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Abstract

Title: Optimization of a Computational Imaging System by Statistical Regularization Based on a Deep

Learning Method *

Autor: Eng. Roman Alejandro Jacome Carrascal **

Keywords: Computational Imaging, End-to-End Optimization, Inverse Problems, Regularized Optimiza-

tion.

Description: Optical coding is an essential technique in computational imaging (CI) that allows high-

dimensional signal sensing through post-processed coded projections to decode the underlying signal. Cu-

rrently, the optical coding elements (OCE) are optimized in an end-to-end (E2E) manner where a set of

layers (encoder) of a deep neural network model the OCE while the rest of the network (decoder) performs a

given computational task. Although the training performance of the whole network is acceptable, the encoder

layers can be flawed, leading to deficient OCE designs. This flawed performance in the encoder arises from

factors such as the network’s loss function does not consider the intermedium layers separately as the output

at those layers is unknown. Second, the encoder suffers from the vanishing of the gradient since the encoder

is defined in the first layers. Third, the proper estimation of the gradient in these layers is constrained to

satisfy physical limitations. In this work, we propose a middle output regularized end-to-end optimization,

where a set of regularization functions are used to overcome the flawed optimization of the encoder. In fact,

our regularization does not require additional knowledge from the encoder and can be applied to most optical

sensing instruments in computational imaging. Accordingly, the regularization exploits some prior knowledge

* Master Thesis

** Faculty of Sciences. Department of Physics. Advisor: Henry Arguello Fuentes, Ph.D. in Electrical and
Computer Engineering.
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about the computational task, the statistical properties of the output of the encoder (measurements), and

the sensing model. Specifically, we proposed three types of regularizers: The first one is based on statistical

divergences of the measurements, the second depends only on the variance of the measurements, and the last

one is a structural regularizer promoting low rankness and sparsity of the set of measurements. We valida-

ted the proposed training procedure in two representative computational imaging systems, the single-pixel

camera (SPC), and the coded aperture snapshot spectral imager (CASSI), showing significant improvement

with respect to non-regularized designs. Moreover, the proposed regularization was employed for high-level

computer vision tasks in generative models showing its efficiency also in this new application.
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Resumen

Título: Optimización de un Sistema de Codificación Óptico-Computacional Mediante Regularización Es-

tadística Basado en un Método de Aprendizaje Profundo *

Autor: Román Alejandro Jácome Carrascal **

Palabras Clave: Imágenes computacionales, optimización de extremo a extremo, problemas inversos, op-

timización regularizada.

Descripción: La codificación óptica es una técnica esencial en la imagen computacional (IC) que permite la

detección de señales de alta dimensión a través de proyecciones codificadas post-procesadas para decodificar

la señal subyacente. En la actualidad, los elementos de codificación óptica (OCE) se optimizan de extremo

a extremo (E2E), donde un conjunto de capas (codificador) de una red neuronal profunda modela el OCE

mientras que el resto de la red (decodificador) realiza una tarea computacional determinada. Aunque el

rendimiento de entrenamiento de toda la red es aceptable, la capa del codificador óptico pueden ser defec-

tuosas, dando lugar a diseños de OCE deficientes. Este rendimiento defectuoso en el codificador se debe a

factores como que la función de pérdida de la red no considera las capas intermedias por separado, ya que

se desconoce la salida en esas capas. En segundo lugar, el codificador sufre la desaparición del gradiente, ya

que el codificador se define en las primeras capas. En tercer lugar, la estimación adecuada del gradiente en

estas capas está restringida a satisfacer limitaciones físicas. En este trabajo, proponemos una optimización

de extremo a extremo regularizado la salida intermedia de la red, en la que se utiliza un conjunto de fun-

ciones de regularización para superar la optimización defectuosa del codificador óptico. De hecho, nuestra

* Trabajo de grado

** Facultad de Ciencias. Escuela de Física. Director: Henry Arguello Fuentes, Doctorado en Ingeniería
Eléctrica y Computación.



Distribution Regularization For Optical System Design . 14

regularización no requiere conocimientos adicionales del codificador y puede aplicarse a la mayoría de los ins-

trumentos de detección óptica en imagen computacional. En consecuencia, la regularización explota algunos

conocimientos previos sobre la tarea computacional, las propiedades estadísticas de la salida del codificador

(medidades codificadas) y del sistema de adqusición. En concreto, propusimos tres tipos de regularizadores:

El primero se basa en las divergencias estadísticas de las medidas comprimidas, el segundo depende sólo de

la varianza de las medidas, y el último es un regularizador estructural que promueve el bajo rango y escacez

del conjunto de medidas. Hemos validado el procedimiento de entrenamiento propuesto en dos sistemas de

imagen computacional representativos, la cámara de píxel único (SPC) y el sistema de única cáptura de

imágenes espectrales con aperturas codificadas (CASSI), mostrando una mejora significativa con respecto

a los diseños no regularizados. Además, la regularización propuesta se empleó para tareas de visión por

computador de alto nivel en modelos generativos mostrando su eficacia también en esta nueva aplicación.
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Research Products

Contributions of the thesis

We provide insights on optimality criteria for designing optical coding elements via

end-to-end optimization for different computational tasks. Our insights suggest that

contracting the distribution of the coded measurements allows better performance for

reconstruction.

We proposed a set of regularization functions over the optical coding elements that

improve the performance of the network for several computational tasks and with

different optical systems.

• Statistical divergence functions where we aim to approximate the distribution of

the coded measurements to a prior distribution.

• Variance regularization by minimizing or maximizing the variance of the measu-

rements.

• Structural regularization, where we exploit low rank in the measurement set by

sparsifying the singular values of the measurements, thus concentrating the da-

taset information in a few linear independent coded measurements. Also sparsity

in a given basis, e.g., wavelet along the measurement set to promote smoothness,

reducing the data variability.
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We extensively validate the proposed design methodology with both simulation and

real acquisition scenarios, where our method outperforms the non-regularization opti-

mization.

Further applications beyond computational imaging scenarios of the proposed regula-

rization functions are shown for computer vision tasks.

Publications

The developments of this thesis have been disseminated in various international journals and

conferences. Journal papers:

1. Jacome, Roman, Pablo Gomez., and Henry Arguello. Middle Output Regularized

End-to-End Optimization for Computational Imaging. In Optica (2023) .

2. Urrea, Sergio, Roman Jacome, Salman M. Asif, Henry Arguello, and Hans Garcia.

DoDo: Double DOE Optical System for Multishot Spectral Imaging. Submitted to

IEEE Transactions on Computational Imaging

Conference papers:

1. Jacome, Roman, Alejandra Hernandez-Rojas, and Henry Arguello. Probabilistic re-

gularization for end-to-end optimization in compressive imaging. Computational Opti-

cal Sensing and Imaging. Optica Publishing Group, 2022.

2. Martinez, Emmanuel, Roman Jacome, Alejandra Hernandez-Rojas, and Henry Ar-

guello. LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral Image
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Generation with Variance Regularization. In IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition 2023,

3. Jacome, Roman, Henry Arguello, Alejandra Hernandez-Rojas, and Paul Goyes-

Penafiel. Divergence-Based Regularization for End-to-End Sensing Matrix Optimiza-

tion in Compressive Sampling Systems. In SIGNAL 2023

4. Urrea, Sergio, Roman Jacome, Salman M. Asif, Henry Arguello, and Hans Garcia.

Optical Solutions for Spectral Imaging Inverse Problems with a Shift-Variant System.

