Efecto de la capacidad de disipación de energía seleccionada en el desempeño sísmico por desplazamiento de edificaciones con sistema muros de carga en zonas de sismicidad intermedia.

Sandra Liliana Uribe Hernández

Trabajo de Grado para Optar al título de Magister en Ingeniería Estructural

Director José Miguel Benjumea Royero Ph.D. en Ingeniería Civil

Codirector Fredy Saúl Sotelo Monroy M.Sc. en Ingeniería Civil con énfasis en estructuras

> Universidad Industrial de Santander Facultad de Ingeniería Fisicomecánicas Escuela de Ingeniería Civil Maestría en Ingeniería Civil Bucaramanga 2021

Agradecimiento

A mi director José Miguel Benjumea Royero y codirector Fredy Saúl Sotelo, por su acompañamiento durante el desarrollo del proyecto.

A la empresa Asgard Ingeniería y construcción, por el apoyo y conocimiento técnico brindado.

Dedicatoria

A Dios Por permitirme iniciar y culminar satisfactoriamente esta etapa de formación.

A mi familia por su apoyo y confianza durante todo mi proceso académico

A Diego Armando Villarreal por acompañarme y compartir conmigo las experiencias vividas.

A mis amigos, compañeros de estudio y de trabajo por compartirme su conocimiento y permitirme crecer personal y profesionalmente.

Tabla De Contenido

Pág.
Introducción
1. Objetivos
1.1. Objetivo general
1.2. Objetivos específicos
2. Planteamiento del problema
3. Marco teórico
3.1. Análisis Estático Lineal
3.1.1. Capacidad de Disipación de energía
3.1.2. Coeficiente de disipación de energía R
3.2. Análisis estático no lineal
3.2.1. Pushover
3.2.2. Curva de Capacidad:
3.2.3. Desplazamiento Objetivo
3.2.4. Modelamiento de muros de Cortante
4. Metodología
5. Etapa 1: Análisis Elástico Lineal
5.1. Normativas de referencia
5.2. Descripción de la estructura bajo análisis
5.2.1. Descripción general
5.2.2. Descripción del sistema estructural
5.2.3. Parámetros geotécnicos
5.2.4. Parámetros sísmicos

EVALUACIÓN DEL FACTOR DE CAPACIDAD DE DISIPACIÓN DE ENERGÍA 5
5.2.5. Materiales
5.2.6. Parámetros y modelamiento análisis y diseño elástico lineal
5.3. Evaluación de cargas40
5.3.1. Evaluación de carga peso propio
5.3.2. Evaluación de carga sobreimpuesta41
5.3.3. Evaluación de carga viva
5.4. Consideración de la resistencia contra el fuego
5.5. Fuerzas sísmicas de diseño44
5.5.1. Espectro de diseño
5.5.2. Análisis modal espectral
5.5.3. Cortante sísmico en la base
5.5.4. Cortante sísmico en la base
5.5.5. Verificación de los efectos P-delta
5.5.6. Clasificación del diafragma51
5.6. Análisis de irregularidades

5.7. V	Verificación de derivas	55
6. I	Etapa 2: Diseño elástico lineal	58
6.1. (Coeficiente de disipación de energía Ro	58
6.2. 0	Combinaciones de diseño	59
6.3. (Combinaciones de servicio	59
6.2. I	Diseño de losa de entrepiso	64
6.2.1	Materiales	64
6.2.2	Recubrimiento	64
6.2.3	Combinaciones de diseño	64

6.2.4.	Verificación de deflexiones y definición de espesores	65
6.2.5.	Diseño a flexión	66
6.2.6.	Diseño a cortante	67
6.2.1.	Diseño de los elementos colectores	68
6.2.2.	Chequeo de deflexiones	69
6.3. Dis	seño de muros estructurales	72
6.3.1.	Geometría	72
6.3.2.	Diseño a cortante	75
6.3.3.	Diseño a flexión	78
6.3.4.	Elementos de borde	81
6.4. Dis	seño de cimentación	86
6.4.1.	Materiales	86
6.4.2.	Recubrimiento	86
6.4.3.	Combinaciones	86
6.4.4.	Rigidez estática de la cimentación	87
6.4.5.	Verificación presiones sobre el suelo	89
6.4.6.	Diseño a flexión	90
6.4.7.	Diseño a cortante.	92
6.4.8.	Diseño a flexión vigas de cimentación.	92
6.4.9.	Diseño a cortante.	93
7. Eta	pa 3: Análisis estático no lineal	95
7.1. No	rmativas de referencia	95
7.1. De	scripción de las estructuras bajo análisis	95
7.1.1.	Descripción general	95

7.1.2.	Tipo de edificio	96
7.1.3.	Objetivos de desempeño	96
7.2. Ma	ateriales	97
7.2.1.	Concreto:	97
7.2.2.	Acero de refuerzo:	99
7.3. Mc	odelamiento análisis no lineal	100
7.4. Pat	trón de carga análisis no lineal	102
7.4.1.	Componente gravitacional en el análisis no lineal	102
7.4.2.	Patrones de Carga Lateral y nodo de control	103
7.5. Par	rámetros análisis no lineal	105
7.5.1.	Interacción suelo-estructura	105
7.5.1.	Clasificación de los elementos estructurales de la edificación	105
7.5.2.	Efectos sísmicos multidireccionales	106
7.6. Res	sultados obtenidos del análisis no lineal	106
7.6.1.	Influencia de la flexibilidad de la cimentación y efectos P-A	106
7.6.2.	Participación de los modos superiores	110
7.6.3.	Clasificación del diafragma	111
7.6.1.	Verificaciones de estabilidad estructural por efectos P-delta	119
7.6.2.	Verificaciones en la cimentación	119
7.6.1.	Relación de resistencia	125
8. Eta	apa 4: Análisis de resultados	128
8.1.1.	Puntos de desempeño (δd) y desplazamiento último (δu)	128
8.1.1.	Comparación entre Puntos de desempeño (od) y desplazamiento elástico line	al 130
8.1.2.	Identificación patrón de rotulas plásticas	132

8.1.3.	Estado de los muros en el análisis estático no lineal (comportamiento de la sección
transver	sal)140
8.1.4.	Análisis secciones (diagrama momento curvatura)155
8.1.5.	Estado de los muros en el análisis estático no lineal (comportamiento de los
material	es)
9. Cor	clusiones
10. Rec	omendaciones167
Referen	cias Bibliográficas168
Apéndic	es170

Lista de figuras

	Pág.
Figura 1. Planta estructural de la edificación	
Figura 2. Alzado de la edificación.	
Figura 3. Vista 3D del modelo computacional de la edificación	
Figura 4. Planta de entrepiso tipo	
Figura 5. Modelo computacional para diseño de la placa maciza	
Figura 6. Espectro de diseño.	
Figura 7. Formas modales del primer modo de vibración	
Figura 8. Formas modales del segundo modo de vibración	
Figura 9. Formas modal del tercer modo de vibración	47
Figura 10. Puntos de referencia clasificación del diafragma	
Figura 11. Deriva de entrepiso para análisis con sismo en dirección X	
Figura 12. Deriva de entrepiso para análisis con sismo en dirección Y	
Figura 13. Identificación de espesores de placa de la edificación bajo estudio	65
Figura 14. Asignación de cargas sísmicas a la estructura bajo estudio para	diseño de
elementos colectores (a) Dirección X (b) Dirección Y	69
Figura 15. Distribución de rigidez en el área de cimentación	
Figura 16. Distribución de presiones en la losa de cimentación	
Figura 17. Curva esfuerzo-deformación concreto confinado muro V.1.1.	
Figura 18. Curva esfuerzo-deformación Acero de refuerzo	
Figura 19. Definición de cargas gravitacionales.	
Figura 20. Definición carga lateral dirección x	
Figura 21. Definición carga lateral dirección y	

Figura 22. (a) Curva de capacidad, (b) curva bilineal, estructura DMO, dirección X108
Figura 23. (a) Curva de capacidad, (b) Curva bilineal, estructura DMO, dirección Y 109
Figura 24. (a) Curva de capacidad, (b) Curva bilineal, estructura DES dirección X 109
Figura 25. (a) Curva de capacidad, (b) Curva bilineal, estructura DES-dirección Y 110
Figura 26. Puntos de referencia clasificación del diafragma114
Figura 27. Diagrama de esfuerzo Cimentación DMO, dirección X
Figura 28. Diagrama de esfuerzo Cimentación DMO, dirección Y121
Figura 29. Diagrama de deformaciones Cimentación DMO, dirección X121
Figura 30. Diagrama de deformaciones Cimentación DMO, dirección Y 122
Figura 31. Diagrama de esfuerzo Cimentación DES, dirección X
Figura 32. Diagrama de esfuerzo Cimentación DES, dirección Y
Figura 33. Diagrama de deformaciones Cimentación DES, dirección X124
Figura 34. Diagrama de deformaciones Cimentación DES, dirección Y
Figura 35. Espectro ASCE 7-10128
Figura 36. Comparación curvas de capacidad dirección X, estructuras DMO y DES 129
Figura 37. Comparación curvas de capacidad dirección Y, estructuras DMO y DES 130
Figura 38. Relación entre respuesta estática lineal y respuesta estática no lineal dirección
<i>X</i> 131
Figura 39. Relación entre respuesta estática lineal y respuesta estática no lineal dirección
<i>Y</i> 132
Figura 40. Planta identificación de muros estructurales
Figura 41. <i>Estados límites de daño</i> 134
Figura 42. Formulación de rotulas plásticas sentido X, estructura DMO137
Figura 43. Formulación de rotulas plásticas sentido X, estructura DES138

Figura 44. Formulación de rotulas plásticas sentido Y, estructura DMO	
Figura 45. Formulación de rotulas plásticas sentido Y, estructura DES	
Figura 46. Progresión de la demanda momento-rotación, muro H.1.	
Figura 47. Relación entre rotación y paso de simulación muro H.1 DMO	
Figura 48. Relación entre rotación y paso de simulación muro H.1 DES.	
Figura 49. Progresión de la demanda momento-rotación muros H.3 y H.6	
Figura 50. Relación entre rotación y paso de simulación muros H.3.	
Figura 51. Relación entre rotación y paso de simulación muro H.6	
Figura 52. Progresión demanda momento-rotación Primer piso muros V.1 y V.7.	
Figura 53. Relación entre rotación y paso de simulación muro V.1.	
Figura 54. Relación entre rotación y paso de simulación muro V.7	
Figura 55. Progresión de la demanda momento-rotación muros V.3 y V.4.	
Figura 56. Relación entre rotación y paso de simulación muro V.3.	
Figura 57. Relación entre rotación y paso de simulación muro V.4	
Figura 58. Progresión de la demanda momento-rotación. Primer piso muros V.5	y V.6.153
Figura 59. Relación entre rotación y paso de simulación muro V.5	
Figura 60. Relación entre rotación y paso de simulación muro V.6	
Figura 61. Diagrama momento curvatura muro H.1, primer piso	
Figura 62. Diagrama momento curvatura muro H.3, primer piso	
Figura 63. Diagrama momento curvatura muro V.3, primer piso	
Figura 64. Relaciones de aspecto, Ap, de los muros estructurales	
Figura 65. Diagrama esfuerzo-deformación fibra extrema a tensión H.1 y V.6	
Figura 66. Diagrama esfuerzo-deformación extrema a compresión, primer piso n	nuros H.1
y V.6	

Figura 67. Diagrama esfuerzo-deformación fibra extrema a tensión muros H.3 y V.1	161
Figura 68. Diagrama esfuerzo-deformación fibra extrema a compresión, primer piso	o muro
H.3 y V.1.	162
Figura 69. Diagrama esfuerzo-deformación fibra extrema a tensión, primer piso mu	ros V.3
y V.4	163
Figura 70. Diagrama esfuerzo-deformación fibra extrema a compresión, primer piso	9 V.3 y
V.4	164
Figura 71. Identificación de nodos usados en chequeo de irregularidades	172
Figura 72. Datos geométricos de la estructura irregularidad 2P	177
Figura 73. Irregularidad por discontinuidad en el diafragma	178
Figura 74. Datos geométricos de la estructura irregularidad 3P	178
Figura 75. Momentos de diseño placa de entrepiso (alrededor del eje X)	185
Figura 76. Momentos de diseño placa de entrepiso (alrededor del eje Y)	185
Figura 77. Cortantes de diseño placa de entrepiso.	188
Figura 78. Cortantes de diseño placa de entrepiso.	189
Figura 79. Distribución de rigidez en el área de cimentación	204
Figura 80. Diagrama de cortantes V13 estructura DMO	205
Figura 81. Diagrama de cortantes V23 estructura DMO	206
Figura 82. Diagrama de cortantes V13 estructura DES.	206
Figura 83. Diagrama de cortantes V23 estructura DES	207
Figura 84. Diagrama de momentos M11 estructura DES.	209
Figura 85. Diagrama de momentos M22 estructura DES.	209
Figura 86. Diagrama de momentos M11 estructura DMO	210
Figura 87. Diagrama de momentos M22 estructura DMO.	210

Figura 88. Diagrama de cortante vigas estructura DES	
Figura 89. Diagrama de cortante vigas estructura DMO	
Figura 90. Diagrama de Momentos de diseño DMO	214
Figura 91. Diagrama de Momentos de diseño DES	214
Figura 92. Identificación muro diseñado	
Figura 93. Distribución de refuerzo muro V.1.1 capacidad DMO	236
Figura 94. Diagrama de interacción configuración de refuerzo muro V.1.1 capaci	idad DMO.
	236
Figura 95. Distribución de refuerzo muro v.1.1 capacidad DES	
Figura 96. Diagrama de interacción configuración de refuerzo muro V.1.1 capad	cidad DES.
Figura 97. Curvas de Mander elemento confinado muro V.1.1.1 DMO y DES	

Lista de tablas

Tabla 1. Restricciones al uso de sistemas y materiales estructurales. 28
Tabla 2. Coeficiente de disipación básico para sistema estructural de muros portantes 29
Tabla 3. Evaluación de cargas, entrepiso (e=0.125m). 41
Tabla 4. Evaluación de cargas, entrepiso (e=0.15 m).42
Tabla 5. Parámetros del espectro. 44
Tabla 6. Porcentajes de participación de los primeros 20 modos de vibración. 45
Tabla 7. Parámetros y cálculo del periodo aproximado Ta
Tabla 8. Cortante sísmico en la base ajustado por fuerza horizontal equivalente. 49
Tabla 9. Verificación de los efectos PDelta en dirección X. 50
Tabla 10. Verificación de los efectos PDelta en dirección Y.
Tabla 11. Referenciación de nodos usados en la clasificación del diafragma. 52
Tabla 12. Verificación rigidez del diafragma-análisis en dirección X. 53
Tabla 13. Verificación rigidez del diafragma-análisis en dirección Y
Tabla 14. Resultados del análisis de irregularidades en planta. 55
Tabla 15. Resultados del análisis de irregularidades en altura. 55
Tabla 16. Coeficiente de disipación de energía y de sobre resistencia
Tabla 17. Combinaciones de resistencia ultima, estructuras DMO. 60
Tabla 18. Combinaciones de resistencia ultima, estructuras DES.
Tabla 19. Combinaciones estado límite de servicio estructura DMO62
Tabla 20. Combinaciones estado límite de servicio estructura DES. 63
Tabla 21. Distribución y área de refuerzo suministrado a las placas de entrepiso. 66
Tabla 22. Momentos de diseño y momentos resistentes placas de entrepiso. 67

Tabla 23. Deflexiones inmediatas placa de entrepiso espesor 0.125m.	70
Tabla 24. Deflexiones inmediatas placa de entrepiso espesor 0.15m.	70
Tabla 25. Deflexión a largo plazo-losa de entrepiso, espesor 0.125m	71
Tabla 26. Deflexión a largo plazo- losa de entrepiso, espesor 0.15m.	71
Tabla 27. Relación de aspecto en el plano del muro y en la sección transver	sal horizontal.
	73
Tabla 28. Verificación dimensiones muros estructura DMO.	74
Tabla 29. Verificación dimensiones muros estructura DES	75
Tabla 30. Diseño a cortante de muros DMO	77
Tabla 31. Diseño a cortante de muros DES.	78
Tabla 32. Diseño a flexión muros DMO	
Tabla 33. Diseño a flexión muros DES	81
Tabla 34. Comparación de requisitos sísmicos para elementos de borde estru	ecturas DMO y
DES	
Tabla 35. Configuraciones de refuerzo elementos de borde comunes en estr	uctura DMO y
DES	85
Tabla 36. Rigidez elástica de cimentación corregida por empotramiento	
Tabla 37. Corrección de rigidez rotacional, cimentación flexible.	
Tabla 38. Rigidez de los resortes distribuidos en la losa de cimentación	
Tabla 39. Distribución y área de refuerzo suministrado a la placa de cimento	ıción91
Tabla 40. Momentos resistentes en losa de cimentación.	91
Tabla 41. Distribución y área de refuerzo suministrado a las vigas de cimenta	ıción93
Tabla 42 Parámetros para clasificación del nivel de sismicidad estructuras b	ajo estudio. 97
Tabla 43. Casos de estudio establecidos en el análisis estático no lineal.	

Tabla 44. Comparaciones realizadas de los resultados del análisis estático no lineal 107
Tabla 45. Influencia de los modos superiores. 111
Tabla 46. Referenciación de nodos usados en la clasificación del diafragma113
Tabla 47. Verificación rigidez del diafragma-análisis en dirección X
Tabla 48. Verificación rigidez del diafragma-análisis en dirección Y116
Tabla 49. Verificación rigidez del diafragma-análisis en dirección X
Tabla 50. Verificación rigidez del diafragma-análisis en dirección Y
Tabla 51. Parámetros para el cálculo de relaciones de resistencia, estructura DMO 126
Tabla 52. Parámetros para el cálculo de relaciones de resistencia, estructura DES 127
Tabla 53. Relaciones de resistencia direcciones X y Y, estructura DMO y DES 127
Tabla 54. Parámetros y criterios de aceptación para procedimiento no lineal, muros
estructurales controlados por flexión135
Tabla 55. Máximas rotaciones de muros para la asignación de niveles de desempeño, piso
<i>1-dirección X.</i>
Tabla 56. Máximas rotaciones de muros para la asignación de niveles de desempeño, piso
1-dirección Y
Tabla 57. Modos de vibración de la estructura. 170
Tabla 58. Derivas Esquina superior izquierda Vs esquina inferior izquierda dirección X173
Tabla 59. Esquina superior izquierda vs esquina superior derecha, dirección Y174
Tabla 60. Esquina superior derecha vs esquina inferior derecha, dirección X. 175
Tabla 61. Esquina inferior izquierda vs esquina inferior derecha, dirección Y
Tabla 62. Relación de derivas de entrepiso. 180
Tabla 63. Valores de deriva sismo dirección X. 182
Tabla 64. Valores de deriva sismo dirección Y. 183

Tabla 65.	Momento ultimo resistente, Placa apartamentos ($e=0.125$)	186
Tabla 66.	Momento ultimo resistente, Placa pasillos ($e=0.15$)	186
Tabla 67.	Cortante resistente, Placa apartamentos (e=0.125).	187
Tabla 68.	Cortante resistente, Placa apartamentos (e=0.15).	188
Tabla 69.	Parámetros diseño de elementos colectores DMO	190
Tabla 70.	Fuerza de diseño de los elementos colectores	191
Tabla 71.	Diseño de elementos colectores	192
Tabla 72.	Parámetros diseño de elementos colectores DES	193
Tabla 73.	Fuerza de diseño de los elementos colectores	194
Tabla 74.	Diseño de elementos colectores	195
Tabla 75.	Parámetros para Verificación de deflexiones, placa de entrepiso, espesor 0.	125m.
		197
Tabla 76.	Deflexiones inmediatas placa de entrepiso espesor 0.125m	198
Tabla 77.	Deflexión a largo plazo-losa de entrepiso, espesor 0.125m	198
Tabla 78.	Parámetros para Verificación de deflexiones, placa de entrepiso, espesor ().15m.
		199
Tabla 79.	Deflexiones inmediatas placa de entrepiso espesor 0.15m	200
Tabla 80.	Deflexión a largo plazo-losa de entrepiso, espesor 0.15m	200
Tabla 81.	Datos de entrada análisis de cimentación	202
Tabla 82.	Rigidez estática en la losa de cimentación	203
Tabla 83	. Rigidez asignada a la losa de cimentación simulando comportamiento fl	exible.
		204
Tabla 84.	Distribución y área de refuerzo suministrado a la placa de cimentación	208
Tabla 85.	Momentos resistentes en losa de cimentación	208

Tabla 86. Cortante resistente vigas de cimentación.	211
Tabla 87. Distribución y área de refuerzo suministrado a las vigas de cimentación	213
Tabla 88. Solicitaciones obtenidas para estructura DMO.	216
Tabla 89. Solicitaciones obtenidas para estructura DES.	217
Tabla 90. Propiedades geométricas muro tipo estructura DES y DMO.	217
Tabla 91. Parámetros muro tipo estructura DMO.	218
Tabla 92. Parámetros muro tipo estructura DES.	218
Tabla 93. Revisión dimensiones del muro tipo para capacidad de disipación DMO	219
Tabla 94. Revisión dimensiones del muro tipo para capacidad de disipación DES	220
Tabla 95. Resistencia a cortante acero y concreto muro con capacidad DMO	221
Tabla 96. Resistencia a cortante acero y concreto muro con capacidad DES.	222
Tabla 97. Cuantía de refuerzo transversal muro con capacidad DMO.	223
Tabla 98. Cuantía de refuerzo transversal muro con capacidad DES.	224
Tabla 99. Separación de refuerzo transversal muro con capacidad DMO	225
Tabla 100. Separación de refuerzo transversal muro con capacidad DES	226
Tabla 101. Cuantía refuerzo longitudinal muro con capacidad DMO.	227
Tabla 102. Cuantía refuerzo longitudinal muro con capacidad DES.	228
Tabla 103. Separación refuerzo longitudinal muro con capacidad DMO	229
Tabla 104. Separación refuerzo longitudinal muro con capacidad DES	230
Tabla 105. Verificación pertinencia elemento de borde capacidad DMO.	231
Tabla 106. Verificación pertinencia elemento de borde capacidad DES	232
Tabla 107. Longitud de elemento de borde (elemento confinado) capacidad DMO.	233
Tabla 108. Longitud de elemento de borde (elemento confinado) capacidad DES	234
Tabla 109. Configuración de refuerzo elemento confinado muro DMO.	234

Tabla 110. Configuración de refuerzo elemento confinado muro DES. 235
Tabla 111. Separación en altura de refuerzo elemento confinado muro DMO. 235
Tabla 112. Separación en altura de refuerzo elemento confinado muro DES. 235
Tabla 113. Parámetros curva de Mander elemento confinado muro V.1.1.1 DMO y DES.
Tabla 114. Distribución de pseudo fuerzas laterales en altura, estructura DMO. 241
Tabla 115. Distribución de pseudo fuerzas laterales en altura, estructura DES242
Tabla 116. Verificación de los efectos P- Δ dirección X, estructura DMO244
Tabla 117. Verificación de los efectos P- Δ dirección Y, estructura DMO245
Tabla 118. Verificación de los efectos P- Δ dirección X, estructura DES
Tabla 119. Verificación de los efectos P-∆ dirección Y, estructura DES247

Lista de Apéndice

Apéndice A. Porcentajes de participación modos de vibración	170
Apéndice B.Verificación de irregularidades	172
Apéndice C. Verificación de derivas	182
Apéndice D. Diseño placa de entrepiso	184
Apéndice E. Diseño de cimentación	201
Apéndice F. Diseño de muros estructurales	215
Apéndice G. Caracterización del concreto	238
Apéndice H. Clasificación del diafragma	240
Apéndice I. Verificación efectos P-Δ	243
Apéndice J. Planos estructurales edificación DMO	249
Apéndice K. Planos estructurales edificación DES	

Resumen

Título: Efecto de la capacidad de disipación de energía seleccionada en el desempeño sísmico por desplazamiento de edificaciones con sistema muros de carga en zonas de sismicidad intermedia*

uespruzumiento de cumencience con sistemu maros de curga en zonas de sistimera.

Autor: Sandra Liliana Uribe Hernandez**

Palabras clave: Capacidad de Disipación de Energía, Capacidad de Desplazamiento, muros de concreto, zona de amenaza sísmica, análisis no lineal estático.

