ADSORCION DE Cu²⁺ EN SOLUCION ACUOSA MEDIANTE BENTONITA MODIFICADA

MARTHA LILIANA VILLAMIZAR SIERRA

UNIVERSIDAD INDUSTRIAL DE SANTANDER CENTRO DE INVESTIGACIONES PARA EL DESARROLLO DE SISTEMAS INTEGRADOS (RCforDIS) FACULTAD DE INGENIERÍAS FISICO-QUÍMICAS ESCUELA DE INGENIERÍA QUÍMICA BUCARAMANGA 2009

Ŧ

ADSORCION DE Cu²⁺ EN SOLUCION ACUOSA MEDIANTE BENTONITA MODIFICADA

MARTHA LILIANA VILLAMIZAR SIERRA

Trabajo de grado presentado como requisito para optar al título de: Ingeniero Químico

Director Prof. Álvaro Ramírez García

Co-directores Prof. Ing. Peter Fečko, CSc. Ing. Kateřina Cechlová

UNIVERSIDAD INDUSTRIAL DE SANTANDER CENTRO DE INVESTIGACIONES PARA EL DESARROLLO DE SISTEMAS INTEGRADOS (RCforDIS) FACULTAD DE INGENIERÍAS FISICO-QUÍMICAS ESCUELA DE INGENIERÍA QUÍMICA BUCARAMANGA 2009 A mi Padre Bueno, a quien todo debo, de quien nada merezco A mi madre, sus sacrificios y su amor más allá del amor A mi hermano, mi otra mitad, mi otro corazón A Jonatan, por alegrar mi vida

AGRADECIMIENTOS

Mi más profundo agradecimiento a:

La Hna. Rosario Cáceres, porque por ella, este sueño de universidad se tornó en la más increíble realidad.

El Doctor Álvaro Ramírez García porque siempre me ha motivado a emprender los retos que a mis ojos son un imposible. Gracias por siempre.

El profesor Peter Fečko, quien muy generosamente gestionó todo el proceso de vinculación a la Universidad Técnica de Ostrava - República Checa. Por él fue posible la realización de este proyecto y la experiencia maravillosa de vivir en ese país.

La Ingeniera Kateřina Cechlová, miembro del Centro de Investigaciones para el Desarrollo de Sistemas Integrados de la Universidad Tecnológica de Ostrava.

A Sonia Reyes, Andrea Castillo y Silvia Pradilla por acompañarme y ayudarme como sólo los amigos de verdad saben hacerlo

A Lizeth Delgado y su familia, por ser mi casa lejos de casa.

A Lina Afanador, por ser gestora silenciosa de trámites y posibilidades. Gracias de todo corazón.

CONTENIDO

INTRODUCCION	15
1. MARCO TEORICO	17
1.1 CARACTERIZACION DE ARCILLAS MINERALES	18
1.2 EQUILIBRIO DE ADSORCION	19
1.3 INTERCALACION DE ARCILLAS MINERALES TIPO 2:1	21
2. METODOLOGIA EXPERIMENTAL	23
2.1 MATERIALES	23
2.2 CARACTERIZACION	24
2.2.1 Análisis DRX	24
2.2.2 Análisis FRX	25
2.2.3 Área superficial	25
2.2.4 Capacidad de Intercambio Catiónico (CIC)	25
2.3 MODIFICACION DE LA MONTMORILLONITA	25
2.3.1 Tratamiento Térmico	25
2.3.2 Activación con NaCl	25
2.3.3 Intercalación con ODA	25
2.4 ESTUDIOS DE ADSORCION MODO DISCONTINUO	26
2.4.1 Cinética de Adsorción	27
2.4.2 Equilibrio de adsorción	28

3.1 CARACTERIZACION	29
3.1.1 Análisis XRD	29
3.1.2 Análisis XRF	31
3.1.3 Área Superficial	31
3.1.4 Capacidad de Intercambio Catiónico (CIC)	32
3.2 ESTUDIOS DE ADSORCION MODO DISCONTINUO	32
3.2.1 Efecto de la concentración del adsorbato	33
3.2.2 Capacidad Máxima de adsorción	34
3.2.3 Cinética de Adsorción	36
3.2.2 Isotermas de Adsorción	38
4 CONCLUSIONES	40
5 RECOMENDACIONES	41
BIBLIOGRAFIA	42
ANEXOS	45

LISTA DE FIGURAS

Pág.

Figura 1. Diagrama esquemático de la estructura de una bentonita	19
Figura 2. Diagrama de bloques de la metodología experimental	23
Figura 3. Izquierda- Zona de ubicación de la muestra. Derecha – Muestra de la bentonita usada en experimentación	24
Figura 4. Diagrama esquemático de las modificaciones realizadas a la arcilla	26
Figura 5. Patrón DRX de la Bentonita Natural seca a 25°C y 600 °C	29
Figura 6. Patrón DRX de la bentonita natural e intercalada con ODA en la proporción B:ODA=1:1.5	30
Figura 7. Patrón DRX de la bentonita natural e intercalada con ODA en la proporción B:ODA= 1:0,75	30
Figura 8. Comportamiento del pH en la adsorción de Cu ²⁺	33
Figura 9. Máxima adsorción de iones Cu ²⁺ en estudios modo Discontinuo	35

Figura 10. Cinética de Adsorción de iones Cu ²⁺ en la bentonita	
natural y sus modificaciones	36

Pág.

Figura 11. Evaluación del mejor modelo de isotermas para	
todas las combinaciones propuestas	38

LISTA DE TABLAS

Pág.

Tabla 1. Condiciones Experimentales para los estudios de adsorción en modo discontinuo	27
Tabla 2. Valores de espaciado basal de la Bentonita Natura e Intercalada con ODA I	31
Tabla 3. Composición química de la bentonita natural	31
Tabla 4. Area superficial de la arcilla natural y modificaciones	32
Tabla 5. CIC de la arcilla natural y modificaciones	32
Tabla 6. Influencia de la concentración inicial de Cu ²⁺ en el grado de adsorción (%) y la cantidad de iones metálicos adsorbidos por unidad de masa de arcilla (q _e , mg/g)	34
Tabla 7. Resultados de la Adsorción de iones Cu ²⁺ por varios adsorbentes	35
Tabla 8. Parámetros Cinéticos de adsorción de Cu ²⁺ en la arcilla natural y modificaciones	37
Tabla 9. Parámetros de las mejores isotermas	39

TA DE ANEXOS

	Pág.
Anexo A. Octadecilamina	45
Anexo B. Método del complejo de Cobre	46
Anexo C. Modelos Extendidos de Langmuir y Freundlich	47
Anexo D. Datos para el modelado de las isotermas de adsorción	50
Anexo E. Datos de la Cinética de Adsorción	53
Anexo F. Resultados de los modelos L1,L2 y F y sus parámetros	55

RESUMEN

TITULO: ADSORCION DE Cu^{2+} EN SOLUCION ACUOSA MEDIANTE BENTONITA MODIFICADA

AUTORA: MARTHA LILIANA VILLAMIZAR SIERRA**

PALABRAS CLAVES: Adsorción, Montmorillonita, Cu²⁺, Intercalación, ODA, NaCI, Isoterma de Adsorción.

EL presente estudio es un intento por desarrollar más limpias/verdes tecnologías efectivas para el tratamiento de agua residual. La aplicabilidad de la abundantemente disponible montmorillonita cálcica Checa fue evaluada para la remoción de iones Cu²⁺ de soluciones acuosas. La arcilla fue reducida a dos tamaños de grano diferentes y sometida por separado a intercalación con Octadecilamina (ODA) y activación sódica con NaCl. El acomodamiento de ODA en los espacios interlaminares fue revisado por medición DRX. Muestras de bentonita natural fueron también incluidas en las pruebas. Las áreas superficiales y capacidades de intercambio iónico de la montmorillomnita y sus derivados B1-D (natural), B1-Na (tratada con NaCl), B1- ODA1, B1-ODA0,75, B5-D (natural), B5-ODA1,5 y B5-ODA0,75 fueron medidas. Los experimentos en modo discontinuo mostraron que las montmorillonitas intercaladas B5-ODA1,5 y B1-ODA1 reportaron las mejores capacidades adsorbentes. Los estudios cinéticos sugieren que las interacciones pueden ser mejor representadas por un mecanismo de segundo orden. El tiempo de equilibrio alcanza 3 horas para todas las muestras intercaladas, 9 horas para B1-Na y 12 horas para B1-D y B5-D. El modelamiento de los datos de adsorción en el equilibrio sugirió que las muestras de arcillas adsorbentes, a excepción de B1-ODA1, tiene sitios adsorbentes homogéneos y se ajustan muy bien a los modelos extendidos de Langmuir, L1 y L2 (R²= 0.95-0.98). Los resultados han mostrado que las montmorillonitas intercaladas con ODA en la relación másica B/ODA menor a la unidad, pueden satisfactoriamente ser usadas en la remoción de iones Cu²⁺ de agua residual.

^{*} Proyecto de Grado

^{**} Facultad de Ingenierías Físico-Químicas. Escuela de Ingeniería Química.

Prof. Álvaro Ramírez García. Prof. Peter Fecko.

ABSTRACT

TITLE: ADSORPTION OF Cu2+ IN AQUEOUS SOLUTION INTO A MODIFIED BENTONITA*

AUTHOR: MARTHA LILIANA VILLAMIZAR SIERRA **

KEYWORDS: Adsorption, Montmorillonite, Cu²⁺, Intercalation, ODA, NaCI , Adsorption Isotherm.

