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THEORETICAL STUDY OF THE EXCITON GROUND STATE IN 
SEMICONDUCTOR HETEROSTRUCTURES 
 

Author: Ruthber Antonio Escorcia Caballero* 

 

A simple a general method for calculating the ground-state energy of an exciton in quantum 

confined structures in the presence of magnetic field and for different potential shapes is 

developed.  In this method starting from the variational principle a one-dimensional wave 

equation, for the function that describe the intrinsic properties of the exciton and which 

depends only on the electron-hole separation, is obtained.  The relation of this equation to 

the fractional dimensional approach is analyzed and it is shown that for a isotropic hole 

mass model, the equation describes a hydrogen-like atom in an effective isotropic space 

with non-integer dimension. 

 

We investigate the influence of the magnetic field and the potential shape on the binding 

energies of excitons in quantum wells, quantum-well wires, quantum dots and quantum 

rings.  We also study the effect of the longitudinal-optical phonon field on the exciton 

binding energies of exciton in heterostructures based on ionic semiconductors. 
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ESTUDIO TEORICO DEL ESTADO BASE DEL EXCITON EN 
HETEROSTRUCTURAS SEMICONDUCTORAS 

 
 

Autor: Ruthber Antonio Escorcia Caballero ** 
 
 
Un método general y simple para calcular la energía del estado base de un excitón en 

estructuras de confinamiento cuántico en la presencia de campo magnético y para diferentes 

formas del potencial es desarrollado.  En este método se parte del principio variacional y se 

deriva una ecuación de onda unidimensional para la función que describe las propiedades 

intrínsecas del excitón, la cual depende únicamente de la separación electrón-hueco.  La 

relación de esta ecuación con el método de dimensionalidad fraccionaria es analizada y se 

muestra que para el caso del modelo isotrópico para el hueco en el excitón, esta ecuación 

describe un átomo hidrogenoide en un espacio isotrópico efectivo con dimensión no entera. 

 

La influencia del campo magnético y la forma del potencial de confinamiento sobre la 

energía de enlace del excitón en pozos cuánticos, hilos de pozo cuántico, puntos cuánticos y 

anillos cuánticos es investigada.  También se estudia el efecto del campo fonónico óptico 

longitudinal sobre la energía de enlace del excitón en heterostructuras basadas en 

semiconductores iónicos. 
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INTRODUCTION 

 

Semiconductor heterostructures is one of the most important subjects in modern solid-state 

physics.  In 2000, Alferov and Kroemer shared the Nobel prize in Physics “for developing 

semiconductor heterostructures used in high-speed- and opto-electronics”, with Killby “for 

his part in the invention of the integrated circuit”.  By combining two semiconductor 

materials with different bandgaps, it is possible to manufacture a heterostructure to have a 

desired band offset.  This the basis of what is called bandgap engineering.  Development of 

the physics and technology of semiconductor heterostructures has resulted in remarkable 

achievements, among others, the fabrication of quantum well lasers, and recently quantum 

dot lasers.  Currently, most double heterostructure laser are based on quantum well 

structures, where the motion of carriers is restricted to two directions [1].  However, as the 

physics and applications of these quantum well structures rapidly progressed, scientists 

were drawn to the study of structures with further reduced dimensionality, namely quantum 

wires and dots, which exhibit quantum confinement of charge carrier in respectively two 

and three directions. 

 

The progress in nanoscale technology has made possible the fabrication of low-dimensional 

heterostructures with controlled thickness and relatively sharp interfaces, where the 

excitons remain present even at room temperature because of the quantum confinement 

increases highly the electron-hole attraction [1-4].  Excitons in semiconductor 

nanostructures have a larger binding energy and oscillator strength with respect to their 
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bulk values.  This gives rise to a rich variety of enhanced optical properties which are of 

considerable relevance for potential applications in novel electronic and optoelectronic 

devices [3].  A great deal of attention has been devoted to experimental and theoretical 

studies of excitons in heterostructures based on III-V semiconductor particularly quantum 

wells (QWs), superlattices (SLs), quantum-well wires (QWWs), quantum dots (QDs) and 

more recently quantum rings (QRs) [5-24].  Different phenomena have also been included 

in these calculations such as effective-mass and dielectric constant mismatch between the 

well and the barrier materials [15], valence-band mixing and non-parabolicity of the 

dispersion relations [13], but only few papers concerned with effect of the confining 

potential shape on the exciton energy have been reported.  Up to now it has been 

considered the confinement models with square-well [5, 13], parabolic [10] and charge 

image [11] potentials. 

 

The main difficulty to analyze the spectrum of exciton in quantum confined systems is 

related to the fact that the Hamiltonian cannot be separated into center-of-mass and 

relative-motion terms except in the case of isotropic parabolic confinement as the electron 

and the hole effective masses are equals.  In other cases, approximation methods such as 

the variational [8, 9], matrix diagonalization [10], finite element [14], stochastic variational 

[18] and finite difference [19] have to be used.  In spite of the fact that these techniques 

give consistent results with experimental data, in most of the cases they entails a lot of 

computational work and the accuracy of the variational method depends to a large extent on 

the form of the trial wave function. 
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In the last decade, it has been proposed an alternative mathematical approach that allows us 

to treat anisotropic interactions in a three-dimensional space as isotropic ones in a lower 

fractional-dimensional space, where the dimension is determined by the degree of 

anisotropy.  This approach was first applied by He [25], who using the hydrogen-like 

Hamiltonian in an effective fractional space proposed by Stillinger [26] treated the 

interband optical transitions and bound excitons in strongly anisotropic semiconductors.  

Lefebvre and co-investigators [27] applied this method to analyze the exciton energy states 

and the absorption spectra in QWs and QWWs.  They considered the fractional dimension 

as a phenomenological parameter related to the heterostructure geometry and proposed a 

simple exponential-law dependence of this parameter on the average electron-hole distance 

in the unbound state.  A different method to determine the appropriate fractional 

dimensionality, in GaAs-(Ga, Al)As QWs, QWWs, QDs and superlattices (SLs) by fitting 

the ground state energy of the isotropic hydrogenic-like model in fractional-dimensional 

space to the actual three-dimensional system has been proposed recently by Oliveira and 

co-investigators [28].  In spite of the fact that this approach makes the calculation of the 

exciton binding energy free of tedious computation, it breaks down in the case of strong 

confinement, for example, in QWWs and QDs of very small sizes, or for strong magnetic 

fields. 

 

Recently, we have proposed a simple variational procedure related to the fractional-

dimensional approach in which the wave equation for a donor impurity D0 in quantum well 

heterostructures is reduced to one similar to that for hydrogenic atom in an isotropic 

effective space with fractional dimension [29-30].  It has been established that this 

procedure provides an efficient algorithm for calculating the ground state binding energies 
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with accuracy comparable with those of sophisticated methods such as the series expansion 

and Monte Carlo [30]. 

 

In this thesis we develop an unified method to study the ground state of an exciton in 

different semiconductor heterostructures in the presence of magnetic field, taking into 

account the anisotropy of the hole effective mass and considering different confining 

potential shapes.  In the second chapter the general theory for excitons in semiconductor 

heterostructures is presented.  In the third chapter the method is applied to the study of 

exciton ground state in graded quantum-well heterostructures (QWs, QWWs, QDs) without 

an applied magnetic field.  The fourth chapter is devoted to the study of the effect of the 

longitudinal-optical phonon field on the binding energy of excitons in QWs, QWWs and 

nanotubes based on ionic semiconductors.  In the fifth chapter the method is developed for 

a system that takes into account the anisotropy of hole mass for excitons in QWs, QWWs 

and QRs in the presence of magnetic field.  Finally the conclusions are presented. 
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1.  THEORETICAL BACKGROUND 

 

 

1.1  BAND STRUCTURE OF SEMICONDUCTORS 

 

A crystal is a periodic array of atoms which can be describe through a Bravais lattice with a 

basis [31].  The periodical position of the atoms is due to the nature of the bonding.  In the 

binding process neighboring atoms share only a few outer electrons, while their cores 

remain on the sites that define the periodical lattice.  If we neglect the impurities in the 

crystal (ideal crystal) and we consider the cores fixed at their lattice sites (adiabatic 

approximation), those shared electrons feel a periodic potential generated from the ionic 

cores in the underlying lattice.  Thus, the Hamiltonian of a single outer-shell electron in the 

lattice is 

( )
2

2

2 e

H
m

= − ∇ + rh U ,                                                                                                       (1.1) 

where  is the mass of the electron and em ( )rU  is the periodic potential with periodicity 

equal to the lattice constant.  The Bloch theorem tells us that the solution of the 

Schrödinger equation associated to the Hamiltonian (1.1) can be written in the form 

( ) ( )i
n e u⋅Φ = k r

k r nk r ,                                                                                                         (1.2) 

where  has the same periodicity of the lattice and k  has the dimension of a 

momentum, in units of h , and is known as crystal momentum.  The vector  is related 

( )nu k r

1= k
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to the translational invariance of the system and in particular is the corresponding of the 

vector r  in the reciprocal lattice, i.e. the lattice which is built from the original one in such 

a way that if the lattice constant of the Bravais lattice in the space is , the lattice constant 

of the reciprocal lattice is 

a

aπ . 

 

For each value of k  we obtain a set of eigenvalues ( )nE k  which constitutes the electronic 

spectrum for an electron with a given momentum k .  When we vary n  and , a discrete 

series of continuum intervals of allowed values for the energy of the electron is described.  

These intervals are normally referred to as electronic bands for the crystal and represented 

with  in the first Brillouin zone.  Thus, using only the translational invariance of the 

crystal lattice, one can derive the band structure of the system.  Even though this is a 

simplified picture and many properties of the band structure cannot be explained in this 

simplified way, it serves well the scope of giving an idea of the concept of band structure of 

a crystal.  A more precise and detailed explanation can be found in many review papers and 

books [32].  The calculation of the exact band structure is, still today, a subject of research 

and refinement. 

k

k

 

The electrons in a crystal fill the electronic bands starting from the lowest one and at T 0=  

the highest occupied band is either completely or partially filled.  When the bands are 

completely filled, no current can be transported, i.e. the material is an insulator, when one 

of the band is partially filled, there is the possibility of current transport, i.e. the material is 

a metal.  The difference between the minimum of the first empty band and the maximum of 

the highest filled band is referred to as energy band gap, i.e. gap, and is the minimum 
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quantum of energy required to trigger an interband transition.  When the temperature is non 

zero, the electrons can move from the highest filled band to the first empty band with a 

probability given by (exp g )E T− , where gE  is the energy gap and T  the absolute 

temperature.  Thus if the energy gap is small enough some electrons will jump for a finite 

temperature to the first empty band and the material will become conducting.  In this case 

we will say that the material is a semiconductor.  The energy band gap, gE , of a 

semiconductor is typically of the order of 1 , e.g. eV gE  is equal to 1.42  for GaAs at 

. 

eV

300T K=

 

In III-V binary compounds like GaAs, there are 8 outer electron per unit cell which 

contribute to the chemical bonds.  The other electrons of each kind of atom are “frozen” in 

closed shell configurations and their wave functions are highly bound around the Ga or As 

nuclei.  They do not contribute to the electronic properties.  The 8 outermost electrons 

hybridize to form tetrahedral bonds between one kind of atom (e.g. Ga) and its nearest 

neighbors (As).  The orbitals of every atom (s-like or p-like) hybridize with an orbital of the 

neighboring atom, thus producing two levels: one bonding and one antibonding.  Because 

of the large number of unit cells, bonding and antibonding levels broaden into bands [33].  

The bonding levels are completely filled with electrons, an form the valence bands while 

the empty (antibonding) ones form the conduction bands.  Thus, the completely filled band 

at T  is called the valence band while the first empty band is called the conduction band. 0=

 

In all III-V materials the top of the valence band occurs at the center of the Brillouin zone ( 

the  point).  In the absence of spin-orbit coupling, the three valence bands (which Γ
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originate from the bonding p  orbitals) are degenerate at Γ .  The spin-orbit coupling lifts 

this sixfold degeneracy and gives rise to a quadruplet and a doublet in the following way.  

Since the valence band is built from p-type orbitals, its states carry and internal (band) 

angular momentum  equal to unity.  In a system with circular symmetry (e.g. bulk 

semiconductor, quantum well, circular quantum dot) both the total angular momentum 

length  and its projection along the axis of symmetry  are good quantum numbers of a 

single, non-interacting particle.  Denoting the spin angular momentum σ  and the internal 

(band) angular momentum , we have 

L

J zJ

L = +J σ L .  The single particle states of the valence 

band are then classified in the following way, according to the values of 

( ) ( ), ,z zJ J = +σ L σ z+L : (3 2, 3± )2 , heavy-hole subband, ( )3 2 1 2,± , light-hole 

subband, (1 2, 1 2± ) , split-off subband, where the quadruplet 3= 2J  is in III-V 

compounds always higher in energy than the doublet 1 2J = .  Their energy separation is 

denoted  and called the spin-orbit splitting.  The conduction band is built from s-type 

orbitals and therefore has .  Addition to 

∆

0=L 1 2σ =  only gives 1 2J =  (doublet). 

k

ck (k )E

 

 

1.2  THE EFFECTIVE MASS APPROXIMATION 

 

In general the study of the properties of a crystal requires the study of the collective motion 

of the arrays of atoms, i.e. nuclei and electrons, forming the crystal itself.  However, if one 

is allowed to consider only an electron with momentum  in the vicinity of a critical point 

labeled , its energy  can be written using a Taylor series expansion around k , c
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( ) ( ) ( ) ( )(
23

,
cc i c

i j i j

EE E k k k k
k k =
∂

= + − −
∂ ∂∑ k kk k k )i j cj ,                                                     (1.3) 

where ( )2
ci jE k k =∂ ∂ ∂ k kk  is a tensor that does not depend on .  This tensor can be used 

in order to define a “new” mass of the electron called effective mass of the electron, 

k

em∗ , 

such as 

( ) ( )
2 2

2c
i j e ij

E
k k m= ∗

∂
=

∂ ∂ k k k kk
k

h
c= .                                                                                      (1.4.) 