Descripción:

El reglamento colombiano de construcción sismo resistente (NSR-10) permite reducir las fuerzas sísmicas durante el diseño de edificaciones. Para esto se usa el coeficiente de disipación de energía (R), el cual depende del sistema de resistencia sísmica y la capacidad de disipación de energía esperada. La NSR-10 asocia un grado mínimo de capacidad de disipación de energía (mínima, moderada y especial) a cada zona de amenaza sísmica (baja, intermedia y alta, respectivamente).Esto deja abierta la posibilidad de usar un mayor grado de disipación al mínimo establecido en la norma para una determinada amenaza sísmica. Estudios previos han demostrado que el uso de un coeficiente de disipación de energía y requisitos detallados para capacidades superiores al grado mínimo en zonas de amenaza sísmica intermedia, puede resultar en la reducción de las cantidades de obra de la estructura; sin embargo, el efecto de este enfoque de diseño en el desempeño sísmico de la edificación no ha sido investigado. Por tal razón, en este trabajo se compara la capacidad de desplazamiento de una edificación de 15 pisos diseñados para una zona de amenaza sísmica intermedia con capacidades de disipación moderada y especial. El sistema estructural del edifico consiste en muros de concreto reforzado diseñado de acuerdo con las disposiciones del reglamento colombiano NSR-10. La edificación fue modelada mediante elementos finitos. La capacidad de desplazamiento para los casos moderado y especial se calcularon mediante un análisis no lineal estático siguiendo los requisitos de la guía ASCE / SEI 41-17. Entre los resultados encontrados se evidenció que la edificación con capacidad especial presentó una mayor capacidad de desplazamiento que la de capacidad moderada.

^{*} Trabajo de Grado

^{**} Facultad de Ingenierías Físico mecánicas. Escuela de Ingeniería Civil. Maestría en ingeniería Estructural. Director: Ph.D José Miguel Benjumea Royero, Codirector: M.Sc Fredy Saul Sotelo.

Abstract

Title: Effect of the select seismic energy dissipation capacity on displacement ductility capacity for buildings with shear wall system in a region with intermediate seismic hazard*

Author: Sandra Liliana Uribe Hernandez**

Key words: Energy Dissipation Capacity, Displacement ductility capacity, RC walls, region seismic hazard, nonlinear static analysis.

Description:

The Colombian Seismic Code (NSR-10) allows reducing seismic forces during the design of buildings. For this, the energy dissipation coefficient (R) is used, which depends on the seismic resistance system and the expected energy dissipation capacity. The NSR-10 associates a minimum seismic energy dissipation capacity (Ordinary, moderate and special) to each zone of seismic hazard (low, intermediate and high, respectively). This leaves open the possibility of using a higher degree of dissipation than the minimum established in the standard for a given seismic hazard. Previous studies have shown that the use of an energy dissipation coefficient and detailed requirements for capacities higher than the minimum seismic energy dissipation for a region with intermediate seismic hazard, can result in the reduction of the quantity of materials of the structure; however, the effect of this design approach on the building's seismic performance has not been investigated. For this reason, this work compares the displacement ductility capacity of a 15-stories building designed for an intermediate seismic hazard zone with moderate and special dissipation capabilities. The building's structural system consists of reinforced concrete walls designed in accordance with the provisions of the Colombian regulation NSR-10. The building was modeled by finite elements. The displacement capacity for the moderate and special cases were calculated using a static non-linear analysis following the requirements of the ASCE / SEI 41-17. Among the results found, it was evidenced that the building with special dissipation presented a greater displacement ductility capacity than the building with moderate dissipation.

^{*} Master Dissertation

^{**} Physics-Mechanics Faculty.Civil Engineering School. Master in Structural Engineering. Director: Ph.D José Miguel Benjumea Royero, Co-director: M.Sc Fredy Saul Sotelo.

Introducción

El Reglamento colombiano de construcción sismo resistente NSR-10, establece grados de capacidad de disipación de energía mínimos (DES,DMO o DMI) asociados a las diferentes zonas de amenaza sísmica (Altas, intermedia y baja), sin embargo la normativa no restringe el uso de una capacidad de disipación de energía superior a la establecida para una zona de amenaza sísmica determinada por ejemplo las dos ciudades capitales más influyentes en el país (Bogotá y Medellín) se encuentran en una zona de amenaza sísmica intermedia por lo cual las estructuras ubicadas allí podrían ser diseñadas para capacidades de disipación moderada (DMO) y especial (DES).

En los últimos años se han llevado a cabo investigaciones enfocadas al estudio de las implicaciones económicas, de realizar diseños con capacidades de energía superiores a las mínimas establecidas, en el caso de edificaciones con sistema estructural de pórticos resistentes a momentos, se tienen un estudio de las implicaciones económicas y de desempeño (Chaparro Tarazona, 2017), sin embargo las investigaciones existentes sobre el sistema de muros de carga se han limitado a implicaciones económicas ((Prada, Carrillo, & Gélvez, 2017), (Uribe & Gutierrez, 2014)(Benjumea Royero, Sotelo Monroy, Celis Melo, & Chio Cho, 2016), sin tener en cuenta las implicaciones en el comportamiento de las estructuras, impulsando el desarrollo del presente trabajo en el cual se realizó el análisis del desempeño sísmico por desplazamiento de una edificación tipo de mediana altura con muros estructurales de hormigón reforzado, ubicada en una zona sísmica intermedia, al seleccionar una capacidad de disipación de energía diferente a la mínima establecida por el código NSR-

10.

Para lo cual se establecieron cuatro etapas para el desarrollo de esta investigación, en la primera se estableció la ubicación y características de la edificación, propiedades de los materiales, análisis de cargas y definición de parámetros de diseño sísmico. En la segunda etapa se diseñó una edificación tipo en una zona de amenaza sísmica establecida (intermedia), para las capacidades de disipación de energía permitidas (DMO y DES) teniendo en cuenta los lineamientos definidos en NSR-10. En la tercera etapa se realizó el análisis estático no lineal de las edificaciones anteriormente diseñadas en base a los requerimientos del ASCE 41-17, finalmente y como cuarta etapa se realizó el análisis de los resultados obtenidos evaluando los desplazamientos y deformaciones observados en el punto de desempeño para las dos edificaciones diseñadas.

Este trabajo se encuentra distribuido de la siguiente manera, en el capítulo 2 se presentan los objetivos establecidos para la investigación, en el capítulo 3 se expone el planteamiento del problema, en el capítulo 4 se encuentra el marco teórico tenido en cuenta en el desarrollo de este proyecto, en el capítulo 5 se presenta la metodología seguida en este trabajo, el desarrolló del análisis elástico lineal se muestra en el capítulo 6, en el capítulo 7 se realizó el diseño elástico lineal, en el capítulo 8 se llevó a cabo el análisis estático no lineal. El análisis de resultados se realizó en el capítulo 9 y por último en el capítulo 10 se presentan las conclusiones. Los anexos del análisis y diseño elástico lineal se presentan desde el capítulo 12 hasta el capítulo 17, finalmente en los capítulos 18 al 20 se muestran los anexos del análisis estático no lineal.

1.Objetivos

1.1.Objetivo general

Determinar la capacidad de desplazamiento de una edificación de muros estructurales de concreto reforzado al seleccionar una capacidad de disipación de energía igual y mayor a la mínima establecida en NSR-10 para una zona de amenaza sísmica intermedia.

1.2.Objetivos específicos

Diseñar una edificación prototipo para cada una de las capacidades de disipación de energía bajo estudio, con base a los requisitos establecidos por el reglamento colombiano de construcción sismo resistente NSR-10¹, para soportar cargas verticales y fuerzas símicas.

Calcular la capacidad para cada una de las edificaciones diseñadas teniendo en cuenta los lineamientos encontrados en el ASCE 41-17².

¹ Normas Colombianas de Diseño y Construcción Sismo resistente NSR-10.

² Seismic Evaluation and Retrofit of Existing Buildings ASCE 41-13

2.Planteamiento del problema

El uso de muros de carga como sistema estructural demostró ser eficiente ante solicitaciones sísmicas, por ejemplo durante el sismo de Chile en 1985 (Wood, 1992). Sin embargo, luego de observar las afectaciones que tuvieron las estructuras tras el sismo de Chile en el 2010 y Nueva Zelanda en el 2011, se generó la necesidad de revisar los requerimientos de diseño en base a los modos de fallas observados en los elementos estructurales e impulsar el estudio de diseños sísmicos que garanticen una ductilidad adecuada bajo cargas laterales (Wallace, 2014), no solo en zonas con actividad sísmica alta si no en regiones de amenaza sísmica baja e intermedia.

La filosofía del diseño por capacidad sugiere proporcionar un refuerzo de confinamiento transversal más detallado en zonas donde se presentan deformaciones inelásticas significativas (regiones criticas) y en las cuales se requiere garantizar la ductilidad necesaria para que se pueda disipar grandes cantidades de energía y lograr un comportamiento dúctil en los muros de carga (Thomsen & Wallace, 2004). Esta filosofía se puede ver reflejada en los requerimientos para concreto estructural de las normas NSR-10 (Asociación Colombiana de Ingeniería Sísmica, 2010) y ACI 318-11, (American Concrete Institute: Farmington Hills, 2011) en los cuales se observa que los requisitos de confinamiento incrementan con el aumento de la amenaza sísmica, sin embargo al seleccionar un grado de capacidad de disipación de energía mayor las fuerzas sísmicas de diseño obtenidas de un análisis elástico lineal serán inferiores como consecuencia de una mayor reducción, ya que el coeficiente de capacidad de disipación (R), podría ser mayor.

En estudios anteriores se ha encontrado una disminución de hasta el 10% de las cantidades de obra en edificaciones con sistema de muros de carga: diseñadas con coeficiente R y

requisitos de capacidad de energía mayores a los mínimos establecidos por el reglamento en zonas de amenaza sísmica intermedia,(Prada et al., 2017; Uribe & Gutierrez, 2014).Dado que al tomar una capacidad de energía mayor a la mínima las fuerzas sísmicas de diseño pueden ser inferiores si se usa un coeficiente de energía mayor, según tabla A.3-1 NSR-10 (Asociación Colombiana de Ingeniería Sísmica, 2010). Despertando el interés de evaluar el desempeño sísmico de la edificación e identificar las implicaciones que tendría tomar estas consideraciones en el diseño. En este trabajo, se determinó la capacidad de desplazamiento de una edificación de muros estructurales de concreto reforzado, ubicados en una zona sísmica intermedia, al diseñar para una capacidad de disipación de energía igual y mayor a la mínima requerida por la norma NSR-10.

3.Marco teórico

3.1. Análisis Estático Lineal

3.1.1.Capacidad de Disipación de energía.

Es la capacidad que tiene un sistema estructural, un elemento o una sección de un elemento estructural, de trabajar dentro del rango inelástico de respuesta, sin pérdida significativa de su resistencia.

El grado de capacidad de disipación de energía en el reglamento colombiano se clasifica en tres categorías, especial (DES), moderado (DMO) y mínimo (DMI). Actualmente, el diseño de las estructuras sismo resistentes regido por la NSR-10, restringe el uso de las categorías de capacidad de disipación de energía en función de las zonas de amenaza sísmica donde se localizará la estructura tal y como se muestra en la Tabla 1

Tabla 1.

Restricciones al uso de sistemas y materiales estructurales.

CAPACIDADA DE	ZONA DE AMENAZA SISMICA			
DISIPACIÓN ENERCÍA	BAJA	INTERMEDIA	ALTA	
Mínima DMI		NO	NO	
Moderada DMO			NO	
Especial DES				

Nota: adaptado de NSR-10 (Asociación colombiana de ingeniería sísmica 2010)

3.1.2.Coeficiente de disipación de energía R

El coeficiente de disipación de energía, R, es un factor definido en la metodología de diseño, que permite clasificar la capacidad que tiene una estructura de disipar energía a partir del comportamiento inelástico. El uso de este coeficiente, resulta conveniente en el momento de diseñar las estructuras para que respondan en el rango inelástico (Asociación Colombiana de Ingeniería Sísmica, 2010), su valor dependerá del sistema estructural y de la capacidad de disipación de energía permitida en la tabla A.3-1 de NSR-10, la cual es replicada en este documento en la Tabla 2.

Tabla 2.

Coeficiente de disipación	básico para sistema	estructural de muros	portantes.
J I	1		

SISTEMA DE MUROS DE			Zonas de amenaza sísmica						
CARGA				Alta		Intermedia		Baja	
Sistema	Sistema	Valor	Valor						
Resistencia	Resistencia	Ro	Ω_0	Uso	Altura	Uso	Altura	Uso	Altura
Sísmica (Fuerzas	para Cargas			permit.	máx	permit.	máx	permit.	máx
Horizontales)	Verticales								
Muros de									
Concreto con							Sin		Sin
capacidad especial	El mismo	5.0	2.50	Si	50m	Si	limito	Si	limito
de disipación de							mmte		minte
energía (DES)									
Muros de									
Concreto con									
capacidad	El mismo	4.0	2 50	No sa pa	mito	C;	50m	C;	Sin
moderada de	El mismo	4.0	2.50	No se per	mite	51	5011	51	limite
disipación de									
energía (DMO)									

Nota: Adaptado de NSR-10 (Asociación colombiana de ingeniería sísmica 2010)

3.2. Análisis estático no lineal

3.2.1.Pushover

El análisis inelástico Pushover es un análisis estático no lineal usado para predecir la cargas horizontales y deformaciones máximas que puede llegar a presentar una estructura y establece una secuencia que ayudara a posicionar las partes criticas existentes de un edificio.

Esta herramienta consiste en aplicar un patrón de carga lateral predefinido que se distribuye a lo largo de la altura del edificio. Las fuerzas laterales se incrementan monótonamente en proporción constante con un desplazamiento de control en la parte superior del edificio hasta alcanzar un valor previamente establecido (Idris & Yahya, 2017; Mwafy & Elnashai, 2001).

Los pasos para llevar a cabo un análisis Pushover de una edificación sismo resistente (Idris & Yahya, 2017) son:

Determinación de un punto de control para monitorear la cantidad de desplazamiento que presentara la estructura

Realizar una curva de capacidad basada en un patrón de fuerza lateral

Estimación de la cantidad de desplazamiento lateral durante la aplicación de cargas

Evaluación del rendimiento de la estructura cuando el punto de control alcance el desplazamiento objetivo.

3.2.2. Curva de Capacidad:

La curva de capacidad es la relación entre la resistencia de carga lateral de una estructura y su desplazamiento lateral característico, se deriva de una gráfica de cortante en la base y desplazamiento en el techo de la edificación (Kircher, Nassar, Kustu, & Holmes, 1997). La

curva de capacidad generalmente se obtiene por medio de un análisis estático no lineal de carga incremental Pushover Analysis (PA) y es utilizada para evaluar el comportamiento de las estructuras frente a cargas horizontales, es la representación del primer modo de vibración de la estructura, partiendo de suponer que el modo fundamental de vibración es la respuesta predominante de la estructura

3.2.3.Desplazamiento Objetivo

El desplazamiento objetivo representa el desplazamiento máximo que probablemente alcance la estructura para el nivel de riesgo sísmico seleccionado.

El cálculo del desplazamiento objetivo en la normativa colombiana se establece en la sección A-3.2.5 de NSR-10, para el caso del código ASCE 41-13 (ASCE, 2014) este desplazamiento se calcula con base al procedimiento especificado 7.4.3.3.

3.2.4. Modelamiento de muros de Cortante

El ASCE41-13 (ASCE, 2014) define unos parámetros de modelamiento para muros portantes, dependiendo si estos elementos están controlados por un comportamiento a flexión o cortante. En el capítulo 10 del ASCE 41-13 (ASCE, 2014) se define que los muros de cortante que tengan una relación (altura/longitud) mayor a 3 se clasificarán como esbeltos, adicionalmente si su relación de aspecto es menor a 1.5 se consideran bajos. Se considera que los muros bajos están controlados por un comportamiento a flexión y los muros bajos están controlados por un comportamiento a flexión y los muros bajos están controlados por un comportamiento a cortante, los muros que tengan una relación de aspecto entre 1.5 y 3 tendrán un comportamiento controlado tanto como para flexión como para cortante.

Los elementos a cortante se modelan por medio de capas de elementos finitos. La primera capa corresponde a fibras verticales que representan el comportamiento inelástico con interacción P-M en la dirección vertical., la segunda a fibras horizontales que representa el comportamiento elástico fuera del plano al asumir un comportamiento tipo membrana del elemento en dicha dirección y la tercera representa la capa de cortante la cual podrá tomarse con un comportamiento elástico en el cual se asume que la rigidez a cortante dependerá del módulo de cortante (Powell, 2010).

4.Metodología

Para dar cumplimiento a los objetivos se plantearon cuatro etapas. En la primera se estableció la ubicación y características de la edificación, propiedades de los materiales, análisis de cargas y definición de parámetros de diseño sísmico (capítulo 5), en la segunda etapa se realizó el diseño de la edificación para las capacidades de disipación de energía DMO y DES (capitulo 6), en la tercera etapa se realizó el análisis no lineal estableciendo los requisitos y las generalidades del ASCE 41-17, aplicables a las estructuras bajo estudio,(capitulo 7). Finalmente, en la cuarta etapa se llevó a cabo el análisis de los resultados obtenidos, con el fin de revisar el comportamiento de las estructuras, a partir de la comparación de los desplazamientos de las edificaciones en los diagramas momentos rotación de las secciones de muros y los diagramas esfuerzo deformación de los materiales obtenidos en los puntos de desempeño (capitulo 8).

5. Etapa 1: Análisis Elástico Lineal

En este capítulo se define las características de la edificación bajo estudio, se presenta la estimación de cargas y los parámetros usados para la realización del análisis estructural del que se obtendrán las fuerzas de diseño de los elementos estructurales.

5.1.Normativas de referencia

El diseño sísmico de la estructura bajo estudio se realizó siguiendo los lineamientos del Reglamento colombiano de construcción sismo resistente NSR-10 (ley 400 de 1997 – modificada ley 1229 de 2008, decreto 19 de marzo de 2010, decreto 092 del 17 de enero de 2011).

5.2. Descripción de la estructura bajo análisis

5.2.1.Descripción general

Para el propósito de la investigación se tomó una estructura hipotética de referencia de uso residencial, con un área en planta de 406.130 m². La estructura tiene 15 niveles, cada uno con altura de entrepiso de 2.50 metros, resultando en una altura total de la edificación igual a 37.5 metros. Las medidas en planta y altura de la edificación se muestran en la Figura 1 y Figura 2 respectivamente.

Figura 1.

Planta estructural de la edificación.

Figura 2.

Alzado de la edificación.

5.2.2.Descripción del sistema estructural

A continuación, se listan los elementos que hacen parte del sistema estructural de la edificación bajo estudio:

-Sistema de resistencia sísmica: Muros de carga

- -Sistema de resistencia de cargas verticales: Muros de carga
- -Sistema de entrepiso: Placa maciza
- -Tipo de cubierta: Placa maciza
- -Tipo de cimentación: Placa maciza

5.2.3. Parámetros geotécnicos

El proyecto bajo estudio fue modelado para la ciudad de Tunja, que corresponde a un nivel de amenaza sísmica intermedia y presenta los valores más altos de aceleraciones espectrales (Aa y Av). El suelo de referencia en los casos analizados es de tipo D, elegido con el propósito de evaluar el comportamiento de las estructuras en condiciones poco favorables. Los datos mostrados a continuación son valores adoptados consistentes con las características del tipo de suelo elegido:

-Velocidad de onda de cortante, Vso: 300 m/s
-Densidad del suelo ys: 18 kN/m³
-Módulo de elasticidad del suelo, E: 25 MPa
-Capacidad portante, Qa: 250 kN/m²

5.2.4. Parámetros sísmicos

Zona de amenaza sísmica: intermedia.

 Grupo de uso: teniendo en cuenta que la edificación está destinada a uso habitacional y el número de residentes no excede de 3000 personas, la estructura se clasifica como Grupo I-estructuras de ocupación normal (sección A.2.5 de NSR-10).
Coeficiente de importancia: el coeficiente de importancia es de 1.00 (sección A.2.5.2 de NSR-10).

5.2.5.Materiales

Concreto:

La resistencia a compresión del concreto (f'_c) usado para el diseño de los elementos estructurales es:

-Cimentación:28 MPa

-Pantallas:28 MPa

-Placas de entrepiso:28 MPa

El módulo de elasticidad del concreto (E_c) usado para el diseño estructural se calcula con la expresión dada en la sección C.8.5.1 de NSR-10, ($E_c = 4700\sqrt{f'_c}$ Mpa). El valor empleado en el modelamiento es de 24870 MPa.

Acero de refuerzo:

Las barras de refuerzo son corrugadas, de acero de baja aleación que cumplan con la norma NTC-2289. Su resistencia a la fluencia (f_y) es:

- -Barras de Refuerzo:420 MPa
- -Refuerzo electrosoldado de alambre:420 MPa
- -(Malla electrosoldada)

5.2.6. Parámetros y modelamiento análisis y diseño elástico lineal

Modelamiento análisis lineal

El análisis estructural se realizó mediante modelamiento numérico en el software ETABS 2016 (Computer & Structures, Inc, 2016). En las Figura 3 y Figura 4 se muestran capturas del modelo usado. El modelo computacional del análisis elástico se realiza con las siguientes consideraciones:

- **Muros estructurales:** Se modelaron como elementos tipo *Shell* (Computer & Structures, Inc, 2016), despreciando el aporte de rigidez en el eje débil del elemento. Esta consideración se logró asignando un valor de 0.1 al factor de modificación "m22" en los elementos del modelo computacional. La inercia de los elementos estructurales en su propio plano fue calculada a partir de la sección bruta, es decir se trabajó con secciones no agrietadas. Se tomó como criterio que los muros resistieran las cargas laterales. Para garantizar que los muros se comportaran como secciones rectangulares fueron modelados con dilataciones entre sí, con distancias que varían entre 1 y 2,5 cm.

- Losa de entrepiso: Las losas de entrepiso transmiten cargas verticales, es decir, tienen rigidez finita en su propio plano y rigidez nula para efectos a flexión fuera del plano. Para representar esta hipótesis de diseño, la placa se modeló como un elemento tipo Membrana. Con el fin de garantizar la adecuada transmisión de cargas entre la losa y los muros, se emplearon elementos tipo *frame* sin rigidez y masa en las uniones muro-losa (Figura 3).

- Apoyos: La estructura se modeló con apoyos rígidos tipo empotramiento en la base de los elementos estructurales.

Figura 3.

Vista 3D del modelo computacional de la edificación.

Figura 4.

Planta de entrepiso tipo.

Modelado de la placa de entrepiso para diseño

Teniendo en cuenta que una de las hipótesis de diseño es que la losa de entrepiso no aporta rigidez al sistema de resistencia sísmico y su función es la de transmitir cargas verticales, las fuerzas de diseño en la placa fueron obtenidas de un modelo simplificado de la edificación que cuenta con un solo piso (Figura 5). La diferencia de colores para el elemento Shell mostrado en la vista en planta de la Figura 5 obedece a que hay dos espesores de placa (12.5 cm y 15 cm), tal y como se describe en la sección de diseño (Sección 6.2). La placa se simula con elemento tipo Shell, a la cual se le asignan las cargas sobreimpuestas y viva (Sección 5.3). El peso propio de los elementos es calculado automáticamente por el programa.

Para la revisión del diseño a flexión y verificación de cortante se usan bandas (strips) de un metro de ancho de las cuales se evaluaron los valores de momento y cortante para las combinaciones de diseño.

Figura 5.

Modelo computacional para diseño de la placa maciza.

5.3. Evaluación de cargas

5.3.1.Evaluación de carga peso propio

Se considera como peso propio el peso de todos los elementos estructurales que componen la edificación y se obtiene a través del programa ETABS 2016. El peso propio se calculó usando un peso específico del concreto reforzado igual a 24 kN/m³.

5.3.2. Evaluación de carga sobreimpuesta

Se toma como carga sobreimpuesta las cargas provenientes de elementos que no hacen parte del sistema de resistencia sísmica, tales como: revestimiento, muros no estructurales (mampostería) y acabados de piso. En las Tabla 3 y Tabla 4 se muestran los avalúos de estas cargas para las zonas con losas de espesores 12.5 cm y 15 cm, respectivamente.

Tabla 3.

Evaluación de cargas, entrepiso (e=0.125m).

Datos placa entrepiso apartamentos								
Ítem		m						
Espesor de losa en Concreto, h		0.125						
Mortero de Nivelación y acabados, a _{superior}		0.05						
Acabado inferior a _{inferior}		0						
Nivelación y acabados Acabado inferior	asuperior h ainferior							
Evaluación de carga muerta [wd]								
Item		kN/m ²						
Peso propio		3.00						
Nivelación y acabados de piso		1.10						
Acabado de piso		0.25						
Acabado inferior		0						
Divisiones		1.450						
Ítem 2		0						
Instalaciones y Otros		0.2						
W _{D+SD} =		6.00						
W _{SD} =		3.00						

Tabla 4.

Acabado de piso

Acabado inferior

Instalaciones y Otros

Divisiones

Item 2

 $W_{D+SD}=$

 $W_{SD} =$

Evaluación de cargas, entrepiso (e=0.15 m).

Datos placa entrepiso zona común (pasillo)							
Ítem	m						
Espesor de losa en Concreto, h	0.15						
Mortero de Nivelación y acabados, asuperior	0.05						
Acabado inferior ainferior	0						
Nivelación y acabados	asuperior h						
Acabado inferior	ainferior						
Evaluación de carga muerta [wd]							
Ítem	kN/m ²						
Peso propio	3.60						
Nivelación y acabados de piso	1.10						

0.25

1.450

0

0 0.2

5.40 3.00

5.3.3.Evaluación de carga viva

Siguiendo los lineamientos de la sección B.4.2 de NSR-10, la carga viva que fue usada para el diseño de la estructura tiene un valor de 1.8 kN/m², correspondiente a áreas de uso "cuartos privados y corredores" en unidades residenciales.