The present investigation is an attempt for cleaner/greener cost effective technologies in wastewater treatment. Applicability of abundantly available Czech calcium montmorillonite was assessed for removal of Cu²⁺ ions from aqueous solution. The clay mineral was grounded in two different fractions and submitted separately to intercalation with Octadecylamine (ODA) and sodium activation with NaCl. The entry of ODA into the layers of montmorillonite was confirmed by XRD measurement. Raw bentonite samples were also included in the test. The specific surface areas and cation exchange capacities of montmorilllonite and its derivates- B1-D (natural), B1-Na (treated with NaCl), B1- ODA1, B1-ODA0,75, B5-D (natural), B5-ODA1,5 and The batch type experiments showed intercalated B5-ODA0,75 -were measured. montmorillonites B5-ODA1,5 and B1-ODA1 reported the best adsorption capacities. The kinetic studies suggest that interactions could be best represented by a second order mechanism. The equilibrium time reaches 3 hours for all the intercalated samples, 9 hours for B1-Na and 12 hours for B1-D and B5-D. Modelling equilibrium adsorption data suggested that the clay adsorbent samples, except from B1-ODA1, have homogeneous adsorption sites and fit very well with the Langmuir adsorption model. The results have shown that montmorillonite intercalated with ODA in a mass ratio B/ODA smaller than one, can be satisfactorily used in the removal of Cu²⁺ ions from wastewater.

^{*} Final studies work report.

^{**} Physical-chemistry Engineering Faculty. Chemical Engineering School. Prof. Álvaro Ramírez García. Prof. Peter Fecko.

INTRODUCCION

La descarga de metales pesados en ecosistemas acuáticos se ha convertido en un tema de interés en las últimas décadas debido a su gran toxicidad y su no biodegradabilidad. Estos contaminantes son introducidos como resultado de varias operaciones industriales y pueden acumularse a través de la cadena alimenticia a muy bajas concentraciones, llevando a serios problemas en la vida acuática así como a animales, plantas y salud humana. El Cobre, un metal pesado que tiene muchas aplicaciones, es altamente dañino si se descarga en las fuentes de agua [1] y por tanto, su remoción de las soluciones acuosas es extremadamente importante.

La adsorción es un muy bien conocido proceso de separación en el equilibrio y un efectivo método para aplicaciones de remoción y recuperación de metales pesados en las corrientes residuales. Uno de los materiales adsorbentes que se ha venido estudiando con más interés en los últimos años es la bentonita, una arcilla cuya gran área superficial, buena capacidad de intercambio iónico, inofensividad al medio ambiente, facilidad de operación y alta estabilidad química y mecánica, la convierten en un material ideal para el proceso de adsorción.

Las arcillas pueden ser sujetas a tratamiento con compuestos orgánicos o inorgánicos, ácidos o bases o tratamiento térmico para mejorar la capacidad del adsorbente natural, con diferentes consecuencias en su comportamiento que no han sido del todo explicadas.

El presente proyecto es parte de una investigación dirigida por el Centro de Investigaciones para el Desarrollo de Sistemas Integrados –RCforDIS- de la VSB – Universidad Tecnológica de Ostrava y busca primordialmente estudiar el efecto ejercido por la modificación con Octadecilamina-ODA- y Cloruro de Sodio- NaCl- sobre el desempeño de una bentonita cálcica que se explota en la localidad de Braňany Černý Vrch- República Checa, durante la adsorción de iones Cu²⁺ presentes en una solución acuosa y determinar cuál de los tratamientos aumenta su capacidad adsorbente y en qué medida respecto a la bentonita natural.

Dado que no hay un estudio reportado en la literatura referente a la adsorción con ODA en bentonitas a las condiciones propuestas en el presente trabajo, los resultados obtenidos de las observaciones y su correspondiente análisis tienen una significancia notable y contribuirán a refinar una tecnología de la cual aún permanecen desconocidos muchos aspectos y que se proyecta como una verdadera alternativa en el tratamiento de corrientes de agua contaminada.

1. MARCO TEORICO

El rápido crecimiento de la industria y un tremendo incremento de la población mundial han resultado en contaminación ambiental. Industrias como la minería, el plateado y terminado de metales, descargan al medio ambiente agua residual contaminada con metales pesados [2] cuya extrema toxicidad y tendencia a bioacumularse en la cadena alimenticia a relativamente bajas concentraciones [3] constituyen una verdadera amenaza. La Agencia de Protección Ambiental de los Estados Unidos-EPA lista al Cobre dentro de los contaminantes encontrados en aguas residuales potencialmente tóxicos para todos los organismos vivientes [4]. Aunque este metal es usualmente inofensivo a bajos rangos de concentración, su presencia a concentraciones mayores a 5ppm ha sido asociada a problemas de salud como daño renal y hepático, entre otros [5]. De acuerdo con EPA y la Organización Mundial de la Salud, OMS, los niveles permisibles de Cobre en agua potable son 1,3 y 2ppm respectivamente [5, 6]. En consecuencia, altos niveles de concentración de iones Cobre (II) en las aguas residuales industriales deben ser reducidos a niveles aceptables antes de ser descargados en el medio.

Dado que los métodos convencionales para remoción de Cobre de aguas residuales resultan inefectivos, especialmente en el caso de iones disueltos en grandes volúmenes de solución a bajas concentraciones, la adsorción surge como una alternativa muy viable y comúnmente recurrida, por ser altamente efectiva, barata y fácil de adaptar [7]. El proceso tiene ventajas adicionales como ser ajustable a procesos continuos y discontinuos, poca generación de lodos, posibilidad de regeneración y reutilización, simplicidad en el diseño, insensibilidad a contaminantes tóxicos y flexibilidad [8].

1.1 CARACTERIZACION DE ARCILLAS MINERALES

Las arcillas son adsorbentes efectivos para la remoción de metales pesados dadas sus altas áreas de superficie específicas, bajo costo y ubicua presencia en la mayoría de los suelos. La bentonita es una roca del grupo de las arcillas esmectitas, suave, muy fina y heterogénea, compuesta principalmente de montmorillonita -(Na,Ca)_{0,3}(Al,Mg)₂Si₄O₁₀(OH)₂•n(H₂O)-. Contiene además otras arcillas minerales (caolinita, illita, beidellita), compuestos de hierro, cuarzo, feldespatos, vidrio volcánico, etc., que representan impurezas y que si es posible, son removidos durante el procesamiento del mineral [9]

Proctor y Snyder [10], Lee et al. [11] y Kamga et al. [12] entre muchos otros, han publicado importantes trabajos acerca de las propiedades superficiales de las arcillas entre las cuales la montmorillonita muestra la mayor capacidad adsorbente. Es conocida por su alcalinidad-acidez variable, hinchamiento interno luego del contacto con agua, alta plasticidad, habilidad de ligamiento, valores importantes de capacidad de intercambio iónico y por tanto, buena capacidad de insertar especies voluminosas orgánicas e inorgánicas en los espacios interlaminares. Su capa unitaria consiste de una capa octaédrica de Al³⁺ ubicada en medio de dos tetraédricas de Si⁴⁺. La sustitución isomórfica de Al³⁺ por Si⁴⁺ en la capa tetraédrica y de Mg²⁺ o Zn²⁺ por Al³⁺ en la octaédrica, resulta en una carga neta negativa en la superficie de la bentonita [13]. Este desequilibrio es compensado por cationes intercambiables, incluidos H⁺, Na⁺ o Ca²⁺. en la superficie de las capas Tal es el origen de la capacidad de intercambio catiónico de las arcillas esmectíticas (Figura 1). El área superficial teórica de la montmorillonita es de más o menos 800 m²/g y la capacidad de intercambio catiónico depende de los cationes sustituyentes pero es generalmente del orden de 1 meg/g [14].

Las bentonitas pueden estar principalmente divididas en:

1. Bentonitas sódicas de alto hinchamiento o tipo Wyoming. Depósitos de este material se encuentran principalmente en USA; en la República Checa no se ha encontrado ninguno.

2. Bentonitas de potasio, calcio y magnesio o sus combinaciones, con significativa menor capacidad de hinchamiento. Pueden ser industrialmente enriquecidas con sodio (activación) aunque incluso así no alcanzan los valores de aquellas tipo Wyoming.

Figura 1. Diagrama esquemático de la estructura de una bentonita

Fuente: http://commons.wikimedia.org

La República Checa se encuentra entre los países con grandes depósitos de bentonita, y aún así, por sus propiedades, las bentonitas checas son muy similares una a la otra siendo en su mayoría del tipo magnesio-calcio o calcio-magnesio [15].

1.2 ISOTERMAS DE ADSORCION

Hay dos relaciones matemáticas reconocidas en general que fueron desarrolladas para describir la distribución en el equilibrio de un soluto entre las fases disuelta (líquido) y adsorbente (sólido). Estas relaciones, conocidas como isotermas de adsorción, ayudan a interpretar los datos obtenidos durante los análisis a temperatura constante y, aparte de los resultados de las mediciones calorimétricas, son la fuente principal de información en el proceso de adsorción.

El modelo de la isoterma de Langmuir [16] se basa en la hipótesis que todos los centros activos de adsorción son equivalentes y que la capacidad de una molécula para unirse a la superficie es independiente de si hay o no posiciones próximas ocupadas. Además, la adsorción se restringe a una monocapa y no existen interacciones laterales entre las moléculas del adsorbato. La isoterma está representada por la Ecuación 1:

$$q = q_m b C / (1 + b.C)$$
 (1)

siendo *C* la concentración del adsorbato en el equilibrio (mg/L), q, la cantidad de iones adsorbidos por unidad de masa de adsorbente (mg/g), q_m la capacidad de adsorción de la monocapa (mg/g) y *b* la constante de Langmuir (L/mg)

El modelo de la isoterma de Freundlich [17] asume que la superficie del adsorbente es energéticamente heterogénea y está conformada por grupos de sitios de adsorción de energías características y, al igual que la isoterma de Langmuir, la adsorción es función de la concentración de equilibrio, sin tener en cuenta la presencia de otros iones en disolución o variaciones del pH, asumiendo que sólo se adsorbe una monocapa. Se define por la Ecuación 2:

$$q = k_f C^{1/n}$$
(2)

Donde q, la cantidad de iones adsorbidos por unidad de masa de adsorbente (mg/g), k_f es la constante de capacidad de adsorción y *n* la constante de intensidad de adsorción.