If we substitute Eq. (1.4) in Eq. (1.3) we obtain 

( ) ( ) ( ) ( )(
23

, 2 cc i ci
i j e ij

E E k k k k
m =∗= + − −∑ k kk k

k
h )j cj ,                                                       (1.5) 

this expression is very similar to the one of a free electron with a renormalized mass.  In 

particular if we choose a particular direction, i.e. , we obtain â

( ) ( )
2

2

2c
ea

E a E k
m∗= +k k h

� a ,                                                                                             (1.6) 

where  is the effective mass of the electron along the direction a .  We can then say that 

the net effect of the crystal potential on the electron inside the crystal is to change the 

electron mass form the value in free space to the effective mass m

eam∗ ˆ

e
∗ .  Thus the effect of the 

periodic potential crystal potential is accounted for by the effective mass itself. 

 

In particular for GaAs, the material of central interest in this thesis, an expansion of the 

conduction band about the minimum energy is approximately parabolic [34], due to the s-

type symmetry of the minimum at the Γ  point.  This define an effective mass which is 

independent from the direction.  For the valence band the situation is more complicated due 
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to its symmetry at the  point.  Indeed following Dresselhaus [35] the band structure at the 

 point can be written as 

Γ

Γ

)

( ) ( ) ( ) 1 24
v x y y zE k E k Bk C k k k k k kΓ

= ± + + + x z 

z

,                                                            (1.7) 

where  is the value of  for which the valence band has a maximum 

 and 

vkΓ

v x

k

( , ,yk k k k kΓ− = B ,  are constants.  Notice that the value of the effective mass 

will, in this case, not only depend on the direction along which it is calculated, but also on 

which of the two degenerate band the particle belongs to.  However, spherical 

approximations for the effective mass are available also for the valence band.  In the 

particular case of the holes, the will be called light-hole (if 

C

+  is chosen in Eq. 1.7), heavy-

hole (if  is chosen in Eq. 1.7), depending on which band originates them.  In particular, as 

the effective mass is inversely proportional to the curvature of the band in the point, the 

band with the smallest curvature generates the heavy-hole. 

−

 

The motion of a conduction band electron in the presence of an external potential V  can 

be described in the effective mass approximation by the Hamiltonian 

( )r

( )
2

2 e

H V
m∗= +
p r ,                                                                                                               (1.8) 

where  is the effective mass, r  is the position vector and em∗ p  is the momentum.  In the 

simplest approach, all hole subbands are treated independently.  Each subband is 

characterized by a pair of effective masses hm∗
⊥  and hm∗

� , defining respectively the 

dynamics in plane and along the axis of symmetry.  The Hamiltonian for a hole in the 

presence of an external potential in the effective mass approximation can thus be written as 
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( )
2 2

2 2h h

p
H

m m
⊥

∗ ∗
⊥

= + +
p r�

�

V ,                                                                                                  (1.9) 

where the masses mh
∗
⊥  and  will be different whether the heavy hole or the light hole is 

considered. 

hm∗
�

 

A more accurate description of holes, however, requires taking into account the interaction 

between the subbands (intersubband mixing).  The so-called ⋅k p  theory meets this 

requirement.  In a bulk crystal, the one-electron Schrödinger equation which has to be 

solved is: 

( ) ( ) ( ) ( )
2 2

2 2
0 0

.
2 4

V V
m m c

 
+ + ×∇ Ψ = Ψ 

 

p r σ p r rh E ,                                                        (1.10) 

where  is the free electron mass, 0m ( )rV  is the effective lattice potential caused by the 

ions and core electrons, and the third term in the spin-orbit coupling (σ  is the electron 

spin) [36].  The Bloch theorem states that the wave function in a crystal can be written as 

the product , where ( ) ( )i
n e u⋅Ψ = k r

k r rnk ( )k rnu  is the atomic lattice periodic part of the 

total wave function,  is the band index and k  lies within the first Brillouin zone.  The 

periodic parts of the Bloch function, 

n

( )nk ru , are then solutions of 

( ) ( )
2 2

2 2
0 0

.
2 4

kV V
m m c


+ + ×∇ +



p r σ ph h 2

02m

(2
0 04m m c

+ ⋅ +
k p σh h ) ( ) ( )n n nV u E u

 ×∇ = 
 

k k kr r .                            (1.11) 

Note the operator ⋅k p  in this expression, which gives the method its name ( k  Method).  

To deal with Eq. (1.10), the equation for 

⋅p

=k 0  has to be solved, giving the eigenfunction 

 25



0nu

k

 and eigenenergies .  An arbitrary lattice periodic function can then be written as a 

series expansion using the eigenfunctions u , 

0nE

0n

2
0

0

m c
E


−

h

m n≠
∑

u


k

k

( ) 0
n

n m
m

u c=∑ k mu ,                                                                                                           (1.12) 

where the summation runs over all bands.  Inserting this in Eq. (1.10) and solving the 

resulting matrix equation will give the exact eigenstates of our wave equation.  However, 

such a calculation becomes increasingly complicated as k  increases.  A possible way to 

handle this is to treat the terms in  as perturbations.  Since the perturbation terms will be 

proportional to , the method works best for small values of .  The second order 

eigenenergies can then be written as 

k

k k

( )
2

0 02 2 2

0 2
0 0 0

4
2

n m

n n
n m

u V
kE E

m m E

 
⋅ + ×∇ 

= + +

k p σ
h h ,                                    (1.13) 

which, for small values of k , is generally written as 

2 2

0 2n n
kE E

m∗= +
h ,                                                                                                            (1.14) 

where  is defined as the effective mass of the band.  This approach works well when the 

energy difference between the considered bands, 

m∗

0nE E 0m−  is large. 

 

However, especially for the complicated valence band, a more exact approach including the 

strong band to band interaction, is required.  This can be done by treating exactly only those 

bands that are strongly coupled and correcting this approximation by treating the influence 

of the energetically more distant bands perturbatively.  This approach is called “Kane’s 

model” [37].  As there are 8 bands treated exactly (the lowest conduction band, and the 
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heavy-hole, light-hole and split-off valence band, all doubly degenerate due to spin), it is 

often also referred to as 8  or 8-band 8× ⋅k  theory.  The inclusion of 8 bands gives a 

Hamiltonian which is an 8  matrix equation.  An alternative approach was developed by 

Luttinger and Kohn [38].  In zinc-blende type semiconductors, it is not unrealistic to 

assume that both the energy gap 

p

8×

gE  and the spin-orbit splitting ∆  are large.  Typical values 

are  and  for GaAs, 1.520gE e= V V0.341∆ = eV 0.420gE e=  and 0.38eV∆ =  for InAs, 

1.424gE eV=  and  for InP.  Therefore it will be enough to treat exactly only 

the heavy- and light-hole valences bands and to consider both the conduction and split-off 

bands as distant, thus including them in the perturbation.  The Hamiltonian equation will 

then be reduced to a  matrix equation. 

0.110eV

4

∆ =

4×

 

 

1.3  EXCITONS 

 

It is known that in a ideal case and at low temperature all the electrons in the crystal sit in 

the “valence band”.  The question is what will happen if we excite one of those valence 

electrons?.  The electron will jump to the conduction band, if the energy of the excitation is 

larger or equal to the energy band gap.  It is, however, wrong to think that if the energy of 

the excitation is smaller than the energy gap there will be no transition at all.  For example, 

the absorption spectra observed for a bulk GaAs sample near the band gap at different 

temperatures show that the absorption coefficient does not increase continuously for 

energies larger than the gap energy gap, as it would be expected if the electron could only 
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be promoted to the conduction band, but presents a peak below the energy band gap which 

suggests the presence of discrete states in the gap. 

 

It must be noticed that the conduction band is not built considering the allowed energy 

values for the excited states of a  electrons system, but it is built considering the allowed 

energy values for the  electron in a system with 

N

1N + 1N +  electrons.  From the correct 

treatment of the  particles problem a new state in the gap arises, i.e. the excitonic state.  

This can be described as the bound state of an electron in the conduction band interacting 

with a positive charge in the valence band, i.e. a hole, and it can be shown that this states 

lies in the gap.  In fact, the conduction electron is attracted, through the Coulomb 

interaction, to the positively charged hole left behind in the valence band.  As a result, the 

electron and hole form the bound state called an exciton.  Because of the attractive 

Coulomb energy, the energy of the exciton will be lower compared to the energies of a free 

electron and hole.  The difference is called the exciton binding energy.  The exciton levels 

are therefore found in the band gap region of the semiconductor.  When the electron falls 

back into the valence band, i.e. electron and hole recombine, a photon is emitted.  This 

process, known as luminescence, is the reverse process to absorption.  The experimental 

technique measuring the energy of this emitted photon is called photoluminescence 

spectroscopy. 

N

 

In most semiconductors, the Coulomb interaction is strongly screened by the valence band 

via the large dielectric constant.  As a result, electrons and holes are only weakly bound.  

Such excitons are known as Wannier-Mott excitons or simply as Wannier excitons.  Its 

properties can be calculated with the effective mass approximation.  Within this 
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approximation, the electron and the hole are considered as two particles moving with 

effective masses of the conduction and valence bands respectively.  Donors and acceptors 

can be regarded as “excitons” in which one of the particles has an infinite mass.  Since the 

difference in effective mass between the electron and the hole in a semiconductor is not as 

large as that between the electron and the proton, excitons are more analogous to 

positronium, an electron-positron par.  As a result of the Coulomb interaction between the 

electron and hole, the potential acting on an electron (or a hole) in a crystal is not 

translationally invariant.  As any two-particle system, the exciton motion can be 

decomposed into two parts: a center-of-mass (CM) motion and a relative motion of the two 

particles about the CM.  With this decomposition , the potential acting on the exciton CM 

still has translational invariance since the Coulomb interaction depends only on the relative 

coordinate of the electron and hole.  Within the effective mass approximation, the exciton 

CM behaves like a free particle with mass e hM m m∗ ∗= +

1,2,3

.  The relative motion of the 

electron and the hole in the exciton is similar to that of the electron and the proton inside 

the hydrogen atom.  There are bound states and continuum states.  The bound states are 

quantized with principal quantum number n = , etc., and orbital angular momentum 

, etc.  In the continuum states, excitons can be considered to be ionized into free 

electrons and free holes but their wavefunctions are still modified by their Coulomb 

interaction. 

0, , 2l = h h
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1.4  SEMICONDUCTOR HETEROSTRUCTURES 

The ions in a perfect three-dimensional (3D) bulk crystal are arranged in a regular periodic 

array and thus the electronic structure can be considered as an electron in the presence of a 

potential with the periodicity of the underlying Bravais lattice.  This leads to a description 

of the electron energy levels as a set of continuous functions having the periodicity of the 

reciprocal lattice [31].  For semiconductors, this results in the existence of an energy 

bandgap, gE , between the  valence and the conduction bands.  Much experimental and 

theoretical work [31-33] has been done to obtain detailed band structures of various 

semiconductor elements and their compounds.  It can be shown [39, 40] that the number of 

available electron states per volume, i.e. the density of states ( )n E , is zero for the lowest-

energy state in a 3D crystal and that ( )n E  increases as the square root of the energy, as 

shown in Fig. 1.1 (a). 

 
Figure 1.1  Density of states for ideal crystal structures having different dimensions: (a) three-dimensional or 

bulk, (b) two-dimensional or quantum well, (c) one-dimensional or quantum wire and (d) zero-dimensional or 

quantum dot. 
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When the dimensionality is reduced to a two-dimensional (2D) crystal, the electronic 

structure of the free charges is highly influenced.  For example, ( )n E  is changed from a 

continuous to step-like function, as presented in Fig. 1.1 (b).  Such a 2D crystal can be 

realized using modern epitaxial techniques by growing, for example, a thin GaAs film 

between two films of the larger bandgap semiconductor Ga1-xAlxAs.  The finite conduction 

and valence-band offsets of the two semiconductors produce potential barriers for the 

electrons in the conduction band and holes in the valence band, and when GaAs thickness is 

of the order of the electron de Broglie wavelength, the motion of the charges is restricted to 

a 2D plane which is therefore called a quantum well (QW).  The particles can move as free 

waves in the plane of the well while in the other direction, perpendicular to the QW, their 

motion is restricted by the potential barriers.  For typical semiconductors, the well with is 

of the order of nanometers.  These systems are of crucial importance for practical devices.  

For example, in lasers manufactured from bulk materials, the excitation process excites 

many electrons to a higher energy level but only few of them have the exact energy to take 

part in the stimulated emission process.  For 2D systems, the nature of  allows a non-

zero number of electrons to occupy the lowest-energy state so that more electrons can 

participate in stimulated emission.  This results in a reduced laser current density and 

higher lasing-efficiency [41]. 

( )n E

 

A further reduction of the dimensionality to one-dimensional structure (1D) leads to a 

quantum wire (QWR).  This can be realized, for example, by growing a second QW 

perpendicular to a cleaved QW so that the intersection of both QWs results in a 1D 
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structure.  Other techniques as electron beam lithography in combination with etching [42] 

or self-organization [43] can be used to manufactured QWRs.  The density of states of a 1D 

structure consists of sharp peaks with a tail on the high-energy side as presented in Fig. 1.1 

(c).  Theoretically, the lasing threshold current density is expected to be much lower in the 

1D case but practical problems in growing large numbers of high-quality QWRs hampers 

their realization [44]. 

