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formación.

Al profesor Henry Arguello por brindarme sus consejos y por ofrecerme la oportunidad de ser

parte del grupo de investigación HDSP

A los integrantes del grupo HDSP por todo el apoyo brindado en mi formación académica y pro-

fesional.



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 4

Table of Contents

Introduction 14

1 Objectives 18

2 Spectral Imaging 19

2.1 Compressive Spectral Imaging 20

2.1.1 CASSI 21

2.1.2 MCFA 25

3 CSI Fusion Reconstruction Process 28

3.1 Traditional reconstruction algorithms 28

3.2 Deep Learning-Based Algorithms 29

3.3 Coded Aperture Design 33

3.4 End-to-End Optimization 33

4 Unrolling E2E Optimization for CSI Fusion 35

4.1 Layer Modeling of the Optical Systems 36

4.2 Unrolling Fusion Network 37

4.3 Deep spatial-spectral prior network 40

4.4 Loss Function 42



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 5

5 Simulation Results 46

5.1 Datasets and pre-processing 46

5.1.1 ARAD dataset: 46

5.1.2 ICVL dataset: 46

5.2 Metrics: 49

5.3 Comparison methods 50

5.4 Simulation Configuration 51

5.5 Simulation results for the ICVL dataset 51

5.6 Simulation results for the ARAD dataset 53

5.7 Visual Results and Spectra Reconstruction 55

5.8 Trained coded apertures and color filter array 56

6 Experimental Set-Up and Real Data Validation 58

6.1 Optical elements 58

6.2 Assembly of the dual-arm system 61

6.3 Calibration process 62

6.4 Scene capturing 65

6.4.1 MCFA 65

6.4.2 CASSI 65

6.5 Post-processing 66

6.6 Inference of the proposed reconstruction process 68



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 6

6.7 Results with captured data 68

7 Conclusions 70

Bibliographic References 70



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 7

List of Figures

Figure 1 Measurement acquired in single detector integration period for scanning methods

(left) and snapshot system (right). Taken from Hagen and Kudenov (2013) 20

Figure 2 Illustration of the high order modeling of CASSI. For a slice s of the input

source, a single voxel impinges up to 3 pixel in the detector 24

Figure 3 Scheme of CASSI optical architecture (a). Structure of the high-order sensing

matrix for M = N = 6 and L = 3 25

Figure 4 a) Scheme of the MCFA acquisition system. (b) Sensing matrix of a MCFA

with M = N = 6 and L = 3 27

Figure 5 Deep Learning approach for inverse problems, where the input of a CNN is

the coded measurements of a target scene, and the output is an estimation of the target

image. The network’s parameters θ are updated by computing the loss of the estimated

image and the ground truth target image. Black arrows represent the forward pass, and

orange arrows represent the backpropagation process of the training 30

Figure 6 Overview the unrolling algorithm, in which an iterative (left) algorithm is ’un-

rolled’ into a structured neural network where each stage of the network is iteration

and in every stage there are trainable parameters that are learned in the backpropaga-

tion process from the training dataset. 31



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 8

Figure 7 E2E approach reconstruction task. The optical system is jointly updated with

the CNN parameters in each training step for E2E learning of the computational ima-

ging system. Black arrows represent the forward pass and orange arrows represent the

backpropagation process of the training 35

Figure 8 Overview of the proposed E2E unrolled network for CSI fusion. (a) The CSI

systems are modeled as NN layer where the customizable (CFA in MCFA and CA in

CASSI) are updated in each backward pass according to the loss function values. (b)

the proposed optimization inspired fusion network for K iterations. 35

Figure 9 Differentiable regularization function for constraining the trainable parameters

of the sensing layers to 0 or 1 37

Figure 10 Recursion of the unrolling algorithm where in each stage is learned an optimal

proximal operator Sθ k and the parameters λ k and µk 40

Figure 11 Deep prior network. Conformed by a encoder-decoder architecture for the spa-

tial resolution and a spectral refinement layer. 41

Figure 12 RGB representation of 16 samples of the ARAD dataset 47

Figure 13 RGB representation of 16 samples of the ICVL dataset 48

Figure 14 Metrics of the reconstruction quality along the stages of the proposed unro-

lling network. The superiority in the convergence of the algorithm is notorious in the

proposedT for the ICVL dataset 53



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 9

Figure 15 Metrics of the reconstruction quality along the stages of the proposed unro-

lling network. The superiority in the convergence of the algorithm is notorious in the

proposedT 54

Figure 16 False RGB visualization of a test image of both datasets and the reconstructed

spectra of a representative point in each image 55

Figure 17 Trained coded apertures (left) and color filter arrays (right) with different trai-

ned models 57

Figure 18 Optical architecture of the experimental prototype of the dual CSI system 58

Figure 19 Illustration of the DMD operation. The 0 state sets the angle of the micromirror

in which that part of the scene is blocked to the sensor, and the 1 state reflects the light

into the sensor 60

Figure 20 Structure of the monochromator. It has a light source, a bank of optical filters

which are adjusted according to the wavelength range which is going to be used, the

monochromator itself which contains a set of diffractive grating which decompose

the white light of the source and selects the desired wavelength. The output light is

transported through an optic fiber to the scene. Two slits limit the bandwidth of the

emitted light 60

Figure 21 Alignment of the optical architecture with the DMD inclination angle 63

Figure 22 Characterization curve of the prism 64



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 10

Figure 23 Scheme of the MCFA acquisition process for 3 spectral bands (red, green, and

blue), wherein each shot the scene is illuminated with a determined monochromatic

light and a coded aperture associated with the wavelength of the light source is used to

codify the scene, then, all the measurements are concatenated and sum in the spectral

dimension. 66

Figure 24 Post processing of the raw acquired data. The region of interest is cropped,

then a normalizing by a white spectral signature for each sensor is used, then the

coded measurements are sum in the third dimension to obtain the final compressive

measurements 67

Figure 25 Calibrated Non-designed CA (random distribution) and designed obtained with

a E2E approach for the CA-CASSI and CA-CFA, respectively. 67

Figure 26 Visual representation of the compressive measurements and the reconstructed

images using the PnP algorithm for the individual measurements and the proposed

unrolled fusion network. (Top) shows the results obtained with the designed CAs and

(bottom) with non-desing CAs 68

Figure 27 Reconstructed spectral signature for two random points in the image. The

ground truth was sensed illuminated band-to-band with a commercial monochromator.

Also, the SAM metric is shown in parenthesis. 69



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 11

List of Tables

Table 1 Layers and its description of the deep spatial-spectral prior network 42

Table 2 Quantitative results of the test data reconstruction quality for the ICVL dataset 52

Table 3 Quantitative results of the test dataset reconstruction quality for the ARAD dataset 54

Table 4 List of the optical elements employed in the experimental prototype 59



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 12

Resumen

Tı́tulo: Montaje, fusion y diseño de aperturas codificadas de dos sistemas de adquisición de imágenes espectrales
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Descripción: La adquisición imágenes espectrales compresivas (CSI) reducen la cantidad de datos capturados me-

diante el uso de proyecciones 2D de la señal 3D original; en consecuencia, es necesario abordar un proceso de re-

cuperación para obtener la señal original. La sistemas CSI sacrifican la resolución espacial para conseguir una alta

resolución espectral o viceversa. Por ello, enfoques recientes se basan en la fusión de dos sistemas CSI para obtener

una alta resolución espectral-espacial. Los sistemas de detección compresiva suelen tener un conjunto de parámetros

fı́sicos, como las aperturas codificadas, que pueden diseñarse para mejorar la calidad de la reconstrucción. El pre-

sente proyecto de grado propone un enfoque de aprendizaje profundo de extremo a extremo para diseñar, ensamblar

y fusionar dos sistemas CSI, la arquitectura hiperspectral CASSI (coded aperture snapshot spectral imager) con alta

resolución espectral y baja resolución espacial y una arquitectura multiespectral de baja resolución espectral y alta

resolución espacial. La metodologı́a propuesta consiste en redes neuronales profundas que aprenden una apertura co-

dificada óptima del sistema CASSI y la matriz de filtros de color de la arquitectura multiespectral restringiendo el

proceso de aprendizaje a valores implementables, luego una red neuronal profunda desenrollada realiza la fusión de

las dos medidas. Para validar los resultados de simulación, estos sistemas se montarán y calibrarán en el laboratorio

óptico-electrónico para capturar escenas reales.

