\$ '	7.182.500,00		\$	609.550,00
		PRECIO TOTAL TRANSMISIÓN				\$	14.307.850,00						

Figura N-5

Costos de elementos de neumática por sistema

				SFCC		SDOMP	SGDAC		
	CODIGO	Precio unitario	Cant	Precio total	Cant	Precio total	Cant	Precio total	
ACTUADORES DE GIRO	CRB1LW100-180SE-XF + P411050-5	\$ 2.133.300,00	2	\$ 4.266.600,00		\$ -		\$-	
	(Horquilla hembra)GKM10-20	\$ 28.100,00	1	\$ 28.100,00		s -		\$-	
	(Cilindro estandar)C85N10-25C (ISO 6432)	\$ 390.500,00	1	\$ 390.500,00		\$ -		\$ -	
	(Horquilla hembra) GKM4-8	\$ 28.100,00	1	\$ 28.100,00		\$ -		\$ -	
CILINDROS	(Cilindro estandar)C85N10-25C (ISO 6432)	\$ 390.500,00	1	\$ 390.500,00		\$ -		\$ -	
	(Horquilla hembra)GKM10-20	\$ 28.100,00	2	\$ 56.200,00		\$ -		\$ -	
	(Cilindro estandar)C85N25-25CW	\$ 390.500,00	2	\$ 781.000,00		\$ -		\$ -	
	(Cilindro guiado) MGPL25-150AZ	\$ 117.000,00		\$ -	1	\$ 117.000,00		\$ -	
VENTOSAS	ZPT63HBSJF25_B01_A18	\$ 4.700.000,00		\$ -			1	\$ 4.700.000,00	
VENIOSAS	ZPT 40BSJ10-B01-A14	\$ 285.700,00		s -	4	\$ 1.142.800,00		\$-	
EYECTOR	ZZK202A_A2L_BD_ZK2H15K5PLA_06_P	\$ 3.920.000,00		s -			1	\$ 3.920.000,00	
TANQUE	VBAT38S1-E-X105	\$ 7.071.000,00					1	\$ 7.071.000,00	
BLOQUE DE ELECTROVÁLVULAS	VVSQC41-04C8SNB-S	\$ 2.500.000,00					1	\$ 2.500.000,00	
VÁLVULA 3 VÍAS	VPA542-1-03A	\$ 146.000,00					1	\$ 146.000,00	
UNIDAD FRL	AC20-01G-S-36-A	\$ 850.000,00					1	\$ 850.000,00	
MANGUERAS	TS806BU-20	\$ 66.000,00		\$ -	1	\$ 66.000,00		\$ -	
BLOQUE + EYECTOR	ZZK204A-A1F-B + ZK2 C12J5ALA-08	\$ 468.600,00		\$ -	1	\$ 468.600,00		\$ -	
PRECIO TOTAL NEUMÁTICA POR SISTEMA				\$ 5.941.000,00		\$ 1.794.400,00		\$ 19.187.000,00	
			\$ 26.922.400,00						

Nota. La cotización se obtuvo de las empresas SMC y KEASER.

Sección N.2. Costo actual del pago de los trabajadores de una empresa

A continuación, se presentan el costo actual del pago a los empleados de una empresa en Colombia en base al Salario Mínimo Legal Vigente (SMLV). Ver Tabla N-1.

Tabla N-1

Costo anual del pago de empleados en una empresa en Colombia

SMLV mensual	\$ 1,300,000.00
SMLV anual	\$ 15,600,000.00
Transporte	\$ 1,872,000.00
Salud	\$ 1,326,000.00
ARL	\$ 2,496,000.00
Cesantías	\$ 1,092,000.00
Intereses de Cesantías	\$ 156,000.00
Prima	\$ 1,300,000.00
Vacaciones	\$ 650,000.00
Contribuciones parafiscales	\$ 117,000.00
Valor total anual	\$ 25,909,000.00

Nota. Adaptado de 'Esto le costará a una empresa contratar a un trabajador que gana el mínimo

en 2024', Portafolio, 2024.

Apéndice O. Planos de la máquina