 

The ultimate charge confinement, leading to charge localization in all three dimensions 

occurs in a zero-dimensional (0D) structure or quantum dot (QD).  The 3D band structure 

completely disappears and a discrete δ-function like energy levels arise with an energy 

difference depending on the size of the QD (see Fig. 1.1 (d))  QD structures are therefore 

often called “artificial atoms” [45].  All the electrons in the ground state have the same 

energy which results in a threshold current density of QD laser about 100 times lower than 

for QW lasers [1].  Research on QDs using a variety of manufacturing techniques is widely 

extended and reveals new insights into the physics of charge confinement.  A variety of 

quantum dot structures exists, but most promising for device applications are the so-called 

self-assembled quantum dots, as their growth process is easily realizable, rather fast and not 

too expensive: they form spontaneously during the growth of strained heterostructures, i.e. 

they literally “self-assemble”.  QDs can also be used to make devices with a totally new 

functionality, such as quantum dot based memory devices, where the information is stored 

as a single or few electrons.  It is predicted that these memory devices could potentially 

achieve ultra-dense storage capacities.  Thanks to the self-organization process for QDs is 

has also been possible the fabrication of novel confined structures called quantum rings 

(QRs), which possess unique features, for instance, the observation of the Aharonov-Bohm 
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effect [22].  The same procedure is used as the formation of QDs, the only step necessary to 

induce the transformation form dots to rings, is introducing a short growth interruption 

during the process allowing the material extra time to rearrange itself. 

 

 

1.5  APPLICATIONS OF COMPOUND SEMICONDUCTORS 

 

The majority of important semiconducting materials are isoelectronic with elemental 

silicon.  In silicon each atom provides 4 valence electrons one to each of 4 neighbors, 

which leads to a filled valence band.  Other important materials are III-V materials, e.g., 

GaAs, InP or II-VI materials as CdS or ZnSe.  These compound semiconductors are formed 

by combining elements displaced on either side of silicon by one place (III-V) or two 

places (II-VI) in the periodic table.  One important feature of compound semiconductors is 

that many of these materials have band gaps which are in useful regions of the 

electromagnetic spectrum.  In particular we can identify the visible region for use in energy 

conversion (solar cells) and display technologies and the infrared region for thermal 

imaging technologies [46]. 

 

The applications of III-V materials represent a fairly well developed area of technology.  

The majority of the applications of such semiconductors are in the area of opto-electronics 

and there are many commercial processes for the manufacture of light emitting diodes 

(LEDs) or solid state lasers.  Gallium arsenide solar cells are commonly used in the solar 

panels used to power satellites.  There is a current interest in developing LED and laser 

technologies for the blue end of the electromagnetic spectrum as all of the present mayor 
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technologies produce red lasers; gallium nitride is a promising material in this context.  The 

majority of III-V semiconductors are direct band gap materials which makes them 

especially effective in opto-electronic applications.  However, because electrons can be 

accelerated to a higher velocity in GaAs than in Si, there is also the potential to produce 

faster electronic devices in GaAs than those fabricated in silicon.  Some effort has been 

expended towards developing GaAs technologies but the dominance of silicon in the 

mainstream electronic industry probably means that silicon technology will dominate 

conventional electronic devices for the foreseeable future.  However, II-V technology is a 

mature and important area of the electronics industry as can be judged from the following 

examples.  The methods of fabrication of III-V devices range from liquid phase epitaxy to 

vapor phase techniques such as MOCVD,  It is probably a useful simplification to suggest 

that cheap mass produced products such as LEDs are currently manufactured by LPE 

whereas high value added devices such as solid state laser for major fiber optical links are 

produced by more expensive methods such as MOCVD which allow for greater control of 

morphology, doping and structure. 

 

The II-VI compounds are generally direct band gap semiconductors like the III-V 

compounds that form the basis of mot opto-electronic devices at present, but the band gap 

energies of II-VI materials are larger than those of II-V materials.  These characteristics 

mean that II-VI semiconductors are potentially important materials for the emission, 

detection, and modulation of light in the visible and near-UV region [46].  In contrast the 

III-V compounds are suitable for the visible (largely red) to near-IR radiation.  Due to 

inherent disadvantages in II VI compounds, its application has generally been limited to 

simple applications as in optical coatings, gratings or photoconductors.  However, hetero-
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epitaxial technologies have now started to be developed and recent advances in MOCVD 

may open up new device applications.  ZnS and ZnSe are the most promising materials for 

blue/blue-green laser diode devices which could lead to a high density optical storage 

systems, as well as fast switching devices.  Of all the growth techniques employed for thin 

layers of II-VI materials only MBE has, as yet, led to successful doping. In 1991, both p- 

and n-type doping became controllable in a MBE system and a blue emitting laser diode 

with a single quantum well (SQW) structured based on the ZnSe p-n junction was 

fabricated.  More recently and advanced multi-quantum well structure leading to CW 

emission even at room temperature has been reported [46]. 
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2.  THE FRACTIONAL DIMENSIONAL APPROACH FOR EXCITONS IN 

HETEROSTRUCTURES 

 

2.1  THEORETICAL MODEL 

 

In this part of the thesis we consider a single exciton in semiconductor heterostructures 

within the effective mass approximation by using an spherical hole mass approximation and 

constant physical parameters throughout the heterostructures [8].  In this case the 

characteristic energy of an exciton can consequently be defined through the effective 

Rydberg 2
02yR e aε∗ = ∗ , and its characteristic length through the effective Bohr radius, 

2
oa e2ε µ∗ = h , with ( )e h e hm m m mµ ∗ ∗ ∗ ∗= +  being the reduced exciton effective mass.  Thus 

the dimensionless Hamiltonian for the electron-hole pair confined in a heterostructure in the 

presence of an external field may be written as: 

( ) ( ) ( ) ( ) ( ), , , 2 0,1e h e e h h ext e h ehH H H V rτ = + + − =r r r r r r τ τ ,                                              (2.1) 

( ) ( )2 ;e e e e e h h h hH V H Vη η= − ∇ + = − ∇ +r 2
hr

)

,                                                              (2.2.) 

where  and  describe the free motion of electron and hole confined in the 

heterostructure respectively, V  is a perturbation due to the presence of the external 

field, 

eH hH

( heext ,rr

2 reh−  is the energy of the electron-hole interaction ,  and  are electron and hole 

position vectors, and 

er hr

ehr e h= −r r  is the electron-hole separation.  The parameter τ  in 

Eq.(2.1) is equal to 1 for exciton and to 0 for uncorrelated electron-hole pair, and the 
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parameters e emη µ ∗=  and h mη µ h
∗=  in Eq.(2.2) are characteristics of the corresponding 

dimensionless effective masses of the hole in units of the reduced exciton effective mass µ  

respectively. 

(0 0 ,e hE f r r

1τ =

( )heex ,rrΨ

) (

 

For an uncoupled electron-hole pair ( 0=τ ), the Hamiltonian (2.1) is separable and the 

solution of the Schrödinger equation for the ground state of this system can be easily found 

by solving the eigenvalue problem 

( ) ( )0, , 0 ,e h e hH fτ = =r r r r .                                                                            (2.3) )

On the contrary for exciton ( ), the Schrödinger equation 

( ) ( )hehe E,,,H rrrr =Ψ= 1τ ,                                                                              (2.4) 

can only be solved by using some approximation methods.  Assuming that the center of 

mass motion is affected by the electron-hole interaction to a considerably smaller degree 

than the relative motion, we choose the ground state exciton trial function in the form:  

( ) ( ) ( ) ( ) (2 2
0, , ;e h e h eh eh e h e h e h

2f r r x x y y z zΨ = Φ = − + − + −r r r r ,                          (2.5) )

where  is the product of the one-particle electron and hole ground state wave 

functions, whereas Φ  is a variational function that describes the intrinsic properties of 

the exciton and depends only on the electron-hole separation.  The ground state energy of 

the exciton is found by minimizing the following functional 

(0 ,e hf r r )

)( ehr

[ ] [ ]0e h exF d d f H EΦ = Φ − Φ∫ r r 0f .                                                                                   (2.6) 

As explained in Ref. [30] after some algebraic manipulations we can obtain the following 

variational problem: 
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[ ] ( ) ( ) ( )
2

2
0 0

0

2 minex

d r
F J r E E r dr

dr r

∞   Φ    Φ = + − − Φ →    
      

∫ ,                                  (2.7) 

with  being the ground state energy of the uncoupled electron-hole pair, r0 eE E E= + h ehr=  

and 

( ) ( ) (2
0 0 ,e e h e hJ r d f r dδ= −∫ ∫r r r r r ) h− r .                                                                       (2.8) 

The minimization of the functional (2.7) with respect to Φ  and its first derivative yields the 

Euler-Lagrange equation 

( ) ( ) ( ) ( ) [ ] ( )0
0

1 2
ex

d rd J r r E E r
J r dr dr r

Φ
− − Φ = 0− Φ

ex

.                                                      (2.9) 

The binding energy of the exciton, 0bE E E= −

D

, is then obtained by solving numerically 

Eq. (2.9).  Notice that this wave equation is similar to one of a hydrogenic atom in an 

effective isotropic space with the radial part of the Jacobian given by  [30].  The 

properties of this space are generally related to dependence of the Jacobian on , which 

according to relation (2.8) is defined to a large extent by the geometry of the 

heterostructure.  If, for example, for any heterostructure this dependence were the power-

law, , then the scaling parameter  could be considered as the dimension of 

the effective space and Eq. (2.9) would coincide with the eigenvalue problem for a 

hydrogen-like atom in D-dimensional space, with  being integer or fractional [28]. 

( )rJ 0

r

( ) 1
0

DJ r Cr −=

D

 

It is worth nothing that  and ( )rJ 0 ( )rΦ  are directly related to the spatial pair correlation 

function (SPCF), which is defined as the probability density of finding the electron and 

hole separated by the distance r  
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( ) ( )rr he −−=Ρ rrδ .                                                                                                    (2.10) 

In fact, for an uncoupled electron-hole pair the SPCF, ( )rΡ , coincides with the radial part 

of the Jacobian  and it is given by ( )rJ 0

( ) ( ) ( ) ( )rJdr,fdr hhehee 0
2

00 =−−=Ρ ∫∫ rrrrrr δ ,                                                         (2.11) 

whereas for exciton: 

( ) ( ) ( ) ( ) ( ) ( ) ( )rrrJdr,fdr hhehehee
22

0
22

0 χδ =Φ=−−−Φ=Ρ ∫∫ rrrrrrrr .                 (2.12) 

In this way the functions  and ( )rJ 0 ( )2 rχ  give the probability density of finding electron 

and hole separated by distance  in the uncoupled (free exciton) and coupled (exciton) 

state, respectively, whereas the function 

r

( )2 rΦ  gives the inverse ratio of those 

probabilities, i.e., ( ) ( ) ( )rr2Φ rΡ= 0Ρ . 

 

 

2.2  EXCITON IN FRACTIONAL DIMENSIONAL SPACE 

 

In order to give an useful insight into our method, we find out the relation between the 

fractional dimension of the effective space describing the relative electron-hole pair motion 

and the actual three-dimensional heterostructure by using the orthogonality condition of the 

solutions , corresponding to the different exciton S-states of the self-consistent 

differential equation (2.9) 

( )n rΦ

( ) ( ) ( ) ( ) ( )0
0

n m n mr r J r dr r r dV ,n mδ
∞

Φ Φ = Φ Φ =∫ ∫ .                                                       (2.13) 
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It can be seen that the radial part of the Jacobian volume element, , is related to the 

infinitesimal volume element in the effective vector space of the exciton relative 

coordinates by , therefore, it can be considered as the measure of a frontier-

surface area of a spherical shell of radii 

( )rJ 0

( )drrJdV 0=

r  and drr + .  On the other hand, according to 

relation (2.11), ( )rJ 0

J

 could be easily calculated if the D-dimensional space were 

homogeneous and isotropic.  In this case, all electron-hole separations are equally probable 

to occur, and consequently  is given by the area of a sphere of radius ( )r0 r  in a D-

dimensional space, i.e., ( ) ( ) ( )D Dr r D= 2 12 /− Γ0 0= Ρ 2J r π .  As a result, the dependence 

of the SPCF and the Jacobian on r is a power-law.  However, the real space within the 

heterostructure is neither isotropic nor homogeneous and therefore the dependence of the 

Jacobian on r is not generally a power-law.  Nevertheless, it can be approximated by means 

of piecewise power-law functions ( )0s
1sD

sC rJ r −≈

1

 within different intervals of the 

electron-hole separations ( s srr r +< < ), considering the scaling parameter sD  as a running 

dimension. 

 

We can also define a running dimension for the effective space by using the Mandelbrot’s 

concept of fractals [47].  As the behavior of ( )rJ 0  is not parabolic (three-dimensional 

case), one can associate to the actual three-dimensional semiconductor system a self-similar 

fractal object whose fractional dimension D  fulfills the relation ( ) 1
0

−= DCrrJ  [30].  Since 

due to the confinement of the heterostructure the function ( )r0J  has no a power-law 

dependence on r  at all, we assume that the parameters C  and  in the above scaling D
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equation also depend on , and consequently r ( )rJ 0  will be related to the running 

dimension  as follow ( )D r∗

( ) ( )D rC r r
∗

( )D r∗

lnd J
r

( )rJ 0 )

( ) 1
0J r −= .                                                                                                       (2.14) 

Here we consider that the functions ( )C r  and  vary more slowly than any power 

function.  In this way the running dimension is defined as follow 

( ) ( )01
r

D r
dr

∗ = + .                                                                                                 (2.15) 

 

In order to illustrate the concept of non-fixed fractional dimension, we calculate the 

functions  and  for an exciton in QW, cylindrical QWW and in spherical QD 

for the square-well potential in the absence of external field.  In this case Eq. (2.3) is 

separable and one can calculate 

(D r∗

( )rJ 0  directly by using the relation (2.11) and the well-

known analytical expressions for the ground state wave functions of the electron and the 

hole in the respective heterostructure [30]. 
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Figure 2.1 The radial part of the Jacobian (a) and running dimension (b) dependences on the electron-hole 

separation in QW, cylindrical QWW and spherical QD. 