* Trabajo de grado
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based on the fusion of two CSI systems to obtain a high-spectral-spatial resolution. The compressive sensing systems

usually have a set of physical parameters such as coded apertures designed to improve the reconstruction quality. To

address this issue, this degree project proposes an end-to-end deep learning approach to design, assemble, and fusion

two CSI systems, the hyperspectral CASSI (coded aperture snapshot spectral imager) architecture with high spectral

resolution and low spatial resolution and a multispectral patterned architecture with low-spectral resolution and high-

spatial-resolution. The proposed methodology consists of deep neural networks which learn an optimal the coded

aperture of the CASSI system and the color filter array of the multispectral patterned constraining the learning process

to implementable values. An unrolling deep neural network performs the fusion of the two compressive measurements.

To validate the simulation results, these systems will be assembled and calibrated in the optical-electronic laboratory

to capture real scenes.
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Introduction

Spectral imaging (SI) consists of acquiring 2D images or spectral bands across several spec-

tral points of the electromagnetic field, which conforms to a 3D data cube. This information allows

estimating unique characteristics and distribution of the different materials in a scene. Hence, spec-

tral image information is valuable in medical applications Li et al. (2016), remote sensing Goven-

der et al. (2007), art conservation Fischer and Kakoulli (2006), among others. Spectral images

can be classified into two groups depending on their spatial and spectral resolution; multispectral

images, which have high spatial resolution and low spectral resolution, and hyperspectral images,

which have a low spatial resolution but high spectral resolution.

Spectral imaging scanning techniques such as whisk-broom Vane et al. (1993), push-broom

Gupta and Hartley (1997) or scanning by wavelengthsGat (2000), acquire the 3D data cube by

scanning a single point, a line of the scene, or 2D images at specific wavelengths, respectively.

These sensing methods are considered low speed at capturing an objective since they only scan

a piece of a target, and therefore for capturing the entire scene, it is required to do several shots,

which slows down the imaging process Hagen and Kudenov (2013). Moreover, the amount of data

acquired with scanning methods is significantly high and increases processing and storage costs.

On the other hand, to lighten the amount of data captured and decrease the scene’s imaging

process, compressive spectral imaging (CSI) aims to capture simultaneously spatial and spectral

information by acquiring a 2D projection of the original 3D objective data cube Arce et al. (2014).
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These methods exploit the compressive sensing theory Candes and Wakin (2008) which states

that the original signal can be recovered from fewer measurements than the proposed in Nyquist-

Shannon theorem Jerri (1977), under the condition that the signal is sparse on some basis Candes

and Romberg (2007). The compression ratio in CSI Many CSI architectures have been proposed

Hagen and Kudenov (2013) with different spatial and spectral resolution. The CSI process principle

is to modulate the spatial and spectral information; a coded aperture usually performs the spatial

modulation, and the spectral encoding process is carried out by a dispersive element Wagadarikar

et al. (2008). For instance, the Coded Aperture Snapshot Spectral Imager (CASSI) Wagadarikar

et al. (2008) exploits a rich spectral resolution with the dispersive element but sacrifice spatial re-

solution, while another CSI system is the Multispectral Color Filter Array (MCFA) Rueda et al.

(2016) which encodes the spatial and spectral information using a color filter array usually obtai-

ned high spatial resolution sacrificing spectral bands.

An essential stage in CSI is the recovery algorithm that estimates the original data cube from

the compressive measurements, and this is an ill-posed inverse problem because the dimension of

the projections is much smaller than the original HSI dimension Foucart and Rauhut (2013). Tra-

ditional methods use convex optimization algorithms Bioucas-Dias and Figueiredo (2007); Figuei-

redo et al. (2007) to minimize the data fidelity error and a regularization term to solve the ill-posed

problem. Usually, this term assumes the target’s sparsity in a given representation basis Arce et al.

(2014). The recent developments of deep learning-based methods to solve inverse problems Ongie

et al. (2020) have shown remarkable performance. Consequently, many works have been proposed
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into the CS framework Xiong et al. (2017); Li et al. (2017); Qiao et al. (2020). These methods are

based on pure deep learning architectures which suffer from a lack of interpretability in the recons-

truction process. To address this problem, the unrolling algorithm Monga et al. (2021) has been

proposed. This algorithm gives a structured architecture of the deep neural network based on an

iterative optimization method. Notably, in CSI, unrolling-based reconstruction networks have been

proposed in Wang et al. (2019a, 2020a). Also, it has been proven in Correa et al. (2016); Arguello

and Arce (2014) that the design of the coded aperture, instead of being randomly distributed, of the

CSI improves the quality of the estimated data cube using criteria such as the restricted isometry

property, which entails the optimal conditions on which a correct reconstruction can be achieved

and also the incoherence of the sensing matrix. The representation basis is used as coded aperture

criteria. In Wang et al. (2019) is proposed a joint coded aperture design and the reconstruction

process in a deep learning end-to-end approach.

A limitation of SI is the spatial-spectral resolution which one scarifies one for the other Am-

ro et al. (2011). A highly studied strategy is the fusion of two spectral images with different spatial

and spectral resolutions to overcome this problem. For instance HSI and MSI fusion is one of the

most common example of fusion Wei et al. (2015); Yokoya et al. (2012); Gomez et al. (2001).

Compressive Spectral Image Fusion (CSIF) has also been studied in Vargas et al. (2018); Gelvez

and Arguello (2020); Vargas et al. (2017) to reconstruct a high spatial-spectral resolution from two

CSI systems with different encoding strategies. Moreover, deep learning approaches have propo-

sed to solve the fusion issue in Xie et al. (2019); Yang et al. (2018a).
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Consequently, in this proposal, we considered a deep learning end-to-end optimization ap-

proach for the design and fusion of two CSI systems, one with high spectral resolution and low

spatial resolution and the other high spatial resolution and low spectral resolution, to obtain a high

spectral and spatial resolution. To design the CSI system, those have to be modeled as a layer of

a neural network, leading to a differentiable parameterization of the sensing matrices constraining

the learning process to implantable values and an unrolling-based network that performs the fusion

of the two compressive measurements.
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1. Objectives

General objective

To assemble, fuse and design the coded apertures of two opto-electronics systems, a hy-

perspectral CASSI (coded aperture snapshot spectral imager), and a multispectral patterned

architecture using a deep learning end-to-end optimization.

Specific objectives

To model mathematically two spectral imaging systems using a derivable parameterization

of the coded aperture and the color filter array to be incorporated as a layer in a neural

network under implementable constraints;

To design and implement a deep neural network architecture to the fusion of the CASSI and

patterned measurements. Compare the obtained results with state of the art methods.

To assemble and calibrate a prototype in the optical laboratory for the fusion of the two

optoelectronic systems employing the trained designs.

To evaluate the performance of the fusion system with real data
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2. Spectral Imaging

The spatial and spectral information provided by the spectral images allows the characteri-

zation of the different materials in a scene, which have been used to perform important computer

vision tasks such as object classification Jácome et al. (2021), image segmentation Camps-Valls

et al. (2014), salient object detection Zhang et al. (2018) and object tracking Hien Van Nguyen

et al. (2010). These tasks have been widely applied in several fields like medical applications Li

et al. (2016), earth observation Datcu and Seidel (2005), food quality Qin et al. (2013) and sur-

veillance Denman et al. (2010) among others. Traditional spectral imaging sensors scan portions

of the spatial-spectral scene in each detector integration period and then collect them into a single

data cube. For instance, line scanning systems such as the whisk-broom system Vane et al. (1993)

which captures only a point or pixel of the scene with its respective spectral signature and then

scan all the desired pixels, push-broom sensor Gupta and Hartley (1997) acquires a line of the

scene with its respective spectral signature which results in 2D images which then are stacked to

conform to the 3D data cube. Another traditional sensors are the tunable filter imagers Gat (2000).

These sensors capture the entire spatial dimension at a specific wavelength in each detector inte-

gration period, the filters vary to obtain the number of spectral bands desired, and then all the 2D

images are stacked in the spectral dimension to create the 3D data cube. The main drawbacks with

these methods are the large amount of data acquired and the imaging time, which increases propor-

tionally to the desired spatial and spectral resolution. On the other hand, snapshot imaging systems

capture the full spatial and spectral information in a single detector integration period. Figure 1
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shows the comparison of the measurements acquired with the scanning and snapshot methods.