1.3 INTERCALACION DE ARCILLAS MINERALES TIPO 2:1

En Química el término intercalación se usa para describir la inserción reversible de especies huéspedes móviles (átomos, iones ó moléculas), dentro de una red sólida cristalina que funciona como anfitriona ya que contiene un sistema interconectado de sitios de red vacíos del tamaño apropiado. Moléculas polares, como alcoholes, aminas, amidas, cetonas, aldehídos y nitrilos forman complejos de intercalación con esmectitas.

Cuando se intercala en solución, las moléculas solventes son generalmente coadsorbidas en el espacio interlaminar. Las moléculas huéspedes pueden ser intercaladas en minerales de arcilla seca o pueden desplazar las moléculas de agua de las esmectitas y vermiculitas hidratadas. El desplazamiento de las moléculas interlaminares de agua depende del carácter HSAB (por sus siglas en inglés "ácidos y bases suaves y fuertes) de los cationes interlaminares y los grupos interactuantes de las moléculas huéspedes. Las moléculas de agua alrededor de los cationes duros como Na⁺, Mg²⁺ y Ca²⁺, son desplazadas únicamente por compuestos que contengan HO– u O= mas no por aminas. En contraste, las aminas como bases débiles desplazan moléculas de agua de los cationes interlaminares débiles como Cu²⁺ y Zn²⁺ [18]. La intercalación se alcanza por tres métodos diferentes:

1. Reacción entre esmectita (fase sólida) y una solución en la que una sustancia orgánica es incluida. Esta reacción es llamada "sólido-líquido"

2. Reacción entre esmectita (fase sólida) y vapores de una sustancia orgánica, llamada "sólido-gas"

3. Reacción entre esmectita (fase sólida) y una sustancia orgánica, la cual está también en fase sólida. Esta es llamada "sólido-sólido"

Las moléculas orgánicas son usualmente mayores en dimensión que el material interlaminar original de la esmectita natural (cationes con agua molecular) y por tanto este proceso está conectado con una expansión considerable de la estructura de esmectita en capas con una orientación perpendicular.

La intercalación de la bentonita tratada en el presente trabajo se hizo con Octadecilamina, una sustancia cuyas características se establecen en el Anexo A.

2. METODOLOGIA EXPERIMENTAL

En este capítulo se presenta una detallada descripción de los materiales, equipos y metodología empleados durante la experimentación. Las pruebas y el orden en que fueron realizadas se ilustran en el diagrama de bloques de la Figura 2.

2.1 MATERIALES

Una muestra de montmorillonita rica en Ca²⁺ fue tomada de la localidad de Braňany – Černý Vrch (Figura 3) como la estructura anfitriona para la experimentación. La arcilla fué llevada a un tamizador mecánico y separada en dos fracciones: Una de tamaño de grano menor a 0,1mm y otra en el intervalo 0,1 a 0,5 mm.

Figura 3. Izquierda-Zona de ubicación original de la muestra, Derecha – Muestra de la bentonita usada en experimentación

NaCl 1M fue empleado para la activación con sodio y ODA- $C_{18}H_{39}N$ fue usada como sustancia intercalante.

La solución patrón de iones Cobre (II) se preparó disolviendo la cantidad adecuada de $CuSO_4 \cdot 5H_2O$ en agua deionizada. Otras soluciones preparadas por dilución a partir de la solución patrón variaron su concentración entre 300 y 1500 mg/L Cu²⁺

2.2 CARACTERIZACIÓN

2.2.1 Análisis DRX. La separación entre las láminas de arcilla, que origina la presencia de las especies intercaladas en el espacio interlaminar, se evaluó mediante la medida del espaciado interlaminar d, obtenida por difracción de rayos-X a ángulos bajos en un Difractómetro modelo URD-6000 (Freiberger Präzissionsmechanik/Seifer Roentgen), operado a 40 kV y 100 mA en modo "step scan". La velocidad de escaneo fue 0.02°/s

2.2.2 Análisis FRX. Los elementos presentes en la arcilla se identificaron mediante análisis de Fluorescencia de Rayos-X con un monocromador SPECTROSCAN MAKC-GV.

2.2.3 Área Superficial. Las mediciones de área superficial fueron hechas usando un analizador (GEMINI, 2360, Micrometrics USA)- BET a través de un método de adsorción multipunto, anterior al cual las muestras se prepararon usando un degasificador Gemini VacPrep (GEMINI, 2360).

2.2.3 Capacidad de Intercambio Catiónico (CIC). La capacidad de intercambio catiónico se determinó por el método del complejo cobre bis etilendiamina. (Anexo B)

2.3 MODIFICACION DE LA MONTMORILLONITA

2.3.1 Tratamiento Térmico. Las dos fracciones fueron ubicadas en dos platos de porcelana y llevadas a un horno a 105°C por 4 horas hasta peso constante.

2.3.2 Activación con Sodio. Una solución 1M de NaCl fue mezclada con muestras de las fracciones de arcilla a 25°C por 48 horas (100g arcilla/ 1L de NaCl 1M), después de lo cual las mezclas fueron lavadas con agua destilada y secadas nuevamente a 105 °C por cuatro horas más.

2.3.3 Intercalación. La intercalación de la ODA en la bentonita se hizo mediante una reacción en la que el polvo seco de las fracciones de bentonita fue mezclado con "escamas" finas de ODA, y calentado a 80°C, por 24 horas. Cuatro combinaciones con diferente relación bentonita/amina fueron preparadas y junto con los demás tratamientos hechos a la arcilla y la nomenclatura adoptada, se presentan en la Figura 4.

Figura 4. Diagrama esquemático de las modificaciones realizadas a la arcilla

2.4 ESTUDIOS DE ADSORCION MODO DISCONTINUO

Los experimentos de adsorción fueron hechos en tarros de polipropileno de 80mL mezclando una cantidad constante de arcilla con un volumen constante de solución acuosa de iones Cu²⁺. Los frascos fueron agitados a 120 rev. /min por un intervalo conocido de tiempo. Las mezclas fueron entonces filtradas con papel de filtro blanco y el Cu²⁺remanente sin adsorber en el líquido fue determinado mediante espectroscopia de absorción atómica (Varian AA Duo, 280 FS). Las pruebas se realizaron a valores de pH por debajo del cual ocurriera la precipitación química de hidróxidos metálicos. Cada experimento se hizo en duplicado y los resultados promedio se presentan en este estudio. Las siguientes condiciones fueron mantenidas para los diferentes grupos de experimentos:

Tabla 1. Condiciones Experimentales para los estudios de adsorción en modo

 discontinuo

Tipo de Estudio	Condiciones					
Efecto de la Concentración del Adsorbato	Arcilla 1,000g; Agua 50mL; Cu ²⁺ 300-1500mg/L; temperatura 25°C; pH 4,1-7					
Cinética de Adsorción	Arcilla 1,000g; Agua 50mL; Cu ²⁺ 1500mg/L; temperatura 25°C; tiempo de interaccion 1, 3, 5, 7, 9, 12 y 24 horas					
Isotermas de Adsorción	Arcilla: 1,000g; Cu ²⁺ 300, 600, 900, 1200, 1500 mg/L; temperatura 25 °C; tiempo de interacción 12 horas					

Las concentraciones de metal adsorbido y la adsorción máxima fueron obtenidas de la diferencia entre la concentración inicial y final del metal en la solución modelo, tal como se muestra. (Ec.s 3 y 4)

Contenido de Metal en solución, C (mg Cu²⁺/L) =
$$\frac{c_e}{c_F} V$$
 (3)

Adsorción Máxima,
$$q_{max} (mg Cu^{2+}/g) = \frac{g_{2-}g_{2}}{m} V$$
 (4)

Donde C_0 y C_F son la concentración inicial y en el equilibrio de los cationes metálicos Cu² en solución, *V* es el volumen de solución sintética usada en las pruebas de adsorción y *m* es la masa de adsorbente usada.

2.4.1 Cinética de Adsorción. Para determinar la cinética de adsorción de los iones Cu²⁺, dos ecuaciones de velocidad fueron usadas. La expresión de velocidad de primer orden de Lagergren [19] que aplica a un rango de sistemas sólido líquido como metales pesados, colorantes, y varias sustancias orgánicas en sistemas acuosos en varios adsorbentes y es generalmente expresada como:

$$Log(q_e-q_t) = log q_e - k_{pf}t/2,303$$
 (5)

Donde $q_e y q_t$ son la cantidad adsorbida (mg/g), en el equilibrio y en el tiempo t, respectivamente y k_{pf} , la constante de velocidad de adsorción (h⁻¹). La pendiente de la línea recta de la gráfica log (q_e - q_t) vs t representa el valor de k_{pf} y se determinó para cada uno de los ensayos.

Recientemente, *Ho* y *Mc Kay* [19] han reportado que la mayoría de los sistemas adsorbentes siguen una cinética de segundo orden, la cual puede ser expresada como (Ec. 6)

$$t/q_t = 1/k_{ps}q_e^2 + t/q_e$$
 (6)

donde, k_{ps} es la constante de velocidad de adsorción (g/mg·h). Estos valores fueron determinados por la pendiente de la línea resultante de graficar t/qt vs. t.