IEEE/CVF International Conference on Computer Vision 2023
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1. Problem statement

The coding elements in optical-computational imaging systems play a key role in

the fidelity of the acquired data and the quality of their reconstruction. For this reason, a

great variety of works have endeavored to propose different methods for the design of these

coding elements. Currently, the best-performing method in the state of the art is end-to-end

optimization. In this method, the optical system is modeled as a layer of a neural network

which is optimized in conjunction with a reconstruction or decoding network.

The layer that models the optical system (optical encoder) is the first layer of the

model and also the number of parameters of the computational decoder is much larger

than the parameters of the optical layer, the training of the optical coding element suffers

from gradient fading during the training stage, this results in the suboptimal design of the

optical elements and the quality of the reconstruction relies mostly on the training of the

computational decoder.

Therefore, in this thesis, we propose the use of regularizing functions that allow an

optimal optimization of the coding elements, in order to improve the overall performance

of the optical computational system in terms of the reconstructed image quality. For the

formulation of these regularization functions, it is proposed to study the statistical properties

of the set of encoded measurements i.e., the output of the optical layer.
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2. Objectives

General Objective

To optimize a computational optical coding system from a regularizing function based on

statistical properties of the system in end-to-end deep learning methods.

Specific Objectives

1. To model a computational optical coding system using a differentiable parameterization

to be incorporated as layers in an end-to-end deep neural network, where the coding

elements are the trainable variables.

2. To determine a regularization function based on statistical features of the coding sys-

tem, which allows an improvement of the performance of the decoding neural network.

3. To validate the performance obtained with the proposed regularizing function for the

computational optical coding system in the decoding task, comparing it with the non-

optimized system and with the optimized system without the regularization.

4. To evaluate the design of the designed optical coding element obtained with the pro-

posed method by decoding real measurements obtained with a laboratory prototype.
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3. Introduction

The joint operation of optical systems and computational algorithms in computational ima-

ging (CI) has allowed the acquisition of D-dimensional signals, D > 2, such as spectral

imaging Arce et al. (2014), polarization state Fu et al. (2015), depth imaging Chang and

Wetzstein (2019a), temporal imaging León-López and Fuentes (2020), and angular views in

light fields Hirsch et al. (2014). A key in these systems is the optical coding elements (OCE),

which allow modulating variables of the incident light wave, such as its amplitude, using

coded aperture (CA) Caroli et al. (1987), phase using diffractive lenses Peng et al. (2015),

polarization using micro-polarizers Fu et al. (2015) or spectral information employing dis-

persive elements Wagadarikar et al. (2008). Consequently, the design of these elements for

optimal CI performance has received great attention. Particularly, the design of CA has

been extensively studied based on analytical criteria such as the Hadamard invertibility Ca-

roli et al. (1987); Gottesman and Fenimore (1989) or compressive sensing theory Candes and

Wakin (2008), such as the restricted isometry property Correa et al. (2016); Arguello and

Arce (2014). Additionally, in the design of diffractive lenses, methods have been proposed

to reduce chromatic aberrations and geometries Mait et al. (2018) to improve CI systems.

Moreover, these elements have been designed for the encoding of spectral information Heide

et al. (2016); Jeon et al. (2019). Although an increase in the performance of the aforemen-

tioned design methods is presented with respect to standard configurations (Bernoulli CA

or Fresnel lenses), these are based on structural assumptions of the signal or system, which
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in some cases are not achieved and do not work well in several scenarios.

With new advances in machine learning algorithms, particularly those of deep learning

LeCun et al. (2015), and a large number of databases available, the end-to-end optimization

method Arguello et al. (2023) has been proposed where the OCE is optimized taking into

account properties of the training dataset. Here, the optical system is modeled as a layer

of a neural network whose trainable parameters are the OCE, and this layer is called the

optical encoder (OE). The OCE is coupled with a network that performs the decoding

task, i.e., reconstruction, classification, segmentation, etc., and is called the computational

decoder (CD). Hence, the OCE is jointly trained with the inference task, allowing the OCE

to adapt according to the training database and the CD. While the whole E2E network has

shown an overall good performance in several tasks such as spectral imaging Vargas et al.

(2021), classification, and depth estimation Bacca et al. (2021), compressive spectral image

fusion Jacome et al. (2022, 2021), extended chromatic field of view and super-resolution

Sitzmann et al. (2018), or monocular depth estimation Chang and Wetzstein (2019b) among

others, optimization of the OE can be subpar because of several reasons. For instance, the

OE parameters can be only optimized with respect to the loss function computed with

the output of the CD network yielding, first in the gradient vanishing on the OCE. Thus,

the performance of the E2E network relies more on optimal CD training than on optimal

optical codification design. Moreover, the output of the intermediate layer is not considered

a variable that needs to be carefully optimized to increase the entire performance of the

network. Additionally, the OE is highly constrained to a feasible set of values due to the
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physical meaning of the OCE, which reduces the degrees of freedom in the training stage.

To overcome the OCE training issues, we propose middle output regularized end-to-

end, where a set of regularization functions performed in the output of the OE are devised.

First, the proposed regularization functions can exploit prior knowledge about the task, the

dataset, and the OE to optimize the OCE. Also, we give insights into some criteria to better

optimize the intermediate layers’ output based on these outputs’ statistical properties such

as the mean and variance of the measurements set. We show how the measurement distri-

bution affects the CD performance according to the tasks. Empirically, we demonstrate that

if we concentrate on the distribution of the measurements (reducing the data variance), it

allows a more compact representation of the data, thus allowing better reconstruction per-

formance. While for the classification task, increasing the variance improves accuracy since

the classes are better identified by the CD. Based on these criteria, three types of regula-

rization functions are proposed to promote these properties on the OE. i) Kullback-Leiber

divergence regularization, where these functions aim to approximate the distribution of the

intermediate output (the OE output) to a prior distribution. In particular, the Gaussian

distribution (widely used in variational autoencoders Kingma and Welling (2013)) and La-

placian distribution (employed in regression tasks Meyer (2021)) priors are employed since

the KL-D has closed form solution and can be efficiently implemented. This regularization

promotes a given mean and variance value on the measurement distribution by the prior dis-

tribution. We study the effect of this prior distribution to obtain better task performance. ii)

Variance-based regularization in which the variance of the coded observations is minimized or
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maximized. This criterion has been studied in self-supervised representation learning, where

controlling the variance allows a more compact representation of the data. We minimize the

variance for the reconstruction task and maximize it for classification. iii) Structural regula-

rization, where we exploit low rank in the measurement set by sparsifying the singular values

of the measurements, thus concentrating the dataset information in a few linear independent

coded measurements. And sparsity in a given basis, e.g., wavelet along the measurement set

to promote smoothness, i.e., reduce the data variability., These regularization functions indi-

rectly concentrate on the distribution of the measurements. From a learning representation

point-of-view, these regularization functions encourage invariant OE and allow contractive

representation in the data manifold, while the recovery loss function enforces accurate image

estimation Bengio et al. (2013). Contractive representations have been used in traditional

autoencoders Rifai et al. (2011). However, this criteria has not been proposed for sensing

matrix optimization. One of the main advantages of the proposed training methodology is

that it can be applied to any optical architecture and can be adapted for any computatio-

nal task. An illustration of the proposed regularized E2E optimization method is shown in

Figure 1

Several systems were employed to validate the proposed design criteria’s effective-

ness. First, the regularization functions were evaluated using a compressive sensing scenario;

further real imaging systems were employed, such as the single-pixel camera (SPC) Duarte

et al. (2008) for imaging, and the coded aperture snapshot spectral imager (CASSI) Waga-

darikar et al. (2008), for spectral imaging. Finally, a compressive seismic acquisition system
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Figure 1. a) E2E scheme where the OE is optimized jointly with the CD network. b) Proposed
regularization functions to improve the design of the OE by inducing statistical priors during
the training stage.