Figure 1. Measurement acquired in single detector integration period for scanning methods (left)
and snapshot system (right). Taken from Hagen and Kudenov (2013)

2.1. Compressive Spectral Imaging

To address the large amount of data acquired by traditional SI sensors, CSI theory aims to

compress the spatial and spatial data directly from the acquisition process. This approach is ins-

pired by the developments of the compressive sensing (CS) theory Candes and Wakin (2008). CS

dictates that it is possible to recover a signal from fewer samples than those required in traditio-

nal sampling theories Jerri (1977) if the signal is sparse and the sensing meets with incoherence.

The first one stands that the signal is sparse on some proper basis, and the second one refers that

the sensing matrix and the representation basis of the signal have low correlation. Candes and

Romberg (2007). In CSI, the sparsity in the spectral images has been proved using the Kronecker

product of wavelet and cosine transform Arguello and Arce (2014), and the incoherence related to

the sensing process has been demonstrated in Arguello and Arce (2012) for CASSI. The sensing

process in CSI can be modeled as a linear matrix multiplication: y = Hf+ω , where f ∈ RMNL is
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the vectorization of the original data cube, M and N are spatial dimensions and L is the number

of spectral bands, H is the sensing matrix, y is the compressive measurements, ω is the noise of

the sensor. The matrix H and its dimension changes depending on the CSI architecture, likewise

the dimension of the compressive measurements y. The next subsections will describe two CSI

architectures employed for the fusion proposal; CASSI, which allows a high spectral resolution,

and MCFA, which allows high spatial resolution.

2.1.1. CASSI. The CASSI architecture is composed of three main elements: The

first one is coded aperture such as spatial light modulator (SLM) such as a digital micromirror

device (DMD) Galvis et al. (2015) or a liquid crystal SLM Zhu et al. (2013), a dipersive element,

a prism or a diffractive grating, and a focal plane array (FPA). For an input light field f (x,y,λ ),

where (x,y) are the spatial coordinates and λ stands for the spectral coordinate, a coded aperture

Tc(x,y) encodes the spatial information by blocking or unblocking some pixels of the scene, then,

the coded field is sheared into a spatial axis by the dispersive element, which then impinges onto a

FPA detector. A continuous CASSI model can be expressed as,

yc(x,y,λ ) =
∫

Λ

∫∫
Tc(x′,y′) f (x′,y′,λ )h(x′− x−S(λ ),y′− y)dx′dy′dλ , (1)

Λ is the spectral range sensitivity of the detector, h(·) is the optical impulse response, S(λ )

represents the dispersion function of the dispersive element. Traditional discretization modeling

of the CASSI system assumes that one pixel on the FPA detector is just impinged by one sheared

voxel; however, authors in Arguello et al. (2013) propose a high-order CASSI model which dictates
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that one sheared voxel affects up to three neighboring pixels on the FPA, the modeling of this effect

is addressed in the calibration process. Following the modeling in Arguello et al. (2013), a voxel

of the input light source is given by

Fi, j,k =
∫∫∫

f (x,y,λ )× rect

(
x

∆hs
− i,

y
∆hs
− j,

λ

∆hλ

− k

)
dxdydλ , (2)

where i, j = 1, ...,M, , j = 1, ...,N are spatial indexes and k = 1, ...,L is the spectral index,

∆hs is the pitch size of the high spatial resolution detector and ∆hλ is the spectral high spectral

resolution. The coded aperture can be expressed as

Tc(x,y) = ∑
i, j

Tci, j × rect
(

x
∆ls
− t,

y
∆ls
−q
)
, (3)

where ∆ls is the low spatial resolution sensor pitch. We assume that ∆ls > ∆hs. Therefore, the

discrete version of the measurements are given by

yci, j =
∫∫∫

f (x+S(λ ),y,λ )× rect

(
x

∆hs
− i,

y
∆hs
− j,

λ

∆hλ

− k

)

×∑
i, j

Tci, j × rect
(

x
∆ls
− i,

y
∆ls
− j
)

dxdydλ . (4)

Notice that ∆ls and ∆hs can be related as ∆l = rs∆h where rs ≥ 1 is a integer which stands for

up-sampling factor. The resolution difference between the input source and the coded aperture,
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equation (13) is affected as

yci, j = ∑
k

∫∫∫
∑
t,q

f (x+S(λ ),y,λ )× rect

(
x

∆hs
− i− t,

y
∆hs
− j−q,

λ

∆hλ

− k

)

×∑
i, j

Tci, j × rect
(

x
∆ls
− i,

y
∆ls
− j
)

dxdydλ , (5)

where the variables t,q are bounded as

1+(i−1)rs ≤ t ≤ irs

1+( j−1)rs ≤ q≤ jrs, (6)

therefore, the discrete model of (1.1) is depicted as

yci, j =
L−1

∑
k=0

Tci, j

irs

∑
t=1+(i−1)rs

irs

∑
t=1+(i−1)rs

Fi−t, j−q−k,k, (7)

where, the shifting in the voxel indexes is due to the dispersion function S(λ ). The high-order

model define three regions R0.R1,R2 on the sheared voxel which will impinges one FPA pixel. The

energy distribution due to this effect is modeled the weights wi, j,k,u where u = 0,1,2 stands for the

region of the model, see Figure 2. Then, discrete high-order CASSI model is given by

yci, j =
L−1

∑
k=0

2

∑
u=0

Tci, j

irs

∑
t=1+(i−1)rs

jrs

∑
2=1+( j−1)rs

wi, j,k,uFi−t, j−q−k−u,k. (8)

The previous discrete model can be expressed in a matrix-vector product yielding in the following
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Figure 2. Illustration of the high order modeling of CASSI. For a slice s of the input source, a
single voxel impinges up to 3 pixel in the detector

expression

yc = Hcf+ωc, (9)

where f ∈ RMNL is the vecotrization of the high spatial-spectral resolution image, denote Md = M
rs

and Nd = N
rs

the down-sampled version of the spatial dimensions, yc ∈ RMd(Nd+L−1) is the com-

pressed measurements, the sensing matrix Hc ∈ RMd(Nd+L−1)K×MNL which is composed as:

Hc = PTcDc, (10)

where Dc ∈ RMdNdL×MNL is the spatial decimation operator which down-sample the dimension

of the measurements by the factor rs, P ∈ RMd(Nd+L−1)×MdNdL models the dispersion effect con-

sidering the high-order CASSI modeling and, Tc ∈ {0,1}Md(Nd+L−1)×MdNdL diagonalized coded

aperture entries tc ∈ {0,1}MdNd . The structure of the sensing matrix Hc for M = N = 6 and, L = 3.

Notice that the three diagonal structures of Hc is due to the three regions of the high-order model,
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Figure 3. Scheme of CASSI optical architecture (a). Structure of the high-order sensing matrix for
M = N = 6 and L = 3

and their intensities depend on the weights wi, j,k,u.

2.1.2. MCFA. The idea behind this CSI architecture is an extension of the com-

mercial color imaging sensors which use a color filter pattern, such as the Bayer pattern Bayer

(1976), particularly, this pattern uses three different filters which are related to the red, green, and

blue spectral responses and then performs a demosaicing process to reconstruct the three channels

RGB image Kimmel (1999). Predictably, to acquire more than three channels, more different filters

have to be used in the array. The important aspect of this sensing method is that the spatial and

spectral information is encoded simultaneously, the first one by the spatial distribution of the color

filters, the second through the spectral responses of the filters themselves. For this purpose, many

color filter arrays have been proposed Lapray et al. (2014). Then the coded field is integrated into

an FPA detector (see Figure. 4(a)). A continuous model of the sensing process is given by

ym(x,y) =
∫

Λ

∫∫
Tm(x′,y′,λ ) f (x′,y′,λ )h(x′− x,y′− y)dx′dy′dλ , (11)
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where Tm(x,y,λ ) is the color filter array, f (x,y,λ ) is the input light source and h(·) is the corres-

ponding optical impulse response. The color filter array can be expressed in terms of its discretized

version as

Tm(x,y,λ ) = ∑
i, j,k

Tmi, j,k× rect
(

x
∆hs
− j,

y
∆hs
− i,

λ

∆lλ
− k
)
, (12)

where ∆lλ is the low spectral resolution factor, and using the voxel description of the input light

source in (2), the discrete expression of the measurements is given by

ymi, j =∑
k

∫∫∫
f (x,y,λ )× rect

(
x

∆hs
− i,

y
∆hs
− j,

λ

∆hλ

− k

)