2.4.2 Equilibrio de Adsorción. En este trabajo los modelos extendidos de Langmuir- *L1 y L2*- (Ecs. 7 y 8) y Freundlich- *F*- (Ec. 9) fueron usados para describir la relación entre los valores de adsorción de Cu^{2+} , q_e y su concentración en la solución en el equilibrio, C_e (mg Cu^{2+}/L). La descripción de estos tres modelos se da en el Anexo C.

Modelo Extendido de Langmuir I. (*L1*):
$$\mathbf{y} = \frac{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{x}^{1-q}}{1 + \mathbf{b} \cdot \mathbf{x}^{1-q}}$$
 (7)

Modelo Extendido de Langmuir II. (*L2*):
$$y = \frac{1}{a+bx^{n-1}}$$
, (8)

Modelo Extendido de Freundlich I (*F*): $y = a_x x^{bx^{-1}}$ (9)

Donde *a*, *b* y *c* son los parámetros de los modelos

3. RESULTADOS Y DISCUSION

3.1 CARACTERIZACION

3.1.1 Análisis DRX. Los resultados de los análisis DRX de la bentonita natural muestran que el principal componente es un grupo de minerales como esmectita, goetita, y fracción orgánica (97.24%) y anatasa mineral (2.76%). Los perfiles de difracción de la bentonita natural e intercalada con ODA en diferentes proporciones se presentan en las Figuras 5-7 y sus correspondientes valores de espaciado interlaminar, en la Tabla 2.

La Figura 5 muestra una estructura característica de una arcilla tipo esmectita que es estable a altas temperaturas

Figura 5. Patrón DRX de la Bentonita Natural seca a 25°C y 600 °C

Una comparación de los espectros permite observar que todas las muestras a partir de ángulos mayores a $2\theta = 7^{\circ}$ siguen el mismo patrón cristalográfico, lo cual indicaría que la intercalación de la amina en las arcillas se ha dado en los

espacios interlaminares correspondientes. Las arcillas intercaladas con ODA muestran un corrimiento del espaciado interlaminar hacia ángulos menores, lo que se refleja en un incremento de la separación interlaminar en concordancia con el tamaño de la amina incorporada.

Figura 6. Patrón DRX de la bentonita natural e intercalada con ODA en la proporción B:ODA=1:1,5

No	d (Muestra Secada al Aire) (Å)	D (Muestra a 600°C) (Å)	d (B:ODA=1:1.5) (Å)	d (B:ODA=1:0,75) (Å)
1	12,57	9,78	18,64	18,24
2	5,98	ND*	13.64	13,76
3	4,27	ND*	11,11	11,13
4	3,12	ND*		

 Tabla 2. Valores de espaciado basal de la Bentonita Natural e Intercalada con

 ODA

ND*= No se identificó la línea

Para la reacción sólido-sólido de ODA con la bentonita en la relación B:ODA=1:1,5, y B:ODA=1:0,75 el espaciado interlaminar fue 18,64 Å y 18,24 Å respectivamente, reflejando variaciones importantes entre las muestras con diferentes cantidades de ODA y sugiriendo que a menor concentración de ODA, menor número de moléculas en la interlámina, lo que puede deberse precisamente al tipo de relación másica establecida.

3.1.2. Análisis FRX. La Tabla 3 muestra la composición química de la bentonita natural empleada en este trabajo e indica, como era de esperarse, la presencia de Silicio y Aluminio como componentes predominantes.

 Tabla 3.
 Composición química de la bentonita natural

				Porce	ntaje e	n Peso	(%)				
SiO ₂	AI_2O_3	Fe_2O_3	TiO ₂	MnO	MgO	CaO	Na ₂ O	<i>K</i> ₂ 0	SO3	$P_{2}O_{5}$	PI
57.2	13.3	10.06	3.68	0.104	2.4	2.18	0.90	0.562	0.11	0.58	8.924

Usando los resultados del análisis químico se estimó la estequiometria aproximada que podría tener la bentonita usada en este trabajo obteniéndose:

$$(Ca_{0.19}K_{0.05})(Al_{0.95}Fe_{0.77}Mg_{0.29}Ti_{0.22})(Si_{3.59}Al_{0.44})O_{10}(OH)_2 \bullet 7.54H_2O$$

3.1.3 Area Superficial. Las mediciones de área superficial arrojaron los resultados que se reportan en la Tabla 4 y revelan que esta, en efecto, cambia con el tipo de modificación, afectando drásticamente a la arcilla intercalada. Este bajo valor en el área superficial puede deberse al bloqueo de la porosidad de la arcilla por las moléculas orgánicas.

Modificación	Area superficial (m²/g)			
Sin tratamiento	72,00			
Activada con NaCl	62,00			
Intercalada con ODA (1:1)	1.00			

Tabla 4. Area superficial de la arcilla natural y modificaciones

3.1.4 Capacidad de intercambio catiónico. Se encontró que la modificación con NaCl y ODA tiene un efecto en la capacidad de intercambio catiónico de las arcillas resultando en una disminución que se hace muy evidente para las tratadas con ODA como se aprecia en la Tabla 5.

Tabla 5. CIC de la arcilla natural y modificaciones

Modificación	CIC (meq/g)
Sin tratamiento	63,00
Activada con NaCl	50,00
Intercalada con ODA (1:1)	32,00

Este decrecimiento puede explicarse porque el tratamiento químico, al formarse el sistema multicapas, hace que algunos de los cationes intercambiables sean obstruidos en el espacio interlaminar, con la consecuente disminución en los valores CIC.

3.2 ESTUDIOS DE ADSORCION MODO DISCONTINUO

En los estudios subsecuentes se monitoreó el pH para cada arcilla en rangos que variaron entre 4,1 y 7,0, dependiendo de la muestra tratada. Se observa una tendencia común en todas las arcillas a aumentar el número de metales adsorbidos por unidad de masa con el aumento del pH de la solución. Después de pH 4,1, la adsorción se incrementa fuertemente hasta pH 5,0 y a partir de él se mantiene casi constante para pH mayores (Figura 8).

Varias razones pueden ser atribuidas al incremento de la adsorción de los iones metálicos por el adsorbente sin modificar relativas al pH de la solución adsorbente: A bajos pH, el número de iones hidrógeno disponibles es alto y los iones Cu²⁺ tienen que competir con ellos por sitios adsorbentes en la superficie del material. Los sitos activos en la superficie del adsorbente son débilmente ácidos por naturaleza y con el incremento en el pH, son gradualmente desprotonados favoreciendo más y más la adsorción de Cu²⁺ mediante fuerzas

de atracción electrostáticas. Un mecanismo similar de adsorción ha sido reportado por varios autores [20].

3.2.1 Efecto de la concentración de Cu²⁺. Tal y como se muestra en la Tabla 6 y con más detalle en el Anexo D, al incrementar la carga inicial de iones, la cantidad adsorbida por unidad de masa de la arcilla (q_e), incrementó mientras que el grado de adsorción (%) decreció.

Tabla 6. Influencia de la concentración inicial de Cu²⁺en el grado de adsorción
(%) y la cantidad de iones metálicos adsorbidos por unidad de masa de arcilla (q_e, mg/g)

C (mg/L)	B1-D		B1-Na	a	B1-00)A1	B1-OI	DA0,75	B5-D		B5-01	DA1,5	B5-OD	A0,75
	%′	q	%′	q	′%	q	%′	q	%′	q	′%	q	%′	q
300	99,99	14,15	99,99	14,2	99,99	14,17	30,24	4,29	99,99	14,16	99,99	14,17	26,00	3,690
600	99,85	30,04	99,85	30,02	99,99	30,06	45,76	13,73	91,14	27,38	99,99	30,03	38,44	11,56
900	90,40	42,38	88,32	41,92	99,99	47,46	55,31	26,26	81,28	38,58	99,99	47,41	53,20	25,26
1200	86,50	51,90	51,90	52,4	99,57	59,68	53,97	32,40	81,29	48,78	99,73	59,78	47,00	28,40
1500	75,00	56,40	56,40	55,9	85,93	64,38	51,70	38,73	76,99	57,74	92,53	69,33	45,90	34,45

A menores concentraciones, un gran número de sitios adsorbentes estaba disponible para los iones metálicos y la adsorción era independiente de la concentración inicial. La situación cambió con el incremento en la concentración de iones metálicos y la competencia por sitios adsorbentes se hizo más fuerte [21]. Bajo tales circunstancias, la unidad de masa del adsorbente pudo tomar más iones metálicos, comparada a esa a menores concentraciones de iones. Esto incrementó q_e, pero el porcentaje global de adsorción mostró una tendencia descendente.

3.2.2 Máxima Capacidad de Adsorción. Los resultados de adsorción máxima de iones Cu²⁺ en el equilibrio se muestran en la Figura 9.

Las muestras intercaladas con ODA en la proporción B:ODA=1:0,75 para ambos tamaños de grano alcanzan los valores más bajos, sugiriendo que esta combinación probablemente no sea la indicada para los propósitos del proceso.

Por el contrario, las muestras intercaladas en la proporción B:ODA = 1:1 y 1:1,5 mostraron las más altas capacidades adsorbentes entre todas las combinaciones propuestas siendo estas 64,46 y 69,41 mg/g respectivamente, superando a la bentonita natural tratada en este mismo estudio y más aún a la reportada en la literatura [22] (Tabla 8). Estos hallazgos suponen un incremento del 25% en la capacidad adsorbente de la arcilla.