was also employed Mosher et al. (2017). The OCE design of these systems has been addres-

sed with the E2E framework. For instance, in the SPC, authors in Higham et al. (2018)

design the CA for single-pixel video, also in Bacca et al. (2021) the author employs the E2E

framework to optimize the CASSI CA, and in compressive seismic acquisition for the design

of geometry settings Hernandez-Rojas and Arguello (2022).
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4. End-to-End Optimization

In computational imaging, a high-dimensional signal f ∈ Rn is acquired via a low-

dimensional coded projection y ∈ Rm, with m ≪ n. Here, we focus on linear computational

imaging systems. In this case, the the E2E optimization framework, the sensing procedure

is modeled as a differentiable linear operator, i.e.,

y = HΦf + ω, (1)

where HΦ ∈ Rn×m is the sensing matrix of the system, namely, the OE, Φ is the OCE of the

sensing system, e.g., CA, and ω is additive noise. The OCE is then optimized jointly with a

CD network Mθ with trainable parameters θ as

{θ⋆,Φ⋆} =argmin
θ,Φ

L(θ,Φ) = argmin
θ,Φ

1

K

K∑
k=1

Ltask (Mθ(HΦfk),dk) + ρRi(Φ), (2)

where {fk}Kk=1 is the training dataset, Ltask(·) is the loss function of desired tasks, dk co-

rresponds to the expected output, e.g., classification labels Bacca et al. (2020), ground truth

image Jacome et al. (2022), depth maps Chang and Wetzstein (2019a) etc. Usually, the OCE

is constrained to a set of feasible values from the physical limitations of the elements. To

impose this constraint, a regularization function Ri(Φ) is added to the loss function, where ρ

is the regularization parameter. This regularization can also induce the desired properties on
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Figure 2. Norm of the gradient of the CD parameters and the OCE of the OE.

the OCE, such as transmittance in CA, number of shots, etc., (Arguello et al., 2023, Table

II). The main goal here is that the OCE is updated according to the task loss function and

the physical constraint given by the regularization. Particularly, following the chain rule, the

gradient of the loss function with respect to the OCE is

∂L
∂Φ

=
∂Ltask

∂Mθ

∂Mθ

∂y

∂y

∂Φ
+ ρ

∂Ri(Φ)

∂Φ
(3)

The training of the OCE has two main issues. i) The training is highly conditioned to

the physical-limitation regularization function, which decreases the degrees of freedom of the

OCE. ii) Gradient vanishing because the OE being the first layer of the E2E network, most

of the optimization is performed over the CD parameters rather than optimizing the optical
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coding properly. As an illustration of this phenomenon in Fig. 2 is plotted the norm of the

loss function gradient with respect to the θ and Φ in a logarithmic scale. This experiment

is performed with an SPC as OE; its corresponding OCE is the CA, and the computational

task is recovery via a UNET network. Here, a significant difference (almost one order of

magnitude) between the OE gradient and the CD parameters gradient. Mainly, this issue

is related to the intermediate output of the E2E (the coded measurements), which is not

taken into account independently on training, and the optimization is only performed with

respect to the CD output. Therefore, we provide new insights into what should be this

intermediate output based on the statistical properties of this output. Then, based on this

criterion, we propose a set of regularization functions that control the statistical properties

of the coded measurements. Other regularization functions have been proposed to increase

the performance of the E2E network. For instance, Bacca et al. (2021) proposes to minimize

a regularization based on concentrating the eigenvalues of the sensing matrix HΦ following

the function ∥HT
ΦHΦf − f∥2. Similarly Bacca et al. (2022a) proposes to minimize the closed-

form solution of a regularized ℓ− 2 optimization problem, i.e. argminf ∥HΦf − y∥2 + γ∥f∥2,

yielding to the regularization function ∥fk − (HT
ΦHΦ + γI))−1HT

ΦHΦfk∥2, thus promoting

good invertibility properties on HΦ. These functions aim to obtain an approximation of

the desired image only with the invertibility properties of the sensing matrix. However,

this kind of invertibility is not common due to a highly structured matrix and mostly due

to the ill-posed nature of the problem. Thus, this regularization does not provide better

optimization of the OE. Additionally, these regularization functions are based on the recovery
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problem and cannot be adapted to other computational tasks. The proposed regularization

functions promote a contractive OE, which reduces the variance between training samples’

compressed projections. Then, by reducing the variability on the compressed domain, the

decoder performs better in the reconstruction. Also, for the classification task, the opposite

effect is desired, expanding the distribution of the measurements.
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5. Proposed regularization functions

In this thesis, it is proposed a new type of regularization function for E2E optimiza-

tion, promoting some properties on the distribution of the measurements. The optimization

problem (2) becomes

{θ⋆,Φ⋆} =argmin
θ,Φ

L(θ,Φ)

= argmin
θ,Φ

1

K

K∑
k=1

Ltask (Mθ(HΦfk),dk) + ρRi(Φ) + µR(Y), (4)

where µ is the regularization parameter and Y ∈ RK×m is the matrix containing all the

training batch of compressed measurements, i.e., Y = [yT
1 ,y

T
2 , . . . ,y

T
K ]

T .

5.1. Divergence-based regularization

This type of regularization function is based on the idea behind variational auto-

encoders Kingma and Welling (2013). Particularly, this regularization aims to approximate

the probability distribution of the measurements set denoted as the posterior distribution

qΦ(Y|F), where F ∈ RK×n is a matrix with all the input training images, to a prior dis-

tribution pβ(Y), where β is the set of parameters that defines the prior distribution. This

regularizer is defined as

RD(Y) = D (qΦ(Y|F)∥pβ(Y)) , (5)
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where D denotes the divergence function. Several divergences have been used as loss functions

in neural network training. The most common is the Kullback-Leiber divergence, employed in

variational-autoencoders Kingma and Welling (2013), generative adversarial networks Ngu-

yen et al. (2017), self-supervised learning Hung et al. (2019) among others. Particularly, the

KL divergence is defined as follows, given two probability distributions P (x) and Q(x), we

have DKL(P∥Q) =
∫
P (x) log

(
P (x)
Q(x)

)
dx. One of the main reasons of using the KL divergence

is that it has a closed-form solution when P and Q are Gaussian or Laplacian distributions

(see Kingma and Welling (2013); Metzler et al. (2020)). In these cases, the parameters for

the prior distribution pβ(Y) are β = µp, σp, where µp is the mean value and σp is the variance

of the distribution. For the distribution of the measurements qΦ(Y∥F). The mean µY ∈ Rm

and variance σY ∈ Rm
+ are computed pixel-wise across the training batch. For the Gaussian

case, the KL divergence-based regularizer is defined as

RKL−G(Y) = log

(
σY

σp

)
− σ2

Y + (µY − µp)
2

2σ2
p

+
1

2
, (6)

and for the Laplacian assumption, the KL divergence-based regularizer is given by

RKL−L(Y) = log

(
σY

σp

)
− σp + e

(
−|µp−µY |

σp

)
+ |µp − µY|

σp

− 1. (7)

The effect of these regularizers depends directly on the values of the mean and variance

of the prior distribution. Thus, these are hyperparameters of the regularizers needed to be
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chosen to obtain the desired behavior.