×∑
i, j

Tmi, j × rect
(

x
∆hs
− i,

y
∆hs
− j,

λ

∆lλ
− k
)

dxdydλ , (13)

considering the effect of the different spectral resolution of the color coded aperture and the input

source given by ∆lλ = rλ ∆hλ where the integer rλ ≥ 1 is the spectral Up-sampling factor. Then,

the discrete measurements on the FPA detector is given by

ymi, j =

L
r
λ

∑
k=0

Tmi, j,k

krλ

∑
p=1+(k−1)rλ

Fi, j,k−p, (14)

which can be expressed in a matrix-vector product such as

ym = Hmf+ωm, (15)
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where ym ∈RMN , ωm ∈RMNL is the noise in the sensing process and Hm ∈RMN×MNL is the sensing

matrix which is composed as

Hm = TmDm, (16)

denote Ld =
L
rλ

is the scaled version of the spectral dimension, such as Dm ∈{0,1}MNLd×MNL

is the spectral decimation operator which induces a the factor rλ in the spectral dimension, Tm ∈

{0,1}MN×MNLd is the diagonalization of the color filter array entries tm ∈ {0,1}MNLd . The structure

of Hm is shown in Figure. 4(b) for M = N = 6 and L = 3

Figure 4. a) Scheme of the MCFA acquisition system. (b) Sensing matrix of a MCFA with M =
N = 6 and L = 3
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3. CSI Fusion Reconstruction Process

The reconstruction process after obtaining the compressed measurements is a crucial step in

the CS framework. The high-dimensional signal can be recovered by solving an optimization pro-

blem. Several recovery methods have been proposed, which can be divided into two main groups,

traditional reconstruction methods, and deep learning-based approaches.

3.1. Traditional reconstruction algorithms

These approaches aim to solve the recovery problem by solving an optimization optimiza-

tion. The reconstruction process is an ill-posed inverse problem since f is greater than the dimen-

sion of y, which entails an undetermined linear system. Therefore, a regularization function is used

to constraints the solution using prior information of the signal. For instance, spectral images are

sparse in Kronecker basis with a 2D wavelet Symmlet-8 basis and the 1D discrete cosine transform

(DCT) Arce et al. (2014). Consequently, the optimization for a compressive measurement is given

by

f̂ = argmin
f
||Hf−y||22 + τR(f), (17)

where R(·) is the regularization function, for instance, the function R(·) is the `1 norm of the

representation coefficients given a sparse transformation. Algorithms based on this approach with

sparsity prior are Figueiredo et al. (2007); Bioucas-Dias and Figueiredo (2007); Beck and Teboulle

(2009); Afonso et al. (2010). Other prior information for spectral imaging are low-rank Gelvez
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et al. (2017) and total variation Yuan (2016) among others. For the CSI fusion reconstruction

problem, the optimization problem can be formulated as

f̂ = argmin
f
||Hmf−ym||22 + ||Hcf−yc||22 + τR(f), (18)

For instance, in Vargas et al. (2018), equation (18) is solved using an Alternating Direction

Method of Multiplier(ADMM) algorithm Boyd et al. (2011) to fuse the compressive measurements

using the CASSI and a Colored-CASSI Arguello and Arce (2014), Gelvez and Arguello (2020)

proposes an ADMM algorithm based on non-local low-rank abundance prior using multispectral

and hyperspectral projections in the CASSI system.

3.2. Deep Learning-Based Algorithms

With the recent developments in deep learning for computer vision tasks Guo et al. (2016),

and specifically in solving inverse problems in imaging Ongie et al. (2020), several works have

been proposed to solve (17) using deep convolutional neural networks (CNN). These methods

leverage many public datasets to increase their performance and generalization, and the inference

of the trained model has lower computational complexity than the traditional recovery algorithms.

Here the optimization formulation is given by

θ̂ = argmin
θ

1
K

K−1

∑
k=0

L (Mθ (Hfk), fk), (19)

where k = 1, . . . ,K are indexes of the training dataset, L (·) is the loss function, Mθ , re-

presents the neural network architecture with trainable parameters θ , which are updated in the
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Figure 5. Deep Learning approach for inverse problems, where the input of a CNN is the coded
measurements of a target scene, and the output is an estimation of the target image. The network’s
parameters θ are updated by computing the loss of the estimated image and the ground truth target
image. Black arrows represent the forward pass, and orange arrows represent the backpropagation
process of the training

back-propagation process, see Figure 5 for a schematic representation. Some approaches have

been proposed in this framework. For instance, authors in Mousavi and Baraniuk (2017) proposed

a CNN to learn the inversion from the compressive measurements into the target signal through

a CNN. In Miao et al. (2019) is proposed a two-stage CNN, a refinement network composed of

a 3D U-Net Ronneberger et al. (2015) and a reconstruction stage which uses self-attention mo-

dules. Despite the remarkable results obtained by these and other works using CNN, there is a

lack of interpretability and flexibility since CNN works as a black box. Then, a combination of

these methods and the traditional recovery algorithms have been proposed. For example, the Plug

and Play algorithm proposed in Yuan et al. (2020) uses denoising priors to solve the optimization

problem. The prior is a pre-trained CNN for the denoising task Tian et al. (2018).

Under these ideas of bringing more flexibility and interpretability to the deep neural net-

work, the unrolling algorithms have attracted enormous attention in several fields to solve ill-posed
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Figure 6. Overview the unrolling algorithm, in which an iterative (left) algorithm is ’unrolled’ into
a structured neural network where each stage of the network is iteration and in every stage there
are trainable parameters that are learned in the backpropagation process from the training dataset.

inverse problems. This framework’s main idea is to give structure to a deep neural network based

on the iterations of an optimization algorithm. This methodology was first proposed in Gregor and

LeCun (2010) where the unrolling algorithm solves a sparse coding problem, but recently it has

been proposed to several areas such as speech recognition, medical imaging, and remote sensing

Monga et al. (2021). Figure. 6 shows a visual overview of the unrolling algorithm. Specifically,

trying to solve (17) in traditional algorithms, requires to performs proximal operators Parikh and

Boyd (2014) in each iteration. These operators are hand-crafted selected depending on the prior

chosen in the algorithm, but in the unrolling algorithm, this operator can be learned using CNN.

Also, optimization parameters chosen through cross-validation or deduced analytically, such as

regularization parameters or gradient steps, can be learned in the training process, yielding in an

end-to-end training of the recovery algorithm. For CSI, several works have adopted this frame-

work. For instance, authors in Wang et al. (2019b) proposed an unrolled network based on a Half

Quadratic Splitting (HQS) formulation of (17) and with a deep spatial and spectral sub-network
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prior, in Wang et al. (2020b) the sub-network prior exploits non-local structures and in Sogabe et al.

(2020) the unrolling network is based in an Alternating Direction Method of Multipliers (ADMM)

algorithm Boyd et al. (2011) and using the same deep spatial and spectral prior of Wang et al.

(2019b).

A deep learning formulation for the CSI fusion problem can be expressed as

θ̂ = argmin
θ

1
K

K−1

∑
k=0

L (Mθ (Hmfk,Hcfk), fk), (20)

For, CSI fusion it has not been proposed works in the deep learning approach, but for

multispectral and hyperspectral image fusion, there have been several proposals, for instance, in

Palsson et al. (2017) the fusion is based on a 3D CNN architecture, and Principal Component

Analysis (PCA) dimensionality reduction, Zhou et al. (2019) uses an encoder network for the

HS image and concatenate the MS image in the latent space of the network, Wang et al. (2020c)

proposed a joint probabilistic generative network composed in a spectral generative network, a

spatial-dependent prior network, and a spatial-spectral variational inference network and Yang

et al. (2018b) uses two deep branches, one extract spatial features from the MS image and the

other extracts features from the spectral data of the HS image, both features are concatenated and

fused using fully connected layers. Finally, unrolling methods have also been used in this field.

For example, in Xie et al. (2020) is proposed an unrolled which takes into account the observation

model and encourage low-rankness of the HS image and they also consider a blind methodology

and in Wang et al. (2019) the network earns the observation model, and an iterative refinement unit
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is used in each optimization stage where features extracted in each step are concatenated at the end

of the network.

Due to the remarkable results in the works aforementioned, in this work, it was decided to

adopt the unrolling framework to reconstruct the data cube from the two compressive measure-

ments.