5.4. Consideración de la resistencia contra el fuego

Siguiendo la sección K.2.10 de NSR-10, la estructura bajo estudio se encuentra en el grupo de ocupación residencial. El grupo y subgrupo de la edificación, acorde a lo establecido en la tabla K.2-1 de NSR-10, es R y R-2, respectivamente, asignado a edificaciones residenciales de uso Multifamiliar.

Teniendo en cuenta los lineamientos del título J de NSR-10, toda edificación debe clasificarse en una de las categorías de riesgos definidas en la sección J.3.3.1. Con base a las especificaciones allí contenidas y teniendo en cuenta que la estructura es de uso residencial multifamiliar (subgrupo R-2) y cuenta con más de 7 pisos, se clasifica como una estructura de categoría de riesgo I. Los requisitos para esta categoría de riesgo, presentados en la tabla J.3.4-3 de NSR-10, son: (i) columnas, vigas, viguetas, losas y muros portantes de cualquier material deberán tener una resistencia al fuego de 2 horas, (ii) el espesor mínimo para losas y muros de concreto reforzado con agregado de tipo carbonato y/o liviano será de 120 mm (sección J.3.5) y (iii) recubrimiento mínimo para los mismos tipos de agregado de 20 mm. Por lo tanto, para la estructura bajo estudio solo se permite el uso de agregados de tipo carbonato y liviano prohibiéndose el uso de agregado de tipo silíceo, garantizando de esta manera el cumplimiento de los lineamientos estipulados en el titulo J de NSR-10.

5.5.Fuerzas sísmicas de diseño

5.5.1.Espectro de diseño

En la Figura 6 se presenta el espectro elástico de aceleración obtenido para la ubicación hipotética de la estructura (Tunja). El espectro corresponde a un amortiguamiento del cinco por ciento (5%) del amortiguamiento crítico y fue calculado siguiendo la sección A.2.6 de NSR-10 y los parámetros de la Tabla 5.

Tabla 5.

Parámetros del espectro.

Grupo de uso	Ι
Ι	1.00
Aa	0.20
Av	0.20
Perfil de suelo	D
Fa	1.40
Fv	2.00

Figura 6.

Espectro de diseño.

5.5.2. Análisis modal espectral

Las fuerzas sísmicas se calculan mediante el método del análisis dinámico descrito en el capítulo A.5 de NSR-10. Teniendo en cuenta lo descrito en A.5.4.2, en el análisis modal se incluyeron todos los modos de vibración que contribuyen de manera significativa en la respuesta dinámica de la estructura. Para el análisis se tuvieron en cuenta 45 modos de vibración alcanzando el noventa y nueve por ciento (99%) de participación de masa modal traslacional y rotacional. En la Tabla 6 se muestran los tres primeros modos de vibración y su participación de masa modal (PMM) acumulados en las direcciones X, Y y Z. En la Figura 7, Figura 8 y Figura 9 se muestran las formas modales de los tres primeros modos de vibración de los cuales el primero corresponde al modo traslacional en dirección X, el segundo el modo traslacional en Y y el tercero corresponde al modo rotacional. En el Apéndice A, se muestran todos los porcentajes de participación de los 45 modos usados en el análisis de la edificación. La respuesta de los diferentes modos de vibración se combinó mediante la regla cuadrática completa (CQC) ya que los modos no están ampliamente separados.

Tabla 6.

Piso	Periodo	PPMX	PPMY	PPMRz
	S	%	%	%
Modo 1	1.254	63.69	0	0
Modo 2	1.059	63.69	63.83	0
Modo 3	0.949	63.69	63.83	63.93

Porcentajes de participación de los primeros 20 modos de vibración.

Figura 7.

Formas modales del primer modo de vibración.

Figura 8.

Formas modales del segundo modo de vibración.

Vista 3D

Figura 9.

Formas modal del tercer modo de vibración.

5.5.3.Cortante sísmico en la base

En esta sección se presentan los resultados de los cálculos realizados para determinar el cortante sísmico en la base de las estructuras bajo estudio, mediante el método de la fuerza horizontal equivalente (capítulo A.4 de NSR-10).

- Periodo fundamental aproximado de la estructura.

El cálculo del periodo fundamental aproximado Ta sigue lo especificado en la sección A.4.2.2 de NSR-10. Los parámetros Ct y α , fueron seleccionados teniendo en cuenta el sistema estructural de resistencia sísmica de la edificación bajo estudio (muros de concreto). La Tabla 7 muestra los parámetros seleccionados y los valores calculados. El periodo fundamental aproximado es Ta=1.28 s. Note que este es más largo que el periodo fundamental obtenido del modelo computacional, T=1.254 s.

Datos de la estructura	
Altura, h	37.5 m
Masa, m	6887943.78 Kg
Peso, W	67547.9983 kN
Regular	Si
Periodo fundamental aproximado	
Ct	0.049
α	0.90
Ta	1.28 s
C_u	1.27
C_uT_a	1.62 s

Tabla 7.Parámetros y cálculo del periodo aproximado Ta.

5.5.4.Cortante sísmico en la base

El cortante sísmico en la base, obtenido por el método de la fuerza horizontal equivalente, Vs, debe cumplir con lo establecido en la sección A.4.3.1 de NSR-10.

Teniendo en cuenta el requisito de la sección A.5.4.5 de NSR-10 para estructuras regulares, el cortante dinámico total en la base, Vt, obtenido después de realizar la combinación modal, para cualquiera de las direcciones de análisis, no puede ser menor que el ochenta por ciento (80%) del cortante sísmico en la base, Vs, calculado por el método de la fuerza horizontal equivalente. El valor del cortante sísmico Vt fue ajustado para dar cumplimiento a lo anteriormente mencionado. Los valores obtenidos y el facto de ajuste (F.A) se muestran en la Tabla 8

Tabla 8.

Cortante sísmico en la base ajustado por fuerza horizontal equivalente.

Análisis fuerza horizontal equivalente								
D	irección x	Dirección y						
Sa	0.383 s	Sa	0.453 s					
Vs	25855.69 kN	Vs	30616.66 kN					
Análisis modal espec	tral							
D	irección x	Dirección y						
Тх	1.254s	Ту	1.059 s					
%Masa	63.69%	% Masa	63.83%					
Vtx	19458.15	Vty	22084.15					
Ajuste análisis moda	l espectral							
F.A.	1.06	F.A.	1.11					
(F.A.) (9.81)	10.43	(F.A.) (9.81)	10.88					

5.5.5. Verificación de los efectos P-delta

Los efectos P-Delta deben tenerse en cuenta cuando el índice de estabilidad Qi es mayor que 0.10, calculado mediante la ecuación (sección A.6.2.3 de NSR-10):

$$Q_i = \frac{P_i \cdot \Delta_{cm}}{V_i \cdot h_{pi}}$$

Donde, Pi es la suma de carga vertical total, incluyendo muerta y viva que existe en el piso i y todos los pisos localizados por encima y Δ cm es la deriva del piso i, en la dirección bajo estudio, j, medida en el centro de masa del piso, como la diferencia entre el desplazamiento horizontal del piso i menos el del piso i-1 en la misma dirección j.

En la Tabla 9 y Tabla 10 se presentan los caculos realizados para la estructura bajo estudio.

Tabla 9.

Verificación de los efectos PDelta en dirección X.

	Sismo dirección X										
Niveles	P.Propio	S.Impuesta	C.viva	Pi	Piacum.	Derivas	Vx	θ	Requiere		
	kN	kN	kN	kN	kN		kN		Pdelta		
15	2251	1170.6	702.38	4124	4124	0.0094	3264.8	0.0118	No		
14	3332.5	1170.6	702.38	5205.6	9329.6	0.0094	6351	0.0137	No		
13	3332.5	1170.6	702.38	5205.6	14535	0.0093	8616.1	0.0157	No		
12	3332.5	1170.6	702.38	5205.6	19741	0.0092	10344	0.0176	No		
11	3332.5	1170.6	702.38	5205.6	24946	0.009	11735	0.0192	No		
10	3332.5	1170.6	702.38	5205.6	30152	0.0087	12941	0.0204	No		
9	3332.5	1170.6	702.38	5205.6	35357	0.0084	14068	0.021	No		
8	3332.5	1170.6	702.38	5205.6	40563	0.0079	15176	0.0211	No		
7	3332.5	1170.6	702.38	5205.6	45768	0.0073	16282	0.0205	No		
6	3332.5	1170.6	702.38	5205.6	50974	0.0066	17366	0.0193	No		
5	3332.5	1170.6	702.38	5205.6	56180	0.0057	18383	0.0175	No		
4	3332.5	1170.6	702.38	5205.6	61385	0.0047	19276	0.0151	No		
3	3332.5	1170.6	702.38	5205.6	66591	0.0036	19986	0.012	No		
2	3332.5	1170.6	702.38	5205.6	71796	0.0023	20468	0.0081	No		
1	4414.1	1170.6	702.38	6287.1	78083	0.0009	20695	0.0033	No		

Tabla 10.

Verificación de los efectos PDelta en dirección Y.

Sismo dirección Y										
Niveles	P.Propio	S.Impuesta	C.viva	Pi	Piacum.	Derivas	Vy	θ	Requiere	
	kN	kN	kN	kN	kN		kN		Pdelta	
15	2251	1170.6	702.38	4124	4124	0.0085	3264.8	0.0108	No	
14	3332.5	1170.6	702.38	5205.6	9329.6	0.0085	6351	0.0125	No	
13	3332.5	1170.6	702.38	5205.6	14535	0.0085	8616.1	0.0144	No	
12	3332.547	1170.6	702.38	5205.6	19741	0.0084	10344	0.0161	No	
11	3332.5	1170.6	702.38	5205.6	24946	0.0083	11735	0.0175	No	
10	3332.5	1170.6	702.38	5205.6	30152	0.008	12941	0.0187	No	
9	3332.5	1170.6	702.38	5205.6	35357	0.0077	14068	0.0193	No	
8	3332.5	1170.6	702.38	5205.6	40563	0.0072	15176	0.0194	No	
7	3332.5	1170.6	702.38	5205.6	45768	0.0067	16282	0.0188	No	
6	3332.5	1170.6	702.38	5205.6	50974	0.006	17366	0.0177	No	
5	3332.5	1170.6	702.38	5205.6	56180	0.0053	18383	0.0161	No	
4	3332.5	1170.6	702.38	5205.6	61385	0.0044	19276	0.0139	No	
3	3332.5	1170.6	702.38	5205.6	66591	0.0033	19986	0.0111	No	
2	3332.5	1170.6	702.38	5205.6	71796	0.0022	20468	0.0076	No	
1	4414.1	1170.6	702.38	6287.1	78083	0.0008	20695	0.0031	No	

5.5.6.Clasificación del diafragma

Teniendo en cuenta los descrito en la sección A.3.6.7.2 de NSR-10, un diafragma se puede considerar flexible cuando la máxima deflexión horizontal dentro del diafragma, al verse sometido a las fuerzas sísmicas, Fs, es más de dos veces el promedio de sus deflexiones horizontales.

En la Tabla 11 y la Figura 10 se muestran los puntos donde se evaluaron las deflexiones horizontales del diafragma de la edificación. Los resultados de la evaluación del tipo de diafragma se presentan en la Tabla 12 y Tabla 13. Se concluye que el diafragma puede tomarse como rígido, es decir actúa como una unidad y sus propiedades de masa y de rigidez se pueden concentrar en el centro de masa y de rigidez respectivamente.

Tabla 11.

Referenciación de nodos usados en la clasificación del diafragma.

А	Esquina inferior izquierda	41	1	Punto medio diafragma izquierda	56
В	Esquina inferior derecha	89	2	Punto medio diafragma derecha	76
С	Esquina superior izquierda	44	3	Punto medio diafragma inferior	66
D	Esquina Superior derecha	92	4	Punto medio diafragma superior	67

Figura 10.

Puntos de referencia clasificación del diafragma.

Tabla 12.

Verificación rigidez del diafragma-análisis en dirección X.

Nivel	Α	В	С	D	1	2	(A+C)/2	(B+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.008413	0.00841	0.00841	0.00841	0.0084	0.0084	0.008413	0.0084	Rígido	Rígido
14	0.008412	0.00841	0.00841	0.00841	0.0084	0.0084	0.008412	0.0084	Rígido	Rígido
13	0.008371	0.00837	0.00837	0.00837	0.0083	0.0083	0.008371	0.0084	Rígido	Rígido
12	0.008274	0.00827	0.00827	0.00827	0.0082	0.0082	0.008274	0.0083	Rígido	Rígido
11	0.008108	0.00811	0.00811	0.00811	0.0081	0.0081	0.008108	0.0081	Rígido	Rígido
10	0.007861	0.00786	0.00786	0.00786	0.0078	0.0078	0.007861	0.0079	Rígido	Rígido
9	0.007525	0.00753	0.00753	0.00753	0.0075	0.0075	0.007525	0.0075	Rígido	Rígido
8	0.007092	0.00709	0.00709	0.00709	0.0071	0.0071	0.007092	0.0071	Rígido	Rígido
7	0.006554	0.00655	0.00655	0.00655	0.0065	0.0065	0.006554	0.0066	Rígido	Rígido
6	0.005905	0.00591	0.00591	0.00591	0.0059	0.0059	0.005905	0.0059	Rígido	Rígido
5	0.005139	0.00514	0.00514	0.00514	0.0051	0.0051	0.005139	0.0051	Rígido	Rígido
4	0.004251	0.00425	0.00425	0.00425	0.0042	0.0042	0.004251	0.0043	Rígido	Rígido
3	0.003238	0.00324	0.00324	0.00324	0.0032	0.0032	0.003238	0.0032	Rígido	Rígido
2	0.002093	0.00209	0.00209	0.00209	0.0021	0.0021	0.002093	0.0021	Rígido	Rígido
1	0.000782	0.00078	0.00078	0.00078	0.0008	0.0008	0.000782	0.0008	Rígido	Rígido

Tabla 13.

Verificación rigidez del diafragma-análisis en dirección Y.

Nivel	Α	В	С	D	3	4	(A+B)/2	(C+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.007031	0.00703	0.00703	0.00703	0.0071	0.0071	0.007031	0.007	Rígido	Rígido
14	0.007035	0.00704	0.00704	0.00704	0.0071	0.0071	0.007035	0.007	Rígido	Rígido
13	0.007007	0.00701	0.00701	0.00701	0.007	0.007	0.007007	0.007	Rígido	Rígido
12	0.006933	0.00693	0.00693	0.00693	0.007	0.007	0.006933	0.0069	Rígido	Rígido
11	0.006801	0.0068	0.0068	0.0068	0.0068	0.0068	0.006801	0.0068	Rígido	Rígido
10	0.006602	0.0066	0.0066	0.0066	0.0066	0.0066	0.006602	0.0066	Rígido	Rígido
9	0.006326	0.00633	0.00633	0.00633	0.0064	0.0064	0.006326	0.0063	Rígido	Rígido
8	0.005966	0.00597	0.00597	0.00597	0.006	0.006	0.005966	0.006	Rígido	Rígido
7	0.005517	0.00552	0.00552	0.00552	0.0055	0.0055	0.005517	0.0055	Rígido	Rígido
6	0.004974	0.00497	0.00497	0.00497	0.005	0.005	0.004974	0.005	Rígido	Rígido
5	0.004331	0.00433	0.00433	0.00433	0.0044	0.0044	0.004331	0.0043	Rígido	Rígido
4	0.003586	0.00359	0.00359	0.00359	0.0036	0.0036	0.003586	0.0036	Rígido	Rígido
3	0.002733	0.00273	0.00273	0.00273	0.0028	0.0028	0.002733	0.0027	Rígido	Rígido
2	0.001775	0.00178	0.00178	0.00178	0.0018	0.0018	0.001775	0.0018	Rígido	Rígido
1	0.000706	0.00071	0.00071	0.00071	0.0007	0.0007	0.000706	0.0007	Rígido	Rígido

5.6.Análisis de irregularidades

Análisis de irregularidades en planta y en altura

Este análisis se realizó cumpliendo lo establecido en la tabla A.3-6 de NSR-10. La Tabla 14 y Tabla 15 de cada tipo de irregularidad en planta y altura, respectivamente. Los cálculos detallados se encuentran en el Apéndice B.

Tabla 14.

Tipo	Descripción	Clasificación	φp
1aP	Irregularidad torsional	Regular	1.00
1bP	Irregularidad torsional extrema	Regular	1.00
2P	Retrocesos en las esquinas	Regular	1.00
3P	Irregularidad en el diafragma	Regular	1.00
4P	Desplazamiento de los planos de acción	No Aplica	1.00
5P	Sistemas no paralelos	No Aplica	1.00
	Irregularidad en Planta	φp:	1.00

Resultados del análisis de irregularidades en planta.

Tabla 15.

Resultados del análisis de irregularidades en altura.

Tipo	Descripción	Clasificación	φa
1aA	Piso Flexible (Irregularidad en rigidez)	Regular	1.00
1bA	Piso Flexible (Irregularidad extrema en rigidez)	Regular	1.00
2A	Distribución de masa	Regular	1.00
3A	Geometría	Regular	1.00
4A	Desplazamiento de los planos de acción	No Aplica	1.00
5aA	Piso débil-Discontinuidad en la resistencia	Regular	1.00
5bA	Piso débil-Discontinuidad extrema en la resistencia	Regular	1.00
	Irregularidad en altura	фа:	1.00

5.7. Verificación de derivas

Se entiende por deriva el desplazamiento horizontal relativo entre dos puntos colocados en la misma línea vertical, en dos pisos o niveles consecutivos de la edificación. La norma establece en el capítulo A.6.4 que la deriva máxima para cualquier piso no puede exceder el uno por ciento (1.0%) de la altura de entrepiso. En la Figura 11 y Figura 12 se muestra la gráfica representativa de las derivas de entrepiso para la edificación bajo estudio. De estas se concluye que la edificación satisface el requisito de la norma. En el Apéndice C se presentan las tablas de los valores obtenidos.

Figura 11.

Deriva de entrepiso para análisis con sismo en dirección X.

Figura 12.

Deriva de entrepiso para análisis con sismo en dirección Y.

6. Etapa 2: Diseño elástico lineal

En este capítulo se describen los pasos principales del diseño de la edificación, teniendo en los requisitos para cada tipo de disipación de energía objetivo.

6.1. Coeficiente de disipación de energía Ro

Los coeficientes de capacidad de disipación de energía usados para el diseño de las edificaciones dependen de: los sistemas de resistencia para cargas verticales y laterales y de la capacidad de disipación de energía. Estos se resumen en la tabla A.3-1 de NSR-10.

En la Tabla 16 se muestran los valores del coeficiente R_o tomados para los diseños elásticos lineales de la edificación bajo estudio. Estos se seleccionaron teniendo en cuenta los sistemas de resistencia para cargas laterales y verticales (muros de concreto reforzado) y la zona de amenaza sísmica (intermedia), donde se permite el uso de capacidades de disipación de energía moderada (DMO) y especial (DES).

Tabla 16.

Coeficiente de disipación de energía y de sobre resistencia

Sistema de resistencia Sísmica y de cargas Verticales									
Muros de concreto									
Capacidad de Disipación de Energía	Ro	Ωο							
Moderada (DMO)	4.0	2.5							
Especial (DES)	5.0	2.5							

6.2.Combinaciones de diseño

En la Tabla 17 y Tabla 18 se muestran los factores de cargas usados en las diferentes combinaciones para la estructura DMO y DES, respectivamente. Las combinaciones cumplen con lo dispuesto en la sección A.3.6 de NSR-10, teniendo en cuenta los efectos ortogonales en las combinaciones de diseño de la sección B.2.4.2 de NSR-10.

6.3.Combinaciones de servicio

En la Tabla 19 y Tabla 20 se muestran los factores de cargas usados en las diferentes combinaciones de servicio para la estructura DMO y DES, respectivamente. Las combinaciones cumplen con lo dispuesto en la sección A.3.6 de NSR-10, teniendo en cuenta los efectos ortogonales en las combinaciones de diseño de la sección B.2.3.1de NSR-10.

Tabla 17.

Combinaciones de resistencia ultima, estructuras DMO.

Combin	agionos					C	arga	S		
Combi	laciones	D	SD	L	Lr	G	Le	W	Ex	Ey
B.2.4-1	Ι	1.4	1.4							
	II. (a)	1.2	1.2	1.6						
B.2.4-2	II. (b)	1.2	1.2	1.6						
	II. (c)	1.2	1.2	1.6						
	III. (a)	1.2	1.2	1						
	III. (b)	1.2	1.2							
B.2.4-3	III. (c)	1.2	1.2	1						
	III. (d)	1.2	1.2							
	III. (e)	1.2	1.2	1						
	III. (f)	1.2	1.2							
	IV. (a)	1.2	1.2	1						
B.2.4-4	IV. (b)	1.2	1.2	1						
	IV. (c)	1.2	1.2	1						
D 2 4 5	V. (a)	1.2	1.2	1					0.25	0.0750
D.2.4-3	V. (b)	1.2	1.2	1					0.0750	0.2500
B.2.4-6	VI	0.9	0.9							
D 2 4 7	VII. (a)	0.9	0.9						0.2500	0.0750
B .2.4-7	VII. (b)	0.9	0.9						0.0750	0.2500

Tabla 18.

Combinaciones de resistencia ultima, estructuras DES.

anionas				Ca	rga	S			
laciones	D	SD	L	Lr	G	Le	W	Ex	Ey
Ι	1.40	1.40							
II. (a)	1.20	1.20	1.60						
II. (b)	1.20	1.20	1.60						
II. (c)	1.20	1.20	1.60						
III. (a)	1.20	1.20	1.00						
III. (b)	1.20	1.20							
III. (c)	1.20	1.20	1.00						
III. (d)	1.20	1.20							
III. (e)	1.20	1.20	1.00						
III. (f)	1.20	1.20							
IV. (a)	1.20	1.20	1.00						
IV. (b)	1.20	1.20	1.00						
IV. (c)	1.20	1.20	1.00						
V. (a)	1.20	1.20	1.00					0.20	0.06
V. (b)	1.20	1.20	1.00					0.06	0.20
VI	0.90	0.90							
VII. (a)	0.90	0.90						0.20	0.06
VII. (b)	0.90	0.90						0.06	0.20
	I II. (a) II. (b) II. (c) III. (a) III. (b) III. (c) III. (d) III. (d) III. (e) III. (f) IV. (a) IV. (b) V. (a) V. (b) VI VII. (a) VII. (b)	D I 1.40 II. (a) 1.20 II. (b) 1.20 II. (c) 1.20 II. (c) 1.20 II. (c) 1.20 III. (a) 1.20 III. (c) 1.20 IV. (a) 1.20 IV. (a) 1.20 IV. (a) 1.20 IV. (b) 1.20 IV. (b) 1.20 IV. (b) 1.20 V. (a) 1.20 V. (a) 1.20 V. (a) 1.20 V. (b) 0.90 VII. (a) 0.90	D SD I 1.40 1.40 I. (a) 1.20 1.20 II. (b) 1.20 1.20 II. (b) 1.20 1.20 II. (c) 1.20 1.20 III. (a) 1.20 1.20 III. (b) 1.20 1.20 III. (c) 1.20 1.20 IV. (c) 1.20 1.20 IV. (a) 1.20 1.20 IV. (b) 1.20 1.20 IV. (c) 1.20 1.20 IV. (c) 1.20 1.20 IV. (b) 1.20 1.20 V. (a) 1.20 1.20 V. (a) 1.20 1.20 V. (b) 1.20 1.20 V. (a) 1.20 1.20 V. (b) 1.20	D SD L I 1.40 1.40 I. (a) 1.20 1.20 1.60 II. (a) 1.20 1.20 1.60 II. (b) 1.20 1.20 1.60 II. (c) 1.20 1.20 1.60 II. (c) 1.20 1.20 1.60 III. (c) 1.20 1.20 1.00 IV. (a) 1.20 1.20 1.00 IV. (a) 1.20 1.20 1.00 V. (a) 1.20 1.20 1.00 V. (a) 1.20 1.20 1.00	D SD L Lr I 1.40 1.40 1.40 II. (a) 1.20 1.20 1.60 II. (b) 1.20 1.20 1.60 II. (c) 1.20 1.20 1.60 II. (c) 1.20 1.20 1.60 III. (c) 1.20 1.20 1.00 IV. (a) 1.20 1.20 1.00 IV. (a) 1.20 1.20 1.00 V. (a) 1.20 1.20 1.00 V. (a) 1.20 1.20 <td>Image: point of the system of the s</td> <td>Parametric biaseImage: sector biaseImage: sector biaseImage: sector biaseImage: sector biaseI1.401.401.401.40I.40I.40II. (a)1.201.201.60I.40I.40II. (b)1.201.201.60I.4I.4II. (c)1.201.201.60I.4I.4III. (c)1.201.201.00I.4I.4III. (c)1.201.201.00I.4I.4IV. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.20</td> <td>DescriptionSDLLrGLeWI1.401.401.401.401.40VVII. (a)1.201.201.60VVVVII. (b)1.201.201.60VVVVII. (c)1.201.201.00VVVVVIII. (c)1.201.201.00VVVVVVIII. (c)1.201.201.00VV</td> <td>DescriptionSDLLrGLeWExI1.401.401.401.401.40I.40I.40I.40I.40I.40II. (a)1.201.201.60I.40I.40I.40I.40I.40I.40I.40II. (b)1.201.201.60I.40I.40I.40I.40I.40I.40I.40I.40II. (c)1.201.201.00I.40</td>	Image: point of the system of the s	Parametric biaseImage: sector biaseImage: sector biaseImage: sector biaseImage: sector biaseI1.401.401.401.40I.40I.40II. (a)1.201.201.60I.40I.40II. (b)1.201.201.60I.4I.4II. (c)1.201.201.60I.4I.4III. (c)1.201.201.00I.4I.4III. (c)1.201.201.00I.4I.4IV. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.201.201.00I.4I.4V. (a)1.20	DescriptionSDLLrGLeWI1.401.401.401.401.40VVII. (a)1.201.201.60VVVVII. (b)1.201.201.60VVVVII. (c)1.201.201.00VVVVVIII. (c)1.201.201.00VVVVVVIII. (c)1.201.201.00VV	DescriptionSDLLrGLeWExI1.401.401.401.401.40I.40I.40I.40I.40I.40II. (a)1.201.201.60I.40I.40I.40I.40I.40I.40I.40II. (b)1.201.201.60I.40I.40I.40I.40I.40I.40I.40I.40II. (c)1.201.201.00I.40

Tabla 19.