 

Figure 2.1 (a) shows the typical behavior of the radial part of the Jacobian for the three 

heterostructures.  For small values of the electron-hole separations, as the electron-hole 

distance is essentially smaller than the size of the heterostructure, the tree curves behave as 

parabolic ( ) similar to the three-dimensional case.  As the electron-hole distance 

increases and becomes greater than the heterostructure size, the curves transform into a 

linear function ( ) for a QW, a constant ( ) for QWW and into a decreasing 

exponential function ( ) for QD, corresponding to the two-one and zero-dimensional 

cases.  The corresponding dependencies of the running dimension on the relative coordinate 

of the exciton are shown in Fig. 2.1 (b).  As expected, the dimension falls from 3 for small 

electron-hole distances to 2 in QW, to 1 in QWW and to 0 in QD, as the electron-hole 

separation becomes larger than the size of the corresponding heterostructure.  Such a 

2
0 ~ rJ

J 0 r~

J

0
0 ~ rJ

0~0
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dependence is typical of quasi-two, -one and –zero-dimensional heterostructures, 

respectively. 

 

Additionally, we can define the fractional dimension as the average of the running 

dimension given by Eq. (2.15).  Assuming that the probability density of finding the 

electron and hole separated by the distance r  is given by the radial part of a hydrogen-like 

atom wave function of the ns-state in D-dimensional space, ( ),nR r D , we define the 

fractional dimension as: 

( ) ( )( ) ( ) ( )( ) ( )* 2 * 2 *
0

0 0

, ,n nD D r R r D r J r dr R r D r J r dr
∞ ∞

= ∫ ∫ 0 ,                                       (2.16) 

where 

( ) ( ) ( ) ( )
1, exp 1 , 1, 2 ;

3 2nR r D r M n D r
n D

κ κ κ= − − − =
+ −

,                                  (2.17) 

with ( , , )M a b z  being the confluent hypergeometric function [26].  Once D  is calculated, 

the exciton binding energy  and the corresponding wave function  can be 

obtained in a straightforward way through [30]: 

bE ( ,n e hΨ r r )

( )( )
( ) ( ) (02

4 ; , , ,
3 2

b n e h e hE f
n D

= Ψ =
+ −

r r r r )nR r D .                                             (2.18) 

Thus, there are two different approaches to solve the problem of the exciton S-states in 

heterostructures.  First solving the one-dimensional wave equation (2.9) by using any 

known numerical procedure, in particular, the trigonometric sweep method [48]), and 

second by using Eq. (2.18) previous calculation of the fractional dimension (2.16).  The 

latter is more simple but breaks down when the confinement is too strong [28]. 

 43



2.3  THE COFINEMENT POTENTIAL 

 

Potentials that confine electrons and holes in QWs, QWWs and QDs, can possess various 

shapes depending on their origin and the structure of the semiconductor system [16].  The 

knowledge of the realistic profile of the confinement potential is important in theoretical 

studies.  The potential can be either obtained from the first-principles calculations or simply 

assumed in some parametrized form, which allow us to model its shape.  When using the 

first method, it also appears to be helpful to find some parametrized analytic form of the 

confinement potential, which is useful in further applications, e.g. in the Hartree-Fock 

method [49].  The confinement potential is usually modeled by the two simple forms: either 

the square-well (rectangular) or the parabolic (harmonic oscillator) potential with finite and 

infinite depth, respectively.  Nevertheless, as it results from the numerical solution of the 

Poisson equation, a realistic potential within quantum-well heterostructures is nearly 

parabolic at the center of the well and becomes non-parabolic at the structure boundary.  

Furthermore, the confining potential should possess a finite depth and range, which results 

from the finite band offset and the finite size of the heterostructure, and a variable softness, 

which allow us to take into account a compositional modulation (alloying) and strain 

effects in the semiconductor structure.  For the purpose of this study, we propose the 

following confinement potential which fulfills the above-mentioned conditions: 

( ) ( ) ( )0 0 0 0V q V q, q ,W V q,q ,W= Θ − − + Θ .                                                                       (2.19) 

Here  is a generalized coordinate and q ( )0, ,q q WΘ  is a soft-step function that has 

continuous first and second derivatives in all space and it is defined as follows: 
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( ) ( )
0222

0 0 0

0

0

1

1

q q W
q,q ,W q q W q W q q

q q



0

< −
 Θ = − − − ≤   ≥

<

)

.                                                 (2.20) 

It can be seen that  increases smoothly from 0 at the point q q  up to 1 at 

the point , and it turns into the Heaviside function as W .  The parameter W  can 

be associated with a variable softness at the structure boundary, and by varying its value 

different shapes of the confinement potentials can be obtained.  For instance, for a QW the 

potential is defined as 

( 0, ,q q WΘ 0 W= −

0q q= 0→

( ) ( ) (0 02V z V z, L ,W V z,L ,W= Θ − − + Θ )2 .                                                                 (2.21) 
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Figure 2.2  Confinement potentials for a QW of width 200 Å modeled by using equation (2.21). 

 

Different potential profiles are shown in Fig. 1 for a QW of width 200 Å.  Here W 

determines the thickness of a layer at the structure boundary in which the potential falls off 
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from V  outside to V  inside the well.  This function describes for W  the almost 

rectangular potential and for 

0V= 0= 0=

2L=W  the almost parabolic potential with a finite barrier.  It 

is also possible to obtain different soft-edge barrier potentials as 0 2W L< < . 

 

In order to model a cylindrical nanotube of internal and external radii iR  (core radius) and 

eR  (wire radius), and corresponding height barriers V  and V , the potential is defined as i e

( ) ( ) ( ), , , ,i i e eV r V r R W V r R W= Θ − − + Θ ,                                                                       (2.22) 

with  being the in-plane radial coordinate.  The models of square-well, parabolic and 

core-repulsive potential (nanotube-like wire) are displayed in Fig. 2.3. 
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Figure 2.3  Different models of the confinement potential in a quantum wire of radius 400 Å. 

 

The parameter W determines the thickness of the layers in which the potential falls off from 

 inside the core to 0 inside the wire, and from V  outside the wire to 0 inside the wire.  In iV e
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particular, if V  the confining potentials for a cylindrical QWW are obtained, from the 

rectangular to the parabolic when W  goes from 0 to 

0i =

eR . 

( , ,r R W

 

In the case of an spherical quantum dot the potential can be modeled by 

,                                                                                                      (2.23) ( ) )0V r V= Θ

with  being the radial coordinate, r R  the dot radius and W the parameter that determines 

the thickness of a transition region in which the potential falls off from V  outside the 

dot to V  inside the dot. 

0V=

0=
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3.  APPLICTATIONS FOR A MODEL WITHOUT MAGNETIC FIELD 

 

Turning into applications of the method, first we consider an exciton in different 

heterostructures of GaAs-(Ga, Al)As without the presence of magnetic field.  In our 

calculations we use the material parameters pertaining to GaAs 5312.=ε ,  

with  being the bare electron mass.  For the light-hole masses are  and 

, while for the heavy-hole are  and .  The isotropic 

hole mass is calculated as 

00.067em m∗ =

00.08m m=

m

0m

0.21m

z
∗

0
∗
⊥ = m 00.45zm m∗ = 00.10m =∗

⊥

( ) ( )1 1 1 3+
12 3hm m m− − −∗ ∗ ∗

⊥= z  [8, 17], in this case the reduced 

mass is 00.0447mµ =  and 00.0449mµ =  for the heavy- and light-hole exciton respectively.  

Since both reduced masses are very close to each other only results for one kind of exciton 

are presented.  To determine the energy band-gap discontinuity in QW and in QWW we use 

the empirical formulae ( )20.37x+1.155gE x∆ = eV  and ( )20.22x+

gE

1.360gE x eV∆ =  

respectively, with 60% of ∆  contribution to the conduction-band and 40% of gE ∆  

contribution to the valence band discontinuity [8].  For QD we use the formula 

 with 65% of ( 0.438E x + )x eV21.087g∆ = gE∆  contribution to the conduction-band and 

35% of ∆  contribution to the valence-band discontinuity [13]. gE
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3.1  EXCITON IN SYMMETRICAL STEP QUANTUM WELLS 

 

We consider an exciton in a GaAs-(Ga, Al)As QW without the presence of magnetic field.  

In this type of heterostructures the particles undergoes confinement only along of the 

growth direction, and the confining potential can be described by using Eq. (2.21).  

Excluding from consideration the free motion of the exciton center-of-mass in the x-y 

plane, the Hamiltonian (2.1) of the system can be written in cylindrical coordinates as 

(0 2e h ehH H H H rρ τ τ= + + − = )0,1 ;                                                                                 (3.1) 

2 2

2 2

1( ); ( );e e e e h h h h h
e h

H V z H V z H
z z ρη η η ρ

ρ ρ ρ
∂ ∂

= − + = − + = −∂ ∂  

∂ ∂
∂ ∂

,                          (3.2) 

where 22 )yy()xx( hehe −+−=ρ , 22 )zz(r heeh −+= ρ  are the in-plane and spatial 

distances between electron and hole respectively, while ( )e eV z  and V z  are the 

confinement potentials of the heterostructure given by the relation (2.21). 

( )h h

 

The solution of the eigenvalue problem (2.3) for the Hamiltonian (3) is easily obtained as: 

( ) ( ) ( )0 , ;e h e e h h e h0f f z f z E E E=r r = + ,                                                                        (3.3) 

where ( )e ef z and ( )h hf z  are solutions of the one-dimensional equations 

( ) ( ) (
2

2 ( )e e
e e e e e e

e

f z
V z f z E f z

z
η

∂
− + =

∂
)e e ;                                                                          (3.4) 

( ) ( ) (
2

2 ( )h h
h h h h h h

h

f z
V z f z E f z

z
η

∂
− + =

∂
)h h ,                                                                         (3.5) 

with  and  being the lowest energies of the electron and hole in the QW respectively.  

Once the one-dimensional wave equations (3.4) and (3.5) are solved, the function 

eE hE

( )rJ 0  
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can be calculated through the two-dimensional integrals which arise from the general 

expression (2.11) after integrating over the Euler angles: 

( ) ( ) ( )2 2
0 2

r

e e e h e
r

J r r f z dz f z z dzπ
∞

−∞ −

= ∫ ∫ + .                                                                         (3.6) 

The ground state binding energy is obtained from Eq. (2.9) by using the trigonometric 

sweep method [48], and the running dimension calculated by using the relation (2.15). 
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Figure 3.1  Running dimension as a function of the electron-hole separation for an exciton in a 

GaAs/Ga0.7Al0.3As QW and for different well width. 

 

Figure 3.1 shows the running dimension D∗  as a function of the electron-hole separation r  

for the exciton ground state in a square-well GaAs/Ga0.7Al0.3As QW and for different well 

width.  The inset in the same plot displays the typical behavior of the radial part of the 

Jacobian  for a quantum well of width 1.0( )rJ 0 0a∗ .  As explained in section 2.2, when the 

electron-hole distance is smaller than the well width  (three-dimensional case) and 2
0 ~ rJ
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when it is larger  (two-dimensional case).  It can also be seen from Fig. 3.1 that the 

running dimension  falls from 3 for small electron-hole separations to 2 as this 

distance is comparable to the well width.  Such a dependence is characteristic of a two-

dimensional space as we would expect for a quasi-two dimensional quantum well.  Notice 

that, as the well size is greater than a critical width 

rJ ~0

D∗ ( )r

( )00.2a∗  the slope of the curves becomes  

less pronounced because of the leakage of the wave function into the barriers (dotted line).  

Furthermore, in the limits  and  the corresponding slope becomes almost 

horizontal and the dimension tends to three for any value of the electron-hole separation. 

L →∞ 0L →

) 0.3

 

In order to check the accuracy of the method, we calculate the exciton ground state binding 

energy as a function of the well width, for the square-well and soft-edge barrier potentials, 

the corresponding results are showed in Fig. 3.2.  Our results (lower curve) for the 

rectangular potential are compared with those from Ref. [28] (solid circles).  There is an 

insignificant discrepancy between both sets of results which can be ascribed to the fact that 

we assume for simplicity an isotropic model of the hole mass, whereas in Ref. [28] 

calculation for light- and heavy-hole exciton was performed.  The inset in the same figure 

shows the profile of the potential for three different thickness of the transition region at the 

heterostructure boundary corresponding to the almost rectangular ( )0.01W L = , soft- 

( 0.1W L =  and very soft-edge (  barrier potentials. W L = )
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Figure 3.2  Ground state binding energy of an exciton in a GaAs/Ga0.7Al0.3As QW as a function of the well 

width for different soft-edge barrier potentials.  Solid circles correspond to theoretical calculations from Ref. 

[28]. 