5.2. Variance-Based regularization

Another way to control the measurement set distribution is to regularize the variance

directly. Here, we proposed a variance minimization regularizer. This variance-based regula-

rization criterion has also been used in representation learning for self-supervised task Bardes

et al. (2022), sparse-coding Evtimova and LeCun (2021). Here, we extrapolate these crite-

ria of optimal low-dimensional representation basis to a compressive sensing system, thus

giving more interpretability of the designed OCE by the E2E optimization. The proposed

regularization function is given by

RV min(Y) = ∥σY∥2. (8)

For this regularization, we control how much the variance is minimized by tuning the hy-

perparameter µ on (4). In some downstream tasks, such as classification, where we want to

identify the difference from the image of different classes, therefore, if the distribution of the

measurements is wider, i.e., greater variance, the CD could better identify the classes. Thus,

the variance maximization can be promoted by the following regularization function

RV max(Y) = ∥σmax − σY∥2, (9)

where σmax is a maximum variance reference. This hyperparameter can also be tuned.
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5.3. Structural regularization

This type of regularization is based on the common priors of compressed sensing

recovery: low-rank and sparsity Candes and Wakin (2008); Fazel et al. (2008). Although

these priors are employed over the underlining signal f , here, we employ these criteria to

achieve the following effects in the measurement space. The low-rank prior is employed

to concentrate the information of the dataset in a few representative measurements, thus

reducing the projection manifold and allowing better reconstruction by the CD. To promote

the low rankness on the measurement space, we minimize the ℓ1 norm of the singular values

of Y. Particularly, employing the singular value decomposition (SVD) of the measurement

matrix, we obtain Y = UDVT where the matrices U ∈ Rm×m and V ∈ RK×K are the left

and right singular vector respectively and D ∈ Rm×K is a rectangular diagonal matrix with

the singular values in its diagonal. The singular values are denoted by d = [di, . . . , dK ] where

di = D(i,i) for i = 1, . . . , K. Thus, our low-rank regularization is the following

RLR(Y) = ∥d∥1 (10)

By applying the ℓ1 norm on the singular values, we promote having few non-zero values on

d and thus reducing the rank.

The second criterion, the sparsity-based regularization, follows the same intuition of

its application in imaging inverse problems, where sparsity over a given representation basis

(wavelet, DCT, or Fourier) is employed to promote the smoothness of the images. Here



Distribution Regularization For Optical System Design . 33

we aim to promote smoothness along the coded measurements, thus reducing the variance.

Mathematically, the regularizer is

RS(Y) = ∥ΨσY∥1 (11)

where Ψ is the representation basis. In this work, we consider the Haar wavelet, which has

shown good results in promoting smoothness on signals Selesnick and Figueiredo (2009).
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6. Compressive Imaging Sensing Models

To validate the proposed deep optical design, it was employed two flagship CI opti-

cal architectures, the CASSI and SPC. Additionally, beyond optics systems, we employ a

compressive seismic acquisition scheme.

6.1. Single Pixel Camera

The first optical architecture is the single pixel camera (SPC) Duarte et al. (2008),

this architecture is widely used in compressive imaging systems. This system employs an

imaging lens that spatially introduces light, which is previously modulated by a CA, and then

integrates the encoded image into a single-pixel detector. An illustration of the SPC system

is depicted in Figure 14. The CA can be implemented with spatial light modulators (SLM)

Osorio Quero et al. (2021), such as a digital micro-mirror device (DMD)Galvis et al. (2015),

that selectively redirects parts of the light beam Jerez et al. (2018). The SPC uses a CA

Φk
(i,j) that spatially modulates all the information from the scene F(i,j) with the same pattern,

where (i, j) index the spatial coordinates, k indexes each captured snapshot. In particular,

the CA Φk
(i,j) is a binary pattern whose spatial distribution determines the reconstruction

performance. Mathematically, the CA effect over the scene can be represented as:

F̂k
(i,j) = F(i,j)Φ

k
(i,j), (12)

After that, the modulated scene F̂ is focused in a single spatial point by the condenser
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Figure 3. Single pixel camera scheme. A scene is codified by the CA and this coded field is
integrated into a single pixel sensor.
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lens, and captured by a single-pixel detector. The resulting sensing matrix Ĥϕs ∈ RC×MN

contains the vectorization of the CA at each snapshot c in his rows. The aperture codes

implemented for the sensing matrix, are the design parameter from the proposed regularizers.

The acquisition system is modeled as

y = Ĥϕsf + ns, (13)

where, y = [y1, ..., yC ]
T is the compressed measurements, f ∈ RMN is the vectorized

image and nc is additive Gaussian noise.
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Figure 4. CASSI optical system scheme. A spectral scene is spatially modulated by the CA
which is dispersed by the prism. Finally, a grayscale sensor integrates the measurements

Scene

Objective
Lens

Coded
Aperure Prism

Grayscale
Sensor

Relay
Lens

6.2. Coded Aperture Snapshot Spectral Imager

In the CASSI architecture, the input light source is first focused by an imaging lens

to a CA, which codifies the spatial information of the image. Then, the spectral information

of the coded field is dispersed through a prism. Finally, the coded and dispersed information

impinges on a focal plane array. An illustration of the CASSI system is shown in 4. Therefore,

the discrete model of the CASSI measurements yc can be formulated as

yc(i,j) =
L∑

ℓ=1

Φc(i,j)F(i,j−ℓ,ℓ), (14)
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where F ∈ RM×N×L and the CASSI measurements, Φc represents the CA. The discrete

model in (14) can be expressed in a matrix-vector product in the following expression

yc = HΦcf + nc, (15)

where yc ∈ RM(N+L−1) is the compressed measurements, HΦc ∈ RM(N+L−1)×MNL is the

CASSI sensing matrix, f ∈ RMNL is the vectorization of the high spatial-spectral resolution

image, and nc ∈ RM(N+L−1) is additive noise. Here, the parameter to be designed is the CA

Φc

6.3. Compressive seismic acquisition

The cross-spread is a fundamental seismic acquisition geometry involving one linear

arrangement of shot points and receivers perpendicular to each other Yilmaz (2008)Liner

(2016). To mathematically represent the seismic data acquired by a cross-spread, let X ∈

RI1×I2×I3 be a data cube where each dimension represents I1 time samples, I2 receivers, and

I3 number of shots. Since economic limitations and environmental constraints, the observed

seismic field data is irregular and incomplete along the receiver dimension, leading to a

recovery task. To simulate the undersampled data, let ϕ ∈ {0, 1}I2 be a sampling vector

with dimensions equal to the number of receivers. The entries of ϕ, denoted as ϕi, define

whether the information is acquired. If ϕi = 0, the receiver is removed; otherwise, ϕi = 1,

and it is acquired. The diagonalization of the sampling vector derives the diagonal sampling

matrix as Hϕ = diag(ϕ). Once Hϕ is built, the undersampled measurements are obtained
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via n-mode product(×n) defined in Lathauwer et al. (2000)

Y = X ×2 Hϕ, (16)

where (16) represents the 2-mode product between the full data X and Hϕ. The undersam-

pled measurements Y ∈ RI1×I2×I3 contains the removed receivers as columns in zero for each

shot.

A conventional relation that determines the number of acquired receivers by the sen-

sing matrix is the transmittance, calculated as

δϕ =
M∑
i=1

ϕi

I2
. (17)

For instance, when δϕ = 0.7, the 70% of the total receivers are acquired. The E2E optimi-

zation is mathematically expressed as

{ϕ̂, θ̂} = argmin
ϕ,θ

L (Nθ (X ×2 Hϕ) ,X ) + ρR (ϕ) , (18)

where the regularization R (ϕ) = (δ0 − δϕ)
2 controls the transmittance to converge to a

desired value δ0, and ρ represents a weight parameter.
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7. Simulation Results

7.1. Simulation Settings

7.1.1. Datasets and pre-processing. Three datasets were employed to

train the networks. For the SPC experiments, we employed the Fashion MNIST dataset

Xiao et al. (2017) which contains 60000 images of 10 classes of clothes. We split this data

set into 50000 for training and 10000 for testing. All images were resized to have 32 × 32.