Combinaciones estado límite de servicio estructura DMO.

Combin	agionas	Cargas de servicio											
Combin	aciones	D	SD	H	F	L	Т	Lr	G	Le	W	Ex	Ey
B.2.3-1	Ι	1	1										
B.2.3-2	II	1	1										
	III. (a)	1	1										
B.2.3-3	III. (b)	1	1										
	III. (c)	1	1										
	IV. (a)	1	1										
	IV. (b)	1	1										
B.2.3-4	IV. (c)	1	1										
	IV. (d)	1	1										
	IV. (e)	1	1										
	IV. (f)	1	1										
B.2.3-5	V	1	1										
D 2 2 6	VI. (a)	1	1									0.175	0.053
D.2.3-0	VI. (b)	1	1									0.053	0.175
	VII.(a)	1	1										
B.2.3-7	VII.(b)	1	1										
	VII.(c)	1	1										
	VIII.(a)	1	1									0.131	0.039
	VIII.(b)	1	1									0.039	0.131
D 2 2 0	VIII.(c)	1	1									0.131	0.039
D.2.3-8	VIII.(d)	1	1									0.039	0.131
	VIII.(e)	1	1									0.131	0.039
	VIII.(f)	1	1									0.039	0.131
B.2.3-9	IX	0.6	0.6										
D 2 2 10	X.(a)	0.6	0.6									0.175	0.053
В. 2.3-10	X.(b)	0.6	0.6									0.053	0.175

Tabla 20.

Combinaciones estado límite de servicio estructura DES.

Combin	agianas	Cargas de servicio											
Combin	aciones	D	SD	H	F	L	Т	Lr	G	Le	W	Ex	Ey
B.2.3-1	Ι	1	1										
B.2.3-2	II	1	1										
	III. (a)	1	1										
B.2.3-3	III. (b)	1	1										
	III. (c)	1	1										
	IV. (a)	1	1										
	IV. (b)	1	1										
D 2 2 4	IV. (c)	1	1										
D.2.3-4	IV. (d)	1	1										
	IV. (e)	1	1										
	IV. (f)	1	1										
B.2.3-5	V	1	1										
D 2 2 6	VI. (a)	1	1									0.140	0.042
D.2.3-0	VI. (b)	1	1									0.042	0.140
	VII.(a)	1	1										
B.2.3-7	VII.(b)	1	1										
	VII.(c)	1	1										
	VIII.(a)	1	1									0.105	0.032
	VIII.(b)	1	1									0.032	0.105
P 2 3 8	VIII.(c)	1	1									0.105	0.032
D.2.3-0	VIII.(d)	1	1									0.032	0.105
	VIII.(e)	1	1									0.105	0.032
	VIII.(f)	1	1									0.032	0.105
B.2.3-9	IX	0.6	0.6										
B 2 3-10	X.(a)	0.6	0.6									0.140	0.042
B.2.3-10	X.(b)	0.6	0.6									0.042	0.140

6.2.Diseño de losa de entrepiso

En esta sección se presenta el resumen de los parámetros y cálculos realizados para el diseño de las losas de entrepiso. En el Apéndice D se muestra el procedimiento completo del análisis.

6.2.1.Materiales

Resistencia a la compresión del concreto usado:	28 MPa
Resistencia a la fluencia del acero usado:	420 MPa

6.2.2.Recubrimiento

El recubrimiento usado para el diseño de las placas macizas de la estructura bajo estudio es igual a 25 mm, garantizando el cumplimiento de la sección C.7.7.1 de NSR-10.

6.2.3. Combinaciones de diseño

La losa de entrepiso se diseña como un elemento estructural de transmisión de cargas verticales. Las combinaciones de diseño que fueron utilizadas son:

Combinación 1: 1.4 Carga Peso propio +1.4 Carga Sobreimpuesta.

Combinación 2: 1.2 Carga Peso propio +1.2 Carga Sobreimpuesta+1.6 Carga Viva.

6.2.4. Verificación de deflexiones y definición de espesores

Las placas que componen la edificación bajo estudio tienen un espesor de 0.125 m en la zona de apartamentos y 0.15m en las zonas comunes (pasillos). En la Figura 13, se muestran las zonas de apartamentos en color gris y las zonas comunes en azul.

Figura 13.

Identificación de espesores de placa de la edificación bajo estudio.

6.2.5.Diseño a flexión

Refuerzo mínimo por retracción.

Teniendo en cuenta lo descrito en C.7 de NSR-10, la cuantía mínima de refuerzo, $\rho_{\text{Retracción}}$, es de 0.0018. Tomando un ancho aferente de diseño de un metro se calcula el área mínima de refuerzo mediante la ecuación As_{Retracción} = $\rho_{\text{Retracción}}$ b h , donde *b* es el ancho aferente y *h* la altura total de la placa. El área mínima de refuerzo para las alturas de placa de 0.125m y 0.15m es de 2.25 cm²/m y 2.70 cm²/m, respectivamente.

Una vez calculada el área mínima de refuerzo se busca una distribución que satisfaga las áreas encontradas. En la Tabla 21 se encuentra la configuración seleccionada para el refuerzo de la placa.

Tabla 21.

Distribución y área de refuerzo suministrado a las placas de entrepiso.

Espesores	Diámetro de la Varilla	Separación	AsminSuministrado	
m	φ	m	cm²/m	
0.125	7mm	0.15	2.57	
0.125	1 φ7.00 mm C/.15+1 φ 3/8" C/.15	0.15	4.94	
0.150	7.5mm	0.15	2.95	

Refuerzo por solicitaciones a flexión.

Para el diseño por flexión de la placa de entrepiso se calcularon los momentos máximos resistentes para las distribuciones de refuerzo indicadas en la Tabla 21. Estos se compararon con las solicitaciones de momentos obtenidas de las combinaciones de diseño (Apéndice D). En los casos donde el refuerzo base (Tabla 21) no superaba la demanda de momento, se suministró refuerzo adicional hasta satisfacer dichas condiciones. En la Tabla 22 se listan los momentos resistentes y de diseño usados en el diseño de las losas.

Tabla 22.

Momentos de diseño y momentos resistentes placas de entrepiso.

Espesor	Refuerzo Suministrado	Momento Resistente	Momento de diseño		
m		kN-m/m	kN-m/m		
0.125	1 φ7.00 mm C/.15	9.48	7.40		
0.125	1 $\phi7.00$ mm C/.15+1 ϕ 3/8" C/.15	18.30	14.5		
0.15	1 φ 7.50 mm C/.15	13.63	8.50		

6.2.6.Diseño a cortante

Para el diseño a cortante de la losa de entrepiso se dio cumplimiento a las especificaciones dadas en C.11.2 de NSR-10. Se revisó que las solicitaciones por cortante no superaran la resistencia nominal a cortante del concreto, $\phi V_c = \phi 0.17\lambda \sqrt{f'_c}$ b d. En esta expresión, *b* es el ancho aferente y *d* es la distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción. Para las alturas de placa de 0.125m y 0.15m, ϕV_c es igual a 67.47 kN/m y 84.33 kN/m, respectivamente, mientras que las fuerzas cortantes obtenidas del análisis son de 19.6 kN/m y 15.13 kN/m (Apéndice D), respectivamente. Por lo tanto, se garantiza que las placas de entrepiso no requieren refuerzo para resistir cortante.

6.2.1.Diseño de los elementos colectores

En esta sección se presenta el resumen de los parámetros y cálculos realizados para el diseño de los elementos colectores de las losas de entrepiso. En el Apéndice D se muestra el procedimiento completo del análisis.

Los elementos colectores fueron diseñados como elementos de transferencia de carga desde el diafragma hacia los muros de la edificación, sometidos a solicitaciones de tensión y compresión. El diseño se realizó teniendo en cuenta lo descrito en la sección A.3.3.9 de NSR-10, donde se establece que las conexiones entre elementos deben ser calculados para fuerzas sísmicas de diseño obtenidas a partir de la expresión $E = \frac{\Omega o F_S}{R} \pm 0.5A_a F_a D$, donde Fs corresponde a las fuerzas sísmicas obtenidas del análisis, R es el coeficiente de capacidad de disipación de energía correspondiente al sistema estructural de resistencia sísmica y D corresponde a la carga muerta que actúa sobre el elemento.

El cálculo de la fuerza sísmica Fs, se realizó a través del método fuerza horizontal equivalente y fue asignada como carga lineal al diagrama como se muestra en la Figura 14.

Como criterio se asumieron elementos colectores con sección transversal de .30x0.125, garantizando que el esfuerzo en los elementos no superan el límite establecido en la sección C.21 de NSR-10 (0.20 f°c), y se verifico que el refuerzo asignado satisficiera las fuerzas de compresión y tensión a las que estaban sometidos para las combinaciones de diseño B.2.4.5 y B.2.4.9.

En el Apéndice D se presenta a manera de ejemplo el cálculo detallado de uno de los elementos colectores de las estructuras bajo estudio.

Figura 14.

Asignación de cargas sísmicas a la estructura bajo estudio para diseño de elementos colectores (a) Dirección X (b) Dirección Y.

6.2.2. Chequeo de deflexiones

Teniendo en cuenta lo descrito en el capítulo C.9.5 de NSR-10, los elementos de concreto reforzado sometido a flexión deben diseñarse para que tengan una rigidez que evite deflexiones que puedan afectar el funcionamiento de la estructura. Por tal razón, se realiza el chequeo de deflexiones en las losas macizas de la estructura bajo estudio, dando cumplimiento a lo descrito en la sección C.9.5.3 de NSR-10.

La deflexión se chequea estimando que las losas de entrepiso y cubierta soportan y están ligado a elementos no estructurales susceptibles a sufrir daño debido a grandes deflexiones, situación para la cual se establece un límite igual a $\delta_{maxima} = L/480$. En la Tabla 23 y Tabla 24 se muestra el resumen de resultados obtenidos para las deflexiones inmediatas, para la losa de entrepiso de 0.125m y 0.15m, respectivamente.

Tabla 23.

Deflexiones inmediatas placa de entrepiso espesor 0.125m.

D	eflexión Δ1		D	eflexión Δ2		Deflexión Δ3			
$\Delta_1 = \Delta_D + \Delta_{SD} + \Delta_L$			Δ_{i}	$_2 = \Delta_{\rm D} + \Delta_{\rm SD}$		$\Delta_3 = \Delta_D$			
MA	5.68	kN-m	MA	4.36	kN-m	M _A	2.16	kN-m	
$(Mcr/M_A)^3$	0.709	kN-m	$(M_{cr}\!/M_A)^{3}$	1.57	kN-m	$(Mcr/M_A)^3$	12.89	kN-m	
Ie	11,967.31	cm^4	Ie	24,660.62	cm^4	Ie	192,094.59	cm^4	
Ι	11,967.31	cm^4	Ι	16,276.04	cm^4	Ι	16,276.04	cm^4	
I/Ig	0.74		I/Ig	1.00		I/Ig	1.00		
Δ1	2.29	mm	Δ2	1.30	mm	Δ3	0.64	mm	

Tabla 24.

Deflexiones inmediatas placa de entrepiso espesor 0.15m.

De	eflexión Δ1		De	eflexión Δ2		Deflexión Δ3			
$\Delta_1 = \Delta_D + \Delta_{SD} + \Delta_L$			Δ_2	$z = \Delta_D + \Delta_{SD}$		$\Delta_3 = \Delta_D$			
MA	6.42	kN-m	MA	5.03	kN-m	M _A	2.72	kN-m	
$(Mcr/M_A)^3$	1.439	kN-m	$(M_{cr}\!/M_A)^{\textbf{3}}$	2.99	kN-m	$(Mcr/M_A)^3$	18.92	kN-m	
Ie	39,288.18	cm^4	Ie	78,659.05	cm^4	Ie	483,695.43	cm ⁴	
Ι	28,125.00	cm^4	Ι	28,125.00	cm^4	Ι	28,125.00	cm^4	
I/Ig	1.00		I/Ig	1.00		I/Ig	1.00		
$\Delta 1$	1.10	mm	$\Delta 2$	0.86	mm	Δ3	0.47	mm	

Teniendo en cuenta lo descrito en la tabla C.9.5 (b) de NSR-10, la deflexión evaluada es la que ocurre después de la unión de los elementos no estructurales (suma de la deflexión a largo plazo debido a todas las cargas permanentes después de unir los elementos no estructurales y la deflexión inmediata debida a cualquier carga viva adicional). En la Tabla 25 se muestran los valores de deflexión a largo plazo obtenidos durante el análisis.

Tabla 25.

Deflexión a largo plazo-losa de entrepiso, espesor 0.125m.

Deflexión carga viva inmediata	ΔL	1.00	mm
Deflexión carga muerta largo plazo	ΔP	2.29	mm
Deflexión Carga peso propio inmediata	ΔPP	0.64	mm
Deflexión largo plazo	ΔΤ	2.65	mm

Tabla 26.

Deflexión a largo plazo- losa de entrepiso, espesor 0.15m.

Deflexión carga viva inmediata	ΔL	0.24	mm
Deflexión carga muerta largo plazo	ΔP	1.54	mm
Deflexión Carga peso propio inmediata	ΔPP	0.47	mm
Deflexión largo plazo	ΔT	1.31	mm

6.3.Diseño de muros estructurales

6.3.1.Geometría

Esta sección contiene el predimensionamiento de los muros estructurales. Teniendo en cuenta que estos elementos fueron diseñados para dos capacidades de disipación de energía, en adelante se usa la siguiente nomenclatura para su distinción:

- Edificación/Estructura/Muros DES: Edificación en la cual los elementos que hacen parte del sistema de resistencia sísmica fueron diseñados con capacidad de disipación de energía especial.

- Edificación/Estructura/Muros DMO: Edificación en la cual los elementos que hacen parte del sistema de resistencia sísmica fueron diseñados con capacidad de disipación de energía moderada.

Los muros de las edificaciones DES y DMO tienen la misma geometría puesto que sus dimensiones en planta [longitud (Lw) y espesor (tw)] fueron seleccionadas con el fin de cumplir con el límite máximo de deriva. Como se discutió en la metodología, los valores de deriva obtenidos en cada caso son independientes de la capacidad de disipación de energía seleccionada para el diseño. Para garantizar el comportamiento como muro estructural de los elementos verticales que conforman las edificaciones bajo estudio, se siguieron los criterios dados en la tabla CR21.9.1 de NSR-10, tales como relación de aspecto en el plano del muro (hw/Lw) y relación de aspecto de la sección transversal horizontal (Lw/tw) mostradas en la Tabla 27.
Tabla 27.

	Re	laciói	ı de	aspecto	en el	pland	o del	muro	y en	la sección	transversal	horizontal.
--	----	--------	------	---------	-------	-------	-------	------	------	------------	-------------	-------------

	Estruct	ura DM() y DES		
Nomenclatura	Longitud, Lw	Altura	Espesor, tw	Hw/Lw	Lw/tw
	m	m	m		
V.1.1	6.95	37.5	0.25	5.396	27.8
V.2.1	3.1	37.5	0.2	12.097	15.5
V.3.1	3.3	37.5	0.2	11.364	16.5
V.4.1	3.1	37.5	0.2	12.097	15.5
V.5.1	2.35	37.5	0.2	15.957	11.75
V.6.1	1.9	37.5	0.2	19.737	9.5
V.7.1	6.5	37.5	0.2	5.769	32.5
H.1.1	1.7	37.5	0.2	22.059	8.5
H.2.1	1.7	37.5	0.2	22.059	8.5
H.3.1	5.6	37.5	0.2	6.696	28
H.4.1	5.6	37.5	0.25	6.696	22.4
H.5.1	4.2	37.5	0.2	8.929	21
H.6.1	4.2	37.5	0.2	8.929	21
H.7.1	4.2	37.5	0.2	8.929	21

En cumplimiento con lo descrito en C.11.9.3 de NSR-10, se verificó que las dimensiones en planta de los muros estructurales garantizaran que el cortante último V_u sea inferior al cortante máximo que puede resistir dicha sección, cumpliendo con la relación $V_u \leq$ $0.83\varphi\sqrt{f'_c}$ d h, donde, h, es el espesor del muro, d igual a 0.8 la longitud del muro y φ es igual a 0.75 según C.9.3.2.3 de NSR-10. En la Tabla 28 y Tabla 29, se muestra la verificación realizada para la combinación predominante, presentando el cortante máximo que soporta la sección transversal de los muros tipo de las edificaciones, Vcmax yVu, para el primer nivel de la estructura DMO y DES, respectivamente. Este nivel fue seleccionado porque es el más crítico, ya que tiene las mayores demandas de cortante.

Tabla 28.

Verificación dimensiones muros estructura DMO.

Nivel	Nombre	Combos	Vu (Kn)	Vumax
			kN	kN
				C.11.9.3
Piso 1	V.1.1	Diseño B.2.4.5.B Max	781	4579
Piso 1	V.2.1	Diseño B.2.4.5.B Min	158	1634
Piso 1	V.3.1	Diseño B.2.4.5.B Min	174	1739
Piso 1	V.4.1	Diseño B.2.4.5.B Min	152	1634
Piso 1	V.5.1	Diseño B.2.4.5.B Min	91	1239
Piso 1	V.6.1	Diseño B.2.4.5.B Min	66	1001
Piso 1	V.7.1	Diseño B.2.4.5.B Min	496	3426
Piso 1	H.1.1	Diseño B.2.4.5.A Min	56	896
Piso 1	H.2.1	Diseño B.2.4.5.A Max	56	896
Piso 1	H.3.1	Diseño B.2.4.5.A Min	546	2951
Piso 1	H.4.1	Diseño .2.4.5.A Min	427	3689
Piso 1	H.5.1	Diseño B.2.4.5.B Min	98	2214
Piso 1	H.6.1	Diseño B.2.4.5.A Min	260	2214

Tabla 29.

Nombre	Combos	Vu (Kn)	Vcmax
		kN	kN
			C.11.9.3
V.1.1	Diseño B.2.4.5.B Max	625	4578.604931
V.2.1	Diseño B.2.4.5.B Min	128	1633.80435
V.3.1	Diseño B.2.4.5.B Min	140	1739
V.4.1	Diseño B.2.4.5.B Min	122	1634
V.5.1	Diseño B.2.4.5.B Min	73	1239
V.6.1	Diseño B.2.4.5.B Min	54	1001
V.7.1	Diseño B.2.4.5.B Min	397	3426
H.1.1	Diseño B.2.4.5.A Min	45	896
H.2.1	Diseño B.2.4.5.A Max	45.	896
H.3.1	Diseño B.2.4.5.A Min	438	2951
H.4.1	Diseño B.2.4.5.A Min	342.	3689
H.5.1	Diseño B.2.4.5.A Max	218	2214
H.6.1	Diseño B.2.4.5.A Max	208	2214
	Nombre V.1.1 V.2.1 V.3.1 V.4.1 V.5.1 V.6.1 V.7.1 H.1.1 H.2.1 H.3.1 H.4.1 H.5.1 H.6.1	Nombre Combos V.1.1 Diseño B.2.4.5.B Max V.2.1 Diseño B.2.4.5.B Min V.3.1 Diseño B.2.4.5.B Min V.3.1 Diseño B.2.4.5.B Min V.3.1 Diseño B.2.4.5.B Min V.3.1 Diseño B.2.4.5.B Min V.4.1 Diseño B.2.4.5.B Min V.5.1 Diseño B.2.4.5.B Min V.5.1 Diseño B.2.4.5.B Min V.6.1 Diseño B.2.4.5.B Min V.6.1 Diseño B.2.4.5.B Min V.6.1 Diseño B.2.4.5.B Min V.7.1 Diseño B.2.4.5.B Min H.1.1 Diseño B.2.4.5.A Min H.2.1 Diseño B.2.4.5.A Max H.3.1 Diseño B.2.4.5.A Min H.4.1 Diseño B.2.4.5.A Max H.5.1 Diseño B.2.4.5.A Max	Nombre Combos Vu (Kn) kN v.1.1 Diseño B.2.4.5.B Min 625 V.2.1 Diseño B.2.4.5.B Min 128 V.3.1 Diseño B.2.4.5.B Min 128 V.3.1 Diseño B.2.4.5.B Min 120 V.4.1 Diseño B.2.4.5.B Min 122 V.4.1 Diseño B.2.4.5.B Min 122 V.5.1 Diseño B.2.4.5.B Min 54 V.5.1 Diseño B.2.4.5.B Min 54 V.6.1 Diseño B.2.4.5.B Min 54 V.7.1 Diseño B.2.4.5.B Min 54 V.7.1 Diseño B.2.4.5.A Min 45 H.1.1 Diseño B.2.4.5.A Min 45 H.3.1 Diseño B.2.4.5.A Min 438 H.4.1 Diseño B.2.4.5.A Min 342 H.4.1 Diseño B.2.4.5.A Min 342 H.4.1 Diseño B.2.4.5.A Min 218 H.5.1 Diseño B.2.4.5.A Min 208

Verificación dimensiones muros estructura DES

6.3.2.Diseño a cortante

La verificación por cortante se inició calculando el cortante que soporta el concreto, el cual fue tomado como el menor valor entre las expresiones listadas a continuación:

Sección C.11.9.5 de NSR-10: $V_c = \varphi \ 0.17\lambda \sqrt{f'_c} \ h \ d$

Sección C.11.9.6 (a) de NSR-10: $V_c = \phi 0.27\lambda \sqrt{f'_c} h d + \frac{N_u}{4l_w} d$

Sección C.11.9.6 (a) de NSR-10:
$$V_c = \varphi \left(0.05\lambda \sqrt{f'_c} + \frac{l_w \left(0.1\lambda \sqrt{f'_c} + 0.2 \frac{N_u}{l_w h} \right)}{\frac{M_u}{V_u} \frac{l_w}{2}} \right) h d$$

Luego se calculó el número de capas mínimas de refuerzo requeridas en cumplimiento con lo descrito en C.21.9.2.3 de NSR-10. Si $V_u > \phi 0.17 A_{cv} \lambda \sqrt{f'_c}$ el muro debe llevar como mínimo dos capas de refuerzo. Tomando en cuenta la recomendación y los espesores

manejados en el proyecto, todos los muros estructurales de las edificaciones diseñadas tienen dos capas de refuerzo vertical y horizontal.

Una vez definido el número de capas, se calculó el cortante que aporta el refuerzo horizontal requerido bajo los lineamientos de la sección C.11.1.1 de NSR-10, usando la expresión $V_s = \phi(V_u - V_c)$. Posteriormente se calculó la cuantía mínima de refuerzo transversal a través de los lineamientos listados a continuación:

Una vez realizados los cálculos anteriormente mencionados, se procede a calcular la cuantía mínima de refuerzo transversal a través de los lineamientos listados a continuación:

Sección C.21.9.2.1 de NSR-10: La cuantía de refuerzo horizontal pt no debe ser menor que 0.0025, excepto que si $V_u < 0.083 A_{cv} \lambda \sqrt{f'_c}$ se pueden reducir a los valores requeridos en C.14.3.

Sección 14.3.3 de NSR-10: La cuantía mínima de refuerzo horizontal pt es 0.0020 para barras corrugadas no mayores que la barra N°5 (5/8") con Fy menor que 420 MPa

Sección C.11.9.9.1 *de NSR-10*: $\rho t = V_S / (\phi_c f_y 0.8 l_w t_w)$

Sección C.11.9.8 de NSR-10: Donde $V_u < 0.5 \ \varphi V_c$, pt se proporcionó según lo estipulado en C.11.9 C.14 de NSR-10.

