ALTERNATIVAS PARA EL MEJORAMIENTO DEL ÍNDICE DE ENERGÍA NO SUMINISTRADA EN SISTEMAS DE DISTRIBUCIÓN LOCAL

JOSÉ ALBERTO BUENO ORJUELA EDGAR EFRÉN TIBADUIZA RINCÓN

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS
ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y DE
TELECOMUNICACIONES
ESPECIALIZACIÓN EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA
ELÉCTRICA
BUCARAMANGA
2017

ALTERNATIVAS PARA EL MEJORAMIENTO DEL ÍNDICE DE ENERGÍA NO SUMINISTRADA EN SISTEMAS DE DISTRIBUCIÓN LOCAL

JOSÉ ALBERTO BUENO ORJUELA EDGAR EFRÉN TIBADUIZA RINCÓN

Monografía presentada como requisito para optar al título de: Especialista en Sistemas de Distribución de Energía Eléctrica

Director:

Oscar Arnulfo Quiroga Quiroga Doctor en Ciencias con Énfasis en Ingeniería Eléctrica

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS
ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y DE
TELECOMUNICACIONES
ESPECIALIZACIÓN EN SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA
ELÉCTRICA
BUCARAMANGA
2017

CONTENIDO

INTRODUCCIÓN	16
1. LA ENERGÍA NO SUMINISTRADA Y OTROS ÍNDICES DE CONFIAE EN UN SDL	
1.1 ENERGÍA ESPERADA NO SUMINISTRADA- EENS	18
1.1.1 Métodos para determinar de la EENS	19
1.1.2 EENS analizada por costos	21
1.2 LA CONFIABILIDAD EN LOS SDEE	22
1.2.1 El costo de la confiabilidad	24
1.2.2 Factores que influyen en la confiabilidad	26
1.2.3 Formas de mejorar la confiabilidad	28
1.3 ÍNDICES DE CONFIABILIDAD	33
1.4 ANTECEDENTES REGULATORIOS EN COLOMBIA	36
1.5 ESTUDIO DE CASO	39
2. ALTERNATIVAS TECNOLÓGICAS Y OPERATIVAS PARA DISMINU	IR LA
EENS EN UN SDL	42
2.1 Fusibles	42
2.1.1 Cortacircuitos con fusibles de expulsión	42
2.1.2 Cortacircuitos portafusibles de tres disparos	43
2.2 RECONECTADORES O RESTAURADORES AUTOMÁTICOS	45
2.3 SECCIONALIZADORES AUTOMÁTICOS	48
2.4 CELDAS COMPACTAS	51
2.5 REDES SUBTERRÁNEAS	52
2.6 REDES COMPACTAS SEMIAISLADAS	54

2.7 estrategias de reconfiguración	56
2.7.1 Sistema Radial	56
2.7.2 Anillo Primario.	58
2.7.3 Sistemas Mallados.	60
2.8 DEL MENÚ DE ALTERNATIVAS A SU IMPLEMENTACIÓN	62
3. EVALUACIÓN DE LA ENERGÍA NO SUMINISTRADA- ESTUDIO DE CASO	O 65
3.1 METODOLOGÍA DEL ESTUDIO DE CONFIABILIDAD	65
3.1.1 Modelamiento del sistema	66
3.1.2 Datos para el estudio de confiabilidad	67
3.2 ESCENARIOS DE ANÁLISIS	69
3.2.1 Caso base, configuración actual	70
3.2.2 Caso 1, salidas independientes	71
3.2.3 Caso 2, salidas subterráneas	72
3.2.4 Caso 3, Bucle extendido	73
3.2.5 Caso 4, protección de ramales por reconectadores	74
3.2.6 Caso 5, SCADA e indicadores de falla	75
3.2.7 Caso 6, seccionalizadores	76
3.2.8 Caso 7, reconfiguración de circuitos	77
3.2.9 Caso 8, Generación Distribuida en colas de circuitos largos	78
3.3 MÉTODOS DE CALCULO DE CONFIABILIDAD	80
3.3.1 La simulación de Montecarlo	80
3.3.2 Los procesos de Markov	83
3.3.3 Técnicas de frecuencia y duración	85
3.3.4 Enumeración de estados	89
3.4 CÁLCULOS DE CONFIABILIDAD USANDO EL SOFTWARE NEPLAN	89
3 4 1 Metodología de cálculo de confiabilidad en NEPLAN	90

3.4.2 Cálculo de Confiabilidad Probabilístico realizado por NEPLAN	91
3.4.3 Secuencia de operaciones ejecutadas durante el cálculo de Confiabilidad por NEPLAN	
3.4.4 Resultados del cálculo de confiabilidad	92
4. RESULTADOS Y DISCUSIÓN	94
4.1 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	94
4.1.1 Índices de confiabilidad calculados.	95
4.1.2 Análisis de los índices de calidad media	99
4.1.3 Análisis de la EENS.	101
4.1.4 Análisis de otros índices de confiabilidad del sistema	103
4.2 COMENTARIOS FINALES	105
5. CONCLUSIONES	107
BIBLIOGRAFÍA	109
ANEXOS	114

LISTA DE CUADROS

Cuadro 1. Maneras de mejorar la fiabilidad del sistema eléctrico	28
Cuadro 2. Antecedentes Regulatorios de calidad de la prestación de servicio de ene	rgía
eléctrica- Caso Colombiano	37
Cuadro 3. Antecedentes Regulatorios de respuesta a la demanda- Caso Colombiano	39
Cuadro 4. Parámetros del sistema modelado.	40
Cuadro 5.Datos de confiabilidad para alimentadores primarios	68
Cuadro 6. Datos de confiabilidad para transformadores	68
Cuadro 7. Datos de confiabilidad para reconectadores.	68
Cuadro 8. Datos de confiabilidad seccionadores.	69
Cuadro 9. Datos de confiabilidad para celdas de media tensión	69
Cuadro 10. Curvas de carga y costos de racionamiento	69
Cuadro 11. Comparación de Criterios de los Métodos de Cálculo Determinístico	os y
Probabilísticos.	80
Cuadro 12.Expresiones para evaluar los índices de confiabilidad	88
Cuadro 13. índices de confiabilidad de carga totales del sistema	93
Cuadro 14. índices de confiabilidad de carga para cada usuario	93
Cuadro 15. Índices de Confiabilidad obtenidos para el caso base	95
Cuadro 16. Índices de Confiabilidad obtenidos para el caso 1	95
Cuadro 17. Índices de Confiabilidad obtenidos para el caso 2	96
Cuadro 18. Índices de Confiabilidad obtenidos para el caso 3.	96
Cuadro 19. Índices de Confiabilidad obtenidos para el caso 4	97
Cuadro 20. Índices de Confiabilidad obtenidos para el caso 5.	97
Cuadro 21. Índices de Confiabilidad obtenidos para el caso 6	97
Cuadro 22. Índices de Confiabilidad obtenidos para el caso 7.	98
Cuadro 23. Índices de Confiabilidad obtenidos para el caso 8.	98
Cuadro 24. Comparación de los índices de calidad frente a metas para el año 1	100
Cuadro 25. Comparación de la EENS frente a la meta para el año 1	102

LISTA DE FIGURAS

Figura 1. Metodología UPME para la cuantificación de beneficios por cor	ifiabilidad y
agotamiento de red.	21
Figura 2. Costo incremental de confiabilidad.	24
Figura 3. Costo total de la confiabilidad.	25
Figura 4. Cortacircuitos porta fusibles	43
Figura 5 Cortacircuitos porta fusibles de tres disparos	45
Figura 6. Reconectadores de control electrónico	46
Figura 7. Secuencia de operación de un reconectador, en función reconectador	⁻ 47
Figura 8. Secuencia de operación de un reconectador y un seccionalizador sir	n restitución
	49
Figura 9. Secuencia de operación de un reconectador y un seccionalizador cor	n restitución
	50
Figura 10. Fallas típicas de circuitos en el área urbana de Bogotá 2003	53
Figura 12. Circuito radial	57
Figura 13. Circuito radial suplido por otro circuito radia adyacente	58
Figura 14. Circuito en anillo primario	59
Figura 15. Circuito mallado	61
Figura 16. Metodología propuesta	66
Figura 17. Diagrama unifilar del caso base	70
Figura 18. Diagrama unifilar del caso 1	71
Figura 19. Diagrama unifilar del caso 2	72
Figura 20. Diagrama unifilar del caso 3	73
Figura 21. Diagrama unifilar del caso 4	74
Figura 22. Diagrama unifilar del caso 5	75
Figura 23. Diagrama unifilar del caso 6	76
Figura 24. Diagrama unifilar del caso 7	77
Figura 25. Diagrama unifilar del caso 8	79
Figura 26. Diagramas de transición entre estados	84
Figura 27. Diagrama de transición de estados con un estado absorbente	84
Figura 28. Cadena de Markov discreta	85

Figura 29. Diagrama de espacio de estados de un componente y representación del c	ciclo
operación-falla-reparación-operación	86
Figura 30. Conexión en serie	88
Figura 31. Conexión en paralelo	88
Figura 32. Comparación de los índices de frecuencia, frente a metas para el año 1	100
Figura 33. Comparación de los índices de duración, frente a metas para el año 1	100
Figura 34. Comparación de la EENS	103
Figura 33. Comparación de los índices de disponibilidad de servicio	104
Figura 35. Comparación de los índices de duración de interrupciones por cliente	105

LISTA DE ANEXOS

Anexo A. DATOS PARA EL MODELO DE RED	11	4	L
AIICAO A. DATOOT ANA EL MODELO DE NED		, –	1

GLOSARIO

AOM: Administración Operación y mantenimiento

CREG: Comisión de regulación de Energía y Gas

EENS: Energía no suministrada

GD: Generación distribuida

NA: Normalmente abierto

NC: Normalmente cerrado

OR: Operador de red

RNA: Reconectador normalmente abierto

RNC: Reconectador normalmente cerrado

SCADA: Supervisory Control And Data Acquisition (Supervisión, Control y Adquisición de

Datos)

SDEE: Sistema de Distribución de Energía Eléctrica

SIN: Sistema Interconectado Nacional

TC: Transformador de corriente

UPME: Unidad de Planeamiento Minero Energético

RESUMEN

TÍTULO:

ALTERNATIVAS PARA EL MEJORAMIENTO DEL ÍNDICE DE ENERGÍA NO SUMINISTRADA EN SISTEMAS DE DISTRIBUCIÓN LOCAL*

AUTORES:

JOSÉ ALBERTO BUENO ORJUELA EDGAR EFRÉN TIBADUIZA RINCÓN**

PALABRAS CLAVE:

Calidad del Servicio Prestado, Calidad de la Potencia Suministrada, Comisión de Regulación de Energía y Gas- CREG, Confiabilidad en Sistemas de Distribución de Energía, Energía Esperada No Suministrada- EENS, NEPLAN, Sistema de Distribución Local – SDL.

DESCRIPCIÓN:

La cantidad de energía no suministrada- EENS por parte del operador de red -OR a sus clientes, se constituye como herramienta que permite conocer la calidad del servicio prestado. La Comisión de Regulación de Energía y Gas- CREG, mediante la resolución 176 de 2016, define que los ingresos de los agentes del sistema están asociados a la duración y la cantidad de las indisponibilidades; así como la EENS debida a la indisponibilidad de cualquier activo del sistema de distribución local- SDL, no puede exceder los límites fijados.

En este estudio se documentan varias alternativas tecnológicas y de reconfiguración, con la que cuentan los OR, para disminuir la cantidad EENS. Se plantea un estudio de caso y para este se evalúan los índices de confiabilidad del SDL y mediante estos se conoce la calidad del servicio prestado. A través de la implementación de alternativas se comparan los índices de confiabilidad arrojados por el sistema, frente a los calculados para el sistema actual. La cuantificación de los efectos de la implementación de dichas alternativas tecnológicas y reconfiguración, la medición de la cantidad de EENS por el sistema y la comparación frente a las metas propuestas por la resolución CREG 176 de 2016.

Con la ayuda del software NEPLAN, se modela un SDL del cual se conocen circuitos con un nivel de tensión de 13,8 kV, que atienden 10270 usuarios con cargas diversas: rurales y urbanas. El SDL resulta apropiado para probar la implementación de alternativas de mejora. Se parte de la hipótesis que las tensiones en nodos presentan limites admisibles, además, no hay sobrecargas en los elementos. Se plantean nueve escenarios de análisis, cada uno implementando una mejora del SDL. Se determina cual escenario resulta más benéfico, indicando en que cantidad se beneficia al OR luego de implementar la mejora.

^{*} Trabajo de monografía.

^{**} Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones. Director: Oscar Arnulfo Quiroga Quiroga

SUMMARY

TITLE:

ALTERNATIVES FOR IMPROVEMENT OF ENERGY INDEX NOT SUPPLIED IN LOCAL DISTRIBUTION SYSTEMS*

AUTHORS:

JOSÉ ALBERTO BUENO ORJUELA EDGAR EFRÉN TIBADUIZA RINCÓN**

KEYWORDS:

Quality of Service Provided, Quality of Power Provided, Energy and Gas Regulatory Commission - CREG, Reliability in Energy Distribution Systems, Expected Energy Not Supplied - EENS, Local Distribution System - SDL, National Interconnected System-SIN, Regional Transmission Systems - STR.

DESCRIPTION:

The not supplied energy (EENS) by the utility operator (OR) to the clients becomes an important tool to know the quality of the provided service. The Regulator Commission of Energy and Gas (CREG), through the resolution 176 of 2016, defines that the (economical) incomes of the agents of the system are attached to the long and the quantity of unavailability, and that the EENS due the unavailability of any asset from the local distribution system (SDL) cannot exceed the limits set.

This study documents some technological options and circuit reconfigurations, available for the OR to reduce the EENS. It presents a case of study and the evaluation of the reliability qualifiers of the distribution system, with these it is possible to know the quality of the provided service. Through the implementation of technological alternatives, the reliability qualifiers are compared with the calculated qualifiers for the actual system. The idea is to quantify the effects of the implementation of such technological alternatives, also the measurement of the EENS from the system and comparison with the proposed goals from the CREG's resolution 176 of 2016.

Using the software NEPLAN, a SDL belonging to an OR is modeled, the circuits for a tension level of 13.8kV are known, these serve 10270 users with various loads: rural and urban zones. The SDL is appropriate to try the implementation of improvement alternatives. The actual system is modeled, without load increase, at least at short term. It starts from the hypothesis that the nodal tension are in tolerable limits, besides that there is no elements overload. Nine scenarios are proposed implementing an improvement of the SDL for each one. It is found which scenario is the best for the SDL, indicating how much it is beneficial for the OR after the implementation of the improvement.

^{*} Monograph.

^{**} Faculty of Phisical-Mechanic Engineering. School of Electrical, Electronical and Telecomunications Engineering. Specialization in Electrical Distribution Systems. Director: Oscar Arnulfo Quiroga Quiroga

INTRODUCCIÓN

Las tecnologías aplicadas a los sistemas de distribución han venido presentando un gran desarrollo y acelerada implementación por parte de los operadores de red. La Medición del impacto frente al uso de estos en un sistema de distribución, siempre será de interés para el todo operador de red.

En raras oportunidades, la comunidad académica cuenta con información real y suficiente, de un sistema de distribución; así como muchos operadores de red a pesar de estar interesados en la medición de estos impactos, en ocaciones no cuentan con el tiempo o la experticia suficiente para el desarrollo de estos estudios. Es allí donde la sinergia entre el operador de red y la comunidad académica, se conjugan para obtener resultados benéficos para las dos partes.

Se presentan las alternativas tecnológicas con las que cuenta un operador de un sistema eléctrico de distribución, se muestra su aplicación, al igual que las ventajas y desventajas de su implementación. Se lleva a un modelo de red que posteriormente se simula mediante el software NEPLAN. Todo esto permite que una vez aplicadas tales alternativas, se analice el comportamiento del sistema frente a cada una de ellas.

Este documento se basa en la medición de los impactos sobre la energía no suministrada y los índices de calidad del servicio, obtenidos a partir de la implementación de alternativas tecnológicas y de reconfiguración de circuitos de un sistema de distribución. Se miden los impactos a partir de mejoras sucesivas. Otros autores han realizado estudios sobre la confiabilidad del sistema, sin embargo, estos estudios se realizan para un caso base, sin considerar las mejoras realizadas al sistema.

Se cimienta sobre una amplia base de escritos producto de la comunidad científica, además de la documentación técnica de los elementos empleados en redes de distribución de energía, como son: fusibles, reconectadores, seccionalizadores, celdas de media tensión, redes subterráneas, entre otros.

En el capítulo 1, se presentan de manera general los antecedentes y el estado del arte respecto del cálculo del índice de energía no suministrada, se documentan algunas alternativas tecnológicas que permiten mejorar la continuidad del suministro de energía.

En el capítulo 2, se presentan los elementos, técnicas y arreglos, que se pueden implementar como alternativas tecnológicas para propender por la disminución de la EENS (Energía No Servida) en circuitos de sistemas de distribución de energía eléctrica.

En el capítulo 3, se muestran en detalle los casos de estudio, involucrando las alternativas tecnológicas y de reconfiguración, con el objetivo de evaluar la energía no suministrada por el sistema. Se enuncia la metodología de cálculo del estudio de confiabilidad, algunas de las técnicas que permiten la determinación de los índices de confiabilidad en un sistema de distribución de energía. Finalmente, se muestran los detalles del software NEPLAN, la secuencia de operaciones y los resultados mostrados por el software.

En el capítulo 4, se exhiben los resultados y el análisis de estos, luego de la realización de modelamiento y simulación del sistema de distribución planteado. Se estudian de manera detallada, los índices de calidad media y la energía no suministrada. Al final del capítulo se analiza la disponibilidad del servicio y la duración de las interrupciones al cliente. Como colofón, se presentan algunos comentarios generales respecto de los hallazgos efectuados en el estudio.

1. LA ENERGÍA NO SUMINISTRADA Y OTROS ÍNDICES DE CONFIABILIDAD EN UN SDL

"Cuando las leyes de la matemática se refieren a la realidad, no son ciertas; cuando son ciertas, no se refieren a la realidad"

Albert Einstein

En este capítulo se presentan de manera general los antecedentes y el estado del arte respecto del cálculo del índice de energía no suministrada, de igual manera se documentan algunas alternativas tecnológicas que permiten mejorar la continuidad del suministro de energía. Esto permitirá poner en contexto el problema a solucionar en este trabajo de grado.

1.1 ENERGÍA ESPERADA NO SUMINISTRADA- EENS

"Las interrupciones en el suministro de energía evitan el funcionamiento de los equipos eléctricos del usuario, esto es una medida del valor asociada al producto o la falta de este, lo que genera el valor dispuesto a pagar por el cliente, por esto es importante encontrar un equilibrio entre el costo de las interrupciones para la empresa prestadora del servicio y para los clientes".

Según la CREG, corresponde a la "estimación de la cantidad de energía que no puede ser entregada cuando se presentan eventos en el sistema"².

¹ ACEVEDO, Alejandro y PUENTES, Diego. Reconfiguración en sistemas de distribución considerando las perdidas y evaluando el impacto económico de la energía no suministrada. Trabajo de grado Ingeniero Electricista. Universidad tecnológica de Pereira. Programa de Ingeniería Eléctrica. Grupo de investigación en Planeamiento de sistemas eléctricos. 2015. 186 p.

² COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. Resolución número 176 DE 2016. (03, noviembre, 2016). Por la cual se establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el sistema interconectado nacional Bogotá D.C., 2016. p. 251.

Corresponde a la cantidad de energía que deja de ser suministrada a los usuarios en un periodo de tiempo determinado. No mantener el suministro continuo de energía al usuario implica costos que debe asumir e impactan fuertemente a los OR³.

La energía eléctrica suministrada a los usuarios siempre se determina a partir de mediciones específicas del consumo propio del usuario, además de servir para calcular los costos de acuerdo con la tarifa establecida, puede aprovecharse para determinar los costos de la EENS⁴. En Colombia la Comisión de Regulación de Energía y Gas- CREG, ha venido estableciendo mecanismos regulatorios que le permiten mediante el manejo de un esquema de incentivos y compensaciones, normalizar la calidad del servicio de distribución de energía eléctrica, prestado por los OR.

La motivación principal por la cual un OR desea reducir la cantidad de EENS, radica en los beneficios económicos que puede recibir de acuerdo con el esquema de incentivos, por mejoras de la calidad del servicio prestado, entendida como la continuidad del servicio.

La estimación de los costos de la EENS sirve para determinar a su vez los costos de inversión en nuevos equipos e infraestructura, que redunden en aumento de la confiabilidad del SDEE, estas inversiones realizadas por los OR representan beneficios para los usuarios, pero también para los mismos OR. "Minimizar la cantidad de EENS aumenta las ganancias del OR y recupera la inversión realizada"⁵.

1.1.1 Métodos para determinar de la EENS. Según (Acevedo 2015), la EENS se puede causar por⁶:

 Daño en los equipos y sistemas de los SDEE (Transformadores, aisladores, fusibles y cortacircuitos), estas pueden generar suspensiones repentinas o programadas por efecto de mantenimiento.

³ ACEVEDO. Op. cit., p. 30.

⁴ Ibid., p. 31.

⁵ Ibid., p. 32.

⁶ Ibid., p. 32.

 Eventos que no están bajo el control de los OR como robos, accidentes o condiciones climáticas.

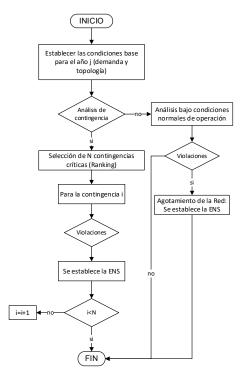
Las técnicas que permiten conocer en un SDEE la cantidad de EENS se especifican a continuación:

➤ Criterio N-1:

Es el criterio más ampliamente usado en planeación de sistemas eléctricos, consiste en simular la falla de un componente de un sistema eléctrico, a fin de probar que la falla del componente no genere:

- a. La caída total del sistema
- b. Violaciones de los límites de tensión, para el caso de SDEE, ± 10% de la tensión nominal del sistema
- variación de la frecuencia dentro de los límites establecidos
- d. Cargabilidades de líneas y transformadores por encima de su valor nominal.

La UPME, entidad colombiana que tiene como objeto: "planear en forma integral, indicativa, permanente y coordinada con los agentes del sector minero energético, el desarrollo y aprovechamiento de los recursos mineros y energéticos; producir y divulgar la información requerida para la formulación de política y toma de decisiones; y apoyar al Ministerio de Minas y Energía en el logro de sus objetivos y metas", establece una metodología para observar la confiabilidad eléctrica ante el agotamiento de la red, esta consiste en:


- 1. Establecer las condiciones base del sistema, como son la demanda y la topología.
- Determinar bajo condiciones normales de operación y contingencia sencilla, el desempeño del sistema respecto de sus principales variables: tensión, cargabilidad y frecuencia.

OLOMBIA. UNIDAD DE PLANEAMIENTO MINERO ENERGÉTICO. ¿Quiénes somos? [En línea]. Bogotá D.C., 2016. p. 251. Unidad de planeamiento minero energético. 2016. 1p. Disponible en http://www1.upme.gov.co/quienes-somos

3. Se calcula el valor de la EENS, si se identifican violaciones de los límites respecto de las principales variables. El costo de la EENS se valora con el costo de racionamiento y el costo del servicio de energía eléctrica⁸.

A continuación, se presenta un diagrama de flujo de la metodología expuesta por la UPME.

Figura 1. Metodología UPME para la cuantificación de beneficios por confiabilidad y agotamiento de red.

Adaptado de 9

1.1.2 EENS analizada por costos.

<u>Evaluación por encuestas a clientes</u>: consiste en la consulta directa a los clientes, considerando que son ellos quienes de la mejor manera pueden cuantificar las pérdidas económicas debido al corte del suministro del servicio eléctrico. Actualmente es un

⁸ COLOMBIA. UNIDAD DE PLANEAMIENTO MINERO ENERGÉTICO. Plan de expansión de referencia generación – transmisión 2016 – 2030. (2016). La UPME. Bogotá D.C., 2016. p. 398.

⁹ Ibid., p. 162.

concepto valido para cuantificar la EENS, sin embargo, presenta serios inconvenientes debidos a la subjetividad e inexactitud con la que los usuarios hacen la valoración, además los resultados dependen del lugar y el tiempo¹⁰.

<u>Evaluación por cortes de suministro reales</u>: "consiste en evaluar los costos directos e indirectos que sufren los consumidores debido a la ausencia en el suministro de energía y en consecuencia sus resultados son particulares y diferentes generalizados"¹¹.

<u>Método estadístico de control de las interrupciones</u>: vincula las contingencias de la red con cada usuario del sistema, permitiendo el cálculo de la EENS de acuerdo al tiempo de desconexión y consumo promedio dado por una curva universal de carga; esto se puede realizar con el uso de medidores inteligentes.

Para estimar la EENS por cada usuario es necesario contar con una base de datos que guarde relación con la energía suministrada. En un conjunto de medidores que se controlan por muestreo, empleando el mismo procedimiento se puede cuantificar la cantidad de EENS.

La metodología toma en cuenta la frecuencia de interrupción, el tiempo total de la interrupción para un semestre inspeccionado y n usuarios pertenecientes a un mismo OR. Sal seleccionar un número de usuarios n adecuadamente (muestra representativa y suficiente), las estimaciones obtenidas en la muestra serán muy similares a la población¹².

1.2 LA CONFIABILIDAD EN LOS SDEE

¹¹ ACEVEDO. Op. cit., p. 34.

22

¹⁰ ACEVEDO. Op. cit., p. 34.

¹² ACEVEDO. Op. cit., p. 36.

"La probabilidad de que un componente o sistema pueda cumplir su función en las condiciones operativas especificadas durante un intervalo de tiempo dado o un sistema operando bajo ciertas condiciones, no falle"¹³

El objetivo de los operadores del servicio público de electricidad es proporcionar un servicio eléctrico continuo y de calidad a sus clientes a un ritmo razonable y un costo de operación y mantenimiento, razonable para el sistema y equipos disponibles. Un servicio eléctrico de calidad implica la cobertura de la demanda del cliente respetando los límites especificados de tensión y frecuencia. ¹⁴

La continuidad del servicio eléctrico significa la ausencia de cortes de energía, que en muchos casos acarrea problemas de seguridad del personal y del equipo, disminución de la producción y daños a la salud, entre otros problemas.

Los operadores de red –OR disponen de redundancias adecuadas, que les permiten suministrar un servicio confiable a sus clientes, estas redundancias en su sistema evitan que una falla en alguno de los componentes llegue a convertirse en una interrupción del servicio a los clientes, causando pérdida de bienes, servicios o beneficios. Para calcular el costo de confiabilidad, el costo de las interrupciones debe ser calculado¹⁵.

Las fallas en los sistemas de distribución de energía pueden causar inconvenientes que van desde la afectación de un pequeño grupo de residentes locales a grandes cortes del suministro que afectan múltiples usuarios¹⁶.

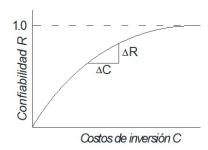
El análisis económico de la confiabilidad de un sistema eléctrico, resulta ser una herramienta de planificación muy útil que permite determinar los costos necesarios para mejorar y mantener la continuidad del servicio. Los costos de la confiabilidad también se utilizan para las revisiones de las tarifas y las solicitudes de aumentos tarifarios¹⁷.

¹³ ZAPATA, Carlos Julio. Confiabilidad en Ingeniería. Pereira. Universidad Tecnológica de Pereira, 2011. 154 p.

¹⁴ GÖNEN, Turan. Electric Power Distribution System Engineering. 2 ed. Sacramento, California, EU.: CRC-Press Taylor & Francis Group, 2007. 834 p. ISBN-13: 978-1-4200-6200-7

¹⁵ GÖNEN. Op. cit., p. 564.

¹⁶ BILLINTON, Roy y ALLAN, Ronald. Reliability Evaluation of Power Systems. 2 ed. Nueva York, EU: Plenum press, 1996. 509 p. ISBN-13: 0-306-45250-6.


¹⁷ GÖNEN. Op. cit., p. 564.

El impacto económico acarreado por las interrupciones del servicio no comprende solamente la pérdida de ingresos por parte del OR o los perjuicios causados al cliente, sino que también se deben incluir los costos indirectos impuestos a los clientes, a la sociedad y al medio ambiente, originados por el corte del suministro¹⁸.

1.2.1 El costo de la confiabilidad. La tendencia en todos los casos se centra en la necesidad de determinar el valor de la confiabilidad en un sistema, como contribuye este valor y quien debe decidir sobre los niveles de confiabilidad e inversión necesarios, a fin de lograrlos. Los costos y la economía juegan un papel importante en la aplicación de los conceptos de confiabilidad y su logro. En este contexto, se puede plantear una pregunta: "¿Dónde o en qué se debe invertir el dinero para lograr los máximos beneficios en cuanto a confiabilidad del sistema eléctrico?" Esta pregunta resulta considerablemente difícil de responder, sin embargo, sólo se puede intentar responder si se evalúan índices de confiabilidad cuantitativa para cada una de las alternativas. 19

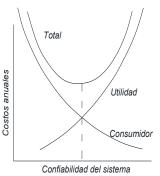
La Figura 2, muestra cómo la confiabilidad de un producto o sistema está relacionada con el costo de inversión, requiriéndose una mayor inversión para mejorar la confiabilidad. El costo incremental de confiabilidad $\Delta C/\Delta R$, permite decidir si una inversión en el sistema vale la pena²⁰.

Figura 2. Costo incremental de confiabilidad.

Adaptado de 21

¹⁸ BILLINTON. Op. cit., p. 12.

¹⁹ Ibid., p. 12.


²⁰ Ibid., p. 13.

²¹ BILLINTON. Op. cit., p. 13.

La Figura 3, muestra que, a mayores costos de inversión, mayor confiabilidad. Por otro lado, el costo del cliente asociado con los fallos disminuye a medida que aumenta la confiabilidad. Los costos totales corresponden a la suma de estos dos costos individuales. El costo total mínimo se presenta para cuando se logra un nivel de confiabilidad "óptimo" u objetivo. Sin embargo, para su evaluación surgen dos dificultades:

- ✓ Los índices que se calculan, usualmente se estiman sólo a partir de modelos aproximados.
- ✓ Hay problemas significativos en la evaluación de la percepción por parte de los clientes, acerca de los costos de falla del sistema.

Figura 3. Costo total de la confiabilidad.

Adaptado de²²

Se puede presentar un análisis a partir de lo observado, así:

- Aumentar el nivel de confiabilidad, implica un aumento del nivel de inversión requerido y viceversa.
- Los costos asociados con la confiabilidad deben compararse con los beneficios globales, tanto para el usuario como para la sociedad.

-

²² BILLINTON. Op. cit., p. 14.

- Un nivel aceptable de confiabilidad depende de lo que los usuarios estén dispuestos a pagar por esta. Este nivel aceptable de confiabilidad generalmente es diferente del óptimo matemático.
- La justificación de las inversiones que buscan la mejora de la confiabilidad debe incluir los costos asociados a las fallas o interrupciones del servicio para los usuarios, las empresas distribuidoras y la sociedad.
- El costo de interrupción corresponde al valor de las pérdidas económicas debidas a la falla o salida²³.
- 1.2.2 Factores que influyen en la confiabilidad. Existen algunos factores que afectan los niveles de confiabilidad de los sistemas eléctricos, dentro de estos se pueden mencionar:
 - ✓ Crecimiento de la demanda de energía eléctrica.
 - ✓ Capacidad del sistema y demanda (margen de reserva)
 - ✓ Migración de Población
 - ✓ Efectos del cambio climático

La demanda de energía eléctrica se ve afectada por múltiples factores, incluyendo la actividad económica, el clima y la dinámica de la población²⁴. Esto se ha presentado por la Unidad de Planeamiento Minero Energético- UPME, con datos actualizados para Colombia, mostrándose mediante gráficos de correlación: Demanda de energía eléctrica contra el producto Interno Bruto- PIB Total, Población y Temperatura media para las regiones pertenecientes al Sistema Interconectado Nacional- SIN.

La demanda de energía eléctrica para Colombia sin incluir los grandes consumidores especiales- GCE, para el período comprendido entre septiembre de 2015 a marzo de 2016, ha presentado un crecimiento del 4,75%, estando 1,81% por encima del crecimiento en el mismo período para 2013 - 2014. Al tener en cuenta los GCE como Rubiales y la

-

²³ ZAPATA. Op. cit., Cápitulo 1 p. 6.

²⁴ OSBORN, Julie. y KAWANN, Cornelia. Reliability of the U.S. Electricity System: Recent Trends and Current Issues. Stevenage: U.S. Department of Energy., 2001. LBNL-47043

Drummond, el crecimiento para el periodo septiembre 2015 a marzo 2016 alcanzó el 5,01%, mostrando una diferencia del 1,23% en el mismo período para 2013 – 2014²⁵.

Del análisis presentado por la UPME en el Plan de Expansión de Referencia Generación – Transmisión 2016 – 2030, el crecimiento de la demanda se vio afectado por condiciones de cambio climático debidos al fenómeno climático de "El Niño" que afronto el país para el periodo de septiembre 2015 a marzo 2016.

Otros factores que influyen en la confiabilidad del sistema eléctrico en general son:

Desregulación y Mercados de Electricidad Competitivos

La aparición de mercados eléctricos en los cuales se promueve la competencia entre agentes del mercado eléctrico ha favorecido el cambio en la naturaleza de la industria eléctrica de maneras fundamentales que podrían conducir a un sistema menos confiable. Aunque no todos los problemas de confiabilidad son directamente atribuibles a la desregulación²⁶. Pueden mencionarse además de los anteriores:

- ✓ Falta de inversión en reposición de equipos y mantenimiento: La inversión en nuevas instalaciones se ha ralentizado durante las últimas dos décadas²7.
- ✓ Poder de mercado (ejercido por generadores): Durante el verano de 2000, los precios de California Power Exchange (PX) alcanzaron en varias ocasiones su límite efectivo a medida que la demanda superaba la disponibilidad. Estos déficits de capacidad levantaron la sospecha de que el control de la capacidad de generación era practicado por un pequeño número de empresas, esto les permitió ejercer poder de mercado mediante la retirada de la capacidad del mercado para aumentar sus precios y sus ingresos²8.

²⁵ COLOMBIA. UNIDAD DE PLANEAMIENTO MINERO ENERGÉTICO. Plan de expansión de referencia generación – transmisión 2016 – 2030. Op. cit., p. 26.

²⁶ OSBORN, Op. cit., p. 16.

²⁷ Ibid., p. 17.

²⁸ Ibid., p. 20.

