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RESUMEN

TÍTULO: OPTIMIZACIÓN DEL ALGORITMO DE RECONSTRUCCIÓN Y DISEÑO
DE LA MATRIZ DEL SISTEMA EN ADQUISICIÓN COMPRESIVA DE IMÁGENES
ESPECTRALES ∗

AUTOR: Yuri Hercilia Mejia Melgarejo ∗∗

PALABRAS CLAVE: Muestreo compresivo, diseño de la matriz del sistema, algo-
ritmo de reconstrucción, imágenes espectrales.

Los sensores compresivos de imágenes espectrales reducen el número de pixeles muestreados me-
diante la combinación de información espectral codificada de una escena en proyecciones bidimen-
sionales. El diseño de la matriz de muestreo que modela el sensor y la optimización del algoritmo de
reconstrucción son áreas importantes de investigación hoy en día. Este trabajo desarrolla algunos
enfoques de diseño de la matriz de muestreo para sistemas compresivos de imágenes espectrales,
además de propuestas para la mejorar el algoritmo de reconstrucción. El diseño de la matriz consiste
en el estudio de la independencia lineal de las filas de la matriz de muestreo y su relación con los val-
ores propios, dando lugar a restricciones físicas en los sensores. Estos diseños también se estudian
en el caso en el que se reconstruye una imagen espectral a partir de la fusión de las medidas de dos
sensores compresivos. Por otro lado, en la optimización del algoritmo de reconstrucción se explota
el hecho de que las imágenes espectrales son suaves en el dominio espacial. Primero, se propone
un filtrado pasa bajas dentro del proceso iterativo de los algoritmos de reconstrucción y segundo, se
reformula un problema de minimización con un regularizador que promueve suavidad en la imagen y
resolviendo por un enfoque Bayesiano.

∗Trabajo de investigación
∗∗Facultad de Ingenierías Fisicomecánicas. Escuela de Ingenierías Eléctrica, Electrónica y de

Telecomunicaciones. Director, Ph.D. Henry Arguello Fuentes.
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ABSTRACT

TITLE: RECONSTRUCTION ALGORITHM OPTIMIZATION AND SYSTEM MATRIX
DESIGN IN COMPRESSIVE SPECTRAL IMAGING ∗

AUTHOR: Yuri Hercilia Mejia Melgarejo ∗∗

KEYWORDS: Compressive sensing, system matrix design, reconstruction algorithm,
spectral imaging.

Compressive spectral imagers take a reduced number of sampled pixels by coding and combining
the spatio spectral information of a scene in two dimensional projections. The design of the matrix
that represents the compressive spectral imager and the optimization of the reconstruction algorithm
are important areas of research nowadays. This work develops some approaches to design the sam-
pling matrix of compressive spectral imagers, as well as a proposal for improving the reconstruction
algorithm. The design of the matrix consists of relating the linear independence of the sampling ma-
trix rows and columns with the bounds of its eigenvalues, giving rise to physical restrictions in the
sensors. These designs are also studied in the case where a spectral image is reconstructed by
fusing the measurements of two different compressive spectral imagers, each one with different spa-
tial and spectral resolutions. On the other hand, in the optimization of the reconstruction algorithm,
we exploit the fact that the spectral images are soft in the spatial domain. First, we propose a low
pass filter within the iterative process of the reconstruction algorithms and second, we reformulate
the minimization problem with a regularizer that promotes smoothness in the image and solving it by
a Bayesian approach.

∗Research Work
∗∗Faculty of Physical-Mechanical Engineering. Department of Electrical, Electronics, and Telecom-

munication Engineering. Advisor, Ph.D. Henry Arguello Fuentes.
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INTRODUCTION

The advances in sensor technology allow high-resolution signals to be acquired with
a large amount of digital data, which leads to high computational costs of acquisition,
storage, transmission, and processing. These computational costs are a common
issue in sensing systems dealing with radar signals, multimedia signals, medical,
biomedical data, spectral remote sensing images, among others. On the other side,
the compressive sensing theory has changed the traditional sampling paradigm, by
reducing the amount of data and the acquisition costs [1], [2].
Compressive sensing (CS) is a mathematical framework that aims to recover a sig-
nal x ∈ RN from M < N linear measurements, performing compression during
signal acquisition [1], [3], [4]. Specifically, in CS a signal x is acquired by computing
M inner products between each row of the measurement matrix Φ ∈ RM×N and
the underlying signal, that is, y = Φx. Although M is smaller than N , y contains
plenty of useful information about the signal x, when x is sparse or has a sparse
representation in some domain Ψ ∈ RN×N [5]. The signal x is called S-sparse in
Ψ if x = Ψθ with ‖θ‖0 = S, where ‖θ‖0 is used to count the non-zero entries in
θ. Therefore, the measurements y of a compressible signal can be modeled as
y = Aθ + ω = ΦΨθ + ω, where θ ∈ RN contains the coefficients of x in the spar-
sifying basis Ψ, A is called the sensing matrix, and ω is additive Gaussian noise.
Typically, the underlying signal is reconstructed by solving an `2-`1 optimization prob-
lem as x̂ = Ψ

(
arg minθ ‖y −ΦΨθ‖22 + τ ‖θ‖1

)
, where τ is a regularization parameter.

An important set of applications such as image acquisition [6], [7], spectral imaging
[8]–[12], and computed tomography [13] have successfully implemented compres-
sive sensors, since they take a few linear projections of the signals to be measured,
with a high probability of reconstruction. Those compressive sensors can be mod-
eled as a system of linear equations, where the matrix representation of the linear
equations is the measurement matrix and it is related to the real compressive sens-
ing system.
One of the most important tasks in compressive sensing is the measurement matrix
design. A wide range of developments have analyzed a popular family of theoretical
matrices such as binary, sparse, Bernoulli, Fourier, Hadamard, among others [8],
[14]–[17]. However, highly structured, sparse, and binary measurement matrices are
still a design challenge.
The state-of-the-art optimized sensing matrices lead to dense real-valued matrices
without a specific structure. However, these solutions are unfeasible in physical sys-
tems [18], [19]. In fact, very often, the sensing modality and the capabilities of the
sensing devices limit the types of measurement matrices that can be implemented in
a specific application. For instance, in physical systems, elements such as the dig-
ital micro-mirror devices (DMD) [20], the coded apertures [21], and the spatial light
modulators (SLM) [22] perform the signal codification by allowing parts of the signal
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to pass or not. This binary codification, the high dimensionality of the signal, and the
array arrangement of the sensor lead to a highly structured and sparse compressive
sensing matrix.
A compressive sensing matrix can be modeled by three characteristics: first, weight
elements wki,j ∈ R that involve the fixed intrinsic parameters of the system; second,
binary variables cki,j ∈ {0, 1}, which represent the coding device; and third, a set of
ordered pairs Ω, such that |Ω| � MN , where the non-zero entries are positioned.
In summary, each entry of the matrix is modeled as [Φ]i,j =

∑P
k=1 w

k
i,jc

k
i,j ∀ (i, j) ∈

Ω, where P is determined by the compressive system. Usually, the measurement
matrices have a few non-zero entries in a specific structure given by the system, and
they can be represented as binary coding elements. Due to the structured, sparse,
and binary nature of the measurement matrix, we will use SBiM to refer it.
The state-of-the-art approaches for designing the sensing matrices (the popular fam-
ily of theoretical matrices) can not be applied directly to SBiM, due to the unavoidable
dependence between the physical configuration and the matrix that models it, that
carries strong limitations for any changes in the structure (element locations and
weights). Instead it is possible to constrain the binary coding elements of a physical
system for accomplishing basic requirements such as linear independence between
rows when taking M linearly independent measurements. Achieving this property
can be associated with minimizing the number of zero eigenvalues of the matrices
G=ΦTΦ and Ĝ=ΦΦT , which in turn is related to restrictions on the elements of Φ.
The first part of this dissertation focuses on the measurement matrix design. In
chapter 3, we propose an algorithm to design the distribution of the binary coding
elements in an SBiM by constraining the eigenvalues distribution of G and Ĝ. This
design is tested in different compressive imaging systems.
In chapter 4, we propose three matrix designs for the compressive spectral imaging
(CSI) fusion recovery problem. This problem aims to recover a high spatial and
spectral resolution (HR) image from two images acquired with two CSI systems. The
observed images are assumed to result from spectral or spatial degradations the
target HR datacube.
After sensing the underlying spectral image, the reconstruction from the measure-
ment vector can be implemented by solving an optimization problem, that is often
solved with an iterative algorithm. Specifically, these algorithms establish a minimiz-
ing sequence given by θ(k+1) = θ(k) + αΩk(Ψ

TΦT r(k)), where θ(k) is the estimation
of θ at the iteration k, α is the step size, and Ωk : Rn → Rn is a function of ΨTΦT r(k)

called the search function, where r(k) = y −ΦΨθ(k) is the k-th residual. Depending
on the approach, the function Ωk can be a thresholding operation [23], a denoising
function [24], or the function gradient [25].
Since the matrix Φ has a particular structure, the product by ΦT in the recovery
algorithm can be exploited. The product by ΦT in each iteration returns rough ap-
proximations of the underlying signal x, but the structure of the resulting product is
given by the measurement system. Then, an interpolation action could be taken to
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improve the approximation. An intuitive way to solve the problem is to apply filtering
operations before the ΦT products in each iteration.
When using a significant undersampling rate, there is an infinite number of possible
images that can be associated with a particular set of measurements. Thus, it is
common to promote realistic properties of the image to recover in order to regularize
the problem and obtain a unique solution. One of the most used regularizations
consists of enforcing the image of interest to have a sparse representation in a given
basis [2]–[4], [26]. Although this technique has shown satisfactory results, the quality
of the reconstruction can be further improved by exploiting additional properties of
natural images such as their important degree of local structure similarity [27], [28].
The second part of this dissertation focuses on improving the recovery results by in-
cluding additional knowledge of the spectral imaging systems. Chapter 5 considers
the spectral image recovery from a specific compressive system that uses multi-
spectral filter arrays (MSFA). We propose two models for adjustable spatial resolu-
tion reconstruction of multispectral images from the selection of MSFA-based sensor
measurements neighborhoods. Each spectral filter encodes the data before it im-
pinges onto the sensor using a random dichroic or a random bandpass filter. CS
theory is then exploited to recover the underlying 3D spectral data cube from the
compressed data captured in a single shot.
In chapter 6, we develop a gradient algorithm that includes a filtering step for solving
the compressive problem. The optimization problem is solved by following a mini-
mization sequence that is filtered using a matrix operation. A specific example in
compressive spectral imaging is shown, where there are significant improvements
in peak signal to noise ratio (PSNR) compared to the unfiltered approach and the
message passing approach.
In chapter 7, we introduce a new hierarchical Bayesian model for the reconstruction
of compressed hyperspectral images. This model promotes the solution to be sparse
in a selected basis and smooth in the image domain. A Gibbs sampler is used to
draw samples asymptotically distributed according to its posterior distribution. The
generated samples are then used to build estimators of the unknown model param-
eters. It also allows the model’s hyperparameters to be estimated from the observed
measurements in an unsupervised framework. The samples generated by the Gibbs
sampler can be used to determine measures of uncertainty for the estimates such
as the estimation variance of confidence intervals.

GENERAL OBJECTIVE

To design the pseudorandom structure of a compressive spectral imaging system
matrix in terms of its maximum eigenvalue concentration and to optimize the iterative
reconstruction algorithm used to recover the spectral images in terms of reconstruc-
tion quality and computational complexity.
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SPECIFIC OBJECTIVES

1. To determine the structure of the matrix model of the main compressive spectral
imaging systems.

2. To design a strategy to optimize the pseudorandom structure of the compres-
sive spectral imaging matrix in terms of its maximum eigenvalue concentration.

3. To establish the recovery algorithm that exploits the structure and sparse char-
acteristics of the compressive spectral imaging matrices.

4. To optimize the iterative algorithm in compressive spectral imaging recovery
and evaluate it in terms of the reconstruction quality, and computational com-
plexity.

5. To evaluate the performance of the designed matrices and optimized algo-
rithms in terms of quality of reconstruction and by comparison with state-of-
the-art recovery algorithms.

IMPACT OF THE RESEARCH AND CONTRIBUTIONS

The contributions of the dissertation are mainly related to the optimal design of the
measurement matrix and the improvement of the recovery algorithm in CSI. The
innovation of the measurement matrix design is to model it as a highly structured,
sparse, and binary-coded matrix (SBiM) and propose an algorithm to optimally select
the location of the coded aperture elements in the matrix. The innovation of the
recovery algorithm is to take advantage of the spatial smoothness characteristic of
the spectral images by including a filtering step in a gradient descent recovery. On
the other hand, exploiting the same smoothness characteristic, we propose another
optimization problem with a penalty that promotes image smoothness and we solve
it following a Bayesian approach.
Specifically, the main contributions are summarized as follows:

1. A measurement matrix design algorithm for the SBiM systems based on the
optimal selection of non-zero entries positions. Instead of solving the asso-
ciated problem of the traditional approaches, we proposed an algorithm that
minimizes the associated objective function by optimal selecting the non-zero
elements per rows and columns.

2. Three measurement matrix designs for the problem of recovering a spectral
image from the measurements of two CSI systems. These methods attempt to
impose constraints to the coded aperture elements such that the matrix G =
ΦTΦ be as close to the identity matrix as possible, where Φ is the measurement
matrix that takes into account the two CSI systems.
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3. A reconstruction algorithm that recovers the spectral image with an adjustable
spatial resolution. This algorithm is based on the assumption that q × q neigh-
boring pixels, in a Z × Z × L spectral image, have a similar spectral response.
Then, q × q neighborhood measurement pixels of a multispectral filter array-
based sensor are taken for the reconstruction of a single pixel spectral re-
sponse in a decimated reconstruction.

4. A gradient algorithm that includes a filtering step for solving the compressive
problem. This algorithm is based on the assumption that natural image patches
can be represented as linear combinations of its neighbors in the spatial do-
main and that the operation ΦTy produces an image approximation with ele-
ments near zero, producing gaps.

5. A hierarchical Bayesian model for the reconstruction of the compressed spec-
tral images. This model promotes the solution to be sparse on a selected basis
and smooth in the image domain. This solution allows the model hyperparam-
eters to be estimated from the observed measurements in an unsupervised
framework.
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1. COMPRESSIVE SPECTRAL IMAGING, CSI

The purpose of this chapter is to present the main concepts that comprise this dis-
sertation and to introduce the previous work on measurement matrix design and
recovery algorithms for compressive spectral imaging.

1.1. SPECTRAL IMAGING

A gray-scale image is formed by projecting the light coming from a scene onto a
sensor, which is usually a flat chip that detects electromagnetic energy. The sen-
sor output is a 2D array of pixels, where the amount of them is the sensor spatial
resolution. In color imaging, the process is the same, only this time the sensor pix-
els are covered with red, green, and blue filters, in some layout. Each pixel senses
only one color, and spatial interpolation is used to obtain the red, green, and blue
plane. Recently, imaging has evolved to include many bands encompassing the visi-
ble spectrum, the near-infrared, and shortwave infrared bands. The resulting spectral
image can be modeled as a 3D datacube where each pixel is a vector of intensities
representing a spectral signature. This evolution is aimed at exploiting the fact that
the materials comprising the various objects in a scene reflect, scatter, absorb, and
emit electromagnetic radiation in ways characteristic of their composition. If the radi-
ation arriving at the sensor is measured at many wavelengths the resulting spectrum
can be used to identify the materials in a scene [29].
To acquire hyperspectral data cubes, however, the traditional approaches are based
on sequentially sensing 2D images, and composing them into a single data cube. In
some spectral imagers, the scene is beam split into the desired wavelength compo-
nents, for example, using a prism assembly, and each of these images is captured
by a separate detector array. Although this method provides the highest spatial reso-
lution, the sensing devices have significant size and weight disadvantages [30]. One
of the most intuitive multispectral scanning techniques is the tunable filter, where a
complete spectral image is produced after a sequence of exposures by capturing an
image of one spectral band at a time. For instance, the spectral image can be sensed
by using a filter wheel where some optical filters are installed in a rotatory mechani-
cal structure [31]. Then the rotatory speed of such filter is limited by their mechanical
nature. Another method is to change the spectrum of the illumination and take the
snapshot in each band; it is used for fragile samples, because one may consider
using different exposures under different light source [32]. Most of the methods are
related to scanning operations where multiple exposures are used causing motion
artifacts.
In all the traditional methods for hyperspectral data acquisition, there is a trade-
off between acquisition time and SNR: the faster each band (or line) is captured,
the fewer photons are acquired, decreasing SNR. The same problem exists in color
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imaging, but in spectral imaging, there is lower energy per band and many more
bands. Another difficulty is the huge amount of data that needs to be stored or
transmitted.

1.2. COMPRESSIVE SPECTRAL IMAGING AND SYSTEM MATRIX MODEL

As a solution of the huge amount of data for sensing spectral images many archi-
tectures have been developed. The compressive sensing architectures are mod-
eled by measurement matrices Φ. There are several approaches for compress-
ing spectral data that can be divided in three remarkable classes, i) spatial coding
based CS imagers, such as Coded Aperture Snapshot Spectral Imager (CASSI) [8],
ii) spectral coding based spectral imagers, such as Spatio-spectral encoded Com-
pressive Spectral Imager SSCSI [10], or Colored-CASSI [33], and iii) theoretical
approaches for compressing spectral imaging data, such as Hyperspectral Coded
Aperture (HYCA) [34] or Compressive-Projection Principal Component Analysis ap-
proach [35]. These systems are based on the fact that the light in the scene is
projected on a prism or diffraction grid and scattered to its different spectral compo-
nents by using light encoders (e.g. digital micromirror arrays or multispectral filter
arrays). The scattered light is projected onto an imager. Traditionally, the scene is
scanned line by line, creating a data cube, conversely, CS imagers acquire all data
in a single projection by coding and integrating the spectral dimension. The following
subsections describe some compressive sensing approaches, that for this work have
a special interest, from the three classes mentioned above.

Multispectral filter arrays (spectral coding based imager) Some techniques of
spectral imaging use multispectral filters and collect multiple wavelength spectra from
a single detector array. Nowadays, the optimization of the optical coatings technolo-
gies allows manufacturers to create multipatterned arrays of different optical filters
with traditional design and manufacturing methods [33]. The optical coatings pro-
duction methodology combines modern optical thin film deposition techniques with
micro-lithographic procedures. This process enables micron-scale precision pattern-
ing of optical thin film dichroic coatings on a single substrate. A dichroic filter is an
accurate color filter used to selectively pass light of a small range of wavelengths
while reflecting other wavelengths.
Let us model the multispectral filter array (MSFA) as a 3D array T (x, y, λ) that codes
a spatial-spectral datacube X0(x, y, λ), where (x, y) are the spatial coordinates, and
λ is the wavelength. Then, the coded density impacts on the sensor. The coded
density integrated into the detector can be expressed as

Y (x, y, λ) =

∫ ∫
T (x′, y′, λ)X0(x′, y′, λ)h(x− x′, y − y′)dx′dy′, (1.1)

where T (x, y, λ) is the transmission function representing the MSFA, and h(x−x′, y−
y′) is the optical response of the system.
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Each pixel in the sensor is a discretized measurement. The source X0(x, y, λ) can
be written in discrete form as Xi,j,k where i and j index the spatial coordinates, and
k determines the kth spectral plane. Let us define Ti,j,k ∈ {0, 1} as the discretization
of the MSFA. Then, the discretized measurements of the MSFA-based sensor can
be expressed as

Yi,j =
L−1∑
k=0

Xi,j,kTi,j,k + ωi,j, (1.2)

where Yi,j is the intensity at the (i, j)th position of the detector, i, j = 0, 1, ..., Z − 1,
and the dimensions of the detector are Z × Z, X is a Z × Z × L spectral data cube,
and ωi,j is the read noise of the sensing system, assumed as white Gaussian noise;
for convenience and as traditionally, by its independence of the signal intensity.
The measurements Yi,j in (1.2) can be written in matrix notation as

y = Φx + ω, (1.3)

where y is an Z2-long vector representation of Yi,j, x = vect([x0, ...,xL−1]) is the
vector representation of the data cube X where xk is the vectorization of the kth
spectral band.
The output y in (1.3) can be extended as

y =

diag(t0) diag(t1) · · · diag(tL−1)


︸ ︷︷ ︸

Φ


x0

x1
...

xL−1

+ ω, (1.4)

where tk is the vectorization of the kth MSFA plane, more specifically (t)i = T(bi/Zc,i−bi/Zc,k),
for i = 0, . . . , Z2− 1; diag(t0) is a Z2×Z2 diagonal matrix whose entries are the ele-
ments of tk. Figure 1 depicts the measurement matrix Φ for the MSFA-based sensor
for Z = 3, L = 4, and 2 independent acquisitions. In order to increase the number of
measurements, it is common in compressive spectral imaging to take several acqui-
sitions with different coding patterns and we will refer to every single acquisition as a
snapshot.