Sección C.21.9.4.1 de NSR-10: $\rho_t = (V_u/A_{cv} - \alpha_c \lambda \sqrt{f'_c})/f_y$, con αc igual a 0.25 para hw/lw \leq 1.5, 0.17 para hw/lw=2.0 y varia linealmente entre 0.25 y 0.17 para hw/lw entre 1.5 y 2.00.

En la Tabla 31 y Tabla 30 se presenta el resumen de las cuantías de refuerzo a cortante calculadas para el primer piso en función de la combinación predominante en el diseño para las estructuras con capacidad DMO y DES respectivamente.

Tabla 30.

Diseño a cortante de muros DMO.

Nivel	Nombre	Combos	Vu (Kn)	ΦVc	Φdbt	ρt
			kN	kN		Requerida
				C.11.9.5		C.21.9.2.1
Story1	V.1.1	diseño b.2.4.7.b max	780.3522	469.522	No3	0.0025
Story1	V.2.1	diseño b.2.4.7.b min	156.3957	191.401	No3	0.002
Story1	V.3.1	diseño b.2.4.7.b min	172.0043	201.283	No3	0.002
Story1	V.4.1	diseño b.2.4.7.b min	149.545	192.812	No3	0.002
Story1	V.5.1	diseño b.2.4.7.b min	90.3719	135.044	No3	0.002
Story1	V.6.1	diseño b.2.4.7.b min	63.6803	118.956	No3	0.002
Story1	V.7.1	diseño b.2.4.7.b min	496.3183	383.601	No3	0.0025
Story1	H.1.1	diseño b.2.4.7.a min	55.591	94.273	No3	0.002
Story1	H.2.1	diseño b.2.4.7.a max	55.5903	94.138	No3	0.002
Story1	H.3.1	diseño b.2.4.7.a min	543.6637	345.389	No3	0.0025
Story1	H.4.1	diseño b.2.4.7.a min	426.1199	374.019	No3	0.0025
Story1	H.5.1	diseño b.2.4.7.a max	272.4637	234.107	No3	0.0025
Story1	H.6.1	diseño b.2.4.7.a max	259.8432	233.414	No3	0.0025

Tabla 31.

Diseño a cortante de muros DES.

Nivel	Nombre	combos	Vu (Kn)	ΦVc	Φdbt	ρt
			kN	kN		C.21.9.2.1
				C.11.9.5		Requerida
Piso 1	V.1.1	Diseño b.2.4.7.b max	624.542	469.604	No3	0.0025
Piso 1	V.2.1	Diseño b.2.4.7.b min	125.6833	191.863	No3	0.002
Piso 1	V.3.1	Diseño b.2.4.7.b min	138.1127	201.699	No3	0.002
Piso 1	V.4.1	Diseño b.2.4.7.b min	120.2846	193.381	No3	0.002
Piso 1	V.5.1	Diseño b.2.4.7.b min	72.4586	135.173	No3	0.002
Piso 1	V.6.1	Diseño b.2.4.5.b min	54.2146	135.917	No3	0.002
Piso 1	V.7.1	Diseño b.2.4.7.b min	397.1079	383.721	No3	0.0025
Piso 1	H.1.1	Diseño b.2.4.7.b min	16.5995	95.678	No3	0.002
Piso 1	H.2.1	Diseño b.2.4.7.b max	16.5989	95.520	No3	0.002
Piso 1	H.3.1	Diseño b.2.4.7.a min	435.7466	345.791	No3	0.0025
Piso 1	H.4.1	Diseño b.2.4.7.a min	341.1319	374.129	No3	0.002
Piso 1	H.5.1	Diseño b.2.4.7.a max	217.9709	234.134	No3	0.002
Piso 1	H.6.1	Diseño b.2.4.7.a max	207.8745	233.437	No3	0.002

6.3.3.Diseño a flexión

El diseño a flexión se determina a través de diagramas de interacción. El refuerzo distribuido en los elementos de borde fue incluido en los cálculos basados en un análisis de compatibilidad de deformaciones. Adicionalmente, se verificó el cumplimiento de los requisitos de cuantía mínima de refuerzo listados a continuación:

Sección C.14.3.2 de NSR-10: La cuantía mínima de refuerzo vertical, pl, es 0.0012 para barras corrugadas no mayores que la barra N°5 (5/8"), 0.0015 para otras barras corrugadas con fy menor que 420 MPa.

Sección C.11.9.9.4 de NSR-10: La cuantía de refuerzo vertical para cortante, ρ l, no debe ser menor que la mayor de $\rho_l = 0.0025 + 0.5(2.5 - h_w/l_w)(\rho_t - 0.0025)$ y 0.0025, pero no necesita ser mayor que ρ t requerida en la Sección C.11.9.9.1, tomando hw y lw como altura y longitud total del muro, respectivamente.

Sección C.21.9.2.1 de NSR-10: La cuantía de refuerzo vertical pl no debe ser menor que 0.0025 excepto que si $V_u < 0.083 A_{cv} \lambda \sqrt{f'_c}$ se pueden reducir a los valores requeridos en C.14.3 de NSR-10.

Sección C.21.9.4.3 de NSR-10: Los muros deben tener refuerzo por cortante distribuido que proporcione resistencia en dos direcciones ortogonales en el plano del muro. Si hw/lw no excede de 2.0, la cuantía de refuerzo longitudinal, ρl, no debe ser menor que la cuantía de refuerzo transversal, ρt.

En la Tabla 32 y Tabla 33 se encuentra el resumen de las cuantías de refuerzo a flexión requeridas para el primer piso, calculadas en función de la combinación predominante en el diseño para las estructura con capacidad DMO y DES, respectivamente. La cuantía de acero suministrada se verifico a través de los diagramas de interacción y la configuración de acero de refuerzo suministrado se muestra en el Apéndice F

Tabla 32.

Diseño a flexión muros DMO.

Φdbl	Nombre	Combos	ρΙ	ρΙ	ρΙ	ρΙ	ρl	ρl _{Muro}
			a)	c)	d)	e)	Flexo.	Req.
			C.11.9.8	C.21.9.2.1	C.21.9.4.3	C.21.9.4.1		
No5	V.1.1	Diseño B.2.4.7.B Max	0.0025	0.0025	0.0025	0.0025	0.0107	0.0107
No4	V.2.1	Diseño B.2.4.7.B Max	0.00314	0.0012	0.0012	0.0012	0.0012	0.0031
No4	V.3.1	Diseño B.2.4.7.B Max	0.0031	0.0012	0.0012	0.0012	0.0016	0.0031
No4	V.4.1	Diseño B.2.4.7.B Max	0.00314	0.0012	0.0012	0.0012	0.0008	0.0031
No3	V.5.1	Diseño B.2.4.7.B Max	0.0034	0.0012	0.0012	0.0012	0.0013	0.0034
No4	V.6.1	Diseño B.2.4.7.B Max	0.0037	0.0012	0.0012	0.0012	0.0012	0.0037
No5	V.7.1	Diseño B.2.4.7.B Max	0.0025	0.0025	0.0025	0.0025	0.0062	0.0062
No4	H.1.1	Diseño B.2.4.7.A Max	0.0038	0.0012	0.0012	0.0012	0.0011	0.0038
No4	H.2.1	Diseño B.2.4.7.A Max	0.0025	0.0012	0.0012	0.0012	0.0011	0.0025
No4	H.3.1	Diseño B.2.4.7.A Max	0.0025	0.0025	0.0025	0.0025	0.0091	0.0091
No5	H.4.1	Diseño B.2.4.7.A Max	0.0025	0.0025	0.0025	0.0025	0.006	0.0059
No4	H.5.1	Diseño B.2.4.7.A Max	0.0025	0.0025	0.0025	0.0025	0.0055	0.0055
No4	H.6.1	Diseño B.2.4.7.A Max	0.0025	0.0025	0.0025	0.0025	0.005	0.0051

Tabla 33.

Diseño a flexión muros DES.

Φdbl	Nombre	Combos	ρΙ	ρΙ	ρΙ	ρl	ρl	ρl _{Muro}
			a)	b)	c)	d)	Flexo	Req.
			C.11.9.8	C.21.9.2.1	C.21.9.4.3	C.21.9.4.1		
No4	V.1.1	Diseño B.2.4.7.B Max	0.0025	0.0025	0.0025	0.0025	0.0075	0.0075
No3	V.2.1	Diseño B.2.4.7.B Max	0.00314	0.0012	0.0012	0.0012	0.0012	0.0031
No3	V.3.1	Diseño B.2.4.7.B Max	0.0031	0.0012	0.0012	0.0012	0.00015	0.0031
No3	V.4.1	Diseño B.2.4.7.B Max	0.00314	0.0012	0.0012	0.0012	0.0012	0.0031
No3	V.5.1	Diseño B.2.4.7.B Max	0.0025	0.0012	0.0012	0.0012	0.00025	0.0025
No3	V.6.1	Diseño B.2.4.7.B Max	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012
No5	V.7.1	Diseño B.2.4.7.B Max	0.0025	0.0025	0.0025	0.0025	0.00355	0.0035
No3	H.1.1	Diseño B.2.4.7.A Max	0.0012	0.0012	0.0012	0.0012	0.00018	0.0012
No3	H.2.1	Diseño B.2.4.7.A Max	0.0012	0.0012	0.0012	0.0012	0.0002	0.0012
No3	H.3.1	Diseño B.2.4.7.A Max	0.0025	0.0025	0.0025	0.0025	0.0054	0.0054
No4	H.4.1	Diseño B.2.4.7.A Max	0.0025	0.0012	0.0012	0.0012	0.0039	0.0039
No4	H.5.1	Diseño B.2.4.7.A Max	0.00293	0.0012	0.0012	0.0012	0.0035	0.0034
No3	H.6.1	Diseño B.2.4.7.A Max	0.00293	0.0012	0.0012	0.0012	0.0031	0.0031

6.3.4.Elementos de borde

Se realizó la verificación de los elementos de borde requeridos por los muros estructurales para las dos capacidades de disipación de energía. En la Tabla 34 se muestran los lineamientos tomados durante el diseño.

Tabla 34.

Comparación de requisitos sísmicos para elementos de borde estructuras DMO y DES.

Descripción	DMO	DES
	C.21.4.4.1 de NSR-10	C.21.9.6.2 (a) de NSR-10
Las zonas de compresión deben ser reforzadas		
con elementos especiales de borde donde: $c \ge \frac{l_w}{600(\frac{\delta_w}{h_w})}$ (C.21-11) Donde c en la ecuación (C.21-11) corresponde a la mayor profundidad del eje neutro calculada para la fuerza axial mayo rada y resistencia nominal a momento congruente con el	El cociente $\frac{\delta_u}{h_w}$ en la ecuación (C.21- 11) de NSR-10 no debe tomarse menor que 0.0035	El cociente $\frac{\delta_u}{h_w}$ en la ecuación (C.21- 11) no debe tomarse menor que 0.007
desplazamiento de diseño δ_u .		
Los muros estructurales deben tener elementos de borde especiales en los bordes y alrededor de las aberturas de los muros estructurales cuando el esfuerzo de compresión máximo de la fibra extrema correspondiente a las fuerzas mayoradas incluyendo los efectos sísmicos	C.21.4.4.2 de NSR-10 sobrepase 0 . 3 <i>f</i> ' _c	C.21.9.6.3 de NSR-10 sobrepase 0 . 2 <i>f</i> ' _c
·		

D	escripción			DMO	DES
Los elementos de	borde especia	ales pueden	ser		
descontinuados	donde el	esfuerzo	de		
compresión calcula	ado sea				

menor que $0.22 f'_c$

menor que $0.15 f'_c$

La separación del refuerzo transversal a lo largo del eje longitudinal del elemento no debe exceder la menor de:

C.21.4.4.3 de NSR-10

Al menos un medio de la dimensión menor del elemento de borde pero no hay necesidad de tomarla menor a 75 mm

C.21.9.6.4 de NSR-10

Al menos un tercio de la dimensión menor del elemento de borde

C.21.3.5.6 (a) de NSR-10 C.21.6.4.3 (b) de NSR-10 Ocho veces el diámetro de la Seis veces el diámetro de barra longitudinal confinada de menor diámetro (8 db)

la barra de refuerzo longitudinal menor (6 db)

C.21.3.5.6 (b) de NSR-10 C.21.6.4.3 (c) de NSR-10

Descripción	DMO	DES
	16 veces el diámetro de la barra del estribo cerrado de confinamiento 150 mm	So, según lo definido en la ecuación: $S_{o} = 100 + \left(\frac{350 - hx}{3}\right)$ So no debe ser mayor a 150 mm y no es necesario tomarlo menor a 100mm
El espaciamiento de los ganchos suplementarios o ramas con estribos de confinamiento rectilíneos dentro de una sección del elemento no debe exceder de:	C.21.3.5.8 de NSR-10 350 mm centro a centro en la dirección perpendicular al eje longitudinal del elemento estructural	C.21.6.4.2 de NSR-10 350 mm centro a centro en la dirección perpendicular al eje longitudinal del elemento estructural
El área total de la sección transversal del refuerzo de estribos cerrados de confinamiento rectangulares A_{sh} , no debe ser menor que la requerida por la ecuación	C.21.3.5.7 de NSR-10 $A_{sh} = 0.06 \frac{sb_c F'_c}{F_{yt}}$ (C.21-3)	C.21.6.4.4 (b) de NSR-10 $A_{sh} = 0.09 \frac{sb_c F'_c}{F_{yt}}$ (C.21-8)
En las secciones con alas, los elementos de bord deben extender por lo menos 300 mm dentro del	e deben incluir el ancho efectivo alma	del ala en compresión y se

En la Tabla 35 se presentan algunas configuraciones de elementos de borde cuyas dimensiones se comparten en las dos estructuras DMO y DES. En esa tabla, L.E.B es la longitud del elemento de borde, Φ dbl hace referencia al diámetro de la varilla longitudinal, Φ e, es el diámetro del estribo usado en el elemento de borde, #R //X y #R //X corresponde al número de ramas paralelas al largo y ancho del muro, respectivamente y S es la separación en altura de los estribos de los elementos.

Tabla 35.

Configuraciones de refuerzo elementos de borde comunes en estructura DMO y DES.

						DES	DMO
Espesor	L. E.B.	Фdbl	Фе	#R	#R	Sep	Sep
m	m			// X	// Y	cm	cm
0.25	0.725	N°5	N°3	6	2	0.05	.10
0.25	0.6000	N°4	N°3	5	2	0.05	.10
0.25	0.6000	N°5	N°3	5	2	0.05	.10
0.20	0.55	N°5	N°3	4	2	0.06	.10
0.20	0.475	N°4	N°3	4	2	0.06	.10
0.2	0.70	N°5	N°3	5	2	0.0625	.10
0.2	0.60	N°4	N°3	5	2	0.0625	.10

6.4.Diseño de cimentación

En esta sección se presenta el resumen de los parámetros y los cálculos realizados para el diseño de la losa de cimentación que hace parte de la edificación bajo estudio. En el Apéndice E, se muestra el procedimiento completo del análisis.

6.4.1.Materiales

Resistencia a la compresión del concreto usado:	28Mpa
Resistencia a la fluencia del acero usado:	420MPa

6.4.2.Recubrimiento

El recubrimiento usado para el diseño de las losas y vigas de cimentación de la estructura bajo estudio es igual a 75 mm, teniendo en cuenta que son elementos en contacto permanente con el suelo (sección C.7.7.1 de NSR-10).

6.4.3.Combinaciones

Las placas de cimentación tienen un espesor de 0.90 m y las vigas tiene una sección transversal de 1.00 x 0.90m. Las losas de cimentación se diseñaron teniendo en cuenta las combinaciones de diseño mostradas en la Tabla 17 y Tabla 18 para la estructura DES Y DMO, respectivamente. La verificación de presiones se realizó teniendo en cuenta lo descrito en el capítulo B de NSR-10, para las combinaciones de servicio presentadas en la Tabla 19 y

Tabla 20 para la estructura DMO Y DES, respectivamente.

6.4.4.Rigidez estática de la cimentación

Para el diseño estructural de la cimentación se tomaron en cuenta los lineamientos descritos en la sección 8.4 de ASCE 41-17. Se calculó la rigidez elástica inicial del suelo de soporte para sus grados de libertad por medio de resortes desacoplados como lo indica la tabla 2-2a de NISTGCR-917-21. Luego se realizó la corrección debido al empotramiento de la cimentación (distancia por debajo de la superficie) tomando las ecuaciones de la tabla 2-2b del NISTGCR-917-21. En la Tabla 36 de este documento se muestra el resumen de la rigidez estática de la cimentación para cada uno de los grados de libertad. En el Apéndice E se encuentran los cálculos detallados para cada uno de los valores presentados en la Tabla 36

Tabla 36.

D' '1	16.1	1					
K191A67	енаянса	ае	ciment	acion	corregiaa	nore	emnotramiento.
1.5.000	ciusiicu	uv	concent		concorne	$p \circ \cdot \cdot$	mp on annonio.

Grados de libertad	Rigidez elástica	corregida
Kx,sur	5899852.253	kN/m
Ky,sur	5988812.061	kN/m
Kz,sur	6854796.09	kN/m
Kxx,sur	770454973.1	kN/m
Kyy,sur	994994055.3	kN/m

Teniendo en cuenta que la losa de cimentación se considera un elemento flexible, se aplican las ecuaciones 2.20-a, 2.21a y 2-21b de NIST GCR 12-917-21. Las cuales incluyen la corrección de la rigidez rotacional. En la Tabla 37 se resumen los cálculos realizados.

Tabla 37.

Corrección de rigidez rotacional, cimentación flexible.

Coeficiente de reacción de la subrasante	kiz	11915.17 kN/m ³
Relación de longitud	Re	0.4
Rocking yy	Rk,yy	2.9735
Roking xx	Rk,xx	3.279

En la Figura 15 se muestra la distribución de los resortes verticales sobre la losa de cimentación, y en la Tabla 38 se muestran los valores de rigidez asignados a cada una de las áreas de la losa. En el perímetro de la losa se asignan resortes perimetrales simulando el suelo alrededor de la losa.

Tabla 38.

Rigidez de los resortes distribuidos en la losa de cimentación.

Fuerzas en los resortes			
Longitud en la esquina	Re*LHz	m	5.23
Longitud en la esquina	Re*LVt	m	4.4
zona	Gris	kN/m³	11915.1679
zona	Amarillo	kN/m³	35429.45467
zona	Azul	kN/m³	39069.13132
zona	Verde	kN/m ³	3

Figura 15.

Distribución de rigidez en el área de cimentación.

6.4.5. Verificación presiones sobre el suelo

Se verificó que las presiones en la losa de cimentación de las dos estructuras bajo estudio, para las combinaciones de servicio mostradas en la Tabla 19 y

Tabla 20, fueran inferiores a la capacidad del suelo del proyecto, 250 kN/m². La presión máxima obtenida del análisis estructural fue 168 kN/m². Durante el análisis se identificó que la combinación que genera los mayores valores de presión solo tiene en cuenta cargas verticales (B.2.3.3 de NSR-10), razón por la cual las dos estructuras bajo estudio presentan la misma distribución de presiones al tener la misma geometría y uso. En la Figura 16 se presenta el diagrama de distribución de presiones obtenido del modelamiento.

Figura 16.

Distribución de presiones en la losa de cimentación.

6.4.6.Diseño a flexión.

Refuerzo mínimo por retracción.

Teniendo en cuenta lo descrito en C.7 de NSR-10, la cuantía mínima de refuerzo, $\rho_{Retracción}$, es de 0.0018. Tomando un ancho aferente de diseño de un metro se calculó el área mínima de refuerzo mediante la ecuación $As_{Retracción} = \rho_{Retracción} b h$, donde b es el ancho aferente y h la altura total de la placa. El área mínima de refuerzo resultante para una altura de placa de 0.90m es de 16.2 cm²/m.

Una vez calculada el área mínima de refuerzo se busca una distribución que satisfaga el área encontrada. En la Tabla 39 se encuentra la configuración seleccionada para el refuerzo de la placa.

Tabla 39.

Distribución y área de refuerzo suministrado a la placa de cimentación.

Espesores	Diámetro de la Varilla	Separación	AsminSuministrado
m	φ	m	cm²/m
0.900	3/4" pulg	0.15	18.9

Refuerzo por solicitaciones a flexión.

Para el diseño por flexión de la placa de cimentación se calcularon los momentos máximos resistentes para las distribuciones de refuerzo indicadas en la Tabla 39. Estos se compararon con las solicitaciones de momentos obtenidas de las combinaciones de diseño (Apéndice E). En los casos donde el refuerzo base (Tabla 39) no superaba la demanda de momento, se suministró refuerzo adicional hasta satisfacer dichas condiciones. En la Tabla 40 se listan los momentos resistentes usados en el diseño de la losa.

Tabla 40.

Momentos resistentes en losa de cimentación.

Espesor	Refuerzo Suministrado	Momento Resistente
m		kN-m/m
0.90	1 φ 3/4" C/.15	580.52
0.90	1 φ 3/4" C/.15+1 φ 5/8" C/.15	969.49
0.90	1 φ 3/4" C/.15+1 φ 3/4" C/.15	1136.96

6.4.7.Diseño a cortante.

Para el diseño a cortante de la losa de cimentación, se dio cumplimiento a las especificaciones dadas en C.11.2 de NSR-10. Se revisó que las solicitaciones por cortante no superaran la resistencia nominal a cortante del concreto, $\phi V_c = \phi 0.17\lambda \sqrt{f'_c}$ b d. En esta expresión, *b* es el ancho aferente y *d* es la distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción. Para la altura de placa de 0.9 m, ϕV_c es igual a 556.6 kN/m, mientras que las demandas máximas de diseño estuvieron entre 214 kN/m -385 kN/m y 214kN/m-470 kN/m para la estructura DMO y DES, respectivamente (Ver Apéndice E). Por lo tanto, se garantiza que las placas de entrepiso no requirieren refuerzo para resistir cortante.

6.4.8.Diseño a flexión vigas de cimentación.

Refuerzo mínimo vigas de cimentación.

Teniendo en cuenta lo descrito en C.10.5.1 de NSR-10, el área mínima por flexión, As_{minimo} , se calculó mediante la ecuación $As_{minimo} = 0.25\sqrt{f'_c}b_w d/f_y \ge 1.4b_w d/f_y$, donde *b*, es el ancho de la viga y *d*, la distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción, encontrando que el área mínima de refuerzo para una sección transversal de 1.00x0.90m es de 27.23 cm².

Una vez calculada el área mínima de refuerzo se buscó una distribución que cumpliera el área exigida. En la Tabla 41 se encuentra la configuración seleccionada para el refuerzo proporcionado a la viga.

Tabla 41.

Distribución y área de refuerzo suministrado a las vigas de cimentación.

Sección	Diámetro de la Varilla	cantidad	AsminSuministrado
transversal	φ	und	cm ²
m			
1.00X.90	7/8" pulg	8	30.96

Refuerzo por solicitaciones a flexión.

Para el diseño por flexión de las vigas de cimentación se calcularon los momentos máximos resistentes (935.73kN-m) para las distribuciones de refuerzo indicadas en la Tabla 41 , y se comparan con los momentos dados por las combinaciones de diseño (Apéndice E). El momento máximo fue 936 kN-m, por lo tanto, el refuerzo mínimo por flexión cumple las demandas requeridas.

6.4.9.Diseño a cortante.

Para el diseño a cortante de las vigas de las losas de cimentación, se dio cumplimiento a las especificaciones dadas en C.11.1.1 de NSR-10, calculando la resistencia al cortante de los elementos mediante la expresión $\phi V_n = \phi V_c + \phi V_s$, donde, Vc, es la resistencia al cortante proporcionada por el concreto calculada siguiendo lo especificado en la sección C.11.2 de NSR-10, mediante la expresión, $\phi V_c = \phi 0.17\lambda \sqrt{f'_c}$ b d, donde *b*, es el ancho, *d*, la distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción y Vs, la resistencia al cortante calculada teniendo en cuenta lo descrito en C.11.4.7 y C.11.4.6.3 de NSR-10, mediante la expresión $V_s = A_v f_y d/s$, donde, Av, es el área de refuerzo para cortante dentro del espaciamiento S, mayor a $0.062 \sqrt{f'_c} b_w S/f_y$ y $0.35 b_w S/f_y$. Teniendo una sección transversal de viga 1.00X0.90m con recubrimiento de 0.075m y un estribo cerrado de diámetro de 3/8" con cuatro ramas adicionales del mismo diámetro separados cada 0.20 m, se obtiene una resistencia por cortante de 915.4 kN Dado que el mayor valor de la demanda de cortante fue de 355 kN y 310 kN para DMO y DES, respectivamente, se considera que el diseño es satisfactorio. Los cálculos detallados se muestran en el Apéndice E.

7. Etapa 3: Análisis estático no lineal

En esta sección se define las características de las edificaciones bajo estudio y se presentan los parámetros usados para la realización del análisis no lineal.