For the CASSI experiments, the ARAD spectral images dataset was used Arad et al. (2022),

where the images were resized to have a size of 128× 128× 31, and 900 images were used for

training 100 for testing. For the compressive seismic acquisition, we employed the synthetic

dataset SEAM Phase II built by the SEG Advanced Modeling Program (SEAM) during its

second project, named “SEAM Phase II–Land Seismic Challenges”. The Foothills model is

focused on mountainous regions with sharp topography at the surface and high geological

complexity at depth, which makes this data set a challenge for seismic data reconstruction

Regone et al. (2017). The seismic survey covers a rectangular patch of 1.5 × 1.2 km with a

total sampled depth of 4100 ms. The training and testing datasets comprise 381 images of

128×128.

7.1.2. Metrics. To measure the reconstruction quality the following metrics

were used the peak-signal-to-noise-ratio (PSNR) Horé and Ziou (2010), the structural simi-

larity index measure (SSIM) Wang et al. (2004),

1. PSNR: Measured in dB, is defined as the logarithm of the ratio between the maximum
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possible power of a signal and the power of corrupting noise that affects the fidelity of

its representation so that a higher value indicates superior quality of reconstruction.

And is expressed as

PSNR(x, x̂) = 10 log10

(
max(x)2

RMSE(x, x̂)2

)
. (19)

2. SSIM: As aforementioned, this metric measures the quality of the estimated image in

terms of the degradation of the structural information instead of absolute errors. It is

implemented on various windows of the image, denotes fX and f̂Y a window of S×S of

the ground truth image and the estimated image, respectively, then, the SSIM metric

is defined as

SSIM(xX , x̂Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, (20)

where µ, σ are the mean value and variance of the window, respectively, σXY are the

covariance of fX and f̂Y , c1 = (k1L)
2, c2 = (k2L)

2 are two variables to stabilize the

division with weak denominator, L is the number of quantization levels of the image,

k1 and k2 are hyperparameters, usually 0.01 and 0.03 respectively. For SSIM values

close to 1 the quality of the estimated image is better.

3. To evaluate the performance on the classification task, we employ the accuracy metric
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defined as

A =
1

C

C∑
c=1

TPc

Totalc
,

where C is the number of the classes and TP are the True Positive

7.1.3. Computational Decoders. In particular, we perform classification

and recovery tasks, where for the first we use a MobilNet-V2 network Sandler et al. (2018)

which is a lightweight model widely used for classification. For the recovery task, a U-Net

model with five convolution blocks was used for each downsampling and upsampling process.

7.1.4. Training settings. For all the experiments, we trained the E2E net-

work for 100 epochs, halving the learning rate every 40 epochs. For the CASSI CA bi-

nary constraint, the polynomial regularization in Bacca et al. (2021) was employed i.e.,

R(Φ) =
∑

ij(1 − Φij)
2(Φij)

2. For the SPC CA constraint, we consider values {−1, 1} that

in practice can be achieved by following the procedure in detail in (Bacca et al., 2020,

Appendix), which allows better signal-to-noise ratio (SNR). Then, the physical constraint

regularizer is R(Φ) =
∑

ij(1 − Φij)
2(1 + Φij)

2. The parameter of the physical constraint

regularizer ρ was dynamically updated during training as suggested in Bacca et al. (2021).

7.2. Compressed Sensing Experiments

In a first experiment to validate the performance of the proposed regularized E2E

network, we study a compressive imaging scenario, not imposing a physical and structural

meaning on the sensing matrix HΦ. Here, we use a compression ratio of 10 %.

KL-Divergence: First, we analyze the effect of the mean and variance of the prior
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Figure 5. Recovery performance for the CS scenario employing the KL-D regularizers with
the Gaussian (left) and Laplacian (right) cases

distribution (µp, σp) on network performance. Here, we vary the µp from -2 to 2, and σp was

changed from 0.1 to 2.0, taking five equispaced values. The results of this experiment are

shown in Fig 5 , where optimal reconstruction PSNR values are obtained at variances close

to 1.0 and for means close to 0. These results suggest that better reconstruction performance

is obtained by concentrating on the measurement distribution. The main interpretation is

that reducing the representation space can improve the CD performance since the variability

of the data is reduced.

Variance and structural regularizers Then, we analyze the performance of the

E2E network for the variance minimization and structural regularization. In Fig 6(a) the

recovery performance is shown depending on the regularization parameter in (4) where op-

timal values for the regularization suggest a trade-off between how much concentrate the

distribution and the recovery performance. In particular, significant recovery improvements

are shown with the low-rank and sparsity experiments with respect to the baseline (no regu-



Distribution Regularization For Optical System Design . 43

Figure 6. Recovery performance for the CS scenario employing the variance and structural
regularizers compared with the non-regularized E2E network. a) Performance depends on
the regularization parameter µ. First and second pixel distribution of the test data set for
b) low rank, c) minimize variance, and d) sparsity.

a c

b d

larization E2E). Fig 6(b-d) presents the distribution of two pixels of the test set measurement

with the trained system, where it depicts the distribution concentration compared with the

no-regularized model. Additionally, Fig. 7 shows some visual reconstructions from two ima-

ges of the test set, validating that the proposed regularization outperforms the baseline E2E

method. Here, the best overall performance was obtained by the sparsity regularization.
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Figure 7. Visual reconstruction results for the CS scenario using the variance and the struc-
tural regularizations and the baseline E2E designs. The blue values correspond to the best
results and the green to the second best.

This is due that in CS, where the sensing matrix is not constrained to the physical condi-

tions of a particular system, the E2E network becomes a commonly used autoencoder, and

then applying sparsity regularization on the low-dimensional representation yields sparse

autoencoders Ng et al. (2011) which is widely employed method to improve representation

performance.

7.3. SPC experiments

For the SPC, we performed experiments on classification and recovery tasks. The clas-

sification is performed directly from the compressed measurements without reconstructing

the underlying scene. During the training of the E2E network, the parameter of the physical

constraint regularizer ρ was dynamically updated during training as suggested in Bacca et al.

(2021), which in the first epochs the ρ is very low, thus not constraining the training of the

SL and it is increased to obtain a binary CA. For both the recovery and classification tasks,
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Figure 8. Recovery performance for the SPC system the KL regularizers with the Gaussian
(left) and Laplacian (right) cases.

we employed the Fashion MNIST dataset. For all experiments, we used a compression ratio

of 0.1.

Recovery experiments: For this experiment, we vary the values of µp from -2 to 2,

and σp was changed from 0.1 to 2.0, taking five equispaced values. The CD in this experiment

is a UNET Ronneberger et al. (2015) with five downsampling and five upsampling blocks. The

results of this experiment are shown in Fig. 8. Here, the performance obtained is similar to

that obtained in the CS case, where lower variance yields better reconstruction performance.

Also, similar to the results in Fig. 5, the best performance is obtained in µp = 0, following

the concept of batch normalization where the centered output distribution yields more stable

training and better performance.