Coded Aperture Snapshot Spectral Imager (CASSI) (spectral coding based im-
ager) The concept for CASSI was developed from a generalization of coded aper-
ture spectrometry. Coded aperture spectrometers replace the entrance slit of a dis-
persive spectrometer with a much wider field stop, inside which is inserted a binary-
coded mask. This mask attempts to create a transmission pattern at each column
within the slit such that each column transmission code is orthogonal to that of ev-
ery other column. The encoded light, transmitted by the coded mask within the field
stop, is then passed through a standard spectrometer back-end (i.e., collimating lens,
disperser, reimaging lens, and detector array). Because the columns of the coded
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Figure 1: The matrix Φ in (1.4) is shown for Z = 3, and L = 4, and 2 snapshots.
Colored squares represent passing elements whereas the other elements are zero.
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mask are orthogonalizable, when they are smeared together by the disperser and
multiplexed on the detector array, they can be demultiplexed during postprocessing.
The resulting setup allows the system to collect light over a wide aperture without
sacrificing the spectral resolution that one would lose by opening wide the slit of a
standard slit spectrometer.
Let X ∈ RZ×Z×L be a spectral image with spatial resolution Z × Z and L spectral
bands, the CASSI system captures only K < L snapshots of Z(Z+L−1) modulated
information of the spectral image for recovering the complete data cube. The main
characteristic of the coded apertures in CASSI is the percentage of transmissive
elements or transmittance. The `th discretized measurement using a different coded
aperture T ` can be expressed as

Y `
i,j =

L−1∑
k=0

Xi,(j−k),kT
`
i,(j−k) + νi,j,k, (1.5)

where X`
i,j is the intensity at the (i, j)th position of the detector whose dimensions

are Z × (Z + L− 1), and νi,j,k is the white Gaussian noise of the sensing system.
The output Y `

i,j in (1.5) can be written in matrix notation as y` = Φ`x + ννν, where y` is
an Z(Z+L−1)-long vector representing Y `

ij, x is the vector representation of the data
cube X, and Φ` is the measurement matrix of the `th snapshot. The set of measure-
ments taken by K snapshots can be written as y = [(Φ0)T , (Φ1)T , · · · , (ΦK−1)T ]Tx =
Φx. Figure 2 shows the matrix Φ ∈ RZ(Z+L−1)K×Z2L for 2 snapshots. Note that its
structure consists of a set of diagonal patterns, that repeat along the horizontal di-
rection, such that one spatial dimension is shifted downward, as many times as the
number of spectral bands. Each diagonal element is due to the sampling pattern,
that has been vectorized column-wise. Another patterns of diagonal elements are
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vertically stacked when several snapshots are considered by the system.

Figure 2: Sensing phenomena representation of the CASSI system. The qth slice of
the data cube is coded by a row of the coded aperture and dispersed by the prism.
The detector captures the intensity y by integrating the coded light.
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The Colored CASSI (C-CASSI) is a modification of the traditional system, where
the coded aperture is a multispectral filter array [33]. Therefore, the sensing matrix
structure in C-CASSI allows the system to have more design possibilities.

Spatio-spectral encoded Compressive Spectral Imager SSCSI [10] (spectral
coding based imager) The SSCSI compresses high-resolution HS images by com-
bining optical spatial-spectral modulation allowing their reconstruction from a single
sensor image. SSCSI employs a diffraction grating to disperse light into the spectral
plane and adopts a coded attenuation mask mounted at a slight offset in front of the
sensor. The mask modulates the target HS images in both spatial and spectral di-
mensions before projection into a sensor image. Thus, the coded projection operator
is expressed as a sparse modulation matrix with Boolean entries.

Hyperspectral Coded Aperture (HYCA) [34] (theoretical imager) The HYCA sys-
tem is a compressive sensing framework that computes for each spectral vector a few
random projections using Gaussian independent identically distributed (i.i.d.) vectors
based on the approaches of physical spatial/spectral coding. HYCA decouples the
spectral and spatial domains, which greatly simplifies the reconstruction algorithms;
and uses Gaussian i.i.d. vectors to compute the inner products yields incoherent CS
matrices, a desirable property for the success of data recovery. Thus, the coded pro-
jection operator is expressed as a sparse modulation matrix with Gaussian entries.
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1.3. PREVIOUS WORK ON MATRIX DESIGN

Recently, many works have focused on the construction and design of measurement
matrices based on theoretical constraints. A common strategy to improve the mea-
surement matrix is to solve the following minimization problem Φ=arg minΦ̂∈RM×N ‖I−
ΨT Φ̂T Φ̂Ψ‖2

F , which is related to the minimization of the mutual coherence of the
sensing matrix A = ΦΨ. For instance, the work of Elad [36] proposes an itera-
tive algorithm for reducing an average mutual coherence related to a threshold. Li
et al. [37] consider the problem of designing the matrix Φ given the representa-
tion basis Ψ. They obtained a class of closed-form solutions for the mutual coher-
ence problem. The works in [38], [39] proposed finding a robust projection ma-
trix when the sparse representation error is considered by solving the minimiza-
tion problem Φ = arg minΦ̂∈RM×N ‖I − ΨT Φ̂T Φ̂Ψ‖2

F + λ‖Φ̂E‖2
F , where E represents

the sparse representation error and has to be computed with a sufficient number
of training signals. Hong and Zhu [40] propose to design a robust measurement
matrix without the requirement of the training dataset by minimizing the problem
Φ=arg minΦ̂∈RM×N ‖I−ΨT Φ̂T Φ̂Ψ‖2

F + λ‖Φ̂‖2
F .

State-of-the-art optimized sensing matrices are dense real-valued matrices without
a specific structure. However, these matrices cannot be used in physical systems
[19]. In fact, the sensing modality and the capabilities of the sensing devices limit the
types of measurement matrices that can be implemented in a specific application.
For instance, in physical systems, elements such as spatial light modulators (SLM)
[22] perform the signal codification by blocking or letting pass part of the signal. This
binary codification, the high dimensionality of the signal, and the array arrangement
of the sensor lead to a highly structured and sparse compressive measurement ma-
trix. Thus, measurement matrices of high-dimensional signals usually have a few
non-zero entries with a specific structure given by the physical system that can be
modified by the binary coding elements.

1.4. RECOVERY ALGORITHMS

In order to recover the spectral image x from the measurements y = Φx, a compres-
sive sensing problem can be posed and solved as a convex unconstrained optimiza-
tion problem [8], [12], [18], [33]. This problem consists of minimizing an objective
function that includes a quadratic error term combined with a sparsity-inducing reg-
ularization term [1], [3], [5]. When the solution of this convex problem is known in
advance to be non-negative, it can be rewritten as [4], [25]

x̂ = argmin
x

(τ1n −ATy)Tx +
1

2
xTATAx, s.t x ≥ 0. (1.6)
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Equation (1.6) can be seen as a standard bound constrained quadratic problem
(BCQP) given by

x̂ = argmin
x

cTx +
1

2
xTBx ≡ argmin

x
F (x), s.t x ≥ 0, (1.7)

where c = (τ1n −ATy), 1n is a n-long vector of ones, and B = ATA.
There are several algorithms that solve the compressive sensing problem by Eq.
(1.7) [4], [41]–[44].

1.5. PREVIOUS WORK ON RECOVERY ALGORITHMS

Related to the denoising approach, the work of Tan, et al. [45] focuses on the ap-
proximate message passing (AMP) algorithm for solving the imaging CS problem.
The AMP algorithm reconstructs a signal iteratively by performing a scalar denoising
within each iteration. In AMP, the denoising function is needed to be carefully chosen
to obtain better reconstruction quality. One challenge in applying image denoisers
within AMP is that it demands high computational resources to determine the so-
called Onsager reaction term in the AMP iteration steps. The Onsager reaction term
involves the derivative of the image denoising function, and thus, if an image func-
tion does not have a convenient closed form, then the Onsager reaction term can be
extremely complex to compute. One complementary work [24] employs AMP with
scalar denoisers that are better adapted to the statistics of natural images. Recently,
the AMP approach has been applied to the CASSI system where they modified a
Wiener filter to fit the particular sensing architecture [46].
The work of Figuereido et al. [25] is a well-known algorithm that uses a convex opti-
mization approach. This is a gradient projection (GP) algorithm applied to a quadratic
programming formulation of the CS problem, in which the search path from each it-
eration is obtained by projecting the negative-gradient direction onto the feasible set.
The formulation of the problem as a bound constrained quadratic problem (BCQP)
allows to identify the product for the transpose of the sensing matrix Φ in the iterative
process.
There are several gradient descent algorithms that solve the compressive sensing
problem, such as the Stochastic Gradient Approach Based on Adaptive Filtering
Framework [41], the Nonmonotone adaptive Barzilai-Borwein gradient algorithm [42],
the Iterative gradient projection [43], the Fast and accurate first-order method for
sparse recovery [44], the Sparse reconstruction by separable approximation [4].
For instance, the approaches of Figueiredo et al. [47], [48] for solving the CS prob-
lem based on a variable splitting to obtain an equivalent constrained optimization
formulation, which is then addressed with an augmented Lagrangian method. The
proposed algorithm is an instance of the so-called alternating direction method of
multipliers (ADMM), for which convergence has been proved.
Some authors [49]–[51] consider the inversion of CS from a Bayesian perspective.
Specifically, from this standpoint they have a prior belief that the θ should be sparse
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in a basis and the objective is to provide a posterior belief (density function) for the
values of the θ given that y are observed from compressive measurements. Rather
than providing a point (single) estimate for the weights θ, the Bayesian approach
provides provides a full posterior density function, which yields “error bars” on the
estimated x. These error bars may be used to give a sense of confidence in the
approximation to x, and they may also be used to guide the optimal design of ad-
ditional CS measurements, implemented with the goal of reducing the uncertainty
in x. In addition, the Bayesian framework provides an estimate for the posterior
density function of additive noise encountered when implementing the compressive
measurements.
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2. MATRIX DESIGN IN CSI BY EIGENVALUE ANALYSIS

Recently, an important set of high dimensional signals (HDS) applications has suc-
cessfully implemented compressive sensing (CS) sensors in which their efficiency
depends on physical elements that perform a binary codification over the HDS. The
structure of the binary codification is crucial as it determines the HDS sensing ma-
trices. For a correct reconstruction, this class of matrices drastically differs from the
dense or i.i.d. assumptions usually made in CS. Therefore, current CS matrix design
algorithms are impractical.
It is possible to constrain the binary coding elements of a physical system to better
fulfill basic requirements such as linear independence between rows, that allows the
system to consider M linearly independent measurements. This property can be
satisfied by minimizing the number of zero eigenvalues of the matrices G=ΦTΦ and
Ĝ=ΦΦT , which in turn is related to restrictions on the elements of Φ according to
the Gershgorin theorem [52], [53].
In this chapter, we introduce an algorithm for designing the distribution of the binary
coding elements in an SBiM by constraining the eigenvalue distribution of G and Ĝ.
The main contributions of this work are summarized as follows.

1. A practical methodology for designing SBiM that promotes the linear indepen-
dence of its rows by relating the positions of its binary coding elements to the
eigenvalues of G and Ĝ. The design constraints lead to a uniform choice of
the non-zero elements per row and per column.

2. The proposition of an efficient algorithm for the design of a sensing matrix sat-
isfying these constraints.

3. The proof that this design reduces the zero eigenvalues of the matrices G
and Ĝ, which increases the number of independent rows of the measurement
matrix.

Simulations will show that the proposed optimization strategy improves the perfor-
mance of image reconstruction in several real CS systems, with a gain in PSNR up
to 8 dB.

2.1. STRUCTURED, SPARSE, AND BINARY MEASUREMENT MATRICES (SBIM)

The set of available SBiM entries can be expressed as a sum of products between
weight elements that involve the intrinsic parameters of the system, and binary vari-
ables, which represent the coding devices. The other entries of the measurement
matrix are zero. Specifically, the (i, j) non-zero entry of the measurement matrix Φ
is expressed as:
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[Φ]i,j =
P∑
k=1

wki,jc
k
i,j ∀ (i, j) ∈ Ω (2.1)

where wki,j ∈ R is the weights related to the position (i, j) of Φ, cki,j ∈ {0, 1} is a
modifiable binary elements that depends on the coding device, defined as cki,j =
T (vk0 , ...,v

k
D−1), where T is a function of D coding vectors that maps them to a single

binary element, and Ω is a set of ordered pairs that contains the non-zero positions
of the measurement matrix Φ. Note that the set of positions Ω is fixed depending on
the hardware of the studied system.
In order to explain how (2.1) can be constructed for real systems, the next subsec-
tions study specific examples of SBiM resulting from compressive spectral imaging
and compressive X-ray tomography.

2.1.1. CSI Systems modeled as SBiM CSI systems capture spatio-spectral data
simultaneously in multiple snapshots. For instance, the Patterned Filter Array (PFA)
and the Colored Coded Aperture Snapshot Spectral Imaging (C-CASSI) approaches
are CSI systems that have been widely used and have provided outstanding image
reconstruction results [54], [55]. In the next subsections, we will propose the mea-
suremente matrix model from the PFA and C-CASSI and how it is related to the
matrix model (2.1).

Patterned Filter Array (PFA)

Let X ∈ RZ×Z×L be a spectral image with spatial resolution Z × Z and L spec-
tral bands. For acquiring spectral images, the coding devices in the PFA approach
are optical elements that perform spectral filtering and collect multiple wavelength
spectra for each pixel of the detector array. These devices can be modeled as 3D
encoders whose elements are given by ds,t,u = as,t,uvs,t,u, where as,t,u ∈ [0, 1] is an at-
tenuation coefficient and vs,t,u ∈ {0, 1} is an on-off element that represents the wave-
length codification of the light. Let Xs,t,u be an element of the spatio-spectral data
cube, where s, t = 0, ..., Z− 1 are used for the spatial coordinates and u = 0, ..., L− 1
determines the uth spectral plane. The discretized measurements of the PFA ap-
proach for a single snapshot obtained by a particular encoder can be expressed as

[Y]s,t =
L−1∑
u=0

Xs,t,uds,t,u + ηs,t, (2.2)

where [Y]s,t is the intensity at the position (s, t) of the detector and ηs,t is the white
noise. The measurements Y in (2.2) can be written as y = Rx + η, where y ∈ RZ2

is a vector representation of Y, x is the vector representation of the data cube X,
and R represents the measurement matrix of a particular PFA. Each element of the
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matrix R is related to the 3D encoder elements as

[R]g,h = dg′,h′,h′′ (2.3)

where g′ = g − bg/ZcZ, h′ = bh/Zc, and h′′ = bh/Z2c with g = 0, ..., Z2 − 1, h =
0, ..., N − 1 and N = Z2L. Eq. (2.3) can be interpreted as the mapping of the 3D
encoder array to the 2D matrix R.
The sensing process can be generalized to D snapshot projections having different
PFAs. The set of measurements obtained with D snapshot projections is defined as

y =

 y0

...
yD−1

 =

 R0

...
RD−1

x = Φx. (2.4)

Therefore, each element of the measurement matrix Φ in (2.4) can be expressed as

[Φ]i,j = [Rγi ]i′,j

= dγii′′,j′,j′′

= aγii′′,j′,j′′v
γi
i′′,j′,j′′ ∀ (i, j) ∈ Ω

(2.5)

where γi = bi/Z2c, i′ = i − bi/ZcZ2, i′′ = i′ − bi′/ZcZ, j′ = bj/Zc, and j′′ = bj/Z2c
with i = 0, ..., DZ2, j = 0, ..., N − 1, and d`s,t,u refers to the (s, t, u) element of the
encoder for the ` snapshot. Comparing (2.5) with (2.1), the PFA approach can be
seen as a SBiM where P = 1, wi,j = aγii′′,j′,j′′, and ci,j = vγii′′,j′,j′′. The set Ω forms a set
of block diagonal matrices related to the codification per spectral band and different
PFAs.

Colored Coded Aperture Snapshot Spectral Imaging (C-CASSI) System

In the C-CASSI system, the coded information is spectrally shifted by a dispersive el-
ement, and a 2D focal plane array detects the coded and shifted projections. Specif-
ically, a discretized snapshot from C-CASSI can be expressed as

[Y]s,t =
L−1∑
u=0

Xs,(t−u),uds,(t−u),u + ηs,t, (2.6)

where [Y]s,t is the intensity at the position (s, t) of the detector whose dimensions
are Z× (Z+L−1). Notice that (2.6) can be written in matrix notation as y = Rx+ηηη,
where y ∈ RE, with E = Z(Z +L− 1), is the vector representation of Y and R is the
measurement matrix of a single snapshot.
As in the previous subsection, each element of the matrix R is related to the 3D
encoder, by taking into account the dispersion effect as follows

[R]g,h = dg′,ĥ,h′′ (2.7)
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where g′ = g−bg/ZcZ, ĥ = bh/Zc− bh/Z2cZ, and h′′ = bh/Z2c, with g = 0, ..., E− 1,
h = 0, ..., N − 1, and N = Z2L. Defining the set of measurements associated with
the D different snapshots as in (2.4), each element of the measurement matrix Φ
can be expressed as

[Φ]i,j = [Rρi ]̂ı′,j

= dρiı̂′′,j′,j′′

= aρiı̂′′,j′,j′′v
ρi
ı̂′′,j′,j′′ ∀ (i, j) ∈ Ω

(2.8)

where ρi = bi/Ec, ı̂′ = i − bi/EcE, i′′ = ı̂′ − bı̂′/ZcZ, j′ = bj/Zc, and j′′ = bj/Z2c,
with i = 0, ..., DE − 1, and j = 0, ..., N − 1. Comparing (2.8) with (2.1), the C-CASSI
approach can be seen as a SBiM with P = 1, wi,j =aρiı̂′′,j′,j′′, and ci,j = vρiı̂′′,j′,j′′. The set
Ω forms a set of stacked block diagonal matrices taking into account the dispersion
of one spatial dimension.

2.1.2. Compressive X-ray tomography The X-ray transmission imaging model
for a single source is established by the Beer-Lambert law as I = I0e

−
∫∞
0 a(l)dl, where

I0 is the intensity of an X-ray generated by the X-ray source passing through the ob-
ject, I is the measured intensity, and a(l) is the linear attenuation coefficient varying
in the l location [56].
A commonly used physical configuration is the fan-beam geometry, with lines ar-
ranged into fans emanating from X-ray sources distributed over a circle around the
origin [57]. If an X-ray source is located at position s and illuminates an object in
direction ϕ, the data function for the imaging model is given by $(s, ϕ) = − ln(I/I0).
Therefore, the Beer-Lambert law can be rewritten as $(s, ϕ) =

∫∞
0
x(s+ lϕ)dl, where

x corresponds to the two-dimensional object function, i.e., the X-ray linear attenua-
tion map.
The imaging model is discretized since only a discrete number of measurements
can be acquired. Hence, the two-dimensional data array is represented by a discrete
number of unknowns [x]j, where j = 0, 1, ..., N − 1 corresponds to the jth pixel
attenuation coefficient forming the object x ∈ RN , where N = Z1Z2 is the number of
object pixels. The detector is a linear array of M1 � N elements located in an arc
under the object.
The measurements are integrated at each detector element leading to [y]i, for the
ith detector measurement, with i= 0, 1, ...,M1 − 1. An X-ray fan beam with a single
source k can be written as a system of linear equations yk = Qkx, where the matrix
Qk ∈ RM1×N is the system matrix of a single source. The entries of the matrix Qk

perform the mapping of the fan beam energy radiating from the X-ray source onto
the detector, i.e., each entry [Qk]i,j represents the portion of area of the jth pixel that
is irradiated by the X-ray measured at the ith detector element.
Compressive X-ray tomography fan beams multiplex measurements from several
sources onto the detector. 1D coded apertures are arranged in front of the fan-beam
sources to code the energy of each X-ray source, giving a distinct coded projection
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onto the detector array. The size of the coded aperture elements is fixed to obtain a
one-to-one correspondence between the detector elements.
Each source has a projection yk and a system matrix Qk. The measurements ob-
tained after irradiating several sources at a time instant in a specific angle m are
given by

ym = Rmx (2.9)

where the entries of the matrix Rm are given by

[Rm]g,h =
P̂−1∑
k=0

[Qm
k ]g,h[t

m
k ]g (2.10)

and where tmk refers to the coded aperture of the kth source at the mth angle, and
Qm
k is the system matrix of the kth source at the mth angle.

The complete set of measurements for Λ different angles is denoted as

y =


y0

y1

...
yΛ−1

 =


R0

R1

...
RΛ−1

x = Φx. (2.11)

Each entry of the matrix Φ is related to the Rm and Qm
k entries as

[Φ]i,j = [Rξi ]ζi,j =
P̂−1∑
k=0

[Qξi
k ]ζi,j[t

ξi
k ]ζi ∀ (i, j) ∈ Ω (2.12)

where ξi = bi/M1c, ζi = i − bi/M1cM1, and Ω is the set of modifiable positions
obtained by specifying the hardware setting. Comparing (2.12) with (2.1), the com-
pressive X-ray tomography approach can be seen as a SBiM where P = P̂ , wki,j =

[Qξi
k ]ζi,j, and cki,j = [tξik ]ζi.