7.1.Normativas de referencia

El análisis no lineal de la estructura bajo estudio se realizó siguiendo los lineamientos del Seismic Evaluation and Retrofit of Existing Buildings ASCE 41-17, el Reglamento colombiano de construcción sismo resistente NSR-10 (ley 400 de 1997 – modificada ley 1229 de 2008, decreto 19 de marzo de 2010, decreto 092 del 17 de enero de 2011) y el documento Recomendaciones para requisitos sísmicos de estructuras diferentes de edificaciones AIS 180-13.

7.1. Descripción de las estructuras bajo análisis

7.1.1.Descripción general

Para el análisis no lineal se tomaron las estructuras diseñadas en el capítulo 5. Se continuó usando la misma nomenclatura para su distinción, donde:

Edificación/Estructura/Muros DES: Edificación en la cual los elementos que hacen parte del sistema de resistencia sísmica fueron diseñados con capacidad de disipación de energía especial.

Edificación/Estructura/Muros DMO: Edificación en la cual los elementos que hacen parte del sistema de resistencia sísmica fueron diseñados con capacidad de disipación de energía moderada.

7.1.2. Tipo de edificio

Teniendo en cuenta el sistema de resistencia sísmica, configuración de la placa de entrepiso y propiedades de los materiales estructurales, las edificaciones se clasificaron como tipo C2, según lo establecido en sección 3.1 tabla 3-1 del ASCE 41-17.

7.1.3.Objetivos de desempeño

Categoría de riesgo

Teniendo en cuenta el uso, riesgo para la vida humana y el impacto socioeconómico que pueden llegar a tener las estructuras estudiadas, se les asignó una categoría de riesgo II, en concordancia con la tabla 1.5-1 de ASCE 7-10.

Nivel de sismicidad

En la sección 2.5 del ASCE 41-17 se establecen cuatro niveles de sismicidad (alto, moderado, bajo o muy bajo) en función de los parámetros y características del sitio donde se encuentran ubicadas las estructuras bajo análisis. Teniendo en cuenta la tabla 2-4 del ASCE 41-17, las estructuras bajo análisis se clasificaron con nivel de sismicidad alto. La clasificación se hizo en función de los parámetros mostrados en la Tabla 42

Tabla 42

Parámetros para clasificación del nivel de sismicidad estructuras bajo estudio.

Parámetros		Norma de referencia		
Tipo de suelo	D	Estudio de suelos		
Aa	0.20	Tabla A.2.3-2 NSR-10		
Av	0.20	Tabla A.2.3-2 NSR-10		
Fa	1.40	Tabla A.2.4-3 NSR-10		
Fv	1.20	Tabla A.2.4-4 NSR-10		
S 1	0.36	Ecuaciones B.3-1AIS 180-13		
SS	0.75	Ecuaciones B.3-2 AIS 180-13		
SDS	0.70	Ecuaciones 2-4 ASCE 41-17		
SD1	0.48	Ecuaciones 2-5 ASCE 41-17		

Nivel de desempeño de la estructura

Teniendo en cuenta la categoría de riesgo y el nivel de amenaza sísmica, se obtuvo como nivel de desempeño de las estructuras *Life Safety (Seguridad a la vida)*, tal y como se estipula en tablas 2-2 y sección 2.3.3 del ASCE 41-17.

7.2.Materiales.

7.2.1.Concreto:

Criterio de análisis

En las curvas esfuerzo-deformación de los concretos (confinado y no confinado) se desprecia la resistencia a tensión, simulando secciones fisuradas en los elementos estructurales.

Concreto No Confinado

Para definir la curva esfuerzo deformación del concreto no confinado se tomaron en cuenta los siguientes parámetros:

-Resistencia máxima a la compresión (f'c): 28 MPa

-Deformación unitaria en f'c: 0.002

-Deformación unitaria máxima: 0.006

-Módulo de elasticidad: 24870 MPa, calculado con la expresión dada en la sección

C.8.5.1 de NSR-10, E = $4700\sqrt{f'_c}$ Mpa.

Concreto Confinado

Para determinar la curva esfuerzo deformación del concreto confinado se usó el modelo de Mander (Mander, Priestly, & Park, 1998), teniendo en cuenta la separación y diámetro del refuerzo longitudinal y transversal de los muros.

En la Figura 17 se muestran las curvas esfuerzo-deformación del concreto confinado y no confinado usado en el modelado en los primeros tres pisos de los muros V1.1. En el Apéndice G se presentan los cálculos realizados para obtener cada curva.

Figura 17.

Curva esfuerzo-deformación concreto confinado muro V.1.1.

7.2.2. Acero de refuerzo:

Los parámetros usados para definir la curva esfuerzo-deformación del acero de refuerzo Grado 60 (Figura 18) se establecieron tomando como referencia el estudio realizado por (Gonzáles, Botero, Rochel, Julián, & Martha, 2005). A continuación, se listan los valores usados en el modelamiento:

-Mínima resistencia a la fluencia, fy: 420 MPa

-Mínima resistencia a la tensión, fu: 581.24 MPa

-Resistencia a la fluencia esperada, fye: 470.30 MPa

-Resistencia a la tensión esperada, fue: 659.74 MPa

-Deformación unitaria al inicio del endurecimiento por deformación: 0.0138

-Deformación unitaria a resistencia máxima: 0.1141

Figura 18.

Curva esfuerzo-deformación Acero de refuerzo.

7.3. Modelamiento análisis no lineal

El análisis no lineal se realizó mediante modelamiento numérico en el software ETABS 2016 (Computer & Structures, Inc, 2016). El modelo computacional se realizó bajo las siguientes consideraciones:

Muros estructurales: Se modelaron como elementos tipo *Shell* despreciando el aporte de rigidez en el eje débil del elemento. Esta consideración se logró asignando un valor de 0.1 al factor de modificación "m22". Debe notarse que esta condición representa un caso crítico para determinar el desempeño sísmico del edificio.

Para considerar una degradación por cortante, teniendo en cuenta que el método de análisis en el software empleado no contempla un deterioro en la rigidez para esta solicitación, se asigna un valor de 0.40 al factor de modificación "f12", de acuerdo con la tabla 10-5 de ASCE/SEI 41-17.

Para incluir los efectos de sección fisurada en el análisis no lineal se desprecia la resistencia a tensión que tiene el concreto, eliminando el aporte en la curva esfuerzodeformación del material.

Para garantizar que los muros se comportaran como secciones rectangulares fueron modelados con dilataciones entre sí, con distancias que varían entre 1 y 2,5 cm.

Rotulas en muros estructurales: Bajo la hipótesis que el comportamiento de los muros estructurales del proyecto están controlados por flexión, se evaluó la respuesta no lineal a través de un modelado de plasticidad distribuida, con interacción fuerza axial-momento flector (P-M) y secciones discretizadas en fibras.

Losa de entrepiso: Las losas de entrepiso transmiten cargas verticales, es decir, tienen rigidez finita en su propio plano y rigidez nula para efectos a flexión fuera del plano. Para representar esta hipótesis de diseño, la placa se modeló como un elemento tipo membrana. Con el fin de garantizar la adecuada transmisión de cargas entre la losa y los muros, se emplearon elementos tipo *frame* sin rigidez y masa en las uniones muro-losa (Figura 3).

Apoyos: Los casos bajo estudio se realizaron bajo dos consideraciones:

1. Estructuras con apoyos rígidos tipo empotramiento en la base de los muros estructurales.

2. Estructuras con apoyos flexibles, modelados con elementos tipo resorte en la base de los elementos estructurales de cimentación.

Amortiguamiento: Para los procedimientos lineales estáticos, dinámicos lineales y no lineales, se utilizaron espectros de respuesta amortiguados al 5% para el análisis de todos los edificios bajo estudio.

Efectos P- Δ : En la sección 7.2.6 de ASCE 41-17 se establece la obligatoriedad de considerar los efectos P- Δ en los análisis no lineales. Con el objetivo de identificar la

afectación que tienen los efectos en la estructura, se realizó una comparación de las curvas de capacidad entre los modelos con y sin efectos $P-\Delta$.

7.4.Patrón de carga análisis no lineal

7.4.1.Componente gravitacional en el análisis no lineal.

Dando cumplimiento a la sección 7.2.2 de ASCE 41-17, en el análisis no lineal de las estructuras bajo estudio se consideraron las acciones causadas por cargas gravitatorias (QG) calculadas mediante la expresión:

$$Q_G = Q_D + Q_{SD} + Q_L$$

Donde

 Q_D = Acción causada por cargas muertas.

 Q_{SD} = Acción causada por cargas sobreimpuestas.

 Q_L = Acción causada por el 25% de la carga viva.

En la Figura 19 se muestra la definición de las cargas gravitatorias en el software usado para realizar el análisis.

Figura 19.

Definición de cargas gravitacionales.

Load Case Type Nonlinear Static Exclude Objects in this Group Not Applicable Mass Source MeSrc1	Notes
Exclude Objects in this Group Not Applicable	
Mass Source MeSrc1	
ial Conditione	
Zom Initial Conditions Stat from Lingtmand State	
Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included)	
Nonlinear Case	
ads Applied	
Load Tune Load Name Scale Factor	0
Load Pattern DEAD 1	Add
Load Pattern SDEAD 1	Diliti
Load Pattern LIVE 0.25	Delete
ner Parameters	
Modal Load Case Modal ~	
Geometric Nonlinearity Option P-Delta ~	
Load Application Full Load Modify/Show	
Load Application Full Load Modify/Show Results Saved Final State Only Modify/Show	

7.4.2. Patrones de Carga Lateral y nodo de control

Se usó una distribución de cargas laterales proporcional a la forma del modo fundamental para cada dirección (X y Y). En la Figura 20, se muestra la asignación en el software de dicha carga en el sentido X. Dado que el segundo modo de vibración era el de mayor excitación de masa en Y, se asignó esta forma modal en esta dirección como se indica en la Figura 21. El nodo de control se localizó en el centro de masa en el nivel de cubierta del edificio, siguiendo la recomendación en la sección 7.4.3.2.2 de ASCE 41-17.

Figura 20.

Definición carga lateral dirección x.

				Tel Load Application Contro	ol for Nonlinear	Static Analysis		~
Seneral				Load Application Contro				
Load Case Name		PUSHX		O Full Load				
Load Case Type		Nonlinear Static	~	Displacement Control				
Exclude Objects in this O	Group	Not Applicable		Quasi-Static (run as time history)				
Mass Source		MsSrc1	~	Control Directory and				
and Condition				O Use Conjugate Di	solacement			
Zem Initial Conditions	e . 9art from Unetracead	Q ate		Use Monitored Di	splacement			
Continue from Sate	at End of Nonlinear Can	a (Loade at End of Case	ARE Included)	Load to a Monitored	Displacement Mag	nitude of	2 m	
Nonlinear Case	Nonlinear Case GRAVITACIONAL V							
				Monitored Displacement				→ Nod
Loads Applied				DOF/Joint	U1	✓ Story15	~ []	Con
Load Type	Load	Name	Scale Factor	Generalized Disp	ISC Nonlinear Par	ameters		001
Mode	1	1		Quasi-static Parameters				
Mode	1	I		Quasi-static Parameters Time History Type Output Time Stap Stap	V Solut Maxim Maxim	ion Control um Total Steps um Null Steps um trat. Tais Generation	300 100 Yee	[m]
Mode	1	1		Quasi-static Parameters Time History Type Output Time Step Siz	Solution	ion Control um Total Steps um Null Steps vert: To Event Stepping Lumping Tolerance (Relative) ention	300 100 Yes 0.01 Yes	bal
Mode Dther Parameters Modal Load Case	1	Modal		Quasi-static Parameters Time History Type Output Time Step Siz Mass Proportional Di Hiber, Husbes, Tavlo	 Soluti Maxim Maxim Use E Event Use E Event Use T Maxim Maxim 	ion Control um Total Streps um Total Streps vere To Evert Strepping Lumping Tolerance (Relative) ention um Contact-Stiffness Berations um Netoric Rejarion berations	300 100 Yes 0.01 Yes 10 40	
Mode Dther Parameters Modal Load Case Geometric Nonlinearity C	Dition	Modal P-Delta		- Quasi-static Parameters Time History Type Output Time Step Siz Mass Proportional Di Hilber-Hughes-Taylor	s Solut Maxm Maxm Maxm Use E Event Bry Maxm Maxm Naxm Naxm Naxm Naxm Naxm Naxm Naxm N	ten Control In Tabl Stops wert-To-Evert Stopping Lumping Tolerance (Relative) ention um Contarter Stiffness terations um Netento-Rajanon berations in Convergence Tolerance (Relative) ne Search	300 100 Yes 0.01 Yes 10 40 0.0001 Yes	
Mode Dther Parameters Modal Load Case Geometric Nonlinearity C Load Application	1 Dption	Modal P-Detta	۲ ۲ ۲ ۲ Results Saved for Nonli	- Quasi-static Parameters Time History Type Output Time Step Sta Mass Proportional Du Hilber-Hughes-Taylor	e Use E Event Im Use E Im Use R Maar Maar Maar Maar Maar Maar Maar Maa	ion Control In Flad Steps with Teld Steps with Teld Steps with Teld Steps Lumps Telderino Relative) mic Contact Software Steps mic Contact Steps mic Network Relative Internations with Network Relative Internations and Network Relative Internations and Network Relative Internations and Networks Relative Internations	300 100 Yes 0.01 40 40 0.0001 Yes 20 0.1	
Mode Dther Parameters Modal Load Case Geometric Nonlinearity (C Load Application Results Saved	Displacement Control	Modal P-Deta	오 아이 Nonli 같 Results Saved for Nonli	Guasi-static Parameterr Time History Type Output Time Step Siz Mass Proportional Du Hilber-Hughes-Taylor near Static Case	Solution Maxim Be Use E Event Use Live to Maxim Ins S Line S Line S Line S	ion Control Unit 1242 Strep Unit 1268 Strept Unit 1268 Strept Lumps Telenon Relative Institut uni Orostard-Offness Institute United Strept United Strept United Strept Str	300 100 Yes 0.01 Yes 10 40 0.0001 Yes 20 0.1 1.618	
Mode Dther Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved Nonlinear Parameters	Displacement Control Multiple States	Modal P-Deta	Results Saved for Nonli Results Saved Dena State Days	Guasi-static Parameter Time History Type Output Time Step Siz Mass Proportional Di Hiber-Hughes-Taylo near Static Case	Saha Maan Uee Ueet Uee Veet Maan Maan Maan Uee U Maan Uee U Maan Naar Veet Veet Veet Veet Veet Veet Veet Veet	ion Control Unit 1245 Stype Unit 1245 Stype Lange Talenco Real Langers Telenco Real Langers Telenco Real Unition United States Strations uni Line Sanches per Nettion esch Acceptano Telenco Realitye) aech Step Factor	300 100 Yes 0.01 Yes 40 0.0001 Yes 20 0.1 1.519	
Mode Dther Parameters Modal Load Case Geometric Nonlinearty C Load Application Results Saved Nonlinear Parameters	Displacement Control Multiple States User Defined	Modal P-Deta	Results Saved Or Final State Only	Guasi-static Parameterr Time History Type Output Time Site Siz Mass Proportional DI Hitber-Hughes-Taylo near Static Case	Saha Maan Ube Uset Ti Maan Maan Maan Naan Use U Mac June S Line S	ten Control Charles San Mark S	900 100 Ves 001 40 0000 20 20 0.1 1.618	
Node Other Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved Nonlinear Parameters	1 Displacement Control Multiple States User Defined	Modal P-Deta	Presults Saved for Notil Results Saved Prail State Only For Each Stage Monom Number of	Guasi-static Parameterr Time Hatory Type Output Time Skep Siz Mass Proportional Di Hilber-Hughes-Tayto mear Static Case @ Mutple States iaved States 70	Solution Mana Berton The Solution Maar Beadd Use L Maar Lose L Maar Lose L Maar	ten Contral Control Marco Marcol Marco vert To Centrol Reports Langer Glaness Relative and Control Marcol Marcol In Control Marcol Relative In Control Marcol Relative In Control Relative In	200 100 90 90 90 10 40 40 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	
Bode Other Parameters Modal Load Case Geometric Norlinearly (C Load Application Results Saved Honlinear Parameters	1 Daplacement Control Multiple States User Defined	Modal P-Deta	✓ ✓	Quasi-static Parameterr Time History Type Output Time Step Siz Output Time Step Siz Mass Proportional Di Hilber-Hughes-Taylo near Static Case Image: States Saved States Top Saved States	Solution Macrosolution Beneficial	In Addition I Charles I Charles I Charles I I Addition I I Addition I I Additional I I Add Step I Add Step I Add Step I I Add Step I	200 100 101 10 40 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	
Add Other Parameters Modal Load Case Geometric Norlinearty (Load Application Results Saved Nonlinear Parameters	Dotion Diplacement Control Multiple States User Defined	Modal P-Deta	Save postwin	Quasi-static Parameter Time History Type Output Time Sites Sit Mass Proportional Di Hibber-Hughes-Taylo near Static Case Image: States Saved States 100 Displacement horements Only	Solution Macro	ten Grand Charles Stand Market Stand Unter Teleform Stand Unter Teleform Stand Under Stand Charles S	200 100 100 010 10 40 02001 02001 020 01 1049	
Bode Dher Parameters Modal Load Case Geometric Norlinearty C Load Application Results Saved Nonlinear Parameters	1 Displacement Control Multiple States User Defined OK	Modal P-Deta	Save postivi	Guasi-static Parameter Time History Type Output Time Step Siz Mass Proportional DI Hibber-Hughes-Taylo mear Static Case ① Mutple States ③ Mutple States 100 Cancel	 Sold International Solution (Second Solution Solution) Solution (Second Solution Solution) Maximum (Second Solution Solution) Maximum (Second Solution) 	no Grand Control Series Inter To Forth Stageng Little To Brance Bittlen Interno Fallen Interno Interno Fallen Interno Interno Fallen Interno Interno Fallen Interno Interno Fallen Interno Series Ber Fallen Interno Fallen Interno Series Ber Fallen Interno Fallen Interno Interno Fallen Interno Interno Fallen Interno Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Fallen Interno Interno Fallen Interno I	200 700 700 100 10 40 000 000 10 000 10 000 10 10 000 10 10	

Figura 21.

Definición carga lateral dirección y.

.oad Case Data			Load Application	Control for Nonlinear Static Analysis	×			
General				Load Application C	ontrol			
Load Case Name		PUSHY		O Full Load				
Load Case Type		Nonlinear	Static ~	Displacement Control				
Exclude Objects in this (Group	Not Applic	cable	O Quasi-Static (run as time history)				
Mass Source		MsSrc1	~					
				Control Displacem	te Displacement			
Zara Initial Conditions	Out from Uniterest of	and a		O use conjug				
	s - Start from Unstressed :	state		Use Monitor	ed Displacement			
Continue from State	at End of Nonlinear Case	(Loads at Er	d of Case ARE Included)	Load to a Monit	ored Displacement Magnitude of	2 m		
Normi ledi Case		GRAVITA	CIONAL	Monitored Displac	ment	Nodo		
Loads Applied				DOF/Joint	U2 V Story15	Cont		
Load Type	Load N	lame	Scale Factor	General	Nonlinear Parameters			
Other Parameters Modal Load Case		Modal	Results Saved for Nonlinear Stati	Output Time	Use Event-Io-Event Stepping Event Lumping Tolerance (Relative) Use brantion Maximum Constant-Stiffness Iterations Maximum Newton-Raphson Rerations Iteration Concensence Tolerance (Relative)	Yes 0.01 Yes 10 40		
Geometric Nonlinearity (Option	P-Delta	Results Saved	-	Use Line Search Maximum Line Searches per Iteration	Yes 20		
Load Application	Displacement Control		- O Final State Only (Multiple States 	Line Search Acceptance Tolerance (Relative) Line Search Step Factor	0.1		
Results Saved	Multiple States		For Each Stage		> Material Nonlinearity Parameters			
			Minimum Number of Saved State	es /0				
Nonlinear Parameters	User Defined		Maximum Number of Saved Stat	100				
Nonlinear Parameters	User Defined		Maximum Number of Saved Star	tes 100				
Nonlinear Parameters	User Defined		Maximum Number of Saved Sta	tes 100 ment increments Only Cancel	Maximum Total Steps Maximum total steps (per stage if staged construction).			

7.5.Parámetros análisis no lineal

7.5.1.Interacción suelo-estructura

Los efectos de interacción suelo-estructura (Soil Structure Interaction, SSI) deben ser tenidos en cuenta para aquellos edificios en los que un aumento en el periodo fundamental debido a los efectos de la SSI incremente las aceleraciones espectrales. Teniendo en cuenta que el periodo fundamental de la estructura (1.25 s) se encuentra ubicado después de Tc (0.686 s), un incremento del periodo fundamental por los efectos de SSI reduciría las aceleraciones espectrales. Adoptando un diseño conservador no se toman en cuenta todos los componentes de los efectos SSI. Sin embargo, si se incluye el efecto de la flexibilidad de la cimentación como se describe a continuación.

En el modelado del sistema de cimentación se permite realizar suposiciones tales como bases rígidas o flexibles (sección 8.4.5.2, ACI 41-17). Con el fin de observar los efectos de la flexibilidad de la cimentación en las estructuras, fueron realizados dos tipos de modelado: el primero se realizó usando apoyos rígidos tipo empotramiento en la base de los muros estructurales y el segundo con resortes en la base de los elementos estructurales de cimentación, incluyendo la flexibilidad de la cimentación y el suelo según los parámetros expuestos en la sección 6.4 de ASCE 41-17.

7.5.1. Clasificación de los elementos estructurales de la edificación

Los muros estructurales que componen la edificación fueron diseñados como el sistema principal de resistencia a cargas laterales y verticales, requeridos para distribuir las deformaciones laterales en la estructura. Por lo tanto, todos los muros fueron clasificados como componentes estructurales primarios de acuerdo a la sección 7.5.1.1 de ASCE 41-17.

7.5.2. Efectos sísmicos multidireccionales

La sección 9.2.6.1 de ASCE 41-17 especifica que los efectos sísmicos multidireccionales deben ser incluidos concurrentemente en edificios que tengan irregularidades en planta. Dado que las edificaciones bajo estudio no tienen irregularidad en planta, el análisis no lineal se ejecutó para cada dirección de forma independiente. Los efectos de la componente sísmica vertical no se incluyeron en el análisis, dado que las edificaciones bajo estudio no se encuentran dentro de los casos contemplados en la sección 7.2.5.2 de ASCE 41-17.

7.6. Resultados obtenidos del análisis no lineal

7.6.1.Influencia de la flexibilidad de la cimentación y efectos P- Δ .

Como se estableció en la sección 7.3, se realizaron modelos con bases fijas y flexibles, con y sin efectos P- Δ , que fueron analizados en las direcciones X y Y con el fin de evaluar las implicaciones de dichas variaciones en las curvas de capacidad de las edificaciones. Para ello se establecieron los casos de estudio mostrados en la Tabla 43, y los casos de comparaciones de los resultados listados en la Tabla 44.

Tabla 43.

Casos de estudio establecidos en el análisis estático no lineal.

Nomenclatura	Caso de estudio
А	Cimentación flexible con efectos $P\Delta$
В	Cimentación flexible Sin P- Δ
С	Cimentación rígida con efectos P Δ
D	Cimentación rígida Sin P-∆

Tabla 44.

Comparaciones	Nomenclatura
Ι	A vs B
II	C vs D
III	A vs C
IV	B vs D

Comparaciones realizadas de los resultados del análisis estático no lineal.

La comparación general de cada edificio se hizo a partir de las curvas fuerza-deformación de las edificaciones DMO (dirección X Figura 22, dirección Y Figura 23) y DES (dirección X Figura 24, dirección Y Figura 25).

Al contrastar los resultados de los casos con y sin efectos P- Δ (comparaciones I y II), se observa que los casos con efectos P- Δ tienen una afectación post fluencia en los cortantes mayor con respecto a los que no lo consideran, fenómeno reflejado en la pérdida significativa de rigidez y resistencia a medida que se aumenta el desplazamiento. Con relación al punto de desempeño se observó que la mayor variación del cortante tanto en DMO como en DES correspondió al caso I, con porcentajes del 7.1% y 9.2% en dirección X y 4.82% y 5.71% en dirección Y. En cuanto a la rigidez post fluencia se presenta una reducción, aproximada del 240% en dirección X y del 134% en dirección Y, tanto en DMO como en DES. De las comparaciones realizadas se encontró que el porcentaje de variación de las pendientes iniciales (zona elástica) de las curvas no es significativa, encontrando una reducción inferior al 3% en las direcciones y edificaciones bajo análisis.

Con relación a la influencia del tipo de cimentación (comparaciones III y IV), se encontró que el cortante en el punto de desempeño tiene una variación inferior al 3%, mientras que la pendiente post fluencia una diferencia aproximada del 6%, es decir, los resultados encontrados para las dos edificaciones para las comparaciones III y IV no presentan

variaciones significativas en la zona elástica. Sin embargo, en las comparaciones III y IV, se observaron variaciones moderadas en las pendientes iniciales (zona elástica), obteniendo que los modelos con cimentación rígida presentaron mayores valores de pendiente con respecto a los de cimentación flexible, con porcentajes alrededor del 22% en dirección X y del 20% en dirección Y.