 

The binding energy curves crossover in the region 0 1.5L a∗< <0.5  is evident.  It is 

apparent that for intermediate and large well widths 0 1.5L a∗ >  the confinement is not too 

strong, and for the rectangular potential the exciton energy level is deeper than the level for 

the smooth- and the very smooth-edge barrier potentials respectively.  As a result, in that 

interval the potential corresponding to 0.3W L =  gives the largest binding energy followed 

by the soft-edge barrier ( 0.1W L = ) , whereas the almost rectangular ( )0.01W L =  gives 

the smallest exciton binding energy.  The opposite occurs in the region 0 0.5L a∗ <  where 

the rectangular potential gives the largest binding energy.  In this case, as the well width 

decreases the exciton level is pushed out faster than the level for the soft and very soft 
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edge-barrier potentials respectively.  Consequently for the rectangular potential, the wave 

function starts leaking steadily into the barriers first than the exciton wave functions 

corresponding to the other two potentials. 

 

We also calculated the ground state binding energy of an exciton in a 

Ga0.55Al0.45As/Ga0.8Al0.2As/GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As double-step quantum well 

consisting of a small rectangular well of length  inside of a large one of length  [48].  

The corresponding results are displayed in Fig. 3.3.  From the plot one can see the existence 

of a peak and a shoulder in the curves of the binding energy for the double-step QW with 

 and .  In these cases, as the well width decreases, the wave function  
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Figure 3.3  Exciton ground state binding energies as a function of the well width in a 

GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As double-step QW and for several values of the internal well width 1L . 
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first leaks into the interior barrier region giving rise to a this kind of shoulder which is not 

too pronounced because the exciton is still confined.  With further decreasing of the well 

width, the exciton level is pushed up and the exciton binding energy increases up to a 

maximum value (peak) corresponding to a critical width for which the wave function starts 

leaking into the exterior barriers region until the 3D character of the wave function is 

restored.  When the inner well is sufficiently wide, the exciton does not feel the presence of 

it and for that reason the shoulder in the binding energy curve vanishes (dotted line), that is, 

the system behaves as a single quantum well. 

 

 

3.2  EXCITON IN CYLINDRICAL QUANTUM-WELL WIRES 

 

We consider an exciton in a cylindrical GaAs-(Ga, Al)As QWW without the presence of 

magnetic field.  We assume that the wire is sufficiently long so that the exciton motion 

along the wire axis is translationally symmetric and therefore the confinement potential 

depends only on the in-plane radial coordinate.  The Hamiltonian (2.1) of this system can 

be written in cylindrical coordinates as 

(0 2 , 0,e h ehH H H rτ τ= + − = )1                                                                                        (4.1) 

1 1( ); (e e e e e h h h h
e e e h h h

H V H )hVη ρ ρ η ρ
ρ ρ ρ ρ ρ ρ

∂ ∂ ∂ ∂
= − + = − +

∂ ∂ ∂ ∂
ρ

)

,                           (4.2) 

with ( eeV ρ  and ( )hhV ρ  being the confinement potentials for the electron and hole in the 

QWW given by the relation (2.22). 
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The solution of the eigenvalue problem (2.3) corresponding to the Hamiltonian (4) can 

easily be obtain as: 

( ) ( ) ( )0 , ;e h e e h h e h0f f f E Eρ ρ=r r E= +

)

,                                                                       (4.3) 

where (e ef ρ  and (h hf )ρ  are solutions of the one-dimensional wave equations: 

( ) ( ) (1 ( )e e
e e e e e e e e

e e e

f
V f E f

ρ )eη ρ ρ ρ
ρ ρ ρ

∂∂
− + =

∂ ∂
ρ ;                                                         (4.4) 

( ) ( ) (1 ( )h h
h h h h h h h h

h h h

f
V f E f

ρ )hη ρ ρ ρ
ρ ρ ρ

∂∂
− + =

∂ ∂
ρ ,                                                       (4.5) 

with  and  being the lowest energies of the electron and hole in the wire respectively.  

Once the one-dimensional equations (4.4) and (4.5) are solved, the Jacobian  can be 

calculated through the following two-dimensional integral which arise from the relation 

(2.11) after integrating over the Euler angles and z-coordinates: 

eE hE

( )rJ 0

( ) ( ) ( )
{ }

2
2

0
0 max 0,

4
e

e

r
h h h

e e e e
r

faJ r r f d K d
b b

ρ

ρ

ρ ρ
hπ ρ ρ ρ ρ

+∞

−

 =  
 ∫ ∫ ,                                        (4.6) 

( )K x  is the complete elliptic integral of first kind, while ( ){ }22min 4 ,e h e hρ ρ ρ ρ= −a r  

and 

−

)({ }22ax 4 ,e h e hb m rρ ρ ρ ρ= − − .  The ground state binding energy is obtained from 

Eq. (2.9) by using the same numerical method [48] as for the quantum well. 

 

The ground state binding energy of an exciton in a GaAl/Ga0.7Al0.3As QWW for a model 

with rectangular and soft-edge barrier potentials is calculated, and the corresponding results 

are presented in Fig. 3.4.  The plot displays the binding energy as a function of the wire 
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radius.  Our results for the rectangular potential (solid lines) are in excellent agreement with 

those by Li et al. [8] (solid circles). 
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Figure 3.4  Ground state binding energy of an exciton in a GaAs/Ga0.7Al0.3As QWW as a function of the wire 

radius, for a model with rectangular potential (solid lines) and soft-edge barrier (dashed and dotted lines).  

Solid circles (•) correspond to calculations from Ref. [8]. 

 

The binding energy curves crossover in the region 0.3 < *aR 0  < 0.7 is evident.  For the 

rectangular potential and for intermediate and large wire radius ( *aR 0  > 0.7) the exciton 

level is deeper than the level for the soft- and very soft-edge barrier potentials respectively.  

Consequently, in that interval the potential corresponding to 0.2W R =  gives the largest 

binding energy followed by the soft-edge barrier 0.1W R = , whereas the almost rectangular 

0.01W R =  gives the lowest exciton binding energy.  The opposite happens in the region 

*
0 0.3R a >  where the rectangular potential gives the largest binding energy.  In this case, as 
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the wire radius decreases the exciton level is pushed out faster than the level for the soft- 

and very soft-edge barrier potentials respectively.  As a result, for the rectangular potential 

the exciton wave function overflow first than the wave functions corresponding to the other 

two potentials. 

 

To our knowledge, no theoretical results on the excitonic spectra in QWWs with a double-

step potential have been reported until now.  We apply our method to analyze the ground 

state of an exciton located at the axis of a GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As coaxial QWW.  

The confinement potential is a double-step quantum well consisting of a small well of 

length 1R  inside of a large one of length R .  In this structure the potential changes from 0  

in GaAs to V  in Ga1 0.8Al0.2As and to V  in Ga2 0.55Al0.45As.  The results obtained are 

displayed in Fig. 3.5, where the exciton binding is plotted as a function of the wire radius R, 

for several values of the inner radius R1.  From the plot one can see the existence of two 

maxima (peaks) in the curves of the binding energy for the structures with 1 0.2R R=  and 

1 0.3R R= .  In both cases, as the wire radius diminishes the wave function first overflow the 

inner well giving rise to the minor peak.  With further radius decreasing, the exciton level is 

pushed up and the binding energy starts increasing again until it reaches a maximum (main 

peak) afterwards the wave function overflow the external well. 
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Figure 3.5  Ground state binding energy of an exciton in a GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As coaxial QWW as 

a function of the wire radius, for a model with double-step quantum well potential. 

 

 

3.3  EXCITON IN SPHERICAL QUANTUM DOTS 

 

We consider an exciton in a spherical GaAs-(Ga, Al)As QD without the presence of 

magnetic field, so that the confinement potential depends only on the radial coordinate.  

The Hamiltonian (2.1) of this system can be written in spherical coordinates as 

(0 2e h ehH H H rτ τ= + − = )0,1

e h

;                                                                                        (5.1) 

( ) ( )2 ,i i i i iH V r iη= − ∇ + = ,                                                                                         (5.2) 

where  are the particle distances from the QD center, and ir ( )i iV r  are the corresponding 

confining potentials which are given by Eq. (2.23). 
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The solution of the eigenvalue problem (2.3) for the Hamiltonian (5) is easily obtained as 

( ) ( ) ( )0 , ;e h e e h h e h0f f r f r E E E=r r = + ,                                                                          (5.3) 

where ( )e ef r  and ( )h hf r  are solutions of the one-dimensional wave equations: 

( ) ( ) ( )1 ( )e e
e e e e e e e e

e e e

f r
r V r f r E f

r r
η

ρ
∂∂

− + =
∂ ∂ er ;                                                                 (5.4) 

( ) ( ) ( )1 ( )h h
h h h h h h h h

h h h

f r
r V r f r E f

r r
η

ρ
∂∂

− + =
∂ ∂ hr ,                                                                (5.5) 

with  and  being the lowest energies of the electron and hole in the dot respectively.  

Once the one-dimensional equations (5.4) and (5.5) are solved, the Jacobian  can be 

calculated through the following two-dimensional integral which arise from the relation 

(2.11) after integrating over the Euler angles: 

eE hE

( )rJ 0

2 2 2
0

0

( ) 8 ( ) ( )
e eh

e eh

r r

e e e e h h h h
r r

J r r r f r dr r f r drπ
+∞

−

= ∫ ∫ .                                                                         (5.6) 

The ground state exciton binding energy is also obtained from Eq. (2.9) by using the same 

numerical procedure [48]. 

 

The ground state binding energy of an exciton in a spherical GaAl/Ga0.7Al0.3As QD for a 

model with rectangular and soft-edge barrier potentials is calculated, and the corresponding 

results are presented in Fig. 3.6.  The plot displays the binding energy as a function of the 

dot radius.  As the radius decreases, the exciton wave function is compressed into the QD 

and the binding energy increases because of the enhancement of the Coulomb attraction, 

until it reaches a maximum corresponding to a confinement threshold.  With further 

decreasing of the dot radius, the exciton wave function leaks into the barrier region and 

 59



consequently the binding energy diminishes sharply from its maximum value up to the 

exciton energy in bulk (1 Ry*) as the exciton assumes more of its 3D-like nature. 
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Figure 3.6  Ground state binding energy of an exciton in a GaAs/Ga0.7Al0.3As spherical QD as a function of 

the dot radius for different soft-edge barrier potentials. 

 

The curves crossover in the region 7.04.0 *
0 << aR  is evident.  It is apparent that for 

intermediate and large values of the QD radius ( )*
0 0.7R a >  the excitonic orbital 

confinement, due to the rectangular potential ( )*
0/ 0.01=W a , is smaller than for the 

smooth-  and very smooth-edge ( *
0/ 0.W a = )1 ( )0.3=*

0/W a  barrier potentials.  Because of 

this, in that region the latter gives the largest binding energy and the rectangular the 

smallest one.  The contrary occurs in the region ( )*
0 0.4R a < , as the dot radius decreases, 

the exciton energy level is pushed up towards the upper part of the conduction band where 
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the rectangular potential gives the strongest confinement.  Therefore, in that interval the 

very smooth-edge barrier potential gives the smallest binding energy. 

 

We also performed calculations for an exciton in a GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As 

spherical QD.  The confinement potential is the same described for the coaxial wire but in 

radial direction with R  being the radius of the dot.  The results obtained are displayed in 

Fig. 3.7, where the exciton binding is plotted as a function of the dot radius R, for several 

values of the inner radius R1. 
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Figure 3.7  Ground state binding energy of an exciton in a GaAs/Ga0.8Al0.2As/Ga0.55Al0.45As spherical QD as a 

function of the wire radius, for a model with double-step quantum well potential. 

 

As happened for exciton in QW and QWW, the curves of the binding energy has two 

maxima (peaks), the minor one is associated with the overflow of the wave function from 

the inner well while the main peak is related to the overflow of the function from the 
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external well.  When the internal well becomes wider the system behaves as single quantum 

well and therefore only one maximum is observed. 
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4.  POLARONIC EXCITON IN QUANTUM-WELL WIRES AND NANOTUBES 

 

In this part of the thesis we investigate the effect of the longitudinal-optical phonon field on 

the binding energies of excitons in quantum wells, well-wires and nanotubes based on ionic 

semiconductors by using the method developed previously 

 

4.1  INTRODUCTION 

 

In the past decade, there has been increasing interest in the study of wide-gap II-VI 

semiconductor heterostructures, in particular quantum wells (QWs) structures have been 

studied both theoretically and experimentally [50-53].  These systems offer a variety of 

opto-electronic device applications in the visible and ultraviolet wavelength regions, and in 

high-temperature electronics.  It is well known that the electron longitudinal-optical (LO) 

phonon interaction is an important factor influencing the physical properties of polar 

crystals.  The effect of such influence becomes stronger as the dimensionality of the system 

reduces [54].  The exciton-phonon interaction in bulk ionic semiconductors has been a 

subject of a numerous investigations in contrast to its counterpart in systems with reduced 

dimensionality.  Different groups [55-57] have calculated the binding energies of excitons 

in quantum well heterostructures in the presence of LO-phonon field.  Most of them assume 

the Fröhlich Hamiltonian [58], which is valid for bulk semiconductors or wide wells, to 

describe the electron (hole) phonon interaction.  All calculations show that exciton binding 

energies are enhanced, with respect to the case when a screened Coulomb potential is 
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considered.  However, it has been demonstrated that some approaches overestimate the 

exciton binding energy, especially in weakly ionic heterostructures, e.g. GaAs/GaAlAs 

[57].  One of the most useful techniques to deal with this problem is to derive an expression 

for the effective interaction potential between the electron and the hole taking into account 

their interactions with the LO-phonon field of the crystal lattice.  Following such approach 

different interaction potentials have been obtained.  Particularly, the Pollmann-Bütner [59] 

and Aldrich-Bajaj [57, 60, 61] potentials have proven to describe very well the electron-

phonon interaction.  The values of the exciton binding energies calculated using these 

potentials are in good agreement with the available experimental results. 