3.3. Coded Aperture Design

Along with the enormous effort in developing efficient algorithms to solve (17) in CSI pro-

blems, several works have shown the distribution of the coded aperture affects the quality of the

estimated 3D signal. Several design criteria have been used to optimize the coded aperture, the

work in Correa et al. (2016) uses the restricted isometry property (RIP) as design criteria, this is

a crucial property in CS since it determines the minimum number of measurements needed for

correct recovery of the signal, in Arguello and Arce (2014) uses the RIP criteria to optimize the

cut-off frequencies of colored coded apertures, Mejia and Arguello (2018) optimizes the coded

aperture by minimizing its zero singular values and keeping uniform the number the non-zero en-

tries per column and row. The coded aperture design boosts the recovery process and improves the

performance in other computer vision tasks such as classification Hinojosa et al. (2018); Ramirez

et al. (2014).

3.4. End-to-End Optimization

A recent trend in computational imaging is the sensing process’s joint learning and a de-

coder operator to recover the original signal denote as an End-to-End (E2E). The E2E approach

can be seen as a DNN where the first layer simulates the forward model of the optical sensing
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process where some parameters are set as trainable parameters (e.g. coded aperture), constraining

the training of these parameters into an implementable feasible set such as binary values for co-

ded aperture and, the rest of the network is the decoder operator (e.g. CNN, unrolling network, or

others) for a specific task. In each training pass, the decoder weights are updated along with the

sensing trainable parameters, therefore obtaining an optimal sensing parameter design by mini-

mizing the network’s cost function. See Figure 7. Several works have proposed an E2E approach

where optical parameters to be optimized are the height maps of a diffractive lens to 3D object

detection Chang and Wetzstein (2019), monocular depth estimation and super-resolution Sitzmann

et al. (2018), and snapshot spectral imaging and depth estimation Baek et al. (2021). Moreover, the-

se learning capabilities have also been used for optimal coded aperture design Bacca et al. (2020)

for classification task and CSI in Wang et al. (2019) is proposed a joint coded aperture optimization

and reconstruction, where the weights of the sensing layer are the value of the coded aperture and

a binarization function is employed to obtain values of either 0 or 1 for implementation purpose.

The formulation of an E2E CSI can be expressed as

{Ĥ, θ̂}= argmin
{H∈R,θ}

1
K

K−1

∑
k=0

L (Mθ (Hfk), fk), (21)

where R is the feasible set for the sensing matrices due to implementation purpose.
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Figure 7. E2E approach reconstruction task. The optical system is jointly updated with the CNN
parameters in each training step for E2E learning of the computational imaging system. Black
arrows represent the forward pass and orange arrows represent the backpropagation process of the
training

4. Unrolling E2E Optimization for CSI Fusion

Figure 8. Overview of the proposed E2E unrolled network for CSI fusion. (a) The CSI systems are
modeled as NN layer where the customizable (CFA in MCFA and CA in CASSI) are updated in
each backward pass according to the loss function values. (b) the proposed optimization inspired
fusion network for K iterations.

The E2E formulation for CSI fusion with CASSI and MCFA can be expressed as

{Ĥm,Ĥc, θ̂}= argmin
{Hm∈Rm,Hc∈Rc,θ}

1
K

K−1

∑
k=0

L (Mθ (Hmfk,Hcfk), fk), (22)
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where Rm and Rc are the feasible sets for the MCFA and CASSI systems. This constraints

will be detailed in the following section

4.1. Layer Modeling of the Optical Systems

For an E2E approach, the sensing system needs to be modeled as a neural network layer,

where some variables are set as trainable. For this layer modeling of the CASSI and MCFA system,

let the observation model of the CSI fusion be

yc = DcPTcf+ωc

ym = TmDmf+ωm,

the trainable variables are the entries of the coded aperture Tc in CASSI and the colored coded

aperture Tm for MCFA. Then, defining the constraint for the training of these parameters to imple-

mentable values, for both systems, the entries must be in the set of {0,1}, recall that Tm and Tc are

diagonalized matrices of the entries of tm and tc respectively, consequently, the feasible sets Rm

and Rc can be defined as

Rm =
{

tm|tm ∈ {0,1}MNLd
}

Rc =
{

tc|tc ∈ {0,1}MdNd
}
.

To achieve a differential parametrization of this constraint, it was used a regularization
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function on the loss function proposed in Bacca et al. (2021), which is given by:

R(x) = ∑
i
(1−xi)

2(xi)
2, (23)

where the limits of the summation depend on the number of elements in x. Note that the

function R(x) has roots in 0 and 1, then the function is minimized the values xi trend to 0 or 1 as

shown in Figure 9

Figure 9. Differentiable regularization function for constraining the trainable parameters of the
sensing layers to 0 or 1

4.2. Unrolling Fusion Network

In order to give a interpretability of the network Mθ in (22), the proposed unrolling approach

for CSI fusion can be defined as follows. First, let define the optimization problem for the CSI
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fusion

f̂ = argmin
f
||Hmf−ym||22 + ||Hcf−yc||22 + τR(f), (24)

where the effect of the regularization term R(f) is replaced by a spectral-spatial prior network as

explained below. Introducing an auxiliary variable h ∈RMNL and using the half quadratic splitting

(HQS) method as in Wang et al. (2019a), equation (24) can be re-formulated as,

{f̂, ĥ}= argmı́n
f,h

1
2
||Hmf−ym||22 +

1
2
||Hcf−yc||22 + τR(h)+

µ

2
||f−h||22, (25)

where µ is a penalty parameter. The minimization of the two variables f and h can be found by

solving the following sub-problems we have

f̂(k+1) = argmı́n
f

1
2
||Hmfk−ym||22+

1
2
||Hcfk−yc||22 +

µ

2
||f−hk||22, (26)

ĥ(k+1) = argmı́n
h

µ

2
||fk+1−h||22 + τR(h), (27)

where fk and ĥk denotes the estimation of f and h in the iteration k. First, the h sub-problem can be

solved using a proximal operator of the image prior. For instance, if the is prior is the sparsity of the

signal, the proximal operator can be a hard-thresholding operator Blumensath and Davies (2009)
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or a soft-thresholding Beck and Teboulle (2009). Here, the prior is a deep prior which instead of

learning it explicitly, it is only necessary to learn a proximal solver which is a sub-network in the

unrolling network. Therefore, denote Sθ k(·) the deep proximal operator where θ k are parameters

of the CNN in the iteration k, consequently, the iterations of h are given by

h(k+1) = S
θ (k+1)(hk). (28)

Then, the f-problem can be solved using a gradient descent method, where each iteration is

given by

f̂(k+1) = fk−λ [HT
m(Hmfk−ym)+HT

c (Hcfk−yc)+µ(fk−hk)], (29)

with λ as the gradient descent step size. Finally, combining equation (28) and (29) the recursion

of the algorithm is given by

f̂(k+1) = fk−λ
k
[
HT

m(Hmfk−ym)+HT
c (Hcfk−yc)+µ

k(fk−Sθ k(fk)
]
. (30)

Note that the optimization parameters λ and µ also varies in each iteration of the algorithm.

These parameters are also learned in the training of the network yielding in a E2E training of the

reconstruction process. The recursion of (30) is shown in Figure 10. Finally, the initialization of
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Figure 10. Recursion of the unrolling algorithm where in each stage is learned an optimal proximal
operator Sθ k and the parameters λ k and µk

the unrolling network is given by:

f0 =
1
2
(
HT

mym +HT
c yc
)
. (31)

4.3. Deep spatial-spectral prior network

This section will detail the network that performs the proximal mapping in (28). . This net-

work has two parts; one aims to exploit the spatial information, which is a kind of U-Net network

Ronneberger et al. (2015) where has an encoder stage, where some features maps are extracted

from the image until obtaining a latent space and a decoder which uses the features maps of the de-

coder stage by concatenating them into the channel dimension. The second part is a convolutional

layer with dimension 1×1×L which refines the spectral information. A graphical representation

of the deep prior network is shown in Figure. 11. The following table summarizes the layers of the
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Figure 11. Deep prior network. Conformed by a encoder-decoder architecture for the spatial reso-
lution and a spectral refinement layer.

deep spatial-spectral network
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# Layer Type Description Output Dimensions Connections

1 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M,N.L) Input

2 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M,N.L) 1

3 2D Max-Pooling Max-Pooling with pool size (2,2) (M
2 ,
′ N

2 ,L) 2

4 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M
2 ,

N
2 ,L) 3

5 2D Max-Pooling Max-Pooling with pool size (2,2) (M
4 ,

N
4 ,L) 4

6 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M
4 ,

N
4 ,L) 5

7 2D Up-Sampling Up-Sampling with size of (2,2) (M
2 ,

N
2 ,L) 6

8 Concatenation Feature maps concatenation in the channel dimension (M
2 ,

N
2 ,2L) 7,3

9 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M
2 ,

N
2 ,L) 8

10 2D Up-Sampling Up-Sampling with size of (2,2) (M,N.L) 9

11 Concatenation Feature maps concatenation in the channel dimension (M,N,2L) 10,1

12 2D Convolutional Convolutional Layer with kernel dimensions (3,3,L) (M,N.L) 11