- ✓ Volatilidad de los precios: Los altos precios de la electricidad favorecen la construcción de nuevos proyectos eléctricos, ayudados por una rentabilidad probablemente alta; sin embargo, los precios de la energía pueden, a su vez, caer si el suministro de energía aumenta. Otro factor para tener en cuenta es que la demanda no se modera cuando los precios suben; Es decir, la demanda presenta un comportamiento inelástico, esta inelasticidad es extrema porque pocos consumidores pagan precios en tiempo real, limitado por la capacidad de medición, las estructuras tarifarias y los contratos que permitan que un número significativo de clientes reduzca el uso de energía cuando los precios suben²9.
- ✓ Congestión de la red: La congestión puede ocurrir por varias razones: apagones de generadores, consumidores o instalaciones de transmisión; cambios importantes en el flujo de carga debido al aumento de las exportaciones, importaciones y tránsitos.
- 1.2.3 Formas de mejorar la confiabilidad. Las formas para mejorar la confiabilidad del sistema eléctrico pueden analizarse desde el lado de la demanda como de la oferta. Incluyen innovaciones tecnológicas, así como políticas que se están desarrollando como respuesta a las nuevas oportunidades que ofrece la desregulación³⁰.

Cuadro 1. Maneras de mejorar la fiabilidad del sistema eléctrico.

Programa	Requisitos para la implementación
Eficiencia energética	Actualizar/crear estándares para electrodomésticos y equipos
Gestión de la demanda	Mejorar el acceso de los consumidores a la información sobre los costos del consumo de energía
Precios alternativos Precios en tiempo real	Implementar nuevas regulaciones y / o tarifas que permitan a los consumidores ver el verdadero precio de la energía
Cargas interrumpibles/ licitación	Desarrollar y ofrecer a los pequeños consumidores
de carga	acceso a tecnologías de medición de bajo costo

Adaptado de³¹

Reducción de demanda máxima

²⁹ Ibid., p. 21.

³⁰ Ibid., p. 27.

³¹ BILLINTON. Op. cit., p. 13-14.

Existen programas que buscan reducir o aplanar la curva de carga del sistema, se ha instituido en los últimos años como una opción importante, rentable y amigable con el medio ambiente, además busca mitigar las posibles deficiencias en los recursos del sistema eléctrico. Al reducir la carga, se puede aumentar el acceso de los clientes, esto se logra mediante programas de eficiencia energética, los precios de tiempo de uso, los contratos interrumpibles y las licitaciones de carga³².

Los Programas de RD pueden clasificarse en dos grandes grupos:

- ✓ Programas basados en los precios: Intentan reducir la demanda de energía de los consumidores a través de señales de precios.
- ✓ Programas basados en las cantidades: Intentan reducir la demanda a través del control directo de las cargas en el hogar u oficina, tales como acondicionadores de aire, bombas eléctricas, calentadores y otros³³.

Los programas basados en la cantidad y en los precios pueden ser clasificarse así:

- ✓ Los programas de TOU (Time of Use): ofrecen a los consumidores Múltiples tarifas de electricidad dependiendo de la hora del día en el que se consume la energía, típicamente dos a tres tipos de tarifas.
- ✓ Los programas RTP (Peak Time Rebate): son similares a los programas TOU, excepto la tasa cambia en tiempo real (por ejemplo, hora) en lugar tiempos y tasas predefinidos.
- ✓ Los programas de CPP (Critical Peak Pricing): utilizan un número limitado de días cada año cuando se espera que la carga total del sistema sea la más alta. La empresa paga a los consumidores para interrumpir (Carga interrumpible / reducida), o controla directamente algunas cargas a través de interruptores. Hay otros

³² Ibid., p. 28.

³³ ELDALI, F., HARDY, T., CORBIN, C., PINNEY, D., & MANNAN, J. (2016). Cost-benefit analysis of demand response programs incorporated in open modeling framework. IEEE, 5 (SIOSHANSI, 2010).

programas tales como licitación por demanda, programas de mercado de capacidad, Servicio y EDRP³⁴.

Algunos beneficios de la respuesta a la demanda son:

- ✓ Desplazamiento de la carga de pico a fuera de horas pico: lo que reduce la necesidad de una capacidad máxima de generación³⁵.
- ✓ Mayor fiabilidad del sistema debido a una mayor flexibilidad: Mitigación del poder de mercado debido al aumento de la elasticidad de la demanda³⁶.
- ✓ Además, la respuesta a la demanda puede ayudar a los operadores con la variabilidad de grandes cantidades de recursos renovables³7.

Gestión de la demanda

A menudo resulta ser más rentable ayudar a los clientes a reducir su demanda de energía a través del uso de tecnologías más eficientes, que construir nuevas plantas de generación de energía. La adopción de medidas de eficiencia energética se traduce en una mejora de la confiabilidad del sistema eléctrico, debido a que se presenta reducción del crecimiento de la demanda pico en áreas que experimentan restricciones de transmisión o distribución o escasez de generación eléctrica³⁸.

> Cargas interrumpibles y ofertas de carga

Se trata de programas de racionamiento voluntario (DDV- Demanda Desconectarle Voluntariamente), en los cuales los grandes clientes industriales reciben una retribución monetaria a cambio de racionar parte de la energía que consumen normalmente. Esto

³⁵ PAPAVASILOU, A., & OREN, S. (2014). Large-scale integration of deferrable demand and renewable energy sources. IEEE, 1 p

³⁴ Ibid., p. 5.

³⁶ ALBADI, M., & EL-SAADANI, E. (2008). A summary of demand response in electricity markets. 11 p.

³⁷ SIOSHANSI, R. (2010). Evaluating the impacts of real-time pricing on the cost and value of wind generation. IEEE, 5 p.

³⁸ OSBORN. Op. cit., p. 28.

generalmente se presenta en épocas de alta demanda y baja capacidad de generación. Las nuevas tecnologías (AMI- Advanced Metering Infrastructure), permiten aumentar las oportunidades de participación de los clientes más pequeños³⁹.

Generación distribuida

Si bien no existe un consenso sobre la definición de generación distribuida- GD, el DPCA (Distribution Power Coalition of América) la define como, "cualquier tecnología de generación a pequeña escala que proporciona electricidad en puntos más cercanos al consumidor que la generación centralizada y que se puede conectar directamente al consumidor o a la red de transporte o distribución"40.

Dentro de las aplicaciones de la GD, comprende desde la generación de base, generación en punta, cogeneración, hasta la mejora de la calidad de suministro, respaldo de red de transporte y distribución⁴¹.

Las condiciones técnicas relacionadas con la conexión de la GD a la red eléctrica son fuente de debate, ya que en muchos casos no existen estándares reconocidos para la interconexión. También se presentan dificultades al estandarizar el equipo de protección que se necesita para asegurar una interconexión segura. A fin de minimizar los impactos negativos que puede presentar la DG sobre las redes, las empresas de servicios públicos han desarrollado requisitos individuales para la conexión de nuevas GD a sus sistemas⁴²..

Reconfiguración

Consiste en alterar la estructura topológica de la red y de alimentadores primarios a través del cambio de estado en los elementos de sección, conservando una estructura radial. La

³⁹ Ibid., p. 30.

⁴⁰ ESPAÑA. FUNDACIÓN DE LA ENERGÍA DE LA COMUNIDAD DE MADRID. Guía Básica de la Generación Distribuida. Madrid-España., Gráficas Elisa, S.A. p. 65.

⁴¹ Ibid., p. 10.

⁴² OSBORN. Op. cit., p. 33.

reconfiguración consiste en cambiar el estado inicial en los enlaces y transferir carga entre los alimentadores⁴³.

A través de la reconfiguración se busca obtener un sistema más flexible ante condiciones de operación anormal, optimizando el sistema. La reconfiguración de alimentadores en los SDEE ha tenido dos vertientes en cuanto a metodologías de planeamiento, las que se basan en el conocimiento y la experiencia del sistema (generalmente por parte de los OR) y las que se basan en modelos matemáticos (métodos heurísticos, redes neuronales, lógica difusa, algoritmos evolutivos, sistemas expertos, entre otros.⁴⁴

Existen varias razones por las cuales se busca la reconfiguración, a continuación, se citan algunas de ellas:

- Minimizar las pérdidas tanto de potencia como de energía.
- Mejorar la cargabilidad de líneas y transformadores
- Disminuir el grado de desbalance.
- Mejorar perfiles de tensión.
- Mejorar índices de confiabilidad
- Minimizar el impacto económico de la Energía esperada no suministrada- EENS

El objetivo principal con el cual los OR hacen reconfiguración en sus sistemas, busca alcanzar un adecuado suministro de energía, en términos de reducción de pérdidas. Sin embargo, se hace necesario analizar si el cambio topológico puede llegar a significar una alteración de la confiabilidad de la línea de distribución⁴⁵.

Realizar reconfiguración, buscando mejorar los índices de confiabilidad, puede conseguir:

- Disminución en las tasas de fallo.
- Disminución en la tasa de reparación.

⁴⁵ Ibid., p. 49.

32

⁴³ ACEVEDO. Op. cit., p. 38.

⁴⁴ Ibid., p. 38.

Minimización de clientes afectados por una falla.

Al depender de los elementos de control, protección, automatización y personal humano de mantenimiento, la tasa de reparación puede llegar a minimizarse. Los impactos sobre los usuarios conectados al SDEE se pueden disminuir en tanto la reconfiguración permita reducir los tiempos de duración de la falla. Un criterio de decisión acerca de la reconfiguración se basa en cuantificar las pérdidas y si se presenta un nivel bajo de estas, se puede llegar a considerar como permanente⁴⁶.

1.3 ÍNDICES DE CONFIABILIDAD

Aun cuando existen muchos índices que permiten la valoración del desempeño de la confiabilidad, e incluso varios países han establecido valores de referencia que les permiten identificar niveles aceptables de confiabilidad, la norma IEEE 1366 "Guide for Electric Power Distribution Reliability Indices" presenta los índices de más usados en Estados Unidos de América, los cuales poco a poco han sido adoptados como referencia en algunos países como Colombia⁴⁷.

A continuación, se muestran tales índices basados en los usuarios para interrupciones sostenidas, aplicables en áreas con predominio de usuarios residenciales.

 SAIFI - System Average Interruption Frecuency Index.: Representa la cantidad promedio de interrupciones de un sistema de distribución en un periodo de tiempo establecido⁴⁸.

_

⁴⁶ Ibid., p. 49.

⁴⁷ ZAPATA, Carlos Julio. Confiabilidad de Sistemas Electricos de Potencia. Pereira. Universidad Tecnológica de Pereira, 2011 10 p.

⁴⁸ COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. Resolución número 176 DE 2016. Op. cit., p. 111.

$$SAIFI = \frac{\sum_{\forall i} N_i}{N_T} \left[\frac{interrupciones}{usuario - a\tilde{n}o} \right]$$
 Ec.

 SAIDI - System Average Interruption Duration Index: Representa la duración promedio de las interrupciones de un sistema de distribución en un periodo de tiempo establecido⁴⁹.

$$SAIDI = \frac{\sum_{\forall i} N_i r_i}{N_T} \left[\frac{horas}{usuario - a\tilde{n}o} \right] Ec.2$$

• *CAIDI - Customer Average Interruption Duration*: Representa el tiempo promedio requerido para restaurar el servicio⁵⁰.

$$CAIDI = \frac{\sum_{\forall i} N_i r_i}{\sum_{\forall i} N_i} = \frac{SAIDI}{SAIFI} \left[\frac{horas}{interrupcion - a\tilde{n}o} \right] \qquad \textit{Ec.3}$$

 ASAI - Average Service Availability Index: Representa la fracción de tiempo (a menudo en porcentaje) que un cliente ha recibido energía durante el período definido⁵¹.

$$ASAI = \frac{N_T \times 8760 - \sum_{\forall i} N_i r_i}{N_T \times 8760} Ec.4$$

De acuerdo con (Zapata 2011 Confiabilidad en ingeniería), los índices basados en la carga instalada son:

 ASIFI - Average System Interruption Frequency Index: "El cálculo del Índice de Frecuencia de Interrupción del Sistema (ASIFI) se basa en la carga y no en los clientes afectados. A veces se utiliza ASIFI para medir el desempeño de la distribución en áreas que sirven a relativamente pocos clientes que tienen concentraciones relativamente grandes de carga, predominantemente clientes industriales / comerciales. Teóricamente, en un sistema con distribución de carga homogénea, ASIFI sería el mismo que SAIFI"52.

$$ASIFI = \frac{\sum_{\forall i} L_i}{L_T} \quad \textit{Ec.5}$$

 ASIDI - Average System Interruption Duration Index: "El cálculo del índice de duración media de interrupción del sistema (ASIDI) se basa en la carga en lugar de

⁴⁹ COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. Resolución número 176 DE 2016. Op. cit., p. 110.

⁵⁰ IEEE. Guide for Electric Power Distribution Reliability Indices. 2 ed. New York, EU: IEEE, 2012. 43 p.

⁵¹ Ibid., p. 8

⁵² Ibid., p. 8

los clientes afectados. Su uso, limitaciones y filosofía se expresan en la definición dada para ASIFI"53. (IEEEE 1366 "Guide for Electric Power Distribution Reliability Indices"- 2012)

$$ASIDI = \frac{\sum_{\forall i} L_i r_i}{L_T} \quad \textit{Ec.6}$$

Dónde:

i = Corresponde a una interrupcion del servicio

 $N_i = N$ úmero de usuarios afectados por la interrupción i

 r_i = Tiempo de restauración de la interrupción i

 $N_T = N$ úmero total de usuarios servidos

 $L_i = Carga$ interrupida en la interrupción i

 $L_T = Carga total de usuarios servidos$

A continuación, se muestran los índices en los puntos de carga, de acuerdo con lo enunciado por Zapata 2011 Confiabilidad en ingeniería:

• Tiempo medio de interrupción en el punto de carga j:

$$r_j = \frac{U_j}{\lambda_j}$$
 Ec.7

• Disponibilidad del servicio en el punto de carga j:

$$A_j = \frac{8760 - U_j}{8760}$$
 Ec.8

Dónde:

 $C_i = N$ úmero de usuarios conectados en un punto de carga j

 $\lambda_j = N$ úmero de interrupciones del servicio al punto de carga j

 U_i = Horas anuales de indisponibilidad del servicio en el punto de carga j

Los índices λ_j y U_j se pueden calcular a partir de los registros operativos y a partir de ellos obtener los índices r_i y A_i^{54} .

Según con Zapata 2011 Confiabilidad en ingeniería, puede hacerse:

Número de interrupciones en el punto de carga j:

⁵⁴ ZAPATA. Op. cit., p. 16.

⁵³ Ibid., p. 8

$$N_j = C_j \lambda_j$$
 Ec.9

Y luego:

$$SAIFI = \frac{\sum_{\forall i} N_i}{N_T} = \frac{N_j}{C_i} = \frac{C_j \lambda_j}{C_i} = \lambda_j$$
 Ec.10

$$SAIDI = \frac{\sum_{\forall i} N_i r_i}{N_T} = \frac{C_j \lambda_j r_j}{C_j} = \lambda_j r_j = U_j$$
 Ec.11

$$CAIDI = \frac{SAIDI}{SAIFI} = \frac{U_j}{\lambda_i} = r_j Ec.12$$

$$ASAI = \frac{N_T \times 8760 - \sum_{\forall i} N_i r_i}{N_T \times 8760} = \frac{C_j \times 8760 - C_j \lambda_j r_j}{C_j \times 8760} = \frac{(8760 - \lambda_j r_j)}{8760} = A_j \quad \textit{Ec.13}$$

Los índices SAIFI, SAIDI, CAIDI y ASAI, calculados a nivel de punto de carga corresponden a los índices λ , U, r y A del punto de carga 55 .

1.4 ANTECEDENTES REGULATORIOS EN COLOMBIA

En Colombia la Comisión de Regulación de Energía y Gas- CREG emite frecuentemente, resoluciones encaminadas a que los OR paguen a sus clientes, por los daños causados por la desmejora en la calidad del servicio.

La calidad en sistemas eléctricos presenta tres componentes básicos bien delimitados, como son:

⁵⁵ Ibid., p. 71

Calidad del Servicio Prestado

La calidad del servicio prestado está ligada a la continuidad del servicio (duración, frecuencia de interrupciones, y Energía No Suministrada- EENS). Esta puede ser observada por cualquier usuario sin la necesidad de la instalación de equipos de medida.

La calidad del servicio prestado, entendida como la continuidad del suministro, tiene nexos muy cercanos con la confiablidad del sistema.

Calidad de la Potencia Suministrada

Hace referencia a los parámetros de las ondas de tensión y corriente, en los cuales se miden valores de tensión, frecuencia, contenidos de armónicos en ondas de tensión y corriente, flickers, factor de potencia y transitorios; para la identificación de estos parámetros se hace necesaria la instalación de equipos de medida que permitan registrar tales variaciones, por cuanto la mayoría son imperceptibles para el usuario debido a la rapidez con que se presentan⁵⁶.

Calidad Comercial

La Calidad de la Potencia La Calidad Comercial se refiere a la atención del usuario, reclamaciones y facturación del servicio.

A continuación, se presenta el listado de leyes, resoluciones y documentos mediante los cuales se reglamenta la calidad del servicio en Colombia.

Cuadro 2. Antecedentes Regulatorios de calidad de la prestación de servicio de energía eléctrica-Caso Colombiano

RESOLUCIÓN O DECRETO O LEY	ENTIDAD QUE EMITE	OBJETO	OBSERVACIONES
Ley 142 del 11 de jul de 1994	Congreso de la república de Colombia	Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones	La ley reglamenta: La participación del estado en los servicios públicos Define servicios públicos esenciales Dispone el otorgamiento de subsidios

⁵⁶ COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. RESOLUCIÓN NÚMERO 070 DE 1998. (28, mayo, 1998). Por la cual se establece el Reglamento de Distribución de Energía Eléctrica, como parte del Reglamento de operación de Sistema Interconectado Nacional. Comisión de regulación de energía y gas. Bogotá D.C., 1998. N° 070. P. 1-63.

RESOLUCIÓN O DECRETO O LEY	ENTIDAD QUE EMITE	OBJETO	OBSERVACIONES
DEGRETO O LET	Limit		Asegura la participación de los usuarios en la gestión y fiscalización de las entidades que prestan los servicios públicos en el municipio Asegurar que se presten a sus habitantes, de manera eficiente, los servicios domiciliarios de acueducto, alcantarillado, aseo, energía eléctrica, y telefonía pública básica conmutada, por parte de las empresas de servicios públicos de carácter oficial, privado o mixto, o directamente por la administración central del respectivo municipio Establece quienes pueden prestar los servicios públicos (personas, entidades privadas o municipios) Establece los derechos y deberes de los usuarios
Ley 143 del 11 de jul de 1994	Congreso de la república de Colombia	Por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia energética	Establece el régimen de las actividades de generación, interconexión, transmisión, distribución y comercialización de electricidad, que en lo sucesivo se denominarán actividades del sector, en concordancia con las funciones constitucionales y legales que le corresponden al Ministerio de Minas y Energía. Establece las funciones de la Unidad de Planeamiento Minero Energético- UPME. Indica quienes conformaran la Comisión de Regulación de Energía y Gas- CREG, los requisitos y el rol que desempeñan. Le otorga a la CREG la facultad de definir la metodología de cálculo de las tarifas por el acceso y uso de las redes del sistema interconectado nacional y el procedimiento para hacer efectivo su pago. Indica las funciones del Centro Nacional de Despacho. Ordena crear el Consejo Nacional de Operación- CON y otorga las funciones de esta entidad. Propende por el uso eficiente de los recursos y la preservación del medio ambiente.
Resolución 070 del 28 may 1998	CREG- Comisión de energía y gas	Por la cual se establece el Reglamento de Distribución de Energía Eléctrica, como parte del Reglamento de Operación del Sistema Interconectado Nacional	Se orienta a: Establecer criterios y procedimientos para la planeación, operación y mantenimiento de los STR's y SDL's. Establecer principios y procedimientos que definen las relaciones entre los diferentes usuarios STR y SDL. Definir criterios para el planeamiento y operación eficiente de los STR's y SDL's, que faciliten la competencia en le Generación y comercialización de electricidad. Establecer criterios para el diseño y ejecución del plan de inversiones de los OR's con el fin de garantizar la confiabilidad, seguridad y economía de los STR's y SDL's. Establecer criterios y procedimientos para la ejecución y operación de las conexiones de los usuarios a los STR's y SDL's. Establecer criterios de calidad de la potencia y del servicio suministrado para los diferentes OR's con el propósito de dar garantías mínimas en estos aspectos a los usuarios conectados al STR y/o SDL del OR respectivo. Definir criterios generales con la medición de consumos de energía eléctrica. Establecer las características técnicas para la prestación de servicio de alumbrado publico Definir criterios y remuneraciones para la propiedad de activos
Resolución 176 de 2016	CREG- Comisión de energía y gas	Por la cual se ordena hacer público un proyecto de resolución "Por la cual se establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el sistema interconectado nacional"	Establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el Sistema Interconectado Nacional. Aplica a todos los agentes económicos que prestan el servicio de distribución de energía eléctrica y a todos los usuarios que utilizan el servicio.

A continuación, se presenta el listado de leyes, resoluciones y documentos mediante los cuales se reglamenta el Programa de la Respuesta a la demanda en Colombia.

Cuadro 3. Antecedentes Regulatorios de respuesta a la demanda- Caso Colombiano

RESOLUCIÓN O	ENTIR AR OUE ETTE	OD IETO	0005004010050
DECRETO O LEY	ENTIDAD QUE EMITE	OBJETO	OBSERVACIONES
Decreto 2592 del 03 Dic de 2014	Ministerio de minas y energía- MME	Por el cual se adoptan disposiciones en materia de implementación de mecanismos de respuesta de la demanda	En la elaboración del PEN, el Plan de Expansión de Referencia y el Plan Indicativo de Expansión de Cobertura de Energía Eléctrica, la UPME deberá considerar criterios de respuesta de la demanda
Ley 1715 de 13 May de 2014	Congreso de la república de Colombia	Por medio de la cual se regula la integración de las energías renovables no convencionales al sistema energético nacional	Promover el desarrollo y la utilización de las fuentes no convencionales de energía, principalmente aquellas de carácter renovable, en el sistema energético nacional, mediante su integración al mercado eléctrico, su participación en las ZNI y en otros usos energéticos corno medio necesario para el desarrollo económico sostenible, la reducción de emisiones de gases de efecto invernadero y la seguridad del abastecimiento energético. Con los mismos propósitos se busca promover la gestión eficiente de la energía, que comprende tanto la eficiencia energética como la respuesta de la demanda.
Resolución 098 del 02 jul 2014	CREG- Comisión de energía y gas	Por la cual se ordena hacer público el proyecto de resolución de carácter general, "por la cual se regula la respuesta a la Demanda para el mercado diario en condiciones de escasez"	Se invita a los agentes, usuarios, Autoridades Locales, Municipales y Departamentales competentes, a la SSPD, a la SIC, para que remitan sus observaciones y sugerencias dentro de los 20 días habilites posteriores a la publicación.
Documento CREG 009 de 12 feb 2015	CREG- Comisión de energía y gas	Análisis a los comentarios a la resolución 098 de 2014	Se recibieron cometarios de 365 agentes pertenecientes al mercado eléctrico colombiano
Resolución 011 del 12 Feb 2015	CREG- Comisión de energía y gas	Por la cual se regula el programa de respuesta a la demanda para el mercado diario en condición critica	Mediante esta resolución se adoptan las normas para regular el programa de respuesta de la demanda, RD, para el mercado diario en condición crítica. Las normas de esta resolución hacen parte integrante del reglamento de operación que regula el funcionamiento del MEM
Resolución 116 del 26 Ago 2015	CREG- Comisión de energía y gas	Por la cual se amplía el plazo para implementar el programa de respuesta a la demanda para el mercado diario en condición crítica, adoptado mediante Resolución 011 de 2015	Aplazamiento de la aplicación del programa de respuesta a la demanda para el mercado diario en condición crítica (COMISION DE ENERGIA Y GAS- CREG, 2015), adoptado mediante Resolución 011 de 2015. La aplicación por parte de XM, se aplaza por tres meses contados a partir de la expedición de la resolución.
Resolución 038 del 20 Mar 2014	CREG- Comisión de energía y gas	Por la cual se modifica el código de medida contenido en el anexo general del código de redes	El código de medida se desarrolla con base en criterios de eficiencia, adaptabilidad y neutralidad de la prestación del servicio de energía establecidos en las leyes 142 y 143 de 2014
Resolución 063 del 27 Abr 2010	CREG- Comisión de energía y gas	Por la cual se regula el anillo de seguridad del cargo por confiabilidad denominado Demanda Desconectarle Voluntariamente	Se adoptan las normas para regular el anillo de seguridad del cargo por Confiabilidad denominado Demanda Desconectable Voluntaria- DDV, conforme a lo previsto en los artículos 58 y 73 de la resolución CREG 071 de 2006
Documento CREG 055 de 27 Abr 2010	CREG- Comisión de energía y gas	Demanda Desconectarle Voluntaria- DDV	Mediante resolución CREG 176 de 2009, la Comisión de Regulación de Energía y Gas publicó el proyecto de resolución por el cual se regula el anillo de seguridad del Cargo por Confiabilidad denominado Demanda Desconectable Voluntariamente, con el fin de presentar y divulgar la propuesta, así como plantear el conjunto de elementos que forman parte del esquema del DDV y sus alternativas, para evaluación y comentarios de la industria y usuarios.

1.5 ESTUDIO DE CASO

Con el objetivo de calcular los índices de EENS, se hace necesario modelar un SDL, perteneciente a un OR, del cual se conocen circuitos con un nivel de tensión nominal de 13,8 kV.

A continuación, se muestran algunas de las características del sistema modelado.

Cuadro 4. Parámetros del sistema modelado.

Nombre	Código	Número de usuarios atendidos	Tensión [kV]	Cantidad de transformadores	Cantidad de líneas de 13,8 kV	P [MW]	Q [MVar]	S [MVA]	Fp ⁵⁷
Cto_1	15351	40070 40.0	104	131	5,768	2,9190	6,465	0,89	
Cto_2	15352	10270	10270 13,8	131	164	7,140	3,6440	8,016	0,89
	Total			235	295	12,908	6,563	14,481	0,89

Los dos circuitos bajo análisis parten del lado de "baja tensión" de un transformador tridevanado con tensiones 115 kV/34,5 kV/ 13,8 kV con capacidad de 40 MVA/ 20 MVA/ 20 MVA.

Se elige este sistema, debido a que alimenta cargas urbanas y rurales, así como cargas industriales, residenciales y comerciales, además de presentar una topología apropiada para probar la implementación de alternativas de mejora, las cuales se describirán posteriormente, al igual que los escenarios modelados.

Se modela el sistema en el estado actual, sin aumento de la carga, por lo menos en el corto plazo. Se parte de la hipótesis que las tensiones en nodos presentan limites admisibles, además, no hay sobrecargas en los elementos. La finalidad del modelamiento es la determinación de los índices de confiabilidad, de carga totales del sistema:

- ✓ SAIDI
- ✓ SAIFI
- ✓ CAIDI
- ✓ ASAI

⁵⁷ Factor de potencia en atraso

✓ ASIDI

También se determinan:

- ✓ Frecuencia de interrupción de la carga total del sistema
- ✓ Duración media de interrupción de la carga total del sistema
- ✓ No disponibilidad de la carga total del sistema
- ✓ Potencia de carga interrumpida total
- ✓ EENS- Energía total no suministrada
- ✓ Costos totales de interrupción de carga

Sin embargo, de todas las anteriores y de acuerdo con el objetivo de este trabajo, será de interés la EENS, observando cómo las alternativas implementadas afectan esta variable.

2. ALTERNATIVAS TECNOLÓGICAS Y OPERATIVAS PARA DISMINUIR LA EENS EN UN SDL

"Lo que sabemos es una gota, lo que no sabemos es un océano."

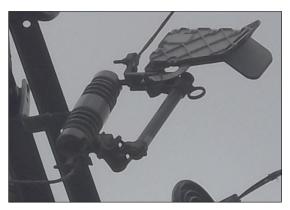
Isaac Newton

En este capítulo presenta de manera general una serie de elementos, técnicas y arreglos, que pueden llegar a ser implementados como alternativas tecnológicas para propender por la disminución de la EENS en circuitos de sistemas de distribución de energía eléctrica; por medio de su inclusión, individual o como combinaciones de estos.

2.1 FUSIBLES

2.1.1 Cortacircuitos con fusibles de expulsión. Los fusibles de expulsión son los elementos más simples y extendidos que se utilizan para la protección de circuitos de distribución en moderadas tensiones y potencias. Consisten principalmente en un cilindro de material aislante que alberga un elemento sensible a la corriente o fusible⁵⁸. El principio de funcionamiento de los fusibles consiste en que son un conductor de sección transversal relativamente menor, por tanto, su resistencia eléctrica es mayor que la del elemento protegido y por ende generan más calor. Además, por su menor sección, los fusibles soportan menos calor y se funden con rapidez⁵⁹.

Aunque los fusibles son elementos no reparables, se consideran en esta parte ya que por su muy aceptable relación costo beneficio, aún son muy utilizados para la protección de


⁵⁸ RAMIREZ, Samuel. Protección de Sistemas Eléctricos. Manizales: Universidad Nacional de Colombia, 2003. 664 p.

⁵⁹ JUAREZ, José. Sistemas de distribución de energía eléctrica. México-México. Universidad Autónoma Metropolitana, Unidad Azcapotzalco, 1995. 170 p. ISBN 970-620-734-1.

transformadores de distribución y alimentadores aéreos de diversos tipos. Están asociados a los cortacircuitos portafusiles, que son dispositivos que complementan la función eléctrica del fusible; aportando la robustez mecánica, en cuanto a expulsión por la liberación de gases generados, bien sea por uno o ambos extremos; el recambio de piezas fusibles y el corte visible o seccionamiento de sector fallado. En la Figura 4 se puede observar este dispositivo.

Han aparecido en el mercado, algunas alternativas que involucran la funcionalidad y parte de la economía de los fusibles de expulsión, pero que, desde el punto de vista de la reducción de la indisponibilidad, sobre todo de circuitos de distribución y más específicamente de los que al sector residencial rural se refiere. Los elementos a los que se hace referencia son los cortacircuitos portafusibles de tres disparos, de los que se hará mención a continuación.

Figura 4. Cortacircuitos porta fusibles

En cuanto a la confiabilidad de estos elementos se puede mencionar, que, por ser la alternativa más económica, no es precisamente la que cuenta con las mejores prestaciones en cuanto al aporte en la disminución de la EENS.

2.1.2 Cortacircuitos portafusibles de tres disparos. Son dispositivos cuyo funcionamiento es similar a los mencionados en el numeral 2.1.1, sin embargo, cuentan con algunas

ventajas que mejoran significativamente su índice de confiabilidad y por ende el aporte en la disminución de la EENS.

En resumen, este dispositivo consiste en tres etapas de seccionador portafusible, ensambladas en un chasis común, integrados eléctrica y mecánicamente; estas unidades se conectan eléctricamente a una misma fase del sistema de distribución y su funcionamiento es el siguiente⁶⁰.

Cuando el circuito esta energizado a través del seccionador fusible de la izquierda y ocurre una falla transitoria, el fusible actúa, expulsando el primer portafusible, accionando un mecanismo habilitador que energiza el circuito por el segundo seccionador porta fusible; de manera sistemática sucede lo mismo cuando el segundo seccionador falla, habilitando el tercero y finalmente la ruptura del fusible de la derecha, produce la apertura definitiva del dispositivo⁶¹.

Se estima que la mayoría de los cortes de energía que se experimentan en alimentadores remotos en sistemas de distribución, son debidos a fallas momentáneas o transitorias. Dichas fallas se originan principalmente por descargas atmosféricas, acción de animales, ramas y otros residuos, viento; por supuesto cuando lo que despeja la falla es un seccionador portafusible simple, se produce a continuación un corte prolongado, tanto hasta que la cuadrilla de servicio reestablezca el servicio. Esto causa pérdidas de recursos en proporción al costo de la EENS y el tiempo de despeje de falla. Con el seccionador de tres disparos, se aumenta proporcionalmente la mejora en la EENS y en los tiempos de restablecimiento, aunque se acota que es solo para fallas de tipo transitorio.

_

⁶⁰ CELSA. Seccionador fusible [En línea]. Bogotá D.C., 2016. p. 2. Disponible er http://www.celsa.com.co/images/docs/catalogos/CATA008_1_1.pdf

Figura 5.. Cortacircuitos porta fusibles de tres disparos

2.2 RECONECTADORES O RESTAURADORES AUTOMÁTICOS

Son dispositivos que cuando detectan una condición de falla en el sistema interrumpen el flujo de corriente y una vez que ha transcurrido un tiempo o una determinada secuencia de operación, habilita de nuevo el flujo de corriente por medio del cierre de sus contactos, energizando así el circuito protegido. Si la condición de falla se mantiene, el dispositivo repite la secuencia de cierre-apertura un número de veces, máximo cuatro. Después de la cuarta operación de apertura, queda en posición abierta y bloqueada (Lockout), de manera definitiva hasta que se encuentre y repare la causa de la falla⁶².

⁶² RAMÍREZ. Op. cit., p. 497.

Figura 6. Reconectadores de control electrónico

Si el reconectador se configura para quedar en posición de apertura y bloqueo después de su cuarta operación, pero la falla es transitoria y se elimina antes de su última operación, se restablece entonces a la posición original y queda listo para llevar a cabo otro ciclo de operaciones, pero si el restaurador es sometido a una falla de carácter permanente y pasa por un ciclo completo de recierres y aperturas hasta quedar abierto, entonces se debe cerrar manualmente (una vez realizada la reparación de la falla) para volver a energizar la sección de la línea que protege. Los reconectadores modernos tienen apertura y cierre tripolar de control electrónico y con interrupción en aceite, SF6 y vacío⁶³.

⁶³ Ibid., p. 497

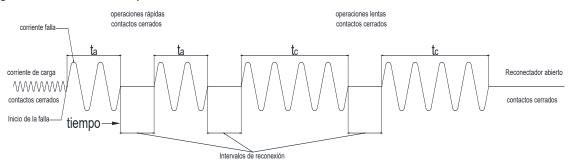


Figura 7. Secuencia de operación de un reconectador, en función reconectador

Adaptado de⁶⁴

Por su conexión se pueden dividir en trifásicos y monofásicos; los segundos se usan para proteger líneas monofásicas (ramas o derivaciones de un sistema trifásico) y también para aislar cargas monofásicas. Los trifásicos se usan donde la desconexión de las tres fases es requerida para cualquier falla permanente; también se usa para prevenir fallas monofásicas de grandes motores. Por su tipo de control se pueden dividir en los de control hidráulico o electrónico, siendo este último el más utilizado ya que Permite cambios de tiempo, niveles de corrientes de disparo y las secuencias de operación La corriente de línea es censada por TC⁶⁵.