 

On the other hand, Thilagam [62] derived the analytical expression of the Fröhlich-like 

Hamiltonian for the interaction between an exciton and an optical phonon in the fractional-

dimensional space in order to study the exciton line widths in the GaAs/GaAlAs QWs.  The 

fractional-dimensional space technique was first applied by He [25], who using the 

hydrogen-like Hamiltonian in effective fractional space proposed by Stillinger [26] treated 

the interband optical transitions and bound excitons in strongly anisotropic media.  This 

model has been successfully used to describe excitons in semiconductor heterostructures 

[27-28] in the weak and intermediate confinement regime.  Though such approach allows a 

reduction of the computational time to obtain the exciton energies with a reasonable 

accuracy, it has been established that this breaks down when the confinement is too strong, 

e.g. quantum wells in the presence of strong magnetic fields, quantum well wires and 

quantum dots of a very small sizes [28].  Recently, a new method based on the fractional-

dimensional model was proposed to study the ground state of neutral (D0) charged (D−) 

donors and excitons in heterostructures semiconductors [29-30].  The method provides a 
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simple and unified procedure for calculating the impurities and excitons ground state 

binding energies in different heterostructures with arbitrary confining potential.  Its 

accuracy has been tested by comparison with theoretical calculations from Monte Carlo and 

Variational methods and was proven to work very well even when the carriers confinement 

is stronger. 

 

We extend the method developed previously for neutral and charge donor [29, 30] to study 

the ground state of excitons, in quantum-wells heterostructures, where the Coulomb 

potential is replaced by the Aldrich-Bajaj (AB) effective potential for the exciton LO-

phonon interaction [57, 60].  First we present the model and discuss how the approach is 

used to solve the problem of excitons in quantum wells (QWs) and quantum well wires 

(QWWs).  Second, we present the results for different heterostructures and compare them 

with available theoretical and experimental data.  We also consider different shape of the 

confinement potentials for the same type of hetereosturcture (QW and QWW).  Finally, we 

present our remarks and conclusions. 

 

 

4.2  THEORETICAL MODEL 

 

The dimensionless Hamiltonian for a correlated electron-hole pair confined in 

semiconductor heterostructure in the presence of the LO-phonon field of the crystal lattice 

can be written as: 

( ) ( ) ( ) ( )0 0, ; ,e h ex e h e e h hH H V H H H= − = +r r r r r r ;                                                        (4.1) 
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( )2( )i i i i i i iH Vη α ω= − ∇ + +r r h ,                                                                                         (4.2) 

where  with i e  describes the motion of the particle-polaron confined in the 

heterostructure and V  is the effective electron-hole potential which takes into account the 

interaction with the LO-phonon field.  As units of length and energy we use the effective 

donor Bohr radius 

( )i iH r ,h=

AB

2
B 0 ea ε h 2m e=  and the electron effective donor Rydberg 

2
02y BR e ε a= ,  respectively, where  is the electron effective band mass and em 0ε  the 

static dielectric constant.  The parameter η  is defined as i em mη i
∗=  ( i e ) with m,h= i

∗  

being the electron (hole) polaron mass, which is related to the band mass by 

( ) ( )1 1i im m∗ = + 2 1 12i iα α− .  Here the hole polaron mass is calculated by using a 

spherical hole mass approximation [8].  For V  we consider the effective potential derived 

by Aldrich and Bajaj [57, 60] which takes into account the polaronic effects: 

AB

( ) ( )
( )

,0 0

,

exp
exp2 21

2 1 12

i B
i e h i Bi B

AB
i e h i i i

a r
a ra rV

r r

β
βε ε β

ε ε ε α
=

=∞

 −
− = − − +  + + +

  

∑
∑ 4 3α α

,                  (4.3) 

where eh e hr = = −r r r , 
1 2

i
i B

e

ma
m R y

ωβ
 

=  
 

h , 0 y
i i

R
aε

Bα β
ε ω

=
h

 and 
0

1 1 1
ε ε ε∞

= − .  Here ε∞  

and ω  denote the high dielectric constant and the longitudinal optical (LO) phonon 

frequency.  In Ref. [57, 61] it has been shown that this potential provides an accurate 

description of the polaronic effects in narrow QWs, whilst it only considers the interaction 

with the bulk LO-phonons.  In what follows we will use the Aldrich-Bajaj potential in order 

to describe the exciton-phonon interaction in QWWs. 
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The solution of the Hamiltonian (4.1) is sought in the form: 

( ) ( ) ( ) (,e h e e h h )f fΨ = Φr r r r r ,                                                                                         (4.4) 

where  and  are the ground-state eigenfunctions of the electron polaron and 

hole polaron Hamiltonians given in Eq. (2), whereas 

( )e ef r ( )h hf r

( )rΦ  is a variational function that 

describes the intrinsic properties of the exciton bound state.  The ground-state energy of the 

exciton is found by minimizing the following functional 

[ ] e hF f e hH H+ + ex ex e hf V E f fΦ = Φ − Φ .  As explained in Ref. [30, 63] after some 

algebraic manipulations we can obtain the following variational problem: 

[ ] ( ) ( ) ( ) ( )
2

2
0

0
e h e h ex ex

d r
F J r E E E V r

dr
η η

∞   Φ   Φ = + + + − − Φ  
     

∫ ( ) dr ,                       (4.5) 

where 

( ) ( ) ( ) (2 2
0 e e e h h e hJ r d f f r dδ= ∫ ∫r r r r r ) h− − r .                                                                (4.6) 

The minimization of the functional (5) yields the Euler-Lagrange equation: 

( ) ( ) ( ) ( ) ( ) ( )0
0

e h
ex ex e h

d rd J r V r E E E r
J r dr dr
η η Φ+

− − Φ = − + Φ

ex

.                                       (4.7) 

The binding energy of the exciton, b e hE E E E= + − , is then obtained by solving Eq. (4.7) 

using the trigonometric sweep method [48].  Note that this differential equation for the 

correlation function resembles the wave equation for an hydrogenic-like atom in an 

isotropic effective space with non-fixed fractional dimension.  Such a dimension depends 

on the electron-ion separation and can be calculated by using the Mandelbrot‘s formula that 

relates its value to the volume element, Jacobian ( )r0J , in the fractional-dimensional space 

[29-30]. 
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In general, in order to find the Jacobian from the relation (6) one should calculate integrals 

of the fifth order, however, the order of the integrals can be reduced to two for systems with 

axial symmetry.  Thus after some algebraic manipulations the following explicit 

expressions of the Jacobian  for QWs and QWWs are obtained: ( )0J r

( ) ( ) ( )2 2
0 2

r

e e e h e
r

J r r f z dz f z z dzπ
∞

−∞ −

= ∫ ∫ + ;                                                                        (4.8) 

( ) ( ) ( )
{ }

2
2

0
0 max 0,

4
e

e

r
h h h

e e e e
r

faJ r r f d K d
b b

ρ

ρ

ρ ρ
hπ ρ ρ ρ ρ

+∞

−

 =  
 ∫ ∫ ,                                        (4.9) 

where ( )e ef z , ( )h hf z  and ( )e ef ρ , ( )h hf ρ  are the ground state wave functions of the 

electron polaron and hole polaron in QW and cylindrical QWW respectively.  In Eq. (4.9) 

 is the complete elliptic integral of first kind, while ( )K x ( ){ }22min 4 ,e h e hρ ρ ρ ρ= −a r  

and 

−

( ){ }2
e hρ ρ2r= −ax 4 ,e hρ ρb m . −

 

 

4.3  RESULTS AND DISCUSSION 

 

To check the accuracy of our method we first calculate the ground state binding energy of 

excitons in GaAs/Ga0.7Al0.3As and ZnSe/Zn0.69Cd0.31Se QWs for two models of the 

electron-hole interaction, the Coulomb V  and Aldrich-Bajaj V  potentials.  The values of 

the physical parameters used are listed in Table 1. 

c AB
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Table 1.  Physical  parameters for the GaAs/Ga0.7Al0.3As and ZnSe/Zn0.69Cd0.31Se heterostructures. 

Structure 0em m  1γ  2γ  0ε  ε∞  ( )meVωh ( )eV meV  ( )hV meV

GaAs/GaAlAs 0.067 6.93 2.15 12.5 10.9 35.2 228 152 

ZnZe/ZnCdSe  

a 

b 

 

0.148 

0.160 

 

2.45 

4.30 

 

0.61 

1.14 

 

8.7 

 

5.73 

 

31.7 

 

230 

 

115 

Values have been taken from Ref. [57, 61]; (a) and (b) correspond to mass parameters determined by resonant 

Raman scattering [64] and Brillouin scattering [65] respectively. 

 

In Fig. 4.1, the binding energy, , of the heavy–hole exciton is plotted as a function of the 

well width.  It can be seen that the enhancement of the exciton binding energy due to the 

interaction with the phonon-field in GaAs/GaAlAs is rather small because of its weak ionic 

structure.  On the contrary, the polaronic effect in ZnSe/ZnCdSe is considerable due to the 

fact that this system is a highly polar heterostructure.  For the GaAs/GaAlAs we compare 

our results (curves) with those from Ref. 57 (symbols) and we find that the discrepancy 

between them is not superior to 1%.  However, we obtain slightly larger binding energies 

because in our procedure we do not just use variational parameters, instead we use an 

exciton correlation function which is variational itself, as a consequence we have a greater 

freedom and we obtain binding energies with a higher accuracy [29, 30].  For 

ZnSe/ZnCdSe a comparison with theoretical and experimental data from Ref. 61 (symbols) 

is made.  The exciton binding energies, derived through magneto-absorption measurements 

in quantum wells with widths of 5 and 4 nm, lie between the curves corresponding to 

theoretical calculations with two different sets of Luttinger parameters (solid lines), 

whereas the curves without including exciton-phonon interaction (dashed lines) lie below 

the experimental data.  This confirms that the polaronic coupling must be taken into 

bE
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account in determining the excitonic properties of highly polar QWs.  It also shows that the 

result is sensitive to the Luttinger parameter that should therefore be chosen carefully. 
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Figure 4.1  Exciton binding energies as a function of the well width for ZnSe/Zn0.69Cd0.31Se (top) and 

GaAs/Ga0.7Al0.3As (bottom) quantum wells.  Solid curves correspond to values obtained by using the Aldrich 

and Bajaj VAB potential for exciton-phonon interaction and dashed curves to those with Coulomb potential 

VC.  In the upper plot, a and b denote results as obtained with Luttinger parameters derived by Hölscher et al., 

and Sermage and Fishman [64 65] respectively.  Open triangles correspond to theoretical calculations from 

Ref. [57] and solid triangles to experimental data from Ref. [61]. 

 

Next we study the influence of the LO phonon-field on the binding energies of an exciton 

in a cylindrical wire both for the GaAs/GaAlAs and ZnSe/ZnCdSe heterostructures.  The 

corresponding results are displayed in Fig. 4.2 where the exciton binding energy as a 

function of the wire radius is plotted.  We compare our results for GaAs/Ga0.7Al0.3As with 

those of Ref. 8 and we can see that a very good agreement is reached.  As expected the 

enhancement of the binding energy due to the exciton-phonon interaction is larger for the 
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ZnSe/ZnCdSe structure.  By comparison with Fig. 4.1 it can be seen that this effect is 

stronger for QWWs than for QWs.  For instance, for narrow GaAs/GaAlAs QW the values 

calculated by using the Aldrich-Bajaj interaction are about 1.2% larger than those obtained 

assuming the simple Coulomb interaction whereas for QWWs the difference between the 

two set of results for small wire radii is of the order of 2.5%.  Furthermore, for ZnSe the 

enhancement is about 18% in QWs whereas in QWWs is approximately of 25%. 
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Figure 4.2  Exciton binding energies as a function of wire radius for ZnSe/Zn0.69Cd0.31Se (top) and 

GaAs/Ga0.7Al0.3As (bottom) quantum wells wires.  Solid curves correspond to values obtained by using the 

Aldrich and Bajaj VAB potential for exciton-phonon interaction and dashed curves to those with Coulomb 

potential VC.  Open triangles correspond to theoretical calculations from Ref. [8]. 

 

It is also important to note that for heterostructures with weak ionic structure the polaronic 

effect on the binding energy exciton is only appreciable for narrow wells and wires.  To 

understand this result one should take into account that the exciton-phonon interaction 
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enhances the electron and hole effective masses (polaron mass) and diminishes the 

electrostatic screening.  Both of these effects give rise to the enhancement of the exciton 

binding energy.  As either the well or the wire is narrow, the exciton is more confined and 

therefore in this region the decrease of the screening produces an increase of the exciton 

binding energy which is appreciable for both materials, but it is more important in ZnSe 

because of its lower dielectric constant.  On the other hand, the effect of the polaron mass 

on the exciton binding energy is more important as the size of the heterostructure is larger 

than the free exciton size.  In this range the exciton binding energy is roughly given by the 

exciton Rydberg.  It is clear that a larger polaron mass, increases the exciton Rydberg and 

as a consequence the exciton binding energy.  The mass increase due to polaronic effect is 

approximately 1.01 for GaAs and 1.10 for ZnSe which explains the finding of negligible 

polaron effect in wider GaAs/GaAlAs wells and wires in contrast to what happens in 

ZnSe/ZnCdSe. 

 

In Fig. 4.3 we present the ground state binding energy of the heavy-hole excitons in 

ZnSe/Zn0.69Cd0.31Se quantum-well wires for different shapes of the confinement potential.  