2.2. MEASUREMENT MATRIX DESIGN

The characteristics of highly structured, sparse, and binary-coded (SBiM) matrices
lead to many constraints preventing state-of-the-art designs based on coherence to
be applied directly. Instead, it is possible to constrain the binary coding elements
of a physical system to better fulfill the linear independence requirement between
rows. For instance, Table 1 shows the percentage of linearly dependent rows for
10 random realizations of 2048 × 4096 PFA measurement matrices and 2240 × 4096
C-CASSI measurement matrices. We can note that there is a percentage between
10% to 30% of linearly dependent rows in these matrices. Maximizing the number of
linearly independent rows (columns) of Φ or equivalently maximizing its rank leads a
better-conditioned matrix and hence a better sensing system.
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Table 1: Mean percentage of linearly dependent rows for 10 random realizations of
spectral imagers matrices

SBiM % Linearly
dependent rows

PFA 10
C-CASSI 30

For maximizing the rank of Φ, it is possible to constrain the binary coding elements
of a physical system. This property can be satisfied by minimizing the number of
zero eigenvalues of the matrices G=ΦTΦ and Ĝ=ΦΦT , which in turn is related to
restrictions on the elements of Φ according to the Gershgorin theorem [52], [53].
Let define the matrices G = ΦTΦ and Ĝ = ΦΦT. There exist a relationship between
the eigenvalues of the matrices G and Ĝ and the number of linearly independent
rows (columns) of Φ. Specifically, the number of non-zero eigenvalues of G and
Ĝ is equal to the number of linearly independent rows (columns) of Φ [52]. As
a consequence, we design the matrix Φ by minimizing the number of zero-valued
eigenvalues of the matrices G and Ĝ. To obtain this minimization, the Gershgorin
theorem is used to find lower bounds for the eigenvalues of the G and Ĝ matrices.
The zero eigenvalues can be reduced by maximizing these lower bounds. The lower
bounds are expressed as functions of the entries of the matrix Φ. Surprisingly, it is
established that constraining the sum of the entries of each row in the matrix Φ leads
to the desired optimization.
Specifically, the Gershgorin theorem for the matrix G is given by

Theorem 2.1 (Gershgorin Theorem [53]) Every eigenvalue λ of a matrix G ∈ RN×N

satisfies:

|λ− [G]i,i| ≤
N−1∑
j = 0
j 6= i

|[G]i,j| i ∈ {0, 1, ..., N − 1}. (2.13)

Denoting as Hi =
∑N−1

j=0,j 6=i |[G]i,j|, the Gershgorin Theorem allows the eigenvalues
of G to be related to its entries as follows

[G]i,i−Hi≤λ≤ [G]i,i+Hi. (2.14)

Notice that given G = ΦTΦ all the eigenvalues of G satisfies λi ≥ 0. Also, notice
that Eq. (2.14) indicates that if the terms {Hi}Ni=1 are minimized, the eigenvalues of
G are close to [G]i,i. If [G]i,i are constrained to be constants, the lower bounds for
the eigenvalues of G are maximized by minimizing the terms Hi. This constraint can
be satisfied for most physical systems by limiting the light transmittance.
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Notice that the matrix Φ represents a physical system such that the entries [Φ]r,k ≥ 0.
Also, the element (k, l) of G = ΦTΦ is given by

[G]k,l =
M−1∑
r=0

[Φ]r,k[Φ]r,l (2.15)

then [G]k,l ≥ 0 is the sum of positive numbers. The maximization of the lower bounds
or equivalently the minimization of Hi =

∑N−1
k=0,k 6=l |[G]k,l| can be obtained by minimiz-

ing the entries [G]k,l or equivalently by selecting a codification such that the products
[Φ]r,k[Φ]r,l are minimized.
Given the matrix Φ is highly structured and sparse, it is convenient to express it in
terms of its non-zero elements. Let χ̂j represents the set of non-zero indices in the
jth column, (χ̂j)r extracts the rth element of the set χ̂j, and χ̂kl = χ̂k ∩ χ̂l is the set of
indices in common of non-zero elements in columns k and l. Therefore, Eq. (2.15)
can be rewritten as:

[G]k,l =

|χ̂kl|−1∑
r=0

[Φ](χ̂kl)r,k[Φ](χ̂kl)r,l (2.16)

where |χ̂kl| is the cardinality of the set χ̂kl.
Let us define the binary matrix Φ related to Φ as

[Φ]i,j =

{
1 if [Φ]i,j > 0

0 otherwise
(2.17)

whose elements are ones in the positions of the Φ non-zero elements and zeros
otherwise. For simplicity, define the number of non-zero indices in the jth column of
Φ as

[p]j = |χ̂j| =
M−1∑
i=0

[Φ]i,j. (2.18)

Notice that the cardinality of the set χ̂kl is at most the minimum between the cardi-
nalities of the sets χ̂k and χ̂l, additionally, let wmax represents the maximum value
of the entries of Φ. Therefore, the values of the elements in G, [G]k,l, in (2.16) are
bounded by

[G]k,l≤
arg min{[p]k−1,[p]l−1}∑

r=0

w2
max=w2

max min{[p]k, [p]l}. (2.19)

Equation (2.19) shows that the bound of the non-diagonal elements [G]k,l is propor-
tional to the number of non-zero elements by column. Since the number of non-zero
elements can be modified by the coding variables, the elements [G]k,l can be re-
duced by minimizing the number of non-zero elements in every column of Φ
Consider that the total number of non-zero elements is constrained by the measure-
ment system to be a constant U , more specifically

∑N−1
j=0 [p]j = U . This constraint
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is related to the quantity of light that passes through the compressive acquisition
system
The optimization of the eigenvalues of G is equivalent to reduce the terms [p]j in
(2.19) which is equivalent to the following optimization problem

arg min
p,κ

κ

subject to κ ≥ [p]j,∑N−1
j=0 [p]j = U,

(2.20)

where κ is an auxiliary variable that works as a threshold for every element of p. The
solution of (2.20) promotes that all the elements of the vector p to be equal, then
[p]0 = [p]1 = . . . = [p](N−1) = U/N .
Computing the entries of Ĝ = ΦΦT , defining the vector q as the number of non-
zero elements in the rows of Φ, such that [q]i =

∑N−1
j=0 [Φ]i,j, and determining a

similar bound as in (2.19) yields to the optimization of the eigenvalues of Ĝ which is
equivalent to the following optimization problem

arg min
q,κ̂

κ̂

subject to κ̂ ≥ [q]j,∑M−1
j=0 [q]j = U,

(2.21)

where κ̂ is an auxiliary variable. The solution of (2.21) promotes that [q]0 = [q]1 =
. . . = [q](M−1) = U/M .
To accomplish the solutions of the optimization problems (2.20) and (2.21), that is,
the number of elements per rows is equal to U/N and the number of elements per
columns is equal to U/M is not straightforward, because of the structure of the SBiM,
since adjusting the non-zero entries by columns modifies at the same time the non-
zero entries by rows, and vice versa.
Therefore, to approximate the solutions of (2.20) and (2.21) we formulate the follow-
ing optimization problem

arg min
p,q

‖p−(U/N)1N‖2
2+‖q−(U/M)1M‖2

2 , (2.22)

where 1N is defined as an N -long vector of ones. In order to associate (2.22) with
the measurement matrix design, we use the binary matrix Φ defined in (2.17). Notice
that [p]j=

∑M−1
i=0 [Φ]i,j=[1TMΦ]j, and [q]i=

∑N−1
j=0 [Φ]i,j=[Φ1TN ]i. Therefore, (2.22) can be

expressed in terms of Φ as

arg min
Φ

f(Φ)=
∥∥1TMΦ−(U/N)1TN

∥∥2

2
+
∥∥Φ1N−(U/M)1M

∥∥2

2

subject to [Φ]i,j = 0 ∀ (i, j) ∈ ΩC
(2.23)

where ΩC is the complement of the set Ω and imposes a restriction on the modifiable
positions of Φ.
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The design criteria in (2.23) can be referred as a uniform sensing. A non-zero entry
[Φ]i,j means that the jth element of the signal is sensed by the ith detector element.
Therefore, each column of Φ is related to a particular signal element, hence, the
sum per column indicates the number of times a particular signal element is mea-
sured. The minimization of the first term of (2.23) is related to uniform sensing for
each signal element, that is, each element should be sensed equal times. Addition-
ally, since each row of Φ is related to the linear combination of the signal elements
that impinge onto a certain detector, the sum per row indicates the number of sig-
nal elements measured by the aforementioned detector. Consequently, minimizing
the second term of (2.23) is equivalent to sense uniformly the signal. More specifi-
cally, we refer to the uniform sensing in the sense that E{

∑
i[Φ]i,j} = U/N ∀ j and

E{
∑

j[Φ]i,j} = U/M ∀ i, where E{.} is the expected value.

2.3. MEASUREMENT MATRIX OPTIMIZATION ALGORITHM

This section presents the algorithm for designing the measurement matrix Φ such
that the locations of the non-zero elements aim to accomplish the constraints for
uniform sensing that were proposed in the last section. We propose to derive two
processes of rearranging the entries of Φ per rows and per columns to satisfy the
optimization problem in (2.23). Define χ as the set of sets with the modifiable posi-
tions of the Φ matrix by columns, such that χj extracts the set of modifiable indices
of the jth column. Similarly, define Υ as the set of sets with the modifiable positions
per rows, such as Υi is the set of modifiable indices of the ith row. Let us define the
desired number of non-zero elements per column as µ = U/N . Notice that minimiz-
ing the first term of (2.23) is equivalent to the elements of p to satisfy |[p]i − µ| < σ,
where σ is a small tolerance value.
The rearranging processes mentioned before consist of selecting randomly within
the modifiable positions per columns until completing the non-zero elements aver-
age µ in N̂ columns, then selecting randomly within the modifiable positions per
rows until completing the non-zero elements average r in M̂ rows, these processes
are performed as many times as indicated by the input parameter iter. Algorithm
1, named Coding Matrix Design (CMD), performs these rearranging processes by
following probability mass functions (pmf) related to the current number of ones and
by using the sets of modifiable positions χ and Υ . In line 2, the algorithm randomly
initializes the sets of non-zero positions χ̂ and Υ̂ . In lines 3 and 6, the vectors p and
q are formed by computing the cardinality of the sets χ̂j and Υ̂i, respectively, also the
vectors f and g that work as pmf for selecting columns and rows positions. Notice
that line 8 performs the rearranging by columns and line 9 performs the process by
rows. After updating the current non-zero positions, Φ is set in line 10.
Figure 3 shows an specific example of the defined variables for a 5 × 7 matrix Φ,
where the dotted red squares represent the modifiable positions, the white squares
are ones, and the black squares are zeros. In this example, the desirable number
of elements per columns is established at µ = 1. The calculations of the number of
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elements per rows r, the definition of the sets χj, Υi, χ̂j, Υ̂i and the vectors p, f , q, g
are also included in the example.

Figure 3: Example of defined variables for a 5× 7 matrix Φ, the dotted red squares
represent the modifiable positions of the matrix, the white squares are ones, and
the black squares are zeros. In this example, the desirable number of elements per
columns is established at µ = 1.
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The function Rearrange, detailed in Algorithm 2, is used for selecting the columns or
rows, depending on the case, that least satisfy the optimization function (2.23), and
rearranging their non-zero elements to better satisfy it. Specifically, for the selection
part, line 4 estimates a pmf, f̂ , that gives the highest probability to the positions
with greater differences between the p elements and the desired µ. In line 6, the
position j is selected by following the f̂ and the while loop in line 7 guarantees that
the element to improve is out of the interval [µ− σ, µ+ σ]. For the rearranging stage,
the difference d between µ and the current [p]b is computed in line 11. Depending on
the sign of d, the next lines will put this number of elements or eliminate them in the
b position.
In lines 12-15 of Algorithm 2 other input parameters for the function that put or elimi-
nates non-zero elements are defined. In line 12, an indicator variable, I, is assigned
related to the sign of d. A positive d means that the number of elements in the b
column (row) is less than µ, therefore, the next steps will assign d non-zero elements
to the b column (row). For that, the set Π is established as the difference between
the sets χb and χ̂b, that is, the modifiable elements that are still zero. In line 15, the
function Putd assigns d new elements to the non-zero sets. A negative d means
that the number of elements in the b column (row) is larger than µ, therefore, the
next steps will eliminate d non-zero elements to the specific sets, here, the set Π is
established as the set of non-zero elements χ̂b.
Algorithm 3 shows the function of putting or eliminating |d| ones in the bth column
(row), called Putd. In lines 1-2, the pmf ĝ is defined in order to select the positions
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Algorithm 1: Coding Matrix Design,CMD
input : µ, σ,M,N, M̂, N̂ , χ, Υ, iter
output: χ, Υ

1 % Assign ones randomly to some modifiable positions;
2 {χ̂, Υ̂} ←initialize(χ, Υ );
3 for j ← 1 to N do [p]j ← |χ̂j |; [f ]j ← |[p]j − µ|;
4 % Estimates the number of ones per rows;
5 r ← (µN)/M ;
6 for i← 1 to M do [q]i ← |Υ̂i|; [g]i ← |[q]i − r|;
7 for k ← 1 to iter do
8 % Optimize by columns (see Algorithm 2) {p, α, χ̂, χ,q, Υ̂ , Υ} =

Rearrange(N̂ ,p, µ, f , σ, χ̂, χ,q, Υ̂ , r);
9 % Optimize by rows (see Algorithm 2) {q, β, Υ̂ , Υ,p, χ̂, χ} =

Rearrange(M̂,q, r,g, σ, Υ̂ , Υ,p, χ̂, µ);

10 Φ←setPhi(χ̂, Υ̂ ,M,N );

Algorithm 2: Rearrange
input : N̂ ,p, µ, f , σ, χ̂, χ,q, Υ̂ , r
output: p, α, χ̂, χ,q, Υ̂ , Υ

1 % Compute the lenght of p;
2 N ← dim (p);
3 α←

∑N
j=1 |[p]j − µ|;

4 f̂ ← f/α;
5 for s← 1 to N̂ do
6 j ∼ f̂ ;
7 while |[p]j − µ| < σ do j ∼ f̂ ;
8 % Assign the b position and update the pmf;
9 b← j; [f ]b ← [f ]b − 1; α← α− 1;

10 f̂ ← f/α;
11 d← µ− [p]b;
12 I ←sgn (d);
13 if I = 1 then Π ← χb \ χ̂b;
14 else Π ← χ̂b;
15 {χ̂, Υ̂ ,g,p,q} = Putd(d,Π, χ̂, Υ̂ , r, σ,g,p,q, I, b);

43



in Π whose elements are farther from the desired r (µ). Inside the while loop of line
6 there are two different cases. Lines 7-14 show the case where the difference d is
positive, lines 8-11 assign the selected position (`, b) to the respective sets χ̂b and
Υ̂`. If the value [q]` is larger than the bound r−σ, lines 12-14 select another possible
position ` and update g. Lines 15-22 shows the case where d is negative, lines 16-19
eliminate the selected position (`, b) to the respective sets χ̂b and Υ̂`. If the value [q]`
is lower than r + σ, lines 20-22 select another possible position ` and update g.
The complexity of Algorithm 1 is in the order of (N̂ |d||Π| + M̂ |d||Π|) per iteration,
in the worse case. However, given that the selections of positions j in the 6th line
of Algorithm 2 and ` in the 4th line of Algorithm 3 are defined by the pmf f̂ and ĝ,
respectively, it is expected to reduce the number of times in accomplishing the while
loop in line 7 of Algorithm 2 and the while loop in line 6 of Algorithm 3.

Algorithm 3: Put or eliminate |d| ones according to the case, Putd
input : d,Π, χ̂, Υ̂ , r, σ,g,p,q, I, b
output: χ̂, Υ̂ ,g,p,q

1 β ←
∑

j∈Π |[g]j − r|;
2 ĝ← [g]Π/β;
3 for i← 1 to |d| do
4 ` ∼ ĝ; [g]` ← [g]` − 1; β ← β − 1;
5 flag ← 0; t← 0;
6 while flag = 0 and t < |Π| do
7 if I = 1 then
8 if [q]` < (r − σ) then
9 χ̂b ← χ̂b ∪ `; Υ̂` ← Υ̂` ∪ b;

10 [p]b ← [p]b + 1; [q]` ← [q]` + 1;
11 flag ← 1;

12 else
13 ĝ← [g]Π/β; ` ∼ ĝ;
14 [g]` ← [g]` − 1; β ← β − 1;

15 else
16 if [q]` > (r + σ) then
17 χ̂b ← χ̂b \ `; Υ̂` ← Υ̂` \ b;
18 [p]b ← [p]b − 1; [q]` ← [q]` − 1;
19 flag ← 1;

20 else
21 ĝ← [g]Π/β; ` ∼ ĝ;
22 [g]` ← [g]` − 1; β ← β − 1;

23 t← t+ 1;
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2.4. SIMULATION RESULTS

In this section, we present some simulations to illustrate the performance of Algo-
rithm 1 for designing the SBiM, denoted as Proposed, and compare it with the CSI
systems using a random coding element, denoted as Random.

2.4.1. MATRIX ANALYSIS

Singular value analysis

In this part, the eigenvalues and the condition number of the matrix G for the three
SBiM are analyzed. The condition number (ratio between the greatest singular value
and the least non-zero singular value) measures how ill-conditioned the measure-
ment matrix is.
The eigenvalues for the PFA approach are showed in Fig. 4 for two scenarios (a) 50%
and (b) 75% of compression ratio (percentage of the signal that is measured given
by (M/N)100%). The experiment computes the mean of 10 repetitions of singular
values for PFA measurement matrices with Z = 32 and L = 4. Notice that for both
compression ratios, the number of non-zero singular values in the Proposed case is
greater than the Random one. Specifically, for a compression of 50% the Proposed
has 168 non-zero eigenvalues more than the Random, and for a compression of 75%
the Proposed has 390 non-zero eigenvalues more than the Random. The condition
number for the above cases shows that Proposed measurement matrices are less
ill-conditioned (kProposed = 2) compared with the Random (kRandom = 205 and 635).

Figure 4: Singular values for the PFA system for (a) 50% and (b) 75% of compression
ratio, with Z = 32 and L = 4.
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The eigenvalues of the C-CASSI system are showed in Fig. 5 for (a) 55% and (b) 80%
of compression ratio. The experiment computes the singular values for C-CASSI
measurement matrices with Z = 32 and L = 4. Specifically, for a compression of
55% the Proposed has 614 non-zero eigenvalues more than the Random, and for
a compression of 80% the Proposed has 390 non-zero eigenvalues more than the
Random. The condition number of the Proposed measurement matrices shows that
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they are less ill-conditioned (kProposed = 10 and 6.66) than the Random (kRandom =
168.4 and 465.5).

Figure 5: Singular values for the C-CASSI system for (a) 55% and (b) 88% of com-
pression ratio, with Z = 32 and L = 4.
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The singular values of the compressive X-ray tomography system with M1 = 552
detector elements, P̂ = 3 fan-beam sources, and a compression ratio of 50% are
shown in Fig. 6. The Proposed has 1357 non-zero singular values more than the
Random case. The condition number of the Proposed measurement matrix shows
that it is less ill-conditioned (kProposed = 8.3× 104) than the Random (kRandom = 9.1×
104).

Row and column sum histograms

In this part, the histograms corresponding to the vectors q and p are analyzed. Fig-
ure 7 shows the histograms for the PFA approach with Z = 128, L = 16, and a
compression ratio of 18%. Figure 7 (a) and (b) show the histogram for the vector
p before (Random) and after applying the CMD algorithm (Proposed), respectively.
Figure 7 (b) shows that the distribution of the entries of p becomes concentrated
around µ = 1. Figure 7 (c) and (d) show the histograms for the vector q. Figure 7 (d)
shows that after the optimization, the distribution tends to r = 5.
Figure 8 shows the histograms for the C-CASSI approach with Z = 128, L = 16, and
a compression ratio of 21%. Figure 8 (a) and (b) show the histograms for the vector
p. Figure 8 (b) shows that the entries of p are concentrated around µ = 1 after the
optimization. Figure 8 (c) and (d) show the histograms for the vector q. Figure 8 (d)
shows that the entries of q are concentrated around r = 5 after the optimization.
Fig. 9 shows the histograms for the compressive X-ray tomography measurement
matrix in an angle m = 0 for Z = 128, P̂ = 3, µ = 200, and r = 5. Fig. 9 (a) and
(b) show the histograms for the vector p. Fig. 9 (b) shows that the distribution is
concentrated around µ = 200. Fig. 9 (c) and (d) show the histogram for the vector q.
Fig. 9 (d) shows that the distribution is concentrated around r = 5.

2.4.2. Recovery Results In order to verify the proposed design algorithm, a set
of compressive measurements is simulated using the forward models in (3.5) and
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Figure 6: Singular values for the compressive X-ray tomography with 50% of com-
pression ratio, M1 = 552 and P̂ = 3.
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Table 2: Mean PSNR for different compression ratios [%] with SNR=20[dB], for PFA
system

Compression
ratio [%] 17 25 33 42 50 58 67

Random [dB] 32.2 33.3 33.8 34.0 34.1 34.2 41.7
Proposed [dB] 33.8 36.0 37.5 37.9 38.9 39.5 45.0

(2.11), for each compressive system, respectively. For the spectral data, the mea-
surements are constructed by using the test spectral data cube C_1_5_1 taken from
the database [58] which was acquired using Liquid Crystal Tunable Filters. The re-
sulting test data cube has 256 × 256 pixels of spatial resolution and L = 12 spectral
bands. For the compressive X-Ray tomography data, a cross-section of a human
thorax of spatial resolution 128× 128 was used.
For the reconstruction process, in the spectral case, the compressive sensing GPSR
reconstruction algorithm [25] is used to recover the underlying data cube, with Ψ =
W⊗Ψ2D, where Ψ2D is a 2D-Wavelet Symmlet and W is a 1D cosine transform. In
the compressive X-Ray case, the recovery process was performed by the C-SALSA
algorithm [48] with a Total Variation norm. The simulations are performed in a desk-
top architecture with an Intel Core i7 3.6GHz processor, 32GB RAM, and using Mat-
lab R2014a.