Los reconectadores automáticos pueden ser usados en cualquier punto de un sistema de distribución, en donde sus características eléctricas son consecuentes con las del sistema. Pueden ser usados en subestaciones como protección del alimentador primario, en líneas de distribución a distancia de la subestación seccionalizándolo en tramos, en tramos importantes del alimentador principal, en pequeños ramales monofásicos y como protección de cargas y transformadores puntuales.

Desde el punto de vista de la operación, los reconectadores pueden ser RNC y cumplir con la función descrita anteriormente, pero adicionalmente usados como RNA, son dispositivos de maniobra automática que permiten interconectar circuitos adyacentes para reducir el

⁶⁵ RAMÍREZ. Op. cit., p. 501.

Grupo TEI Mexico. ¿Qué hace un restaurador? [En línea]. Disponible en http://grupoteimexico.com.mx/restauradores_en_sf6.php

impacto de las fallas en la calidad del servicio, esto por medio de esquemas de reconfiguración intervenida o automática. Esta combinación de configuración y aplicación permite mejorar los indicadores de confiabilidad generando una buena alternativa para el caso colombiano, que con base en la CREG 126 de 2106, ha modificado las exigencias regulatorias de sanciones e incentivos, con base en los compromisos adquiridos, los cumplimientos e incumplimientos⁶⁶.

La operación conjunta de ambos elementos (RNA y RNC) permite seccionar un sistema de distribución en función de áreas operativas, cuya principal característica es delimitar las regiones de actuación y facilitar la maniobrabilidad y coordinación de los dispositivos de protección, para aislar las áreas afectadas por la falla y restaurar la mayor cantidad de carga posible a través de la transferencia de estasáreas hacia circuitos vecinos⁶⁷.

Como se puede apreciar el reconectador y la combinación de este con otros elementos de protección y maniobra, permiten mejoras en la disminución de la EENS, ya que no solo actúan como elementos de protección exclusiva, sino que además gracias a los avances tecnológicos dentro de los que se cuentan los procesadores electrónicos, los controles numéricos y los módulos de comunicaciones; hacen posible una operación en línea o programada independiente, lo que hace que maniobras de configuración y reconfiguración instantánea o diferida sean posibles, con una base de tiempo relativamente corta.

Una filosofía similar se puede aplicar a interruptores de potencia, cuando estos se equipan con un relé con función de re-cierre, aunque la aplicación de uno u otro dispositivo tiene implicaciones funcionales, económicas y ergonómicas.

2.3 SECCIONALIZADORES AUTOMÁTICOS

Es un dispositivo que realiza el seccionamiento de un circuito eléctrico abriendo automáticamente sus contactos mientras el circuito ya está desenergizado por la previa

-

⁶⁶ Ingeniare. Revista. Chilena de ingeniería., enero 2016, vol.24, N°.1, p.55-69. ISSN 0718-3305

⁶⁷ Ibid., p. 58

interrupción de las corrientes de falla por parte de interruptor o un reconectador. Debido a su incapacidad para interrumpir corrientes de falla, se utiliza en serie con un dispositivo de interrupción, como los mencionados.

Este dispositivo no cuenta con característica I vs t, lo que facilita su aplicación en los esquemas de protección⁶⁸.

Su funcionamiento se puede definir, con base en los que se observa en la Figura 8, en donde se observa una secuencia típica del accionar de un seccionalizador asociado a un reconectador, con una falla permanente al final del ciclo.

 Inicialmente por el reconectador (línea negra) y el seccionalizador (línea verde), fluye una corriente de carga nominal, que la presentamos como 1 p.u.. Esto se cumple hasta el segundo 1, donde ocurre una falla (aproximadamente 50 p.u.), en un punto determinado dl circuito.

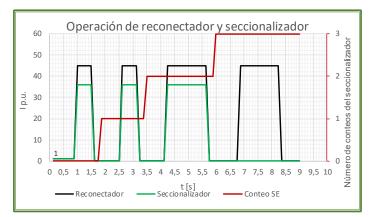
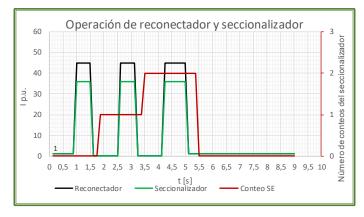


Figura 8. Secuencia de operación de un reconectador y un seccionalizador sin restitución

Se asume que la secuencia del reconectador es la siguiente:
 CR+tA1+CR+tA2+CL+At3+CL+tA4⁶⁹. Una vez se cumple el ciclo y si la falla persiste,

.

⁶⁸ RAMÍREZ. Op. cit., p. 503.


⁶⁹ Curva rápida + tiempo de apertura 1 + Curva rápida + tiempo de apertura 2 + Curva + tiempo de apertura 3 + Curva lenta + tiempo de apertura 4

el reconectador se abre de manera permanente y debe ser restituido de manera manual, una vez se haya conjurado la falla permanente.

- Inmediatamente opera la protección a cargo de reconectador curva rápida.
- Por el seccionalizador fluye la corriente de falla y el la detecta como falla desde que sube al 80% de su valor máximo.
- Una vez se cumple la curva del reconectador y este realiza su primera apertura, el seccionalizador detecta esta apertura en un tiempo predefinido realiza su primer conteo.
- Se repite el mismo ciclo hasta que el reconectador abre por tercera vez sus contactos, ya en el primer ciclo de curva lenta.
- El seccionalizador detecta la ausencia de corriente por la tercera apertura, temporiza y estando abiertos los contactos ósea sin corriente de falla, activa su mecanismo y secciona la línea. Por esto la señal de corriente de falla a partir del tercer conteo (línea roja) se vuelve cero, indicando la apertura del dispositivo.

De manera análoga en la Figura 9, se describe la secuencia cuando se trata de una falla transitoria.

Figura 9. Secuencia de operación de un reconectador y un seccionalizador con restitución

Si la falla presentada es transitoria el funcionamiento es el siguiente:

- La secuencia es similar a la descrita en la Figura 8, hasta que se realiza la segunda apertura.
- Sin embargo, en el instante en que el reconectador realiza su primera curva lenta con la corriente de falla, encuentra que la falla a desaparecido antes de que se produzca la tercera apertura, por tanto, la corriente de falla desaparece y vuelve a percibir el circuito una magnitud nominal de 1 p.u.
- El sensor de corriente del seccionalizador observa una corriente muy inferior al 80% de la corriente de falla, entonces se demora un lapso programable para reinicializar su ciclo de trabajo.

Estos dispositivos presentan a su vez ventajas y desventajas frente a dispositivos menos avanzados como los fusibles, sin embargo, su asociación con equipos como reconectadores o interruptores (de acuerdo con su ubicación en el circuito) y a su menor precio con respecto al de un reconectador para instalarlo en serie y aguas abajo de los ramales principales. Esto hace que no solo desde el punto de vista de protección, sino desde el punto de vista de la operación sean ventajosos para la ayuda en la reducción de la EENS.

2.4 CELDAS COMPACTAS

En la actualidad son uno de los componentes más utilizados para configurar subestaciones de media tensión. Consiste en un gabinete en el que se ubican diferentes equipos, tales como, equipos de protección, maniobra, medida y control, que corresponden a una entrada o una salida al barraje principal conformado⁷⁰.

_

⁷⁰ Mundo eléctrico., diciembre 2008, vol.1, N°.73, p.36-38.

Las más utilizadas actualmente cuentan con seccionadores bajo carga aislados en SF_6 y/o interruptores de operación en SF_6 o vacío. Comparativamente con otras tecnologías menos actuales, estas cuentan con dimensiones reducidas, el acceso es exclusivamente frontal tanto para la operación como para el mantenimiento, por lo que son más seguras que os elementos de patio con partes expuestas.

Según la característica constructiva de la envolvente, estas pueden ser:

- Metalenclosed. Cuando los equipos se encuentran ubicados dentro del mismo compartimiento metálico.
- Metalclad. Cuando la celda está conformada por cuatro compartimientos independientes, en donde se ubican los equipos. Estos compartimientos pueden ser, de barras, de maniobra, de baja tensión y de cables y transformadores de intensidad.

2.5 REDES SUBTERRÁNEAS

Uno de los mayores problemas de las redes de distribución aéreas es cumplir con las distancias mínimas entre conductores y edificaciones (para el caso urbano), esto es para cumplir con lo establecido por la legislación vigente en cuanto a los aspectos técnicos⁷¹.

Desde el punto de vista de la confiabilidad de los sistemas de distribución, las redes aéreas y sobre todo en conductor desnudo, son susceptibles a fallas no planeadas, debido a factores ambientales, provocados y no provocados. Sin embargo, su baja inversión inicial y mayor facilidad de construcción, las hace todavía ser la opción por escoger, sobre todo en el sector rural.

⁷¹ VALVERDE, Johan. Desarrollo de la pre-factibilidad de una red subterránea para el Campus Rodrigo Facio de la Universidad de Costa Rica. Trabajo de grado Ingeniero Electricista. Ciudad Universitaria "Rodrigo Facio". 2013. 45 p.

Es por este motivo es que las líneas subterráneas pueden llegar a ser más seguras, por lo menos en los entornos urbanos es industriales, bajo el supuesto de que han sido construidas correcta y técnicamente. Al estar en manera subterránea las líneas y no tener cables expuestos se reducen los accidentes, tanto para el público en general, como para los trabajadores encargados del mantenimiento y operación.

Hay que tener en cuenta que, dependiendo de los planes de ordenamiento territorial y las clasificaciones de vías y zonas, en algunos municipios, lugares como zonas históricas y en general aquellos sitios donde las conformaciones de las redes aéreas no estén de acuerdo con las normas establecidas, no se implementa el montaje en postes de transformadores de ninguna capacidad, ni la construcción de redes aéreas; en estos casos se construyen redes subterráneas.

Sin embargo y aunque son estéticamente más viables que las redes aéreas, Cuesta 2005, indica como en un estudio realizado en la ciudad de Bogotá, en el año 2003, que la mayoría de las fallas del sistema eléctrico de la ciudad se presentaron en redes subterráneas de M.T., siendo que el 75% de las redes eléctricas son del tipo aéreo⁷². En la Figura 10 se puede apreciar el resultado del estudio.

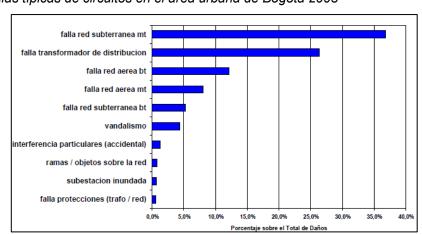


Figura 10. Fallas típicas de circuitos en el área urbana de Bogotá 2003

Adaptado de 73

⁷² CUESTA, Boris. Tipificación de daños en redes eléctricas aéreas y subterráneas de distribución en el área urbana de Bogotá en un análisis retrospectivo. Trabajo de grado Ingeniero Electricista. Universidad industrial de Santander facultad de ingenierías físico-mecánicas escuela de ingeniería eléctrica, electrónica y de telecomunicaciones. 2005. 86 p.

⁷³ Ibid., p. 29

En el mismo estudio el autor revela que la elevada tasa de fallas de las redes de media tensión subterráneas en Bogotá, se deben a la falta de mantenimiento, malas prácticas constructivas y el choque de automotores con afloramientos o transiciones.

Esto revela que las utilizaciones de redes subterráneas pueden conllevar a peores índices de EENS, si no están bien diseñadas, si no se han construido con materiales de óptima calidad y si no se les aplica un esquema de mantenimiento apropiado.

La red subterránea cuenta con equipos que se utilizan de manera similar a los que utiliza una línea aérea, acotando que su construcción es diferente, debido a que las condiciones de instalación son distintas y el medio ambiente al cual se someten estos elementos pueden llegar a ser más hostiles⁷⁴

Por tanto, en cuanto a disminución de los índices de la EENS, el cambio de circuitos aéreos por subterráneos puede conllevar a una disminución si se ejecutan de la manera adecuada, y si su relación costo beneficio, incluyendo la EENS es económicamente viable.

2.6 REDES COMPACTAS SEMIAISLADAS

Los cables protegidos se utilizan para tender redes que sustituyen las redes aéreas convencionales en conductores desnudos. Estos elementos son indicados en circuitos donde son constantes las fallas de servicio causadas por contactos con objetos extraños a la red, en lugares donde se requieren mejores índices de confiabilidad y seguridad o en mejoramiento de las instalaciones eléctricas, con base en lo siguiente:

- Lugares con congestión de circuitos, dado que la red compacta permite mayor número de circuitos por estructura.
- Circuito con mayores exigencias en cuanto a confiabilidad de sus alimentadores principales, tales como hospitales, centros de procesamientos de daos y otros,

⁷⁴ VALVERDE. Op. cit., p. 10.

donde no es posible técnica y económicamente otras opciones como las redes subterráneas.

- Condominios o conjuntos cerrados.
- En callejones o zonas de difícil acceso por su dimensión estrecha y en donde definitivamente los usos de conductores desnudos comprometen seriamente la seguridad.
- En corredores de líneas con densas vegetaciones, sobre todo en aquellos donde proliferan especies vegetales y animales protegidas.
- En locaciones de calles estrechas en donde la distancia de seguridad con vivienda y comercios se pueden ver afectadas.
- En zonas con frecuentes actos de vandalismo.

Debido a que los conductores están cubiertos con una capa aislante, se permite montarlos más próximos unos de otros, también próximos a las ramas de los árboles, sin el riesgo de provocar cortocircuito en caso de contacto no permanente con las ramas o entre conductores. Esto compacta la distribución de la red eléctrica, y puede llegar a pasar por un espacio bastante En caso de redes convencionales con conductores desnudos, el contacto de los árboles con algún conductor, especialmente si están mojados, inevitablemente causará un cortocircuito y consecuentemente una interrupción del suministro de energía. De allí la razón de la drástica poda y tala de las especies vegetales, situación que se minimiza con este tipo de redes.

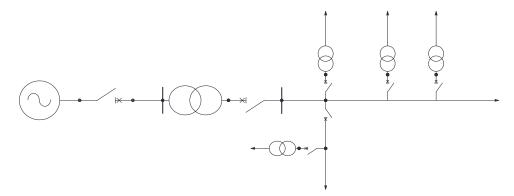
Vale recalcar que el conductor utilizado para este tipo de redes posee una capa de polietileno reticulado (XLPE), resistente a la radiación solar, pero sin las características correspondientes a un cable aislado, es decir, no presenta condiciones de aislación plena, ni confinamiento del campo eléctrico en el dieléctrico del aislante.

Desde el punto de vista de la EENS, en comparación con una red aérea en conductor desnudo, el cambio a este tipo de configuraciones puede contribuir con la disminución en los índices de la EENS.

2.7 ESTRATEGIAS DE RECONFIGURACIÓN

Los sistemas de distribución cumplen la función de transportar la energía eléctrica, desde las subestaciones del sistema de transmisión, hasta los usuarios que componen los sistemas de uso final, en los distintos niveles de tensión. El sistema de distribución de manera práctica se compone desde las subestaciones reductoras del sistema de transmisión, las redes de distribución y las subestaciones de distribución.

Cuando se hace referencia a redes de distribución, es necesario que se realice una discriminación de los arreglos y configuraciones que se pueden utilizar, ya que estos permiten alternativas para la planeación y operación del sistema, que, de acuerdo con la importancia de las cargas a alimentar, hacen posible que se puedan disminuir los indicadores de la EENS.


Esto apunta a que en un circuito que presenta un nivel de EENS y que se requiera que disminuirlo, bien sea por razones regulatorias, económicas o de operación; pueda optarse por una reconfiguración o cambio en su topología, de forma tal que, por medio de este cambio total o parcial, se pueda dar continuidad al servicio y por tanto lograr una reducción de la EENS.

2.7.1 Sistema Radial. La disposición radial permite la transportar la energía eléctrica entre una fuente y una carga por una única trayectoria, es el sistema más sencillo, común y económico. Aunque presenta algunas ventajas como las ya mencionadas, hay que hacer énfasis en que presenta una baja confiabilidad, ya que cualquier falla en alguno de sus elementos, repercute en la alimentación de la carga⁷⁵.

56

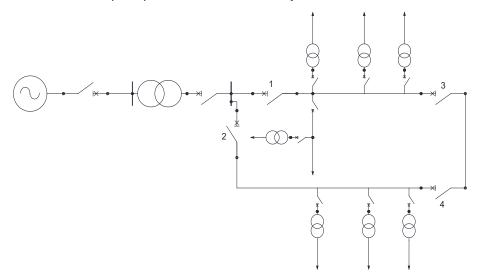
⁷⁵ SÁNCHEZ, Jorge. Propuesta de mejora del alimentador coa-23 subestación COAPA. Trabajo de grado Ingeniero Electricista. Instituto politécnico nacional escuela superior de ingeniería mecánica y eléctrica unidad profesional "Adolfo López mateos". 2012. 111 p.

Figura 11. Circuito radial

Considerando algunas modificaciones a los sistemas radiales, se pueden llegar a obtener mejoras en su confiabilidad.

Dentro de estas configuraciones podemos citar las siguientes:

• Circuitos radiales con seccionadores intermedios y extendidos a otros circuitos radiales. En esta configuración se aprovecha el hecho de que un circuito 2 radial es adyacente a la zona de influencia de un circuito 1. De esta forma cuando se presenta una falla en el circuito 1, por medio de la maniobra de apertura del interruptor 1 (NC) y cierre de los interruptores 3 y 4 (NA), se reestablece el servicio en el circuito 1 a través del circuito 2: Cabe resaltar que, si desde un principio no se contempló esta posibilidad de reconfiguración, es posible que las cargas resientan problemas técnicos o de calidad de la forma de onda. En la Figura 11, se puede apreciar esta variante.

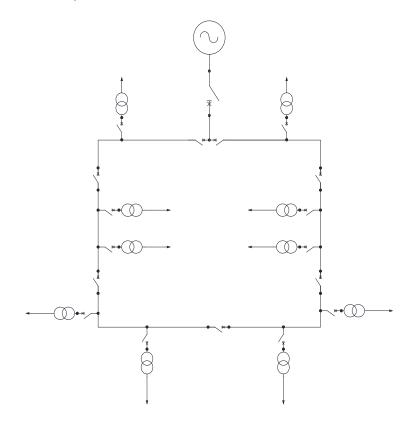

La confiabilidad aumenta en esta configuración y por ende se percibirá una disminución en la EENS, aunque la configuración tiene restricciones y los tiempos de restauración dependen del grado de automatización con el que se cuente⁷⁶.

-

⁷⁶ RAMÍREZ. Op. cit., p. 503.

Circuitos radiales con seccionadores intermedios y extendidos a otros circuitos radiales. En esta configuración se aprovecha el hecho de que un circuito 2 radial es adyacente a la zona de influencia de un circuito 1. De esta forma cuando se presenta una falla en el circuito 1, por medio de la maniobra de apertura del interruptor 1 (NC) y cierre de los interruptores 3 y 4 (NA), se reestablece el servicio en el circuito 1 a través del circuito 2: Cabe resaltar que, si desde un principio no se contempló esta posibilidad de reconfiguración, es posible que las cargas resientan problemas técnicos o de calidad de la forma de onda. En la Figura 12, se puede apreciar esta variante.

Figura 12. Circuito radial suplido por otro circuito radial adyacente



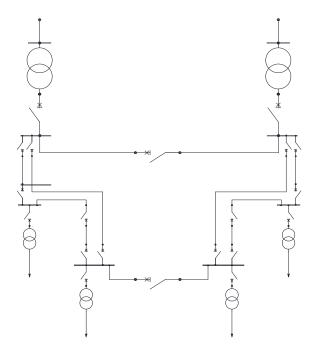
2.7.2 Anillo Primario. Es una configuración que provee al menos dos rutas paralelas desde la subestación principal hasta la carga final y las cargas gregarias. El anillo es operado con seccionadores o interruptores de enlace. Este arreglo permite que alguna sección del alimentador primario puede aislarse sin interrumpir el servicio y por tanto las fallas son reducidas en su duración a solo el lapso necesario para localizar la falla, hacer la conmutación accionando interruptores o seccionadores y posteriormente restaurar el servicio.

Este sistema aumenta la confiabilidad del servicio. Las trayectorias paralelas del alimentador también pueden ser conectadas desde secciones de barras separadas en la subestación y alimentadas desde transformadores separados⁷⁷.

La red en anillo o en bucle cerrado se alimenta desde dos o más sitios cerrando un anillo, los receptores se insertan entre los transformadores. La ventaja principal es que ante una avería de un transformador el usuario final seguirá recibiendo alimentación eléctrica desde otro transformador, es decir garantiza mejor la continuidad del servicio y por tanto mejores indicadores de EENS.

Figura 13. Circuito en anillo primario

59


⁷⁷ Ibid., p. 314

Este sistema es más utilizado para abastecer grandes masas de carga, desde pequeñas plantas industriales, medianas o grandes construcciones comerciales donde es de gran importancia la continuidad en el servicio.

Cualquier variante del sistema en anillo, normalmente provee de dos caminos de alimentación a los transformadores de distribución o subestaciones secundarias. En general, la continuidad del servicio y la regulación de tensión que ofrece este sistema son mejor que la que nos da el sistema radial. La variación en la calidad del servicio que ofrecen ambos sistemas depende de las formas particulares en que se comparen. El sistema anillo tiene un costo inicial mayor y puede tener más problemas de crecimiento que el sistema radial, particularmente en las formas utilizadas para abastecer grandes cargas. Esto es principalmente porque dos circuitos deben ponerse en marcha por cada nueva subestación secundaria, para conectarla dentro del anillo. El añadir nuevas subestaciones en el alimentador hace necesario andar elementos de protección y maniobra.

2.7.3 Sistemas Mallados. Los sistemas mallados normalmente cuentan con reconectadores o elementos automáticos, de modo tal que cuando ocurre una falla en un alimentador, pueden efectuarse de dos a cuatro maniobras que restablecen el servicio, cuando se trata de una falla no permanente. Los sistemas mallados se utilizan normalmente sólo trifásicos, para aprovechar al máximo su alta confiabilidad, ya que se permite hacer la transferencia de carga entre múltiple fuentes y cargas. En la Figura 14, se puede observar la configuración de un circuito mallado.

Figura 14. Circuito mallado

Frecuentemente en sistemas de distribución el funcionamiento de las redes, aun teniendo estructura mallada es radial, es decir se abren cierta cantidad de ramas a fin de poder alimentar todas las cargas y la red queda radial. En caso de pérdida de un cable en servicio se conectan otros cables (que estaban desconectados) a fin de que nuevamente la red con un nuevo esquema radial preste servicio a todos los usuarios, se puede decir que la red mallada funciona como red radial dinámica (que cambia).

Si se desea mantener las mallas cerradas, debe considerarse que los sistemas de protecciones deberán garantizar el buen funcionamiento separando exclusivamente el tramo que en cada condición se encuentre en falla. Esta es la principal dificultad que aun cuando se plantean sistemas mallados a nivel de distribución se los hace funcionar en modo radial, para facilitar la identificación de los puntos donde ocurren las fallas.

Este sistema es utilizado donde la energía eléctrica tiene que estar presente sin interrupciones, debido a que una falta de continuidad en un periodo de tiempo prolongado

tendría grandes consecuencias, como en instalaciones hospitalarias de primer nivel y actividades industriales tales como la siderurgia.

Esta configuración es la que brinda los menores indicadores de EENS, sin embargo, desde el punto de vista técnico es un sistema complicado de diseñar, que involucra grandes inversiones y para explotar al máximo su versatilidad debe contar con mínimos nivel de automatización.

Los sistemas expuestos y sus respectivas combinaciones son los que plantean las estrategias de reconfiguración. La pertinencia en cuanto a cuál configuración, combinación o elemento se debe llegar a utilizar, depende de los estudios técnicos que se realicen que aseguren los mínimos regulatorios y un estudio económico, que provea una certeza de su sostenibilidad económica en el tiempo, teniendo en cuenta no solo las inversiones iniciales, sino los índices de EENS. El balance entre la inversión y la EENS, permitirán la decisión correcta.

2.8 DEL MENÚ DE ALTERNATIVAS A SU IMPLEMENTACIÓN

Una vez enunciadas algunas alternativas para para la mejora de la confiabilidad en sistemas de distribución, es necesario exponer algunas aclaraciones al tema, en virtud de las características propias de los elementos, en lo relacionado con: sus costos antes y a lo largo de la vida útil, la posibilidad de integrar comunicaciones, automatización, autonomía, razones que infieren en la mejora propiamente dicha de los índices de confiabilidad.

Elementos como los cortacircuitos no se relacionan directamente con altos niveles de confiabilidad en sistemas de distribución. Sin embargo, su bajo costo y su facilidad de consecución hacen que posean una relación costo-beneficio para nada despreciable. Por tanto, son elementos que se utilizan de manera difundida, en sistemas en donde la confiabilidad no es un tema restrictivo. Teniendo en cuenta los cambios en la legislación vigente, es viable utilizarlos en asocio con otras tecnologías más avanzadas y confiables y en sistemas en donde el uso de estas desequilibra el balance económico.

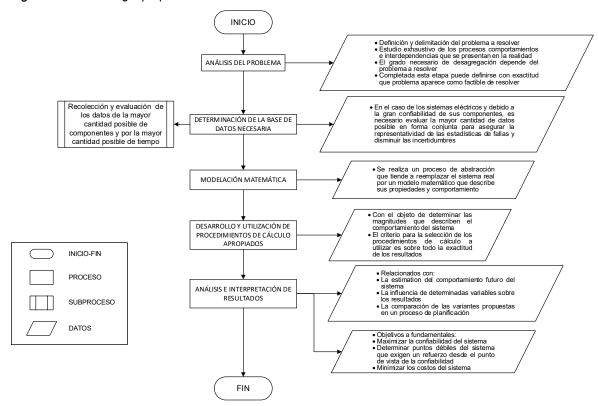
- Los reconectadores son dispositivos costosos en comparación con los mencionados anteriormente, sin embargo, mejoran los niveles de confiabilidad del sistema de distribución, porque: tienen cierto grado de autonomía en su actuar, tienen capacidad de comunicarse con un centro de mando o con otros dispositivos, tienen poder de corte para las corrientes nominales y de falla y pueden integrar varios esquemas de protecciones de acuerdo con el cambio de parámetros o de topología del sistema. Son provechosos en cuanto a la relación costo beneficio, cuando manejan cargas significativas o grupos de cargas no tan significativas pero que en conjunto conforman una relevante. Los dispositivos de última tecnología como los de cámara de vacío, demandan un mantenimiento muy sencillo y económico.
- Los seccionalizadores actúan complementando el esquema de protección de elementos con poder de corte como lo son los reconectadores y los interruptores de las celdas compactas. Aunque no tienen poder de corte, si cuentan con algunas características que poseen también algunos dispositivos cuyo costo resulta ser mas elevado, como lo son: las comunicaciones para el manejo remoto y el rearmado en caso de que la condición de falla no sea permanente. Proveen características mejoradas con respecto a los cortacircuitos en cuanto a los índices de confiabilidad, sin llegar al nivel de costo del reconectador.
- Las celdas compactas introducen mejoras en los índices de confiabilidad, facilidad en la operación y seguridad, comparadas con su contraparte las subestaciones expuestas. Sin embargo, su uso se restringe a aplicaciones para cargas o grupos de cargas relativamente significativas para el sistema, lo que las úbica principalmente en puntos de salida de las redes de distribución y en cargas industriales y comerciales. Estos arreglos de elementos de acuerdo con su costo, pueden introducir elementos de comunicación, esquemas variados de las protecciones, lo que permite un grado satisfactorio de automatización. Como en cada elemento mencionado lo que se busca es una óptima relación costo beneficio, no obstante, el hecho de cadadía los espacios utilizados para obras de infraestructura son más reducidos, el avance tecnológico, la

confiabilidad y sobre todo la seguridad, han hecho que su implementación sea más difundida.

• En cuanto a la confiabilidad, las redes de distribución aéreas presentan sustanciales desventajas frente a las redes compactas semiaisladas y subterráneas, debido a su propensión a ser impactadas por descargas atmosféricas, acercamientos entre líneas, vandalismo, e incluso impactos con vehículos. Desde la perspectiva de la implementación, las redes de distribución aéreas resultan ser las mas económicas. Sin embargo, a pesar de las considerables desventajas respecto a la confiabilidad, seguirán siendo de uso en sistemas de distribución, viéndose un remplazo en algunas zonas suburbanas por redes compactas, debido a las condiciones de mantenimiento.

3. EVALUACIÓN DE LA ENERGÍA NO SUMINISTRADA-ESTUDIO DE CASO

"Vivimos en una sociedad exquisitamente dependiente de las ciencias y la tecnología, en la cual prácticamente nadie sabe nada acerca de la ciencia o la tecnología"


Carl Sagan

En este capítulo se presentan de manera detallada los casos de estudio, involucrando las alternativas tecnológicas y de reconfiguración, con el objetivo de evaluar la energía no suministrada por el sistema. Se muestra la metodología de cálculo del estudio de confiabilidad, algunas de las técnicas que permiten la determinación de los índices de confiabilidad en un sistema de distribución de energía. Finalmente, se muestran los detalles del software NEPLAN, la secuencia de operaciones y los resultados mostrados por el software.

3.1 METODOLOGÍA DEL ESTUDIO DE CONFIABILIDAD

Se sigue la metodología propuesta por Sánchez 2007, la cual se ilustra en la siguiente figura:

Figura 15. Metodología propuesta

Adaptado de⁷⁸.

- 3.1.1 Modelamiento del sistema. Además de las características mostradas en el acápite 1, el sistema modelado presenta las siguientes condiciones específicas:
 - Configuración: radial
 - Longitud de las líneas- Alimentadores primarios: 15,389 km
 - Configuración típica red aérea: Paso sencillo tangencial en circuito trifásico con cruceta de madera inmunizada de 2,0 m
 - Vano promedio rea aérea urbana: 80 m
 - Subestación aérea típica: tipo poste- transformador autoprotegido derivado de red trifásica

⁷⁸ SÁNCHEZ, Gustavo. TATES, Daniel. Análisis de confiabilidad del sistema nacional interconectado ecuatoriano utilizando el software NEPLAN. Trabajo de grado Ingeniero Electricista. Escuela politécnica nacional facultad de ingeniería eléctrica y electrónica. 2007. 182 p.

- Otras subestaciones: tipo pedestal o pad mounted y subestación capsulada
- Capacidad de la subestación monofásica [kVA]: 10, 15, 25
- Capacidad de la subestación trifásica [kVA]: 30, 45, 50, 75, 112,5, 150, 225, 250, 300, 400, 750
- Cable típico red aérea abierta. ACSR N° 2 AWG- 7 Hilos, se encuentran tramos en calibre 1/0 AWG y 2/0 AWG
- Cable típico red subterránea: XLPE N° 2 AWG
- Apoyos: postes de ferroconcreto de 12 m tipo línea, reforzado y extra-reforzado
- 3.1.2 Datos para el estudio de confiabilidad. Para determinar la información necesaria para alimentar la base de datos de confiabilidad, se requiere el análisis de cada elemento del sistema, el cual consta principalmente de:
 - ✓ Transformadores de distribución: bidevanado monofásicos y trifásicos, con localización urbana y rural.
 - √ Líneas aéreas abiertas: urbanas y rurales
 - ✓ Líneas subterráneas
 - ✓ Protecciones y equipos seccionamiento: interruptores de potencia asociados a celdas de media tensión, reconectadores, seccionadores portafusible, seccionalizadores.
 - ✓ Indicadores de falla
 - ✓ Cargas: residenciales, industriales, comerciales.

Para cada elemento del sistema, se determinan sus parámetros de confiablidad λ- La tasa de fallas, expresada en [fallas/año] y r- El tiempo medio para reparación, expresado en [horas]. La información de cada elemento se ha tomado de la investigación del doctor Carlos Julio Zapata Grisales.

- Transformadores de distribución.⁷⁹
- Líneas-Alimentadores primarios.⁸⁰

⁷⁹ Mundo eléctrico., diciembre 2004, vol.1, N°.57, p.102-106.

⁸⁰ Mundo eléctrico., diciembre 2007, vol.1, N°.69, p.128-131.

- Reconectadores.⁸¹
- Cortacircuitos⁸².
- Celdas de media tensión 83

En el caso de las cargas, no se determinan los valores de λ y r, sino que es necesario determinar las curvas de costos y las curvas de carga, estas se han tomado de (Metodología para la determinación de la curva de costos mínimos de racionamiento- Unidad de planeamiento minero Energético- 1997). Sin embargo, los valores están calculados para el año 1997, por lo que se hizo necesaria la actualización de los precios basados en la variación anual del IPC desde 1997 hasta el año 2017.

A continuación, se muestran los datos requeridos para cada elemento del sistema:

Cuadro 5.Datos de confiabilidad para alimentadores primarios.

ALIMENTADORES PRIMARIOS				
Tipo de Línea λ- Fallas (1/año-km) r (h)				
L_13,8 kV Aérea Urbana	1,4634	0,3659		
L_13,8 kV Aérea Rural	0,3802	0,4213		
L_13,8 kV Subterránea	1,1963	0,464		

Cuadro 6. Datos de confiabilidad para transformadores.

TRANSFORMADORES				
Tipo de transformador λ-Fallas (1/año) r (h)				
Urbano monofásico	0,0098	2,793		
Urbano trifásico	0,0402	3,3029		
Rural	0,0445	1,9636		

Cuadro 7. Datos de confiabilidad para reconectadores.

RECONECTADORES				
Tipo de reconectador	λ-Fallas (1/año)	r (h)		
Urbano	0,0511	3,0752		
Rural	0,164	5,2496		

⁸¹ Mundo eléctrico., septiembre 2008, vol.1, N°.72, p.71-72.

⁸² Mundo eléctrico., marzo 2007, vol.1, N°.66, p.76-78.

⁸³ Mundo eléctrico., diciembre 2007, vol.1, N°.73 Op. cit., p. 38-36.

Cuadro 8. Datos de confiabilidad seccionadores.

SECCIONADORES					
Tipo de Seccionador	λ-Fallas (1/año)	r (h)			
Cortacircuito Urbano	0,0027	2,5205			
Cortacircuito Rural	0,0068	7,5541			

Cuadro 9. Datos de confiabilidad para celdas de media tensión.

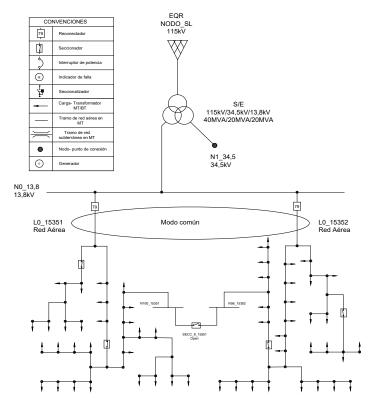
CELDAS DE MEDIA TENSIÓN – 13,8 kV				
Celda para 13,8 kV	λ-Fallas (1/año)	r (h)		
Celda de Media tensión	0,0208	1,1120		

Los demás elementos como seccionalizadores e indicadores de falla, se toman como ideales.