Figura 9. Máxima adsorción de iones Cu²⁺en estudios modo discontinuo

Las variaciones propuestas al tamaño de grano no parecen ser un factor que influencie en forma significativa el proceso de adsorción por cuanto se obtienen valores similares para las muestras con tamaño de grano diferente pero con semejanza en el tratamiento químico.

Tabla 7. Resultados de la Adsorción de iones Cobre (II) por varios adsorbentes

Adsorbente	Capacidad de Adsorción (mg/g)
Bentonita Sódica	30.00
Bentonita Cálcica	7.72
Caolín	4.47
Vermiculita	20.61
Carbón activado	30.54

Fuente: O[°] zer Go[°]k et. al, Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxy quinoline immobilized bentonite. Colloids and Surfaces A: Physicochem. Eng. Aspects 317 (2008) 174–185

3.2.3 Cinética de Adsorción. Los resultados obtenidos para la variación del tiempo de contacto para la adsorción de Cu²⁺ en la superficie de las arcillas se muestran en la Figura 10. Detalles de las mediciones experimentales de la cinética de adsorción se dan en el Anexo E.

Figura 10. Cinética de Adsorción de iones Cu²⁺ en la bentonita natural y sus modificaciones

Las interacciones fueron lentas, requiriendo de 3 a 12 horas para alcanzar el equilibrio. *Alvarez-Ayuso* y *García Sanchez* [23] han encontrado que la adsorción de Cu²⁺ en bentonitas puede ser muy rápida con más del 95% de la adsorción teniendo lugar en los primeros 30 min..

Las muestras intercaladas con ODA fueron las primeras en alcanzar el equilibrio registrando a la vez los rendimientos más altos (B1-ODA1 y B5-

ODA1,5) y más bajos (B1-ODA0,75 y B5-ODA0,75) en la capacidad de adsorción. La montmorillonita activada con sodio reportó resultados comparables con B1-ODA1 y B5-ODA1,5 en términos de capacidad de adsorción mas no en velocidad de la misma.

Por su parte, ambas de las arcillas sin modificar, a pesar del buen porcentaje de retención al final del experimento, requirieron 4 veces el tiempo de las que mostraron mejor eficiencia, lo que prueba que la modificación con ODA, pese a no mostrar grandes diferencias en términos de adsorción, si lo hace en términos de rapidez, un factor de suma importancia en los procesos a gran escala por las implicaciones de costos y operabilidad que tiene.

Modelos Cinéticos. Dos modelos cinéticos fueron evaluados para determinar la concordancia con los resultados experimentales del estudio cinético. El modelo de segundo orden arrojó gráficas lineales donde la constante de segundo orden k_{ps} varió de 2,64x10⁻⁴ a 0,1504 h⁻¹. Esto también condujo a una concordancia entre los valores q_e obtenidos experimentalmente y de las pendientes de las gráficas de segundo orden. (Tabla 8) Las desviaciones pueden deberse a la incertidumbre inherente a la obtención de los valores experimentales de q_e.

Adsorbente	Cinética	de primer	orden		Cinética d	e segundo	orden	
	$k_{pf} (h^{-1})$	q₀ (mg/g)	R ²	% desv	k _s (h⁻¹)	q _e (mg/g)	R ²	% desv
B1D	0,379	122,37	0,728	+117.4	2,64x10 ⁻⁴	166,6	0,99	+ 66,21
B1-Na	0,819	30,92	0,7898	-44,74	0,0137	62,893	0,999	+ 11,11
B1-ODA1	0,343	10,216	0,5568	-84,15	0,117	65,359	0,751	⁺ 1,383
B1-ODA0,75	0,39	6,387	0,5638	-83,53	0,1656	54,945	0,326	⁺ 29,42
B5-D	0,497	108,62	0,8271	88,11	1,051x10 ⁻³	104,17	0,999	, + 44,6
B5-ODA1,5	0,68	4,1	0,5924	-94,1	0,1186	70,42	0,992	+ 1,41
B5-ODA0,75	0,596	1,904	0,4854	-94,5	0,1504	35,087	0,427	1,975

Tabla 8. Parámetros Cinéticos de adsorción de Cu²⁺ en la arcilla natural y modificaciones

El mecanismo de primer orden sufrió una limitación importante al desviarse los valores computados de q_e , hasta en un 117.4 % y por eso se cree que el mecanismo en general de las interacciones arcilla-Cu²⁺ siguen predominantemente una cinética de segundo orden en la que tanto los iones Cu²⁺ como el sustrato son participantes eficientes. Es de resaltar que aunque las siete arcillas tienen diferentes grados de adsorción, el mecanismo de interacción escencial es el mismo.

3.2.4 Isotermas de Adsorción. La Figura 11 es una recopilación de los modelos de isotermas que resultaron describir mejor cada una de las combinaciones propuestas y que representan la adsorción de iones Cu²⁺ en la bentonita como una función de la concentración de los iones metálicos en el equilibrio.

Figura 11. Evaluación del mejor modelo de isotermas para todas las combinaciones propuestas

La cantidad de iones adsorbidos incrementó con la concentración del metal, como se esperaba. El comportamiento de la adsorción se ajustó al modelo

extendido de Langmuir- *L2* para casi todas las arcillas intercaladas y con mejor precisión al modelo extendido de Langmuir- *L1* para las demás. La arcilla B1-ODA1 se ajustó más al modelo extendido de Freundlich-*F*. Es bien sabido que la isoterma de Langmuir corresponde a un mecanismo dominante de intercambio de iones mientras que la de Freundlich muestra reacciones de adsorción- complejación teniendo lugar en el proceso de adsorción. No obstante, el mecanismo real no es bien conocido. Se cree que el intercambio iónico, la complejación y las interacciones electrostáticas juegan un importante rol en el proceso.

Cada una de estas isotermas se ajustó usando una regresión lineal obtenida por valores de desviación estándar (R²). En promedio R resulta ser mayor a 0.95, indicando que en efecto, se alcanzó un ajuste conveniente de los modelos para los casos estudiados (Tabla 9).

Etiqueta		а			b			с		R ²	R	ISO
B1-D	4,68971	±	1549,87839	-4,64919	±	1549,878	1,00084	±	0,27829	0,81	0,9	L2
B1-Na	6,00722	±	2649,33547	-5,96584	±	2649,334	1,00067	±	0,29886	0,79	0,89	L2
B1-ODA1	56,08	±	4,28343	0,1	±	0,02889	0,27	±	0,10608	0,93	0,96	F
B1-0DA0.75	43,2537	±	3,63224	1,01E-09	±	3,37E-09	-2,46611	±	0,58599	0,99	0,99	L1
B5	0,10954	±	0,08092	-0,04464	±	0,07188	1,12452	±	0,12704	0,98	0,99	L2
B5-0DA1.5	64,8593	±	3,47636	37,2185	±	38,62737	-0,75622	±	0,47262	0,95	0,98	L1
B5-0DA0.75	31,72	±	2,95201	6,15E-26	±	1,91E-24	-8,72492	±	5,19903	0,9	0,95	L1

Tabla 9. Parámetros de las mejores isotermas

Datos obtenidos del modelamiento se dan con más detalle en los Anexos D y F.

4. CONCLUSIONES

Las montmorillonitas intercaladas con ODA y activadas con NaCl son capaces de remover iones Cu²⁺ de soluciones acuosas y las primeras superan hasta en un 25% a la arcilla natural cuando la relación BT/ODA es menor a la unidad. Sin embargo, tendencias drásticamente contrarias también se observan cuando la cantidad de ODA es inferior a la de arcilla, como en el caso de las muestras B1-ODA0,75 y B5-ODA0,75 llegando a deteriorarse la capacidad adsorbente de la arcilla hasta en un 39%

Las variaciones propuestas al tamaño de grano no parecen ser un factor que influencie en forma significativa el proceso de adsorción por cuanto se obtienen valores similares para las muestras con tamaño de grano diferente pero con semejanza en el tratamiento químico.

Aunque las siete arcillas tienen diferentes grados de adsorción, el mecanismo de interacción escencial es el mismo y, sigue una cinética de segundo orden. Las muestras B1-ODA1 y B1-ODA1,5 fueron las primeras en alcanzar el equilibrio a 3h y sin embargo esta velocidad es significativamente lenta si se compara con lo reportado en la literatura para adsorción de metales pesados con montmorillonitas.

El ajuste de las isotermas llevó a buenos resultados principalmente con los modelos extendidos de Langmuir *L1 y L2*, indicando que las interacciones son predominantemente de naturaleza química.

5. RECOMENDACIONES

Se propone para futuros experimentos:

Hacer una combinación de intercalación y activación con NaCl sobre la misma arcilla y no por separado como se hizo en el presente estudio. Esto podría mejorar aún más la capacidad adsorbente de la montmorillonita natural.

Utilizar un método adicional al análisis DRX para comprobar la efectividad y el grado de la intercalación.

Explorar con un agente intercalante que no requiera, para ser efectivo, una cantidad tan grande del mismo.