13 Add Residual Operation (M,N.L) 11,Input

14 2D Convolutional Convolutional Layer with kernel dimensions (1,1,L) (M,N.L) 13

Table 1. Layers and its description of the deep spatial-spectral prior network

An overview of the proposed approach can be depicted in Figure. 8

4.4. Loss Function

An important factor in the deep learning approaches is the loss function since it determines

how the trainables parameters should vary to improve the performance of the network. Depending

of the network function one should choose. For instance if the network function is regression a
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proper loss function is the mean squared error (MSE) or for classification a cross-entropy function

should be used. This functions aims to compare the ground truth value with the estimated value

and then propagate the error throughout the network. In this case, it was proposed a multiple loss

for the reconstruction task. This loss is composed by

L = Lspatial +Lspectral, (32)

where the spectral component enforces a spectra fidelity and the spatial loss allows a visual en-

hancement of the estimated data cube. The first one is based on the spectral angle mapper (SAM)

factor which is a valued parameter in spectral image application Yuhas et al. (1992); Zhuang et al.

(2016). Denote ai, j and bi, j the spectral signatures of the spectral image A and B at the pixel (i, j),

the spectral signatures can be seen as vectors of the dimension equals to the spectral bands number.

The SAM metric of these spectral signatures is expressed as

SAM = cos−1
(

ai, j ·bi, j

‖ai, j‖‖bi, j‖

)
, (33)

where ‖ · ‖ is the vector norm and · refers to the dot product between vectors. It can be seem

that the more simular are the vectors ai, j and bi, j, the argument of the cosine fucntion tends to 1

and therefore the SAM value tends to 0. Consequently, the it is desired to achieve the following
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condition

1 =
ai, j ·bi, j

‖ai, j‖‖bi, j‖
, (34)

according with this, the spectral loss function can be define as following

Lspectral =
M

∑
i

N

∑
j
‖f̂i, j‖‖fi, j‖− f̂i, j · fi, j, (35)

where f̂i, j and fi, j is the spectral signature at the pixel (i, j) of the estimated spectral image and the

ground truth image respectively. For the spatial loss, it was used according to the main results of

Zhao et al. (2017), where they proposed to use a combination of two losses for the spatial enhan-

cement. They employ the Multi-Scale Structural Similarity Index Measure (MS-SSIM) which is

an improved version of the Structural Similarity Index Measure (SSIM) Wang et al. (2004) which

measures the perceived quality of an image, in this case, compared with a ground truth image. This

metric takes into account structural information instead that absolute error metrics such as MSE

or the Peak Signal to Noise Ratio (PSNR). The main improvement of the MS-SSIM concerning

SSIM is that it introduces supplies more flexibility than single-scale methods in incorporating the

variations of image resolution and viewing condition Wang et al. (2003). The other loss function

that is used for the spatial enhancement is the `1 norm which encourages color preservation and

luminance while the MS-SSIM high-frequency contrast Zhao et al. (2017). Therefore the spatial
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loss is given by

Lspatial =
1

MNL

L

∑
k

M

∑
i

N

∑
j
(1−MS-SSIM( fi, j,k, f̂i, j,k))+ ||f− f̂||1. (36)

Additionally, the regularization therm of the sensing layers (23) is added to the loss function.

Then, the total loss of the network is given by

L =ρ1
1

MNL

L

∑
k

M

∑
i

N

∑
j
(1−MS-SSIM( fi, j,k, f̂i, j,k))+ ||f− f̂||1 +ρ2

M

∑
i

N

∑
j
‖f̂i, j‖‖fi, j‖− f̂i, j · fi, j

+ρ3

(
Md

∑
i

Nd

∑
j
(1− tci, j)

2(tci, j)
2 +

Ld

∑
k

M

∑
i

N

∑
j
(1− tmi, j,k)

2(tmi, j,k)
2

)
, (37)

where ρ1,ρ2,ρ3 are weighting hyper-parameters which can be selected using cross valida-

tion. These parameters weigh the how much will be affected the loss by each therm, for instance,

if ρ3 >> ρ1,ρ2 the training will prioritize the binarization of the coded apertures over the recons-

truction quality or vice-verse.

Additionally, due to the depth of the final unrolling network, the network suffers of va-

nishing of the gradient in the back-propagation process yielding in a poor training of the parame-

ters of the first stages resulting in a bad estimation of the data cube. For instance, the inception

network in Szegedy et al. (2015) address this problem by computing the loss function in a inter-

mediate layer of the network and back-propagate it from that layer. Similarly, here we propose to

compute the loss function at the end of each stage, allowing a more accurate estimation in the firsts

stages of the unrolling network, thus allowing that the algorithm converges with fewer stages.
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5. Simulation Results

5.1. Datasets and pre-processing

For the training of the unrolling network, two well-known dataset were used; the ARAD

dataset Arad et al. (2020)And the ICVL dataset Arad and Ben-Shahar (2016) which is composed

by 201 hyperspectral images

5.1.1. ARAD dataset:. This was used in the NTIRE 2020 Challenge on Spectral

Reconstruction from an RGB Image which contains 510 hyperspectral images in a spectral range

of 400nm or 700nm with 31 spectral bands and 482×512 pixels. Figure. 12 shows 16 samples of

the ARAD dataset where it is noticeable the diversity of the scenes in the dataset.

5.1.2. ICVL dataset:. This dataset contains 201 hyperspectral images collected at

1392×1300 spatial resolution over 519 spectral bands 400-1000nm. It has images of rural, urban,

indoor scenes, among others Figure 13. To match the spectral range of the ARAD dataset, it was

chosen the spectral bands in the visible range 400-700nm

Both datasets were spatially resized to 512× 512 and it was used 20 spectral bands in

the range of 450-650 nm, for the further experimental implementation. Also a normalization was

used to keep all the values of the image in [0,1] for a better stability in the algorithm. Further, in

the training process, different random patches of size 256× 256 of the images were used in each

training epoch. Therefore, in the model, the dimensions would be M = N = 256 and L = 20
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Figure 12. RGB representation of 16 samples of the ARAD dataset
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Figure 13. RGB representation of 16 samples of the ICVL dataset
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5.2. Metrics:

To measure the reconstruction quality the following metrics were used the peak-signal-to-

noise-ratio (PSNR) Horé and Ziou (2010), the structural similarity index measure (SSIM) Wang

et al. (2004), dimensionless global relative error of synthesis (ERGAS) Renza et al. (2013), and

the root mean square error (RMSE) Horé and Ziou (2010).

1. RMSE: Is a standard metrics to measure the difference between a predicted value and its

corresponding ground truth. It is always positive and for values closer to 0, the better the

predicted value. It is defined as

RMSE(f, f̂) =

√
1

MNL

MNL

∑
i
|fi− f̂i|2, (38)

where fi is the i-th pixel of the image

2. PSNR: Measured in dB, is defined as the logarithm of the ratio between the maximum pos-

sible power of a signal and the power of corrupting noise that affects the fidelity of its re-

presentation so that a higher value indicates superior quality of fusion Gelvez and Arguello

(2020). And is expressed as

PSNR(f, f̂) = 10log10

(
max(f)2

RMSE(f, f̂)2

)
. (39)

3. ERGAS: normalized average error of each band of processed image. Lower value of ERGAS

indicates that the estimated image is similar to the reference image Jagalingam and Hegde
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(2015). The ERGAS metric is given by

ERGAS(f, f̂) =
100
rsrλ

√
L

∑
i

RMSE(fi, f̂i)2

µ2
i

, (40)

where fi denote the i-th spectral band of f and the parameters rs and rλ are the spatial and

spectral decimation factors of both systems.

4. SSIM: As mentioned before, this metric measure the quality of the estimated image in terms

of the degradation of the structural information instead of absolute errors. It is implemented

on various windows of the image, denote fX and f̂Y a window of S× S of the ground truth

image and the estimated image respectively, then, the SSIM metric can be defined as

SSIM(fX , f̂Y ) =
(2µX µY + c1)(2σXY + c2)

(µ2
X +µ2

Y + c1)(σ
2
X +σ2

Y + c2)
, (41)

where µ,σ are the mean value and variance of the window, σXY are the covariance of fX

and f̂Y , c1 = (k1L)2,c2 = (k2L)2 are two variables to stabilize the division with weak deno-

minator, L is the number of quantization levels of the image, k1 and k2 are hyperparameters,

usually 0.01 and 0.03 respectively. For SSIM values close to 1 the quality of the estimated

image is better.