Las curvas de costos y curvas de carga son:

Cuadro 10. Curvas de carga y costos de racionamiento.

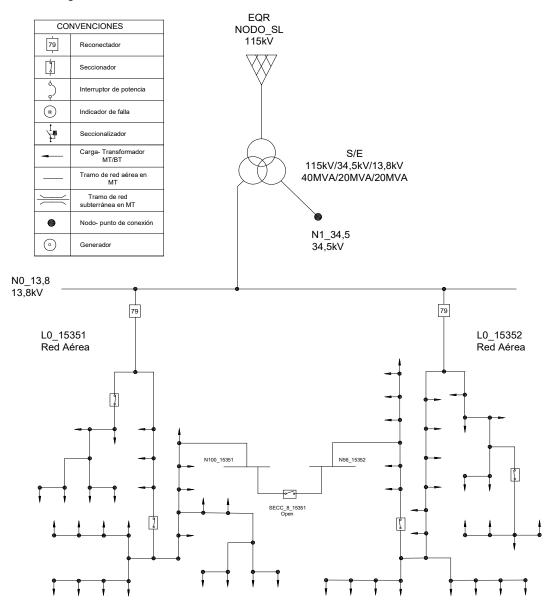
TIPO DE CARGA					
Residencial			Industrial		
T (h)		Costo \$	T (h)	Costo \$	
	0,25	101	0,25	20028	
	1	87	1	13328	
	2	118	2	5530	
	4	118	4	4444	


3.2 ESCENARIOS DE ANÁLISIS

Una vez se ha modelado el sistema, con los parámetros mencionados anteriormente, se definen varios escenarios de análisis, estos permiten evaluar el impacto sobre la EENS. Los diversos escenarios se han modelado a partir de la red existente, el cual se denomina *caso base*, considerando mejoras graduales, es decir implementando alternativas tanto tecnológicas como de reconfiguración, estando cada escenario basado en una mejora anterior, obedeciendo esto a la practicidad al momento de realizar las corridas para la evaluación de los inidices de confiabilidad. En cada caso, para el análisis podrá evaluarse el impacto comparando el *caso base* contra cualquier caso específico, o dos casos en

particular. Se modela como casos independientes, sin contemplar un orden o secuencia de aparición; en ningún caso debe pensarse que la implementación de las alternativas aquí tratadas corresponde a las necesidades particulares de un OR con respecto a la planeación de sus SDL.

- 3.2.1 Caso base, configuración actual. Como se ha mencionado, el caso base se trata del sistema tal y como se encuentra en la actualidad, es decir como es operado por el OR la mayoría del tiempo. El sistema está configurado así:
 - ✓ Subestación eléctrica Principal de patio
 - ✓ Salidas aéreas de los circuitos 15351 y 15352, en modo común
 - ✓ Circuitos ramales protegidos por fusible


Figura 16. Diagrama unifilar del caso base

Para la evaluación de la confiabilidad se consideran las fallas en modo común.

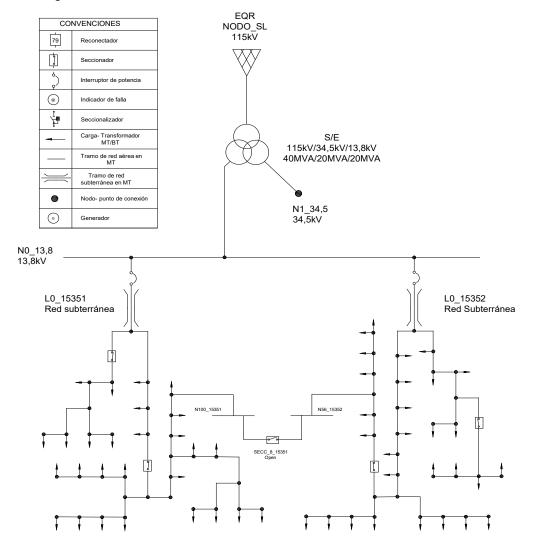
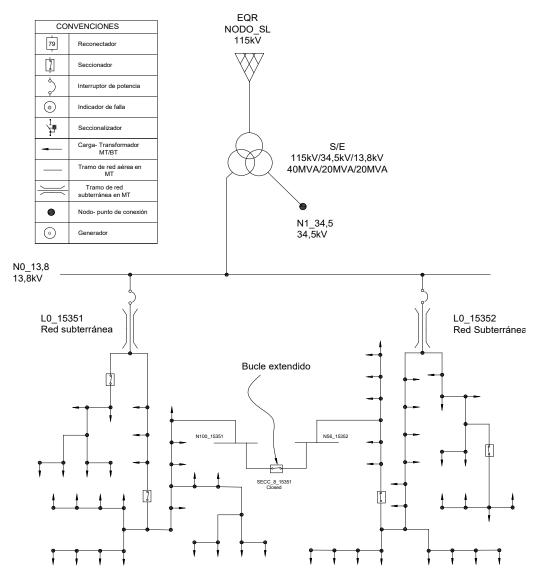

- 3.2.2 Caso 1, salidas independientes. Este caso representa una mejora del **caso base**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Salidas aéreas independientes de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por fusible

Figura 17. Diagrama unifilar del caso 1

- 3.2.3 Caso 2, salidas subterráneas. Este caso representa una mejora del **caso 1**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Celdas de MT
 - ✓ Salidas subterráneas de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por fusible


Figura 18. Diagrama unifilar del caso 2

3.2.4 Caso 3, Bucle extendido. Este caso representa una mejora del caso 2. El sistema está configurado así:

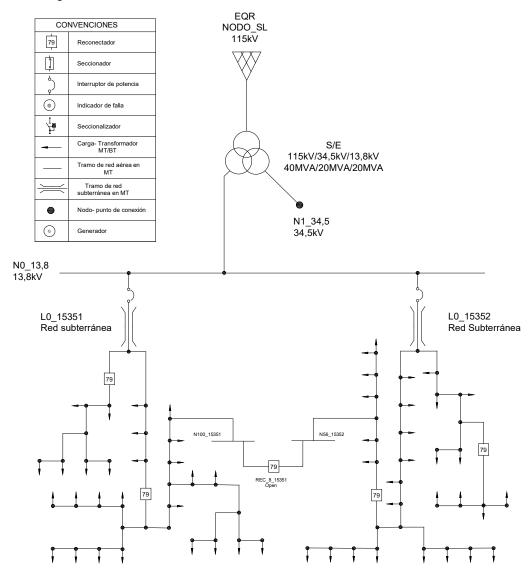

- ✓ Subestación Eléctrica Principal de patio
- ✓ Celdas de MT
- ✓ Salidas subterráneas de los circuitos 15351 y 15352
- ✓ Circuitos ramales protegidos por fusible
- ✓ Bucle extendido

Figura 19. Diagrama unifilar del caso 3

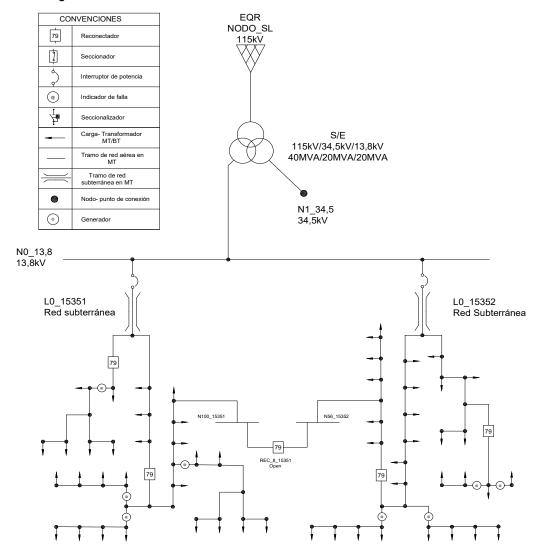

- 3.2.5 Caso 4, protección de ramales por reconectadores. Este caso representa una mejora del **caso 2**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Celdas de MT
 - ✓ Salidas subterráneas de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por reconectadores

Figura 20. Diagrama unifilar del caso 4

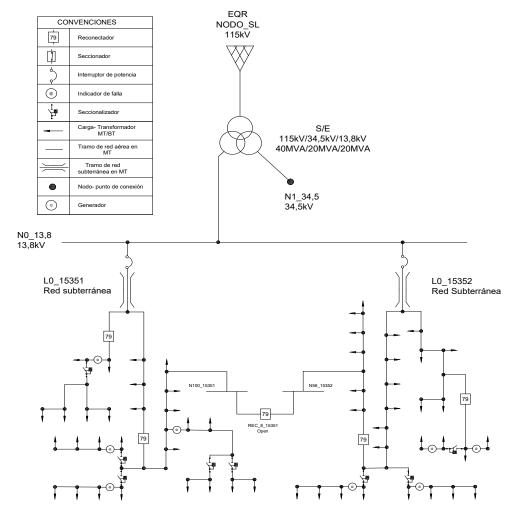
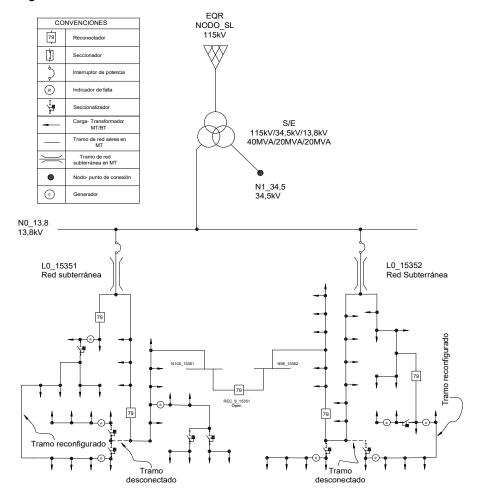

- 3.2.6 Caso 5, SCADA e indicadores de falla. Este caso representa una mejora del **caso 4**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Celdas de MT
 - ✓ Salidas subterráneas de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por reconectadores
 - ✓ SCADA
 - ✓ Indicadores de falla en circuitos ramales

Figura 21. Diagrama unifilar del caso 5

- 3.2.7 Caso 6, seccionalizadores. Este caso representa una mejora del **caso 5**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Celdas de MT
 - ✓ Salidas subterráneas de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por reconectadores
 - ✓ SCADA
 - ✓ Indicadores de falla en circuitos ramales
 - ✓ Seccionalizadores

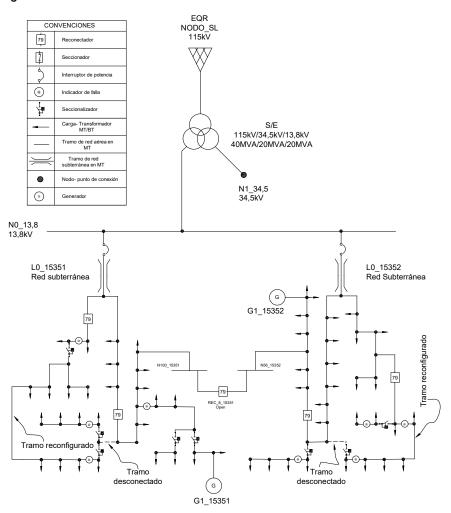

Figura 22. Diagrama unifilar del caso 6

3.2.8 Caso 7, reconfiguración de circuitos. Este caso representa una mejora del **caso 6**. El sistema está configurado así:

- ✓ Subestación Eléctrica Principal de patio
- ✓ Celdas de MT
- ✓ Salidas subterráneas de los circuitos 15351 y 15352
- ✓ Circuitos ramales protegidos por reconectadores
- ✓ SCADA
- ✓ Indicadores de falla en circuitos ramales
- √ Seccionalizadores
- ✓ Reconfiguración de circuitos

Figura 23. Diagrama unifilar del caso 7

En este caso, se considera la reconfiguración de los circuitos en estudio, solamente para ver el impacto en la EENS, este puede ser positivo o negativo. Para la reconfiguración, se analizaron los posibles puntos de conexión desde la topología del sistema y basado en el conocimiento del sistema (análisis heurístico); sin embargo, no se realizó un estudio por métodos metaheurísticos⁸⁴ que permitieran lograr la mejor reconfiguración del sistema, en cuyo caso sería de esperarse una reducción de la EENS.


- 3.2.9 Caso 8, Generación Distribuida en colas de circuitos largos. Este caso representa una mejora del **caso 7**. El sistema está configurado así:
 - ✓ Subestación Eléctrica Principal de patio
 - ✓ Celdas de MT
 - ✓ Salidas subterráneas de los circuitos 15351 y 15352
 - ✓ Circuitos ramales protegidos por reconectadores
 - ✓ SCADA
 - ✓ Indicadores de falla en circuitos ramales
 - √ Seccionalizadores
 - ✓ Reconfiguración de circuitos
 - ✓ Generación distribuida en circuitos largos

La Figura 24, muestra se muestra el diagrama unifilar simplificado del caso 8.

78

⁸⁴ Algunos de los métodos metaheurísticos más conocidos: Búsqueda Tabú, Algoritmos genéticos, Algoritmos Evolutivos, Algoritmos de GRASP, Algoritmos de Branch and Bound.

Figura 24. Diagrama unifilar del caso 8

En este caso se incluye la generación distribuida, conectando dos generadores, uno por cada circuito analizado, esta generación solamente se analiza desde el punto de vista de la afectación a la EENS, no se observan las perdidas en las líneas aledañas al punto de conexión, ni las tensiones en barras cercanas al punto de conexión.

Los casos anteriores corresponden a las técnicas de mejora de la EENS, se implementaron mejoras graduales, sin embargo, para un OR puede no resultar optima su implementación debido a los elevados costos, no solo de construcción, sino también de mantenimiento.

3.3 MÉTODOS DE CALCULO DE CONFIABILIDAD

La evaluación de la confiabilidad en una red eléctrica de transmisión o de distribución, permite determinar índices que reflejan la calidad del servicio presentado al consumidor final. Para determinar los índices de confiabilidad, se pueden emplear bien sea métodos de simulación estocástica o métodos de análisis; de los métodos de análisis el más conocido es el llamado procesos de Markov⁸⁵. De los métodos de simulación, la de Montecarlo es la más popular, además de las técnicas basadas frecuencia y duración⁸⁶.

Respecto de la confiabilidad del suministro puede emplearse:

Cuadro 11. Comparación de Criterios de los Métodos de Cálculo Determinísticos y Probabilísticos.

Criterio	Criterio (n-1) Determinístico	Método Probabilístico
Valoración cuantitativa de la confiabilidad del suministro	No es posible. Sólo entrega una valoración cualitativa de si una variante cumple o no con el criterio (n-1).	Es posible. Entrega frecuencia, duración y probabilidad de las interrupciones del suministro.
Fallas en diferentes componentes	Sólo cualitativo.	Considera datos estadísticos para modelar diferentes comportamientos de interrupción o salida.
Comparación de varios conceptos que cumplen con el criterio (n-1)	No es posible	Es posible. Es cuantificable.
Cantidad de estados a analizar	Debido al cálculo manual del ingeniero, se observará una cantidad limitada de estados	llimitado, debido al cálculo computacional
Posible aplicación en	Análisis general de la configuración de la red	Análisis general de la estructura de la red Análisis cuantitativo de la disposición de las diferentes subestaciones y redes. Identificación del punto débil Prueba de Confiabilidad

Tomado de Guía del Usuario de NEPLAN V5- Análisis de Confiabilidad

A continuación, se describen brevemente cada uno de ellos.

3.3.1 La simulación de Montecarlo. "Se denomina simulación de Montecarlo al experimento de generar números aleatorios de cualquier distribución de probabilidad o proceso

⁸⁵ ARRIAGADA, Aldo. Evaluación de confiabilidad en sistemas eléctricos de distribución. Trabajo de grado Magister en ciencias de la ingeniería. Pontificia universidad católica de Chile. Escuela de ingeniería. Departamento de ingeniería eléctrica. 1994. 108 p.

 $^{^{86}}$ Scientia et Technica. Pereira. Mayo, 2004, vol. 10, N° 24. ISSN 0122-1701.

estocástico para evaluar en forma numérica, indirecta o artificial un modelo matemático que permite estimar el comportamiento de un sistema o proceso que involucra variables estocásticas".87

El método de Montecarlo es una técnica numérica que permite la solución de problemas de tipo general, que poseen una estructura de cálculo de la forma de un proceso estocástico, significando una secuencia de estados en los que su evolución está determinada por sucesos aleatorios⁸⁸.

La simulación de Montecarlo consiste en la generación de números aleatorios, para obtener de forma artificial los índices de confiabilidad en los puntos de carga, el objetivo es simular el comportamiento aleatorio del sistema⁸⁹. La simulación de Montecarlo se emplea principalmente por las siguientes razones:

- ✓ Cuando la obtención de una solución analítica o directa de un modelo matemático es muy complicado o imposible.
- ✓ Cuando no se puede o bien, no se desea experimentar en forma directa con el sistema o proceso estudiado.
- ✓ Cuando la obtención de datos de una variable aleatoria o proceso aleatorio resulta muy complicado o imposible⁹⁰.

Además de las anteriores, la simulación de Montecarlo permite tiempos de observación muy largos, por ejemplo 1000 años. Esto resulta ser una gran ventaja, puesto que, en los sistemas analizados, es imposible tener una información con tiempos de observación tan largos.

Las principales desventajas del método radican en la gran cantidad de recursos informáticos consumidos, además de un error relativamente grande.

81

⁸⁷ ZAPATA, Carlos Julio. Análisis probabilístico y simulación. Pereira. Universidad Tecnológica de Pereira, 2010. 235 p.

⁸⁸ MONTALVO, Oscar. Curvas de fragilidad sísmica mediante la simulación de Montecarlo y análisis tiempo historia. Ayacucho. Perú. Universidad Nacional de San Cristóbal de Huamanga. Facultad de ingenierías de minas, geología y civil. Escuela de formación profesional de ingeniería civil. 2014. 153 p.

⁸⁹ Scientia et Technica. Pereira. Mayo, 2004, vol. 10, N° 24. ISSN 0122-1701 Op. cit., p. 56.

⁹⁰ ZAPATA. Análisis probabilístico y simulación. Op. cit., Cápitulo 9 p. 205.

La técnica de simulación se realiza mediante múltiples iteraciones, en este se observan para un lapso, los estados operativos que aparecen en el sistema debido a los eventos aleatorios de salida. Para aplicar este método se requiere conocer las distribuciones de probabilidad que modelan los tiempos para salida y restauración de cada uno de los componentes del sistema simulado⁹¹.

El método Montecarlo presenta dos características que lo hacen característico, a continuación, se mencionan:

- El algoritmo tiene una estructura bastante sencilla. Se debe elaborar un programa que permita la realización de una prueba aleatoria, posteriormente la prueba se repite N veces, garantizando que cada experimento sea independiente de los demás, luego se toma la media de todos los experimentos.
- El error siempre cumple la regla:

$$\varepsilon = \sqrt{\frac{D}{N}}$$
 Ec.14

Siendo:

D= constante

N= Numero de pruebas

Esta ecuación permite observar que para reducir el error em 10 veces, hay que aumentar N en 100 veces.

Esta razón hace que la exactitud del método no sea una bondad de este, el método resulta bastante eficaz para solucionar problemas con poca exactitud, entre el 5 y el 10%. 92

Pasos para realizar la simulación de Montecarlo

⁹¹ Scientia et Technica. Pereira. Mayo, 2004, vol. 10, N° 24. ISSN 0122-1701 Op. cit., p. 56.

⁹² SOBOL, I.M. Lecciones populares de matemáticas- método de Montecarlo. Traducido por Carlos Vega. 2 ed. Moscú. Rusia. Editorial Mir, 1976. 84 p.

1. Definir el modelo matemático del sistema o proceso bajo estudio o los modelos matemáticos de los subcomponentes o subprocesos que lo conforman.

2. Definir la secuencia operativa del sistema o proceso.

3. Desarrollar el software de simulación y verificarlo.

4. Definir los casos de estudio.

5. Realizar las simulaciones o "corridas" de cada uno de los casos de estudio.

6. Procesar las salidas de cada simulación: Estadísticas descriptivas, gráficas de los resultados, ajuste a distribuciones de probabilidad, etc.

✓ Conclusiones y recomendaciones⁹³.

3.3.2 Los procesos de Markov. La cadena de Markov es un proceso estocástico a tiempo discreto $\{x_n: n=0,1,...\}$, con espacio de estados discretos, y que satisface la propiedad de Markov, esto es, para cualquier entero $n\geq 0$, y para cualesquiera estados $x_0,...,x_{n+1}$, se cumple:

$$p(x_{n+1}|x_0,...,x_n) = p(x_{n+1}|x_n)$$
 Ec.15

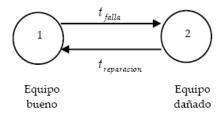
Donde:

n + 1: corresponde al tiempo futuro

n: el tiempo presente

0, 1, ..., n - 1: el pasado

por tanto, la condición de la Ec.15, establece que la distribución de probabilidad del estado del proceso al tiempo futuro n+1 depende únicamente del estado del proceso al tiempo n y no depende de los estados en los tiempos pasados $0,1,...,n-1.^{94}$

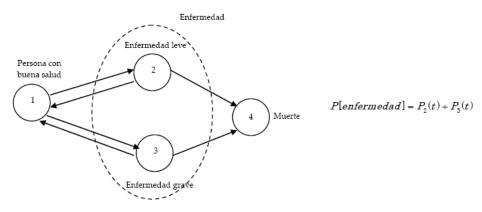

El proceso de Markov se modela por medio de un diagrama de transición entre estados, este corresponde a una gráfica de los estados discretos de interés, unas flechas que indican las transiciones posibles entre estados; al modelo matemático se le denomina cadena de

⁹³ ZAPATA. Análisis probabilístico y simulación. Op. cit., Cápitulo 9 p. 207.

⁹⁴ RINCÓN, Luis. Introducción a los procesos estocásticos. México DF. México. Universidad autónoma de México. Departamento de matemáticas. Facultad de ciencias, 2012. 328 p.

Markov, la salida o solución corresponde a las probabilidades de ocurrencia de cada uno de los estados como funciones del tiempo, por lo cual, corresponde a un proceso estocástico. Debe cumplirse que: la suma de las probabilidades de todos los estados debe ser 1, para cualquier instante de tiempo

Figura 25. Diagramas de transición entre estados.

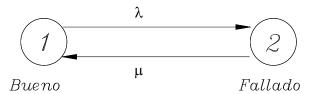


Modificado de⁹⁵.

La cadena de Markov puede tener más de dos estados, y dependiendo el modelo, puede suceder que no exista conexión entre algunos estados. Puede darse el caso en que se presenten algunos estados llamados "absorbentes" ya que una vez se llega a ellos, el fenómeno termina o permanece allí para siempre. La

Figura 26 muestra un ejemplo del caso.

Figura 26. Diagrama de transición de estados con un estado absorbente.

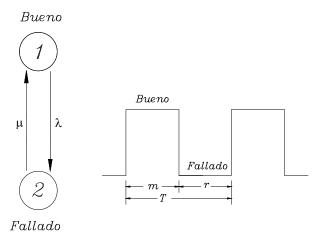

Modificado de 96

⁹⁶ ZAPATA. Análisis probabilístico y simulación. Op. cit., Cápitulo 9 p. 153.

⁹⁵ ZAPATA. Op. cit., p. 42.

Las cadenas de Markov son ideales para el modelamiento de sistemas eléctricos, ya que, para los componentes o el sistema completo presentan dos estados: bueno o fallado; la transición entre estados se da por medio de la tasa de fallas (λ) y la tasa de reparación (μ).

Figura 27. Cadena de Markov discreta


A través del método de Markov se puede obtener, con muy buena precisión, la probabilidad de que el sistema analizado resida en cualquiera de sus estados posibles, pero no permite el cálculo de la probabilidad de falla en un punto del sistema⁹⁷.

3.3.3 Técnicas de frecuencia y duración. En un sistema, la frecuencia con la que se presenta el cambio de los estados, y la duración del estado, brindan información acerca de la confiabilidad de este; como se mencionó antes, las cadenas de Markov no permiten determinar la frecuencia y duración de los estados. La técnica de frecuencia y duración busca relacionar esta información⁹⁸.

⁹⁷ AYRE, Jorge. TATES, Evaluación de la confiabilidad mediante el método de modo de fallas y ubicación óptima de seccionadores en una red de distribución eléctrica. Trabajo de grado Ingeniero Electricista. Universidad nacional de ingeniería facultad de ingeniería eléctrica y electrónica. Lima. Perú. 2007. 184 p.

⁹⁸ Scientia et Technica. Pereira. Junio, 2008, vol. 14, N° 38. ISSN 0122-1701.

Figura 28. Diagrama de espacio de estados de un componente y representación del ciclo operaciónfalla-reparación-operación.

Modificado de99

Aquí la probabilidad de que un elemento este en operación está dada por:

$$P_{(Bueno)} = \frac{m}{m+r}$$
 Ec.16

Siendo:

$$m = \frac{1}{\lambda}$$
 Ec.17

Correspondiente al tiempo de operación.

Con un tiempo promedio de reparación dado por:

$$r = \frac{1}{\mu} \quad \textit{Ec.18}$$

Ahora, del grafico anterior.

$$T = m + r$$
 Ec. 19

Puede encontrarse que:

$$f = P_{(Bueno)} \times \lambda$$
 Ec.20

Con $\lambda = 1/T$

⁹⁹ GONZALEZ, Alfonso. Mejoramiento de la Confiabilidad en Sisitemas de Distribución Mediante Reconfiguracion de Circuitos Primarios. Trabajo de grado Ingeniero Electricista. Universidad Tecnológica de Pereira. Pereira. Colombia. 2007. 115 p

Lo anterior enuncia que la frecuencia de encontrarse en un estado se da por la probabilidad de encontrarse en ese estado, multiplicada por la tasa de partida de ese estado. Para efectuar cálculos mediante la técnica de frecuencia y duración, debe hacerse:

- 1. Calcular las probabilidades límite de estado.
- 2. Determinar la frecuencia de encuentro en un estado.
- 3. Evaluar la duración media de cada estado.

La duración media se calcula por medio de:

Del método de frecuencia y duración, es posible la modelación a través de bloques de frecuencia y duración, cada bloque contiene:

- √ r- El tiempo medio para reparación en [horas]

El sistema se modela a través de bloques que se conectan ya sea en serie o en paralelo.

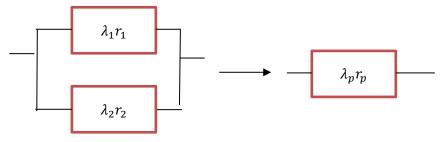
- ➤ Dos componentes están en serie desde el punto de vista de confiabilidad si ambos deben operar para que el sistema opere. Si uno de los componentes falla, el sistema falla. Esta conexión representa un sistema no redundante¹00.
- ➤ Dos componentes están en paralelo desde el punto de vista de confiabilidad si únicamente un componente debe operar para que el sistema opere. Todos los componentes deben fallar para que el sistema falle. Esta conexión representa un sistema redundante¹¹¹.
 - ✓ Conexión en serie:

-

¹⁰⁰ ZAPATA. Confiabilidad en Ingeniería. Op. cit., Cápitulo 2 p. 2

¹⁰¹ Ibid., p. 2

Figura 29. Conexión en serie


Donde:

$$\lambda_s = \lambda_{1+}\lambda_2$$
 Ec.22

$$r_{S} = \frac{\lambda_{1} r_{1} + \lambda_{2} r_{2}}{\lambda_{1} + \lambda_{2}} \quad Ec.23$$

✓ Conexión en paralelo:

Figura 30. Conexión en paralelo

Donde:

$$\lambda_p = \lambda_1 \lambda_2 \frac{r_1 + r_2}{8760}$$
 Ec.24

$$r_p = \frac{r_1 r_2}{r_{1+} r_2}$$
 Ec.25

Los demás índices de confiabilidad se calculan a través de:

Cuadro 12. Expresiones para evaluar los índices de confiabilidad

U_j	A	EENS
[Horas/año]	%	[(MW-Hora) /año]
$U_j = \lambda_j r_j$	$A = \frac{8760 - U_j}{8760} \%$	$EENS_{PTO\ DE\ CARGA} = Demanda_{PTO\ CARGA} \times U$

3.3.4 Enumeración de estados. Un sistema (reparable o no reparable), que puede representarse a través de un diagrama de red, este tendrá 2ⁿ estados operativos.

Los estados operativos del sistema corresponden a las combinaciones de estados operativos y de falla de los componentes.

El conjunto de estados operativos del sistema se denomina el espacio de estado. La probabilidad de ocurrencia de uno de los estados operativos se puede hallar mediante la fórmula de probabilidad de ocurrencia simultánea de eventos independientes:

$$P[E_1 \cap E_2 \cap ... \cap E_n] = P[E_1] \cdot P[E_2] ... P[E_n] = \prod_{i=1}^n P[E_i] \text{ Ec. 26}$$

Donde los eventos E_i , se definen así:

$$E_i = F_i \rightarrow \overline{E}_i = R_i$$
 Ec.27

$$E_i = U_i \quad \rightarrow \quad \overline{E}_i = A_i \quad \textit{Ec.28}$$

El cálculo de la probabilidad de falla del sistema se realiza al sumar las probabilidades de ocurrencia de todos los estados operativos que implican falla del sistema. Para aplicar este método debe hacerse la enumeración exhaustiva de todos los estados operativos posibles del sistema, esto puede traducirse en una tarea complicada incluso para sistemas que involucran pocos componentes¹⁰².

3.4 CÁLCULOS DE CONFIABILIDAD USANDO EL SOFTWARE NEPLAN

Los cálculos de los índices de confiabilidad pueden resultar complejos, aun para sistemas que poseen pocos elementos, debido a esto, es conveniente el uso de herramientas de software que permitan automatizar ciertas tareas de cálculo, simplificando el trabajo desarrollado. Sin embargo, el uso de un software debe realizarse bajo la advertencia de sus ventajas y desventajas, así como del conocimiento de las herramientas de cálculo y

¹⁰² ZAPATA, Confiabilidad en Ingeniería, Op. cit., Cápitulo 5 p. 12

aquellas tareas que desarrolla el software, así como las que este no ejecuta, entendido como alcances y limitaciones de la herramienta.

3.4.1 Metodología de cálculo de confiabilidad en NEPLAN. El grado de detalle logrado al modelar el SDE es prenda de garantía del éxito del estudio de confiabilidad. Para realizar el modelo de red, no basta con conocer la topología del sistema, las configuraciones de los equipos, líneas, etc. También se hace indispensable un conocimiento profundo del manejo del software, no solo en el módulo de confiabilidad, sino del módulo de flujo de carga. Adicionalmente es indispensable el conocimiento de la operación del sistema, tanto en condiciones normales como en contingencia.

De acuerdo lo enunciado en la Guía del Usuario de NEPLAN V5- Análisis de Confiabilidad, los estudios de Confiabilidad involucran los siguientes:

- 1. Construir el modelo de red para para cálculos de flujo de carga.
- 1.1 Definir topología de tableros y bahías de interruptores (incluyendo duración de operaciones de suicheo).
- 1.2 Especificar la configuración de protección de los tableros.
- 1.3 Puesta a tierra del sistema
- 2. Asignar de datos de Confiabilidad
- 3. Definir características de carga y generación
- 4. Asignar características a los elementos de carga y generación 103.
- 5. Definir grupos de fallas¹⁰⁴
- 6. Ajustar parámetros de cálculo
- 7. Ejecutar el cálculo. Se realizan corridas de flujo de carga y confiabilidad.
- 8. Visualizar los resultados en el diagrama de red, por medio de tablas y gráficos

¹⁰³ No es necesario definir las zonas de disparo de los interruptores, el programa realiza esto de manera automática.

¹⁰⁴ Solo si se desea, no es un concepto obligatorio

Será necesario en muchos casos la realización de diversas corridas de acuerdo con los escenarios evaluados.

3.4.2 Cálculo de Confiabilidad Probabilístico realizado por NEPLAN. El software NEPLAN, ejecuta el cálculo de fallas basado en el criterio (n-1) y (n-k), el objetivo es evaluar probabilistamente la confiabilidad del suministro. El software realiza la numeración de estados, para esto, investiga las fallas de los componentes con la intención de determinar su influencia en la interrupción del suministro en la red.

Para los cálculos de confiabilidad el software estudia no sólo una falla probable simple (criterio n-1), además determina todas las fallas relevantes (criterio n-k). Para realizar esto, se crea una lista predefinida de todas las fallas de componentes que se presentan en un período de tiempo dado, y se determina la frecuencia de aparición. El número de estados examinados está limitado por el número máximo de elementos afectados simultáneamente por la falla o la probabilidad mínima del estado¹⁰⁵. Es factible reducir el número de estados analizados a fin de aliviar la carga computacional, esto se realiza acotando la probabilidad mínima, quitando por ejemplo aquellas fallas menores a 1 min/año. El software realiza automáticamente la investigación de las consecuencias debido a las fallas ocurridas, sin embargo, es necesario que el modelo de la red incluya los dispositivos de protección y las posibilidades de suicheo para el restablecimiento de la operación del sistema, en el caso de presentarse las fallas¹⁰⁶.

Toda aquella falla que conduce a una interrupción del suministro, el software la evalúa de modo probabilístico. "Esto significa que para los consumidores afectados se protocolizan la frecuencia y duración esperadas de las interrupciones del suministro". Arrojando al final de los cálculos un aspecto general realista de todas las fallas presentadas en la red que influyen en el consumidor afectado¹⁰⁷.

¹⁰⁵ NEPLAN. NEPLAN AG. Guía del usuario. V 5.58 académica. 2017. Küsnacht - Suiza

¹⁰⁶ Ibid., p. 7-2

¹⁰⁷ Ibid., p. 7-2

3.4.3 Secuencia de operaciones ejecutadas durante el cálculo de Confiabilidad realizado por NEPLAN. Las combinaciones de fallas se constituyen como los principales contribuyentes en el cálculo de la confiabilidad, representan los componentes que están simultáneamente fuera de servicio, ya sea debido al traslape estocástico (falla) o al traslape planeado (mantenimiento). Mediante el cálculo se determina y cuantifica el aporte de todas las combinaciones de falla relevantes y que contribuyen a la interrupción del servicio en los nodos de carga. De la misma forma que en el procedimiento manual utilizado por el proyectista, se ejecutan dos procesos: la generación de las combinaciones de falla y la investigación de los efectos en el suministro en la red (análisis del efecto de falla, AEF)¹⁰⁸.

El software genera combinaciones de falla a través del método de la enumeración de estados, para esto define todas las posibles combinaciones de elementos por encima de una probabilidad mínima establecida¹⁰⁹, o hasta un número máximo de componentes afectados simultáneamente. Como alternativa a la enumeración se presenta la simulación, en esta los componentes afectados se determinan aleatoriamente con base en sus datos característicos.