The polaronic effects can be explained as done in Fig. 4.1 and Fig. 4.2.  Notice that in this 

case the increase of the binding energy is almost independent from the shape of the 

potential.  However, a different dependence of the binding energy on the wire radius is 

observed for different potential shape.  Comparing the two curves for the square-well and 

the parabolic potentials (both with the same finite barrier height) one can see that for large 

radii the latter always has the larger binding energy, this is due to the fact that the effective 

confinement is stronger for the parabolic potential.  As the wire radius decreases the 

exciton level is pushed out and the exciton wave function starts leaking steadily into the 
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barriers and for a critical wire radius the 3D character of the exciton wave function is 

restored.  On the contrary, when a square-well confinement is present in this range of 

wire’s widths the exciton is still confined, and the leakage of the exciton wave function 

occurs at a smaller wire radius. 
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Figure 4.3  Binding energies for exciton in ZnSe/Zn0.69Cd0.31Se quantum wires as a function of the 

heterostructure sizes and for different confinement potential shapes.  Solid curves correspond to values 

obtained by using the Aldrich and Bajaj VAB potential for exciton-phonon interaction and dotted curves to 

those with Coulomb potential VC. 

 

Next we consider the case of a nanotube which is modeled by a quantum wire with 

repulsive core of internal radius 0.5i eR R=  and height barrier Vi Ve= .  The corresponding 

results are compared with those obtained for the wire (V 0i = ) with square-well potential.  It 

can be observed in Fig. 4.3 that the square-well potential gives lower binding energies than 

the nanotube potential for larger radii, i.e. larger than 60 Å, the opposite happens in the 

small radii region.  This is due to the fact that for large values of the outer radius the 
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exciton is mostly located within the “ring” of the nanotube and it undergoes stronger 

confinement compared with the wire.  As a result, the exciton binding energy is enhanced 

as the thickness of such a “ring” is decreased up to a value comparable to the exciton 

radius.  On the contrary, as the thickness of the ring is smaller than the exciton radius and 

the core size ( iR ) is comparable to the exciton size, the electron and hole tend to be located 

at opposite sides of the repulsive core increasing their separation, which diminishes the 

binding energy.  As a consequence, the exciton binding energies for small wire radius in 

nanotubes are lower than those in quantum wire and therefore the crossover of the 

corresponding curves in Fig. 4.3 is observed. 

 

To sum up, we have proposed an unified simple method for calculating the ground state 

binding energy of the excitons in quantum-well heterostructures based on ionic 

semiconductors.  We take into account the exciton-phonon interaction by using the 

effective potential derived by Aldrich and Bajaj.  We found that polaronic effects are 

stronger in quantum wires than in quantum wells and we expect that for quantum dots those 

should be stronger.  Our method allows us to study different potential shapes in different 

heterostructures and as an example a nanotube model was considered.  We found that the 

excitons confinement is stronger in nanotubes if the wire radius is larger than 60 Å and is 

stronger in the wires if the radius is smaller than 60 Å. 
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5.  HOLE MASS ANISOTROPY AND MAGNETIC FIELD EFFECTS 

 

5.1  THEORETICAL MODEL 

 

In this part of the thesis we extend the method developed previously to study the ground 

state on an exciton in different heterostructures for a model that takes into account the hole 

mass anisotropy.  We also consider here that the material parameters are uniform 

throughout the heterostructures.  In this case, by using an appropriate scaling for energy and  

length units the Hamiltonian (2.1) can be rewritten as: 

( ) ( ) ( ) (
2 23 3

0 0
, 1 , 1

2, , ; , e h
e h e h e h ik ik e h

eh ie ke ih khi k i k
H H H U

r x x x x
η η

= =

∂ ∂
= − = − − +

∂ ∂ ∂ ∂∑ ∑r r r r r r r r ),

)

,   (5.1) 

where  describes the free motion of the electron and hole confined in the 

heterostructure, 

(0 ,e hH r r

{ }1 2 3, ,e e e ex x x=r  and { }1 2 3, ,h h h hx x x=r  are the electron and hole position 

vectors,  is a perturbation due to the confinement and the external fields, while ( ,e hU r r )

2 ehr−  and ehr e h= −r r  are the energy of the electron-hole interaction and the electron-

hole separation, respectively.  All lengths are scaled in terms of the electron Bohr radius 

2 2
em e∗hoa ε∗ =  and all energies in electron effective Rydberg 2

02yR e aε∗ ∗= .  Here the 

coefficients e
ikη  and h

ikη  describe the relative values and the anisotropy of the electron and 

hole effective masses.  Neglecting the valence band mixing, we have that e
ikη  is an identity 

matrix while h
ikη  is a diagonal matrix with elements em mη ∗ ∗

⊥ ⊥=  (in-plane direction) and 
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z em mη ∗= z
∗  (z-direction) with  and m∗

⊥ zm∗  being the effective masses of the hole in the x-y 

plane and in z-direction respectively. 

( )0 0e hH fr r

( )e hH r r

exE

( ),e h

0 e hr r

,e hE

fΨ =r r

( ehrΦ

[ ] 1 0
2E
r
τ

−

)eh r h−

(
2

ie

eh

x x

r

+ − kex

 

We assume that the Hamiltonian  for free electron-hole pair is separable and that its 

solution for the ground state is obtained by solving the eigenvalue problem: 

0H

( ) (0, ,e h E f=r r ,                                                                                   (5.2) ),

)

)

For exciton we solve the Schrödinger equation 

( ) (, ,e h exΨ = Ψr r r r ,                                                                                    (5.3) 

where  is the exciton total energy.  Its solution also sought in the form: 

( ) (0 ,e h ehrΦr r ,                                                                                              (5.4) 

with  being a variational function that describes the intrinsic properties of the 

exciton and depends only on the electron-hole separation.  The ground state energy of the 

exciton is calculated by minimizing the functional (2.6).  Thus, starting from the 

Schrödinger variational principle we formulate the problem for exciton in heterostructure a 

variational one of the following functional: 

)

( ) ( ) ( ) ( )
2

2
0

0

minex

d r
F J r E J r r dr

dr

∞  Φ   Φ = + − Φ →        
∫ ,                           (5.5) 

where  is the ground state energy of the uncoupled electron-hole pair and 0 eE E E= + h

( ) ( ) (2
0 0 ,e e hJ r d f r dδ= ∫ ∫r r r ;                                                                              (5.6) r

( )
( )( ) )

( ) ( )
3

2
1 0

, 1
,

e h
ik ik ih kh

e e
i k

x
J r d f r r d

η η
δ

=

−
= −∑∫ ∫r r .                        (5.7) h eh hr r

The minimization of the functional (5.5) with respect to Φ  and its first derivative yields the  
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One-dimensional Euler-Lagrange equation: 

( ) ( ) ( ) ( ) [ ] ( )1
0

1 2
ex

d rd J r r E E r
J r dr dr r

Φ
− − Φ = 0− Φ

ex

.                                                      (5.8) 

Thus, the exciton binding energy 0bE E E= −  can be obtained as the functions  and  

are calculated. 

0J 1J

 

 

5.2 EXCITON IN QUANTUM WELLS AND QUANTUM-WELL WIRES 

 

We consider an exciton in a GaAs-(Ga, Al)As heterostructure, either QW or QWW, under a 

uniform magnetic field applied along the z-axis.  Choosing the symmetric gauge for the 

magnetic field ( ) 2e e h= × −A B r r  and ( ) 2h h e= × −A B r r  for electron and hole respectively 

and neglecting the center-of-mass motion in x-y plane, the Hamiltonian (5.1) for an exciton 

in QW can be written in cylindrical coordinates as [7]: 

( ) ( ) (
2 2

0 2 2

1, 1e h z e h
e h

H U
z z

η η ρ
ρ ρ ρ⊥

∂ ∂ ∂ ∂
= − − − + +

∂ ∂ ∂ ∂
r r r r ), ;                                                 (5.9) 

( ) ( ) 2 21
, ( ) ( )

4e h e e h hU V z V z
η γ ρ⊥+

= + +r r ,                                                                         (5.10) 

where V z  and V z  are the corresponding confinement potential for the electron and 

hole respectively, 

( )e e (h h )

2( ) (e h e h
2)x x y y= − + −ρ  is the in-plane distance between electron and 

hole while 2 em c∗ ye B R∗hγ =  is the Landau level expressed in Ry∗ . 
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The solution of the Hamiltonian (5.2) is found to be: 

( ) ( ) ( ) ( ) ( )2
0 0, exp 4 ;e h e e h h e hf f z f z E E E 1γρ ⊥= − = + + +r r η γ ,                              (5.11) 

where ( )e ef z and ( )h hf z  are solutions of the one-dimensional equations 

( ) ( ) ( ) ( )
2

2 ( ) ; ,i e
i e e i e i i e

e

f z
V z f z E f z i e h

z
η
∂

− + = =
∂

,                                                        (5.12) 

with  and  being the lowest energies of the electron and hole in the QW respectively, 

and 

eE

e

hE

1η =  while h zη η= .  Substituting the wave function (5.11) in equations (5.6) and (5.7) 

after integrating over the Euler angles we obtain the Jacobians: 

( ) ( ) ( ) ( ) ( )
2 2 22 22 ,

r
r z

i e e e h e i
r

J r r f z dz e f z z R z r dz i
γ

π
∞

− −

−∞ −

= +∫ ∫ ; 0,1=                                  (5.13) 

with 

( ) ( ) ( )
2

0 1 2, 1; , 1 z
zR z r R z r
r

η η η⊥ ⊥= = + + − .                                                                (5.14) 

 

For an exciton in QWW, we assume that the wire is sufficiently long, so that the motion 

along wire axis has translational symmetry and therefore the confinement potential depends 

only on the in-plane radial coordinate.  The Hamiltonian (5.1) can then be written in 

cylindrical coordinates as: 

( ) (0
1 1, ,e h e h e h

e e e h h h

H Uρ η ρ
ρ ρ ρ ρ ρ ρ⊥

∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂
r r r r ) ;                                              (5.15) 

( )
2 2 2 2

, ( ) ( )
4 4

e
e h e e h hU V V hγ ρ ηρ ρ ⊥= + + +r r γ ρ

)

,                                                                  (5.16) 

with ( eeV ρ  and ( )hhV ρ  being the potentials for the electron and hole in the QWW.  The 

solution of the eigenvalue problem (5.2) is found to be 

 78



( ) ( ) ( )0 , ;e h e e h h e h0f f f E Eρ ρ=r r E= +

)

,                                                                   (5.17) 

where ( eef ρ  and ( hhf )ρ  are solutions of the one-dimensional wave equations: 

( ) ( ) ( ) ( )
2 2

( ) ; ,
4

i ii i i
i i i i i i i i i i

i i i

f
V f f E f i e

ρη η γ ρρ ρ ρ ρ ρ
ρ ρ ρ

∂∂
− + + =

∂ ∂
h=                      (5.18) 

with  and  being the lowest energies of the electron and hole in the wire respectively, 

and 

eE

e

hE

1η =  while hη η⊥= .  As explained above, the Jacobians can be obtain after integrating 

over the Euler angles and z-coordinates in Eqs. (5.6) and (5.7) as: 

( ) ( ) ( ) ( )
{ }

2 2

0 max 0,

4 ,
e

e

r

i e e e e h h i e h h h
r

J r r f d f R r d i
ρ

ρ

π ρ ρ ρ ρ ρ ρ ρ ρ
+∞

−

= =∫ ∫ , ; 0,1

)

            (5.19) 

( ) (0 0, , , ,e h e hR r G rρ ρ ρ ρ= ;                                                                                        (5.20) 

( ) ( ) ( ) (1 0 2, , 1 , , , ,z
e h e h A e h )R r G r G

r
rη ηρ ρ η ρ ρ ρ ρ⊥

⊥
−

= + + ,                                      (5.21) 

where  as r( ) (0 , , / /e hG r K b aρ ρ = ) a e hρ ρ> + ; ( ) ( )0 , , / /e hG r K a bρ ρ = b  as 

e hr ρ ρ ( ), ,A e hG r aρ ρ =< + ;  as ( /E b )a her ρ ρ> + ; and ( ) (, , /A e hG r bEρ ρ = )ba  as 

er hρ ρ< + , with ( )2
h

2
ea r= − ρ ρ− ; 4 eb hρ ρ=  and ( )K k ( )E k,  being the 

complete elliptic integrals of the first and second kind, respectively. 

 

In our calculations we use the material parameters pertaining to GaAs 5312.=ε , 

 with  been the bare electron mass.  For the light-hole mass are 

 and m , while for the heavy-hole m m  and .  

The values of the parameters 

00.067em∗ =

00.08zm m∗ =

m

m

0m

= 00.21∗
⊥ 00.45z

∗ = 00.10m m=∗
⊥

zη  and ⊥η  for these masses are 0.84 and 0.32 for the light-

hole exciton, and 0.149 and 0.67 for the heavy-hole exciton. 
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In order to check the accuracy of the method, we first calculate the exciton binding energy 

in GaAs/Ga0.7Al0.3As QW and QWW.  In Fig. 5.1 and Fig. 5.2 we display the exciton 

binding energies for heavy-hole, , (solid lines) and for light-hole, , (dashed 

lines) as function of the well width.  Our results are compared with those from Refs. 6 and 

7 (open circles). 