PFA approach

The first experiment tests the design for different compression ratio levels, with a low
noise addition of SNR=20[dB]. Table 2 shows the results where the PSNR values
obtained with the Proposed method are higher than those obtained with Random.
Table 3 shows the results for the second experiment, where the compression ratios
are fixed to 25% and 58% for different SNR levels. Despite the loss in reconstruction
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Figure 7: Histogram of the vector p for the PFA system in subsection II, A, 1) with
Z = 128, L = 16, and compression ratio of 18% for (a) random realizations (b)
designed with the CMD algorithm. Histogram of the vector q (c) random realizations
(d) designed with the CMD algorithm.
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quality, the optimized measurement matrices conserve better performance than the
Random.
Figure 10 shows the visual results of the differences between reconstructions and
original data cube for the PFA approach with 25% of compression ratio and two SNR
levels. There, it is possible to notice the better performance of the optimized PFA
measurement matrix where a PSNR improvement of up to 5.2 [dB] is reached with
SNR=20[dB] and to 2 [dB] with SNR=10.

C-CASSI

For the C-CASSI system, Table 4 shows the results of mean PSNR as a function of
the compression ratio for a SNR=20[dB].
The second experiment fixes the compression ratio to 26% and 61% for different
SNR levels. Similarly to the PFA approach, despite the loss in PSNR, the designed
matrices outperform the Random.
Figure 11 shows the visual results of the differences between reconstructions and
original data cube for C-CASSI system with 26% of compression ratio. There, it is
possible to notice the better performance of the optimized C-CASSI measurement
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Figure 8: Histogram of the vector p for the C-CASSI system in subsection II, A, 2)
with Z = 128, L = 16, and a compression ratio of 21% with (a) random realizations (b)
designed with the CDM algorithm. Histogram of the vector q (c) random realizations
(d) designed with the CDM algorithm.
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matrix where a PSNR improvement of up to 5.9 [dB] is attained with SNR=20[dB]
and to 2.7 [dB] with SNR=10.

Compressive X-ray tomography

A scenario with a 1D line detector composed by M1 = 552 elements and P̂ = 3
fan-beam X-ray sources placed uniformly in a 1 × 3 geometry, each coded aperture
element corresponds to a particular detector element. Therefore, the coded aper-
tures are placed in front of each of the sources composed by 552 elements. The
ASTRA Tomography Toolbox [59] was used to obtain the system matrices Rm.
The first experiment uses 3 configurations each one with different number of angles,
16 and 23 that correspond to 50% and 73% of compression ratios and without com-
pression for 32 angles. Table 6 shows the results without noise and with a SNR level
of 20 dB. In all the scenarios, the results of the designed matrices outperform the
reconstruction quality of the Random ones.
Fig. 12 shows the visual results of the differences between reconstructions and
original image with 50% of compression ratio without noise (Fig. 12 (b) and (c)) and
with SRN=20 dB (Fig. 12 (d) and (e)). It is possible to notice the better performance
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Figure 9: Histogram of the vector p for the compressive X-ray tomography system
in subsection II, B, with Z × Z = 128 × 128, P̂ = 3, in a specific angle m = 0 for (a)
random realizations (b) designed with the CMD algorithm. Histogram of the vector q
(c) random realizations (d) designed with the CMD algorithm.
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of the optimized compressive X-ray tomography measurement matrix where a PSNR
improvement of up to 1.8 dB is attained without noise and to 0.5 dB with SNR=20
dB.

2.4.3. Comparison with a coherence approach In order to compare our results
with a state-of-the-art solution we approximate the solution of the minimization prob-

lem Φ= arg minΦ̂∈RM×N

∥∥∥I−ΨT Φ̂T Φ̂Ψ
∥∥∥2

F
, by a gradient descent approach followed

by a thresholding and a structured operation, i.e. the iterative process consists of the
next steps:

1. Φ̂k = Φ̂k−1 + ϑΦ̂(I− Φ̂T Φ̂), where the step ϑ = 0.125 provides good results

2. Thresholding: Φ̄k = Φ̂k > T , with a threshold enables pass to 50% of the
information

3. Structure: Φi,j = Φ̄k
i,j ∀ (i, j) ∈ Ω

This experiment was performed with the Ω for the PFA approach, with Z = 32, L =
4, and a compression ratio of 80%. Table 7 shows the PSNR results for different
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Table 3: Mean PSNR as a function of noise (SNR) for the PFA system with 25% and
58% of compression ratio

SNR [dB]
Compression

ratio [%] Method 5 10 15 20

2*25 Random 22.6 27.6 32.8 34.0
Proposed 25.5 29.7 33.4 39.2

2*58 Random 24.6 30.0 34.5 40.5
Proposed 27.1 32.6 38.1 42.1

Figure 10: (a) Original. Differences between reconstructions on PFA system
with 25% of compression ratio, (b) Original-Random and (c) Original-Proposed with
SNR=20[dB], and (d) Original-Random and (e) Original-Proposed with SNR=10[dB].
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SNR levels. Notice that the Proposed approach has a better performance than the
Gradient and Random approaches.

2.5. CHAPTER CONCLUSION

This chapter proposed a new algorithm based on the optimal selection of non-zero
entries positions for a structured, sparse, and binary measurement matrix (SBiM) de-
sign. Instead of solving the associated problem by traditional methods, an algorithm
that minimizes the associated objective function by optimal selection of the non-zero
elements per rows and columns has been designed. In this algorithm, the positions
of the non-zero entries by rows and columns were updated alternatively, both using
probability mass functions related to the sum of non-zero elements. This algorithm
enables to solve an optimization problem without performing the product of large ma-
trices, instead it takes advantage of the sparsity and structure of the SBiM providing
a better performance than the traditional coherence problem. The proposed method
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Table 4: Mean PSNR for different compression ratios [%], with SNR=20[dB] for C-
CASSI system

Compression
ratio [%] 17 26 35 43 52 61 70

Random [dB] 28.7 29.6 30.0 30.3 30.4 32.2 35.4
Proposed [dB] 32.1 35.8 38.1 39.4 40.2 40.6 47.8

Table 5: Mean PSNR as a function of noise (SNR) for C-CASSI system with 26%
and 61% of compression ratio

SNR [dB]
Compression

ratio [%] Method 5 10 15 20

26 Random 21.7 25.2 28.8 29.6
Proposed 23.6 27.9 32.1 35.5

61 Random 23.1 27.2 30.1 30.2
Proposed 26.9 32.6 38.4 39.1

was tested on three different cases. Specifically, we developed the SBiM model for
two compressive spectral sensing approaches and one compressive X-ray tomog-
raphy. Numerical experiments showed that the proposed CMD algorithm compared
competitively with Random and mutual coherence approaches, with the advantage
of improving the reconstruction quality.
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Figure 11: (a) Original. Differences between reconstructions on C-CASSI with
26% of compression ratio (b) Original-Random and (c) Original-Proposed with
SNR=20[dB], and (d) Original-Random and (e) Original-Proposed with SNR=10[dB]
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Table 6: Mean PSNR as a function of compression [%] without noise and with
SNR=20 dB for Compressive X-ray tomography

Compression ratio [%]
SNR [dB] Method 50 73 100

2*Noiseless Random 27.6 33.4 42.4
Proposed 29.1 39.0 49.0

2*20 Random 23.6 27.1 29.1
Proposed 24.2 27.6 30.2

Figure 12: (a)Original. Differences between reconstructions on compressive X-
ray tomography (a) Original-Random and (b) Original-Proposed noiseless and (c)
Original-Random (d) Original-Proposed with SNR=20 dB
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Table 7: Mean PSNR for different noise levels for the Random, the Gradient, and the
Proposed approaches

SNR[dB] 5 10 15 20 40
Random 20.1 26.7 30.7 32.7 33.2
Gradient 20.2 26.8 31.4 34.3 35.2
Proposed 21.5 27.2 32.4 35.5 36.3
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3. MATRIX DESIGN IN CSI WITH TWO SENSORS

Each image sensor is designed based on a particular signal-to-noise ratio (SNR).
The reflected incoming light must be of sufficient energy to guarantee a sufficient
SNR for a proper acquisition. To increase the energy level of the arriving signal, ei-
ther the instantaneous field of view or the spectral window width must be increased.
However, these solutions are mutually exclusive. That is, optical sensors suffer from
an intrinsic energy tradeoff that limits the possibility of acquiring images of both high
spatial and high spectral resolutions. This tradeoff prevents any simultaneous de-
crease in both the GSI and the spectral window width [60].
As a consequence, reconstructing a high-spatial and high-spectral multiband (HR)
image from two degraded and complementary observed images is a relevant issue
that has been addressed in different scenarios. In particular, fusing a high-spatial
low-spectral resolution image and a low-spatial high-spectral image is a classic situ-
ation of multiband image reconstruction, such as pansharpening (MS+PAN) or hyper-
spectral pansharpening (HS+PAN). Generally, the linear degradations applied to the
observed images with respect to the target high-spatial and high-spectral image re-
duce to spatial and spectral transformations. Thus, the multiband image fusion prob-
lem can be interpreted as restoring a 3D datacube from two degraded datacubes.
Due to the extremely large volumes of data collected by imaging spectrometers,
hyperspectral data compression has received considerable interest in recent years.
Compressive Spectral Imaging (CSI) is a technique to capture spectral images ef-
ficiently by encoding the spatio-spectral information. This is based on the fact that
spectral images can be represented with a few coefficients in some basis. More for-
mally, suppose a spectral image X ∈ RZ×Z×L, or its vector representation x ∈ RN

with N = Z2L, is S-sparse in a basis Ψ, such that x = Ψθ can be approximated by
a linear combination of S vectors from Ψ with S � N . The number of multiplexed
measurements in CSI is less than the required by the conventional spectral imaging
devices.
To recover the HR image X from the measurements, the inverse sensing operator
of the matrix that represents the CSI system must be found. However, this system
is under-determined, therefore direct inversion is unfeasible. Instead, it is possible
to force the sensing operator to exhibit a close to well-conditioning behavior in order
to obtain a better inversion. Mainly, the performance of the compressive sensor is
related to the coded apertures. A coded aperture can be modeled as a 2D matrix,
where each pixel is an optical filter. The selection of the spectral characteristics
of each pixel and their spatial distributions control the quality of the compressive
measurements, which in turn determine the quality of the estimated spectral image.
Therefore, there exist some research related to design the structure of the coded
aperture in a CSI system.
Recently, some works have attended to recover an HR image from compressive
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measurements of two CSI systems with different spatial and spectral resolution.
There are a few works for designing coded apertures in a single CSI system, there
are a handful of works that attempt to reconstruct an HR image from compressed
measurements of two CSI systems.
In this work, we propose three coded aperture designs for the compressive spec-
tral imaging fusion recovery problem. The first method attempts to perform uniform
sampling on the spectral datacube along the snapshots taken by a CSI system. The
second method includes another uniform constraint such as the expected value of
the number of elements in a 2D spatial window be the same in the coded aper-
ture for the multi-spectral system. The third method designs the coded aperture for
spreading the pass elements in a 3D window that moves along the coded aperture.
There exist numerous approaches for fusing two low-resolution images of the same
scene for recovering a better hyperspectral image. For instance, pan-sharpening [61]
is an initial class of fusion methods that aims at fusing a panchromatic image (gray
image) with a multispectral one to form an image with the high spatial resolution of
the former and the high spectral resolution of the latter [62]–[64]. In spatial-spectral
image fusion, a class of methods exploits the Bayesian framework to fuse an MSI
with an HSI, that is, they determine a posterior distribution based on prior knowledge
and on the observation model [65], [66]. Recently, the matrix factorization approach
has been used by assuming that the HR image only contains a small number of
significant elements. This approach first unfolds the HR image as a matrix and then
represents it into a basis matrix and a coefficient matrix [61], [67].
All the above methods assume that the there are two complete datacubes of the
same scene with different spatial and spectral resolutions. Instead, some works
have attended to recover an HR image from compressive measurements of two CSI
systems with different spatial and spectral resolutions. The work of [68] introduces a
model allowing compressive data from high spatial/low spectral and low spatial/high
spectral resolution sensors to be fused. The compressive fusion process is formu-
lated as an inverse problem that minimizes an objective function defined as the sum
of a quadratic data fidelity term and smoothness and sparsity regularization penal-
ties. The work of [69] proposes an optimization algorithm based on the linear spectral
unmixing model and using a block coordinate descent strategy. The main advantage
of these approaches is using a significant reduced number of measurements.
The development of CSI systems is an active area of research, both in terms of hard-
ware and the signal processing algorithms. Every CSI architecture can be modeled
by a characteristic measurement matrix Φ, whose entries and structure depend on
the different optical elements. For instance, the Patterned Filter Array (PFA) and
the Colored Coded Aperture Snapshot Spectral Imaging (C-CASSI) approaches are
CSI systems that have been widely used and have provided outstanding image re-
construction results [33], [54], [55].
Optimization of color coded apertures in the C-CASSI system has been demon-
strated in the past. The work [33] proposes a row-per-row optimization approach
based on concentration of measurement. Another approach exploits the spatial and
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spectral correlation of the spectral images by modeled the CCA as a 3D black-and-
white coded aperture, and thus seeks to spread the translucent elements (band-pass
filters of the color coded aperture) along the 3D cube extent [70], [71].

3.1. CSI SYSTEMS MODELED FOR A FUSION FRAMEWORK

This section presents the sensing models of the CSI considered in this work: the
Patterned Filter Array (PFA) and the Colored Coded Aperture Snapshot Spectral
Imaging (C-CASSI).

Patterned Filter Array (PFA)

Let X ∈ RZ×Z×L be a spectral image with spatial resolution Z × Z and L spectral
bands. For acquiring spectral images, the PFA approach uses optical elements that
perform spectral filtering and collect multiple wavelength spectra on each pixel de-
tector array in few snapshots. This colored coded aperture (CCA) can be modeled as
a 4D encoder D, where the element Ds,t,u,k ∈ {0, 1} represent the on-off wavelength
codification of the light in the spatial position (s, t), the uth spectral band, and the kth
snapshot. Let Xs,t,u be an element of the spectral image, where s, t = 0, ..., Z − 1
index the spatial coordinates and u = 0, ..., L − 1 determines the uth spectral band.
The discretized measurements of the PFA approach from a single snapshot can be
expressed as

Ys,t,k =
L−1∑
u=0

Xs,t,uDs,t,u,k + ηs,t,k, (3.1)

where Ys,t,k is the intensity at the position (s, t) of the detector in the kth snapshot
and ηs,t,k is the white noise of the sensing system.
Let us define the set of measurements in (3.1) for the kth snapshot as Yk ∈ RZ×Z .
Yk can be written in matrix notation as yk = Φkx + η, where yk ∈ RZ2 is the vector
representation of Yk, x is the vector representation of the spectral image X , and
Φk represents the measurement matrix for the kth snapshot. More precisely, if we
define the column vector du,k ∈ {0, 1}Z

2 as the vectorization of the CCA elements for
the uth spectral band and the kth snapshot, such that du,k = vect(D:,:,u,k), the matrix
Φk is given by

Φk =
[
diag(d0,k) diag(d1,k) · · · diag(dL−1,k)

]
. (3.2)

The matrix Φk in eq. (3.2) can be expressed as

Φk =

L−1∑
u=0

diag(du,k)IC(PT
Z2L)uN

2
(3.3)

where Pn is the following n× n permutation matrix
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Pn =


0 0 · · · 0 0
1 0 0 0
0 1 0 0

0 0
. . . 0 0

0 0 0 1 0

 , (3.4)

diag(v) is a diagonal matrix formed from the vector v, IC = [I,0C ], I is the Z2 × Z2

identity matrix, and 0C is the Z2 × Z2(L− 1) zero matrix.
The measurement process can be generalized to D snapshot projections where the
set of measurements is defined as

y =

 y0
...

yD−1

 =

 Φ0
...

ΦD−1

x + η = Ux + η. (3.5)

where U is a DZ2 × Z2L matrix that accounts D snapshots each one with Z2 mea-
surements.

Colored Coded Aperture Snapshot Spectral Imaging (C-CASSI) System

In the C-CASSI system, the spectral image is coded, then spectrally shifted by a
dispersive element, and a 2D Focal Plane Array detects the coded and shifted pro-
jections. Specifically, let Xs,t,u be an element of the spectral image and Ds,t,u,k an
element of the encoder that represents the CCA, a discretized snapshot from C-
CASSI can be expressed as

Ys,t,k =
L−1∑
u=0

Xs,(t−u),uDs,(t−u),u + ηs,t,k, (3.6)

where Ys,t,k is the intensity at the position (s, t) of the detector that collects Z × (Z +
L − 1) measurements in the kth snapshot. Let us define Yk ∈ RZ×Z+L−1 as the
set of measurements in the kth snapshot and yk its vectorized version. Therefore,
Eq. (3.6) can be written in matrix notation as yk = Φkx + ηηη, where yk ∈ RE, with
E = Z(Z + L− 1), and Φk is the measurement matrix of the kth snapshot.
The matrix Φk can be related to the CCA, in this case, taking into account the dis-
persion effect as:

Φk =


diag(d0,k) 0Z×Z2 · · · 0Z(L−1)×Z2

diag(d1,k) · · ·
. . .

0Z(L−1)×N2 0Z(L−2)×Z2 · · · diag(dL−1,k)

 (3.7)

where du,k ∈ RZ2 is the vectorization of the CCA elements for the uth spectral band
and the kth snapshot, and 0Z×Z2 is the Z × Z2 zero matrix. As in the previous
subsection, Eq. (3.7) can be constructed using permutation matrices as

Φk =

L−1∑
u=0

(Pm)uZ [diag(du,k),0]T IC(PT
Z2L)uZ

2
(3.8)
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where m = Z2 + Z(L − 1), 0 is the Z2 × Z(L − 1) zero matrix, IC = [I,0C ] with I is
the Z2 × Z2 identity matrix and 0C is the Z2 × Z2(L− 1) zero matrix.
Here, also the set of measurements taken by D different snapshots can be defined
as in (3.5), where U is a DZ(Z + L − 1) × Z2L matrix that takes D snapshot each
one of Z(Z + L− 1) measurements.

3.2. COMPRESSIVE SPECTRAL IMAGING FUSION

The fusion of compressed measurements aims to recover a high spatial and high
spectral resolution (HR) image from two images acquired with two CSI systems. The
observed images are assumed to result from spectral or spatial degradations of an
HR image acquired with two different CSI systems. Specifically, let XM ∈ RZ×Z×LM

and XH ∈ RZH×ZH×L, with LM � L and ZH � Z, be the multispectral (MS) and
the hyperspectral (HS) datacubes of a scene, respectively. We define the sensing
matrix for the MS datacube as UM and for the HS datacube as UH , therefore, the
compressive measurements for both CSI systems are given by

yM = UMxM + ηM ,
yH = UHxH + ηH , (3.9)

where xM ∈ RZ2LM and xH ∈ RZ2
ML are the vectorization of XM and XH , respectively,

and ηM and ηH are additive noise terms. The vectors xM and xH can be related to
the HR image by using an operator that represents the reduction of the number of
bands and one that represents the spatial blurring and downsampling.
In summary, the measurements considered in this work are HS and MS compressed
images given by

yM = UMxM + ηM = UMEx + ηM = ΦMx + ηM ,

yH = UHxH + ηH = UHSx + ηH = ΦHx + ηH , (3.10)

where

• E ∈ RZ2LM×Z2L (LM � L) represents the reduction of the number of spectral
bands

• S ∈ RZ2
HL×Z

2L (ZH � Z) represents the spatial blurring and downsampling

• UM ∈ RP×Z2LM and UH ∈ RQ×Z2
HL are appropriate compressive sensing ma-

trices, with P,Q� Z2L

• yM ∈ RP and yH ∈ RQ are the observed compressive measurements of the
MS and HS images. P and Q are the number of measurements used to sense
the HS and MS images, respectively.
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Notice that a similar fusion model was posed in [72] except that the observed images
were not compressed, i.e., without the matrices UM and UH . The aim of this work is
to design the entries of the matrices UM and UH in order to better estimate the HR
image x from the observed measurements yM and yH .

3.2.1. Spectral Reduction Matrix E Let us define the matrix E in (3.10) for L
spectral bands as

E = ILM
⊗ Ē (3.11)

where Ē ∈ {0, 1}Z2×pZ2 is a spectral reduction operator that performs a linear combi-
nation of p adjacent spectral bands given by Ē = 1Tp ⊗ IZ2, with 1p is a ones column
vector of length p and IZ2 is the Z2 × Z2 identity matrix, ILM

is an LM × LM identity
matrix with LM = L/p, and ⊗ represents the Kronecker product.