3.4.4 Resultados del cálculo de confiabilidad. El software permite el cálculo de los índices de confiabilidad para los consumidores, se presenta mediante una tabla que muestra los siguientes valores para los índices de confiabilidad de carga totales del sistema:

¹⁰⁸ Ibid., p. 7-6

¹⁰⁹ El usuario puede definir la que desee, con el objetivo de aminorar los cálculos puede ajustar este valor, si se deja por defecto, el software realizará todos los cálculos, en cuyo caso la simulación será muy prolongada.

Cuadro 13. índices de confiabilidad de carga totales del sistema

Índice Unidades Descripción		Descripción
N	-	Número total de clientes atendidos.
SAIFI	1/año	Índice de frecuencia de interrupciones promedio del sistema
SAIDI	min/año	Índice de duración de interrupciones promedio del sistema
ASIDI	min/año	Índice Promedio de duración de la Interrupción
CAIDI	h	Índice de duración de interrupciones promedio por cliente
ASAI	%	Índice de disponibilidad de servicio promedio
F	1/año	Frecuencia de interrupción de la carga total del sistema
Т	h	Duración media de interrupción de la carga total del sistema
Q	min/año	No disponibilidad de la carga total del sistema
Р	MW/año	Potencia de carga interrumpida total
W	MWh/año	Energía de carga total no suministrada
С	\$/año	Costos totales de interrupción de carga

Es posible evaluar los índices de confiabilidad para cada usuario, en cuyo caso el software presenta una tabla así:

Cuadro 14. índices de confiabilidad de carga para cada usuario

Índice Unidades		Descripción	
F	1/año Frecuencia de interrupción de la carga total del sistema		
Т	h	Duración media de interrupción de la carga total del sistema	
Q	min/año	No disponibilidad de la carga total del sistema	
Р	MW/año	Potencia de carga interrumpida total	
W	MWh/año	Energía de carga total no suministrada	
W	%	Fracción de energía de carga total no suministrada	
С	\$/año	año Costos totales de interrupción de carga	

La tabla anterior se acompaña del nombre del consumidor.

4. RESULTADOS Y DISCUSIÓN

"La mente es como un paracaídas, solo funciona cuando se abre"

Albert Einstein

En este capítulo se presentan los resultados y el análisis de estos, luego de la realización de modelamiento y simulación del sistema de distribución planteado. Se estudian de manera detallada, los índices de calidad media y la energía no suministrada. Al final del capítulo se analiza la disponibilidad del servicio y la duración de las interrupciones al cliente. Como colofón, se presentan algunos comentarios generales respecto de los hallazgos efectuados en el estudio.

4.1 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Una vez modelado el sistema de distribución, descrito en el capítulo anterior, con los datos suministrados en el anexo A, se procede a realizar el análisis de la información arrojada por el software NEPLAN; esta información proviene de los ocho (8) escenarios propuestos, siempre contrastados contra el denominado *caso base*.

Aun cuando se analizan en todos los escenarios la información suministrada por el software NEPLAN (ver 3.4.4.) Serán de interés, los índices de calidad media (SAIDI, SAIFI), adoptados para Colombia por la CREG, mediante resolución 176 de 2016. De acuerdo con el objetivo de este trabajo de grado, será de mayor interés la EENS.

Se comparan todos los escenarios, con las metas de calidad promedio, planteadas en la sección 6.2.3.2 de la resolución CREG 176 de 2016, observando una reducción anual del 8% respecto al SAIDI y SAIFI de referencia de para el OR, tomado como referencia el obtenido en el *caso base*.

94

A continuación, se presentan las tablas de resultados para todos los escenarios, posteriormente se procederá al análisis de los índices de calidad media (SAIDI, SAIFI); finalmente se analizará la EENS, observando como se ve impactada por el uso de alternativas tecnológicas y de reconfiguración.

4.1.1 Índices de confiabilidad calculados. El Cuadro 15, presenta los índices de confiabilidad obtenidos para el **caso base**

Cuadro 15. Índices de Confiabilidad obtenidos para el caso base.

	N°	Índice	Unidades	Valor	Descripción
	1	N	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	16,17	Índice de frecuencia de interrupciones promedio del sistema
	თ	SAIDI	min/año	903,85	Índice de duración de interrupciones promedio del sistema
111	4	ASIDI	min/año	933,33	Indice Promedio de duración de la Interrupción
٩S١	5	CAIDI	h	0,93	Índice de duración de interrupciones promedio por cliente
B,	6	ASAI	%	99,83	Índice de disponibilidad de servicio promedio
<u>SO</u>	7	F	1/año	29,85	Frecuencia de interrupción de la carga total del sistema
SAS	8	T	h	1,28	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	2.288,18	No disponibilidad de la carga total del sistema
	10	Р	MW/año	201,64	Potencia de carga interrumpida total
	11	W	MWh/año	192,57	Energía de carga total no suministrada
	12	С	\$/año	1.141.565.540,22	Costos totales de interrupción de carga

El Cuadro 16, presenta los índices de confiabilidad obtenidos para el caso 1

Cuadro 16. Índices de Confiabilidad obtenidos para el caso 1.

	N°	Índice	Unidades	Valor	Descripción
	1	Z	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	14,75	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	782,33	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	798,28	Indice Promedio de duración de la Interrupción
←.	5	CAIDI	h	0,88	Índice de duración de interrupciones promedio por cliente
o'	6	ASAI	%	99,85	Índice de disponibilidad de servicio promedio
'AS	7	F	1/año	28,85	Frecuencia de interrupción de la carga total del sistema
0	8	Т	h	1,31	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	2.264,18	No disponibilidad de la carga total del sistema
	10	Р	MW/año	182,78	Potencia de carga interrumpida total
	11	W	MWh/año	164,65	Energía de carga total no suministrada
	12	С	\$/año	1.059.770.343,47	Costos totales de interrupción de carga

El Cuadro 17, presenta los índices de confiabilidad obtenidos para el caso 2

Cuadro 17. Índices de Confiabilidad obtenidos para el caso 2.

	N°	Índice	Unidades	Valor	Descripción
	1	Ν	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	14,67	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	799,51	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	814,08	Indice Promedio de duración de la Interrupción
2.	5	CAIDI	h	0,91	Índice de duración de interrupciones promedio por cliente
o'	6	ASAI	%	99,85	Índice de disponibilidad de servicio promedio
YYS	7	F	1/año	28,76	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	1,30	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	2.248,24	No disponibilidad de la carga total del sistema
	10	Р	MW/año	181,83	Potencia de carga interrumpida total
	11	W	MWh/año	167,92	Energía de carga total no suministrada
	12	С	\$/año	1.038.905.430,71	Costos totales de interrupción de carga

El Cuadro 18, presenta los índices de confiabilidad obtenidos para el caso 3

Cuadro 18. Índices de Confiabilidad obtenidos para el caso 3.

	N°	Índice	Unidades	Valor	Descripción
	1	Ν	•	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	28,76	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	878,06	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	892,59	Indice Promedio de duración de la Interrupción
ന,	5	CAIDI	h	0,51	Índice de duración de interrupciones promedio por cliente
o'	6	ASAI	%	99,83	Índice de disponibilidad de servicio promedio
YYS	7	F	1/año	28,76	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	1,30	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	2.248,65	No disponibilidad de la carga total del sistema
	10	Р	MW/año	356,30	Potencia de carga interrumpida total
	11	W	MWh/año	184,13	Energía de carga total no suministrada
	12	С	\$/año	2.270.702.383,63	Costos totales de interrupción de carga

El Cuadro 19, presenta los índices de confiabilidad obtenidos para el caso 4

Cuadro 19. Índices de Confiabilidad obtenidos para el caso 4.

	N°	Índice	Unidades	Valor	Descripción
	1	N	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	11,33	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	969,66	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	959,67	Indice Promedio de duración de la Interrupción
4.	5	CAIDI	h	1,43	Índice de duración de interrupciones promedio por cliente
o'	6	ASAI	%	99,82	Índice de disponibilidad de servicio promedio
;AS	7	F	1/año	29,34	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	1,34	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	2.356,48	No disponibilidad de la carga total del sistema
	10	Р	MW/año	139,12	Potencia de carga interrumpida total
	11	W	MWh/año	198,04	Energía de carga total no suministrada
	12	С	\$/año	677.972.502,72	Costos totales de interrupción de carga

El Cuadro 20, presenta los índices de confiabilidad obtenidos para el caso 5

Cuadro 20. Índices de Confiabilidad obtenidos para el caso 5.

	N°	Índice	Unidades	Valor	Descripción
	1	Ν	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	10,96	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	372,34	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	382,85	Indice Promedio de duración de la Interrupción
2	5	CAIDI	h	0,57	Índice de duración de interrupciones promedio por cliente
ုဝ္ပ	6	ASAI	%	99,93	Índice de disponibilidad de servicio promedio
;AS	7	F	1/año	29,34	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	0,77	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	1.363,18	No disponibilidad de la carga total del sistema
	10	Р	MW/año	134,32	Potencia de carga interrumpida total
	11	V	MWh/año	78,95	Energía de carga total no suministrada
	12	С	\$/año	778.582.954,29	Costos totales de interrupción de carga

El Cuadro 21, presenta los índices de confiabilidad obtenidos para el caso 6

Cuadro 21. Índices de Confiabilidad obtenidos para el caso 6.

	N°	Índice	Unidades	Valor	Descripción
	1	N	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	9,72	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	266,43	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	272,43	Indice Promedio de duración de la Interrupción
9.	5	CAIDI	h	0,46	Índice de duración de interrupciones promedio por cliente
o ^l	6	ASAI	%	99,95	Índice de disponibilidad de servicio promedio
AS	7	F	1/año	29,33	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	0,78	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	1.370,83	No disponibilidad de la carga total del sistema
	10	Р	MW/año	119,24	Potencia de carga interrumpida total
	11	W	MWh/año	56,21	Energía de carga total no suministrada
	12	С	\$/año	726.538.431,70	Costos totales de interrupción de carga

El Cuadro 22, presenta los índices de confiabilidad obtenidos para el caso 7

Cuadro 22. Índices de Confiabilidad obtenidos para el caso 7.

	N°	Índice	Unidades	Valor	Descripción
	1	Ν	-	10.270,00	Número total de clientes atendidos.
	2	SAIFI	1/año	10,44	Índice de frecuencia de interrupciones promedio del sistema
	3	SAIDI	min/año	276,03	Índice de duración de interrupciones promedio del sistema
	4	ASIDI	min/año	282,58	Indice Promedio de duración de la Interrupción
	5	CAIDI	h	0,44	Índice de duración de interrupciones promedio por cliente
o'	6	ASAI	%	99,95	Índice de disponibilidad de servicio promedio
'AS	7	F	1/año	31,48	Frecuencia de interrupción de la carga total del sistema
O	8	Т	h	0,75	Duración media de interrupción de la carga total del sistema
	9	Q	min/año	1.418,06	No disponibilidad de la carga total del sistema
	10	Р	MW/año	128,08	Potencia de carga interrumpida total
	11	W	MWh/año	58,30	Energía de carga total no suministrada
	12	С	\$/año	786.928.057,76	Costos totales de interrupción de carga

El Cuadro 23, presenta los índices de confiabilidad obtenidos para el caso 8

Cuadro 23. Índices de Confiabilidad obtenidos para el caso 8.

	N°	Índice	Unidades	Valor	Descripción	
	1	Ν	-	10.270,00	Número total de clientes atendidos.	
	2	SAIFI	1/año	10,49	Índice de frecuencia de interrupciones promedio del sistema	
	3	SAIDI	min/año	278,14	Índice de duración de interrupciones promedio del sistema	
	4	ASIDI	min/año	284,91	Indice Promedio de duración de la Interrupción	
∞,	5	CAIDI	h	0,44	Índice de duración de interrupciones promedio por cliente	
lo'	6	ASAI	%	99,95	Índice de disponibilidad de servicio promedio	
YYS	7	F	1/año	31,57	Frecuencia de interrupción de la carga total del sistema	
O	8	Т	h	0,75	Duración media de interrupción de la carga total del sistema	
	9	Q	min/año	1.426,52	No disponibilidad de la carga total del sistema	
	10	Р	MW/año	128,63	Potencia de carga interrumpida total	
	11	W	MWh/año	58,78	Energía de carga total no suministrada	
	12	С	\$/año	789.511.511,57	Costos totales de interrupción de carga	

Del Cuadro 15, resultados del *caso base*, se toma como referencia los índices de calidad media, así:

$$SAIFI = 16,17 \left[\frac{interrupciones}{año} \right]$$
 Ec.29

$$SAIDI = 903,85 \left[\frac{minutos}{año} \right]$$
 Ec.30

Respecto de la EENS, se toma como referencia

$$EENS = 192,57 \left[\frac{MWh}{ano} \right]$$
 Ec.31

4.1.2 Análisis de los índices de calidad media. Para determinar la meta de calidad, se emplearán las ecuaciones propuestas por la resolución CREG 176 de 2016, en la sección 6.2.3.2:

Meta del indicador SAIFI

$$SAIFI_{M_{i,t}} = (1 - 0.08)^t \times SAIFI_{ref}$$
 Ec.32

Donde:

 $SAIFI_{M_t}$ = Meta del indicador SAIFI, a ser lograda por el OR al finalizar el año t.

 $SAIFI_{ref}$ = Valor de referencia del indicador SAIFI.

Para el caso, el valor de referencia es:

$$SAIFI_{M} = 14,8764 \left[\frac{interrupciones}{año} \right]$$
 Ec.33

Evaluado para un año (t=1 año)

Meta del indicador SAIDI

$$SAIDI_{M_{it}} = (1 - 0.08)^t \times SAIDI_{ref}$$
 Ec.34

Donde:

 $SAIDI_{M_t} = Meta del indicador SAIDI, a ser lograda por el OR al finalizar el año <math>t$.

 $SAIDI_{ref}$ = Valor de referencia del indicador SAIDI.

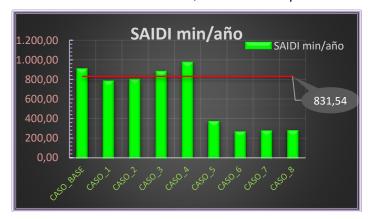
Para el caso, el valor de referencia es:

$$SAIDI_{M} = 831,542 \left[\frac{interrupciones}{ano} \right] Ec.35$$

Evaluado para un año (*t*=1 año)

Con los valores anteriores, se comparan los valores de los índices de calidad, frente al valor meta, determinado anteriormente, esto se resume en el Cuadro 24.

Cuadro 24. Comparación de los índices de calidad frente a metas para el año 1


	SAIFI	SAIDI	SAIFI	SAIDI
	1/año	min/año	1/año	min/año
CASO_BASE	16,17	903,85		
CASO_1	14,75	782,33	Cumple con la meta	Cumple con la meta
CASO_2	14,67	799,51	Cumple con la meta	Cumple con la meta
CASO_3	28,76	878,06	No cumple la meta	No cumple la meta
CASO_4	11,33	969,66	Cumple con la meta	No cumple la meta
CASO_5	10,96	372,34	Cumple con la meta	Cumple con la meta
CASO_6	9,72	266,43	Cumple con la meta	Cumple con la meta
CASO_7	10,44	276,03	Cumple con la meta	Cumple con la meta
CASO_8	10,49	278,14	Cumple con la meta	Cumple con la meta

El análisis de resultados se puede observar en las siguientes figuras.

Figura 31. Comparación de los índices de frecuencia, frente a metas para el año 1

Figura 32. Comparación de los índices de duración, frente a metas para el año 1

- ✓ Se observa mejora en el índice de frecuencia de interrupciones SAIFI, evaluado como el cumplimiento de la meta del 8% menos, para casi todos los escenarios propuestos. El único escenario que presenta un incremento frente al *caso base*, corresponde al *caso 3*, en el cual se cierra el seccionador SECC_8_15351, creando un bucle extendido.
- ✓ Se observa mejora en el índice de duración de interrupciones SAIDI, evaluado como el cumplimiento de la meta del 8% menos, para casi todos los escenarios propuestos. Sin embargo, se presentan dos escenarios en los que no se cumple con la meta propuesta, corresponden al caso 3 y caso 4, el cual se integran circuitos ramales protegidos por reconectadores, pero sin ningún tipo de automatización o comunicación con un centro de control.
- ✓ La configuración más benéfica para el SDL estudiado, corresponde a la propuesta en el *caso* 6, en la que se disponen celdas MT, reconectadores en circuitos ramales, SCADA, indicadores de falla y seccionalizadores, distribuidos en los circuitos analizados.
- ✓ El peor de los casos, corresponde al escenario caso 3, el que se ve aumento en el indicador de frecuencia de las interrupciones, y una disminución apenas de 2,85% en el indicador de duración de las interrupciones. Esta configuración no será atractiva para el OR desde el punto de vista de la confiabilidad del sistema, sin embargo, desde el punto de vista de la regulación de tensión, se ve un aumento de 0,58%.
- 4.1.3 Análisis de la EENS. El regulador (CREG), no establece metas en cuanto a la reducción de la cantidad de EENS, sin embargo, con la base propuesta para determinar las metas de calidad, se propone un análisis con características similares, basado en la premisa que, si el SAIDI y el SAIFI se reducen en un 8%, la EENS como minimo tendría una reduccion similar:

Meta reducción de EENS

$$EENS_{M_{j,t}} = (1 - 0.08)^t \times EENS_{ref}$$
 Ec.36

Donde:

 $\mathit{EENS}_{\mathit{M}_t} = \mathsf{Meta}$ de reducción de la EENS, a ser lograda por el OR al finalizar el año t.

 $\mathit{EENS}_{ref} = \mathsf{Valor}$ de referencia de la EENS, calculada a partir del caso base .

Para el caso, el valor de referencia es:

$$EENS_M = 177,1644 \left[\frac{MWh}{a\bar{n}o} \right] Ec.37$$

Evaluado para un año (t=1 año)

Con los valores anteriores, se compara la EENS obtenida para cada escenario y se compara frente al valor meta, esto se resume en la siguiente tabla:

Cuadro 25. Comparación de la EENS frente a la meta para el año 1.

	EENS			
	MWh/año			
CASO_BASE	192,57			
CASO_1	164,65	Cumple con la meta		
CASO_2	167,92	Cumple con la meta		
CASO_3	184,13	No cumple la meta		
CASO_4	198,04	No cumple la meta		
CASO_5	78,95	Cumple con la meta		
CASO_6	56,21	Cumple con la meta		
CASO_7	58,30	Cumple con la meta		
CASO_8	58,78	Cumple con la meta		

- ✓ Se observan mejoras sustanciales para casi todos los escenarios propuestos, el único escenario que presenta un incremento frente al *caso base*, corresponde al *caso 3*, en el cual se cierra el seccionador SECC_8_15351, creando un bucle extendido. Este ya había presentado el mismo comportamiento en cuanto a los indicadores de frecuencia y duración.
- ✓ Análogamente a lo estudiado en la sección 4.1.2, la configuración más benéfica para el SDL, corresponde a la propuesta en el caso 6; significando que la correcta

- disposición de alternativas tecnológicas se traduce en mejoras frente a la EENS, pero también impactando positivamente otros índices de confiabilidad del sistema.
- ✓ Analizando el *caso 6*, frente al *caso base*, se observa un ahorro de \$415.027.108,52°°, en un año. Una cantidad de dinero bastante interesante para comenzar la implementación de alternativas tecnológicas propuesta para este caso.
- ✓ Para el caso analizado, solamente con disponer salidas para cada circuito, de manera independiente, eliminado la falla en modo común, reduce en un 14% la cantidad de energía no suministrada. Esto se traduce en un ahorro anual de \$81.795.196,75°°

Figura 33. Comparación de la EENS

4.1.4 Análisis de otros índices de confiabilidad del sistema. La información colectada permite además analizar otros índices de confiabilidad del sistema, estos son:

ASAI- Índice de disponibilidad de servicio promedio

Se observa que los escenarios más benéficos, son aquellos que involucran algún grado de automatización del SDL, *caso 5*, *caso 6* y *caso 7*; logrando aumentar la disponibilidad del sistema, esto se observa en el siguiente gráfico.

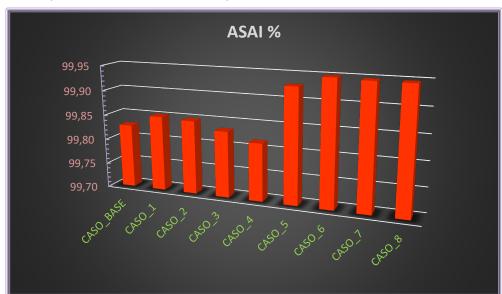


Figura 34. Comparación de los índices de disponibilidad de servicio.

La generación distribuida (*caso 8*), impacta mayormente en cuanto al aumento de la disponibilidad del servicio, no tanto en cuanto a la mejora de los índices de calidad media y a la reducción de la EENS.

> CAIDI- Índice de duración de interrupciones promedio por cliente

También se observa una gran disminución en cuanto a la duración de las interrupciones presentadas al cliente.

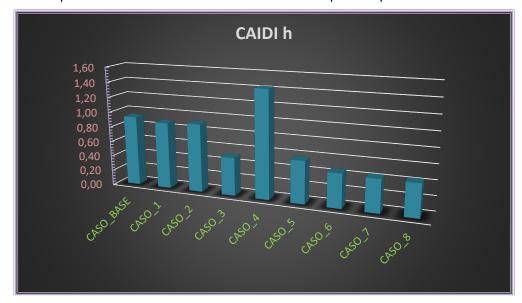


Figura 35. Comparación de los índices de duración de interrupciones por cliente

4.2 COMENTARIOS FINALES

Los escenarios evaluados presentan casi todas las alternativas que dispone un OR, cada uno de estos se modeló desde la alternativa más básica hasta aquellas más complejas y costosas, como son los casos de reconfiguración de circuitos y generación distribuida.

Respecto de la generación distribuida, y de acuerdo con los escenarios analizados, se puede inferir que trae múltiples beneficios, sin embargo, es necesario analizar en detalle, la cantidad de energía a entregar por el Generador y el punto de inyección, entre otras; ya que existen casos en los cuales los beneficios no son notables y por el contrario acarrea problemas. Es aquí donde toma vigencia la optimización multiobjetivo, ya que se pueden mejorar las condiciones de algunos elementos del sistema, pero al tiempo empeorar las de otros, por tanto, tendrá que hacerse una "negociación", para llegar a una solución en la cual los efectos sean mínimos en todas las condiciones.

Lo anterior indica que un OR puede contar con una gama de alternativas para mejorar su sistema de distribución, pero que no siempre la implementación de estas significa una mejora sustancial de su SDL, traduciéndose en gastos innecesarios, problemas de

operación del sistema, altos costos de AOM (Administración Operación y mantenimiento), etc. Sino se realiza una cuidadosa planeación del sistema, realizada por personal competente y con ayuda de un software especializado que permita además del modelamiento del sistema, la prueba de escenarios múltiples.

5. CONCLUSIONES

- ✓ La literatura técnica enuncia que el uso de ciertas alternativas tecnológicas y de reconfiguración, muestran algún impacto sobre la energía no suministrada por un sistema de distribución. El modelamiento y simulación del sistema eléctrico de distribución, a través del uso de un software especializado, permite medir en detalle el impacto de la implementación de las alternativas tecnológicas en este. El conocimiento del impacto presentado, antes de ser implementado corresponde a una herramienta valiosa para la planeación de la expansión y operación del sistema de distribución. Se probaron algunas alternativas y se evidenció que su comportamiento en cuanto a la mejora de la confiabilidad del sistema y el índice de energía no suministrada, no se traduce como mejora constante.
- ✓ La comisión de regulación de energía y gas- CREG, desde hace varios años, ha implementado índices de calidad del servicio, los cuales se presentan de manera particular para cada operador de red. Sin ser ajena a este propósito, la resolución 176 de 2016, muestra unas metas de mejora de calidad del servicio prestado, las cuales se fijan para cada operador de red de acuerdo con un estado inicial. Mediante esta técnica se evaluaron los impactos, encontrándose que la mayoría de alternativas tecnológicas y de reconfiguración, se traducen en la reducción de la cantidad de energía no suministrada, más allá de las metas propuestas por el regulador. Lo anterior debe constituirse como herramienta para tener en cuenta en los planes de mejoramiento y expansión del operador de red.
- ✓ La obtención de una alternativa que permita la minimización de la energía no servida posee un interés particular para el operador de red, de forma tal que, si el este logra impactos relevantes, sus proyectos de expansión pueden llegar a ser más rentables. Se observó que no todas las alternativas propuestas en este documento se traducen en la reducción del índice de energía no suministrada; sin embargo, debido a la configuración particular de cada sistema de distribución, resultará necesario un estudio similar al realizado en este documento, a fin de determinar el grado de impacto que se tiene sobre la energía no servida.

- ✓ El grado de automatización con que cuente el sistema de distribución, es el que más impacto tiene sobre la cantidad de energía no suministrada. No significa que todo el sistema de distribución debe ser operado mediante un sistema de control y adquisición de datos- SCADA, sin embargo, la implementación de dispositivos capaces de indicar y aislar porciones de circuitos fallados y que a su vez puedan informar a un centro de control, aportando información sobre anomalías, se constituye como una buena opción en cuanto a reducción de energía no servida.
- ✓ La implementación simultanea de diversas alternativas tecnológicas, se traduce en una mayor disminución de la EENS, a diferencia del uso desagregado de alguna en particular. Sin embargo, su selección, disposición y aplicación debe corresponder a un estudio particular que involucre: la topología, el tipo de carga, las proyecciones de demanda, la relación costo-beneficio, entre otros. El caso 6, avala esta aseveración, ya que involucra simultáneamente diversas alternativas tecnológicas, conjugándose para la obtención de mejores índices de confiabilidad y menor energía no suministrada que los observados en los demás casos.
- ✓ La aplicación de la reconfiguración de circuitos eléctricos de distribución y la generación distribuida, debe realizarse a través de estudios específicos del sistema de distribución contemplando: la planeación de la expansión del sistema, la ubicación optima, las restricciones del sistema y las proyecciones de la demanda energética. En el estudio de caso, se pudo evidenciar que estas dos alternativas no significaron una mejora sustancial. Esto no implica que, para otros sistemas de distribución, estas alternativas no representen una mejora importante.

BIBLIOGRAFÍA

ACEVEDO, Alejandro y PUENTES, Diego. Reconfiguración en sistemas de distribución considerando las perdidas y evaluando el impacto económico de la energía no suministrada. Trabajo de grado Ingeniero Electricista. Universidad tecnológica de Pereira. Programa de Ingeniería Eléctrica. Grupo de investigación en Planeamiento de sistemas eléctricos. 2015.

ALBADI, M., & EL-SAADANI, E. (2008). A summary of demand response in electricity markets.

ARRIAGADA, Aldo. Evaluación de confiabilidad en sistemas eléctricos de distribución. Trabajo de grado Magister en ciencias de la ingeniería. Pontificia universidad católica de Chile. Escuela de ingeniería. Departamento de ingeniería eléctrica. 1994.

AYRE, Jorge. TATES, Evaluación de la confiabilidad mediante el método de modo de fallas y ubicación óptima de seccionadores en una red de distribución eléctrica. Trabajo de grado Ingeniero Electricista. Universidad nacional de ingeniería facultad de ingeniería eléctrica y electrónica. Lima. Perú. 2007.

BILLINTON, Roy y ALLAN, Ronald. Reliability Evaluation of Power Systems. 2 ed. Nueva York, EU: Plenum press, 1996. 509 p. ISBN-13: 0-306-45250-6.

CELSA. Seccionador fusible [En línea]. Bogotá D.C., 2016. p. 2. Disponible en http://www.celsa.com.co/images/docs/catalogos/CATA008 1 1.pdf

COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. Resolución número 176 DE 2016. (03, noviembre, 2016). Por la cual se establece la metodología para la remuneración de la actividad de distribución de energía eléctrica en el sistema interconectado nacional Bogotá D.C., 2016.

COLOMBIA. COMISIÓN DE REGULACIÓN DE ENERGÍA Y GAS. RESOLUCIÓN NÚMERO 070 DE 1998. (28, mayo, 1998). Por la cual se establece el Reglamento de Distribución de Energía Eléctrica, como parte del Reglamento de operación de Sistema Interconectado Nacional. Comisión de regulación de energía y gas. Bogotá D.C., 1998. N° 070.

COLOMBIA. UNIDAD DE PLANEAMIENTO MINERO ENERGÉTICO. ¿Quiénes somos? [En línea]. Bogotá D.C., 2016. p. 251. Unidad de planeamiento minero energético. 2016. 1p. Disponible en http://www1.upme.gov.co/quienes-somos

COLOMBIA. UNIDAD DE PLANEAMIENTO MINERO ENERGÉTICO. Plan de expansión de referencia generación – transmisión 2016 – 2030. (2016). La UPME. Bogotá D.C., 2016.

CUESTA, Boris. Tipificación de daños en redes eléctricas aéreas y subterráneas de distribución en el área urbana de Bogotá en un análisis retrospectivo. Trabajo de grado Ingeniero Electricista. Universidad industrial de Santander facultad de ingenierías físicomecánicas escuela de ingeniería eléctrica, electrónica y de telecomunicaciones. 2005.

ELDALI, F., HARDY, T., CORBIN, C., PINNEY, D., & MANNAN, J. (2016). Cost-benefit analysis of demand response programs incorporated in open modeling framework. IEEE, 5 (SIOSHANSI, 2010).

ESPAÑA. FUNDACIÓN DE LA ENERGÍA DE LA COMUNIDAD DE MADRID. Guía Básica de la Generación Distribuida. Madrid-España., Gráficas Elisa, S.A.

GÖNEN, Turan. Electric Power Distribution System Engineering. 2 ed. Sacramento, California, EU.: CRC-Press Taylor & Francis Group, 2007. 834 p. ISBN-13: 978-1-4200-6200-7.

GONZÁLEZ, Alfonso. Mejoramiento de la Confiabilidad en Sistemas de Distribución Mediante Reconfiguración de Circuitos Primarios. Trabajo de grado Ingeniero Electricista. Universidad Tecnológica de Pereira. Pereira. Colombia. 2007. 115 p.

IEEE. Guide for Electric Power Distribution Reliability Indices. 2 ed. New York, EU: IEEE, 2012.

Ingeniare. Revista. Chilena de ingeniería., enero 2016, vol.24, N°.1, p.55-69. ISSN 0718-3305.

JUÁREZ, José. Sistemas de distribución de energía eléctrica. México-México. Universidad Autónoma Metropolitana, Unidad Azcapotzalco, 1995. 170 p. ISBN 970-620-734-1.

MONTALVO, Oscar. Curvas de fragilidad sísmica mediante la simulación de Montecarlo y análisis tiempo historia. Ayacucho. Perú. Universidad Nacional de San Cristóbal de Huamanga. Facultad de ingenierías de minas, geología y civil. Escuela de formación profesional de ingeniería civil. 2014.

Mundo eléctrico., diciembre 2004, vol.1, N°.57.

Mundo eléctrico., diciembre 2007, vol.1, N°.69.

Mundo eléctrico., diciembre 2008, vol.1, N°.73.

Mundo eléctrico., marzo 2007, vol.1, N°.66.

Mundo eléctrico., septiembre 2008, vol.1, N°.72.

NEPLAN. NEPLAN AG. Guía del usuario. V 5.58 académica. 2017. Küsnacht – Suiza.

OSBORN, Julie. y KAWANN, Cornelia. Reliability of the U.S. Electricity System: Recent Trends and Current Issues. Stevenage: U.S. Department of Energy., 2001. LBNL-47043.

PAPAVASILOU, A., & OREN, S. (2014). Large-scale integration of deferrable demand and renewable energy sources. IEEE.

RAMÍREZ, Samuel. Protección de Sistemas Eléctricos. Manizales: Universidad Nacional de Colombia, 2003.

RINCÓN, Luis. Introducción a los procesos estocásticos. México DF. México. Universidad autónoma de México. Departamento de matemáticas. Facultad de ciencias, 2012.

SÁNCHEZ, Gustavo. TATES, Daniel. Análisis de confiabilidad del sistema nacional interconectado ecuatoriano utilizando el software NEPLAN. Trabajo de grado Ingeniero Electricista. Escuela politécnica nacional facultad de ingeniería eléctrica y electrónica. 2007.

SÁNCHEZ, Jorge. Propuesta de mejora del alimentador coa-23 subestación COAPA. Trabajo de grado Ingeniero Electricista. Instituto politécnico nacional escuela superior de ingeniería mecánica y eléctrica unidad profesional "Adolfo López mateos". 2012.

Scientia et Technica. Pereira. Junio, 2008, vol. 14, N° 38. ISSN 0122-1701.

Scientia et Technica. Pereira. Mayo, 2004, vol. 10, N° 24. ISSN 0122-1701.

SIOSHANSI, R. (2010). Evaluating the impacts of real-time pricing on the cost and value of wind generation. IEEE.

SOBOL, I.M. Lecciones populares de matemáticas- método de Montecarlo. Traducido por Carlos Vega. 2 ed. Moscú. Rusia. Editorial Mir, 1976.

VALVERDE, Johan. Desarrollo de la pre-factibilidad de una red subterránea para el Campus Rodrigo Facio de la Universidad de Costa Rica. Trabajo de grado Ingeniero Electricista. Ciudad Universitaria "Rodrigo Facio". 2013.

ZAPATA, Carlos Julio. Análisis probabilístico y simulación. Pereira. Universidad Tecnológica de Pereira, 2010.

ZAPATA, Carlos Julio. Confiabilidad en Ingeniería. Pereira. Universidad Tecnológica de Pereira, 2011.

ZAPATA, Carlos Julio. Confiabilidad de Sistemas Eléctricos de Potencia. Pereira. Universidad Tecnológica de Pereira, 2011. 10 p.

ANEXOS

ANEXO A. DATOS PARA EL MODELO DE RED

A continuación, se presentan los datos empleados para modelamiento del sistema, el objetivo es que pueda ser construido por el lector en cualquier software de simulación, que permita flujo de carga y confiabilidad. Se comienza la descripción de los datos a partir del equivalente de red o nodo slack.

Nombre	FC tipo	Vmag (%)	Ang. V	Scc" máx (MVA)	lk" máx (MVA)	Voper	Z(0)/Z(1) máx	R(1)/X(1) máx	R(0)/X(0) máx	Descripción	De	Vn
EQR	SL	100	0	142	5	1	3	15	3	Subestación 115	N1_115	115

Tabla A1. Parámetros del nodo slack.

La tabla A2. Presenta la información correspondiente al transformador tridevanado S/E_ PPAL 115kV/34,5kV/13,8kV. Para el modelo, no es de importancia los datos de secuencia, ya que no se va a realizar estudio de cortocircuito ni coordinación de protecciones.