5.3. Comparison methods

As comparison for state-of-the-art methods of compressive spectral image fusion, it was

used the work in Vargas et al. (2018) which is a method based on convex optimization using
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sparsity and total variation regularizers, and will be denoted as Sparse-Based Fusion (SBF). Also,

some self-comparison was performed. One using a classic loss function as the mean-squared-error

denoted proposedMSE , other using just the loss in the last stage denoted proposedSL, to show the

improvement by learning the optimal coded apertures, a experiment was performed keeping fixed

the coded apertures, this is denoted proposedNT and finally, the entire proposed method will be

denoted as proposedT .

5.4. Simulation Configuration

The Adam optimizer Kingma and Ba (2014) was used for the training of the unrolling

network, the coded apertures were initialized with a normal random distribution, the regularization

parameter to achieve binary values was set in ρ3 = 5, the gradient step parameter was initialized

λ = 0,001 and the penalty parameter µ = 0,01. The learning rate of the network was initialized

in 0.001 and it was halved every 40 epochs. The regularization parameters of the loss function

were set ρ1 = 2,ρ2 = 3. For the experiments with fixed coded apertures, these were set following

a Bernoulli distribution with p = 0,5. The following sections will show the simulation results for

the datasets aforementioned. And finally, 200 epochs were employed for the training. It was used

K = 9 stages in the unrolling network.

5.5. Simulation results for the ICVL dataset

From the 201 images of the dataset, 31 images with similar content were removed, the 180

remaining images were split 154 for training, 10 for validation and 16 for test. The code for the

SBF method was provided by the authors, and the results presented are the mean values of the

reconstruction of the training dataset. The Table. 2 shows the quantitative results for the mentio-
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ned methods over the training set of the ICVL dataset. It can be observed that the entire proposed

method outperformed the others methods. There is an exception, with the PSNR of the proposedSL

method, which outperforms the proposedT method for very little value. The main improvement

of multi-loss in the proposedT will be shown in the reconstruction quality along the stages in the

proposed methods Figure 14. It can be seen that, the proposed methods which use the multiple

loss strategy reaches the maximum value o close to it with fewer stages than the proposed method

with single loss. For instace, comparing the proposedSL and proposedT which have a final simi-

lar reconstruction quality value, in the stage 6 the proposedT reaches a PSNR 40 dB while the

proposedSL only have a PSNR 33 dB.

Method PSNR SSIM ERGAS SAM RMSE

SBF 30.94 0.87 13.78 0.089 0.028

ProposedMSE 38.31 0.965 10.56 0.153 0.023

ProposedNT 39.76 0.978 6.402 0.451 0.017

ProposedSL 41.017 0.977 10.17 0.068 0.015

ProposedT 41.012 0.981 6.179 0.041 0.014

Table 2. Quantitative results of the test data reconstruction quality for the ICVL dataset
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Figure 14. Metrics of the reconstruction quality along the stages of the proposed unrolling network.
The superiority in the convergence of the algorithm is notorious in the proposedT for the ICVL
dataset

5.6. Simulation results for the ARAD dataset

Here, 40 images with similar content were removed, thus, the dataset was split in 450 ima-

ges for training, 5 images for validation and 15 images for testing. The Table 3 summarizes the

results obtained with the ARAD dataset. In Figure 15 are shown the results along the stages. He-

re is also notorious the improvement in the convergence of the algorithm using the multiple loss

compared with using a single loss at the end of the network.
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Method PSNR SSIM ERGAS SAM RMSE

SBF 31.943 0.846 15.393 0.098 0.033

ProposedMSE 40.521 0.9704 10.921 0.068 0.022

ProposedNT 33.563 0.8766 22.4408 0.215 0.0458

ProposedSL 40.752 0.9752 9.452 0.053 0.018

ProposedT 41.5311 0.980 7.2482 0.032 0.014

Table 3. Quantitative results of the test dataset reconstruction quality for the ARAD dataset

Figure 15. Metrics of the reconstruction quality along the stages of the proposed unrolling network.
The superiority in the convergence of the algorithm is notorious in the proposedT
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5.7. Visual Results and Spectra Reconstruction

Figure 16. False RGB visualization of a test image of both datasets and the reconstructed spectra
of a representative point in each image
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For visual representation of a reconstructed image of both datasets with the mentioned

methods, a false RBG representation was used through the spectral signatures of the respective

colors red, green and blue. Also a gamma correction was used to improve the contrast in the

visualization. A region of the image is zoomed to appreciate small details of the reconstructed

image. Also the PSNR metric of the reconstructed image is displayed for a quantitative measure

of the image quality respect the ground truth. Finally, a spectral signature of a representative point

of the image, the grass of ICVL image and the orange of the building in the ARAD image. These

results also shows that the entire proposed method (proposedT ) outperformed the other methods,

with the lowest SAM values and more pleasant visual representation of the reconstructed images

in both images.

5.8. Trained coded apertures and color filter array

In Figure 17 is shown the designed coded aperture with the end-to-end approach.
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Figure 17. Trained coded apertures (left) and color filter arrays (right) with different trained models
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6. Experimental Set-Up and Real Data Validation

Figure 18. Optical architecture of the experimental prototype of the dual CSI system

The experimental prototype of the proposed dual CSI system was assembled in the optics

laboratory of the High Dimensional Signal Processing (HDSP) research group

6.1. Optical elements

The following table summarizes the list of elements employed for the experimental prototy-

pe. Here some remarks of the configuration of the elements:
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Item Quantity Description Reference

Grayscale camera 2
2D optical sensors, to capture the projected

measurements of both systems
F-145 Stingray

Digital Micromirror Device (DMD) 1
Programmable light modulator to create the

coded apertures
Texas instruments DLP4130

Monochromator 1
Programmable light source at a determined

wavelength
Cornerstone 130 1/8m.

Relay lens 2
Achromatic lens with focal length

of 30mm and 50mm
Achromatic Lens LSB08

Series Thorlabs

Objective lens 1
Aperture adjustable lens with

8mm focal length

Beam splitter 1
Optical element which divide the

incident light source in two
Non-Polarizing Beams splitter

CCM1-BS013 Thorlabs

Prism 1
Dispersive element which decompose the
incident light into its spectral components

AMICI Prism

Table 4. List of the optical elements employed in the experimental prototype

The control of the programmable elements (cameras, DMD, and monochromator) was made

in MATLAB. Particularly, the cameras were controlled using the image acquisition toolbox,

the monochromator was programmed using serial communication and the DMD was handled

using a specialized API library for the device.

The monochromator is programmed to illuminate at a determined wavelength. Nevertheless,

the bandwidth (how much spectrum) of the output illumination depends on a pair of slits

placed in the monochromator see Figure. 20. These slits limit the bandwidth of the light but

reduce its intensity thus requiring to increase in the exposure time of the camera to counter

this illumination issue and consequently increasing the acquisition time. It was found that

using only one slit of 600 of [µm] brings the optimal relation between exposure time and

intensity of the illumination.

The DMD is a programmable array of micromirrors. Each micromirror has two states 0 or



COMPRESSIVE SPECTRAL IMAGE FUSION VIA END-TO-END OPTIMIZATION 60

1. This state just describes the angle in which the micromirror is set to see Figure 19. for an

illustration of the DMD operation.

Figure 19. Illustration of the DMD operation. The 0 state sets the angle of the micromirror in which
that part of the scene is blocked to the sensor, and the 1 state reflects the light into the sensor

Figure 20. Structure of the monochromator. It has a light source, a bank of optical filters which
are adjusted according to the wavelength range which is going to be used, the monochromator
itself which contains a set of diffractive grating which decompose the white light of the source and
selects the desired wavelength. The output light is transported through an optic fiber to the scene.
Two slits limit the bandwidth of the emitted light
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Three parameters are adjusted in the cameras. The gain, shutter, and exposure time. After,

some tests, the optimal values of these parameters were; gain = 100, shutter = 4095 and

exposure time = 0.8 [s] for the MCFA sensor and 1 [s] for the CASSI sensor. This difference

is due to the prism reduces the intensity of the incident light on the CASI sensor.