3.2.2. Measurement Matrices ΦM in a C-CASSI system Let us define the matrix
UM in (3.10) as a C-CASSI measurement matrix that senses a Z ×Z ×LM spectral
image. Given that the matrix ΦM in (3.10) is the product between the measurement
matrix UM and the spectral reduction matrix E, ΦM can be decomposed into DM

submatrices, for DM snapshots, each one related to a specific snapshot as follow

ΦM,k = ΦkE

=

LM−1∑
u=0

(Pm)uZ [(diag(dMu,k)Ē)T ,0]T IC(PT
Z2L)upZ

2 (3.12)

where k = 0, 1, ..., DM − 1, m = Z2 + Z(LM − 1), dMu,k ∈ {0, 1}Z
2 is the vectorization

of the CCA elements in the uth spectral band and the kth snapshot for the MS C-
CASSI system like the one defined in Eq. (3.7), 0 is the pZ2×Z(LM −1) zero matrix,
IC = [I,0C ], I is the pZ2 × pZ2 identity matrix, and 0C is the pZ2 × pZ2(LM − 1) zero
matrix. The matrix ΦM that accounts the DM snapshots is given by

ΦM =

 ΦM,0
...

ΦM,DM−1

 . (3.13)

3.2.3. Spatial Blurring and Downsampling Matrix S Let us define the matrix S
in (3.10) for L spectral bands as

S = IL ⊗ S̄B̄ (3.14)

where IL is an L× L identity matrix, B̄ ∈ RZ2×Z2 is a cyclic convolution operator op-
erator acting on each band, and S̄ is a spatial downsampling operator that performs
a linear combination of q2 adjacent pixels in a single image, that is S̄ will degrade
spatially each spectral band by a factor of q. Mathematically, S̄ ∈ {0, 1}ZH×Z can be
expressed as
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S̄ = IZH
⊗ [1Tq ⊗ (INH

⊗ 1Tq )], (3.15)

where q is the downsampling spatial factor, ZH = Z/q with N the size of the high
spatial resolution spectral band, IZH

is an ZH × ZH identity matrix, and 1q is a ones
column vector of length q.

3.2.4. Measurement Matrices ΦH in a C-CASSI system Let us define the ma-
trix UH in (3.10) as a C-CASSI measurement matrix that senses an ZH × ZH × L
spectral image. Given that the matrix ΦH in (3.10) is the product between the mea-
surement matrix UH and the spatial blurring and downsampling matrix S, ΦH can be
decomposed into DH submatrices, for DH snapshots, each one related to a specific
snapshot as follow

ΦH,k=ΦkS

=
L−1∑
u=0

(Pm)uZH [(diag(dHu,k)S̄B̄)T ,0]T IC(PT
Z2L)uZ

2 (3.16)

where k = 0, 1, ..., DH − 1, m = N2
H + NH(L− 1), dHu,k ∈ {0, 1}N

2
H is the vectorization

of the CCA elements in the uth spectral band and the kth snapshot for the HS C-
CASSI system like the one defined in Eq. (3.7), 0 is the Z2 × ZH(L− 1) zero matrix,
IC = [I,0C ], I is the Z2×Z2 identity matrix, and 0C is the Z2×Z2(L− 1) zero matrix.
The matrix ΦH that accounts the DH snapshots is given by

ΦH =

 ΦH,0
...

ΦH,DH−1

 . (3.17)

3.2.5. Observations related to the CSI systems The definitions of matrices ΦM,k

in (3.12) and ΦH,k in (3.16) were related to the C-CASSI system described by (3.8).
However, these definitions can be related to the patterned system (3.3) following the
same procedure that in the last subsections.

3.3. CODED APERTURE DESIGN METHODS

The observation model in (3.10) has the same input x and two sets of measurements
yM , yH as outputs. If we stacked the measurements in a single vector, the sensing
process can be represented as

y =

[
yM
yH

]
=

[
ΦM

ΦH

]
x = Φx. (3.18)

If we take into account that the spectral image x is sparse in a basis Ψ, such that
x = Ψθ, Eq. (3.18) can be seen as the CS problem y = ΦΨθ = Aθ.
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CS requires that the sensing matrix A accomplish certain orthonormality properties,
for instance, the restricted isometry property (RIP) [73]. The matrix A accomplishes
the RIP if any set of S of its columns is orthonormal. In general, if the sparsity
of the signal is neglected, the objective is that the matrix A be as orthonormal as
possible, that is ATA = I. In our case ATA = ΨTΦTΦΨ = ΨTGΨ, where we
define G = ΦTΦ. If the sparsifying basis Ψ is orthonormal, selected such that it
induces high sparsity, and fixed, the design of the matrix will focus on that Φ be as
orthonormal as possible, that is G = ΦTΦ = I.
Given that the matrix G is related to the entries of the CCAs DM and DH , our ap-
proach attempts to impose restrictions to the CCAs such that G tends to the identity.
Specifically, we express the entries of G as a function of the CCA elements for the
MS system DMs,t,u,k and the CCA elements of the HS system DHs,t,u,k, then we con-
straint the {0, 1} values such that the diagonal elements of G tend to 1 and the
off-diagonal elements be close to zero.
We will determine the entries of the matrix G in the fusion framework, as follows

G =

[
ΦM

ΦH

]T [
ΦM

ΦH

]
= ΦT

MΦM + ΦT
HΦH = GM + GH , (3.19)

where the matrix related to the spectral reduction and compressive sensing GM is
given by  ΦM,0

...
ΦM,DM−1


T  ΦM,0

...
ΦM,DM−1

=

DM−1∑
k=0

ΦT
M,kΦM,k=

DM−1∑
k=0

GM,k, (3.20)

where each product GM,k=ΦT
M,kΦM,k can be modeled as

DM
0 FM

0,1 FM
0,2 · · · FM

0,LM−1

(FM
0,1)T DM

1 FM
1,2 · · · FM

1,LM−1

(FM
0,2)T (FM

1,2)T DM
2 · · · FM

2,LM−1
...

...
...

. . .
...

(FM
0,LM−1)T (FM

1,LM−1)T (FM
2,LM−1)T · · · DM

LM−1

 (3.21)

which is a symmetric matrix whose diagonal submatrices DM
u ∈ {0, 1}pZ

2×pZ2 are
related to the coded aperture elements of the uth spectral band. Specifically, each
diagonal matrix is given by

DM
u = ĒTTuTuĒ = ĒTT2

uĒ (3.22)

where Tu = diag(dMu ) ∈ {0, 1}Z2×Z2 and Ē ∈ {0, 1}Z2×pZ2 has been defined in the
subsection 4.2.1.
The off-diagonal submatrices in Eq. (3.21), FM

i,j ∈ {0, 1}pZ
2×pZ2, are related to the

interactions between the elements of the coded aperture that affects the ith spectral
band and the one that affects the jth spectral band. Specifically, in the C-CASSI
system, these matrices are given by

FM
i,j = ĒTTi(PZ2)(i−j)NTjĒ (3.23)
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where PZ2 ∈ {0, 1}Z2×Z2 is a permutation matrix as the one defined in (3.4).
If we take into account the interactions of the LM spectral bands, it is possible to
express the entries of the matrix GM,k as a function of the CCA elements as follows

[GM,k]i,j=
LM−1∑
`2=0

LM−1∑
`1=0

dMı̂,̂+`2,`1d
M
ı̂,̂+`1,`2 if ı̂′−`2Z= ̂′−`2Z

0, otherwise,

(3.24)

where ı̂ = mod(i, Z), ̂ =
⌊
j
Z

⌋
−
⌊
j
Z2

⌋
Z, ı̂′ = mod(i, Z2), ̂′ = mod(j, Z2).

Similarly, the matrix related to the spatial blurring, downsampling, and sensing pro-
cess GH has the same structure of (3.20) but with theDH matrices ΦH,k. The product
GH,k = ΦT

H,kΦH,k is also a block symmetric matrix as (3.21) whose diagonal subma-
trices DH

u ∈ RZ2×Z2 are related to the coded apertures of the uth spectral band as

DH
u = B̄T S̄TTuTuS̄B̄ = B̄T S̄TT2

uS̄B̄ (3.25)

where Tu = diag(dHu ) and S̄ and B̄ has been defined in subsection 4.2.3.
The off-diagonal submatrices FH

i,j ∈ RZ×Z are related to the interactions between the
elements of the coded aperture that affects the ith band with the one that affects the
jth band. Specifically, these matrices are given by

FH
i,j = B̄T S̄TTi(PZ2

H
)(i−j)ZHTjS̄B̄ (3.26)

where PZ2
H
∈ {0, 1}Z2

H×Z
2
H is a permutation matrix as the one defined in (3.4).

If we take into account the interactions of the L spectral bands without including the
blurring, the entries of the matrix GH,k can be expressed as

[GH,k]i,j =
L−1∑
k2=0

L−1∑
k1=0

dHi′,j′+k2,k1d
H
i′,j′+k1,k2 if i′=j′′δ (̂′′− ı̂′′)

0, otherwise,

(3.27)

where i′=bi/qc−bi/ZcZH , j′=bj/(qZ)c, j′′=bj/qc−bj/ZcZH , ̂′′=b(j + k2Zq)/(qZ)c,
ı̂′′=b(i+ k1Zq)/(qZ)c, δ is the Dirac delta function.
The following observations can be used for the optimization of the CCAs:

1. The sparsifying base Ψ is considered properly selected such that it induces
high sparsity. Thus, it is considered fixed.

2. The sum of the correlated products of the CCA in a single shot along all the
spectral bands, as the equations (3.24) and (3.27) show, tends to increase the
off-diagonal elements of GM and GH . Therefore, impose a constraint that de-
creases the number of non-zero elements along the spectral bands is required.
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3. The sum of the matrices GM,k and GH,k along the snapshots to form the matri-
ces GM and GH , respectively, increases the value of the elements, therefore,
minimizing the quantity of light that passes through the CCA in each snapshot
is desired in a complementary way. With complementary we mean that in each
position s, t, u of the CCA could be a non-zero element only in one of the snap-
shots.

4. The possible intersections between the matrix GM and GH could occurs in
neighborhoods related to the spatial downsampling, that is, each set of q × q
pixels of the multispectral CCA is related to a single pixel of the hiperspectral
CCA, therefore, a restriction that minimizing the quantity of light that passes
through the CCA for the multispectral system in each set of q × q pixels is
desired.

5. Given that the above observations attempt to decrease the quantity of light that
passes through the systems and that the number of elements that we require
to recover is Z2L, we restrict the systems transmittance to collect this minimum
amount of elements.

In order to interpret these observations in a physical scenario, the following can be
analyzed:
The most faithful sampling process results when the system is modeled as the com-
bination of the image with an identity matrix such that each voxel in a discrete image
is measured at least once. However, the compressive system having fewer rows
than columns and requiring randomness restricts the choice of an identity.
Therefore, the idea of measuring each voxel at least once must be held because it
is analogous to the identity but fulfilling the restrictions of the compressive system,
then the motivation for the CCA designs is to measure all the image voxels in random
acquisitions.

3.3.1. Uniform Sensing Let us define du,k as the vectorization of the CCA ele-
ments for the spectral band u and the kth snapshot. In this case, we constraint each
CSI system to measure a voxel at least once, therefore we want to collect U = Z2L
elements. The uniform sensing approach [74] attempts to locate these elements
in the CCA uniformly random constraining the sum of passing elements across all
snapshots to be one. Specifically, this can be mathematically expressed as:

D−1∑
k=0

du,k = 1Z2 ∀ u ∈ {0, 1, ..., L− 1} (3.28)

where 1Z2 is a Z2-long one-valued vector. This constraint agrees with the third ob-
servation of the last part allowing only one passing element along all the snapshots.
Additionally, in order to uniformly distribute the measurements along the spectral
bands and following the second observation, we want to accomplish that the ex-
pected value of the sum of elements along the spectral bands in each snapshot be
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L/K, that is:

E

{
L−1∑
u=0

du,k

}
= (L/K)1Z2 ∀ k ∈ {0, 1, ..., D − 1}. (3.29)

The constraints of equations (3.28) and (3.29) are equivalent to the uniform restric-
tions proposed in Chapter 3, therefore, it is possible to use the proposed algorithm
from chapter 3 to design the matrix and therefore the distributions of the CCA of
each CSI system independently. The benefits of this design is that each CSI system
will have suitable properties of linearly independent measurements. The drawback
of this design is that it does not have into account the spatial restrictions related to
the fusion of the two CSI systems measurements.

3.3.2. Uniform with local spatial constraints In order to follow the fourth ob-
servation, this approach uses the uniform constraints of the subsection 3.3.1 and
restricts the high spatial resolution CCA, dMu , to have approximately the same num-
ber of passing elements in spatial regions of neighborhoods p× p, such that the high
spatial resolution CCA has the following additional restriction:

E
{∑

i∈Ωj
[dMu,k]i

}
= Z2

Kp2
1p2 ∀ k ∈ {0, 1, ..., DM − 1}

and u ∈ {0, 1, ..., LM − 1},
(3.30)

where Ωj is the set of positions in the jth p × p neighborhood along the spatial di-
mension of the CCA dMu,k. In order to accomplish the constraint (3.30), after applying
the uniform algorithm to both CSI systems, the spatial distribution of the elements
in the CCA for the MS system is rearranged. This can be done by an algorithm
that computes the sum of passing elements in each neighborhood of p × p pixels
and moves randomly through the shots and bands the ones that exceed the desired
average (Z2/(Kp2)), keeping the uniform constraints. The benefit of this approach
is that spreading the passing elements in the spatial neighborhoods of the CCA for
the MS system decreases the interactions with the elements iof the CCA for the HS
system. The drawback of this design is that it requires an additional step that moves
one step per neighborhood through (Z/q)2L spatial neighborhoods.

3.3.3. 3D Spread In order to minimizing the possible interactions, one general
approach requires separating the non-zero elements of the CCA in a 3D sub-window.
The aim of this approach is to spread the passing elements of each CCA in every
sub-window of size 2L × 2L × L along all its rows, columns, and slices [70], [71].
Here, the CCA entries have to satisfy the minimum light throughput constraint of Eq.
(3.28). Additionally, in order to spread the elements of the CCA, the design attempts
to better accomplish the following optimization problem

arg min
{d0,k,...,dL−1,k}D−1

k=0

β

s.t.
∑D−1

k=0 du,k = 1Z2 ∀ u ∈ {0, 1, ..., L− 1}
(3.31)
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where β is defined as

β =
D−1∑
k=0

Z−1∑
s=0

Z−1∑
t=0

L−1∑
u=0

L−1∑
û=0

dks,t,ud
k
s,t,û. (3.32)

where dks,t,u is the 3D representation of the CCA with k denoting the snapshot. An iter-
ative algorithm for accomplishing this design is presented in [70], [71]. This randomly
walks along all the pixels of a of randomly generated CCA satisfying the complemen-
tary (sum-to-one) constraint. In every step, the algorithm filters the sub-window of
size 2L × 2L × L centered at the current pixel with a 3D-Euclidean filter and eval-
uates the objective function of the problem for every snapshot. The snapshot pixel
that gives the lowest objective value is set to 1 (passing element) and the rest of
the snapshots at the same positions are set to 0 (blocking element). The algorithm
iterates on the updated CCA until the objective function stops decreasing, or until
the objective function lies within a certain threshold. The 3D-Euclidean filter is de-
signed such that the weights are calculated inversely proportional to the Euclidean
distance between the points in a 3D mesh, with respect to the central pixel. The ad-
vantage of this design is that spreading the passing elements along 3D sub windows
of each CSI system, the correlations between both CSI systems will be reduced. The
drawback of this design is its high complexity.

3.4. RECOVERY ALGORITHM

To recover the high spatial and spectral resolution spectral image, the following opti-
mization problem is established

arg min
x

1

2
‖UMEx− yM‖22 +

1

2
‖UHSx− yH‖22 + φ(x), (3.33)

where the two first terms are the data fidelity terms associated with the HS and MS
observations, ‖·‖2 is the `2 norm and the last term corresponds to regularization. In
this work, we consider that the vectorized image x has a sparse representation on a
basis Ψ ∈ RZ2L×Z2L. Also, we consider a TV regularization to preserve sharp edges
or object boundaries in the spatial domain.
The minimization problem in (3.33) can be solved by using the ADMM algorithm,
where the objective function and the constraints are split by using auxiliary variables
as follows

argmin
x,vi

1
2
‖UMEv1 − yM‖2

2 + 1
2
‖UHSdv2 − yH‖2

2

+λ‖v3‖1 + λTV ‖v4‖1

subject to v1 = x
v2 = Bsx
v3 = Ψx
v4 = Dx

(3.34)
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where i = 1, ..., 4, Sd = IL ⊗ S̄, Bs = IL ⊗ B̄, Ψ is a basis of the wavelet domain,
D = IL ⊗ Dim, with Dim refers as the 2-dimensional TV operator in [75], therefore
D evaluates the total variation band per band, and λ and λTV are two positive reg-
ularization parameters for adjusting the importance of the sparsity term and the TV
term, respectively. For convenience, we introduce the following notations

v =


v1
v2
v3
v4

 ,C =


I

Bs
Ψ
D

 ,
and the cost function

h(v) = 1
2
‖UMEv1 − yM‖2

2 + 1
2
‖UHSdv2 − yH‖2

2

+λ‖v3‖1 + λTV ‖v4‖1

with v = Cx. Thus, (3.34) can be expressed as

argmin
x,v

h(v)

subject to v = Cx.
(3.35)

The augmented Lagrangian associated with (3.35) is

L(x,v,g) = h(v) + ρ
2
‖v −Cx + g‖2

2 (3.36)

where g is the scaled dual variable and ρ ≥ 0 is weighting the augmented Lagrangian
term. The exact procedure used for estimating x is summarized in Algorithm 1.

Algorithm 4: ADMM algorithm to estimate x

Input : yM , yH , UM , UH , E, Sd, Bs, G, D, ρ ≥ 0

Output: x(k+1)

1 v(0),g(0);
2 for k ← 1 to stopping rule do
3 x(k+1) = argmin

x
L(x,v(k),g(k));

4 v(k+1) = argmin
v

L(x(k+1),v,g(k));

5 g(k+1) = g(k) + v(k+1) −Cx(k+1);
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Table 8: Mean PSNR in the PFA system, for different compression ratios with the
256× 256× 24 Pavia image

CR = 100(P +Q)/(Z2L)[%] 9 12 17 21
Uniform 35.94 37.96 37.69 37.85
Unif+ Spatial Restriction 34.97 33.98 38.56 38.88
3D Spread 37.60 38.20 38.63 38.88
Random 32.03 35.46 31.76 31.68

3.5. SIMULATIONS

In this section, we present some simulations to illustrate the performance of the ap-
proaches for designing the coded apertures in a fusion framework showed in section
3.3, and compare them with random coded apertures. We test the designs in two
different datasets, with the real high resolution image as reference image and the
degraded images (MS and HS) obtained by simulation. For all the datasets, the
MS image was generated by a spectral degradation of the reference image result-
ing in LM = L/p bands MS image. The HS was generated by applying a spatial
blur B̄ to the reference image followed by a downsampling S̄ with a factor of q in
each direction. The MS and HS measurements were generated by compressing the
MS and HS images with sensing matrices whose entries were generated by different
coded apertures design. The compression ratio is defined as CR = 100(P+Q)/Z2L,
where (P + Q) is the total number of measurements in the two CSI systems for fus-
ing. Additionally, the MS and HS measurements were both contaminated by additive
Gaussian noise, with SNR = 15 [dB].

3.5.1. Effect of the Compression Ratio In this experiment we use two different
databases, the hyperspectral image acquired over the University of Pavia (Italy) by
the ROSIS-03 (Reflective Optics Systems Imaging Spectrometer) hyperspectral sen-
sor, where we use a section of 256 × 256 × 24, and the Butterfly HR image of size
128× 128× 24 taken in our laboratory the HDSP research group optical laboratory.
In this case, the reduction of bands is p = 4, the blurring matrix is imposed to be
the identity, and the downsampling factor is q = 4 resulting in an MS image of 256×
256× 6 and an HS image of size 64× 64× 24 in the Pavia case, and an MS image of
128× 128× 6 and an HS image of 32× 32× 24 for the Butterfly image.
Table 8 shows the results for the Patterned Filter Array (PFA) system for the Pavia
University image. Notice that the larger the number of measurement, the greater the
quality of the recovery. Similar quality results are shown for the Butterfly dataset in
table 9. A similar behavior is shown in the tables 10 and 11 in the C-CASSI system.
Figure 13 shows the reconstructed images for the Pavia University scene and figure
14 shows the reconstructed images for the Butterfly using the PFA system with 17%
of compression ratio. Notice that in both cases the results for the designed CCA
outperform those for random CCA.
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Figure 13: Reconstructions of the Pavia University scene for the proposed designs
with 17% of compression ratio for the PFA system

Reference

Uniform
           37.7 dB 38.5 dB

31.7 dB38.6 dB

Unif+Spatial
Restrictions

3D Spread Random

Figure 14: Reconstructions of the butterfly scene for the proposed designs with 17%
of compression ratio for the PFA system

Reference

Uniform
           33.5 dB 34.0 dB

31.0 dB33.9 dB

Unif+Spatial 
Restrictions

3D Spread Random
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Table 9: Mean PSNR in the PFA system, for different compression ratios with the
128× 128× 24 Butterfly image

CR = 100(P +Q)/(Z2L)[%] 9 12 17 21
Uniform 31.84 32.68 33.48 33.51
Unif+Spatial Restriction 32.20 32.87 34.00 33.65
3D Spread 32.43 33.67 33.99 34.37
Random 30.04 30.64 31.02 31.71

Table 10: Mean PSNR in the C-CASSI system, for different compression ratios with
the 256× 256× 24 Pavia image

CR = 100(P +Q)/(Z2L)[%] 9 13 18 22
Uniform 29.11 31.67 32.35 33.56
Unif+Spatial Restriction 28.96 31.25 32.58 33.69
3D Spread 30.19 31.69 32.84 33.68
Random 29.11 29.88 29.92 29.83

Notice that in all the cases the designed CCA outperforms the Random CCA. The
biggest differences between the designed CCA and the Random ones are for the
PFA system of 3 dB for the Pavia image, with the 3D spread design and 12% of CR
of 7.2 dB for the Butterfly image, with the 3D spread design and 21% of CR for the
C-CASSI system of 3.86 dB for the Pavia image, with the Unif+Spatial Restriction
design and 22% of CR and of 1.58 dB for the butterfly image, with the Uniform and
17% of CR. In comparison with the C-CASSI the PFA the system obtains better
results with similar compressive ratios, up to 7 dB.