Nombre	Sr12	Sr23	Sr31	Vr1	Vr2	Vr3	Zcc12(1)	Zcc23(1)	Zcc31(1)	R12(1)	R23(1)	R31(1)	Zcc12(0)	Zcc23()	Zcc31(0)	R12(0)	R23(0)	R31(0)
S/E_ PPAL	40	20	20	115	13,8	34,5	9,64	6,19	24	0,62064	0,39852	1,54517	9,64	6,19	24	0,62064	0,39852	1,54517

Tabla A2. Parámetros del transformador tridevanado.

La tabla A3. Presenta la información de los nodos, estos permiten la conexión de elementos como líneas, transformadores, equipos de protección, etc. Aquí se presentan los nodos de 115 kV, 13,8 kV y 0,22 kV, ya que del lado de 34,5 kV no se analiza ningún circuito, no aparecen nodos relacionados con dicho nivel de tensión, a excepción de la salida del transformador tridevanado N1_34,5.

N1	Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N=15351	N1_115	Nodo	115	60	Ninguno
N2_15351 Nodo	N1_34,5	Nodo	34,5	60	Ninguno
N4_15351 Nodo 13,8 60 Ninguno N3_15351 Nodo 13,8 60 Ninguno N5_15351 Nodo 13,8 60 Ninguno N_BT_21849 Nodo 0,22 60 Ninguno N_BT_TRT1_15351 Nodo 0,22 60 Ninguno N_BT_21773 Nodo 13,8 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_21907 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21809 Nodo 13,8 60 Ninguno N_	N1_15351	Nodo	13,8	60	Ninguno
N3_15351 Nodo 13,8 60 Ninguno N5_15351 Nodo 13,8 60 Ninguno N_BT_21849 Nodo 0,22 60 Ninguno N_BT_TRT1_15351 Nodo 0,22 60 Ninguno N_BT_21773 Nodo 0,22 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_BT_21836 Nodo 0,22 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_BT_21836 Nodo 0,22 60 Ninguno N_21907 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 13,8 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21809 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno <	N2_15351	Nodo	13,8	60	
NS 15351 Nodo N BT 21849 Nodo 0,22 60 Ninguno N BT 21849 Nodo 0,22 60 Ninguno N BT TRT1 15351 Nodo 0,22 60 Ninguno N BT 21773 Nodo 0,22 60 Ninguno N BT 21773 Nodo 0,22 60 Ninguno N 21773 Nodo 13,8 60 Ninguno N 21773 Nodo 0,22 60 Ninguno N ET 21836 Nodo 0,22 60 Ninguno N ET 21836 Nodo 0,22 60 Ninguno N 21907 Nodo 13,8 60 Ninguno N 21907 Nodo 13,8 60 Ninguno N 21907 Nodo 13,8 60 Ninguno N ET 21907 Nodo 0,22 60 Ninguno N ET 21808 Nodo 0,22 60 Ninguno N ET 21808 Nodo 0,22 60 Ninguno N ET 21808 Nodo 0,22 60 Ninguno N 21849 Nodo 13,8 60 Ninguno N 21856 Nodo 13,8 60 Ninguno N 21856 Nodo 13,8 60 Ninguno N ET 21856 Nodo 0,22 60 Ninguno N ET 21856 Nodo 0,22 60 Ninguno N ET 21850 Nodo 0,22 60 Ninguno N ET 21950 Nodo 0,22 60 Ninguno N 21950 Nodo 0,22 60 Ninguno N ET 2210 Nodo 0,22 60 Ninguno N ET 2211 Nodo 0,22 60 Ninguno	N4_15351		,	60	Ninguno
N_BT_21849 Nodo 0,22 60 Ninguno N_BT_TRT1_15351 Nodo 0,22 60 Ninguno N_BT_21773 Nodo 0,22 60 Ninguno N_E15351 Nodo 13,8 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_BT_21836 Nodo 0,22 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_2	N3_15351	Nodo	13,8	60	Ninguno
N_BT_TRT1_15351 Nodo 0,22 60 Ninguno N_BT_21773 Nodo 0,22 60 Ninguno N6_15351 Nodo 13,8 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_21836 Nodo 0,22 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 13,8 60 Ninguno N_BT_21808 Nodo 13,8 60 Ninguno N_BT_21808 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno	N5_15351	Nodo	13,8	60	Ninguno
N_BT_21773 Nodo 0,22 60 Ninguno N6_15351 Nodo 13,8 60 Ninguno N_21773 Nodo 13,8 60 Ninguno N_BT_21836 Nodo 0,22 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21907 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_2	N_BT_21849	Nodo	0,22	60	Ninguno
N6_15351	N_BT_TRT1_15351	Nodo	0,22	60	Ninguno
N_21773 Nodo 13,8 60 Ninguno N_BT_21836 Nodo 0,22 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21809 Nodo 13,8 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT	N_BT_21773	Nodo	0,22	60	Ninguno
N_BT_21836 Nodo 0,22 60 Ninguno N_21836 Nodo 13,8 60 Ninguno N_21807 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_21808 Nodo 0,22 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_5351 Nodo 13,8 60 Ninguno N_BT_5351 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_21950 Nodo 0,22 60 Ninguno N_21950 Nodo 0,22 60 Ninguno N_215351 Nodo 0,22 60 Ninguno N_212006 Nodo 0,22 60 Ninguno N_212006 Nodo 0,22 60 Ninguno N_215351 Nodo 0,22 60 Ninguno N_21338 Nodo 0,22 60 Ning	N6_15351	Nodo	13,8	60	Ninguno
N_21836 Nodo 13,8 60 Ninguno N_21907 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21850 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_1	N_21773	Nodo	13,8	60	Ninguno
N_21907 Nodo 13,8 60 Ninguno N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno	N_BT_21836	Nodo	0,22	60	Ninguno
N_21808 Nodo 13,8 60 Ninguno N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_51856 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno	N_21836	Nodo	13,8	60	Ninguno
N_BT_21907 Nodo 0,22 60 Ninguno N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_18551 Nodo 13,8 60 Ninguno N_BT_1789_15351 Nodo 13,8 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N2_15351 Nodo 13,8 60 Ninguno	N_21907	Nodo	13,8	60	Ninguno
N_BT_21808 Nodo 0,22 60 Ninguno N_21849 Nodo 13,8 60 Ninguno N7_15351 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_2351 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_15351 Nodo 0,22 60 Ninguno N_BT_1789_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno NBT_12210 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno	N_21808	Nodo	13,8	60	Ninguno
N_21849 Nodo 13,8 60 Ninguno N7_15351 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_BT_21851 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_18551 Nodo 13,8 60 Ninguno N_BT_195351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 13,8 60 Ninguno	N_BT_21907	Nodo	0,22	60	Ninguno
N7_15351 Nodo 13,8 60 Ninguno N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N_BT_21856 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 13,8 60 Ninguno	N_BT_21808	Nodo	0,22	60	Ninguno
N_21856 Nodo 13,8 60 Ninguno N_BT_21856 Nodo 0,22 60 Ninguno N8_15351 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno NB_15351 Nodo 0,22 60 Ninguno N_BT_TR9_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno	N_21849	Nodo	13,8	60	Ninguno
N_BT_21856 Nodo 0,22 60 Ninguno N8_15351 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N_BT_21950 Nodo 13,8 60 Ninguno N_BT_2195351 Nodo 0,22 60 Ninguno N_BT_TR9_15351 Nodo 13,8 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N4_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_BT_12006 Nodo 13,8 60 Ninguno	N7_15351	Nodo	13,8	60	Ninguno
N8_15351 Nodo 13,8 60 Ninguno N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N9_15351 Nodo 13,8 60 Ninguno N_BT_TR9_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 13,8 60 Ninguno <tr< td=""><td>N_21856</td><td>Nodo</td><td>13,8</td><td>60</td><td>Ninguno</td></tr<>	N_21856	Nodo	13,8	60	Ninguno
N_21950 Nodo 13,8 60 Ninguno N_BT_21950 Nodo 0,22 60 Ninguno N9_15351 Nodo 13,8 60 Ninguno N_BT_TR9_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_BT_12006 Nodo 13,8 60 Ninguno N_BT_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 13,8 60 Ninguno <	N_BT_21856	Nodo	0,22	60	Ninguno
N_BT_21950 Nodo 0,22 60 Ninguno N9_15351 Nodo 13,8 60 Ninguno N_BT_TR9_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_BT_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N_BT_TR13_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 13,8 60 Ninguno <td>N8_15351</td> <td>Nodo</td> <td>13,8</td> <td>60</td> <td>Ninguno</td>	N8_15351	Nodo	13,8	60	Ninguno
N9_15351 Nodo 13,8 60 Ninguno N_BT_TR9_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N_BT_12351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N_BT_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno NT_15351 Nodo 13,8 60 Ninguno <t< td=""><td>N_21950</td><td>Nodo</td><td>13,8</td><td>60</td><td>Ninguno</td></t<>	N_21950	Nodo	13,8	60	Ninguno
N_BT_TR9_15351 Nodo 0,22 60 Ninguno N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N_BT_12351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N_BT_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N_BT_12286 Nodo 13,8 60 Ninguno NT7_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno	N_BT_21950	Nodo	0,22	60	Ninguno
N10_15351 Nodo 13,8 60 Ninguno N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N_BT_12286 Nodo 13,8 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno	N9_15351	Nodo	13,8	60	Ninguno
N11_15351 Nodo 13,8 60 Ninguno N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno	N_BT_TR9_15351	Nodo	0,22	60	Ninguno
N_BT_12210 Nodo 0,22 60 Ninguno N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N10_15351	Nodo	13,8	60	Ninguno
N12_15351 Nodo 13,8 60 Ninguno N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N11_15351	Nodo	13,8	60	Ninguno
N13_15351 Nodo 13,8 60 Ninguno N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_BT_12210	Nodo	0,22	60	Ninguno
N14_15351 Nodo 13,8 60 Ninguno N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N12_15351	Nodo	13,8	60	Ninguno
N_BT_12211 Nodo 0,22 60 Ninguno N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N13_15351	Nodo	13,8	60	Ninguno
N_12006 Nodo 13,8 60 Ninguno N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N14_15351	Nodo	13,8	60	Ninguno
N_BT_12006 Nodo 0,22 60 Ninguno N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_BT_12211	Nodo	0,22	60	Ninguno
N15_15351 Nodo 13,8 60 Ninguno N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_12006	Nodo	13,8	60	Ninguno
N_BT_TR13_15351 Nodo 0,22 60 Ninguno N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_BT_12006	Nodo	0,22	60	
N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N15_15351	Nodo	13,8	60	Ninguno
N16_15351 Nodo 13,8 60 Ninguno N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_BT_TR13_15351	Nodo	0,22	60	Ninguno
N_BT_12286 Nodo 0,22 60 Ninguno N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N16_15351	Nodo		60	-
N17_15351 Nodo 13,8 60 Ninguno N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N_BT_12286	Nodo	0,22	60	Ninguno
N18_15351 Nodo 13,8 60 Ninguno N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	N17_15351	Nodo		60	
N_21838 Nodo 13,8 60 Ninguno N19_15351 Nodo 13,8 60 Ninguno	_	Nodo	·	60	
N19_15351 Nodo 13,8 60 Ninguno	_			60	
	_			60	
	_				
N BT TR16 15351 Nodo 0,22 60 Ninguno					

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N20_15351	Nodo	13,8	60	Ninguno
N_BT_TR17_15351	Nodo	0,22	60	Ninguno
N26_15351	Nodo	13,8	60	Ninguno
N21_15351	Nodo	13,8	60	Ninguno
N22_15351	Nodo	13,8	60	Ninguno
N_BT-TR18_15351	Nodo	0,22	60	Ninguno
N23_15351	Nodo	13,8	60	Ninguno
N_BT-TR19_15351	Nodo	0,22	60	Ninguno
N_BT_21807	Nodo	0,22	60	Ninguno
N24_15351	Nodo	13,8	60	Ninguno
N_BT_33211	Nodo	0,22	60	Ninguno
N25_15351	Nodo	13,8	60	Ninguno
N_37652	Nodo	13,8	60	Ninguno
N_37651	Nodo	13,8	60	Ninguno
N_BT_37652	Nodo	0,22	60	Ninguno
N_BT_37651	Nodo	0,22	60	Ninguno
N-BT_TR26_15351	Nodo	0,22	60	Ninguno
N27_15351	Nodo	13,8	60	Ninguno
N BT 21863	Nodo	0,22	60	Ninguno
N28_15351	Nodo	13,8	60	Ninguno
N BT 33203	Nodo	0,22	60	Ninguno
N29 15351	Nodo	13,8	60	Ninguno
N 33203	Nodo	13,8	60	Ninguno
N 33761	Nodo	13,8	60	Ninguno
N BT 33761	Nodo	0,22	60	Ninguno
N30 15351	Nodo	13,8	60	Ninguno
N BT TR28 15351	Nodo	0,22	60	Ninguno
N BT TR29 15351	Nodo	0,22	60	Ninguno
N31 15351	Nodo	13,8	60	Ninguno
N TR29 15351	Nodo	13,8	60	Ninguno
N TR31 15351	Nodo	13,8	60	Ninguno
N BT 21800	Nodo	0,22	60	Ninguno
N BT TR31 15351	Nodo	0,22	60	Ninguno
N32 15351	Nodo	13,8	60	Ninguno
N BT 12006 1	Nodo	0,22	60	Ninguno
N_BT_21804	Nodo	0,22	60	Ninguno
N34 15351	Nodo	13,8	60	Ninguno
N33 15351	Nodo	13,8	60	Ninguno
N_BT_12291	Nodo	0,22		Ninguno
N35 15351	Nodo	13,8		Ninguno
N BT 21848	Nodo	0,22	60	Ninguno
N36_15351	Nodo	13,8	60	Ninguno
N_BT_12014	Nodo	0,22	60	Ninguno
N37 15351	Nodo	13,8	60	Ninguno
N BT 21852	Nodo	0,22	60	Ninguno
N39 15351	Nodo	13,8	60	Ninguno
N38 15351	Nodo	13,8	60	Ninguno
N40 15351	Nodo	13,8		Ninguno
N BT 21816	Nodo	0,22	60	
		·	60	Ninguno
N41_15351	Nodo	13,8	60	Ninguno
N_BT_12094	Nodo	0,22	60	Ninguno
N_21869	Nodo	13,8	60	Ninguno
N42_15351	Nodo	13,8	60	Ninguno
N_BT_21869	Nodo	0,22	60	Ninguno

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_12185	Nodo	0,22	60	Ninguno
N44_15351	Nodo	13,8	60	Ninguno
N43_15351	Nodo	13,8	60	Ninguno
N-12185	Nodo	13,8	60	Ninguno
N45_15351	Nodo	13,8	60	Ninguno
N_BT_12007	Nodo	0,22	60	Ninguno
N_BT_TR43_15351	Nodo	0,22	60	Ninguno
N46_15351	Nodo	13,8	60	Ninguno
N_BT_12288	Nodo	0,22	60	Ninguno
N47_15351	Nodo	13,8	60	Ninguno
N_BT_TR45_15351	Nodo	0,22	60	Ninguno
N48_15351	Nodo	13,8	60	Ninguno
N_BT_12001	Nodo	0,22	60	Ninguno
N49_15351	Nodo	13,8	60	Ninguno
N 12270	Nodo	13,8	60	Ninguno
N_BT_12270	Nodo	0,22	60	Ninguno
N50 15351	Nodo	13,8	60	Ninguno
N BT TR48 15351	Nodo	0,22	60	Ninguno
N51 15351	Nodo	13,8	60	Ninguno
N TR48 15351	Nodo	13,8	60	Ninguno
N BT 12000	Nodo	0,22	60	Ninguno
N52 15351	Nodo	13,8	60	Ninguno
N53 15351	Nodo	13,8	60	Ninguno
N BT 21827	Nodo	0,22	60	Ninguno
N 21853	Nodo	13,8	60	Ninguno
N BT TR53 15351	Nodo	0,22	60	Ninguno
N54 15351	Nodo	13,8	60	Ninguno
N BT 21853	Nodo	0,22	60	Ninguno
N56 15351	Nodo	13,8	60	Ninguno
N55 15351	Nodo	13,8	60	Ninguno
N BT TR56 15351	Nodo	0,22	60	Ninguno
N57 15351	Nodo	13,8	60	Ninguno
N BT 12289	Nodo	0,22	60	Ninguno
N 70513	Nodo	13,8	60	Ninguno
N BT 70513	Nodo	0,22	60	Ninguno
N58 15351	Nodo	13,8	60	Ninguno
N BT 12010	Nodo	0,22	60	Ninguno
N 12205	Nodo	13,8	60	Ninguno
N59_15351	Nodo	13,8		Ninguno
N BT 12205	Nodo	0,22		Ninguno
N 70558	Nodo	13,8	60	Ninguno
N_BT_70558	Nodo	0,22	60	Ninguno
N60_15351	Nodo	13,8	60	Ninguno
N 21951	Nodo	13,8	60	Ninguno
N BT 21951	Nodo	0,22	60	Ninguno
N62 15351	Nodo	13,8	60	Ninguno
N61 15351	Nodo	13,8	60	Ninguno
N63 15351	Nodo	13,8	60	Ninguno
N BT 12011	Nodo	0,22	60	Ninguno
N64_15351	Nodo	13,8	60	Ninguno
	Nodo		60	_
N65_15351		13,8		Ninguno
N_BT_13036 N BT 21993	Nodo	0,22	60	Ninguno
	Nodo	0,22	60	Ninguno
N_12248	Nodo	13,8	60	Ninguno

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_12248	Nodo	0,22	60	Ninguno
N66_15351	Nodo	13,8	60	Ninguno
N_BT_TR67_15351	Nodo	0,22	60	Ninguno
N67_15351	Nodo	13,8	60	Ninguno
N_BT_TR68_15351	Nodo	0,22	60	Ninguno
N_70599	Nodo	13,8	60	Ninguno
N68_15351	Nodo	13,8	60	Ninguno
N_BT_70599	Nodo	0,22	60	Ninguno
N69_15351	Nodo	13,8	60	Ninguno
N70_15351	Nodo	13,8	60	Ninguno
N_BT_12022	Nodo	0,22	60	Ninguno
N71_15351	Nodo	13,8	60	Ninguno
N_BT_TR71_15351	Nodo	0,22	60	Ninguno
N BT 12002	Nodo	0,22	60	Ninguno
N72 15351	Nodo	13,8	60	Ninguno
N 12005	Nodo	13,8	60	Ninguno
N BT 12004	Nodo	0,22	60	Ninguno
N BT 12005	Nodo	0,22	60	Ninguno
N73 15351	Nodo	13,8	60	Ninguno
N BT TR75 15351	Nodo	0,22	60	Ninguno
N74 15351	Nodo	13,8	60	Ninguno
N BT 12229	Nodo	0,22	60	Ninguno
N75 15351	Nodo	13,8	60	Ninguno
N BT TR77 15351	Nodo	0,22	60	Ninguno
N76 15351	Nodo	13,8	60	Ninguno
N BT 12003	Nodo	0,22	60	Ninguno
N77 15351	Nodo	13,8	60	Ninguno
N BT TR79 15351	Nodo	0,22	60	Ninguno
N78 15351	Nodo	13,8	60	Ninguno
N BT 70584	Nodo	0,22	60	Ninguno
N79 15351	Nodo	13,8	60	Ninguno
N BT TR81 15351	Nodo	0,22	60	Ninguno
N80 15351	Nodo	13,8	60	Ninguno
N81 15351	Nodo	13,8	60	Ninguno
N BT TR82 15351	Nodo	0,22	60	Ninguno
N82 15351	Nodo	13,8	60	Ninguno
N BT TR83 15351	Nodo	0,22	60	Ninguno
N83 15351	Nodo	13,8	60	Ninguno
N_BT_TR84_15351	Nodo	0,22		Ninguno
N84_15351	Nodo	13,8		Ninguno
N BT TR85 15351	Nodo	0,22	60	Ninguno
N85_15351	Nodo	13,8	60	Ninguno
N_BT_TR86_15351	Nodo	0,22	60	Ninguno
N 12204	Nodo	13,8	60	Ninguno
N BT 12012	Nodo	0,22	60	Ninguno
N86 15351	Nodo	13,8	60	Ninguno
N BT 12204	Nodo	0,22	60	Ninguno
N_BT_TR89_15351	Nodo	0,22		Ninguno
N87 15351	Nodo		60	Ninguno
N_BT_TR90_15351		13,8	60	
	Nodo	0,22	60	Ninguno
N_12213	Nodo	13,8	60	Ninguno
N88_15351	Nodo	13,8	60	Ninguno
N_BT_12202	Nodo	0,22	60	Ninguno
N89_15351	Nodo	13,8	60	Ninguno

Nodo			Tipo prot.
11000	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
	· · · · · · · · · · · · · · · · · · ·		Ninguno
			Ninguno
+			Ninguno
			Ninguno
			Ninguno
			Ninguno
+			Ninguno
	· · · · · · · · · · · · · · · · · · ·		Ninguno
			Ninguno
+			Ninguno
			Ninguno
+			Ninguno
+			Ninguno
+		60	Ninguno
Nodo	· · · · · · · · · · · · · · · · · · ·	60	Ninguno
Nodo		60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo		60	Ninguno
			Ninguno
+		60	Ninguno
+			Ninguno
+			Ninguno
			Ninguno
+			•
			Ninguno
	· · · · · · · · · · · · · · · · · · ·		Ninguno
			Ninguno
-			Ninguno
-			Ninguno
			Ninguno
			Ninguno
	· · · · · · · · · · · · · · · · · · ·	60	Ninguno
Nodo		60	Ninguno
Nodo		60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	13,8	60	Ninguno
Nodo	0,22	60	Ninguno
Nodo	13,8	60	Ninguno
	Nodo	Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 0,22 Nodo 0,22 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo 0,22 Nodo 13,8 Nodo <td>Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8</td>	Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8 60 Nodo 0,22 60 Nodo 13,8 60 Nodo 13,8

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_12051	Nodo	0,22	60	Ninguno
N15_15352	Nodo	13,8	60	Ninguno
B-4592	Nodo	13,8	60	Ninguno
N BT 12050	Nodo	0,22	60	Ninguno
N16 15352	Nodo	13,8	60	Ninguno
N BT 13037	Nodo	0,22	60	Ninguno
N17 15352	Nodo	13,8	60	Ninguno
N BT TR14 15352	Nodo	0,22	60	Ninguno
N BT TR15 15352	Nodo	0,22	60	Ninguno
N18 15352	Nodo	13,8	60	Ninguno
N BT 70073	Nodo	0,22	60	Ninguno
N19 15352	Nodo	13,8	60	Ninguno
N21 15352	Nodo	13,8	60	Ninguno
N20 15352	Nodo	13,8	60	Ninguno
N BT TR16 15352	Nodo	0,22	60	Ninguno
N22 15352	Nodo	13,8	60	Ninguno
N_BT_TR17_15352	Nodo	0,22	60	Ninguno
N 21803	Nodo	13,8	60	Ninguno
N BT 21803	Nodo	0,22	60	Ninguno
N23 15352	Nodo	13,8	60	Ninguno
N BT 12261	Nodo	0,22	60	Ninguno
N BT 12259	Nodo	0,22	60	Ninguno
N24 15352	Nodo	13,8	60	Ninguno
N26 15352	Nodo	13,8	60	Ninguno
B-4962	Nodo	13,8	60	Ninguno
N BT 12260	Nodo	0,22	60	Ninguno
N27 15352	Nodo	13,8	60	Ninguno
N BT TR22 15352	Nodo	0,22	60	Ninguno
N BT 12265	Nodo	0,22	60	Ninguno
N28 15352	Nodo	13,8	60	Ninguno
N BT 70464	Nodo	0,22	60	Ninguno
N_70464	Nodo	13,8	60	Ninguno
N29 15352	Nodo	13,8	60	Ninguno
N30 15352	Nodo	13,8	60	Ninguno
N31 15352	Nodo	13,8	60	Ninguno
N BT TR26 15352	Nodo	0,22	60	Ninguno
N32_15352	Nodo	13,8	60	Ninguno
N BT TR27 15352	Nodo	0,22	60	Ninguno
N34_15352	Nodo	13,8		Ninguno
N33 15352		13,8		_
	Nodo Nodo	0,22	60	Ninguno Ninguno
N_BT_TR28_15352 N35 15352	Nodo		60	Ninguno
		13,8		•
N_BT_TR29_15352	Nodo	0,22	60	Ninguno
N_BT_TR30_15352 N5324	Nodo	0,22	60	Ninguno
N_BT_TR31_15352	Nodo	13,8	60	Ninguno
	Nodo	0,22	60	Ninguno
N36_15352	Nodo	13,8	60	Ninguno
N_BT_12268	Nodo	0,22	60	Ninguno
N37_15352	Nodo	13,8	60	Ninguno
N_BT_70632	Nodo	0,22	60	Ninguno
N38_15352	Nodo	13,8	60	Ninguno
N_70632	Nodo	13,8	60	Ninguno
N39_15352	Nodo	13,8	60	Ninguno
N40_15352	Nodo	13,8	60	Ninguno

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_12267	Nodo	0,22	60	Ninguno
N41_15352	Nodo	13,8	60	Ninguno
N42_15352	Nodo	13,8	60	Ninguno
N_BT_TR35_15352	Nodo	0,22	60	Ninguno
N43_15352	Nodo	13,8	60	Ninguno
N_BT_TR36_15352	Nodo	0,22	60	Ninguno
N44_15352	Nodo	13,8	60	Ninguno
N BT 12045	Nodo	0,22	60	Ninguno
N45 15352	Nodo	13,8	60	Ninguno
N BT TR38 15352	Nodo	0,22	60	Ninguno
N46 15352	Nodo	13,8	60	Ninguno
N_BT_12046	Nodo	0,22	60	Ninguno
N47 15352	Nodo	13,8	60	Ninguno
N48 15352	Nodo	13,8	60	Ninguno
N BT TR40 15352	Nodo	0,22	60	Ninguno
N BT TR41 15352	Nodo	0,22	60	Ninguno
N BT 70617	Nodo	0,22	60	Ninguno
N50 15352	Nodo	13,8	60	Ninguno
N51 15352	Nodo	13,8	60	Ninguno
N 12258	Nodo			
N_12256 N_BT_12258	Nodo	13,8 0,22	60	Ninguno
		,		Ninguno
N_BT_12264	Nodo	0,22	60	Ninguno
N_BT_TR45_15352	Nodo	0,22	60	Ninguno
N53_15352	Nodo	13,8	60	Ninguno
N_BT_21840	Nodo	0,22	60	Ninguno
N54_15352	Nodo	13,8	60	Ninguno
N_BT_TR47_15352	Nodo	0,22	60	Ninguno
N55_15352	Nodo	13,8	60	Ninguno
N56_15352	Nodo	13,8	60	Ninguno
N58_15352	Nodo	13,8	60	Ninguno
N57_15352	Nodo	13,8	60	Ninguno
N_BT_TR48_15352	Nodo	0,22	60	Ninguno
N59_15352	Nodo	13,8	60	Ninguno
N_BT_12049	Nodo	0,22	60	Ninguno
N_BT_TR50_15352	Nodo	0,22	60	Ninguno
N_BT_TR51_15352	Nodo	0,22	60	Ninguno
N61_15352	Nodo	13,8	60	Ninguno
N60_15352	Nodo	13,8	60	Ninguno
N_BT_TR52_15352	Nodo	0,22	60	Ninguno
N62_15352	Nodo	13,8	60	Ninguno
N_BT_13032	Nodo	0,22	60	Ninguno
N63_15352	Nodo	13,8	60	Ninguno
N64_15352	Nodo	13,8	60	Ninguno
N_BT_TR54_15352	Nodo	0,22	60	Ninguno
N_70559	Nodo	13,8	60	Ninguno
N_BT_70559	Nodo	0,22	60	Ninguno
N_12553	Nodo	13,8	60	Ninguno
N BT 12553	Nodo	0,22	60	Ninguno
N65_15352	Nodo	13,8	60	Ninguno
N66 15352	Nodo	13,8	60	Ninguno
N_BT_12554	Nodo	0,22	60	Ninguno
N67 15352	Nodo	13,8	60	Ninguno
N BT 12257	Nodo	0,22	60	Ninguno
N68 15352	Nodo	13,8	60	Ninguno
1400_10002	NOGO	13,0	00	HINGUITO

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_13034	Nodo	0,22	60	Ninguno
N69_15352	Nodo	13,8	60	Ninguno
N_BT_TR60_15352	Nodo	0,22	60	Ninguno
N70_15352	Nodo	13,8	60	Ninguno
N_BT_21882	Nodo	0,22	60	Ninguno
N71_15352	Nodo	13,8	60	Ninguno
N_BT_12227	Nodo	0,22	60	Ninguno
N72_15352	Nodo	13,8	60	Ninguno
N_BT_12226	Nodo	0,22	60	Ninguno
N73_15352	Nodo	13,8	60	Ninguno
N_BT_TR64_15352	Nodo	0,22	60	Ninguno
N_70549	Nodo	13,8	60	Ninguno
N_BT_70549	Nodo	0,22	60	Ninguno
N74_15352	Nodo	13,8	60	Ninguno
N_BT_TR66_15352	Nodo	0,22	60	Ninguno
N75_15352	Nodo	13,8	60	Ninguno
N76_15352	Nodo	13,8	60	Ninguno
N77_15352	Nodo	13,8	60	Ninguno
N_BT_TR67_15352	Nodo	0,22	60	Ninguno
N_BT_TR68_15352	Nodo	0,22	60	Ninguno
N78_15352	Nodo	13,8	60	Ninguno
N_12224	Nodo	13,8	60	Ninguno
N BT 12224	Nodo	0,22	60	Ninguno
N BT 12235	Nodo	0,22	60	Ninguno
N BT 13055	Nodo	0,22	60	Ninguno
N 13055	Nodo	13,8	60	Ninguno
N BT TR72 15352	Nodo	0,22	60	Ninguno
N BT 12041	Nodo	0,22	60	Ninguno
N81 15352	Nodo	13,8	60	Ninguno
N80 15352	Nodo	13,8	60	Ninguno
N82 15352	Nodo	13,8	60	Ninguno
N BT TR74 15352	Nodo	0,22	60	Ninguno
N BT 12252	Nodo	0,22	60	Ninguno
N83 15352	Nodo	13,8	60	Ninguno
N84 15352	Nodo	13,8	60	Ninguno
N BT 12251	Nodo	0,22	60	Ninguno
N 12234	Nodo	13,8	60	Ninguno
N BT 12030	Nodo	0,22	60	Ninguno
N85_15352	Nodo	13,8		Ninguno
N BT 12234	Nodo	0,22		Ninguno
N86 15352	Nodo	13,8	60	Ninguno
N_BT_TR78_15352	Nodo	0,22	60	Ninguno
N87_15352	Nodo	13,8	60	Ninguno
N_BT_21938	Nodo	0,22	60	Ninguno
N88 15352	Nodo	13,8	60	Ninguno
N BT 12198	Nodo	0,22	60	Ninguno
N89 15352	Nodo	13,8	60	Ninguno
N_BT_TR81_15352	Nodo	0,22	60	Ninguno
N90 15352	Nodo	13,8	60	Ninguno
N_BT_TR82_15352	Nodo	0,22	60	Ninguno
N91_15352	Nodo	13,8	60	Ninguno
N 12026	Nodo	13,8	60	Ninguno
N BT 12026	Nodo	0,22	60	Ninguno
N92_15352	Nodo	13,8	60	Ninguno
1102_10002	11000	10,0	00	141194110

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N_BT_12212	Nodo	0,22	60	Ninguno
N93_15352	Nodo	13,8	60	Ninguno
N_BT_12027	Nodo	0,22	60	Ninguno
N94_15352	Nodo	13,8	60	Ninguno
N_12242	Nodo	13,8	60	Ninguno
N_BT_12242	Nodo	0,22	60	Ninguno
N95_15352	Nodo	13,8	60	Ninguno
N96_15352	Nodo	13,8	60	Ninguno
N_BT_13079	Nodo	0,22	60	Ninguno
N_BT_21883	Nodo	0,22	60	Ninguno
N98_15352	Nodo	13,8	60	Ninguno
N97_15352	Nodo	13,8	60	Ninguno
N_BT_70528	Nodo	0,22	60	Ninguno
N_BT_TR90_15352	Nodo	0,22	60	Ninguno
N99_15352	Nodo	13,8	60	Ninguno
N_BT_TR91_15352	Nodo	0,22	60	Ninguno
N100_15352	Nodo	13,8	60	Ninguno
N_BT_12250	Nodo	0,22	60	Ninguno
N101 15352	Nodo	13,8	60	Ninguno
N_BT_12249	Nodo	0,22	60	Ninguno
N102 15352	Nodo	13,8	60	Ninguno
N103 15352	Nodo	13,8	60	Ninguno
N BT 13078	Nodo	0,22	60	Ninguno
N104 15352	Nodo	13,8	60	Ninguno
N BT 12247	Nodo	0,22	60	Ninguno
N105 15352	Nodo	13,8	60	Ninguno
N BT 12184	Nodo	0,22	60	Ninguno
N BT TR97 15352	Nodo	0,22	60	Ninguno
N 12245	Nodo	13,8	60	Ninguno
N106 15352	Nodo	13,8	60	Ninguno
N107 15352	Nodo	13,8	60	Ninguno
N BT 12245	Nodo	0,22	60	Ninguno
N108 15352	Nodo	13,8	60	Ninguno
N_BT_TR99_15352	Nodo	0,22	60	Ninguno
N109 15352	Nodo	13,8	60	Ninguno
N110 15352	Nodo	13,8	60	Ninguno
N BT 12180	Nodo	0,22	60	Ninguno
N112 15352	Nodo	13,8	60	Ninguno
N111_15352	Nodo	13,8		Ninguno
N BT 12244	Nodo	0,22	60	Ninguno
N113 15352	Nodo	13,8	60	Ninguno
N_BT_TR102_15352	Nodo	0,22	60	Ninguno
N114_15352	Nodo	13,8	60	Ninguno
N_BT_TR103_15352	Nodo	0,22	60	Ninguno
N115 15352	Nodo	13,8	60	Ninguno
N BT 12246	Nodo	0,22	60	Ninguno
N117 15352	Nodo	13,8	60	Ninguno
N116 15352	Nodo	13,8	60	Ninguno
N BT 70505	Nodo	0,22	60	Ninguno
N118_15352	Nodo	13,8	60	Ninguno
	Nodo	0,22		-
N_BT_TR106_15352			60	Ninguno
N119_15352	Nodo	13,8	60	Ninguno
N_BT_37860	Nodo	0,22	60	Ninguno
N120_15352	Nodo	13,8	60	Ninguno

Nombre	Nodo tipo	Vn (kV)	Frec (Hz)	Tipo prot.
N122_15352	Nodo	13,8	60	Ninguno
N BT TR107 15352	Nodo	0,22	60	Ninguno
N121 15352	Nodo	13,8	60	Ninguno
N BT TR109 15352	Nodo	0,22	60	Ninguno
N123 15352	Nodo	13,8	60	Ninguno
N124 15352	Nodo	13,8	60	Ninguno
N BT TR110 15352	Nodo	0,22	60	Ninguno
N126 15352	Nodo	13,8	60	Ninguno
N125 15352	Nodo	13,8	60	Ninguno
N BT TR111 15352	Nodo	0,22	60	Ninguno
N127 15352	Nodo	13,8	60	Ninguno
N128 15352	Nodo	13,8	60	Ninguno
N BT TR112 15352	Nodo	0,22	60	Ninguno
N129 15352	Nodo	13,8	60	Ninguno
N BT TR113 15352	Nodo	0,22	60	
		-		Ninguno
N130_15352	Nodo Nodo	13,8	60	Ninguno
N_BT_TR114_15352 N131 15352		0,22	60	Ninguno
	Nodo	13,8	60	Ninguno
N_BT_TR115_15352	Nodo	0,22	60	Ninguno
N_BT_12028	Nodo	0,22	60	Ninguno
N134_15352	Nodo	13,8	60	Ninguno
N132_15352	Nodo	13,8	60	Ninguno
N133_15352	Nodo	13,8	60	Ninguno
N136_15352	Nodo	13,8	60	Ninguno
N_BT_TR117_15352	Nodo	0,22	60	Ninguno
N135_15352	Nodo	13,8	60	Ninguno
N_BT_TR118_15352	Nodo	0,22	60	Ninguno
N137_15352	Nodo	13,8	60	Ninguno
N_BT_TR119_15352	Nodo	0,22	60	Ninguno
N138_15352	Nodo	13,8	60	Ninguno
N_BT_TR120_15352	Nodo	0,22	60	Ninguno
N_BT_13035	Nodo	0,22	60	Ninguno
N139_15352	Nodo	13,8	60	Ninguno
N_12029	Nodo	13,8	60	Ninguno
N_BT_12256	Nodo	0,22	60	Ninguno
N140_15352	Nodo	13,8	60	Ninguno
N_BT_12029	Nodo	0,22	60	Ninguno
N141_15352	Nodo	13,8	60	Ninguno
N_BT_TR124_15352	Nodo	0,22	60	Ninguno
N142_15352	Nodo	13,8	60	Ninguno
N_BT_70517	Nodo	0,22	60	Ninguno
N143_15352	Nodo	13,8	60	Ninguno
N_BT_70540	Nodo	0,22	60	Ninguno
N BT TR127 15352	Nodo	0,22	60	Ninguno
N144 15352	Nodo	13,8	60	Ninguno
N BT TR128 15352	Nodo	0,22	60	Ninguno
N145 15352	Nodo	13,8	60	Ninguno
N BT TR129 15352	Nodo	0,22	60	Ninguno
N146 15352	Nodo	13,8	60	Ninguno
N 70556	Nodo	13,8	60	Ninguno
N BT 70557	Nodo	0,22	60	Ninguno
N BT 70556	Nodo	0,22	60	Ninguno
	∆3 Parámetro			Miliguilo

Tabla A3. Parámetros de los nodos del sistema.