BIBLIOGRAFIA

- [1] A. Öztürk et al. Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces B: Biointerfaces 34 (2004) 105–111
- [2] S. Akar, Y. Yetimoglu, T Gedikbey, Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination 244 (2009) 97–108
- [3] S. Tunali Akar et al, Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination 244 (2009) 97–108
- [4] R. Leyva Ramos et al., Adsorption of zinc(II) from an aqueous solution onto activated carbon, Hazard. Mater., 90 (2002)27–38.
- [5] WHO, Copper in Drinking-water: Background Document for Development of WHO Guidelines for Drinking-water Quality, World Health Organization (WHO/SDE/WSH/03.04/88), Geneva, 2004.
- [6] USEPA, Lead and Copper Monitoring and Reporting Guidance for Public Water Systems, EPA-816-R-02-009, Ground Water and Drinking water Division, Water Programs, US Environmental Protection Agency, Washington DC, 2002
- [7] K. Selvaraj et al., Removal of hexavalent chromium using distillery sludge, Bioresource Technology 89 (2003) 207–211

- [8] K.G. Bhattacharyya, S.S Gupta.Kaolinite and motmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applies Clay Science 41 (2008) 1-9
- [9] STARÝ, J., et al. Mineral commodity summaries of the Czech Republic : (state to 2007). Praha : Ministerstvo životního prostředí ČR, 2008. 422 p.
- [10] A. Proctor and H.E. Synder, Adsorption of lutein from soybean oil on silicic acid II kinetics, JAOCS 65 (5) (1988), pp. 761–763.
- [11] C.K. Lee, K.S. Low and P.Y. Gan, Removal of some organic dyes by acidtreated spent bleaching earth, J. Chem. Technol. Biotechnol. 69 (1998), pp. 93–99.
- [12] R. Kamga, G.J. Kayem and P.G. Rouxhet, Adsorption of gossypol from cottonseed on oxides, J. Colloid Interface Sci. 232 (2000), pp. 198–206.
- S.-H. Lin, R.-S. Juang, Heavy metal removal from water by sorption using surfactant-modified montmorillonite, J. Hazard. Mater. B 92 (2002) 315–326
- [14] H. van Olphen. An Introduction to Clay Colloid Chemistry (Second Edition ed.), Wiley-Interscience, New York (1977)
- [15] KUŽVART, M. Ložiska nerudních surovin. 1st ed. Praha : Academia, 1984.439 p.
- [16] Langmuir, I. (1918) J. Am. Chem. Soc. 40,1361-1403.
- [17] Freundlich, H. (1907) Z. Phys. Chem. 57, 385-470.

- [18] BERGAYA, F. & THENG, B.K.G. & LAGALY, G. Handbook of clay science.1st ed. Oxford : Elsevier, 2006. 1224 p. ISBN 0-08-044183-1.
- [19] H. Aydin et al. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, Journal of environmental management 87 (2008) 37-45
- [20] K. G. Bhattacharyya, S. S Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution, Separation and Purification Technology,50 (2006) 388-397
- [21] Ucun et al, 2003. Biosorptioin of lead(II) from aqueous solution by cone biomass of *Pinus Sylvestris*. DEsalination 154, 233-238
- [22] O" zer Go"k et. al, Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxy quinoline immobilized bentonite. Colloids and Surfaces A: Physicochem Eng. Aspects 317 (2008) 174–185
- [23] Alvarez-Ayus E, García-Sanchez A. Clays Clay Miner 51 (2003) 475

ANEXOS

ANEXO A. Octadecilamina

Nombre Químico: Octadecilamina

Otros nombres: 1-Octadecanamina, ODA, Estearilamina, N-Octadecilamina, Alamina 7.

Composición: C18H39N

Propiedades: Opaca, de color hueso con olor amoniacal, insoluble en agua pero soluble en alcohol, eter, benceno; muy soluble en cloroformo; miscible en acetone; punto de ebullición 346.8 °C a 760 mmHg; punto de fusión 52 °C ; peso molecular 269.51; gravedad específica 0.8618 a 20 °C/4°C

Cómo se produce:

ODA es producida por la hidrogenación catalítica de nitrilo estearil, que en si mismo es el producto de ácido esteárico y nitruro. El ácido estearico es un ácido graso de cadena saturada de 18 carbonos encontrados en el sebo, cáscara de coco, soya, nuez de palmera y palma. Los niveles mas altos- por encima del 19%- son encontrados en el sebo. El nitruro es producido pasando amonio por un metal caliente.

Usos específicos: Aditivo usado para prevenir la corrosión de calderas y sus líneas de distribución; usada como agente de liberación en la manufactura de cajas de baterías; intermedio químico para el octadecil isocianato; intermedio químico para otros agentes activos en superficie; agente de flotación; agente en varios aspectos de la industria química

Acción: Forma un filme molecular fino en el interior de las líneas de vapor. Previene la corrosión evitando que el ácido carbónico formado de dióxido de carbón capturado en el vapor haga contacto con las líneas de vapor. ODA tiene además propiedades surfactante. **ANEXO B.** Método del complejo de Cobre

50mL de una solución de CuCl2 1M fueron mezclados con 120 mL de solución de etilendiamina para permitir la formación del complejo $[Cu(en)_2]^{2+}$. El poco exceso de amina asegura la formación completa del complejo. La solución es diluída en agua hasta 1L para obtener una solución 0,05M del complejo. 0,5 g de muestra de arcilla secfue mezclada con 5mL de la solución del complejo en un Erlenmeyer, diluída con agua destilada a 25mL y la mezcla fué agitada por 30 min en un baño de agua termostático y posteriormente centrifugada. La concentración del complejo remanente en el sobrenadante es determinada por el método yodométrico. Para esto, 5 mL del sobrenadante fueron mezclados con 5mL de HCl 1M para destuír el complejo [Cu(en)2]2+. Y sal de KI fue agregada a 0,5g/mL de solución. La mezcla fue titulada con Na2S2O3 0,02M con almidón como indicador y CIC fué calculada de la forma:

 $CEC \ \left(\frac{meg}{100g}\right) = \frac{MSV(x-y)}{1000m}$

Donde, M es la masa molar del complejo, S la concentración de la solución de yodo, V el volumen (mL) del complejo tomado por titulación yodométrica, m la masa del adsorbente tomada (g), x el volumen de yodo requerido para la titulación sin adsorbente y y el volumen (mL) de yodo requerido para la titulación con el adsorbente.

ANEXO C. Modelos Extendidos de Langmuir y Freundlich

Langmuir EXT1

Función:

y =
$$\frac{abr^{br}}{1+br^{br}}$$

Descripción: Modelo Extendido de Langmuir Curva de Muestra

Parámetros

Número: 3 Nombres: a, b, c Significados: a = coeficiente, b = coeficiente, c = coeficiente Límites inferiores: ninguno Límites superiores: ninguno

Script de Acceso:

langmuirext1(x,a,b,c)

Archivo de la Función

FITFUNC\LANGEXT1.FDF

Langmuir EXT2

Función:

$$y = \frac{1}{a + b z^{a-1}}$$

Curva de Muestra

Parámetros

Número: 3 Nombres: a, b, c Significados: a = coeficiente, b = coeficiente, c = coeficiente Límites inferiores: ninguno Límites superiores: ninguno *Script de Acceso*

langmuirext2(x,a,b,c)

Archivo de la Función

FITFUNC\LANGEXT2.FDF

FreundlichEXT

Función

y = a⁴ *Descripción*: Modelo extendido de Freundlich

Curva de Muestra

Parámetros

Número: 3 Nombres: a, b, c Significados: a = coeficiente, b = coeficiente, c = potencia Límites inferiores: ninguno Límites superiores: ninguno

Script de Acceso

freundlichext(x,a,b,c)

Archivo de la Función

FITFUNC\FRENDEXT.FDF

ANEXO D. Datos para el modelado de las isotermas de adsorción.

Para todas las tablas a continuación:

- C₀ Concentración inicial
- C_F Concentración final
- q adsorción
- m masa del adsorbente
- pH pH de la solución
- T Temperatura de la solución

Etique	ta	m	pH₀	pH _F	C ₀	C _F	T ₀	Τ _F	q
		g	-	-	mg Cu ²⁺ /I	mg Cu ²⁺ /I	°C	°C	mg Cu ²⁺ /g
B1-Na	1a	1,000	4,82	7,62	300	0,232	25	25	14,16
B1-Na	1b	1,000	4,82	7,51	300	0,23	25	25	14,16
B1-Na	2a	1,000	4,71	6,66	600	0,926	25	25	30,02
B1-Na	2b	1,000	4,72	6,28	600	0,524	25	25	30,01
B1-Na	За	1,000	4,52	5,31	900	110,82	25	25	41,92
B1-Na	Зb	1,000	4,52	5,27	900	110,42	25	25	41,38
B1-Na	4a	1,000	4,32	5,11	1200	152,4	25	25	52,38
B1-Na	4b	1,000	4,32	5,11	1200	153,1	25	25	52,35
B1-Na	5a	1,000	4,12	5,11	1500	382,4	25	25	55,88
B1-Na	5b	1,000	4,10	5,11	1500	381,9	25	25	55,91

Etiqueta	a	m	pH₀	pH _F	Co	C _F	T ₀	$\mathbf{T}_{\mathbf{F}}$	q
-		g	-	-	mg Cu ²⁺ /I	mg Cu ²⁺ /I	°C	°C	mg Cu ²⁺ /g
B1-ODA1	1a	1,000	4,82	8,09	300	0,012	25	25	14,17
B1-ODA1	1b	1,001	4,82	7,88	300	0,016	25	25	14,16
B1-ODA1	2a	1,000	4,71	7,36	600	0,083	25	25	30,06
B1-ODA1	2b	1,000	4,72	7,37	600	0,111	25	25	30,03
B1-ODA1	За	1,000	4,52	7,29	900	0,152	25	25	47,46
B1-ODA1	Зb	1,000	4,52	7,28	900	0,156	25	25	46,89
B1-ODA1	4a	1,001	4,32	7,18	1200	5,2	25	25	59,68
B1-ODA1	4b	1,000	4,32	7,18	1200	5,1	25	25	59,75
B1-ODA1	5a	1,001	4,12	7,12	1500	211,1	25	25	64,38
B1-ODA1	5b	1,000	4,10	7,12	1500	210,9	25	25	64,46