Then, we evaluate the variance and structural regularizers (RV min, RLR and RS) in

the recovery task for the SPC architecture. To this end, a study of the hyperparameter µp

was performed, varying the µp from 10−8 to 100 in a logarithmic scale. The results of this
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Figure 9. Recovery PSNR performance for the SPC system with the minimum variance and
structural regularizers for different regularization parameter µp (a) measurements distribu-
tion comparison for the non-regularized design with the sparsity (b), variance minimization
regularization (c) and low-rank (d)
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experiment are compared with the baseline E2E (non-regularized training), traditional CA

aperture design based on Hadamard matrices Duarte et al. (2008), and random CA obtained

with a Bernoulli distribution. The reconstruction performance measured in PSNR of this

experiment is shown in Fig. 9(a). The results suggest that, in most cases, the proposed

regularized outperforms the baseline E2E design, Hadarmard, and random settings. Later,

the distribution of the first two SPC snapshots for all images in the test data set was
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Figure 10. Visual reconstruction results for the SPC scenario using the variance and the
structural regularizations, the baseline E2E designs, random coding, and coding based on
Hadamard matrices. The blue values correspond to the best results and the green to the
second best.

Figure 11. Optimized CA of two SPC snapshots employing the proposed regularization fun-
ctions for the recovery tasks. Additionally, the E2E baseline, random, and Hadamard CAs
are shown for comparison purposes.

KL
GaussianHadamardBaselineRandom

KL
Laplacian

Minimize
Variance Low-Rank Sparsity

plotted for the best-performing setting of each regularizer, variance minimization Fig. 9 (b),

sparsity. 9 (c), and low-rank Fig. 9(d). Each scatter plot also shows the distribution obtained

by the non-regularized E2E sensing matrix design. In all cases, the resultant distribution

employing the regularizers is more concentrated than the non-regularized validating that for

the reconstruction task, we perform better by reducing the variance of the measurements.
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Figure 12. Classification performance for the SPC system the KL regularizers with the Gaus-
sian (left) and Laplacian (right) cases.

Additionally, in Fig. 10 are shown some visual reconstruction of two images of the test

set, where the reconstruction for these particular examples shows that the proposed design

methodology improves upon the non-regularized E2E, the random coding and the Hadarmad-

based CA. Here, the best-performing regularization is the variance minimization, mainly

due to the physical constraint that the OCE has values {-1,1} yields that with a proper

design, data variance can be effectively reduced. Finally, the resulting CA for employing

the regularization functions is shown in 11 along with the CA of the comparison methods.

Notably, the CA structure is highly affected by the regularization functions showing for

instance that the structural regularizer converges to an almost uniform pattern, while the

variance and KL-based regularizer tends to form clusters into the CA.

Classification experiments: Here, we evaluate the proposed regularization fun-

ctions on the classification high-level task. The CD is a Mobilnet-V2 Sandler et al. (2018),

which is a lightweight classification network. In this scenario, the same values were used in

the experiment in Fig. 8 of µp and σp. The results are shown in Fig. 12, where an opposi-



Distribution Regularization For Optical System Design . 49

Figure 13. Classification accuracy performance for the SPC system with the minimum
and maximum variance regularizers for different regularization parameters µp (a) measu-
rements distribution comparison for the non-regularized. Measurements distribution of the
non-regularized design (b), minimum variance (c), and maximum variance (d).

dc

ba

te performance is obtained compared to the recovery case. Higher variance provides better

classification performance.

Then, employ the variance regularization (RV min and RV max) in the classification task.

A study of the hyperparameter µp was performed, varying the µp from 10−8 to 100 in a loga-

rithmic scale. The maximum variance value of RV max was set to σmax = 5 as we saw better
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Figure 14. Reconstruction PSNR performance for CASSI system varying the regularization
parameter µp (a), the optimized CA for non-regularized and regularized training (b) visual
reconstruction (c), and spectral reconstruction (d). Blue values correspond to the best results,
and green to the second best.
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performance with this setting. The results of this experiment are compared with the baseline

E2E (non-regularized training). The accuracy performance of this experiment is shown in

Fig 13(a). These results show that the variance maximization regularizer outperforms the

baseline regularization and the variance minimization. Additionally, the regularization RV min

underperforms the baseline validating that more concentrated distribution negatively affects

the decoder performance. Then, the distribution of the first two SPC snapshots was plotted

for the best performant setting of each regularizer, the non-regularized design Fig. 13(b),

variance minimization Fig. 13(c) and variance maximization Fig. 13(d). The colors on the

scatter represent the corresponding class of each measurement. While in the baseline and

minimize variance distributions, the classes are hardly identified, in the variance maximiza-

tion design, the measurements of each class are clustered which helps the decoder to classify

better the data.
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7.4. CASSI experiments

Here, we aim to design the CA of the CASSI with the proposed regularization fun-

ctions. The regularizers RV min, RS, and RLR were used for this scenario since we want to

recover the spectral image from the compressed measurements. Also, as a comparison, ran-

dom CA and blue noise CA Correa et al. (2016) as non-data-driven designs. Then, we first

evaluate the performance with respect to the regularization parameter µp compared with

the non-regularization design. This parameters was varied from 10−8 to 100 in a logarith-

mic scale. The results in Fig 14(a) show that the proposed regularizer improves upon the

non-regularized setting where the low-rank is, in this case, the one that provides the best

performance. In Fig. 14(b) is shown the optimized CA for the non-regularized and regulari-

zed design. Remarkably, the low-rank design convergence to a uniform sampling pattern is a

highly desired criterion in compressive imaging sensing matrix design Correa et al. (2016);

Arguello and Arce (2014). Fig 14(c) shows a visual reconstruction of a test image with its

corresponding PSNR and SSIM reconstruction values. Finally in Fig 14(d) the reconstruction

of a red spectral signature is plotted with the corresponding SAM value. These last results

show that the best results correspond also to the low-rank design. The low-rank regularizer

performs better in this scenario since this prior is a very suitable prior for spectral ima-

ges since this kind of data contains highly redundant information which can be effectively

represented via low-rank approximation.
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Figure 15. Visual results of the reconstructed seismic data for the non-regularized model and
the models trained with the KL-Gaussian and KL-Laplacian regularizers.

Ground-Truth
Baseline KL-Gaussian KL-Laplacian

PSNR [dB] 34.32 [dB]34.73 [dB] 37.27[dB]33.86 [dB]

PSNR [dB] 33.67 [dB] 36.58[dB]32.73 [dB]

7.5. Compressive seismic acquisition setting

For this experiment, the transmittance value was set to δ0 = 0.6. The CD network

is a convolutional neural network with 5 convolutional layers with 128 filters each. Here we

set for both regularizers µp = 0.5 and σp = 1.6. Figure 15 shows the reconstruction of two

seismic test data, where the best results are obtained by the KL-Laplacian regularization.

Nevertheless, the KL-Guassian model outperforms the non-regularized model. Also, it is

shown the subsampling vector for each model.
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Figure 16. SPC acquisition system validation of proposed method

8. Experimental Validation

To perform the experimental validation of the proposed OCE design method, the

SPC, and the CASSI systems were implemented. or the SPC, we focus only on the classifi-

cation task since this system has proven to be very suitable for this task Bacca et al. (2020,

2022c). For the CASSI the computational task is reconstruction, therefore both tasks are

also experimentally validated.



Distribution Regularization For Optical System Design . 54

8.1. SPC Implementation

The single-pixel system (SPC) was implemented employing a group of lenses that

concentrate the light on a single pixel which is focused at the entrance of the optical fiber.