La tabla A4. Presenta la información de los alimentadores primarios o líneas de media tensión, dentro de están aparece cables de MT para red aérea abierta y cables de MT para red subterránea.

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L1_15351	0,057	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N2_15351	N1_15351	13,8
L2_15351	0,08	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N2_15351	N3_15351	13,8
L3_15351	0,08	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N3_15351	N4_15351	13,8
L4_15351	0,451	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N5_15351	N4_15351	13,8
L5_15351	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21849	N5_15351	13,8
L7_15351	0,066	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21773	N6_15351	13,8
L6_15351	0,219	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N6_15351	N5_15351	13,8
L8_15351	0,077	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21836	N_21773	13,8
L10_15351	0,085	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21907	N_21808	13,8
L9_15351	0,101	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21808	N6_15351	13,8
L11_15351	0,083	0,8585	0,4111	0,013891	5,237	1,09115	2,44868	0,005279249	1,99	L_13,2 kV_Aer_Urb	1/0 AWG	N3_15351	N7_15351	13,8
L21_15351	0,085	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21856	N7_15351	13,8
L12_15351	0,142	0,8585	0,4111	0,013891	5,237	1,09115	2,44868	0,005279249	1,99	L_13,2 kV_Aer_Urb	1/0 AWG	N7_15351	N8_15351	13,8
L13_15351	0,048	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21950	N8_15351	13,8
L14_15351	0,016	0,8585	0,4111	0,013891	5,237	1,09115	2,44868	0,005279249	1,99	L_13,2 kV_Aer_Urb	1/0 AWG	N8_15351	N9_15351	13,8
L15_15351	0,025	0,8585	0,4111	0,013891	5,237	1,09115	2,44868	0,005279249	1,99	L_13,2 kV_Aer_Urb	1/0 AWG	N9_15351	N10_15351	13,8
L16_15351	0,033	0,8585	0,4111	0,013891	5,237	1,09115	2,44868	0,005279249	1,99	L_13,2 kV_Aer_Urb	1/0 AWG	N10_15351	N11_15351	13,8
L18_15351	0,021	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N12_15351	N13_15351	13,8
L17_15351	0,026	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N11_15351	N12_15351	13,8
L19_15351	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N14_15351	N13_15351	13,8
L20_15351	0,028	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N_12006	N14_15351	13,8
L22_15351	0,065	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N15_15351	N14_15351	13,8
L23_15351	0,056	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N16_15351	N15_15351	13,8
L24_15351	0,085	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N17_15351	N16_15351	13,8
L25_15351	0,091	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21838	N17_15351	13,8
L27_15351	0,1	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N19_15351	N18_15351	13,8
L26_15351	0,1	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N17_15351	N18_15351	13,8
L28_15351	0,41	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N20_15351	N19_15351	13,8
L36_15351	0,209	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N26_15351	N21_15351	13,8
L29_15351	0,188	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N20_15351	N21_15351	13,8
L30_15351	0,056	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N21_15351	N22_15351	13,8
L31_15351	0,244	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N22_15351	N23_15351	13,8
L32_15351	0,418	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N23_15351	N24_15351	13,8
L34_15351	0,074	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N_37652	N25_15351	13,8
L33_15351	0,267	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N24_15351	N25_15351	13,8
L35_15351	0,109	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N_37651	N25_15351	13,8
L37_15351	0,043	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N27_15351	N26_15351	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L38_15351	0,183	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N27_15351	N28_15351	13,8
L39_15351	0,023	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N_33203	N28_15351	13,8
L40_15351	0,273	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N29_15351	N28_15351	13,8
L42_15351	0,165	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N30_15351	N29_15351	13,8
L41_15351	0,185	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_33761	N29_15351	13,8
L43_15351	0,284	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Rur	2 AWG	N_TR29_15351	N30_15351	13,8
L44_15351	0,086	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N31_15351	N12_15351	13,8
L45_15351	0,016	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N_TR31_15351	N31_15351	13,8
L46_15351	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N32_15351	N31_15351	13,8
L47_15351	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N33_15351	N32_15351	13,8
L48_15351	0,023	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N34_15351	N33_15351	13,8
L49_15351	0,016	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N35_15351	N34_15351	13,8
L50_15351	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N11_15351	N36_15351	13,8
L51_15351	0,028	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N36_15351	N37_15351	13,8
L53_15351	0,032	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N38_15351	N39_15351	13,8
L54_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N40_15351	N39_15351	13,8
L55_15351	0,012	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N40_15351	N41_15351	13,8
L56_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21869	N41_15351	13,8
L57_15351	0,052	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Aer_Urb	Red Subterranea	N39_15351	N42_15351	13,8
L59_15351	0,025	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N42_15351	N43_15351	13,8
L60_15351	0,013	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N43_15351	N44_15351	13,8
L61_15351	0,026	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N45_15351	N43_15351	13,8
L62_15351	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N46_15351	N44_15351	13,8
L63_15351	0,053	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N46_15351	N47_15351	13,8
L64_15351	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N48_15351	N47_15351	13,8
L65_15351	0,034	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N49_15351	N48_15351	13,8
L66_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12270	N49_15351	13,8
L67_15351	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N49_15351	N50_15351	13,8
L69_15351	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N51_15351	N50_15351	13,8
L68_15351	0,024	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_TR48_15351	N50_15351	13,8
L52_15351	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N38_15351	N37_15351	13,8
L70_15351	0,027	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N52_15351	N39_15351	13,8
L58_15351	0,015	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N-12185	N42_15351	13,8
L71_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N53_15351	N52_15351	13,8
L72_15351	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21853	N53_15351	13,8
L74_15351	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N54_15351	N55_15351	13,8
L73_15351	0,046	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N39_15351	N54_15351	13,8
L76_15351	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N57_15351	N56_15351	13,8
L77_15351	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70513	N57_15351	13,8
L79_15351	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12205	N58_15351	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L78_15351	0,007	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N58_15351	N56_15351	13,8
L80_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N56_15351	N59_15351	13,8
L82_15351	0,013	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N60_15351	N59_15351	13,8
L81_15351	0,015	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N_70558	N59_15351	13,8
L83_15351	0,025	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N_21951	N60_15351	13,8
L85_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N61_15351	N62_15351	13,8
L84_15351	0,026	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N61_15351	N60_15351	13,8
L86_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N62_15351	N63_15351	13,8
L87_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N64_15351	N63_15351	13,8
L88_15351	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N65_15351	N64_15351	13,8
L90_15351	0,023	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N66_15351	N62_15351	13,8
L89_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12248	N65_15351	13,8
L91_15351	0,033	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N67_15351	N66_15351	13,8
L93_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70599	N68_15351	13,8
L92_15351	0,033	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N67_15351	N68_15351	13,8
L94_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Subt	2 AWG	N67_15351	N69_15351	13,8
L95_15351	0,049	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N69_15351	N70_15351	13,8
L96_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N71_15351	N70_15351	13,8
L98_15351	0,019	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N72_15351	N_12005	13,8
L97_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N72_15351	N71_15351	13,8
L99_15351	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N73_15351	N67_15351	13,8
L100_15351	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N74_15351	N73_15351	13,8
L101_15351	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N74_15351	N75_15351	13,8
L102_15351	0,063	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N75_15351	N76_15351	13,8
L103_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N76_15351	N77_15351	13,8
L104_15351	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N78_15351	N77_15351	13,8
L105_15351	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N79_15351	N78_15351	13,8
L106_15351	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N62_15351	N80_15351	13,8
L107_15351	0,013	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N80_15351	N81_15351	13,8
L108_15351	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N82_15351	N81_15351	13,8
L109_15351	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N83_15351	N82_15351	13,8
L110_15351	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N83_15351	N84_15351	13,8
L75_15351	0,011	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N56_15351	N54_15351	13,8
L111_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N85_15351	N84_15351	13,8
L112_15351	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12204	N85_15351	13,8
L113_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N86_15351	N84_15351	13,8
L114_15351	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N86_15351	N87_15351	13,8
L115_15351	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N88_15351	N87_15351	13,8
L116_15351	0,015	0,6743	0,12583	0	0	1,0721	0,31958	0	0	L_13,2 kV_Subt	Red Subterranea	N_12213	N88_15351	13,8
L117_15351	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N89_15351	N88_15351	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L119_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N89_15351	N91_15351	13,8
L118_15351	0,038	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N90_15351	N89_15351	13,8
L120_15351	0,046	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N92_15351	N91_15351	13,8
L121_15351	0,007	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N92_15351	N93_15351	13,8
L123_15351	0,012	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N94_15351	N93_15351	13,8
L122_15351	0,032	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12201	N93_15351	13,8
L124_15351	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N95_15351	N94_15351	13,8
L126_15351	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N96_15351	N84_15351	13,8
L125_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70532	N94_15351	13,8
L127_15351	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N97_15351	N96_15351	13,8
L128_15351	0,018	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N98_15351	N97_15351	13,8
L129_15351	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N99_15351	N98_15351	13,8
L130_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N99_15351	N100_15351	13,8
L131_15351	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N100_15351	N_SECC_15352	13,8
L0_15352	0,003	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N1_15352	N0_13,8	13,8
L0_15351	0,003	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N1_15351	N0_13,8	13,8
L1_15352	0,057	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N2_15352	N1_15352	13,8
L2_15352	0,072	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N2_15352	N3_15352	13,8
L4_15352	0,067	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70503	N4_15352	13,8
L3_15352	0,013	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N4_15352	N3_15352	13,8
L5_15352	0,161	0,21318	0,45517	0,009627	3,629	0,38639	1,95447	0,003842345	1,449	L_13,2 kV_Aer_Urb	2X2/0 AWG	N5_15352	N3_15352	13,8
L6_15352	0,011	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N6_15352	N5_15352	13,8
L7_15352	0,011	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N7_15352	N6_15352	13,8
L8_15352	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12053	N7_15352	13,8
L9_15352	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N8_15352	N5_15352	13,8
L10_15352	0,052	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N9_15352	N8_15352	13,8
L11_15352	0,013	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N10_15352	N9_15352	13,8
L12_15352	0,034	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N11_15352	N10_15352	13,8
L13_15352	0,069	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N5_15352	N12_15352	13,8
L14_15352	0,052	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N13_15352	N12_15352	13,8
L16_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N14_15352	N13_15352	13,8
L15_15352	0,014	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	B-4592	N13_15352	13,8
L17_15352	0,07	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N15_15352	N14_15352	13,8
L18_15352	0,018	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N16_15352	N15_15352	13,8
L19_15352	0,018	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N17_15352	N16_15352	13,8
L20_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N18_15352	N17_15352	13,8
L21_15352	0,075	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N19_15352	N18_15352	13,8
L23_15352	0,062	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N21_15352	N14_15352	13,8
L22_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N20_15352	N15_15352	13,8
L24_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N22_15352	N21_15352	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L25_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_21803	N22_15352	13,8
L26_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N22_15352	N23_15352	13,8
L27_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N24_15352	N23_15352	13,8
L29_15352	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N26_15352	N22_15352	13,8
L28_15352	0,018	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	B-4962	N24_15352	13,8
L30_15352	0,013	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N27_15352	N26_15352	13,8
L31_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N28_15352	N27_15352	13,8
L32_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70464	N28_15352	13,8
L33_15352	0,026	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N29_15352	N28_15352	13,8
L34_15352	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N30_15352	N29_15352	13,8
L35_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N30_15352	N31_15352	13,8
L36_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N32_15352	N31_15352	13,8
L37_15352	0,05	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N33_15352	N31_15352	13,8
L38_15352	0,034	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N29_15352	N34_15352	13,8
L39_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N35_15352	N34_15352	13,8
L41_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N29_15352	N36_15352	13,8
L40_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N5324	N35_15352	13,8
L42_15352	0,01	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N36_15352	N37_15352	13,8
L43_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70632	N37_15352	13,8
L46_15352	0,056	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N39_15352	N28_15352	13,8
L45_15352	0,048	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N38_15352	N39_15352	13,8
L44_15352	0,027	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N37_15352	N38_15352	13,8
L47_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N38_15352	N40_15352	13,8
L48_15352	0,021	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N41_15352	N40_15352	13,8
L49_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N42_15352	N41_15352	13,8
L50_15352	0,033	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N43_15352	N41_15352	13,8
L52_15352	0,048	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N45_15352	N39_15352	13,8
L51_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N44_15352	N39_15352	13,8
L53_15352	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N46_15352	N45_15352	13,8
L54_15352	0,026	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N46_15352	N47_15352	13,8
L55_15352	0,043	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N48_15352	N47_15352	13,8
L56_15352	0,052	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N50_15352	N46_15352	13,8
L57_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12258	N50_15352	13,8
L58_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N51_15352	N50_15352	13,8
L59_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N53_15352	N46_15352	13,8
L60_15352	0,033	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N53_15352	N54_15352	13,8
L61_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N55_15352	N54_15352	13,8
L62_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N54_15352	N56_15352	13,8
L63_15352	0,042	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N57_15352	N56_15352	13,8
L64_15352	0,1	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N57_15352	N58_15352	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L65_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N59_15352	N58_15352	13,8
L66_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N56_15352	N_SECC_15352	13,8
L68_15352	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N60_15352	N61_15352	13,8
L67_15352	0,056	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N54_15352	N60_15352	13,8
L69_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N62_15352	N61_15352	13,8
L70_15352	0,05	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N63_15352	N62_15352	13,8
L71_15352	0,012	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N61_15352	N64_15352	13,8
L72_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70559	N64_15352	13,8
L73_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N64_15352	N_12553	13,8
L74_15352	0,065	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N61_15352	N65_15352	13,8
L75_15352	0,042	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N65_15352	N66_15352	13,8
L76_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N66_15352	N67_15352	13,8
L77_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N68_15352	N67_15352	13,8
L78_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N68_15352	N69_15352	13,8
L79_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N65_15352	N70_15352	13,8
L80_15352	0,047	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N70_15352	N71_15352	13,8
L81_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N71_15352	N72_15352	13,8
L82_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N73_15352	N72_15352	13,8
L84_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70549	N74_15352	13,8
L83_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N74_15352	N73_15352	13,8
L85_15352	0,027	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N75_15352	N74_15352	13,8
L86_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N73_15352	N76_15352	13,8
L87_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N77_15352	N76_15352	13,8
L88_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12224	N76_15352	13,8
L89_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N73_15352	N78_15352	13,8
L90_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_13055	N78_15352	13,8
L91_15352	0,052	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N80_15352	N65_15352	13,8
L92_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N81_15352	N80_15352	13,8
L93_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N82_15352	N80_15352	13,8
L94_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N82_15352	N83_15352	13,8
L95_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N84_15352	N83_15352	13,8
L96_15352	0,03	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12234	N84_15352	13,8
L97_15352	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N85_15352	N84_15352	13,8
L98_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N85_15352	N86_15352	13,8
L99_15352	0,035	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N86_15352	N87_15352	13,8
L100_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N87_15352	N88_15352	13,8
L101_15352	0,08	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N89_15352	N88_15352	13,8
L102_15352	0,061	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N90_15352	N85_15352	13,8
L103_15352	0,124	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N90_15352	N91_15352	13,8
L104_15352	0,043	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12026	N91_15352	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L105_15352	0,037	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N91_15352	N92_15352	13,8
L106_15352	0,05	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N92_15352	N93_15352	13,8
L107_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N94_15352	N93_15352	13,8
L108_15352	0,037	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12242	N94_15352	13,8
L109_15352	0,059	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N94_15352	N95_15352	13,8
L110_15352	0,059	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N95_15352	N96_15352	13,8
L111_15352	0,021	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N96_15352	N97_15352	13,8
L112_15352	0,054	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N97_15352	N98_15352	13,8
L113_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N99_15352	N98_15352	13,8
L114_15352	0,038	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N97_15352	N100_15352	13,8
L115_15352	0,023	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N100_15352	N101_15352	13,8
L116_15352	0,086	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N101_15352	N102_15352	13,8
L117_15352	0,023	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N102_15352	N103_15352	13,8
L118_15352	0,029	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N104_15352	N103_15352	13,8
L120_15352	0,042	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N106_15352	N105_15352	13,8
L119_15352	0,082	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N105_15352	N104_15352	13,8
L121_15352	0,049	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12245	N106_15352	13,8
L122_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N105_15352	N107_15352	13,8
L123_15352	0,042	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N108_15352	N107_15352	13,8
L124_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N109_15352	N107_15352	13,8
L126_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N111_15352	N110_15352	13,8
L125_15352	0,044	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N109_15352	N110_15352	13,8
L127_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N112_15352	N111_15352	13,8
L129_15352	0,036	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N114_15352	N113_15352	13,8
L128_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N109_15352	N113_15352	13,8
L130_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N113_15352	N115_15352	13,8
L131_15352	0,148	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N116_15352	N115_15352	13,8
L132_15352	0,311	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N117_15352	N116_15352	13,8
L133_15352	0,472	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N115_15352	N118_15352	13,8
L135_15352	0,297	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N120_15352	N119_15352	13,8
L134_15352	0,104	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N118_15352	N119_15352	13,8
L137_15352	0,297	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N122_15352	N120_15352	13,8
L136_15352	0,081	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N121_15352	N120_15352	13,8
L138_15352	0,022	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N122_15352	N123_15352	13,8
L139_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N124_15352	N122_15352	13,8
L140_15352	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N125_15352	N124_15352	13,8
L142_15352	0,062	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N127_15352	N125_15352	13,8
L141_15352	0,055	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N126_15352	N125_15352	13,8
L143_15352	0,062	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N128_15352	N127_15352	13,8
L144_15352	0,483	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N119_15352	N129_15352	13,8

Nombre	Longitud (km)	R(1) (ohm/km)	X(1) (ohm/km)	C(1) (mF/km)	B(1) (mS/km)	R(0) (ohm/km)	X(0) (ohm/km)	C(0) (mF/km)	B(0)(mS/km)	Tipo Conf.	Descripción	Desde	Hasta	Vn (kV)
L145_15352	0,016	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N129_15352	N130_15352	13,8
L146_15352	0,108	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N131_15352	N130_15352	13,8
L147_15352	0,031	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N132_15352	N85_15352	13,8
L148_15352	0,034	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N132_15352	N133_15352	13,8
L149_15352	0,039	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N134_15352	N133_15352	13,8
L150_15352	0,037	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N135_15352	N134_15352	13,8
L151_15352	0,037	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N133_15352	N136_15352	13,8
L152_15352	0,02	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N137_15352	N136_15352	13,8
L153_15352	0,065	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N138_15352	N137_15352	13,8
L154_15352	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N139_15352	N138_15352	13,8
L155_15352	0,017	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_12029	N139_15352	13,8
L156_15352	0,04	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N140_15352	N133_15352	13,8
L157_15352	0,015	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N141_15352	N140_15352	13,8
L158_15352	0,033	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N142_15352	N141_15352	13,8
L159_15352	0,06	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N143_15352	N142_15352	13,8
L160_15352	0,06	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N143_15352	N144_15352	13,8
L161_15352	0,028	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N145_15352	N144_15352	13,8
L162_15352	0,044	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N145_15352	N141_15352	13,8
L163_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N145_15352	N146_15352	13,8
L164_15352	0,025	1,366	0,68477	0,013313	5,019	1,59865	2,72235	0,005194075	1,958	L_13,2 kV_Aer_Urb	2 AWG	N_70556	N146_15352	13,8

Tabla A4. Parámetros de las líneas del sistema

La tabla A5. Muestra los datos correspondientes a los trasformadores bidevanado.

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR1_15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR1_15351 30 kVA Zcc=4%	N4_15351	13,8	N_BT_TRT1_15351	0,22
TR-21849	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR2-15351 45 kVA Zcc=4%	N_21849	13,8	N_BT_21849	0,22
TR3-21773	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR3-15351 30 kVA Zcc=4%	N_21773	13,8	N_BT_21773	0,22
TR4-21836	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR4-15351 75 kVA Zcc=4%	N_21836	13,8	N_BT_21836	0,22
TR5-21808	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR5-15351 30 kVA Zcc=4%	N_21808	13,8	N_BT_21808	0,22
TR6-21907	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	T6_15351 75 kVA Zcc=4%	N_21907	13,8	N_BT_21907	0,22
TR7-21856	Dyn11	0,3	13,8	0,22	4	direct	12,6	787,3	0,3	Trafo_ Urb_trif	TR7-15351 300 kVA Zcc=4%	N_21856	13,8	N_BT_21856	0,22
TR8-21950	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR8-15351 30 kVA Zcc=4%	N_21950	13,8	N_BT_21950	0,22
TR9-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR9-15351 75 kVA Zcc=4%	N9_15351	13,8	N_BT_TR9_15351	0,22
TR10-12210	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR10-15351 45 kVA Zcc=4%	N10_15351	13,8	N_BT_12210	0,22
TR11-12211	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR11-15351 45 kVA Zcc=4%	N13_15351	13,8	N_BT_12211	0,22
TR12-12006	Dyn11	0,3	13,8	0,22	4	direct	12,6	787,3	0,3	Trafo_ Urb_trif	TR12-15351 300 kVA Zcc=4%	N_12006	13,8	N_BT_12006	0,22
TR13-15351	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR13-15351 112,5 kVA Zcc=4%	N15_15351	13,8	N_BT_TR13_15351	0,22
TR14-12286	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR14-15351 150 kVA Zcc=4%	N16_15351	13,8	N_BT_12286	0,22
TR15-21838	Dyn11	0,225	13,8	0,22	4	direct	9,4	590,5	0,225	Trafo_ Urb_trif	TR15-15351 225 kVA Zcc=4%	N_21838	13,8	N_BT_21838	0,22
TR16-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR16-15351 30 kVA Zcc=4%	N18_15351	13,8	N_BT_TR16_15351	0,22
TR17-15351	Dyn11	0,025	13,8	0,22	4	direct	1	65,6	0,025	Trafo_ Urb_monof	TR17-15351 25 kVA Zcc=4%	N20_15351	13,8	N_BT_TR17_15351	0,22
TR18-15351	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_monof	TR18-15351 15 kVA Zcc=4%	N22_15351	13,8	N_BT-TR18_15351	0,22
TR19-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Rur	TR19-15351 75 kVA Zcc=4%	N22_15351	13,8	N_BT-TR19_15351	0,22
TR20-21807	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Rur	TR20-15351 75 kVA Zcc=4%	N23_15351	13,8	N_BT_21807	0,22
TR21-33211	Dyn11	0,01	13,8	0,22	4	direct	0,4	26,2	0,01	Trafo_ Urb_monof	TR21-15351 10 kVA Zcc=4%	N24_15351	13,8	N_BT_33211	0,22
TR22-37652	Dyn11	0,01	13,8	0,22	4	direct	0,4	26,2	0,01	Trafo_ Urb_monof	TR22-15351 10 kVA Zcc=4%	N_37652	13,8	N_BT_37652	0,22
TR23-37651	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Rur	TR23-15351 30 kVA Zcc=4%	N_37651	13,8	N_BT_37651	0,22
TR26-15351	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Rur	TR26-15351 15 kVA Zcc=4%	N26_15351	13,8	N-BT_TR26_15351	0,22
TR25-21863	Dyn11	0,3	13,8	0,22	4	direct	12,6	787,3	0,3	Trafo_ Rur	TR25-15351 300 kVA Zcc=4%	N27_15351	13,8	N_BT_21863	0,22
TR26-33203	Dyn11	0,01	13,8	0,22	4	direct	0,4	26,2	0,01	Trafo_ Rur	TR26-15351 10 kVA Zcc=4%	N_33203	13,8	N_BT_33203	0,22
TR27-33761	Dyn11	0,01	13,8	0,22	4	direct	0,4	26,2	0,01	Trafo_ Rur	TR27-15351 10 kVA Zcc=4%	N_33761	13,8	N_BT_33761	0,22
TR28-15351	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Rur	TR28-15351 45 kVA Zcc=4%	N30_15351	13,8	N_BT_TR28_15351	0,22
TR29-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Rur	TR29-15351 30 kVA Zcc=4%	N_TR29_15351	13,8	N_BT_TR29_15351	0,22
TR30-21800	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR30-15351 150 kVA Zcc=4%	N31_15351	13,8	N_BT_21800	0,22
TR31_15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR31-15351 75 kVA Zcc=4%	N_TR31_15351	13,8	N_BT_TR31_15351	0,22
TR32-12006	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR32-15351 75 kVA Zcc=4%	N32_15351	13,8	N_BT_12006_1	0,22
TR33-21804	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR33-15351 75 kVA Zcc=4%	N33_15351	13,8	N_BT_21804	0,22
TR34-12291	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR34-15351 45 kVA Zcc=4%	N34_15351	13,8	N_BT_12291	0,22
TR35-21848	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR35-15351 30 kVA Zcc=4%	N35_15351	13,8	N_BT_21848	0,22
TR36-12014	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR36-15351 75 kVA Zcc=4%	N36_15351	13,8	N_BT_12014	0,22
TR37-21852	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR37-15351 75 kVA Zcc=4%	N37_15351	13,8	N_BT_21852	0,22
TR38-21816	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR38-15351 75 kVA Zcc=4%	N40_15351	13,8	N_BT_21816	0,22

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR39-12094	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR39-15351 30 kVA Zcc=4%	N41_15351	13,8	N_BT_12094	0,22
TR40-21869	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR40-15351 30 kVA Zcc=4%	N_21869	13,8	N_BT_21869	0,22
TR41-12185	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR41-15351 150 kVA Zcc=4%	N-12185	13,8	N_BT_12185	0,22
TR42-12007	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR42-15351 150 kVA Zcc=4%	N44_15351	13,8	N_BT_12007	0,22
TR43-15351	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR43-15351 45 kVA Zcc=4%	N45_15351	13,8	N_BT_TR43_15351	0,22
TR44-12288	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR44-15351 75 kVA Zcc=4%	N46_15351	13,8	N_BT_12288	0,22
TR45-15351	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR45-15351 150 kVA Zcc=4%	N47_15351	13,8	N_BT_TR45_15351	0,22
TR46-12001	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR46-15351 75 kVA Zcc=4%	N48_15351	13,8	N_BT_12001	0,22
TR47-12270	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR47-15351 75 kVA Zcc=4%	N_12270	13,8	N_BT_12270	0,22
TR48-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR48-15351 75 kVA Zcc=4%	N_TR48_15351	13,8	N_BT_TR48_15351	0,22
TR49-12000	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR49-15351 75 kVA Zcc=4%	N51_15351	13,8	N_BT_12000	0,22
TR52-21827	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR52-15351 75 kVA Zcc=4%	N52_15351	13,8	N_BT_21827	0,22
TR53-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR53-15351 30 kVA Zcc=4%	N53_15351	13,8	N_BT_TR53_15351	0,22
TR54-21853	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR54-15351 30 kVA Zcc=4%	N_21853	13,8	N_BT_21853	0,22
TR56-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR56-15351 75 kVA Zcc=4%	N55_15351	13,8	N_BT_TR56_15351	0,22
TR57-12289	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR57-15351 30 kVA Zcc=4%	N57_15351	13,8	N_BT_12289	0,22
TR58-70513	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR58-15351 75 kVA Zcc=4%	N_70513	13,8	N_BT_70513	0,22
TR59-12010	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR59-15351 75 kVA Zcc=4%	N58_15351	13,8	N_BT_12010	0,22
TR60-12205	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR60-15351 30 kVA Zcc=4%	N_12205	13,8	N_BT_12205	0,22
TR61-70558	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR61-15351 112,5 kVA Zcc=4%	N_70558	13,8	N_BT_70558	0,22
TR62-21951	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR62-15351 75 kVA Zcc=4%	N_21951	13,8	N_BT_21951	0,22
TR63-12011	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR63-15351 75 kVA Zcc=4%	N63_15351	13,8	N_BT_12011	0,22
TR64-13036	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR64-15351 45 kVA Zcc=4%	N64_15351	13,8	N_BT_13036	0,22
TR65-21993	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR65-15351 112,5 kVA Zcc=4%	N65_15351	13,8	N_BT_21993	0,22
TR66-12248	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR66-15351 30 kVA Zcc=4%	N_12248	13,8	N_BT_12248	0,22
TR67-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR67-15351 75 kVA Zcc=4%	N66_15351	13,8	N_BT_TR67_15351	0,22
TR68-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR68-15351 75 kVA Zcc=4%	N68_15351	13,8	N_BT_TR68_15351	0,22
TR-70599	Dyn11	0,4	13,8	0,22	4	direct	16,7	1049,7	0,4	Trafo_ Urb_trif	TR69-15351 400 kVA Zcc=4%	N_70599	13,8	N_BT_70599	0,22
TR70-12022	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR70-15351 112,5 kVA Zcc=4%	N69_15351	13,8	N_BT_12022	0,22
TR71-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR71-15351 75 kVA Zcc=4%	N70_15351	13,8	N_BT_TR71_15351	0,22
TR72-12002	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR72-15351 75 kVA Zcc=4%	N71_15351	13,8	N_BT_12002	0,22
TR73-12004	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR73-15351 30 kVA Zcc=4%	N72_15351	13,8	N_BT_12004	0,22
TR74-12005	Dyn11	0,05	13,8	0,22	4	direct	2,1	131,2	0,05	Trafo_ Urb_trif	TR74-15351 50 kVA Zcc=4%	N_12005	13,8	N_BT_12005	0,22
TR75-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR75-15351 30 kVA Zcc=4%	N73_15351	13,8	N_BT_TR75_15351	0,22
TR76-12229	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR76-15351 45 kVA Zcc=4%	N74_15351	13,8	N_BT_12229	0,22
TR77-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR77-15351 75 kVA Zcc=4%	N75_15351	13,8	N_BT_TR77_15351	0,22
TR78-12003	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR78-15351 45 kVA Zcc=4%	N76_15351	13,8	N_BT_12003	0,22
TR79-15351	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR79-15351 45 kVA Zcc=4%	N77_15351	13,8	N_BT_TR79_15351	0,22
TR80-70584	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR80-15351 75 kVA Zcc=4%	N78_15351	13,8	N_BT_70584	0,22
TR81-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR81-15351 30 kVA Zcc=4%	N79_15351	13,8	N_BT_TR81_15351	0,22