Etiqueta		m	pH₀	рН _F	C ₀	CF	٦	Го	T _F	q
. ·		g	-	· -	mg Cu ²¹	/I mg Cu²⁺	// °	С	°C	mg Cu ²⁺ /g
B1-0DA0.75	1a	1,000	4,82	5,06	300	197,7	2	25	25	4,29
B1-ODA0.75	1b	1,000	4,82	5,29	300	193,9	2	25	25	4,48
B1-ODA0.75	2a	1,000	4,71	4,88	600	326,2	2	25	25	13,76
B1-ODA0.75	2b	1,000	4,72	4,90	600	329,3	2	25	25	13,58
B1-ODA0.75	За	1,000	4,52	4,92	900	424,2	2	25	25	26,26
B1-0DA0.75	Зb	1,000	4,52	4,90	900	423,8	2	25	25	25,71
B1-0DA0.75	4a	1,000	4,32	4,70	1200	552,1	2	25	25	32,40
B1-0DA0.75	4b	1,000	4,32	4,70	1200	552,4	2	25	25	32,38
B1-0DA0.75	5a	1,000	4,12	4,65	1500	725,4	2	25	25	38,73
B1-0DA0.75	5b	1,001	4,10	4,65	1500	724,4	2	25	25	38,74
Etiqueta	m	pH₀	pH _F		C ₀	C _F	T ₀	TF	-	q
-	g	-	-	mg	g Cu ²⁺ /I	mg Cu ²⁺ /I	°C	°C	r (mg Cu ²⁺ /g
B5-D 1a	1,00	0 4,82	6,76	6	300	0,28	25	25	5	14,16
B5-D 1b	1,00	0 4,82	6,73	3	300	0,272	25	25	5	14,16
B5-D 2a	1,00	1 4,71	5,88	3	600	53,28	25	25	5	27,38
B5-D 2b	1,00	0 4,72	5,84	ŀ	600	52,52	25	25	5	27,41
B5-D 3a	1,00	0 4,52	5,42	2	900	177,74	25	25	5	38,58
B5-D 3b	1,00	0 4,52	5,43	3	900	172,16	25	25	5	38,29
B5-D 4a	1,00	0 4,32	5,23	3.	1200	224,5	25	25	5	48,78
B5-D 4b	1,00	1 4,32	5,21		1200	223,9	25	25	5	48,76
B5-D 5a	1,00	0 4,12	5,17	, ,	1500	345,2	25	25	5	57,74
B5-D 5b	1,00	0 4,10	5,18	, ,	1500	345,2	25	25	5	57,74
Etiqueta	l	m	pH₀	$\textbf{pH}_{\textbf{F}}$	C ₀	CF	Т	o	TF	q
					mg	~ 2+		~	~~	
-		g	-	-	Cu ⁺ '/l	mg Cu ²⁺	/ °	C	ъС	mg Cu ⁺ '/g
B5-0DA-1.5	1a	1,000	4,82	8,37	300	0,06	2	5	25	14,17
B5-0DA-1.5	1b	1,000	4,82	8,09	300	0,042	2	5 3	25	14,17
B5-0DA-1.5	2a	1,001	4,71	7,40	600	0,122	2	5	25	30,03

Etiqueta		m	рн₀	рнғ	C ₀	C _F	0	١F	q
					mg				
-		g	-	-	Cu ²⁺ /I	mg Cu ²⁺ /I	°C	°C	mg Cu ²⁺ /g
B5-0DA-1.5	1a	1,000	4,82	8,37	300	0,06	25	25	14,17
B5-0DA-1.5	1b	1,000	4,82	8,09	300	0,042	25	25	14,17
B5-0DA-1.5	2a	1,001	4,71	7,40	600	0,122	25	25	30,03
B5-0DA-1.5	2b	1,001	4,72	7,32	600	0,121	25	25	30,00
B5-0DA-1.5	За	1,001	4,52	7,03	900	0,21	25	25	47,41
B5-0DA-1.5	Зb	1,001	4,52	7,02	900	0,22	25	25	46,84
B5-0DA-1.5	4a	1,001	4,32	6,95	1200	3,21	25	25	59,78
B5-0DA-1.5	4b	1,001	4,32	6,94	1200	3,24	25	25	59,78
B5-0DA-1.5	5a	1,001	4,12	6,84	1500	112,1	25	25	69,33
B5-0DA-1.5	5b	1,000	4,10	6,88	1500	111,9	25	25	69,41

Etiqueta		m	pH₀	pH _F	C ₀	CF	T ₀	$\mathbf{T}_{\mathbf{F}}$	q
-		g	-	-	mg Cu ²⁺ /I	mg Cu ²⁺ /I	°C	°C	mg Cu ²⁺ /g
B5-0DA0.75	1a	1,000	4,82	5,00	300	209,66	25	25	3,69
B5-ODA0.75	1b	1,001	4,82	4,97	300	208,38	25	25	3,75
B5-0DA0.75	2a	1,000	4,71	4,84	600	370,22	25	25	11,56
B5-ODA0.75	2b	1,001	4,72	4,83	600	373,48	25	25	11,35
B5-ODA0.75	За	1,000	4,52	4,83	900	444,2	25	25	25,26
B5-ODA0.75	Зb	1,000	4,52	4,98	900	435	25	25	25,15
B5-0DA0.75	4a	1,000	4,32	4,98	1200	632,1	25	25	28,40
B5-0DA0.75	4b	1,001	4,32	4,97	1200	631,9	25	25	28,38
B5-0DA0.75	5a	1,000	4,12	4,96	1500	811,1	25	25	34,45
B5-0DA0.75	5b	1,000	4,10	4,96	1500	812,1	25	25	34,40

ANEXO E. Datos de la Cinética de Adsorción

Para todas las tablas siguientes:

- C_s Concentración en solución (mg Cu²⁺/L)
- C Contenido del Metal (%)
- q Adsorción (mg Cu²⁺/g)
- t tiempo (h)
- m Masa del adsorbente
- T Temperatura de la solución (°C)

	t	m	Cs	С	q	Т
			mg			
Etiqueta	h	g	Cu ²⁺ /I	%	mg Cu ²⁺ /g	°C
B1-D	0	1,000	1500,0	100,0	0	25
B1-D	1	1,000	1325,0	88,3	8,75	25
B1-D	3	1,000	1211,0	80,7	14,45	25
B1-D	5	1,000	925,0	61,7	28,75	25
B1-D	7	1,000	824,0	54,9	33,8	25
B1-D	9	1,000	524,0	34,9	48,8	25
B1-D	12	1,000	374,2	24,9	56,29	25
B1-D	24	1,000	374,2	24,9	56,29	25
	t	m	Co	С	q	Т
			mg			
Etiqueta	h	g	Cu ²⁺ /I	%	mg Cu ²⁺ /g	°C
B1-Na	0	1,000	1500,0	100,0	0	25
B1-Na	1	1,000	954,0	63,6	27,3	25
B1-Na	3	1,000	678,0	45,2	41,1	25
B1-Na	5	1,000	381,9	25,5	55,905	25
B1-Na	7	1,000	381,8	25,5	55,91	25
B1-Na	9	1,000	381,9	25,5	55,905	25
B1-Na	12	1,000	381,7	25,4	55,915	25
B1-Na	24	1,000	381,9	25,5	55,905	25
	t	m	Co	С	q	Т
			mg		2.	
Etiqueta	h	g	Cu²⁺/l	%	mg Cu ^{∠⁺} /g	°C
B1-ODA1	0	1,000	1500,0	100,0	0	25
B1-ODA1	1	1,000	452,0	30,1	52,4	25
B1-ODA1	3	1,000	210,9	14,1	64,455	25
B1-ODA1	5	1,000	210,4	14,0	64,48	25
B1-ODA1	7	1,000	210,9	14,1	64,455	25
B1-ODA1	9	1,000	210,3	14,0	64,485	25
B1-ODA1	12	1,000	210,9	14,1	64,455	25
B1-ODA1	24	1,000	210,9	14,1	64,455	25