De estos resultados se infiere que los efectos P- Δ afectan significativamente en el comportamiento no lineal de las estructuras, especialmente en la zona post-fluencia, mientras que los efectos de la cimentación rígida y flexible no son significativos. Por tal razón, los análisis posteriores (comparación de los puntos de desempeño, patrones de rotulas plásticas y comportamiento de los muros entre las estructuras DMO y DES) se centran en el caso A (Cimentación flexible con efectos P- Δ), para las edificaciones DMO y DES.

Adicionalmente se encontró que los efectos P- Δ , tuvieron la dirección X tanto para la estructura DES como DMO, tuvo mayor afectación

Figura 22.

(a) Curva de capacidad, (b) curva bilineal, estructura DMO, dirección X.
Figura 23.

(a) Curva de capacidad, (b) Curva bilineal, estructura DMO, dirección Y.

Figura 24.

(a) Curva de capacidad, (b) Curva bilineal, estructura DES dirección X.

Figura 25.

(a) Curva de capacidad, (b) Curva bilineal, estructura DES-dirección Y.

7.6.2. Participación de los modos superiores

Según lo descrito en la sección 7.3.2.1 de ASCE 41-17, los efectos de los modos superiores se consideran significativos si el cortante en cualquier piso, resultante de un análisis modal considerando los modos requeridos para obtener una participación de masa del 90%, excede el 130% de cortante de piso correspondiente, considerando solo la respuesta del primer modo de vibración.

En la Tabla 45 se observa que la relación de cortantes en los dos últimos pisos en dirección X y el ultimo en dirección Y, excede el 130%, lo cual implica la influencia de los modos superiores en el análisis de la estructura. Dado que la estructura presenta influencia en los modos superiores y se realizó un análisis lineal dinámico (sección 6.5.2), se permite continuar

con la realización del análisis estático no lineal, tal como se establece en la sección 7.3.2.1 de ASCE 41-17.

Tabla 45.

Influencia de los modos superiores.

	Vx	Vx	Relación	Vy	Vy	Relación
Entrepisos	kN	kN	%	kN	kN	%
	PPM>90%	PPM(1M)	dir X	PPM>90%	PPM(1M)	dir Y
Piso 15	3264.8	2156.7	151.4	3674.2	2655.7	138.3
Piso 14	6351.0	4737.7	134.1	7308.0	5834.8	125.2
Piso 13	8616.1	7061.4	122.0	10110.5	8697.7	116.2
Piso 12	10343.6	9128.8	113.3	12343.6	11245.6	109.8
Piso 11	11734.9	10942.5	107.2	14194.2	13481.4	105.3
Piso 10	12940.9	12507.2	103.5	15798.7	15410.7	102.5
Piso 9	14067.7	13830.1	101.7	17251.6	17042.2	101.2
Piso 8	15175.8	14920.9	101.7	18608.7	18387.9	101.2
Piso 7	16281.8	15792.7	103.1	19890.2	19463.7	102.2
Piso 6	17365.7	16461.8	105.5	21086.6	20289.6	103.9
Piso 5	18382.7	16948.0	108.5	22167.1	20889.9	106.1
Piso 4	19275.6	17274.8	111.6	23088.8	21293.4	108.4
Piso 3	19986.3	17469.4	114.4	23806.6	21533.7	110.6
Piso 2	20467.7	17563.0	116.5	24283.2	21649.0	112.2
Piso 1	20695.0	17590.4	117.6	24501.3	21682.3	113.0

7.6.3. Clasificación del diafragma

Fuerzas horizontales para la clasificación del diafragma

Teniendo en cuenta lo descrito en la sección 7.2.9.1 de ASCE 41-17, los diafragmas se clasifican como flexibles cuando la máxima deformación horizontal del diafragma a lo largo de su longitud sea más del doble del promedio de la deriva de los elementos que hacen parte del sistema de resistencia sísmica del piso inmediatamente debajo del diafragma. El

diafragma es clasificado como rígido donde la máxima deriva lateral del diafragma es al menos la mitad del promedio de la deriva de piso de los elementos del sistema de resistencia sísmica del piso inmediatamente debajo del diafragma. Si el diafragma no es flexible ni rígido se clasifica como semirrígido.

Para clasificar el diafragma se usan las cargas horizontales teniendo en cuenta lo descrito en la sección 7.4.1.3 de ASCE 41-17, usando la expresión:

$$V = C_1 C_2 C_m S_a W$$

Donde:

 C_1 = Factor de modificación para relacionar los desplazamientos inelásticos máximos esperados con los desplazamientos calculados para la respuesta elástica lineal. Para periodos fundamentales mayores de 1.0 s, C1=1.0

 C_2 = Factor de modificación para representar el efecto de la forma de histéresis, la degradación de la rigidez cíclica y el deterioro de la resistencia en la respuesta de desplazamiento máximo. Para períodos fundamentales mayores de 0.7 s, C2 = 1.0

 S_a = Aceleración del espectro de respuesta en el periodo fundamental.

 $C_{\rm m}=$ Factor de masa efectiva para tener en cuenta los efectos de participación de masa modal más altos obtenidos de la Tabla 7-4. Para periodos fundamentales mayores de 1.0 s, $C_m=1.00$

$$C_{vx} = \frac{w_x h_x^{\ k}}{\sum_{i=1}^n w_i h_i^{\ k}}$$

Teniendo en cuenta que tanto la estructura DMO y DES tienen periodos superiores a 1 s, los parámetros C_1 , C_2 , C_3 y C_m se tomaron igual a 1.

La clasificación del diafragma se realizó con los modelos de base flexible con efectos P-Δ. Para el cálculo de la variable W no se tuvo en cuenta el peso de los elementos de la cimentación y se usó el mismo valor (89701 kN) tanto para la estructura DMO como para la DES, puesto que las dos estructuras tienen la misma geometría en planta y en altura, y los elementos estructurales comparten las mismas dimensiones.

Teniendo en cuenta que los muros de las dos edificaciones cuentan con una distribución de refuerzo diferente, las edificaciones no presentaron los mismos periodos de vibración obteniendo valores de 1.39 s y 1.41 s en dirección X y de 1.17 s y 1.22 s en dirección Y para la edificación DMO y DES, respectivamente.

Los datos y las fuerzas pseudo laterales para la clasificación del diafragma se encuentran consignadas en el Apéndice H.

Puntos de clasificación del diafragma

Teniendo en cuenta que la planta de las edificaciones DMO y DES son iguales y comparten los mismos nodos, en la Tabla 46 y la Figura 26 se muestran los puntos donde se evaluaron las deflexiones horizontales del diafragma para las dos edificaciones.

Tabla 46.

Referenciación de nodos usados en la clasificación del diafragma.

А	Esquina inferior izquierda	41	1	Punto medio diafragma izquierda	56
В	Esquina inferior derecha	89	2	Punto medio diafragma derecha	76
С	Esquina superior izquierda	44	3	Punto medio diafragma inferior	66
D	Esquina Superior derecha	92	4	Punto medio diafragma superior	67

Figura 26.

Puntos de referencia clasificación del diafragma.

Clasificación del diafragma estructura DMO

Los resultados de la evaluación del tipo de diafragma se presentan en la Tabla 47 y Tabla 48. Se concluye que el diafragma es semirrígido ("stiff"), teniendo en cuenta lo descrito en 7.2.9.2 de ASCE 41-17. Esta clasificación indica que en el modelo matemático se debe tener en cuenta los efectos de la flexibilidad del diafragma modelándolo como un elemento con rigidez en el plano, es decir, actúa como una unidad y sus propiedades de masa y de rigidez se pueden concentrar en el centro de masa y de rigidez respectivamente.

Tabla 47.

Verificación rigidez del diafragma-análisis en dirección X.

Nivel	Α	В	С	D	1	2	(A+C)/2	(B+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.0135	0.0135	0.0151	0.0134	0.0142	0.0142	0.0143	0.0134	Stiff	Stiff
14	0.0135	0.0135	0.0151	0.0134	0.0142	0.0142	0.0143	0.0134	Stiff	Stiff
13	0.0134	0.0134	0.0150	0.0134	0.0142	0.0142	0.0142	0.0134	Stiff	Stiff
12	0.0133	0.0133	0.0149	0.0132	0.0140	0.0140	0.0141	0.0133	Stiff	Stiff
11	0.0131	0.0131	0.0146	0.0130	0.0138	0.0138	0.0139	0.0130	Stiff	Stiff
10	0.0127	0.0127	0.0143	0.0127	0.0135	0.0135	0.0135	0.0127	Stiff	Stiff
9	0.0122	0.0122	0.0137	0.0122	0.0130	0.0130	0.0130	0.0122	Stiff	Stiff
8	0.0116	0.0116	0.0130	0.0116	0.0123	0.0123	0.0123	0.0116	Stiff	Stiff
7	0.0108	0.0108	0.0121	0.0108	0.0115	0.0115	0.0115	0.0108	Stiff	Stiff
6	0.0099	0.0099	0.0111	0.0098	0.0104	0.0104	0.0105	0.0098	Stiff	Stiff
5	0.0087	0.0087	0.0098	0.0087	0.0092	0.0092	0.0092	0.0087	Stiff	Stiff
4	0.0074	0.0074	0.0083	0.0074	0.0078	0.0078	0.0078	0.0074	Stiff	Stiff
3	0.0059	0.0059	0.0066	0.0058	0.0062	0.0062	0.0062	0.0059	Stiff	Stiff
2	0.0042	0.0042	0.0047	0.0041	0.0044	0.0044	0.0044	0.0042	Stiff	Stiff
1	0.0022	0.0022	0.0024	0.0022	0.0023	0.0023	0.0023	0.0022	Stiff	Stiff

Tabla 48.

Verificación rigidez del diafragma-análisis en dirección Y.

Nivel	Α	В	С	D	3	4	(A+B)/2	(C+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.01046	0.01332	0.01046	0.01332	0.01189	0.01189	0.01189	0.01189	Stiff	Stiff
14	0.01046	0.01332	0.01046	0.01332	0.01189	0.01189	0.01189	0.01189	Stiff	Stiff
13	0.01043	0.01328	0.01043	0.01328	0.01185	0.01185	0.01185	0.01185	Stiff	Stiff
12	0.01034	0.01317	0.01034	0.01317	0.01175	0.01175	0.01175	0.01175	Stiff	Stiff
11	0.01017	0.01296	0.01017	0.01296	0.01157	0.01157	0.01157	0.01157	Stiff	Stiff
10	0.00992	0.01264	0.00992	0.01264	0.01128	0.01128	0.01128	0.01128	Stiff	Stiff
9	0.00957	0.01219	0.00957	0.01219	0.01088	0.01088	0.01088	0.01088	Stiff	Stiff
8	0.00910	0.01159	0.00910	0.01159	0.01034	0.01034	0.01034	0.01034	Stiff	Stiff
7	0.00850	0.01082	0.00850	0.01082	0.00966	0.00966	0.00966	0.00966	Stiff	Stiff
6	0.00777	0.00990	0.00777	0.00990	0.00884	0.00884	0.00883	0.00883	Stiff	Stiff
5	0.00692	0.00880	0.00692	0.00880	0.00786	0.00786	0.00786	0.00786	Stiff	Stiff
4	0.00592	0.00752	0.00592	0.00752	0.00672	0.00672	0.00672	0.00672	Stiff	Stiff
3	0.00477	0.00604	0.00477	0.00604	0.00540	0.00540	0.00540	0.00540	Stiff	Stiff
2	0.00344	0.00435	0.00344	0.00435	0.00389	0.00389	0.00389	0.00389	Stiff	Stiff
1	0.00189	0.00235	0.00189	0.00235	0.00206	0.00206	0.00212	0.00212	Stiff	Stiff

Clasificación del diafragma estructura DES

Los resultados de la evaluación del tipo de diafragma se presentan en la Tabla 49 y Tabla 50. Al igual que en la edificación DMO, se concluye que el diafragma es semirrígido (stiff).

Tabla 49.

Verificación rigidez del diafragma-análisis en dirección X.

Nivel	Α	В	С	D	1	2	(A+C)/2	(B+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.0138	0.0138	0.0155	0.0155	0.0146	0.0146	0.0146	0.0146	Stiff	Stiff
14	0.0138	0.0138	0.0154	0.0154	0.0146	0.0146	0.0146	0.0146	Stiff	Stiff
13	0.0137	0.0137	0.0154	0.0154	0.0145	0.0145	0.0146	0.0146	Stiff	Stiff
12	0.0136	0.0136	0.0152	0.0152	0.0144	0.0144	0.0144	0.0144	Stiff	Stiff
11	0.0134	0.0134	0.0150	0.0150	0.0142	0.0142	0.0142	0.0142	Stiff	Stiff
10	0.0131	0.0131	0.0146	0.0146	0.0138	0.0138	0.0139	0.0139	Stiff	Stiff
9	0.0126	0.0126	0.0141	0.0141	0.0133	0.0133	0.0134	0.0134	Stiff	Stiff
8	0.0120	0.0120	0.0134	0.0134	0.0126	0.0126	0.0127	0.0127	Stiff	Stiff
7	0.0112	0.0112	0.0125	0.0125	0.0118	0.0118	0.0118	0.0118	Stiff	Stiff
6	0.0102	0.0102	0.0114	0.0114	0.0107	0.0107	0.0108	0.0108	Stiff	Stiff
5	0.0090	0.0090	0.0101	0.0101	0.0095	0.0095	0.0095	0.0095	Stiff	Stiff
4	0.0076	0.0076	0.0085	0.0085	0.0081	0.0081	0.0081	0.0081	Stiff	Stiff
3	0.0061	0.0061	0.0068	0.0068	0.0064	0.0064	0.0064	0.0064	Stiff	Stiff
2	0.0043	0.0043	0.0048	0.0048	0.0045	0.0045	0.0045	0.0045	Stiff	Stiff
1	0.0022	0.0022	0.0025	0.0025	0.0023	0.0023	0.0023	0.0023	Stiff	Stiff

Tabla 50.

Verificación rigidez del diafragma-análisis en dirección Y.

Nivel	Α	В	С	D	3	4	(A+B)/2	(C+D)/2	Verif.	Verif.
	Derivas	derivas	derivas	derivas	derivas	derivas	Extremos	Extremos	kN	kN
15	0.0107	0.0136	0.0107	0.0136	0.0121	0.0121	0.0121	0.0121	Stiff	Stiff
14	0.0107	0.0136	0.0107	0.0136	0.0121	0.0121	0.0121	0.0121	Stiff	Stiff
13	0.0106	0.0135	0.0106	0.0135	0.0121	0.0121	0.0121	0.0121	Stiff	Stiff
12	0.0105	0.0134	0.0105	0.0134	0.0120	0.0120	0.0120	0.0120	Stiff	Stiff
11	0.0104	0.0132	0.0104	0.0132	0.0118	0.0118	0.0118	0.0118	Stiff	Stiff
10	0.0101	0.0129	0.0101	0.0129	0.0115	0.0115	0.0115	0.0115	Stiff	Stiff
9	0.0098	0.0124	0.0098	0.0124	0.0111	0.0111	0.0111	0.0111	Stiff	Stiff
8	0.0093	0.0118	0.0093	0.0118	0.0106	0.0106	0.0106	0.0106	Stiff	Stiff
7	0.0087	0.0111	0.0087	0.0111	0.0099	0.0099	0.0099	0.0099	Stiff	Stiff
6	0.0079	0.0101	0.0079	0.0101	0.0090	0.0090	0.0090	0.0090	Stiff	Stiff
5	0.0071	0.0090	0.0071	0.0090	0.0080	0.0080	0.0080	0.0080	Stiff	Stiff
4	0.0060	0.0077	0.0060	0.0077	0.0068	0.0068	0.0068	0.0068	Stiff	Stiff
3	0.0048	0.0061	0.0048	0.0061	0.0055	0.0055	0.0055	0.0055	Stiff	Stiff
2	0.0035	0.0044	0.0035	0.0044	0.0039	0.0039	0.0039	0.0039	Stiff	Stiff
1	0.0019	0.0024	0.0019	0.0024	0.0021	0.0021	0.0021	0.0021	Stiff	Stiff

7.6.1. Verificaciones de estabilidad estructural por efectos P-delta

Teniendo en cuenta lo descrito en la sección 12.8.7 de ASCE 7-10, se verificó que el índice de estabilidad (θ_i) no exceda 0.25 o el máximo coeficiente de estabilidad $\theta_{max} = 0.5/\beta * C_d$, donde, Cd=5; β =1.00. Se realiza el cálculo del índice de estabilidad mediante la ecuación (sección A.6.2.3 de NSR-10):

$$\theta_{i} = \frac{P_{i} \cdot \Delta_{cm}}{V_{i} \cdot h_{pi}}$$

Donde, Pi es la suma de carga gravitacional total que existe en el piso i y todos los pisos localizados por encima, Δ cm es la deriva del piso (i) en la dirección bajo estudio (j) medida en el centro de masa del piso, como la diferencia entre el desplazamiento horizontal del piso i menos el del piso i-I en la misma dirección j.

En el Apéndice I se presenta los cálculos realizados para las estructuras, en las dos direcciones bajo análisis. De los análisis realizados se obtuvo un valor máximo de índice de estabilidad para la estructura DMO de 0.026 y 0.020, para la dirección X y Y, respectivamente, y de 0.027 y 0.021 para dichas direcciones en la estructura DES. Se concluye que las edificaciones cumplen con los límites establecidos en NSR-10.

7.6.2. Verificaciones en la cimentación.

Se realiza la revisión de la capacidad portante y desplazamientos verticales de la cimentación, resultante del análisis no lineal en el momento en el que las estructuras alcanzan el desplazamiento objetivo. El límite establecido en la sección 8.4.1 de ASCE 41-17 para la capacidad portante del suelo es $3q_a$, lo cual se traduce en un valor de 750 kN/m², dado que la capacidad portante del proyecto es de 250 kN/m².

Estructura DMO

En la Figura 27 y Figura 28 se muestran los esfuerzos en cada dirección de análisis, donde se observan valores máximos promedio de esfuerzo de 171 kN/m² para el análisis en la dirección X y valores de 190 kN/m² para la dirección ortogonal. Estos valores son inferiores al esfuerzo máximo (750 kN/m²).

En la Figura 29 y Figura 30 se muestran los diagramas de deformación vertical del suelo, observando que los resortes asignados a la cimentación se encuentran completamente a compresión. Los asentamientos instantáneos máximos fueron 6.3 mm y 6.5 mm luego de ejecutar el análisis en las direcciones X y Y, respectivamente.

Figura 27.

Diagrama de esfuerzo Cimentación DMO, dirección X.

Figura 28.

Diagrama de esfuerzo Cimentación DMO, dirección Y

Figura 29.

Diagrama de deformaciones Cimentación DMO, dirección X

Figura 30.

Diagrama de deformaciones Cimentación DMO, dirección Y

Estructura DES

En la Figura 31 y Figura 32 se muestran los esfuerzos para cada dirección de análisis. Los esfuerzos máximos (170 y 182 kN/m2) para la dirección X y Y son inferiores al límite establecido (750 kN/m²). Al igual que en la estructura DMO, la deformación vertical máxima del suelo (-6.4 mm y -6.5 mm) mostrada en la Figura 33 y Figura 34 indica que el suelo se encuentran completamente a compresión.

Figura 31.

Diagrama de esfuerzo Cimentación DES, dirección X.

Figura 32.

Diagrama de esfuerzo Cimentación DES, dirección Y.

Figura 33.

Diagrama de deformaciones Cimentación DES, dirección X.

Figura 34.

Diagrama de deformaciones Cimentación DES, dirección Y.

7.6.1.Relación de resistencia

Se verificó que la relación de resistencia $\mu_{strength}$ fuera menor a la resistencia μ_{max} , siguiendo lo establecido en la sección 7.3.2.1 de ASCE 41-17.

La relación de resistencia se calculó como $\mu_{strength} = \frac{S_a}{V_y/W}C_m$, donde S_a es la aceleración espectral (sección 2.4.1 y 2.4.2 de ASCE 41-17), V_y es la resistencia a la fluencia calculada usando los resultados del análisis elástico no lineal (sección 7.4.3.2.4), W es el peso sísmico efectivo (sección 7.4.1.3.1) y C_m es el factor de masa efectivo, igual a la unidad cuando el periodo fundamental es igual a 1 s.

La relación de resistencia máxima se calculó mediante las siguientes expresiones

- 1. $\mu_{\max} = \frac{\Delta_d}{\Delta_y} + \frac{|\alpha_e|^{-h}}{4}$
- 2. $h = 1 + 0.15 \ln(T_e)$
- 3. $\alpha_e = \alpha_{P-\Delta} + \lambda (\alpha_2 \alpha_{P-\Delta})$

Donde Δ_d es el menor valor entre el desplazamiento objetivo y el desplazamiento correspondiente al máximo cortante en la base, Δ_y es el desplazamiento en la resistencia efectiva de fluencia, h se calculó con la ecuación [2], T_e es el periodo efectivo y α_e es la pendiente efectiva negativa posterior a la fluencia, $\alpha_{P-\Delta}$ y α_2 son las relaciones de pendientes posterior a la fluencia debida a los efectos P- Δ y los efectos por degradación cíclica, respectivamente.

Teniendo en cuenta que la estructura es de tipo B1N y no presentó degradación cíclica, α_e se tomó igual que $\alpha_{P-\Delta}$.

Del análisis realizado a las edificaciones DMO y DES se obtuvieron los valores de $\mu_{strength}$ y μ_{max} presentados en la Tabla 53. Estos valores fueron calculados a partir de la información mostrada en las Tabla 51 y Tabla 52. La comparación entre $\mu_{strength}$ y μ_{max}

permite concluir que las estructuras cumplen con la condición de la sección 7.3.2.1 de ASCE 41-17 y por lo tanto se avala la aplicabilidad del análisis estático no lineal.

Tabla 51.

Parámetros para el cálculo de relaciones de resistencia, estructura DMO

Direc	ción x	Direc	ción y
∆ d (m)	0.3535	∆ d (m)	0.3298
Δ y (m)	0.0481	Δ y (m)	0.0588
Vd (Kn)	5122.036	Vd (Kn)	7023.026
Vy (kN)	2424.115	Vy (kN)	3371.830
W (Kn)	89701.0094	W (Kn)	89701.0094
Sa (g)	0.3873	Sa (g)	0.4143
Cm	1.00	Cm	1.00
Ke (kN/m)	50365.232	Ke (kN/m)	57291.625
Te (s)	1.558	Te (s)	1.456
h	1.067	h	1.0564
ae	0.0133	ae	0.00524

Tabla 52.

Parámetros para el cálculo de relaciones de resistencia, estructura DES.

Direc	ción X	Direc	ción Y
∆ d (m)	0.369	$\Delta \mathbf{d}$ (m)	0.337
Δ y (m)	0.0513	Δ y (m)	0.0616
Vd (Kn)	4155.61	Vd (Kn)	6200.04
Vy (kN)	2346.09	Vy (kN)	3349.053
W (Kn)	89701.0094	W (Kn)	89701.0094
Sa (g)	0.3685	Sa (g)	0.4035
Cm	1.00	Cm	1.00
Ke (kN/m)	45769.23	Ke (kN/m)	54368.10
Te (s)	1.638	Te (s)	1.495
h	1.074	h	1.0603
ae	0.0149	αe	0.00522

Tabla 53.

Relaciones de resistencia direcciones X y Y, estructura DMO y DES.

E	Structura DM	0	ESTRUCTURA DES				
Parámetros	Dirección X	Dirección Y	Parámetros	Dirección X	Dirección Y		
μ _{strength}	14.33	11.022	$\mu_{strength}$	14.09	10.81		
μ_{max}	32.44	69.80	μ_{max}	30.07	71.29		

8. Etapa 4: Análisis de resultados

8.1.1.Puntos de desempeño (δd) y desplazamiento último (δu)

Para determinar fuerzas, desplazamientos y deformaciones del procedimiento de análisis estático no lineal se aplica el método de los coeficientes definido en la sección 7.4.3.3 ASCE 41-17. El espectro de aceleración utilizado en esta parte se muestra en la Figura 35.

Figura 35.

0.80 ESPECTRO PARA UN COEFICIENTE DE 0.70 AMORTIGUAMIENTO DE 5% DEL CRITICO 0.60 0.50 TL=4.80 - SA=0.10 0.40 م Sa S=0.69 - SA=0.70 0.30 r0=0.14 - SA=0.70 0.20 **T=1.000** 0.10 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 t [s]

A partir de la idealización de la curva de capacidad se obtuvieron puntos de desempeño (δd) en la dirección X de 0.353 m y 0.367 m para la estructura DMO y DES, respectivamente, como se observa en la Figura 36. Los puntos de desempeño en la dirección Y fueron 0.33 m y 0.340 m para la estructura DMO y DES, respectivamente, (Figura 37). Es de notar que la diferencia de los desplazamientos en el punto de desempeño en las direcciones bajo estudio para las dos edificaciones no fue significativa (menor al 6%), sin embargo tras analizar la

Espectro ASCE 7-10.

curva de capacidad completa de las estructuras se observa que la edificación DES presento menores valores de cortante sin embargo su desplazamiento último fue un 38% y 61.5% mayor que la estructura DMO para las direcciones X y Y, respectivamente. Es de notar que la estructura DMO presenta mayores cuantías de refuerzo en los primero pisos a lo que se le atribuye que tenga mayores valores de cortante que la estructura DES, sin embargo sus elementos de borde se suspenden en altura primero que los de la estructura DES a lo que se le atribuiría el menor desplazamiento último encontrado.