The illumination used was a 3900E lamp from Illumination Technology, which has a spectral

range of 400-2200 [nm]. For the implementation of the CA generated by the regularizers, a

reference DMD DLP7000 from Thorlabs was used, which has a pitch of 13.6 [µm]. In this

case, the binary levels are either 1 or -1. The modulation effect caused by the -1 level can

be implemented by acquiring a measurement with a CA of all ones and subtracting it from

each captured snapshot. Also, two types of sensors were used, the first of these is the side

information sensor, which is a stingray camera F-145, with a pitch size of 6.45 [µm]. On

the other hand, to acquire the SPC measurements, a Flame Vis-Nir spectrometer was used,

which has a spectral range from 350 to 1077 [nm], as shown in Fig. 16.

We employed this architecture to validate the performance of the proposed method.

For this experiment, fifteen scenes of the first five classes of the Fashion MNIST dataset were

acquired utilizing the implemented SPC system. A re-training of the network was performed

with the calibrated and captured CA and using only the images from the first five classes

of the Fashion MNIST dataset. From this, some of the examples acquired are shown in Fig.

17 a) were used as a test to evaluate the performance of the proposed method for every one

of the regularizers. Fig. 17 b) shows the confusion matrix for the non-regularized design,

the KL-Laplacian, the KL-Gaussian, and the maximize variance regularization. The results
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Figure 17. Validation of the proposed method through the SPC acquisition system, for the
classification task. (a) Scenes from the acquired Fashion-MNIST dataset with SPC imple-
mentation. b) Classification confusion matrix for non-regularized design and with the regu-
larization functions.
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suggest that the variance maximization regularization has the most accurate classification

performance. Additionally, using the other regularization functions there is an improvement

with respect to the non-regularized design.
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Figure 18. Experimental prototype of the CASSI acquisition System

8.2. CASSI Implementation

On the other hand, the CASSI system was mounted, which consists of an amici prism

to perform light scattering at different wavelengths. Additionally, a Thorlabs DLP7000 DMD

was used to perform the scene modulation, with the same specifications mentioned above.

Additionally, for acquiring this information 2 stingray cameras were used, which were placed

at a distance from the image plane of the lenses. Finally, for the spectral illumination of

the scene, a TLS Tunable QTH Light Source monochromator was used, which allowed for

illuminating the scene in a spectral range of 400-700 [nm], obtaining 31 spectral bands.

In this experiment Fig 19, we performed the acquisition of several scenes by varying the
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CA implemented in the DMD. These CA were generated from the proposed model by varying

the regularizers used, which are minimum variance, low-rank, and without regularizer. The

sparsity regularization is not employed in this experiment because its best performance was

lower than the low-rank design, therefore, we only employ the low-rank design to compare the

results of the structural-based regularization with the variance-based regularization design.

From these captures the reconstruction of the scene was performed in a range of spectral

bands ranging from 400-700 [nm], where it is observed that the behavior of the proposed

model along the spectral range produces less artifact with the proposed design than with the

base E2E design. Additionally, a region of interest in the reconstructed images was analyzed,

where the mean spectral signature is plotted along with the SAM metric. This result shows

that with the proposed CA design, a more accurate spectral reconstruction is obtained.
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Figure 19. Reconstruction of real data with the CASSI system with the low-rank, minimize
variance, and no-regularization designs. The 30 reconstructed spectral bands and a spectral
signature reconstruction of a region of interest. The blue SAM value refers to the best
performance and the green to the second best.
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9. Extension to High-Level Tasks In Generative Adversarial Networks

The proposed regularization functions within this thesis have been employed to de-

sign physical encoders in computational imaging. However, this codification strategy is highly

suitable in several computer-vision applications. Particularly, architectures based on the au-

toencoder Hinton and Salakhutdinov (2006), low-dimensional and meaningful representation

of the high-dimensional data is obtained. This compressed representation from autoenco-

ders has been employed in a wide range of applications including semi-supervised learning,

clustering, and anomaly detection Bank et al. (2023). The core idea behind autoencoder is

that by employing a deep neural network, called an encoder, denoted by EΦ, where Φ is

the trainable parameters, we can find a low-dimensional representation of the image dataset

X = {xℓ}Tℓ=1,xℓ ∈ Rn. The low-dimensional representation of the ℓ training sample is defined

as zℓ = EΦ(xℓ), zℓ ∈ Rm where m ≪ n. Then, another network Dθ that aims to recover the

input image xℓ from zℓ. The training of the autoencoder networks is performed as follows

{Φ, θ} = argmin
Φ,θ

T∑
ℓ=1

LMSE(Dθ(EΦ(xℓ)),xℓ), (21)

where LMSE(·) denotes the mean squared error loss function. An illustration of this neu-

ral network architecture is shown in Fig. 20. Here, it is of wide interest to impose certain

structures on the latent representation zℓ for certain applications. Thus, we proposed to em-

ploy the variance regularization function for spectral image generation using low-dimensional
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Figure 20. Autoencoder architecture

representation from an autoencoder.

9.1. Low-Dimensional Approach for Spectral Image Generation Motivation

Spectral images (SI) are a collection of images acquired at different wavelengths of

an electromagnetic field, which conforms to a 3D data cube. This information allows for

estimating the unique characteristics and distribution of the different materials within a

scene. Hence, spectral image information is valuable in medical applications Li et al. (2016),

remote sensing Govender et al. (2007), art conservation Fischer and Kakoulli (2006), among

others. Spectral images can be classified into two groups depending on their spatial and

spectral resolution; multispectral images, which have high spatial resolution and low spectral

resolution, and hyperspectral images, which have a low spatial resolution but high spectral

resolution.

The recent advances in data-driven DL methods have opened new frontiers for SI
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processing, acquisition, and its applications Ozdemir and Polat (2020). Some examples are

in hyperspectral, and multispectral fusion Xie et al. (2019); Jacome et al. (2021); Yang et al.

(2018); Jacome et al. (2022), classification Jácome et al. (2021); Bacca et al. (2022b), or

recovery methods for snapshot compressive spectral imaging (CSI) recovery Monroy et al.

(2021); Arguello et al. (2023). However, one of the main reasons for the great success of DL

in a wide range of applications is that the models can extract the intrinsic structure of large

datasets LeCun et al. (2015). Further, the SI datasets are limited in the number of available

SIs due to the expensive and long acquisition times Hagen and Kudenov (2013). Thus the

performance of the DL methods is still restricted to the available data.

To address this issue, data augmentation (DA) strategies are employed Shorten and

Khoshgoftaar (2019), where geometrical transformations (flipping, rotation, contrast modi-

fication, etc.) are applied to the SIs to generate new training samples. Recent approaches

employ generative adversarial networks (GANs) Goodfellow et al. (2020) to synthesize new

samples as DA based on learning the probability distribution of the SI dataset and generating

new SI samples from the learned distribution.