3.6. CHAPTER CONCLUSION

This chapter exposes three CCA designs for improving the image reconstruction
in a framework of fusing measurements of two CSI systems. For the designs, we
analyzed and modeled the structure of the matrices related to spectral reduction,
spatial downsampling, and compression.

Table 11: Mean PSNR in the C-CASSI system, for different compression ratios with
the 128× 128× 32 Butterfly image

CR = 100(P +Q)/(Z2L)[%] 9 13 17 21
Uniform 31.28 32.23 33.61 33.4
Unif+ Spatial Restriction 31.20 32.62 32.85 33.25
3D Spread 31.55 32.75 33.25 33.97
Random 30.68 31.31 32.03 32.91
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As a result, we first proposed a Uniform Sensing strategy that attempts to locate the
pass elements in the CCA uniformly random such that the sum of pass elements
along the snapshots be one and that the sum of pass elements along the spectral
bands in each snapshot be L/K. The benefit of this design is that each CSI system
will have suitable properties of linearly independent measures. The drawback of this
design is that it ignores the spatial constraints related to the fusion of the two CSI
systems measurements.
For including the spatial restrictions in the MS CSI system, a second design is pro-
posed such that, additional to the uniform sensing constraints, it tries to keep the
same average of pass elements in spatial windows of p× p pixels. The benefit of this
approach is that spreading the pass elements in the spatial neighborhoods of the
CCA for the MS system decreases the interactions with the elements of the CCA for
the HS system. The drawback of this design is that requires an additional step that
moves through (Z/q)2L spatial neighborhoods.
The third design is a generalization of the required spreading of the pass elements
along the 3D CCA. The aim of this approach is to spread the pass elements of the
CCA in 3D sub-windows by minimizing an objective function. A possible algorithm
to perform the optimization is to generate random realizations of the coded aperture,
to move a 3D-Euclidean filter that promotes the spreading of the pass elements, to
evaluate the objective function, and to preserve the one that minimizes the objective
function. The advantage of this design is that the correlations between both CSI
systems will be reduced by spreading the pass elements along 3D subwindows of
each compressive system. The drawback of this design is the increasing of the
complexity in the design.
The proposed designs were tested on two different CSI systems and two datacubes.
Numerical experiments showed that the proposed designs compared competitively
with the Random distribution of the pass elements, with the advantage of improving
the reconstruction quality up to 5dB. Between the proposed designs the Uniform with
local spatial constraints and the 3D spread outperform the Uniform sensing, in the
majority of cases, up to 2 dB.
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4. CSI BASED ON MULTISPECTRAL FILTER ARRAY

Assuming that the MSFA-based sensor performs a linear measurement process that
computes M � N internal products between the vectorized spectral image x and
a collection of vectors {Φj}Mj=1, as [y]i = 〈x,Φj〉 then y = Φx, where the set of
[y]i projections form the vector y of m elements, Φ is the measurement matrix with
dimensions M ×N , with ΦT

j rows, and x is the original signal of size N .
Some works have proposed the demosaicing process by CS theory. Sadeghipoor
et al. [76] use an MSFA of 4 spectral bands (Red-Green-Blue-NIR), similar to the
traditional RGB. The difference is that the two green filters have different transmit-
tances. Here, transmittance means the amount of light the filter transmits in the given
wavelength range. Also, a mixture of one color channel and the NIR is captured at
each spatial position on the sensor. For demosaicing task, they use a CS approach
for separating the NIR of the color bands, after that a traditional RGB demosaicing
for the complete reconstruction. Aggarwal and Majumdar [77] explore the problem
of CS reconstruction of multi-spectral images acquired with a single sensor archi-
tecture. They propose random and uniform filter array designs. For reconstruction,
they use a group-sparse optimization and the Kronecker product between Fourier
and Wavelet basis.
These methods reconstruct fixed resolution data cubes, there is not an introduced
approach to adjust the spatial resolution of the reconstructed images. Probably the
selection of neighborhoods measurements to estimate the spectral response of a sin-
gle pixel optimizes CS reconstruction from the MSFA-based sensor measurements.
The neighborhoods size leads to an adjustable spatial resolution in the reconstruc-
tion preserving the filters spectral resolution, reconstructing a spatial decimated data
cube. This information can be used in applications requiring higher spectral than
spatial image quality, also for a quick view of the scene, for instance, in transmission
and communication applications.
This chapter considers the spectral images recovery from the measurements of the
multispectral filter array-based sensor by using CS. We propose two models for ad-
justable spatial resolution reconstruction of multispectral images from the selection
of MSFA-based sensor measurements neighborhoods. They are based on measure-
ments taken in an architecture that includes an MSFA-based sensor. Each spectral
filter modulates the data before it impinges onto the sensor using a random dichroic
or random bandpass filter. CS theory is then exploited to recover the underlying 3D
spectral data cube from the compressed data captured in a single shot. The quality
of the reconstructions is analyzed based on the number of spectral bands, and the
size of the neighborhoods.
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4.1. TRADITIONAL DEMOSAICING

Given the set of measurements y, a traditional demosaicing algorithm estimates for
each reconstructed pixel the intensities for all wavelength components. In traditional
cases, measurements are taken for a mosaic of multi-spectral filters, where a pat-
tern is formed subject to the number of spectral bands to sense. The most commonly
used configuration is the Bayer filter for RGB reconstructions [78]. For reconstruc-
tion, the common approach minimizes the linear mean square error between the
measurements and the vector estimation multiplied by the sensing matrix. More
specifically, the estimated signal is given by

x̃ = arg min
x
‖y −Φx‖2

2 (4.1)

A closed-form solution of (4.1) is given by

x̃ = (ΦTΦ)−1ΦTy = Φ†y, (4.2)

where Φ† is known as the pseudo-inverse of Φ, and ΦT is its transpose.

4.2. APPROACHES FOR RECONSTRUCTION WITH ADJUSTABLE SPATIAL RES-
OLUTION

Notice that the methods explained in this section are carried out after the sensing
process. Thus, the resolution of the sensor remains fixed, however, the methods
explained in this section provide spectral images reconstructions with different res-
olutions. For exploiting CS theory and the measurements of the MSFA-based sen-
sor, two approaches are proposed for reconstructing a datacube with an adjustable
spatial resolution. Both are related to selecting a neighborhood of q × q pixels for
reconstructing a single pixel. The parameter q is selected at the time to reconstruct
the data cube, q refers to the neighborhood side size. In the first model, all the
Z ×Z pixels of the sensor (measurements) are taken for reconstructing a Z ×Z ×L
datacube following of a spatial average decimation for the given size of the neighbor-
hood. The second model selects neighborhoods of measurements and reformulates
the CS reconstruction problem for reconstructing a Z/q × Z/q × L datacube.

4.2.1. Decimation of a complete data cube reconstruction The underlying dat-
acube projection in this case is reconstructed solving an `1−`2 minimization problem
[14]. In this case, for using the neighborhood approach the data cube spatial resolu-
tion is adjusted following an average decimation matrix operation. This operation is
applied to the reconstructed data cube as x̃q = Bx̃, where B does a block averaging
of size q × q in each spectral band reducing the size of the vectorized reconstructed
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Figure 15: Example of q = 2 that forms 4 subsets of measurements in a single
snapshot of the MSFA-based sensor.
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data cube to Z2L/q2, and q is the side size of the neighborhood. The spatial decima-
tion matrix element-by-element can be expressed as:

Bi,j =

{
1/q2, if i =

⌊
j
q

⌋
− Z

q

⌊
j
Z

⌋
+ Z

q

⌊
j
qZ

⌋
,

0, otherwise,
(4.3)

where i = 0, 1, ..., Z
2L
q2
− 1.

4.2.2. Reconstruction based on neighborhood measurements selection This
model uses the assumption that q×q neighboring pixels, in a Z×Z×L spectral image,
have the same spectral response. Then q × q neighborhood measurement pixels in
the sensor are taken for the reconstruction of a single pixel spectral response in a
decimated reconstruction. For instance, Fig. 16 shows the set of measurements
taken for q = 2, in total q2 subsets of measurements are grouped from a single
snapshot of the MSFA-based sensor.
In the reconstruction model, each subset of measurements is selected from the total
measurements by performing a matrix product between a downsampling matrix that
accomplishes the function of selecting the specific set of measurements, and the
vectorized version of the measurements. More specifically, each subset is given by

y` = D`Hx, (4.4)
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Figure 16: The downsampling matrix D` for q = 2, Z = 6, and ` = 0, 1, 2, 3. The
white squares represent one-valued elements.
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where D` performs the downsampling in each q× q neighborhood of pixels for taking
q2 different subsets of the total measurements and y` is the `th subset of measure-
ments where ` ∈ {0, ..., q2 − 1}. Notice that q is a parameter that can be selected by
the user. Precisely, the function of the downsampling matrix D` is selecting the `th
element in each q × q neighborhood for forming the `−th subset of measurements.
The (i, j)th element of the `th downsampling matrix can be expressed as:

D`
i,j =

{
1, if j = iq + (q − 1)Z

⌊
iq
Z

⌋
+ `+

⌊
`
q

⌋
(Z − q),

0, otherwise,
(4.5)

where i = 0, 1, ...,
⌊
Z2

q2

⌋
− 1, j = 0, 1, ..., Z2− 1, and ` = 0, 1, ..., q2− 1. Figure 7 depicts

the downsampling matrix D` for q = 2, Z = 6, and ` = 0, 1, 2, 3. The white squares
represent one-valued elements. In this case, the complete set of measurements is
rearranged as

y =


y0

y1

...
yq

2−1

 =


D0

D1

...
Dq2−1

Hf = Hqf , (4.6)

where the underlying datacube projection is also reconstructed solving an `1 − `2

minimization problem. However, in this case the decimation process is taken into
account. More specifically, the optimization problem is given by

x̃ = Ψ
(

arg min
θ
‖y −HqΨθ‖2

2 + τ ‖θ‖1

)
(4.7)

where y is given by (4.6), and θ is an S-sparse representation of a Z2L/q2 version of
x on the basis Ψ.
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4.3. MULTISPECTRAL FILTER DESIGN

The quality of the reconstructed datacubes depends on the selection of the multi-
spectral filter design. For developing this work, given the possible flexibility in the
bandpass of each MSFA element, two MSFA were selected. First, a spectral re-
sponse for each MSFA element that can be selected randomly from a set of band-
pass filters; and second, dichroic filters, that is, a special case of random bandpass
whose spectral response lets only one spectral band to pass for each sensor pixel.
These designs still follow a random selection of elements and the motivation of differ-
entiating them is to evaluate the performance of combining more than one spectral
band, for the bandpass case, in comparison with the dichroic filters.
The spectral response of a λLi , λHi band-pass filter can be defined as

(tk)i =

{
1, if λLi ≤ k ≤ λHi ,
0, otherwise,

(4.8)

for k = 0, 1, ..., L− 1, i = 0, 1, ..., Z2 − 1, and λLi ≤ λHi ∈ {0, 1, ..., L− 1}. For instance,
L = 4, λL1 = 2, and λH1 = 3 define the spectral response of the spatial position i = 1
as (tk)1 = [0 0 1 1]. Dichroic filters are a special case of band-pass filters that let
pass only one spectral band. Then the spectral response of a (λDi ) dichroic filter pixel
can be defined as

(tk)i =

{
1, if λDi = k,
0, otherwise,

(4.9)

for λDi ∈ {0, .., L − 1} and i = 0, ..., Z2 − 1. For example, if L = 4, and λD5 = 3,
then the spectral response of the spatial position i = 5 in the vectorized MSFA is
(tk)5 = [0 0 0 1].

4.4. SIMULATION AND RESULTS

To verify the MSFA-based sensor reconstructions, a set of compressive measure-
ments is simulated using the model of eq. (2). These measurements are constructed
with two spectral images captured with a CCD camera Apogee Alta U260 and a
VariSpec liquid crystal tunable filter, in the range of wavelength 400nm-560nm, with
steps of 10nm [15]. The resulting test data cubes have 512 × 512 pixels of spatial
resolution and L = 16 spectral bands. The grayscale images mapped versions of the
selected data cubes are shown in Fig. 9. The experiments were carried out using
the images Balloons and Beads with a decimation processing for creating synthetic
ones and in their real form. Compressive sensing reconstruction is performed by
using the GPSR algorithm [16]. Simulations results are analyzed in terms of PSNR
(Peak-Signal-to-Noise-Ratio) of the reconstructed images. The representation basis
Ψ is a Kronecker product Ψ = Ψ1 ⊗ Ψ2, where Ψ1 is the two-dimensional-wavelet
Symmlet-8 basis and Ψ2 is the cosine basis. The simulations are performed in a
desktop architecture with an Intel Core i7 3.6GHz processor, 32GB RAM, and using
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Matlab R2014a. Each experiment is repeated ten times and the respective results
are averaged.

4.4.1. Synthetic multispectral data cubes When the input data cube fits the
neighborhood measurements selection model the reconstructions outperform the
traditional demosaicing approach. To illustrate this, synthetic multispectral datacubes
based on Balloons and Beads images are constructed. For that, an average decima-
tion of factor q followed of a duplication of q pixels is applied in each spectral band.
Then the synthetic data cubes satisfy the assumption that some neighboring pix-
els attain the same spectral response. Ensembles of dichroic and band pass filters
based on a random selection of spectral bands are used for obtaining measure-
ments. To simulate the measurements, the first L spectral bands of synthetic data
cubes are used. Then selecting a value of q the two CS approaches reconstruct
a decimated data cube. For comparison, a demosaicing traditional process using
dichroic filters mosaics is implemented, after performing the reconstruction an aver-
age decimation matrix is applied to the reconstructed data cube. Figure 17 shows
a comparison of the average PSNR reconstruction, for the synthetic Balloons data
cubes, as a function of the number of sensed and reconstructed spectral bands. The
first row is related to the reconstructions of measurements sensed with an ensemble
of band pass filters. The frequency response of the bandpass filter is selected at
random. The second row depicts the results from random dichroic filters measure-
ments. The columns are associated to the reconstruction varying the neighborhood
size to q = 2, 4, 8. For example, Fig. 18(a) shows the results for band pass filters with
a neighborhood of q = 2, and Fig. 18(f) the results for dichroic filters with a neighbor-
hood of q = 8. The PSNR evaluation is calculated between the reconstructed image
and a spatial decimated version (of size Z/q×Z/q×L ) of the test data cube. Figure
18 shows similar results for synthetic Beads. In all the cases, with increasing the
number of spectral bands decreases the PSNR. Also, it is possible to observe the
improvement of the reconstruction based on neighborhood measurements selection
method (neighborhood CS) compared to the decimation of a complete data cube
reconstruction method (complete CS) and the traditional demosaicing method, when
the data cube has the property of having similar spectral signature in a neighborhood
q × q.

4.4.2. Experiment with real multispectral data cubes In this case, the mea-
surements are simulated using L spectral bands of real data cubes. Ensembles of
dichroic and band pass filters based on a random selection of spectral bands are
used to obtain measurements. Figure 19 shows a comparison of the average PSNR
reconstruction for the Balloons data cube. Figure 20 shows similar results for PSNR
reconstructions in the Beads data cube. It can be observed in Fig. 19 and Fig. 20
that the performance of the CS proposed methods improves when the size of the
neighborhood is increased. Additionally, the reconstruction based on neighborhood
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Figure 17: For the synthetic Balloons data cube, (first row) reconstruction results for
band pass filters for (a) q = 2, (b) q = 4, and (c) q = 8, (second row) reconstruction
results for dichroic filters for (d) q = 2, (e) q = 4, and (f) q = 8.

Figure 18: For the synthetic Beads data cube, (first row) reconstruction results for
band pass filters for (a) q = 2, (b) q = 4, and (c) q = 8, (second row) reconstruction
results for dichroic filters for (d) q = 2, (e) q = 4, and (f) q = 8.
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Figure 19: For the Beads data cube, (first row) reconstruction results for band pass
filters for (a) q = 2, (b) q = 4, and (c) q = 8, (second row) reconstruction results for
dichroic filters for (d) q = 2, (e) q = 4, and (f) q = 8.

measurements selection method (neighborhood CS) approach has a better perfor-
mance than the traditional demosaicing approach with the measurements captured
with dichroic filters. On the contrary, the decimation of a complete data cube recon-
struction (complete CS) takes advantage of band pass filters.
Figure 21 illustrates the whole reconstructed data cubes mapped in gray-scale, for
L = 6, and q = 2 neighborhood side size. For the Balloons database, it can be ob-
served that the reconstruction of measurements taken for random dichroic filter en-
semble using the neighborhood CS approach provides an improvement of up 1.72dB
in PSNR over the demosaicing approach.
Furthermore, the PSNR reached by the complete CS reconstruction using band
pass filters is 2.81dB higher than the demosaicing reconstructions. For the Beads
database, the reconstruction of neighborhood CS using dichroic filters improves up
2.4dB over the demosaicing, and the complete CS using band pass filter up 4.58dB.

4.5. CHAPTER CONCLUSION

In this chapter we presented two models for CS reconstruction of spectral images
sensed by MSFA-based sensors using a neighborhood approach. The first model
reconstructs a complete data cube and applies neighborhood decimation. The sec-
ond model performs a selection of measurements subsets to form neighborhoods
that have spectral information of a single reconstructed pixel. The two CS recon-
struction approaches are compared with a traditional demosaicing reconstruction
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Figure 20: For the Beads data cube, (first row) reconstruction results for band pass
filters for (a) q = 2, (b) q = 4, and (c) q = 8, (second row) reconstruction results for
dichroic filters for (d) q = 2, (e) q = 4, and (f) q = 8.

method. For the CS reconstruction, the PSNR increases with the neighborhood side
size. The improvements range from 0.5 dB to 7 dB with respect to the traditional
approach in real data cubes. Results show that increasing the number of spectral
bands decreases the PSNR for all reconstruction methods.
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Figure 21: Gray-scale versions of reconstructions for L = 6, and q = 2 neighborhood
side size. For the Balloons database: (a) original, and (b) demosaicing reconstruc-
tion. For the CS approach reconstructions using (e) band pass filters, and (top)
neighborhood CS, (bottom) complete CS; (f) dichroic filters, and (top) neighborhood
CS, (bottom) complete CS. Similar results (c-d) and (g-h) for Beads datacube. The
number in the images is the PSNR of the reconstruction.
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5. OPTIMIZED COMPRESSIVE RECONSTRUCTION ALGORITHM BASED ON
FILTERED GRADIENT

The problem of recovering the spectral image x from the compressive measurements
y = Φx can be posed and solved as a convex unconstrained optimization problem
[8], [12], [18], [33]. It consists of minimizing an objective function that includes a
quadratic error term combined with a sparsity-inducing regularization term, given by

θ̂ = argmin
θ

1

2
‖y −Aθ‖2

2 + τ ‖θ‖1 , (5.1)

where θ is the sparse representation of x in a basis Ψ, such that x = Ψθ, A =
ΦΨ, and τ is a regularization parameter for the sparsity prior [1], [3], [5]. When the
solution of Eq. (5.1) is known in advance to be non-negative, the problem can be
rewritten as [4], [25]

θ̂ = argmin
θ

(τ1n −ATy)Tθ +
1

2
θTATAθ, s.t θ ≥ 0. (5.2)

Eq. (5.2) can be seen as a standard bound constrained quadratic problem (BCQP)
given by

θ̂ = argmin
θ

cTθ +
1

2
θTBθ ≡ argmin

θ

F (θ), s.t θ ≥ 0, (5.3)

where c = (τ1n −ATy), 1n is a n-long vector of ones, and B = ATA.
There are several algorithms that solve the compressive sensing problem (5.3) [4],
[41]–[44]. A well studied method for solving (5.3) is the gradient descent algorithm
[79]–[82]. This method computes a sequence of points following the opposite direc-
tion of the gradient, given by

θ(k+1) = θ(k) − α∇F (θ(k)), (5.4)

where ∇F (θ(k)) is the gradient of the function F , α is the step size, and k = 0, 1, ... is
the iteration. The gradient of F (θ(k)) in (5.3) is calculated as

∇F (θ(k)) =

{
c + Bθ(k) = τ1n −AT (y −Aθ(k)), if τ1n < AT (y −Aθ(k))

0, otherwise,
(5.5)

to ensure the restriction that the reconstructed signal is positive. Therefore, replacing
(5.5) in (5.4), the gradient sequence of (5.3) is given by

θ(k+1) = θ(k) − α(τ1n −AT (y −Aθ(k)))

= θ(k) − α(ATAθ(k) −ATy + τ1n)

= θ(k) − αΨT (ΦTΦΨθ(k) −ΦTy)− ατ1n,
(5.6)
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where A has been substituted for A = ΦΨ. The gradient descent method adopts∥∥∥θ(k+1)−θ(k)
∥∥∥2

2
≤ δ or equivalent

∥∥x(k+1)−x(k)
∥∥2

2
≤ δ2 as the stop criterion, where x(k) =

Ψθ(k). From Eq. (5.6) the difference between iterations θ(k+1) − θ(k) is given by

θ(k+1) − θ(k) = αΨTκ(θ(k))− ατ1n, (5.7)

such that the variable term κ(θ(k)) is calculated by
κ(θ(k)) =xref − xref(k), (5.8)

where xref = ΦTy and xref(k) = ΦTΦΨθ(k). The difference in (5.7) stops changing
when κ(θ(k)) = 0, thus when

xref(k) =xref . (5.9)

Since the matrix Φ has a specific structure, its operation ΦT in the recovery algorithm
can be exploited. The product by ΦT in each iteration returns rough approximations
of the underlying signal x, but this structure is given by the measurement system.
Then, an interpolation action could be taken for improving the approximation. An
intuitive way to solve the problem is using filtering operations before the ΦT products
in each iteration. In this chapter, we propose a filtering step for solving the com-
pressive problem into the gradient algorithm. For that, the optimization problem is
solved using a minimizing sequence that is filtered using a matrix operation, a spe-
cific example in compressive spectral imaging of the approach is shown, where there
are significant improvements in peak signal to noise ratio (PSNR) compared to the
traditional approach.