	t	m	C ₀	С	q	т
Etiqueta	h	q	mg Cu ^{2⁺} /l	%	mq Cu ²⁺ /q	°C
B1-0DA0 75	0	1 000	1500.0	100.0	0	25
B1-0D40.75	1	1,000	952.0	63.5	27.4	25
B1-0DA0 75	3	1,000	724 4	48.3	38 78	25
B1-0D40.75	5	1,000	724,4	48.3	38 785	25
B1-0DA0 75	7	1,000	724.4	48.3	38 78	25
B1-0DA0 75	9	1,000	724.6	48.3	38 77	25
B1-0DA0 75	12	1,000	724 4	48.3	38 78	25
B1-0DA0.75	24	1,000	724.4	48.3	38.78	25
		,	,	- , -	, -	-
	t	m	Co	С	q	Т
Etiqueta	h	a	mg Cu ²⁺ /l	0/	ma Cu^{2+}/a	ംറ
	0	<u>y</u>	00 /i	/0		05
B5-D	0	1,000	1500,0	100,0	0	25
B5-D	1	1,000	1225,0	81,7	13,75	25
B5-D	3	1,000	1111,0	74,1	19,45	25
B5-D	5	1,000	725,0	48,3	38,75	25
B5-D	1	1,000	624,0	41,6	43,8	25
B5-D	9	1,000	345,2	23,0	57,74	25
B5-D	12	1,000	345,2	23,0	57,74	25
B5-D	24	1,000	345,2	23,0	57,74	25
	t	m	C ₀	С	q	Т
Etiqueta	t h	m g	C ₀ mg Cu ²⁺ /I	С %	q mg Cu ²⁺ /g	T °C
Etiqueta B5-0DA1.5	t <u>h</u> 0	m <u>g</u> 1,000	C₀ mg Cu ²⁺ /I 1500,0	C % 100,0	q mg Cu ²⁺ /g 0	т °С 25
Etiqueta B5-0DA1.5 B5-0DA1.5	t h 0 1	m <u>g</u> 1,000 1,000	C ₀ mg Cu ²⁺ /I 1500,0 354,0	C % 100,0 23,6	q mg Cu ²⁺ /g 0 57,3	т °С 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t h 0 1 3	m 1,000 1,000 1,000	C₀ mg Cu ²⁺ /I 1500,0 354,0 111,9	C % 100,0 23,6 7,5	q mg Cu ²⁺ /g 0 57,3 69,405	T ℃ 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t 0 1 3 5	m 1,000 1,000 1,000 1,000	C ₀ mg Cu ²⁺ /I 1500,0 354,0 111,9 111,9	C % 100,0 23,6 7,5 7,5	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405	T ℃ 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t 0 1 3 5 7	m 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9	C % 100,0 23,6 7,5 7,5 7,5 7,5	q 0 57,3 69,405 69,405 69,405	T [°] C 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t 0 1 3 5 7 9	m 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7	C % 100,0 23,6 7,5 7,5 7,5 7,4	q 0 57,3 69,405 69,405 69,405 69,405 69,415	T 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i>	t 0 1 3 5 7 9 12	m 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9	C 100,0 23,6 7,5 7,5 7,5 7,4 7,5	q 0 57,3 69,405 69,405 69,405 69,405 69,415 69,405	T 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t 0 1 3 5 7 9 12 24	m 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4	C 100,0 23,6 7,5 7,5 7,5 7,5 7,4 7,5 7,4	q 0 57,3 69,405 69,405 69,405 69,405 69,405 69,43	T 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t 0 1 3 5 7 9 12 24	m 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,7 111,9 111,4	C 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4	q 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43	T 25 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i>	t h 0 1 3 5 7 9 12 24 t	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀	C 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 C	q 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43 q	T 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t h 0 1 3 5 7 9 12 24 t h	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ / <i>I</i> 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ / <i>I</i>	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,4 C %	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43 q <u>mg Cu²⁺/g</u>	T 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5	t h 0 1 3 5 7 9 12 24 t h 0	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 m g 1,000	C₀ mg Cu ²⁺ // 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ // 1500,0	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 0 0	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43 q <u>mg Cu²⁺/g</u> 0	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1</i>	t h 0 1 3 5 7 9 12 24 t h 0 1	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ /l 1500,0 985,0	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 0 0 0 0 0,0 65,7	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43 q <u>mg Cu²⁺/g</u> 0 25,75	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1</i>	t h 0 1 3 5 7 9 12 24 t h 0 1 3	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /I 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ /I 1500,0 985,0 812,1	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 0 0 0 5 7,4	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405 69,405 69,405 69,405 69,43 q <u>mg Cu²⁺/g</u> 0 25,75 34,394	T 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1</i>	t h 0 1 3 5 7 9 12 24 t h 0 1 3 5	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ /l 1500,0 985,0 812,1 812,3	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 0 0 5,7 54,1 54,2	q <u>mg Cu²⁺/g</u> 0 57,3 69,405 69,405 69,405 69,405 69,405 69,43 q <u>mg Cu²⁺/g</u> 0 25,75 34,394 34,385	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-D1.5</i> <i>D1-</i>	t h 0 1 3 5 7 9 12 24 t h 0 1 3 5 7 9 12 24 7 7 9 12 24 7 7 9 12 24 7 7 9 12 24 7 7 9 12 24 7 7 9 12 24 7 7 9 12 24 7 7 9 7 7 9 12 24 7 7 9 7 7 9 12 24 7 7 7 9 7 7 9 12 24 7 7 7 9 7 7 9 12 24 7 7 7 9 7 7 9 12 24 7 7 7 9 7 7 9 12 24 7 7 7 7 9 7 7 7 9 12 24 7 7 7 7 7 7 7 7 7 7 7 7 7	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ / <i>I</i> 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ / <i>I</i> 1500,0 985,0 812,1 812,3 812,0	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 5,7 5,4 100,0 65,7 54,1 54,2 54,1	q mg Cu ²⁺ /g 0 57,3 69,405 69,405 69,405 69,405 69,43 q mg Cu ²⁺ /g 0 25,75 34,394 34,385 34,394	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 DA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75 ODA0.75	t h 0 1 3 5 7 9 12 24 t h 0 1 3 5 7 9 12 24 v 12 24 v 12 24 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 12 24 v 13 v 14 v 15 v 12 v 12 24 v 12 v 12 24 v 12 v 1	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ / <i>I</i> 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ / <i>I</i> 1500,0 985,0 812,1 812,3 812,0 812,1	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 5,7 5,4 100,0 65,7 54,1 54,2 54,1 54,1	q mg Cu ²⁺ /g 0 57,3 69,405 69,405 69,405 69,405 69,405 69,43 q mg Cu ²⁺ /g 0 25,75 34,394 34,385 34,394 34,394	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 B5-ODA1.5 ODA0.75	t h 0 1 3 5 7 9 12 24 t h 0 1 3 5 7 9 12 24 12 25 7 9 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 25 7 9 12 24 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 25 7 9 12 12 12 12 12 12 12 12 12 12	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ // 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ // 1500,0 985,0 812,1 812,3 812,0 812,1 812,5	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,5 7,4 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	q mg Cu ²⁺ /g 0 57,3 69,405 69,405 69,405 69,415 69,405 69,43 q <u>mg Cu²⁺/g</u> 0 25,75 34,394 34,385 34,394 34,375	T °C 25 25 25 25 25 25 25 25 25 25
Etiqueta <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>B5-ODA1.5</i> <i>DA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i> <i>ODA0.75</i>	t h 0 1 3 5 7 9 12 24 t h 0 1 3 5 7 9 12 24 24	m g 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	C₀ mg Cu ²⁺ /l 1500,0 354,0 111,9 111,9 111,9 111,7 111,9 111,4 C₀ mg Cu ²⁺ /l 1500,0 985,0 812,1 812,3 812,0 812,1 812,5 812,1	C % 100,0 23,6 7,5 7,5 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 7,5 7,4 5,7 5,1 5,7 5,4 100,0 65,7 54,1 54,2 54,1 54,2 54,1	q mg Cu ²⁺ /g 0 57,3 69,405 69,405 69,405 69,405 69,415 69,405 69,43 q mg Cu ²⁺ /g 0 25,75 34,394 34,385 34,394 34,375 34,394	T °C 25 25 25 25 25 25 25 25 25 25

ANEXO F. Resultados de los modelos L1, L2 y F y sus parámetros

Isotermas de Langmuir (Modelo L1) para adsorción de Cu²⁺ en muestras de montmorillonita natural y modificada

Parámetros de las Isotermas L1

Etiqueta	Parámetros de las Isotermas L1															
-		a			b			с		R³	R					
B1-D	Irreal															
B1-Na						Irreal		L1 c R ³ R 8528 ± 0,24568 0,91 0,96 46611 ± 0,58599 0,99 0,99 1504 ± 0,36549 0,79 0,89 75622 ± 0,47262 0,95 0,98 72492 ± 5,19903 0,90 0,95								
B1-ODA1	63,38287	±	4,02985	9,28985	±	6,98129	0,18528	±	0,24568	0,91	0,96					
B1-0DA0.75	43,25366	±	3,63224	1,01E-09	±	3,37E-09	-2,46611	±	0,58599	0,99	0,99					
B5	33272,9303	±	4,17E+07	3,03E-04	±	0,37986	0,71504	±	0,36549	0,79	0,89					
B5-0DA1.5	64,85925	±	3,47636	37,21853	±	38,62737	-0,75622	±	0,47262	0,95	0,98					
B5-0DA0.75	31,71997	±	2,95201	6,15E-26	±	1,91E-24	-8,72492	±	5,19903	0,90	0,95					

Isotermas de Langmuir (Modelo L2) para adsorción de Cu²⁺ en muestras de montmorillonita natural y modificada

Parámetros de las Isotermas L2

	Parámetros de las Isotermas L2										
Etiqueta											
-		1			C			R³	R		
B1-D	4,68971	±	1549,87839	-4,64919	±	1549,878	1,00084	±	0,27829	0,81	0,90
B1-Na	6,00722	±	2649,33547	-5,96584	±	2649,334	1,00067	±	0,29886	0,79	0,89
B1-ODA1	54,43437	±		-54,41016	±		1,00003	±		0,32	0,56
B1-0DA0.75	1,99581	±	208,63925	-1,69747	±	206,7498	1,02272	±	2,4244	0,68	0,82
B5	0,10954	±	0,08092	-0,04464	±	0,07188	1,12452	±	0,12704	0,98	0,99
B5-0DA1.5	36,32969	±	426911,074	-36,30549	±	426911,1	1,00006	±	0,71582	0,32	0,56
B5-0DA0.75	2,815	±	448,49467	-2,48425	±	446,0487	1,01719	±	2,78425	0,58	0,76

Isotermas de Freundlich (Modelo F) para adsorción de Cu²⁺ en muestras de montmorillonita natural y modificada

Parámetros de las isotermas F

Etiqueta	Parámetros de las isotermas F										
-		i	a	b					с	R³	R
B1-D						Irreal					
B1-Na	Irreal										
B1-ODA1	56,08	±	4,28343	0,10	±	0,02889	0,27	±	0,10608	0,93	0,96
B1-ODA0.75	55,63	±	13,55368	-6213,59	±	17743,47	1,77	±	0,52415	0,98	0,99
B5	Irreal										
B5-0DA1.5	Irreal										
B5-0DA0.75	43,96	±	20,21604	-23251,22	±	185807,8	1,99	±	1,42077	0,88	0,94