6.2. Assembly of the dual-arm system

The assembly of the optical architecture was carried out as follows

1. The first element that was placed in the DMD and then it was calculated the optimal lens and

the respective distance of the object and the sensor. To clarify, in this stage, the DMD was

the target. To this purpose, it was used the thin lens approximation equation which holds

1
di
+

1
do

=
1
f
, (42)

where di is the distance where the image is formed, therefore we need to place the sensor in

that distance and do is the distance where the object should be placed.

2. After, it was placed the first sensor, the beam splitter was located in the space between the

lens and the already set sensor and the second sensor was placed considering that the focal

length remains but the optical path changes due to the beam splitter.

3. Then, with the 2 sensors correctly placed, the prism was located between the beam splitter

and one of the sensors.

4. Then, the other side of the architecture is the one in charge of focusing the scene onto the
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DMD, therefore, an objective lens of 8mm was used and due that this lens forms the image

at a very close distance, a relay lens of 30mm was employed which is placed at a distance 2f

form where the image is from an also 2f of the DMD, therefore, this lens copies the image

formed by the objective lens into the DMD.

6.3. Calibration process

The sensors, DMD, and prism were rotated 45◦. As mentioned before, the DMD works by

inclining its micromirror to block or reflect the light this angle produces that the first stage of the

system has to be aligned with this angle, the Figure. 21. To locate accurately the location of the

sensors and the DMD, it was used a set of precision sliders.

Since the sensors have a pitch size of 6.5 [µm] and the DMD has a pitch size of 13.5

[µm], therefore one pixel of the DMD equals a 2×2-pixel area of the sensor. As mentioned before,

the high spatial resolution dimensions are M = N = 256, we set the DMD with the following

considerations

MCFA: As this systems senses the spectral image with high spatial resolution, the DMD

was used with a M×N coded aperture.

CASSI: Considering that this system has a lower spatial dimension Md = Nd = 128. Ne-

vertheless, the DMD resolution was kept fixed in 256×256 for both systems. Then, to obtain

a 128×128 coded aperture it was employed a Kronecker product between the low resolution

coded aperture and a 2×2 matrix full of ones to replicate the 128×128 coded aperture into

a 256× 256. The Kronecker of the coded aperture Md ×Nd matrix A and the 2× 2 matrix
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24°

Figure 21. Alignment of the optical architecture with the DMD inclination angle

full of ones B results in M×N matrix given by:

A⊗B =



a1,1B · · · a1,Nd B

... . . . ...

aMd ,1B · · · aMd ,Nd B


(43)

therefore, each pixel of the coded aperture is replicated in 2×2 pixel area in the DMD.

While the resolution of the DMD was set to 256× 256, to keep the ratio of the pitch size
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between the DMD and the sensor, the optical systems were calibrated to obtain a 512×512

image in the camera, and then a downsampling operation was used to convert the measure-

ments into the respective dimensions for both systems (256×256 for MCFA and 128×147

for CASSI).

Figure 22. Characterization curve of the prism

Then, it was characterized by the prism dispersion curve. The curve discretizes the disper-

sion of the prism with the pixels of the sensor, therefore allowing to determine how many bands

are going to be taken. Figure 22 shows the dispersion curve of the prism. This curve was obtained

using as coded aperture a line and acquiring a withe scene with a wavelength sweep. Every change

in the dispersion curve establishes a new spectral band, however, it needs to take into account that

there is spatial downsampling of rs = 2 in the system, therefore, the number of bands is determined

for every two changes in the dispersion curve. Also, by only using the spectral range between 450

and 650 [nm], we obtained 20 spectral bands for the CASSI system and 10 spectral bands for the
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MCFA system.

6.4. Scene capturing

The measurements of both systems were acquired using a wavelength sweep with the mo-

nochromator and sensing the coded image for each wavelength. The following subsections will be

detailed the acquisition process of each system

6.4.1. MCFA. Here, the color filter array was emulated using the DMD, where,

each wavelength is associated with a coded aperture. For this purpose, it was taken Ld shots of

the scene, where in each shot the scene is illuminated with a different wavelength and the coded

aperture corresponding to each wavelength is set to acquire the coded projection. The illumination

of the determined wavelength can be seen as spectral filtering. Then, as a post-processing, it is

concatenated each acquired shot and subsequently, the sum over the spectral dimension to obtain

the compressive measurements see Figure. 23. Note that each pixel value on the coded aperture

represents the spectral response of the color filter.

6.4.2. CASSI. Similar to the MCFA acquisition process, the CASSI sensing pro-

cess it was uses a wavelength sweep of the scene. The main difference is that the coded aperture

is the same for all wavelengths as this is just a block-unblock coding element. In the sensor every

frame acquired is shifted according to the dispersion curve of the prism, and finally, all shots taken

are sum in the spectral dimension.
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Figure 23. Scheme of the MCFA acquisition process for 3 spectral bands (red, green, and blue),
wherein each shot the scene is illuminated with a determined monochromatic light and a coded
aperture associated with the wavelength of the light source is used to codify the scene, then, all the
measurements are concatenated and sum in the spectral dimension.

6.5. Post-processing

Two trained models were impremented, the ICVL ProposedNT and ProposedT to compared

the results obtained with non-designed CA and designed CA. The calibrated sensing matrices are

shown in Figure. 25.
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Figure 24. Post processing of the raw acquired data. The region of interest is cropped, then a
normalizing by a white spectral signature for each sensor is used, then the coded measurements
are sum in the third dimension to obtain the final compressive measurements

Figure 25. Calibrated Non-designed CA (random distribution) and designed obtained with a E2E
approach for the CA-CASSI and CA-CFA, respectively.
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It was captured three-set of measurements from 4 scenes; The MCFA and CASSI coded

measurements and the ground truth of the scenes. The post-processing of the acquired images is

described in Figure. 24.

6.6. Inference of the proposed reconstruction process

For real data inference, a re-training of the network was performed using four captured

scenes, with data augmentation such as rotation and changing the contrast.

6.7. Results with captured data

To compare the proposed unrolled network, the alternating direction method of multiplier

(ADMM) with its variant plug and play (PnP) is implemented Chan et al. (2016). This algorithm

takes advantage of the ADMM structure by replacing one of its optimization steps with a denoising

algorithm; this work uses a recursive filter denoiser Gastal and Oliveira (2011).

Figure 26. Visual representation of the compressive measurements and the reconstructed images
using the PnP algorithm for the individual measurements and the proposed unrolled fusion net-
work. (Top) shows the results obtained with the designed CAs and (bottom) with non-desing CAs
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Figure 27. Reconstructed spectral signature for two random points in the image. The ground truth
was sensed illuminated band-to-band with a commercial monochromator. Also, the SAM metric is
shown in parenthesis.

Figure. 26 shows the compressive measurements acquired in with the CSIF optical archi-

tecture and a false RGB representation of the reconstructions images. The PnP algorithm was used

to recover the spectral image from either the MCFA or the CASSI measurements. The unrolling

fusion network showed a significant improvement compared with the reconstruction obtained with

the PnP method and was more remarkable using the trained sensing matrices measurements. Fig.

27 shows the spectral signature of two random pixels. The SAM metric is shown in parenthesis

measures the angle between the reconstructed spectra with the ground-truth spectra. The spectral

reconstruction shows a highlighted improvement with the reconstruction using the unrolling fusion

network with the trained CA and CFA.
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7. Conclusions

The fusion of two compressive spectral imaging sensors using an E2E optimization for the

joint design of the CA in both systems and a reconstruction network was presented. Particularly, it

was proposed an optimization-inspired unrolling network for the recovery process. The CA of the

sensing systems were learned as weights in a DNN constraining the learning of these parameters

to binary values for implementation purpose. Simulation results showed that the proposed method

outperforms a previous CSIF method, also, the E2E optimization of the CA improves significantly

the reconstruction quality. Additionally, the proposed loss function boosts the network performance

compared with the traditional mean square error loss function. A testbed implementation of the

CSIF system was presented which validated the proposed method showing a better performance

than reconstructing the compressive measurements separately.

The developing of this work resulted in two conference articles. One already accepted for

The 28th IEEE International Conference on Image Processing (IEEE - ICIP) which will be held

in Anchorage-Alaska in the period September 19-22, 2021. In this article it was presented the al-

gorithmic methodology of the E2E optimization and the recovery network with only simulation

results. And the other was accepted to the XXIII ”Simposio de Imagen, Procesamiento de Señales

y Visión Artificial”(STSIVA 2021) where it was presented the testbed implementation of the pro-

posed E2E optimization for CSIF.
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