5.1. PROPOSED FILTERING STEP

Notice that because of the sparse structure of the CSI sensing matrices the quantity
xref can be seen as a rough approximation of the original data cube x. To visualize
this approximation, note that y = Φx and xref=ΦTy, such that xref can be seen as
an estimation of x when the inverse of Φ is approximated as Φ−1∼=ΦT . In a real
scenario, ΦTΦ differs from the identity matrix and ΦT is an imprecise approximation
of Φ−1 such that the error

∥∥x−xref
∥∥2

2
is considerably high. However, as it will be

illustrated in short, xref preserves the smoothness characteristic of the signal x.
Thus from Equations (5.7) and (5.8) xref is an objective point for the algorithm in
(5.6), such that if xref can be properly modified, the algorithm converges faster and
can possibly obtain a better error approximation ‖x−x̂‖2

2, where x̂ is the result of the
final iteration in (5.6).
On the other hand, natural spectral images x are smooth in their primary domain. For
example, natural images can be represented as a linear combination of its neighbors
in the spatial domain, such as x = Wx, where W is a weighted matrix [28], [83].
Specifically, to exploit this characteristic of natural signals we are going to modify the
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Figure 22: Example of the products x = Φy and xref = ΦTy for a spectral band in
the CASSI system.

ref

Eq. (5.6) by including a filtering operation to the terms xref and xref(k) to get a closer
solution to a natural spectral image.
Given the structured and sparse characteristic of Φ in the CSI systems, the spectral
image approximation xref loses its smoothness and presents elements close to zero,
like gaps. This characteristic disappears when sampling is performed by a dense
matrix. Figure 22 shows an example of the measurements y and the reference xref

for the CASSI sensing of a spectral image. The zoom versions in Figure 22 show that
the xref is smooth and is highly correlated with the original data cube. Also, note in
Figure 22 that xref can be filtered such that its smoothness characteristic increases,
which leads to the decreasing of this error the error

∥∥x− xref
∥∥2

2
.

If we filter xref and xref(k) in each iteration of Eq. (5.6) we argue that the iterative
process including the filtering operation converges to a better solution. The new stop
criterion by including the filtered approach is modified as∥∥Wxref −Wxref(k)

∥∥2

2
=
∥∥∥xrefW − x

(k)
W

∥∥∥2

2
< δ, (5.10)

where xrefW = Wxref and x
(k)
W = Wxref(k), and W ∈ RN×N , with elements wi,j, is a

convolution matrix that represents the filtering operation. Then, the sequence in Eq.
(5.6) converges to a filtered version in each iteration. Figure 23 (a) shows a zero
mean gaussian kernel filter of size 3 × 3 and a standard deviation of 0.6, Figure 23
(b) illustrates the respective matrix W for N = 36 created using the Gaussian kernel
filter in Figure 23 (a) [27].

5.2. PROPOSED ALGORITHM

Algorithm 4 shows the filtered gradient approach for recovering a spectral image
from its compressed measurements y. In line 2, we fix the filtered version of the
reference as xrefW = Wxref , and iteratively filter the product xref(k) = ΦTΦx(k) in line

84



Figure 23: (a) A zero mean Gaussian kernel filter of size 3×3 and standard deviation
of 0.6, (b) illustrates an example of a W forN = 36 created using the Gaussian kernel
fitler in (a).
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7 to get smoothness on each estimation. The update is calculated in line 9, which
corresponds to the gradient descent iteration with an additional term W including the
filtering step.
We use to calculate the steps α(k) the Barzilian-Borwein approach [84]. This ap-
proach calculates each step such that α(k)∇F (θ(k)) approximates the Hessian of F
at θ(k). Barzilai and Borwein propose that the approximation of the Hessian be a mul-
tiple of the identity η(k)I, where η(k) is chosen so that this approximation has similar
behavior to the true Hessian over the most recent step, that is

∇F (θ(k))−∇F (θ(k−1)) ≈ η(k)[θ(k) − θ(k−1)] (5.11)

with η(k) chosen to satisfy this in the least-squares sense. In order to use this ap-
proach, we follow the extension to BCQPs in [85] that is also descripted in [25] as
follows:
Step 0: (initialization): Given θ(0), choose parameters αmin, αmax, with 0 < αmin <
αmax, α(0) ∈ [αmin, αmax], and set k = 0.
Step 1 Compute step:

δ(k) =
(
θ(k) − α(k)∇F (θ(k))

)
+
− θ(k). (5.12)

Step 2 (line search): Find the scalar λ(k) that minimizes F (θ(k) + λ(k)δ(k)) on the
interval λ(k) ∈ [0, 1], and set θ(k+1) = θ(k) + λ(k)δ(k). Since F is quadratic, the line
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search parameter λ(k) can be calculated using the following closed-form expression:

λ(k) = mid

0,

(
δ(k)
)T
∇F

(
θ(k)
)

(
δ(k)
)T

Bδ(k)
, 1

 (5.13)

where the operator mid{a, b, c} is the middle value of the three scalar arguments.
Step 3 (update) α ): Compute

γ(k) =
(
δ(k)
)T

Bδ(k); (5.14)

if γ(k) = 0, let α(k+1) = αmax, otherwise

λ(k) = mid

αmin,
∥∥∥δ(k)

∥∥∥2

2

γ(k)
, αmax

 . (5.15)

Step 4: Perform convergence test and terminate with approximate solution θ(k+1) if
it is satisfied; otherwise set k ← k + 1 and return to Step 1.
Table 1 summarizes the variables in the algorithm. It is important to clarify that the
filtered gradient proposed approach here can be easily incorporated in many elab-
orated gradient based algorithms such as the Stochastic Gradient Approach Based
on Adaptive Filtering Framework [41], the Non-monotone adaptive Barzilai-Borwein
gradient algorithm [42], the Iterative gradient projection [43], the Fast and accurate
first-order method for sparse recovery [44], the Sparse reconstruction by separable
approximation [4], among others. Particularly, in this work, we implement the filtered
version of the Gradient projection for sparse reconstruction (GPSR) algorithm in the
CSI problem.

5.3. SIMULATIONS AND RESULTS

In order to verify the filtered gradient approach, a set of compressive measurements
is simulated using the forward models in (1.5) and (1.4). For reconstruction, the basis
representation Ψ is set to be the Kronecker product of three basis Ψ = Ψ1⊗Ψ2⊗Ψ3,
where the combination Ψ1⊗Ψ2 is the 2D-Wavelet Symmlet 8 basis and Ψ3 is the dis-
crete cosine basis. Simulation results are the average of 10 experiments conducted
for each case. The tests were carried out on a personal computer with an Intel(R)
Core(TM) i7-4790 CPU 3.60 GHz processor and 32 GB of memory, using MATLAB.
To test the filtered gradient approach we take a gradient based reconstruction al-
gorithm and modify it to include the filtered gradient descent method presented in
Algorithm 1. We have noted that the benefits of the filtered approach are preserved
for the different gradient based approaches.
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Algorithm 5: Filtered gradient descent method
input : y,Φ,Ψ,W, τ, δ,θ(0)

output: θ(k+1)

1 xref ← ΦTy;
2 % (Precompute the filtered xref ) xrefW ←Wxref ;
3 k ← 0;
4 x0

W ← 0;

5 while
∥∥∥xrefW − x

(k)
W

∥∥∥ > δ do

6 x(k) ← Ψθ(k);
7 % (Filtering x(k)) x

(k)
W ←WΦTΨx(k);

8 % (Line Search) Choose a step size αk > 0;
9 %(Update) θ(k+1) ← θ(k) − α(k)(τ1n −ΨT (xrefW − x

(k)
W ));

10 k ← k + 1;

5.3.1. PSNR as a function of the kernel filter parameters The filtered approach
is evaluated by the reconstruction of the Feathers and Flowers spectral images cap-
tured with a CCD camera Apogee Alta U260 and a VariSpec liquid crystal tunable
filter, in the wavelength range 400nm-560nm, with steps of 10nm [86]. For simula-
tions, a spatial section of 512×512 pixels, and 8 spectral bands were used. The matrix
W was selected to be a convolution matrix of symmetric Gaussian lowpass filter. In
each experiment, the value of τ for the GPSR and the Filtered approaches was se-
lected by cross-validation where the interval [1e-4,1e-5] provides the best results for
the estimated image. For the first experiment, the spectral image Flowers was used.
The first experiment consists of comparing the average PSNR of the reconstructed
image with three different levels of standard deviation of the filter kernel (σ ∈ {0.2, 0.6,
and 1.2}) and three filter kernel sizes (3 × 3, 5 × 5, and 7 × 7) and the GPSR as a
function of the transmittance of the Dual-coded approach. Table 12 shows the re-
sults for a transmittance of 20%, Table 13 for a transmittance of 50%, and Table 14
for a transmittance of 60%. These results show that the PSNR values obtained with
the filtered approach are higher than those achieved with the traditional version of
the GPSR algorithm for a standard deviation of 0.6, and overcomes up to 4 dB the
GSPR algorithm, however, when the standard deviation is 0.2 the performance of
the filtered approach is worse than the GPSR algorithm for the three transmittance
values, and when the standard deviation is 1.2 it is worse for 20% and 60% of trans-
mittance. On the other hand, note that from a filter size of 3× 3 the PSNR improves
significantly, nevertheless, larger sizes of filters have similar performance. Then, the
standard deviation is a decisive parameter of the filter and can be tuned for getting
better results than those of the GPSR algorithm.
For the next experiment, five levels of compression ratio

(
M
N
· 100%

)
were selected

(10%, 20%, 50%, 60%, and 90%) for the CASSI system. This experiment consists of
comparing the average PSNR of the reconstructed images with five different levels
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Table 12: Mean PSNR of the Flowers reconstructed image with three different levels
of standard deviation and filter sizes, and the traditional version of the GPSR for a
transmittance of 20% in the Dual-coded system.

GPSR 34.86

σ
0.2 0.6 1.2

3*Filter size 3×3 34.68 38.67 35.16
5×5 34.42 38.80 36.44
7×7 34.76 38.78 36.35

Table 13: Mean PSNR of the Flowers reconstructed image with three different levels
of standard deviation and filter sizes, and the traditional version of the GPSR for a
transmittance of 50% in the in the Dual-coded system.

GPSR 39.94

σ
0.2 0.6 1.2

3*Filter size 3×3 39.81 40.66 35.22
5×5 39.89 40.65 37.37
7×7 39.90 40.66 37.48

of standard deviation of the filter kernel (σ ∈{0.2, 0.6, 0.9, 1.2, and 2}) and the GPSR
as a function of the compression ratio, for a transmittance of the coded apertures of
40% in the CASSI system. Figure 24 shows that the PSNR values obtained with the
filtered approach are higher than those achieved with the traditional version of the
GPSR algorithm for a standard deviation between 0.6 and 0.9, and overcomes up to
6 dB the GSPR algorithm, however when the standard deviation is larger than 1.2
the performance of the filtered approach is worse than the GPSR algorithm. Then,
also for the CASSI architecture the standard deviation is a decisive parameter of the
filter.
Table 15 shows the results with a σ = 0.6 and different filter size and compression
ratio. Note that from a filter size of 3 × 3 the PSNR improves significantly, however
larger sizes of filters have similar performance. Therefore, the filter size is not as
crucial as the selected standard deviation. On the other hand, a larger filter size to
3× 3 increase the computing time in each iteration.
Another important issue related to the filtered algorithm is the convergence. Despite
there is no way to directly compute the convergence of new algorithm, in practice the
following experiments show the improvement of the algorithm convergence when the
filtering step is used. For the following experiments a filter size of 3 × 3 and σ = 0.6
was selected for the CASSI system. Figure 25 shows the evolution of the PSNR in
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Table 14: Mean PSNR of the Flowers reconstructed image with three different levels
of standard deviation and filter sizes, and the traditional version of the GPSR for a
transmittance of 60% in the in the Dual-coded system.

GPSR 39.86

σ
0.2 0.6 1.2

3*Filter size 3×3 39.94 40.33 34.52
5×5 39.90 40.31 37.51
7×7 39.85 40.31 37.55

Figure 24: Mean PSNR of the Flowers reconstructed image with five different levels
of standard deviation (σ ∈{0.2, 0.6, 0.9, 1.2, and 2}) and the traditional version of
the GPSR as a function of the compression ratio, for a transmittance of the coded
apertures of 40% in the CASSI system.
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each iteration for the modified filtered approach (blue) and the traditional approach
(red), for the specific case of a transmittance of 40%, and a compression ratio of 50%.
Ideally, a transmittance of 100% is desired, however, high transmittance decreases
the coding randomness. Figure 25 (a) corresponds to the results for the Feathers
database, and the Fig. 25(b) for the Flowers database. Figure 25 shows that if a
threshold of 30 [dB] in PSNR is imposed for a good quality reconstruction (dashed
green line) the proposed algorithm reaches the threshold in fewer iterations than the
traditional approach since filtered step allows to reduce the error of each estimation
of the traditional gradient method. Specifically, in the case of the Feathers database
Fig. 25(a) shows that the filtered takes 18 iterations to reach the 30 [dB] level while
the unfiltered takes 41. Fig. 25(b) shows that for the Flowers database the filtered
takes 21 iterations to reach the threshold and the unfiltered takes 67. It can be noted
that the number of iterations to get an acceptable estimation of the spectral image is
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Table 15: PSNR [dB] as function of filter size

Compression ratio [%] 10 20 40 50 60 80 90
GPSR 28.91 31.09 32.08 34.35 35.09 35.09 38.38
2x2 31.74 34.74 36.46 37.93 39.21 39.93 40.57
3x3 33.82 36.09 38.04 39.21 40.68 42.19 43.69
4x4 32.55 35.25 36.75 38.24 39.95 41.36 42.16
5x5 33.66 36.05 37.17 37.77 39.39 41.74 42.61

Figure 25: Evolution of the PSNR in each iteration for the filtered approach (blue)
and the unfiltered approach (red), for the specific case of a transmittance of 40%, a
compression ratio of 50%, and σ = 0.6, for (a) Feathers and (b) Flowers databases.

18 41

GPSR

21 67

GPSR

(a) (b)

obtained in fewer iterations than without the filtering step.
To better visualize the differences, the reconstructed second, fourth, sixth, and eighth
spectral bands and their zoom versions are presented in Fig. 26 for the feather
database and in Fig. 27 for the flowers database, using a compression ratio of 20%
and transmittance of 40%. There, it is possible to note the better performance of the
filtered approach.

5.3.2. Comparison with the Approximate Message Passing (AMP-3D-Wiener)
and the Split Augmented Lagrangian Shrinkage (SALSA) algorithms For the
purpose of comparison, we select the approximate message passing (AMP-3D-
Wiener) algorithm of Tan, et al. [45], which is a sparse recovery approach based
on iterative filtering; and the Split Augmented Lagrangian Shrinkage algorithm of
Afonso et al. [47] that is an instance of the so-called alternating direction method
of multipliers (ADMM), both present an ideal simulation scenario to test the filtered
proposed method. The experiments are performed using the same settings 1 and
2 of the work of Tan et al. [46] using the scene shown in Figure 28 (a). This data
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Figure 26: The 2nd, 4th, 6th, and 8th reconstructed spectral bands are presented
in each row, respectively. The first and second columns show the original and their
zoom versions. The third and fourth columns are the reconstructions from 20% com-
pression and transmittance of 40% using unfiltered gradient algorithm and the fifth
and sixth columns are the reconstructions using the filtered gradient algorithm.

Original Zoom-Original Traditional Zoom-Traditional Filtered Zoom-Filtered

PSNR = 25.2 dB PSNR = 35.3 dB

PSNR = 26.1 dB PSNR = 33.5 dB

PSNR = 27.1 dB PSNR = 35.2 dB

PSNR = 25.3 dB PSNR = 34.2 dB

cube was acquired using a wide-band Xenon lamp as the illumination source, mod-
ulated by a visible monochromator spanning the spectral range between 448nm and
664nm, and each spectral band has 9nm width. The image intensity was captured
using a grayscale CCD camera, with pixel size 9, 9µm, and 8 bits of intensity levels.
The resulting test data cube has 256× 256 pixels of spatial resolution and 24 spectral
bands.
In the setting 1, the CASSI measurements are captured with 2 shots. In the case
of AMP-3D-Wiener algorithm the coded apertures required to be complementary, in
this particular example the first shot is generated randomly with 50% of the aperture
being opaque, and the coded aperture in the second shot is the complement of the
aperture in the first shot. The compression ratio

(
M
N

)
with two shots is approximately

of 10%. Moreover, we add Gaussian noise with zero mean to the measurements
such that the SNR is 20 dB. Figure 28 (b) shows the PSNR of each 2D slice in the
reconstructed cube separately for setting 1 using the proposed filtered approach,
the SALSA algorithm, the AMP-3D-Wiener approach, and the traditional version of
the GPSR. The results of the AMP-3D-Wiener recovery were taken of the work of
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Figure 27: The 2nd, 4th, 6th, and 8th reconstructed spectral bands are presented
in each row, respectively. The first and second columns show the original and their
zoom versions. The third and fourth columns are the reconstructions from 20% com-
pression rate and transmittance of 40% using traditional gradient algorithm, and the
fifth and sixth columns are the reconstructions with same parameters using the fil-
tered gradient algorithm.

Original Zoom-Original Unfiltered Zoom-Unfiltered Filtered Zoom-Filtered

PSNR = 28.5 dB PSNR = 33.2 dB

PSNR = 28.2 dB PSNR = 34.5 dB

PSNR = 35.25 dB
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Figure 28: (a) Lego spectral data cube is shown as it would be viewed by a Stingray
F-033C CCD Color Camera (b) PSNR of the reconstructed Spectral bands, compar-
ison of the filtered approach, SALSA, AMP-3D-Wiener, and traditional GPSR, for the
Lego image cube. Cube size is 256× 256 and 24 spectral bands. The measure-
ments are captured with 2 shots. (c) PSNR comparison as a function of the number
of shots. In both cases random Gaussian noise is added to the measurements such
that the SNR is 20 dB.

GPSR

SALSA

GPSR

(a) (b) (c)

Tan et al.[46], and a version of the SALSA algorithm was implemented for recon-
structing the data cube of simulated measurements of setting 1 using random coded
apertures. It is shown that the cube reconstructed by the Filtered approach has a
comparable or higher PSNR than the cubes reconstructed by AMP-3D-Wiener and
SALSA algorithms, and 2-5 dB higher than those of traditional GPSR for all 24 slices.
It is important to note that the AMP-3D-Wiener is an approach that was implemented
specifically for the CASSI system, requiring complementary coded apertures and
greater computing capacity at each iteration, unlike the approach proposed in this
article that is not specific to the application or demands high computing capacity.
In the second experiment we set the number of shots in K = {2, 4, 6, 8, 10, 12}, and
also we add Gaussian noise with zero mean to the measurements such that the
SNR is 20 dB. Figure 28 (b) shows a comparison of the reconstructed cubes PSNR
as a function of the number of shots. Note that the proposed filtered approach has a
similar performance than the SALSA algorithm, has an improvement up to 4dB over
the traditional GPSR, and after 4 shots beats the AMP-3D-Wiener up to 3dB.