Despite the great success of GANs in RGB image generation, this type of network

suffers when the data distribution is of high dimensionality as those of SI. Thus, we train an

autoencoder network to obtain a low-dimensional representation of the SI dataset. Then, a

GAN will be trained adversarially using the LD image dataset to generate new LD image

samples. Finally, the generated LD image samples are decoded through the AE network to

obtain generated SIs.
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9.2. Low Dimensional Generative adversarial networks

Consider a SI dataset {xℓ}Tℓ=1, with T samples, and xℓ ∈ RMNL, where M,N are the

spatial dimensions and L the number of spectral bands. Denoting the dataset distribution as

px(x). Then, a generative network G will be optimized to obtain a distribution pg from data

xℓ which will probably achieve that pg ≈ px. A prior distribution is assumed on input noise

variables denoted as pn(n) where n ∼ N (0, Im) and m is the random variable dimension,

usually a Gaussian distribution, which are mapped to the desired generated images. Then, a

discriminative network T is also defined. This network will receive the generated samples or

dataset samples. The training of a GAN Goodfellow et al. (2020), called adversarial training,

can be represented as

{Ĝ, T̂ } = argmin
T

argmax
G

Ex∼pdata(x) [log (W(x))] + En∼pn(n) [log (1−W (G(n)))] . (22)

In the adversarial training, each network {G, T } compete to achieve their goals: G will

generate fake samples, and T will predict if the received samples are real or fake. However,

achieving proper convergence of GAN through adversarial training will be difficult, while

more high dimensionality has the generated images and with limited training samples as

in SI. Thus, our proposed approach is the following First, we trained an SI autoencoder

following the optimization problem in (21). Then, we use a GAN that will be optimized with

respect to the LD representation from the SI autoencoder. Then, the adversarial optimization
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problem from 22 is re-formulated as

{Ĝ, T̂ } = argmax
G

argmin
T

Ex∼pdata(x) [log (T (EΦ(x)))] + En∼pn(n) [log (1− T (G(n))] . (23)

Thus, in this case, is of high importance what properties should both, the low-dimensional

features of the original SI dataset zℓ = Eθ(xℓ) and the generated synthetic low-dimensional

samples e = G(n). Thus we applied the variance regularization for both the autoencoder and

the GAN.

9.3. Statistical Regularization for the AE and GAN

Towards improving the LD representations of the AE and the diversity of generated

LD images by the GAN, we propose a variance minimization regularizer in the AE training

that allows a compact representation of the SI dataset in the LD space, which improves AE

recovery performance. Then, we employed a variance maximization on the generated LD

space for the GAN training to produce diverse data and more quality on the generated SI

dataset. First, define the set Z = [zT1 , . . . , z
T
T ] ∈ Rm×T that contains the LD representation

of the AE and define the set of the GAN generated LD images B = [eT1 , . . . , e
T
T ] ∈ Rm×T .

We compute the variance of the A and B as mentioned in section 5.2. Thus, for the AE

training, we have

{Φ, θ} = argmin
Φ,θ

T∑
ℓ=1

LMSE(Dθ(EΦ(xℓ)),xℓ) + µaeRV min(Z), (24)
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where RV min is defined as in (8). The regularized GAN optimization problem is given by

{Ĝ, T̂ } = argmax
G

argmin
T

Ex∼pdata(x) [log (T (EΦ(x)))] + En∼pn(n) [log (1− T (G(n))]−

µganRV min(B), (25)

Note that the negative sign in the variance regularization function is because we want to

maximize the variance of the generated LD representation of the SI. In both optimization

problems, the AE and the GAN, the parameters µae and µgan are regularization hyperpara-

meters that control how much we concentrate the AE LD space or how much we increase

the variability of the generated images by the GAN.

9.4. Spectral Image Applications

To validate the performance of our proposed method, we address the following DL-

based SI tasks:

CSI Recovery: Here, we employ the CASSI system described in Section 6.2. Here,

the CA was set randomly distributed as we only wanted to analyze the network performance.

Single Image Spatial-Spectral Image Super-Resolution: A well-known task for

SI is to recover a high spatio-spectral resolution SI from a low spatio-spectral resolution SI

Yan et al. (2018). In this task, the SI can be downsampled spatially and spectrally by a

decimation matrix D ∈ R
MN
ks

(
L
kl

)
×MNL, where ks and kl represent the decimation factor for

the spatial and spectral resolution of the SI, respectively. The low spatio-spectral resolution

image is represented as y = Dx+ n.
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SI Recovery from RGB Images: Another task that has gathered significant at-

tention from the research community is the mapping from RGB image to SI Arad et al.

(2022). This task consists of recovering an SI from an RGB image with a count with less

spectral information considering a known spectral response function R ∈ RMN3×MNL. Then,

the RGB image can be represented as y = Rx+ n.

Since the mentioned tasks are ill-posed problems, the objective is to recover the SI

x from the observed data y = Tx, where T could represent the sensing matrix H, the

decimation matrix D or the spectral response function R, according to the selected problem.

Then, we can solve the DL-based SI computational tasks through the optimization problem

β̂ = argmin
β

1

T

T∑
ℓ=1

∥xℓ −Mβ(yℓ)∥22, (26)

These are ill-posed inverse problems that are challenging. Therefore, we aim to increase the

performance of the network Mβ for each case by adding synthetic samples generated by the

LD-GAN.

9.5. Numerical Experiments

In this section, we perform several experiments with the AE network with different

channels for the LD representation. For the GAN architecture, the deep convolutional ge-

nerative adversarial network Radford et al. (2015) was adapted to the spatial size of the

employed dataset, and the experiments are performed with respect to the LD image data-

set obtained from the AE network against the entire-sized SI dataset. All experiments were
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performed on GPU with an NVIDIA RTX 3090 graphic card. The dataset employed for all

the experiments is the ARAD 1K Arad et al. (2022), which was preprocessed, reducing the

spatial resolution to 256× 256 and keeping the 31 spectral bands. This dataset contains 900

samples for training and 50 samples for testing. We extract unique patches with a spatial

resolution of 128 × 128 obtaining a total of 3600 patches for training and 200 patches for

testing. Recovery performance is measured with the peak-noise-to-signal ratio (PSNR) and

the structural similarity index measure (SSIM) Wang et al. (2004).

9.5.1. Statistical Regularization Experiments. To validate the effecti-

veness of the proposed regularized training in the AE and GAN, we perform a hyperpara-

meter study of the regularization parameters µgan and µae. The parameters µae = µgan =

{0, 1e−5, 1e−3} were changed for each task. The augmented SI dataset was 100 % of the

original dataset. Fig. 21 shows the performance of the mentioned experiment. The highest

performance in each task is obtained at higher regularization parameters showing the effec-

tiveness of this training method.

To visualize the effect of maximizing the variance of the generated LD representation in

the GAN training, in Fig. 22, the three first principal components of 3000 synthesized SIs were

computed for the non-regularized GAN and the proposed LD-GAN with µae = µgan = 0.001

showing that the last one has more variability than the first one.
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Figure 21. SI recovery performance in terms of PSNR and SSIM employing the proposed
LD-GAN with different values of the regularization parameters µgan and µae for each SI
application.

Figure 22. Three principal components of the generated dataset and its respective variance
with the regularized training and the non-regularized. PC1, PC2, and PC3 refer to the first,
second, and third principal components of the dataset respectively.
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10. Conclusion and Discussion

We proposed a set of regularization functions over the output of the optical encoder

layer within an E2E optimization of optics and image processing framework. These regulari-

zations promote some statistical properties over the coded measurements, i.e., they concen-

trate or spread the distribution of the measurements. We found that the optimal distribution

depends on the computational task; for the recovery task, a concentrated distribution allows

better performance while for best classification performance, a wider distribution is desired.

We validate the design of optical coding elements through regularized E2E optimization

in different optical architectures, showing improvement with respect to the non-regularized

design and other traditional non-data-driven approaches such as blue noise coding and Ha-

damard sensing. We present extensive simulation results for both computational tasks,

whose performance was also validated by real scenarios with data acquired with the physical

implementation of the designed systems. While here we analyzed three types of regulariza-

tion individually, it remains an open question, and future work, on how to combine these

functions to promote more complex priors and structures on the set of measurements by de-

signing the OCE. Several computational imaging systems can harness the proposed coding

design method such as spectral-depth imaging Baek et al. (2021), light-field Vargas et al.

(2021), among others.

Additionally, beyond the sensing matrix design, these regularizations can also be used

in high-level tasks such as generative models Martinez et al. (2023) where the variance of
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the generated samples is maximized to have high-diversity synthetic samples.
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