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR82-15351	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR82-15351 45 kVA Zcc=4%	N80_15351	13,8	N_BT_TR82_15351	0,22
TR83-15351	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR83-15351 112,5 kVA Zcc=4%	N81_15351	13,8	N_BT_TR83_15351	0,22
TR84-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR84-15351 75 kVA Zcc=4%	N82_15351	13,8	N_BT_TR84_15351	0,22
TR85-15351	Dyn11	0,025	13,8	0,22	4	direct	1	65,6	0,025	Trafo_ Urb_trif	TR85-15351 25 kVA Zcc=4%	N83_15351	13,8	N_BT_TR85_15351	0,22
TR86-15351	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR86-15351 112,5 kVA Zcc=4%	N84_15351	13,8	N_BT_TR86_15351	0,22
TR87-12012	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR87-15351 75 kVA Zcc=4%	N85_15351	13,8	N_BT_12012	0,22
TR88-12204	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR88-15351 75 kVA Zcc=4%	N_12204	13,8	N_BT_12204	0,22
TR89-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR89-15351 30 kVA Zcc=4%	N86_15351	13,8	N_BT_TR89_15351	0,22
TR90-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR90-15351 75 kVA Zcc=4%	N87_15351	13,8	N_BT_TR90_15351	0,22
TR91-12202	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR91-15351 75 kVA Zcc=4%	N87_15351	13,8	N_BT_12202	0,22
TR92-12213	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR92-15351 112,5 kVA Zcc=4%	N_12213	13,8	N_BT_12213	0,22
TR94-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR94-15351 30 kVA Zcc=4%	N90_15351	13,8	N_BT_TR94_15351	0,22
TR93-15351	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR93-15351 30 kVA Zcc=4%	N89_15351	13,8	N_BT_TR93_15351	0,22
TR95-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR95-15351 75 kVA Zcc=4%	N91_15351	13,8	N_BT_TR95_15351	0,22
TR96-12009	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR96-15351 150 kVA Zcc=4%	N92_15351	13,8	N_BT_12009	0,22
TR97-12201	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR97-15351 75 kVA Zcc=4%	N_12201	13,8	N_BT_12201	0,22
TR98-15351	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR98-15351 75 kVA Zcc=4%	N95_15351	13,8	N_BT_TR98_15351	0,22
TR99-70532	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR99-15351 45 kVA Zcc=4%	N_70532	13,8	N_BT_70532	0,22
TR100-12214	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR100-15351 75 kVA Zcc=4%	N96_15351	13,8	N_BT_12214	0,22
TR101-12223	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR101-15351 45 kVA Zcc=4%	N97_15351	13,8	N_BT_12223	0,22
TR102-12021	Dyn11	0,225	13,8	0,22	4	direct	9,4	590,5	0,225	Trafo_ Urb_trif	TR102-15351 225 kVA Zcc=4%	N98_15351	13,8	N_BT_12021	0,22
TR103-70192	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR103-15351 112,5 kVA Zcc=4%	N99_15351	13,8	N_BT_70192	0,22
TR104-15351	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR104-15351 45 kVA Zcc=4%	N100_15351	13,8	N_BT_TR104_15351	0,22
TR1-15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR1_15352 30 kVA Zcc=4%	N4_15352	13,8	N_BT_TRT1_15352	0,22
TR2-70503	Dyn11	0,4	13,8	0,22	4	direct	16,7	1049,7	0,4	Trafo_ Urb_trif	TR2_15352 400 kVA Zcc=4%	N_70503	13,8	N_BT_70503	0,22
TR3-12263	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR3_15352 30 kVA Zcc=4%	N6_15352	13,8	N_BT_12263	0,22
TR4-21806	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR4_15352 75 kVA Zcc=4%	N7_15352	13,8	N_BT_21806	0,22
TR5-12053	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR5-15352 112,5 kVA Zcc=4%	N_12053	13,8	N_BT_12053	0,22
TR6-12052	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR6_15352 30 kVA Zcc=4%	N8_15352	13,8	N_BT_12052	0,22
TR7-12271	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR7_15352 30 kVA Zcc=4%	N9_15352	13,8	N_BT_12271	0,22
TR8-70591	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR8_12352 112,5 kVA Zcc=4%	N10_15352	13,8	N_BT_70591	0,22
TR9-12352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR9-15352 75 kVA Zcc=4%	N11_15352	13,8	N_BT_TR11_15352	0,22
TR10-70530	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR10-15352 45 kVA Zcc=4%	N12_15352	13,8	N_BT_70530	0,22
TR11-12051	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR11-15352 75 kVA Zcc=4%	B-4592	13,8	N_BT_12051	0,22
TR12-12050	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR12-15352 75 kVA Zcc=4%	N15_15352	13,8	N_BT_12050	0,22
TR13-13037	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR13-15352 45 kVA Zcc=4%	N16_15352	13,8	N_BT_13037	0,22
TR14-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR14-15352 45 kVA Zcc=4%	N17_15352	13,8	N_BT_TR14_15352	0,22
TR15-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR14-15352 45 kVA Zcc=4%	N18_15352	13,8	N_BT_TR15_15352	0,22
TR16-70073	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR16_15352 75 kVA Zcc=4%	N19_15352	13,8	N_BT_70073	0,22
TR16-15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR16-15352 30 kVA Zcc=4%	N20_15352	13,8	N_BT_TR16_15352	0,22

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR17-15352	Dyn11	0,25	13,8	0,22	4	direct	10,5	656,1	0,25	Trafo_ Urb_trif	TR17_12352 250 kVA Zcc=4%	N21_15352	13,8	N_BT_TR17_15352	0,22
TR18_21803	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR18-15352 75 kVA Zcc=4%	N_21803	13,8	N_BT_21803	0,22
TR19_12261	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR19-15352 30 kVA Zcc=4%	N23_15352	13,8	N_BT_12261	0,22
TR20_12259	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR20-15352 75 kVA Zcc=4%	N24_15352	13,8	N_BT_12259	0,22
TR21_12260	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR21-15352 30 kVA Zcc=4%	B-4962	13,8	N_BT_12260	0,22
TR22_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR22-15352 45 kVA Zcc=4%	N26_15352	13,8	N_BT_TR22_15352	0,22
TR24_12048	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR24-15352 150 kVA Zcc=4%	N27_15352	13,8	N_BT_12265	0,22
TR25_70464	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR25-15352 45 kVA Zcc=4%	N_70464	13,8	N_BT_70464	0,22
TR26-15352	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR26-15352 112,5 kVA Zcc=4%	N30_15352	13,8	N_BT_TR26_15352	0,22
TR27_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR27_15352 45 kVA Zcc=4%	N32_15352	13,8	N_BT_TR27_15352	0,22
TR28_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR28_15352 30 kVA Zcc=4%	N33_15352	13,8	N_BT_TR28_15352	0,22
TR29-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR29-15352 45 kVA Zcc=4%	N34_15352	13,8	N_BT_TR29_15352	0,22
TR30-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR30-15352 45 kVA Zcc=4%	N35_15352	13,8	N_BT_TR30_15352	0,22
TR31-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR31-15352 45 kVA Zcc=4%	N5324	13,8	N_BT_TR31_15352	0,22
TR32_12268	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR32_15352 45 kVA Zcc=4%	N36_15352	13,8	N_BT_12268	0,22
TR33_70632	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR33-15352 75 kVA Zcc=4%	N_70632	13,8	N_BT_70632	0,22
TR34_12267	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR34-15352 75 kVA Zcc=4%	N40_15352	13,8	N_BT_12267	0,22
TR35_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR35_15352 30 kVA Zcc=4%	N42_15352	13,8	N_BT_TR35_15352	0,22
TR36_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR36_15352 75 kVA Zcc=4%	N43_15352	13,8	N_BT_TR36_15352	0,22
TR37_12045	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR37-15352 112,5 kVA Zcc=4%	N44_15352	13,8	N_BT_12045	0,22
TR38-15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR38-15352 75 kVA Zcc=4%	N45_15352	13,8	N_BT_TR38_15352	0,22
TR39_12046	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR39-15352 112,5 kVA Zcc=4%	N46_15352	13,8	N_BT_12046	0,22
TR40_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR40-15352 45 kVA Zcc=4%	N47_15352	13,8	N_BT_TR40_15352	0,22
TR41_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR41_15352 75 kVA Zcc=4%	N48_15352	13,8	N_BT_TR41_15352	0,22
TR42_70617	Dyn11	0,3	13,8	0,22	4	direct	12,6	787,3	0,3	Trafo_ Urb_trif	TR42_15352 300 kVA Zcc=4%	N50_15352	13,8	N_BT_70617	0,22
TR43_12258	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR43-15352 30 kVA Zcc=4%	N_12258	13,8	N_BT_12258	0,22
TR44_12264	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR44_15352 75 kVA Zcc=4%	N51_15352	13,8	N_BT_12264	0,22
TR45_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR45_15352 30 kVA Zcc=4%	N51_15352	13,8	N_BT_TR45_15352	0,22
TR46_21840	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR46_15352 45 kVA Zcc=4%	N53_15352	13,8	N_BT_21840	0,22
TR47_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR47_15352 45 kVA Zcc=4%	N55_15352	13,8	N_BT_TR47_15352	0,22
TR48-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR48-15352 45 kVA Zcc=4%	N57_15352	13,8	N_BT_TR48_15352	0,22
TR49_12049	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR49-15352 150 kVA Zcc=4%	N58_15352	13,8	N_BT_12049	0,22
TR50_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR50-15352 30 kVA Zcc=4%	N59_15352	13,8	N_BT_TR50_15352	0,22
TR51_12042	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR51-15352 112,5 kVA Zcc=4%	N60_15352	13,8	N_BT_TR51_15352	0,22
TR52-15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR52-15352 75 kVA Zcc=4%	N61_15352	13,8	N_BT_TR52_15352	0,22
TR53_13032	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR53-15352 45 kVA Zcc=4%	N62_15352	13,8	N_BT_13032	0,22
TR54-15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR54-15352 30 kVA Zcc=4%	N63_15352	13,8	N_BT_TR54_15352	0,22
TR55_70559	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR55-15352 45 kVA Zcc=4%	N_70559	13,8	N_BT_70559	0,22
TR56_13553	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR56-15352 45 kVA Zcc=4%	N_12553	13,8	N_BT_12553	0,22
TR57_12254	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR57-15352 30 kVA Zcc=4%	N66_15352	13,8	N_BT_12554	0,22

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR58_12257	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR58-15352 30 kVA Zcc=4%	N67_15352	13,8	N_BT_12257	0,22
TR_13034	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR59-15352 112,5 kVA Zcc=4%	N68_15352	13,8	N_BT_13034	0,22
TR60_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR60-15352 30 kVA Zcc=4%	N69_15352	13,8	N_BT_TR60_15352	0,22
TR61_21882	Dyn11	0,01	13,8	0,22	4	direct	0,4	26,2	0,01	Trafo_ Urb_trif	TR61-15352 10 kVA Zcc=4%	N70_15352	13,8	N_BT_21882	0,22
TR62_12227	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR62-15352 30 kVA Zcc=4%	N71_15352	13,8	N_BT_12227	0,22
TR63_12226	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR63-15352 45 kVA Zcc=4%	N72_15352	13,8	N_BT_12226	0,22
TR64_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR64-15352 30 kVA Zcc=4%	N74_15352	13,8	N_BT_TR64_15352	0,22
TR65_70549	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR65_15352 30 kVA Zcc=4%	N_70549	13,8	N_BT_70549	0,22
TR66_15352	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR66-15352 112,5 kVA Zcc=4%	N75_15352	13,8	N_BT_TR66_15352	0,22
TR67_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR67-15352 75 kVA Zcc=4%	N76_15352	13,8	N_BT_TR67_15352	0,22
TR68_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR68-15352 30 kVA Zcc=4%	N77_15352	13,8	N_BT_TR68_15352	0,22
TR69_12224	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR69-15352 45 kVA Zcc=4%	N_12224	13,8	N_BT_12224	0,22
TR70_12235	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR70-15352 30 kVA Zcc=4%	N78_15352	13,8	N_BT_12235	0,22
TR71-13055	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR71-15352 30 kVA Zcc=4%	N_13055	13,8	N_BT_13055	0,22
TR72_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR72-15352 45 kVA Zcc=4%	N65_15352	13,8	N_BT_TR72_15352	0,22
TR73_12041	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR73-15352 75 kVA Zcc=4%	N80_15352	13,8	N_BT_12041	0,22
TR74_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR74-15352 30 kVA Zcc=4%	N81_15352	13,8	N_BT_TR74_15352	0,22
TR75_12252	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR75_15352 45 kVA Zcc=4%	N82_15352	13,8	N_BT_12252	0,22
TR76_12271	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR76_15352 30 kVA Zcc=4%	N83_15352	13,8	N_BT_12251	0,22
TR77_12030	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR77_15352 75 kVA Zcc=4%	N84_15352	13,8	N_BT_12030	0,22
TR78_12234	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR78_15352 75 kVA Zcc=4%	N_12234	13,8	N_BT_12234	0,22
TR78_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR78-15352 75 kVA Zcc=4%	N86_15352	13,8	N_BT_TR78_15352	0,22
TR79_21938	Dyn11	0,3	13,8	0,22	4	direct	12,6	787,3	0,3	Trafo_ Urb_trif	TR79-15352 300 kVA Zcc=4%	N87_15352	13,8	N_BT_21938	0,22
TR80_12198	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR80_15352 30 kVA Zcc=4%	N88_15352	13,8	N_BT_12198	0,22
TR81_15352	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR81_15352 150 kVA Zcc=4%	N89_15352	13,8	N_BT_TR81_15352	0,22
TR82_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR82-15352 45 kVA Zcc=4%	N90_15352	13,8	N_BT_TR82_15352	0,22
TR83_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR83-15352 75 kVA Zcc=4%	N_12026	13,8	N_BT_12026	0,22
TR84_12212	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR84-15352 30 kVA Zcc=4%	N92_15352	13,8	N_BT_12212	0,22
TR85_12027	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_trif	TR85-15352 15 kVA Zcc=4%	N93_15352	13,8	N_BT_12027	0,22
TR86_12242	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR86_15352 112,5 kVA Zcc=4%	N_12242	13,8	N_BT_12242	0,22
TR87_13079	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR87_15352 75 kVA Zcc=4%	N95_15352	13,8	N_BT_13079	0,22
TR88_21883	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_trif	TR88_15352 15 kVA Zcc=4%	N96_15352	13,8	N_BT_21883	0,22
TR89_70528	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR89_15352 75 kVA Zcc=4%	N98_15352	13,8	N_BT_70528	0,22
TR90_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR90_15352 45 kVA Zcc=4%	N98_15352	13,8	N_BT_TR90_15352	0,22
TR91_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR91-15352 75 kVA Zcc=4%	N99_15352	13,8	N_BT_TR91_15352	0,22
TR92_12250	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR92_15352 30 kVA Zcc=4%	N100_15352	13,8	N_BT_12250	0,22
TR93_12249	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_trif	TR93_15352 15 kVA Zcc=4%	N101_15352	13,8	N_BT_12249	0,22
TR94_13078	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR94_15352 45 kVA Zcc=4%	N102_15352	13,8	N_BT_13078	0,22
TR95_12247	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR95_15352 112,5 kVA Zcc=4%	N103_15352	13,8	N_BT_12247	0,22
TR96 12184	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo Urb trif	TR96-15352 15 kVA Zcc=4%	N104 15352	13,8	N BT 12184	0,22

Nombre	Grupo vectorial	Sr (MVA)	Vr1 (kV)	Vr2 (kV)	Zcc %	Puesta a Tierra	Ir2 máx (baja) (A)	Ir1 máx (baja) (A)	Sr máx (MVA)	Tipo Conf.	Descripción	Desde	Vn (kV)	Hasta	Vn (kV)
TR97_15352	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR97-15352 112,5 kVA Zcc=4%	N106_15352	13,8	N_BT_TR97_15352	0,22
TR98_12245	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR98_15352 30 kVA Zcc=4%	N_12245	13,8	N_BT_12245	0,22
TR99_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR99_15352 45 kVA Zcc=4%	N108_15352	13,8	N_BT_TR99_15352	0,22
TR100_12180	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR100_15352 30 kVA Zcc=4%	N110_15352	13,8	N_BT_12180	0,22
TR101_12244	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_trif	TR101_15352 15 kVA Zcc=4%	N111_15352	13,8	N_BT_12244	0,22
TR102_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR102_15352 30 kVA Zcc=4%	N112_15352	13,8	N_BT_TR102_15352	0,22
TR103_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR103_15352 30 kVA Zcc=4%	N114_15352	13,8	N_BT_TR103_15352	0,22
TR104_12246	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR104_15352 45 kVA Zcc=4%	N116_15352	13,8	N_BT_12246	0,22
TR105_70505	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR105-15352 150 kVA Zcc=4%	N117_15352	13,8	N_BT_70505	0,22
TR106_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR106_15352 30 kVA Zcc=4%	N117_15352	13,8	N_BT_TR106_15352	0,22
TR107_37860	Dyn11	0,015	13,8	0,22	4	direct	0,6	39,4	0,015	Trafo_ Urb_trif	TR107_15352 15 kVA Zcc=4%	N118_15352	13,8	N_BT_37860	0,22
TR107_15352	Dyn11	0,005	13,8	0,22	4	direct	0,2	13,1	0,005	Trafo_ Urb_monof	TR107-15352 5 kVA Zcc=4%	N121_15352	13,8	N_BT_TR107_15352	0,22
TR109_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR109-15352 45 kVA Zcc=4%	N123_15352	13,8	N_BT_TR109_15352	0,22
TR110_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR110-15352 30 kVA Zcc=4%	N124_15352	13,8	N_BT_TR110_15352	0,22
TR111_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR111-15352 45 kVA Zcc=4%	N126_15352	13,8	N_BT_TR111_15352	0,22
TR112_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR112-15352 30 kVA Zcc=4%	N127_15352	13,8	N_BT_TR112_15352	0,22
TR113_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR113-15352 45 kVA Zcc=4%	N128_15352	13,8	N_BT_TR113_15352	0,22
TR114_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR114-15352 45 kVA Zcc=4%	N130_15352	13,8	N_BT_TR114_15352	0,22
TR115-15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR115-15352 45 kVA Zcc=4%	N131_15352	13,8	N_BT_TR115_15352	0,22
TR116_12028	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR116_15352 75 kVA Zcc=4%	N132_15352	13,8	N_BT_12028	0,22
TR117_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR117_15352 30 kVA Zcc=4%	N134_15352	13,8	N_BT_TR117_15352	0,22
TR118_15352	Dyn11	0,03	13,8	0,22	4	direct	1,3	78,7	0,03	Trafo_ Urb_trif	TR118_15352 30 kVA Zcc=4%	N135_15352	13,8	N_BT_TR118_15352	0,22
TR119_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR119-15352 45 kVA Zcc=4%	N136_15352	13,8	N_BT_TR119_15352	0,22
TR120_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR120-15352 75 kVA Zcc=4%	N137_15352	13,8	N_BT_TR120_15352	0,22
TR121_13035	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR121-15352 75 kVA Zcc=4%	N138_15352	13,8	N_BT_13035	0,22
TR122_12256	Dyn11	0,1125	13,8	0,22	4	direct	4,7	295,2	0,1125	Trafo_ Urb_trif	TR122-15352 112,5 kVA Zcc=4%	N139_15352	13,8	N_BT_12256	0,22
TR123_12029	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR123-15352 75 kVA Zcc=4%	N_12029	13,8	N_BT_12029	0,22
TR124_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR124_15352 45 kVA Zcc=4%	N140_15352	13,8	N_BT_TR124_15352	0,22
TR125_70517	Dyn11	0,75	13,8	0,22	4	direct	31,4	1968,2	0,75	Trafo_ Urb_trif	TR125_15352 750 kVA Zcc=4%	N141_15352	13,8	N_BT_70517	0,22
TR126_70540	Dyn11	0,4	13,8	0,22	4	direct	16,7	1049,7	0,4	Trafo_ Urb_trif	TR126_15352 400 kVA Zcc=4%	N142_15352	13,8	N_BT_70540	0,22
TR127_15352	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR127-15352 75 kVA Zcc=4%	N143_15352	13,8	N_BT_TR127_15352	0,22
TR128_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR128_15352 45 kVA Zcc=4%	N144_15352	13,8	N_BT_TR128_15352	0,22
TR129_15352	Dyn11	0,045	13,8	0,22	4	direct	1,9	118,1	0,045	Trafo_ Urb_trif	TR129_15352 45 kVA Zcc=4%	N145_15352	13,8	N_BT_TR129_15352	0,22
TR130_70557	Dyn11	0,15	13,8	0,22	4	direct	6,3	393,6	0,15	Trafo_ Urb_trif	TR130_15352 150 kVA Zcc=4%	N146_15352	13,8	N_BT_70557	0,22
TR131_70556	Dyn11	0,075	13,8	0,22	4	direct	3,1	196,8	0,075	Trafo_ Urb_trif	TR131_15352 75 kVA Zcc=4%	N_70556	13,8	N_BT_70556	0,22

Tabla A5. Parámetros de las de los transformadores bidevanado

La tabla A6. Muestra los datos correspondientes a las cargas

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_TR1_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TRT1_15351
L-BT_21849	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_21849
L-BT_21773	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21773
L-BT_21836	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21836
L-BT_21907	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21907
L-BT_21808	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21808
L_BT_21856	SC	270	130,767	300	787,3	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_300kVA	1	N_BT_21856
L_BT_21950	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21950
L_BT_TR9_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR9_15351
L_BT_12210	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12210
L_BT_12211	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12211
L_BT_12006	SC	270	130,767	300	787,3	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_300kVA	1	N_BT_12006
L_BT_TR13_15351	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR13_15351
L_BT_12286	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12286
L_BT_21838	SC	202,5	98,075	225	590,47	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_225kVA	1	N_BT_21838
L_BT_TR16_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR16_15351
L_BT_TR17_15351	SC	22,5	10,897	25	65,61	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_25kVA_rural	50	N_BT_TR17_15351
L-BT_TR18_21807	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_15kVA_rural	30	N_BT-TR18_15351
L-BT_TR19_21807	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT-TR19_15351
L-BT_21807	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21807
L-BT_33211	SC	9	4,359	10	26,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_10kVA_rural	12	N_BT_33211
L-BT_37652	SC	9	4,359	10	26,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_10kVA_rural	12	N_BT_37652
L-BT_37651	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_37651
L-BT_TR26_15351	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_15kVA_rural	30	N-BT_TR26_15351
L_BT_21863	SC	270	130,767	300	787,3	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_300kVA	1	N_BT_21863
L_BT_33203	SC	9	4,359	10	26,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_10kVA_rural	12	N_BT_33203
L_BT_33761	SC	9	4,359	10	26,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_10kVA_rural	12	N_BT_33761
L_BT_TR28_15351	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR28_15351
N_BT_TR29_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR29_15351
L_BT_21800	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_21800
L_BT_TR31_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR31_15351
L_BT_12006_1	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12006_1
L_BT_21804	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21804
L_BT_12291	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12291
L_BT_21848	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21848
L_BT_12014	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12014
L_BT_21852	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21852
L_BT_21816	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21816
L_BT_12094	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12094
L_BT_21869	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21869

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_12185	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12185
L_BT_12007	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12007
L_BT_TR43_15351	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR43_15351
L_BT_12288	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12288
L_BT_TR45_15351	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_TR45_15351
L_BT_12001	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12001
L_BT_12270	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12270
L_BT_TR48_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR48_15351
L_BT_12000	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12000
L_BT_21827	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21827
L_BT_TR53_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR53_15351
L_BT_21853	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_21853
L_BT_TR56_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR56_15351
L_BT_12289	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12289
L_BT_70513	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70513
L_BT_12010	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12010
L_BT_12205	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12205
L_BT_70558	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_70558
L_BT_21951	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21951
L_BT_12011	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12011
L_BT_13036	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_13036
L_BT_21993	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_21993
L_BT_12248	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12248
L_BT_TR67_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR67_15351
L_BT_TR68_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR68_15351
L_BT_70599	SC	360	174,356	400	1049,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_400kVA	1	N_BT_70599
L_BT_12022	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12022
L_BT_TR71_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR71_15351
L_BT_12002	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12002
L_BT_12004	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12004
L_BT_12005	SC	45	21,794	50	131,22	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12005
L_BT_TR75_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR75_15351
L_BT_12229	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12229
L_BT_TR77_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR77_15351
L_BT_12003	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12003
L_BT_TR79_15351	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR79_15351
L_BT_70584	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70584
L_BT_TR81_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR81_15351
L_BT_TR82_15351	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR82_15351
L_BT_TR83_15351	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR83_15351

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_TR84_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR84_15351
L_BT_TR85_15351	SC	22,5	10,897	25	65,61	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_25kVA	1	N_BT_TR85_15351
L_BT_TR86_15351	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR86_15351
L_BT_12012	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12012
L_BT_12204	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12204
L_BT_TR89_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR89_15351
L_BT_TR90_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR90_15351
L_BT_12202	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12202
L_BT_12213	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12213
L_BT_TR94_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR94_15351
L_BT_TR93_15351	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR93_15351
L_BT_TR95_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR95_15351
L_BT_12009	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	120	N_BT_12009
L_BT_12201	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12201
L_BT_TR98_15351	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR98_15351
L_BT_70532	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_70532
L_BT_12214	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12214
L_BT_12223	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12223
L_BT_12021	SC	202,5	98,075	225	590,47	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_225kVA	1	N_BT_12021
L_BT_70192	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_70192
L_BT_TR104_15351	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR104_15351
L_BT_TR1_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TRT1_15352
L_BT_70503	SC	360	174,356	400	1049,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_400kVA	1	N_BT_70503
L_BT_12263	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12263
L_BT_21806	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21806
L_BT_12053	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12053
L_BT_12052	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12052
L_BT_12271	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12271
L_BT_170591	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_70591
L_BT_TR11_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR11_15352
L_BT_70530	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_70530
L_BT_12051	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12051
L_BT_12050	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12050
L_BT_13037	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_13037
L_BT_TR14_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR14_15352
L_BT_TR15_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR15_15352
L_BT_70073	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70073
L_BT_TR16_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR16_15352
L_BT_TR17_15352	SC	225	108,972	250	656,08	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_250kVA	1	N_BT_TR17_15352
L_BT_21803	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_21803

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_12261	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12261
L_BT_12259	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12259
L_BT_12260	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12260
L_BT_TR22_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR22_15352
L_BT_12265	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12265
L_BT_70464	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_70464
L_BT_TR26_15352	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR26_15352
L_BT_TR27_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR27_15352
L_BT_TR28_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR28_15352
L_BT_TR29_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR29_15352
L_BT_TR30_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR30_15352
L_BT_TR31_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR31_15352
L_BT_12268	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12268
L_BT_70632	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70632
L_BT_12267	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12267
L_BT_TR35_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR35_15352
L_BT_TR36_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR36_15352
L_BT_12045	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12045
L_BT_TR38_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR38_15352
L_BT_12046	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12046
L_BT_TR40_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR40_15352
L_BT_TR41_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR41_15352
L_BT_70617	SC	270	130,767	300	787,3	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_300kVA	1	N_BT_70617
L_BT_12258	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12258
L_BT_12264	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12264
L_BT_TR45_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR45_15352
L_BT_21840	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_21840
L_BT_TR47_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR47_15352
L_BT_TR48_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR48_15352
L_BT_12049	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12049
L_BT_TR50_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR50_15352
L_BT_TR51_15352	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR51_15352
L_BT_TR52_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR52_15352
L_BT_13032	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_13032
L_BT_TR54_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR54_15352
L_BT_70559	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_70559
L_BT_12553	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12553
L_BT_12554	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12554
L_BT_12257	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12257
L_BT_13034	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_13034

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_TR60_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR60_15352
L_BT_21882	SC	9	4,359	10	26,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_10kVA	1	N_BT_21882
L_BT_12227	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12227
L_BT_12226	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12226
L_BT_TR64_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR64_15352
L_BT_70549	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_70549
L_BT_TR66_15352	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_TR66_15352
L_BT_TR67_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR67_15352
L_BT_TR68_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR68_15352
L_BT_12224	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12224
L_BT_12235	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12235
L_BT_13055	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_13055
L_BT_TR72_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR72_15352
L_BT_12041	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12041
L_BT_TR74_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR74_15352
N_BT_12252	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12252
L_BT_12251	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12251
L_BT_12030	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12030
L_BT_12234	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12234
L_BT_TR78_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR78_15352
L_BT_21938	SC	270	130,767	300	787,3	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_300kVA	1	N_BT_21938
L_BT_12198	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12198
L_BT_TR81_15352	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_TR81_15352
L_BT_TR82_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR82_15352
L_BT_12026	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12026
L_BT_12212	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12212
L_BT_12027	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_12027
L_BT_12242	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12242
L_BT_13079	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_13079
L_BT_21883	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_21883
L_BT_70528	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70528
L_BT_TR90_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR90_15352
L_BT_TR91_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR91_15352
L_BT_12250	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12250
L_BT_12249	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_12249
L_BT_13078	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_13078
L_BT_12247	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12247
L_BT_12184	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_12184
L_BT_TR97_15352	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_TR97_15352
L_BT_12245	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12245

Nombre	Tipo	P (kW)	Q (kVAr)	S (kVA)	I (A)	cos (phi)	Factor Escal. Efec. P	Factor Escal. Efec. Q	Unidades	Conexión	No dep. Volt. Para FC	Tipo de Confiabilidad	Número de clientes	Desde
L_BT_TR99_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR99_15352
L_BT_12180	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_12180
L_BT_12244	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_12244
L_BT_TR102_15352	sc	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR102_15352
L_BT_TR103_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR103_15352
L_BT_12246	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_12246
L_BT_70505	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_70505
L_BT_TR106_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	50	N_BT_TR106_15352
L_BT_37860	SC	13,5	6,538	15	39,36	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_15kVA	1	N_BT_37860
L_BT_TR107_15352	SC	4,5	2,179	5	13,12	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_5kVA	1	N_BT_TR107_15352
L_BT_TR109_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR109_15352
L_BT_TR110_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR110_15352
L_BT_TR111_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR111_15352
L_BT_TR112_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR112_15352
L_BT_TR113_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR113_15352
L_BT_TR114_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR114_15352
L_BT_TR115_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR115_15352
L_BT_12028	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12028
L_BT_TR117_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR117_15352
L_BT_TR118_15352	SC	27	13,077	30	78,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_30kVA	20	N_BT_TR118_15352
L_BT_TR119_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR119_15352
L_BT_TR120_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR120_15352
L_BT_13035	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_13035
L_BT_12256	SC	101,25	49,038	112,5	295,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_112,5kVA	120	N_BT_12256
N_BT_12029	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_12029
L_BT_TR124_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR124_15352
L_BT_70517	SC	675	326,917	750	1968,24	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_700kVA	1	N_BT_70517
L_BT_70540	SC	360	174,356	400	1049,73	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_400kVA	1	N_BT_70540
L_BT_TR127_15352	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_TR127_15352
L_BT_TR128_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR128_15352
L_BT_TR129_15352	SC	40,5	19,615	45	118,09	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_45kVA	50	N_BT_TR129_15352
N_BT_70557	SC	135	65,383	150	393,65	0,9	0,8	0,8	LV	Y Tierra	1	C_Ind_150kVA	1	N_BT_70557
L_BT_70556	SC	67,5	32,692	75	196,82	0,9	0,8	0,8	LV	Y Tierra	1	C_Res_75kVA	60	N_BT_70556

Tabla A6. Parámetros de las cargas del sistema

La tabla A7. Muestra los datos correspondientes a la generación distribuida, generadores sincrónicos.

Nombre	Sr (MVA)	Vr (kV)	cos (phi)	xd sat (%)	xd' sat (%)	xd" sat (%)	x(2) 5		Vf máx/Vr	FC tipo	P Gen (MW)	Q Gen (MVAr)	Vreg (%)	H(s)	xd (%)	xd' (%)	xd" (%)		xq' (%)	xq" (%)	xc (%)		Td" (s)	Tq' (s)	Tq" (s)	Td0' (s)	Td0" (s)	Tq0" (s)	Confiabilid ad	Desde
G1_153 51	0,75	0,22	0,9	139,1	21,9	14	15,2	5,5	1.6	PQ	0,75	0,35	100	3,83 35	153, 4	22,3	15,6	150, 7	150, 7	20,4	12	0,21	0,01	0	0,01	1,470071 148	0,014046 939	0,073872 549		NG1_15 351
G1_153 52	0,75	0,22	0,9	139,1	21,9	14	15,2	5,5	1.6	PQ	0,75	0,35	100	3,83 35	153, 4	22,3	15,6	150, 7	150, 7	20,4	12	0,21	0,01	0	0,01	1,470071 148	0,014046 939		Elemento Ideal	NG1_15 352

Tabla A7. Parámetros de los generadores sincrónicos

La tabla A8. Muestra los datos correspondientes a las celdas de MT.

Nombre	Vr máx (kV)	Ir (kA)	lk" (kA)	lb máx (kA)	lp máx (kA)	Voltaj e	Tipo de Confiabilidad	En elemento	En Nodo	O n	Vn (kV)
CB1_15352	15	0,63	35	35	50	HV	Celda_MT	L0_15352	N0_13,8	1	13,8
CB1_15351	15	0,4	35	35	50	HV	Celda_MT	L0_15351	N0_13,8	1	13,8

Tabla A8. Parámetros de las celdas de MT

La tabla A9. Muestra los datos correspondientes a los reconectadores.

Nombre	Vr máx (kV)	Ir (kA)	Ik" (kA)	lb máx (kA)	Ip máx (kA)	Voltaje	Tipo de Confiabilidad	En elemento	En Nodo	On	Vn (kV)
CB_1_15352	15	0,4	10	10	15	HV	Rec_urb	L74_15352	N65_15352	1	13,8
CB_3_15352	15	0,1	10	10	15	HV	Rec_urb	L135_15352	N120_15352	1	13,8
CB_2_15352	15	0,1	10	10	15	HV	Rec_urb	L130_15352	N113_15352	1	13,8
CB_3_15351	15	0,4	10	10	15	HV	Rec_urb	L15_15351	N10_15351	1	13,8
CB_1_15351	15	0,1	10	10	15	HV	Rec_urb	L3_15351	N3_15351	1	13,8
CB_4_15351	15	0,1	10	10	15	HV	Rec_urb	L90_15351	N62_15351	1	13,8
CB_5_15351	15	0,4	10	10	15	HV	Rec_urb	L85_15351	N61_15351	1	13,8
CB_8_15351	15	0,4	10	10	15	HV	Rec_urb	L131_15351	N100_15351	0	13,8
CB_7_15351	15	0,1	10	10	15	HV	Rec_urb	L113_15351	N86_15351	1	13,8

Tabla A9. Parámetros de los reconectadores

La tabla A10. Muestra los datos correspondientes a los seccionadores y seccionalizadores.

Nombre	Vr máx	Ir (kA)	Ik" (kA)	lb máx (kA)	lp máx (kA)	Control Remot.	Apertura remota	Tipo de Confiabilidad	Descripción	En elemento	En Nodo	On	
SECCN_1_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L21_15351	N7_15351	1	
SECCN_3-15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L91_15351	N66_15351	1	
SECCN_2_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L54_15351	N39_15351	1	
SECCN_5_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L92_15351	N67_15351	1	
SECCN_4_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L99_15351	N67_15351	1	
SECCN_6_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L94_15351	N67_15351	1	
SECCN_9_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L117_15351	N88_15351	1	
SECCN_7_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L87_15351	N63_15351	1	
SECCN_1_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L62_15352	N54_15352	1	
SECCN_8_15351	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L115_15351	N87_15351	1	
SECC_2_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L144_15352	N119_15352	1	
SECCN_2_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L60_15352	N54_15352	1	
SECCN_4_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L137_15352	N120_15352	1	
SECCN_3_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L145_15352	N130_15352	1	
SECCN_5_15352	15	0,6	10	10	15	1	1	Cortac_urb	Seccionalizador	L118_15352	N103_15352	1	
SECC_1_15351	15	0,6	10	10	15	1	1	Cortac_urb	Cañuela	L132_15351	N20_15351	0	
SECC_1_15352	15	0,6	10	10	15	1	1	Cortac_urb	Cañuela	L165_15352	N112_15352	0	

Tabla A10. Parámetros de los seccionadores y seccionalizadores.