)(1 hE s )(1 lE s

0 1 2 3 4

6,0

7,5

9,0

Light-Hole Exciton

Heavy-Hole Exciton

 

E b (
m

eV
)

L / a0*  
Figure 5.1 The light- and heavy-hole exciton binding energies as a function of the GaAs/Ga0.7Al0.3As QW 

width.  Open circles correspond to calculations from Ref. 6  
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Figure 5.2 The light- and heavy-hole exciton binding energies as a function of the GaAs/Ga0.7Al0.3As QW 

width for different magnetic field strengths.  Open circles correspond to calculations from Ref. 7  

 

In both cases we intentionally choose the material parameters from corresponding 

references and we find an excellent concordance between the two sets of results for 

different well widths and magnetic field strengths.  As it is seen from the figures the 

binding energies of the nearly free light-hole exciton (in the limit of large QWs widths and 

zero-magnetic field) is slightly larger than the corresponding energies for the heavy-hole 

exciton.  The opposite happens when the confinement is strong (the limits of small QWs 

widths or large magnetic field).  This effect was established in Ref. 6 for the case of a 

structural confinement and it was explained on the base of the anisotropic Kohn-Luttinger 

model for which the reduced effective mass of the light-hole exciton in the x-y plane is 

larger than that for heavy-hole exciton.  A similar explanation is also valid for the case of a 

confinement produced by strong magnetic fields. 

 81



Figure 5.3 shows the heavy-hole exciton binding energy as a function of the wire radius for 

different magnetic fields.  Although the isotropic hole mass approximation used in Ref. 8 is 

applicable only for small electron-hole separations, an excellent concordance between the 

two sets of results is observed in Fig. 5.3 for all wire radii in the limit of zero-magnetic 

field. 

0 1 2 3 4
4

8
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B=200 KG
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E b (
m
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)

R/ a0*  

Figure 5.3  Heavy-hole exciton binding energy as a function of the wire radius with and without magnetic 
field.   Our results (solid lines) are compared with theoretical data from Ref. 8 (open circles) 
 

Also it is seen that in the presence of magnetic field (B = 200 KG), for wire radii larger 

than electron effective Bohr radius, our results are slightly higher than those from Ref. 8.  

We attribute this small discrepancy to the additional lateral confinement produced by the 

strong magnetic field that enlarges the effect of anisotropy.  In this case, the motion of the 

particles due to the strong in-plane confinement is almost quasi-one-dimensional and it is 

oriented along the wire axis.  The heavy-hole effective mass in this direction is higher than 

its value in the x-y plane and therefore the exciton effective Rydberg (a measure of the 
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exciton binding energy) for anisotropic model is a slightly greater than for the isotropic 

one. 

 

In figure 5.4 we illustrate the effect of the structural confinement on the conditional 

probability density for the heavy-hole exciton at zero-magnetic field defined as: 

( ) ( ) ( )2 2 2, / 0e e h h h e e e e eP x z x y z y f x x z= = = = = Φ + 2 .                                           (5.22) 

This corresponds to the hole and electron locations on the QWW axis and in the x-z plane, 

respectively.  It is seen that as the QWW radius decreases the probability density becomes 

more anisotropic, meanwhile the peak of the distribution becomes more pronounced.  It 

should be noted that the distribution contraction in the radial direction, due to the structural 

confinement is also accompanied by its weak contraction in the z-direction. 

 

  

 
Figure 5.4  Schematic representation of the electron conditional probability density in the x-z plane, for 

different QWW radii: (b) 04.0R a∗= , (c) 01.0R a∗= , (d) 00.3R a∗=  for the heavy-hole exciton with the 

fixed hole position at the wire axis. 
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Figure 5.5 shows the ground state binding energy of exciton as a function of the GaAs-

Ga0.7Al0.3As cylindrical QWW radius for different potential shapes: square-well 

( 0, 0.01i )eR W R= = , soft-edge barrier ( )0, 0.5i eR W R= = , parabolic finite-barrier 

( 0,i e )R W R= =

0.15 , ,i e i

, and a cylindrical nanotube-like wire with repulsive core 

( )0.01e eR R V= =V W R= . 
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)

R/a0*  
Figure 5.5  Exciton binding energies in GaAs/Ga0.7Al0.3As cylindrical QWWs with different confinement 

potential shapes as a function of the wire radius. 

 

As one compare the curves for cylindrical QWWs with equal finite barrier height and 

different potential shapes, square-well (solid line), soft-edge barrier (dotted line) and 

parabolic (dashed line) potentials one can see that for large and intermediate wire radii the 

larger the transition region thickness the higher is the binding energy.  It is apparent that for 

intermediate and large values of the QWW radius the parabolic shape gives the largest 

confinement, followed by the soft-edge barrier, whereas the rectangular potential 
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corresponds to the smallest confinement.  As the wire radius eR  decreases, the exciton 

binding energy for all potential shapes climbs up until it reaches a maximum.  As eR , 

further decreases, the exciton wave function leaks into the barrier region and the exciton 

binding energy begins to fall off rapidly meanwhile the exciton 3D character is restored.  It 

is evident that this leakage of the exciton wave function in QWW with parabolic 

confinement occurs earlier due to stronger confinement than for the other two types of 

potential and consequently the maximum of the binding energy for this model is lower than 

the maxima for the soft-edge-barrier and rectangular potentials.  In Fig. 5.5 we also present 

the results for a nanotube-like structure which is modeled by a quantum wire with repulsive 

core of internal radius, 0 5i eR . R=  and barrier height Vi Ve=  (dashed-dotted line).  It is seen 

that for large QWW radii the exciton binding energies in nanotubes are higher than those in 

QWWs with square-well potential (solid line) and conversely for small radii.  This is due to 

the fact that for large outer radii, eR , both electron and hole are mostly located within the 

“ring” of the nanotube on the same side with respect to the core and the exciton undergoes 

a stronger confinement than in the wire.  As consequence, the exciton binding energy is 

enhanced as the thickness of such “ring” is decreased up to a value comparable with the 

exciton radius.  On the contrary, as the ring thickness is smaller than the exciton radius and 

the core size ( iR ) is comparable with the exciton size, the electron and the hole tend to be 

located at opposite sides of the repulsive core, the separation between them increases and 

the binding energy diminishes.  As consequence, the exciton binding energies for small 

wire radii in nanotubes are lower than those in quantum wire and therefore, the crossover of 

the corresponding curves in Fig. 5.5 is observed. 
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5.3 EXCITON IN TWO DIMENSIONAL QUANTUM RING 

 

In this section we apply our method to analyze the effects of the magnetic field and the 

potential shape on the binding energy of excitons in quantum rings (QRs).  We consider a 

two-dimensional exciton in a ring-shaped InxGa1-xAs/GaAs quantum dot in the presence of 

a uniform magnetic field oriented along the z axis, perpendicular to the plane of the ring.  

For this model, the wave functions of the free electron and hole in the state of lower energy 

in the QR are also described by Eqs. (5.17) and (5.18).  As the system is essentially two-

dimensional the Jacobian anisotropic part in Eq. (5.19) vanishes ( 1 0J = ), and the integral 

for the isotropic part  becomes of the fourth order.  Then, after integrating in the 

expression (5.19) for the Jacobian over the two angular coordinates one can reduce it to the 

following integral of second order: 

( )rJ 0

( ) ( ) ( ) ( )
( ) ( )

2
2

0 2 22 20

2
e

e

r
h h h h

e e e e
r

e h e h

f d
J r J r r f d

r r

ρ

ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ

+∞

−

= =
   − − + −   

∫ ∫ .                 (5.23) 

Once the Jacobian is calculated the exciton binding energy can then be found from the 

differential equation (5.8) by using a procedure similar to one described above for QW and 

QWW. 

 

In our calculation the dielectric constant is assumed to be 13ε =  and the hole in-plane 

effective mass  [66].  The potential with different shapes in QR is also 

modeled by Eq. (2.22) with  and  being the internal and external radii of the ring.  By 

choosing we simulate the almost rectangular potential, W  

00.25m∗
⊥ =

R

.01( )e iR R= −

m

R

i eR

0W 0.2( )e iR= −
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QR with the soft-edge barrier potential and W 0.5( )e iR R= −

i

i

 QR with the parabolic finite 

barrier potential.  The corresponding barrier heights V  and V  are chosen as 0.7  

for the electron and  for the hole, being 

e ( )g i eE x∆

( )0.3 g i eE x∆ x  and ex  the concentration of indium in 

the core and in the barrier, respectively, and eVEg 11.1=∆  [16] being the band gap 

difference between GaAs and InAs. 

0.5i e =

0=iR Ri

 

In Fig. 5.6 we plot the binding energy of an exciton confined in QRs with different inner 

radii and fixed ratio of the barrier heights V V  as a function of the ring width 

 for different values of the magnetic field strength.  One can see that in the case of 

the quantum disk ( ) and QRs with small core radius (

)( ie RR −

nm1= ) the binding energy 

climbs up in the narrowing ring until it reaches a maximum and further as the ring width 

decreases the binding energy begins to fall off sharply. We consider this binding-energy 

jump as dimensionality instability associated with the restoring of the two-dimensional 

character of the electron wave function which leaks into to the barrier region when the 

confinement reaches a critical value (see solid lines in Fig. 5.6 (b) and inset).  With 

increasing the core radius the binding energy dependence on the ring width becomes 

different (see solid line in Fig. 5.6 (a) and dashed and dotted lines in Fig. 5.6 (b)), the 

pronounced maximum in the region of small QR widths disappears and the additional 

shoulder emerges in the region of intermediate QR widths.  We associate these shoulders 

with the effect of the electron wave function spreading in the core region when the exterior 

barrier approaches to the core.  As the QR width decreases, it reaches a critical value when 

the electron (whose effective mass is less than one of the hole) is pushed upwards from the 
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ring toward the core region, increasing the electron-hole separation and decreasing the 

binding energy.  The hole undergoes a similar effect of the ejection in the core region for 

smaller width, as the electron-hole separation decreases and the exciton binding energy 

begins to grow again. 
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Figure 5.6  Exciton binding energy as a function of the ring width for different values of the magnetic field 

and core’s radius.  Inset in (a) shows the binding energy as a function of the magnetic field for a given ring 

width and in (b) shows the exciton binding energy in a quantum disk as a function of the disk radius. 

 

In the inset in Fig. 5.6 (a) is shown the dependence of the ground state binding energy in 

QR on the strength of the magnetic field.  It is seen that this dependence is different from 

the similar one for quantum disk, where the binding energy increases in the presence of the 

magnetic field.  In the case of the quantum disk the magnetic field produces additional 

confinement which increases the probability of location near to the center of the disk of 

both electron and hole and decreases the electron-hole separation.  On the contrary in the 

case of the QR the magnetic field increases the tunneling into the core region only for the 

electron whose effective mass is less than the mass of the hole.  The effect of the magnetic 
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field upon the heavier hole is very weak and therefore the hole remains located mostly in 

the middle of the ring between the interior and the exterior barriers.  As result the electron-

hole separation in the presence of the magnetic field increases and the exciton binding 

energy falls. 
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Figure 5.7  Exciton binding energy as a function of the ring width, for three different profiles of the potential 

barriers. 

 

The effect of the potential shape on the exciton ground state binding energy can be 

observed in Fig. 5.7 where we show the exciton binding energy as a function of the ring 

width for three different profiles of the potential barrier, modeled by choosing in the 

relation (2.22) the parameter W equal to 1% (nearly square-well potential), 20% (smooth 

potential) and 50%(parabolic potential) of the QR width.  Our results for rectangular and 

parabolic potentials are in a good agreement with those of Ref. [21] obtained by using 

different calculation method.  It is seen from the Fig. 5.7 that for large values of the ring 
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width the parabolic potential (dotted curve) gives the largest binding energy, followed by 

the (dashed curve), whereas the square-well potential (solid curve) gives the smallest 

binding energy.  On the contrary, when the ring width is small, the effects of the potential 

shapes on the binding energy are in conversely order, being the square-well potential which 

presents the largest energy, therefore, a crossover in the corresponding curves in Fig 5.7 is 

evident. 
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6.  CONCLUSIONS 

 

We have developed a simple and unified method to study the ground state of exciton in 

semiconductor heterostructures with different potential shapes. We also study the influence 

of an external magnetic field and the effect of the longitudinal-optical phonon field on the 

binding energies of exciton in quantum wells and quantum-well wires based on ionic 

semiconductors.  The method was proven to work very well even when the carriers 

confinement is stronger.  Its accuracy was tested by comparison with other sophisticate 

methods such as the finite difference technique, the stochastic variational method among 

others. 

 

We demonstrated that when an isotropic model for the hole mass is taken, our method 

allow us to reduce the problem of exciton in heterostructure to one similar to the hydrogen-

like atom in fractional dimensional space where its dimension is related to the anisotropy of 

the actual semiconductor system.  The concept of a running dimension is introduced and we 

show that the dimension is not the same in the hole space, but it depends on the electron-

hole distance in the heterostructure which depends on the spatial confinement. 

 

We show that if the confinement potential is neither square-well nor parabolic, an effect on 

the exciton binding energy appeared.  This consist in that the square-well potential 

produces the stronger confinement for small sizes of the heterostructure but the weakest 

one for larger sizes of the semiconductor structure.  We also considered potential models 
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for a nanotube-like structure and a double-step heterostructure.  In the latter the main fact is 

that the exciton binding energy reaches two maxima as the exciton is confined with 

decreasing size of the heterostructure.  By controlling its size is possible to obtain two 

peaks or just one in the curve of the binding energy.  In the nanotube case, we found that 

this produces an intermediate confinement between the rectangular and parabolic potential 

as the characteristic length of the heterostructure is large. 

 

We also found a novel effect on the exciton binding energy in quantum rings.  In 

comparison to the quantum disk case, the ring gives rise to a shoulder o second peak of the 

binding energy with decreasing ring width.  This effect is similar to that in heterostructures 

with double-step potentials. 

 

It would be very interesting to extend the method to study the first excited state of an 

exciton in heterostructures semiconductors, as well as, to consider the effect of the 

parameter material mismatch. 
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