5.4. CHAPTER CONCLUSION

A gradient algorithm that includes a filtering step for solving the compressive sens-
ing problem has been proposed. The methodology to include this filtering step in a
gradient descent algorithm is exposed. Simulations show an improvement of up to
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7 dB of PSNR for reconstructions obtained from the modified filtered GPSR algo-
rithm compared to its traditional version, in the compressive spectral imaging CASSI
system. The experiments show the better visual quality of the reconstructed images
when the filtered algorithm was used. This general approach was compared with the
state-of-the-art Approximate Message Passing (AMP-3D-Wiener), which is a specific
implementation for the CASSI system, and Split Augmented Lagrangian Shrinkage
(SALSA) algorithms and the results show better performance.
Additionally, experiments show that the filtered approach accelerates the conver-
gence of the algo-rithm, this could be because the smoothness process accelerates
the estimation of each iteration tobe closer to a tolerable one. On the other hand,
in order to improve the conditions to convergence,it is possible to adapt the effect of
the filter in each iteration such that it is stronger for the firstiterations and decreases
along them.
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6. BAYESIAN CSI RECONSTRUCTION BY USING A LOCAL STRUCTURED
PRIOR

This chapter introduces a hierarchical Bayesian model for the reconstruction of hy-
perspectral images using compressed sensing measurements. This model exploits
known properties of natural images, promoting the recovered image to be sparse
on a selected basis and smooth in the image domain. The posterior distribution of
this model is too complex to derive closed form expressions for the estimators of its
parameters. Therefore, an MCMC method is investigated to sample this posterior
distribution. The resulting samples are used to estimate the unknown model pa-
rameters and hyperparameters in an unsupervised framework. The results obtained
on real data illustrate the improvement in reconstruction quality when compared to
some existing techniques.
When using a significant undersampling rate, there is an infinite number of possible
images that can be associated with a particular set of measurements. Thus, it is
usual to promote realistic properties of the image to recover in order to regularize
the problem and obtain a unique solution. One of the most common regularizations
consists of enforcing the image of interest to have a sparse representation in a given
basis [2]–[4], [26]. Although this technique has shown satisfactory results, the quality
of the reconstruction can be further improved by exploiting additional properties of
natural images such as their important degree of local structure similarity [27], [28].
In this work, we introduce a new hierarchical Bayesian model for the reconstruction
of compressed hyperspectral images. This model promotes the solution to be sparse
in a selected basis and smooth in the image domain. A Gibbs sampler is used to
draw samples asymptotically distributed according to its posterior distribution. The
generated samples are then used to build estimators of the unknown model param-
eters.
The proposed model provides improved reconstruction quality due to the exploitation
of the local structure similarity of natural images. It also allows the model hyper-
parameters to be estimated from the observed measurements in an unsupervised
framework (instead of fixing them a-priori as required by most convex optimization
methods [42]–[44]). Finally, the samples generated by the Gibbs sampler can be
used to determine measures of uncertainty for the estimates such as the estimation
variance of confidence intervals.

6.1. PROPOSED BAYESIAN RECONSTRUCTION

The CSI inverse problem addressed in this paper can be formulated as follows

y = Φx + e (6.1)
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where x ∈ RZ2L is the lexicographically ordered vectorization of an image of size
Z × Z with L spectral bands, Φ ∈ RP×Z2L is the sparse measurement matrix that
depends on the compressive sensing imager (see [9]–[11], [33] for more details), e ∈
RP is an additive white Gaussian noise and y ∈ RP is the observed measurement
vector. In this paper, we concentrate on the CASSI sampler [8], [18], [87]. We
propose to recover x from y by solving the following problem

θ̂ = arg min
θ

( 1

2σ2
n

||Aθ − y||2 + τ ||θ||1 + λ||(B− I)Ψθ||2
)

(6.2)

where A = ΦΨ, θ ∈ RZ2L contains the coefficients of x in a given basis Ψ ∈
RZ2L×Z2L (i.e., x = Ψθ) and B ∈ RZ2L×Z2L is a weighting matrix (as the one con-
sidered in [28], [83]) associated with a low-pass filter. Note that the first term in (6.2)
is the data-fidelity term, that the second term is a penalty enforcing sparsity of θ,
and the third term promotes image smoothness by encouraging each pixel of x to be
close to a linear combination of its neighbors. The model hyperparameters τ and λ
adjust the relative importance of the three terms. In the following section, we show
that the inverse problem (6.2) is equivalent to the determination of the maximum
a posteriori (MAP) estimator of a Bayesian model whose likelihood and priors are
provided.

6.1.1. Likelihood Assuming that the additive noise in (6.1) is white Gaussian with
variance σ2

n, the distribution of the observation vector is a Gaussian distribution with
mean vector Aθ and covariance matrix σ2

nIP , i.e.,

f(y|θ, σ2
n) = N

(
y
∣∣∣Aθ, σ2

nIP

)
(6.3)

where IP is the P × P identity matrix and N denotes the Gaussian distribution. This
likelihood is the Bayesian equivalent of the data-fidelity term previously shown in
(6.2).

6.1.2. Prior distributions

Image coefficients θ

To promote sparsity in the Ψ domain and smoothness in the image domain, the
following prior distribution is introduced for the image basis coefficients θ

f(θ|λ, τ) ∝ N
(
θ
∣∣0,C/λ) Z2L∏

i=1

exp (−τ |θi|) (6.4)

with C−1 = ΨT (B− I)T (B− I)Ψ, and where λ and τ are two hyperparameters. This
prior can be shown to be the Bayesian equivalent of the regularization terms in (6.2).
To simplify the analysis, it is convenient to define the hyperparameter a = σ2

nτ
2 which

transforms the prior to
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f(θ|λ, a, σ2
n) ∝ N

(
θ
∣∣0,C/λ) Z2L∏

i=1

exp

(
−
√

a

σ2
n

|θi|
)
. (6.5)

It is then easy to show that (6.5) is the marginal distribution of the data-augmented
density f(θ, δ2|λ, τ), where δ2 ∈ (R+)Z

2L is a vector of independent latent variables
distributed according to gamma distributions such that (see [88] for details)

f(δ2|a) =
Z2L∏
i=1

G
(
δ2
i

∣∣∣1, a
2

)
. (6.6)

The advantage of using this data augmentation scheme is that the conditional dis-
tribution of θ|λ, δ2, σ2

n is much easier to sample than the conditional distribution of
θ|λ, a, σ2

n since
f(θ|λ, δ2, σ2

n) ∝ N
(
θ
∣∣0,C/λ)N(θ∣∣∣0, σ2

n∆
)

(6.7)

where ∆ ∈ RZ2L×Z2L is a diagonal matrix whose ith diagonal element is δ2
i .

Noise variance σ2
n

The noise variance is assigned a Jeffrey’s prior

f(σ2
n) ∝ 1

σ2
n

1R+(σ2
n) (6.8)

where 1R+(ξ) = 1 if ξ ∈ R+ and 0 otherwise (indicator function on R+ ). This choice
is very classical when no information about a scale parameter is available (see [89]).

6.1.3. Hyperparameter priors To be able to estimate the hyperparameters a and
λ of a Bayesian model, one can define a hierarchical Bayesian model defined by
hyperparameter priors. The hyperpriors considered in this work are summarized in
this section.

Hyperprior of a

A Jeffrey’s prior is assigned to a to keep the system as non-informative as possible

f(a) ∝ 1

a
1R+(a). (6.9)

Hyperprior of λ

A conjugate gamma hyperprior is assigned to λ

f(λ) = G
(
λ
∣∣∣αλ, βλ). (6.10)

The values of αλ and βλ are chosen to make the hyperprior non-informative. The
values we used for our experiments are specified in Section 6.3.
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6.1.4. Posterior distribution Using the likelihood as well as the parameter and
hyperparameter priors defined in the previous sections, the posterior distribution as-
sociated with the proposed hierarchical Bayesian model is

f(σ2
n,θ, a, λ, δ

2|y) ∝ f(y|θ, σ2
n)f(θ|λ, δ2, σ2

n) (6.11)

f(δ2|a)f(σ2
n)f(a)f(λ).

6.2. GIBBS SAMPLER

The posterior distribution (6.11) is intractable, in the sense that it does not allow
closed-form expressions for the Bayesian estimators of the parameters and hyper-
parameters to be derived. Thus we propose to draw samples distributed according to
(6.11) using a Markov chain Monte Carlo (MCMC) method. The generated samples
are then used to estimate the unknown image jointly with the other model parame-
ters and hyperparameters. More precisely, after an appropriate burn-in period, the
samples associated with a given parameter generated by the MCMC method are
averaged in order to approximate the minimum mean square error estimator of this
parameter. The MCMC method considered in this paper is a Gibbs sampler, which
generates the unknown variables sequentially according to their conditional distribu-
tions, as shown in Algorithm 6 (see [89]). Note that the full vector θ can be sampled
in a single step since it is more efficient than sampling each element of θ separately
(it allows convergence to be reached with a smaller number of iterations). The corre-
sponding conditional distributions are shown in Table 16 where GIG, N , G, and IG
are the generalized inverse Gaussian, normal, gamma, and inverse gamma distribu-
tions (see [88] for details about the GIG distribution).

Algorithm 6: Gibbs sampler
1 Initialize(a, σ2

n, λ)
2 Sample(θ from its prior distribution)
3 while No convergence do
4 for i← 1 to N do
5 Sample(δ2

i from f(δ2
i |θi, σ2

n, a));

6 Sample(λ from f(λ|θ));
7 Sample(a from f(a|δ2));
8 Sample(σ2

n from f(σ2
n|y,θ, δ2));

6.2.1. Sampling considerations The variables δ2
i , λ, a and σ2

n can be easily sam-
pled using standard generators of random variables. However, sampling all the ele-
ments of θ jointly in a direct manner is not straightforward, since the inversion of the
precision matrix Σ−1 ∈ RZ2L×Z2L becomes intractable even for small hyperspectral
images. In order to solve this problem, we propose to use the sampling technique
introduced by Orieux et. al. [90] that was proposed to sample from high dimensional
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Table 16: Full conditionals f(δ2
i |θi, σ2

n, a), f(θ|y, σ2
n, δ

2, λ), f(λ|θ), f(a|δ2) and
f(σ2

n|y,θ, δ2) associated with (6.11).

δ2
i GIG

(
1
2
, a,

θ2i
σ2
n

)
θ N

(
ΣAT y
σ2
n
,Σ
)
,Σ−1 = 1

σ2
n
(ATA + ∆−1) + λC−1

λ G
(
Z2L

2
+ αλ,

||(B−I)Ψθ||2
2

+ βλ

)
a G

(
Z2L, ||δ||

2

2

)
σ2
n IG

(
Z2L+P

2
, 1

2

[
||y −Aθ||2 +

∑ θ2i
δ2i

])
multivariate Gaussian distributions. Note that the method bypasses the problem of
inverting the precision matrix Σ−1 by using a perturbation-optimization algorithm. A
conjugate gradient method has been used in this paper to solve the perturbation-
optimization problem.

6.3. SIMULATION RESULTS

In order to evaluate the performance of the proposed algorithm, experiments were
performed on a real hyperspectral image. The image was acquired using a monochro-
mator with wavelengths separated by 1nm, more precisely with a CCD camera AVT
Marlin F033B, with 656×492 pixels, 24 spectral bands and a pixel pitch of 9.9µm. The
experiments were conducted on a section of 128 × 128 pixels and 8 spectral bands
(from 461nm to 596nm) that was extracted from the acquired image. Five matrices
Φ were calculated, each corresponding to a random realization of a CASSI sens-
ing matrix with a different compression ratio P

Z2L
, more precisely 13%, 26%, 40%, 53%,

and 66%. Compressed images were then generated by multiplying the hypercube by
each of the matrices Φ and adding Gaussian noise to obtain SNR = 25dB.
Four different algorithms were used to recover the hypercube from each set of mea-
surements: i) The SpaRSA optimization algorithm for the LASSO problem (SpaRSA
LASSO) [4], ii) the SpaRSA algorithm for solving the proposed problem (6.2) (SpaRSA
smooth), iii) the Bayesian LASSO [91] and iv) the proposed method. Note that algo-
rithms ii and iv estimate the image by solving (6.2) whereas algorithms i and iii do
not use the smoothing term. Note also that algorithms i and ii require to set a priori
values of σ2

n, τ and λ, e.g., by using cross-validation, whereas algorithms iii and iv
are implemented in a Bayesian framework, that estimates is own hyperparameters
from the observed data.
The basis representation Ψ used in all experiments is defined as the Kronecker
product of three bases Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3, where the combination Ψ1 ⊗Ψ2 is the
2D-Wavelet Symmlet 8 basis and Ψ3 is the cosine basis. For algorithms ii and iv, B
was chosen as a low-pass Gaussian filter with radius 3 and standard deviation 0.6.
Finally, the hyperprior parameters were fixed by cross validation to αλ = 1×10−3 and
βλ = 10× 10−6.
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Table 17: PSNRs [dB] obtained by the different algorithms.

Compression ratio 13% 26% 40% 53% 66%
Proposed method 24.4 27.1 28.6 29.6 30.4
Bayesian LASSO 22.9 26.0 27.5 28.4 28.4
SpaRSA smooth 25.2 27.1 28.8 29.7 30.6
SpaRSA LASSO 23.5 26.8 28.5 29.4 30.4

Figure 29: Seventh spectral band of the image: (Left) Ground truth. Reconstruction
results for: (top center) the proposed method, (bottom center) SpaRSA Smooth, (top
right) Bayesian LASSO and (bottom right) SpaRSA LASSO.

(a) (b)30.18 dB 28.79 dB

30.15 dB 29.79 dB

Table 17 shows the PSNRs of the reconstructed images obtained for different com-
pression ratios of Φ and for the four algorithms. We can observe that the algorithms
using the smoothness term have a performance that is up to 2dB higher than the
ones that do not. Note that the optimization algorithms yield slightly better results
than their Bayesian counterparts. We believe that this improved performance is due
to the fact that the hyperparameters in the optimization algorithms have been man-
ually set to optimize the PSNR whereas these hyperparameters are estimated from
the data by the Bayesian algorithms. Fig. 29 illustrates the seventh spectral band
recovered by the algorithms when applied to the measurements corresponding to
a 53% compression ratio. The algorithms that include the smoothness term clearly
provide results that are visually less noisy.
Examples of reconstructions along the spectral axis for spatial pixel #(20, 33) (se-
lected randomly) are compared in Fig. 30. The methods that use the smoothing
term are closer to the ground truth. In addition, the Bayesian methods are able to
calculate the standard deviation (SD) of their estimations, which is included in the
graph showing that the reference is within their 2 SD error margin. Table 18 shows
the values of SD for both Bayesian approaches. The proposed method presents sig-
nificantly lower values of SD, providing more confident estimates than the Bayesian
LASSO.
Finally, Table 19 shows the computational costs obtained with the algorithms for
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Figure 30: Spectral signature for pixel #(20, 33).
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Table 18: Mean standard deviations of the estimations of x.

Compression ratio 13% 26% 40% 53% 66%
Proposed method 10.85 10.51 9.79 9.21 9.05
Bayesian LASSO 25.90 18.21 15.06 13.10 13.10

Table 19: Computational costs for a 53% compression ratio.

Computational cost Iterations Seconds
Proposed method 500 20× 103

Bayesian LASSO 750 18× 103

SpaRSA smooth 300 316
SpaRSA LASSO 300 42
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measurements associated with a 53% compression ratio. All algorithms were ran on
a personal computer with an Intel Core i7-4790 CPU 3.60GHz processor and 32GB
of memory. Algorithms were implemented using MATLAB with MEX files written in
C. The algorithms based on MCMC methods are significantly slower than the ones
based on optimization, as usual. However, it is important to note that optimization al-
gorithms require to have their hyperparameters manually adjusted, and thus have to
be run several times to find the optimal solution. Conversely, Bayesian methods can
estimate their hyperparameters jointly with the recovered image coefficients using a
single run.

6.4. CHAPTER CONCLUSION

This chapter introduced a hierarchical Bayesian model to solve the compressive
spectral imaging problem by promoting the image to be sparse in a given basis and
smooth in the spatial domain. A Gibbs sampler was developed to draw samples
asymptotically distributed according to the corresponding posterior, sampling the full
image in a single step to accelerate the convergence speed. The generated samples
were used to calculate the Bayesian estimators of the unknown image. The resulting
algorithm was compared to other reconstruction methods for a hyperspectral image
compressed with different compression ratios. Our experiments showed that includ-
ing a spatial smoothing term can improve the PSNR of the recovered image up to
2dB.
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7. CONCLUSIONS, DISCUSSION, AND FUTURE WORK

The hypothesis of this dissertation was that it is feasible to design a strategy for
optimizing the pseudorandom structure of the main compressive spectral imagers
in terms of its maximum eigenvalue concentration and to optimize the computa-
tional efficiency of a recovery algorithm that exploits the structure characteristics
of the compressive spectral imaging matrices where the computational optimization
is quantified in terms of reconstruction quality and speed of convergence.
In this dissertation, a set of works demonstrates that it is possible to design the
structure of the compressive spectral imaging matrix and to improve the recovery
reconstruction algorithm for increasing the quality of the recovered images.
The main difference between the state-of-the-art matrix design minimizing problems
and the proposed algorithm of Chapter 3 is that the gradient step in the state-of-the-
art algorithms requires matrix products with complexity dependent on the size of the
signal. Alternatively, the proposed algorithm takes advantage of the structure of the
measurement matrix Φ and only operates in the modifiable elements which result a
reduced computational complexity. Additionally, traditional algorithms assume that
matrix normalization is feasible, which is not the case in optical systems with highly
structured matrices.
In the work of Chapter 3, we aim to increase the rank of the measurement matrix by
uniformly distributing the non-zero elements across rows and columns. In particular,
we present a novel algorithm for achieving a uniform distribution of the non-zero ele-
ments when the locations of the modifiable elements are known in advance. The pro-
posed algorithm performs well when the number of non-zero entries is significantly
smaller than the total number of entries. It is possible to determine the locations of
the non-zero elements that match the established expected values by performing an
exhaustive search over the rows and columns. We randomly selected the locations
by sampling a probability distribution that is related to the number of ones.
Several lines of research stem from this work. A future line of research is to design a
proper representation basis Ψ for the proposed uniform binary sensing. Again, this
design needs to take into account the physical limitations of the measurement matrix
Φ and requires the spacing between the eigenvalues of the matrix A = ΦΨ being
reduced while preserving the sparsification properties of Ψ.
Another line of research is to design the codification in a local neighborhood manner,
different to the optimization presented there that aims to sense uniformly at a pixel
by pixel or a voxel by voxel level. More specifically, the proposed design can be ex-
trapolated to a multiscale approach where the optimization aims to design uniformly
the codification at a pixel (voxel) level, but also at different groups of pixels (voxels)
levels. The selection of these groups depends on the application and can consider
physical characteristics of the sensing process as 2D or 3D local structures of the
codification patterns.

103



The current developments in tensor imaging can also benefit from our designs, for
instance, in the case of compressive sensing of sparse tensors, the projections ac-
quired through the different dimensions of the tensorial data can be optimized follow-
ing our method [92], [93].
It is important to emphasize that the codification design methods presented in Chap-
ters 3 and 4 of this dissertation can be extended to several compressive architectures
with binary codification. Some examples of these architectures include several com-
pressive spectral imaging sensors [11], [94], [95], seismic data acquisition [96], and
compressive spectrum sensing [97]. Another area of application includes the design
of the binary codification applied in phase retrieval imaging [98], [99].
An approach for recovering an image with a given spatial resolution is presented in
Chapter 5 where it is used the assumption that in a spatial neighborhood the spectral
image has a similar spectral behavior. This model lets the image to be recovered with
different spatial resolutions, this characteristic can be used in applications where it
is important to create a quick preview of the scene. The models presented in Chap-
ter 5 have better results in comparison with a traditional demosaicing recovering,
obtaining an improvement range from 0.5 dB to 7 dB with respect to the traditional
approach.
On the other hand, the proposed filtered gradient reconstruction algorithm of Chapter
6 achieves better performance, in terms of PSNR, than a traditional gradient-based
reconstruction algorithm and similar results to the SALSA and AMP approaches, by
taking advantage of a spatial filter operation. In a spatial filter operation, each pixel
value is changed by a function of the intensities of pixels in a neighborhood, here,
the spatial filter operation is used for increasing the smoothness characteristic of
the spectral images that it is lost following the traditional reconstruction steps. This
recovery algorithm can be seen as a variant of the gradient descent, where the main
improvement attained is the better quality results achieved in fewer iterations than
the traditional recovery algorithm.
Although that approach was implemented for the CASSI system, it can be extended
to several compressive spectral imaging architectures [9]–[11], [33]. Additionally, due
to the generality of the algorithm, it can be useful in several compressive sensing ar-
chitectures modeled by sparse and structured sensing matrices where the signal for
recovering is smooth, for instance, compressive computed tomography [13], single
pixel imaging [6], and compressive video imaging [100].
We proposed a Gaussian low pass filter tuning the variance to 0.6 and a neighbor-
hood of 5× 5 pixels, this filter achieved better performance in the CASSI reconstruc-
tions. However, a drawback of the filtered recovery algorithm is that the parameters
of the low pass filter, such as the size of the neighborhood and the variance, have
to be tuned for the specific application. Once the appropriate values for the filter
have been found, a general spatial filter operation is applied in each iteration, which
is an advantage of the approach. The complexity of the algorithm increases only in
one additional product in each iteration. On the other hand, this approach can be
included in several gradient descent algorithms that solve the compressive sensing
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problem [4], [41]–[44].
In the same line of reconstruction algorithms, Chapter 7 presents a hierarchical
Bayesian model to solve the compressive spectral imaging problem by promoting
the image to be sparse in a given basis and smooth in the spatial domain. The re-
sulting algorithm was compared to other reconstruction methods for a hyperspectral
image compressed with different compression ratios. The experiments show that
including a spatial smoothing term can improve the PSNR of the recovered image
up to 2dB. Future work includes the introduction of different regularization terms to
promote smoothness of the recovered image, such as total variation. It would also
be interesting to analyze the effect of small uncertainties affecting the sensing matrix
on the performance of the image reconstruction algorithm.
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