Figura 36.

0

0

0.5

1

1.5

Bilineal DMO,dir X

2

2.5

3

Desplazamiento en el techo (m)

DMO Dir x Flexibe. Pdelta = = = DES Dir x Flexibe. Pdelta

3.5

Bilineal DES,dir X

4

4.5

5

5.5

Comparación curvas de capacidad dirección X, estructuras DMO y DES.

Figura 37.

Comparación curvas de capacidad dirección Y, estructuras DMO y DES.

8.1.1.Comparación entre Puntos de desempeño (*d*) y desplazamiento elástico lineal

Del análisis estático lineal, se calculó el desplazamiento equivalente a la fuerza elástica de diseño, obteniendo un desplazamiento elástico máximo de 0.25 m para las dos edificaciones (DMO y DES) teniendo en cuenta que comparten una misma amenaza y geometría, sin embargo al comparar los resultado con los valores obtenidos con el análisis estático no lineal para el punto de desempeño se observó un incremento del 38.5% en la DMO y del 44.6% en la DES en la dirección x (Figura 38), al comparar los resultados obtenidos para la dirección Y, se observó un desplazamiento máximo de 0.23 m, menor al encontrado en dirección X ,esto atribuido a una mayor densidad de muros en el sentido de menor desplazamiento. Al contrastar los desplazamientos elásticos obtenidos para la

dirección Y, con los calculados en el análisis estático no lineal se obtuvieron incrementos del 40.81% y 44.1%, para la estructura DMO y DES respectivamente (Figura 39)

Figura 38.

Figura 39.

Relación entre respuesta estática lineal y respuesta estática no lineal dirección Y.

8.1.2. Identificación patrón de rotulas plásticas

Para facilitar la identificación del estado de plastificación de los elementos primarios, se presenta en la Figura 40 la nomenclatura de los muros estructurales de las dos estructuras bajo estudio (DMO y DES). Los muros estructurales identificados con la letra "H" son los muros alineados en la dirección X mientras que aquellos identificados con la letra "V" están alineados en la dirección Y.

Figura 40.

Planta identificación de muros estructurales.

• Niveles de desempeño y Criterios de aceptación

Los niveles de desempeño son estados de daño que se pueden presentar en los elementos estructurales y no estructurales para cierto nivel de amenaza sísmica. El ASCE 41-17 establece una clasificación para los niveles de desempeño de cada elemento, teniendo en cuenta las demandas de rotaciones y desplazamientos de cada uno. A continuación se presenta una breve descripción de cada uno de ellos, asociados con el esquema de la Figura 41.

- *Ocupación inmediata (IO):* La estructura permanece segura para su ocupación posterior a la ocurrencia del sismo. Algunos elementos han iniciado la fluencia sin presentar una pérdida significativa de rigidez y resistencia.

Seguridad a la vida (LS): La estructura presenta daños significativos tras la solicitación sísmica, los elementos pueden ser reparados.

Colapso preventivo (CP): El estado de daño después del evento sísmico cerca al colapso es considerable, hay una pérdida significativa de la rigidez y de la resistencia en los elementos estructurales.

Figura 41.

Estados límites de daño.

Los criterios de aceptación para los muros son presentados en la tabla 10-19 de ASCE-41-17, la cual es replicada en este documento en la Tabla 54 . De acuerdo con el nivel de refuerzo, carga axial, momento y cortante, los muros de las edificaciones DES y DMO en este estudio tienen los valores límites de rotación presentados en la Tabla 55 y Tabla 56, respectivamente. De estas tablas se observa que los muros sin elementos de borde presentan un límite más restrictivo de rotación que aquellos que si lo tienen, esto con el objetivo de evitar rotaciones excesivas en elementos que no presentan elementos confinados.

Tabla 54.

Parámetros y criterios de aceptación para procedimiento no lineal, muros estructurales controlados por flexión.

$(\mathbf{A_s} - \mathbf{A'_s})\mathbf{f_{yE}} + \mathbf{P}$	V	Confined	Acceptable plastic hinge rotation (radia			
$t_w l_w f'_{cE}$	$t_w l_w \sqrt{f'_{cE}}$	boundary	Ю	LS	СР	
≤0.1	≤4	Yes	0.005	0.015	0.02	
≤0.1	≤ 6	Yes	0.004	0.010	0.015	
≥0.25	≥4	Yes	0.003	0.009	0.012	
≥0.25	≥6	Yes	0.0015	0.005	0.010	
≤0.1	≤4	No	0.002	0.008	0.015	
≤0.1	≤ 6	No	0.002	0.006	0.010	
≥0.25	≥4	No	0.001	0.003	0.005	
≥0.25	≥6	No	0.001	0.002	0.004	

Tabla 55.

Máximas rotaciones de muros para la asignación de niveles de desempeño, piso 1-dirección X.

		DMO		DES		
ELEMENIOS	Ю	LS	СР	Ю	LS	СР
H.11,H.1.2,H.1.3, H.1.4	0.002	0.006	0.01	0.004	0.01	0.015
H.2.1,H.2.2 H.2.3,H.2.4	0.002	0.006	0.01	0.004	0.01	0.015
Н.3.1,Н.3.2,Н.3.3,Н.3.4	0.004	0.01	0.015	0.004	0.01	0.015
H.4.1,H.4.2,H.4.3,H.4.4	0.004	0.01	0.015	0.004	0.01	0.015
H.5.1,H.5.2	0.004	0.01	0.015	0.004	0.01	0.015
H.6.1,H.6.2	0.004	0.01	0.015	0.004	0.01	0.015

Tabla 56.

Máximas rotaciones de muros para la asignación de niveles de desempeño, piso 1-dirección Y.

		DMO			DES		
ELEWIENTOS	Ю	LS	СР	Ю	LS	СР	
V.1.1, V.1.2, V.1.3, V.1.4	0.004	0.01	0.015	0.004	0.01	0.015	
V.2.1,V.2.2,V.2.3,V.2.4	0.004	0.01	0.015	0.004	0.01	0.015	
V.3.1,V.3.2,V.3.3,V.3.4	0.004	0.01	0.015	0.004	0.01	0.015	
V.4.1,V.4.2,V.4.3,V.4.4	0.004	0.01	0.015	0.003	0.009	0.012	
V.5.1,V.5.2,V.5.3,V.5.4	0.002	0.006	0.01	0.004	0.01	0.015	
V.6.1, V.6.2, V.6.3, V.6.4	0.002	0.006	0.01	0.004	0.01	0.015	
V.7.1,V.7.2	0.004	0.01	0.015	0.004	0.01	0.015	

• Orden en el que los muros alcanzan los límites de rotación

En esta sección se presenta el orden en el que cada muro alcanza los valores límites establecidos para los niveles de daño en el primer piso (Tabla 55 y Tabla 56). Para esto se presentan las curvas de capacidad, sobre las cuales se indican los puntos donde se alcanzan dichos límites.

- Dirección X

En la Figura 42Figura 42 y Figura 43Figura 43 se muestra el patrón de formación de rotulas plásticas en la dirección X, para la edificación DMO y DES, respectivamente. En estas figuras se observa que en el punto de desempeño de cada dirección, los muros *H.1* y *H.2* de la estructura DMO son los únicos en alcanzar el límite de rotación "ocupación inmediata". Es de notar que los demás muros DMO (*H3, H4, H5, H6*) y todos los muros DES alcanzan los límites establecidos para los estados de daño después del punto de desempeño.

La razón por la que los muros *H.1* y *H.2* tienen un comportamiento diferente que los muros respectivos en la edificación DES es debido a que estos muros tienen un límite más restrictivo de rotación en la capacidad de disipación DMO al no presentar elementos de borde.

Al relacionar la longitud en planta de cada muro y el orden en que estos alcanzan los límites de rotación, se observa que los muros con menor longitud son los primeros en alcanzar dichos límites. Este comportamiento se mantuvo a medida que se incrementa la longitud de los muros, es decir, los últimos muros en alcanzar los límites son aquellos de mayor longitud.

Figura 42.

Formulación de rotulas plásticas sentido X, estructura DMO.

Figura 43.

Formulación de rotulas plásticas sentido X, estructura DES.

- Dirección Y

En la Figura 44 y Figura 45 se muestra el patrón de formación de rotulas plásticas en la dirección Y, para la edificación DMO y DES, respectivamente. En las figuras se observa que ninguno de los muros ha alcanzado el límite de rotación "ocupación inmediata" en el punto de desempeño. Es importante notar que a diferencia de los muros en dirección X, todos los muros en la dirección Y tienen elementos de borde en el primer piso. Los muros más cortos $(V.5 \ y \ V.6)$ son los primeros en alcanzar los límites de rotación, los cuales se encuentran ubicados en la zona central de la planta estructural, mientras que el muro más largo (V.7) es el último muro en llegar a los límites de rotación.

Figura 44.

Formulación de rotulas plásticas sentido Y, estructura DMO.

Figura 45.

Formulación de rotulas plásticas sentido Y, estructura DES.

8.1.3.Estado de los muros en el análisis estático no lineal (comportamiento de la sección transversal)

En esta sección se presenta el análisis de resultados del comportamiento de los muros usando la curva momento-rotación (M- θ) y las rotaciones en los diferentes pisos obtenidas del análisis estático no lineal. Los muros se agruparon teniendo en cuenta su geometría y el orden en el que alcanzaron los límites de rotaciones máximas establecidas para los niveles de daño.

Muros estructurales H.1 y H.2

Los muros estructurales *H.1* y *H.2* de las edificaciones DMO y DES tienen igual longitud y distribución de refuerzo en planta a partir del segundo piso, la cual consistió en cuantías mínimas de refuerzo en el diseño inicial. No obstante, por disposiciones normativas, los muros DES requirieron elementos de borde en el primero piso, lo que incrementó la cuantía de refuerzo suministrada con respecto al muro DMO.

El comportamiento de los muros en cada piso se evaluó en función de la progresión de la demanda momento-rotación (M- θ) asociada a los desplazamientos laterales hasta 2 metros. En el primer nivel se evidenció un mejor comportamiento en la estructura DES, considerando que presenta mayor capacidad a momento y no alcanza el límite IO antes del punto de desempeño (Figura 46). Esta respuesta se debe a la mayor cuantía de refuerzo y a la presencia de elementos de borde. A partir de la gráfica también se concluye que la demanda de rotación en los muros DES es ligeramente mayor (4.4%) que la de los muros DMO en el punto de desempeño.

Figura 46.

Progresión de la demanda momento-rotación, muro H.1.

Nota: La figura representa la progresión de la demanda momento-rotación del primer piso para el desplazamiento lateral de control de 2 metros de la estructura para el muro H.1.

Tras analizar los datos se encontró que los muros DMO del primer piso llegan primero a los límites de rotación máxima para los estados de daño *IO*, *LS y CP*. Sin embargo, el siguiente piso en llegar a los límites máximos es el cuarto (en lugar del segundo). Esto puede ser atribuido al cambio de refuerzo que tuvieron los muros *H.3*, *H.4*, *H.5 y H.6* en el cuarto piso, incrementado las rotaciones de los muros *H.1 y H.2*, aun cuando estos solo cambiaron la configuración de refuerzo en el segundo nivel. Para ilustrar lo anteriormente mencionado se muestra en la Figura 47 a modo de ejemplo las rotaciones del muro *H.1* en los cuatro primeros pisos.

En la edificación DES, los límites máximos de rotación (IO, LS y CP) de los muros *H.1* y *H.2*, se alcanzan en el cuarto piso (en lugar del primero), esto debido a que los limites en el cuarto nivel son más restrictivos al no presentar elementos de borde, sin embargo el patrón

en el que la mayor rotación se presenta en el primero nivel seguido del cuarto se mantiene, como se observa en la Figura 48.

Figura 47.

Relación entre rotación y paso de simulación muro H.1 DMO.

Figura 48.

Relación entre rotación y paso de simulación muro H.1 DES.

Muros estructurales H.3, H.4, H.5 y H.6

Los muros *H.3* y *H.4* tienen diferentes distribuciones de refuerzo y espesor, sin embargo, comparten la misma longitud y las zonas de cambio de configuración (cada tres pisos). Estos muros tienen mayores cuantías de refuerzo en DMO que en DES hasta el noveno piso (como resultado de las solicitaciones del análisis estático lineal), a partir del cual se suspenden los elementos de borde y se usa la misma configuración hasta el último nivel.

Con el propósito de analizar el comportamiento de los muros bajo estudio a través del diagrama momento curvatura (M- φ) (Figura 61) para una carga axial obtenida de la combinación de cargas gravitacionales establecida en la sección 7.4.1, se encontró que los muros bajo análisis en la edificación DES, presentan una mayor capacidad a momento y rotación respecto a los muros de la edificación DMO, atribuido a los elementos de borde y cuantía de refuerzo suministrados a los muros DES.

Los muros *H.5* y *H.6* presentan la misma geometría y distribución de refuerzo, los cambios de configuración, al igual que los muros *H.3* y *H.4*, se realizan cada tres pisos, sin embargo, esta variación se da solo hasta el sexto nivel, a partir del cual se suspenden los elementos de borde y se continua con la misma configuración hasta el último. Lo descrito anteriormente se aplica para la estructura DMO y DES, sin embargo, es de notar que los muros DMO presentan mayor cuantía de refuerzo en los seis primeros pisos con respecto a los muros DES.

En la Figura 49 se presenta el diagrama M- θ de los muros H.3 (a) y H.6 (b), donde se observa que los muros DMO presentan mayor capacidad a momento que los muros DES, lo que podría atribuirse a que los muros DMO, presentan mayores cuantías de refuerzo longitudinal. También se observa que la deformación en el punto de desempeño en los muros DES es alrededor de un 9% mayor respecto a los muros DMO.

Figura 49.

Progresión de la demanda momento-rotación muros H.3 y H.6.

Nota: La figura representa la progresión de la demanda momento-rotación del primer piso para desplazamiento lateral de control de 2 metros de la estructura, para los muros (a) H.3 y (b) H.6

A pesar de que los muros H3 a H6 no superan ningún límite de rotación en el punto de desempeño, si comparten un comportamiento similar al de los muros *H.1* y *H.2* de las
estructura DMO, en relación al orden en el que los pisos llegan a los límites máximos de rotación *IO* y *LS*, (primero el primer nivel seguido del cuarto piso), no obstante, en el estado limite *CP* se encontró diferencia con los muros *H.1 y H.2*, puesto que los muros bajo estudio alcanzaron este límite solo en el primer piso.

En los muros *H.3, H.4, H.5* y *H.6*, el piso con mayor rotación es el primero, seguido del cuarto al igual que los muros *H.1* y *H.2*. En la Figura 50 y Figura 51 y a manera de ejemplo se muestran las rotaciones del muro *H.3* y *H.6* para las estructuras DMO y DES, respectivamente.

Figura 50.

Relación entre rotación y paso de simulación muros H.3.

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 4 primeros pisos del muro H.3 para capacidades (a) DMO, (b) DES.

Figura 51.

Relación entre rotación y paso de simulación muro H.6

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 4 primeros pisos del muro H.6 para capacidades (a) DMO, (b) DES.

Muros estructurales V.1, V.7.

Los muros *V.1* y *V.7* son muros con igual longitud pero diferente cuantía de refuerzo, sin embargo tienen en común los pisos en los que se cambia la configuración del refuerzo (cada tres pisos, hasta llegar al noveno), piso en cual se suspenden los elementos de borde y se usa la misma configuración hasta el último nivel, exceptuando el muro *V.1* DMO el cual presenta cambio de configuración en el doceavo piso que continua hasta el décimo quinto.

En el diagrama M- θ de los muros *V*.*1* (Figura 52a) y *V*.*7* (Figura 52b), se observa que los muros DMO presentan mayor capacidad a momento que los muros DES con una variación alrededor del 17%.

En el punto de desempeño los muros bajo análisis no superan los límites máximos establecido para los estados de daño, sin embargo se logra apreciar que después del punto de desempeño el orden en el que los pisos alcanzan el estado limite IO para el muro DMO es:

piso uno, dos y cuatro, mientras que para DES es: piso uno, cuatro y dos, lo que podría atribuirse al cambio de distribución de refuerzo que tienen los muros, incrementado las rotaciones en los niveles superiores, adicionalmente se encontró que la rotación en el punto de desempeño es de alrededor de un 18% mayor en los muros DES con relación a los DMO. Las rotaciones obtenidas para los muros V.1 y V.7 en los cuatro primeros pisos se muestran en la Figura 53y Figura 54.

Figura 52.

Progresión demanda momento-rotación Primer piso muros V.1 y V.7.

Nota: Las figuras representan el diagrama momento rotación del primer piso para desplazamiento lateral de control de 2 metros de la estructura, para el muro V.1 para capacidades (a) DMO, (b) DES

Figura 53.

Relación entre rotación y paso de simulación muro V.1.

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 4 primeros pisos del muro V.1 para capacidades (a) DMO, (b) DES

Figura 54.

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 4 primeros pisos del muro V.7 para capacidades (a) DMO, (b) DES.

Muros estructurales V.2, V.3 y V.4.

Los muros *V.2* y *V.4* tienen igual longitud y cuantía de refuerzo y, a diferencia del muro *V.3* que presenta una longitud mayor, todos los muros bajo análisis siguen el siguiente patrón de refuerzo: hay dos secciones transversales iguales para DMO y DES sin embargo la transición se realiza en pisos diferentes, cuarto para DMO y sexto para DES, en los pisos mencionados se suspenden los elementos de borde para cada estructura.

En el diagrama M- θ para el primer piso (Figura 55), se observa que los muros *V.3* y *V.4* tienen un comportamiento similar en DMO y en DES, esto puede atribuirse a que en este piso los muros de las dos estructuras tienen la misma cuantía de refuerzo.

Adicionalmente se identificó que los muros DES, presentan menores rotaciones respecto a los DMO (Figura 56 y Figura 57), lo cual podría atribuirse a que el muro DES extiende los elementos de borde dos pisos más, mejorando su comportamiento global, lo que podría explicar por qué los muros DMO son los primeros en alcanzar los límites establecidos para los estados de daño (IO, LS y CP) después del punto de desempeño.

Figura 55.

Progresión de la demanda momento-rotación muros V.3 y V.4.

Nota: Las figuras representan el diagrama momento rotación del primer piso para desplazamiento lateral de control de 2 metros de la estructura, para los muros (a) V.3 y (b) V.4.

Figura 56.

Relación entre rotación y paso de simulación muro V.3.

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 5 primeros pisos del muro V.3 para capacidades (a) DMO, (b) DES.

Figura 57.

Relación entre rotación y paso de simulación muro V.4..

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 5 primeros pisos del muro V.4 para capacidades (a) DMO, (b) DES.

Muros estructurales V.5, V.6.

Los muros *V.5* y *V.6* son muros de diferente longitud y cuantía de refuerzo longitudinal, estos muros presentan en toda su altura dos distribuciones de acero longitudinal iguales tanto para DMO como para DES, con la diferencia que el muro DMO presenta su cambio de sección en el segundo nivel y el muro DES en el cuarto piso. Es de notar que la suspensión de los elementos de borde coincide con el cambio de configuración de refuerzo. Los muros previamente mencionados tienen el mismo diagrama M- θ en el primer piso (Figura 58). Estos son los únicos muros en los que la deformación en el punto de desempeño es mayor en DMO que en DES, lo que podría explicarse al ser la única configuración en la que el muro DMO

En los muros DES, el piso en alcanzar primero los límites de rotación establecidos para los estados de daño fue el cuarto nivel, a pesar de ser el primero el que presenta mayores rotaciones (Figura 59b y Figura 60b). Este comportamiento se asocia a que los primeros tres niveles tienen un límite de rotación mayor al del cuarto al poseer elementos de borde. En cuanto a los muros DMO, se observa que los límites de rotación fueron alcanzados en el primer piso antes que en los niveles restantes, como en la mayoría de los casos analizados (Figura 59a y Figura 60a)

Figura 58.

Progresión de la demanda momento-rotación. Primer piso muros V.5 y V.6.

Nota: Las figuras representan el diagrama momento rotación del primer piso para desplazamiento lateral de control de 2 metros de la estructura, para los muros (a) V.5 y (b) V.6.

Figura 59.

Relación entre rotación y paso de simulación muro V.5

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 5 primeros pisos del muro V.5 para capacidades (a) DMO, (b) DES.

Figura 60.

Relación entre rotación y paso de simulación muro V.6.

Nota: Las figuras representan la relación existente entre las rotaciones y los pasos de simulación en los 5 primeros pisos del muro V.6 para capacidades (a) DMO, (b) DES.

8.1.4.Análisis secciones (diagrama momento curvatura)

Con el propósito de analizar el comportamiento de los muros bajo estudio en el primer piso de las edificaciones a través del diagrama momento curvatura ($M-\phi$) para una carga axial obtenida de la combinación de cargas gravitacionales establecida en la sección 7.4.1.

Muro H.1 y H.2

Para los muros *H.1* y *H.2* en el diagrama M- φ se encontró que los muros bajo análisis en la edificación DES, presentan una mayor capacidad a momento y rotación respecto a los muros de la edificación DMO, atribuido a los elementos de borde y cuantía de refuerzo suministrados a los muros DES. En Figura 61 a manera de ejemplo se presenta el diagrama M- φ del muro *H.1*.

Figura 61.

Muro H.3 y H.4, V1 y V.7

Los muros *H.3*, *H.4*, *V.1* y *V.7* con capacidad DMO fueron diseñados con cuantías superiores a la mínima establecida y mayores a las requeridas por los muros diseñados con capacidad DES.

La configuración en planta de los muros estructurales fue el resultado del cumplimiento de los requisitos de la NSR-10, a raíz de esto la longitud en planta de los elementos de borde en los muros DMO es mayor y la cuantía volumétrica menor respecto a los muros DES. Adicionalmente y como criterio de diseño se realizó una distribución de refuerzo base en el alma del muro, incrementando la cuantía de refuerzo en los extremos hasta suministrar el refuerzo longitudinal total requerido por el diseño. Como resultado de esto los muros DMO presentaron elementos de borde más largos y con mayores cuantías de refuerzo longitudinal que los muros DES a pesar de esto la curvatura ultima de los muros de esta sección tienen valores similares tanto en DMO como en DES. En la Figura 62 a manera de ejemplo se muestra el diagrama M- φ del muro H.3

Figura 62.

Diagrama momento curvatura muro H.3, primer piso.

Muros V.2, V.3, V.4, V.5 y V.6

Los muros V.2, V.3, V.4, V.5 y V.6 solicitan cuantía mínima de refuerzo longitudinal tanto razón por la cual presentan una configuración de refuerzo similar tanto en la estructura DMO como en la DES, sin embargo, los elementos de borde de la estructura DES es mayor como resultado de los requerimientos de C.21 de NSR-10. En el diagrama M- φ de estos muros se observa que tanto la capacidad a momento como la curvatura última tienen un comportamiento similar con variaciones inferiores al 2%, como se observa en la Figura 63

Figura 63.

Diagrama momento curvatura muro V.3, primer piso.

8.1.5.Estado de los muros en el análisis estático no lineal (comportamiento de los materiales)

Con el objetivo de identificar que está pasando a nivel seccional en los muros estructurales y teniendo en cuenta que fueron modelados a través de fibras que representaban los materiales en toda la longitud de la sección trasversal, se realiza el análisis del comportamiento de la fibra de acero más alejada a tensión (en adelante llamada como fibra extrema de acero) y la fibra concreto más alejada a compresión (en adelante llamada como fibra extrema de concreto) para el punto de desempeño (δd).

Durante la revisión de los datos se identificaron tres patrones de comportamiento en función de la relación de aspecto, Ap, permitiendo concentrar los muros del proyecto en tres grandes grupos para el análisis:

-Grupo A: Muros con Ap \geq 19%

-Grupo B: Muros largos con Ap $\leq 11\%$

-Grupo C: Muros largos con 11% <Ap <19%

En la Figura 64 se presentan las relaciones de aspecto para cada uno de los muros del proyecto, representando en color naranja los muros pertenecientes al grupo A, en azul oscuro los del grupo B y en color rojo los del grupo C.

Figura 64.

Relaciones de aspecto, Ap, de los muros estructurales.

Muros con relaciones de aspectos superiores al 19% (grupo A)

En esta sección se realiza la descripción del comportamiento de los muros *H.1* y *H.2* en dirección X y *V.6* en dirección Y.

A manera de ejemplo se presenta la relación esfuerzo-deformación de la fibra extrema de acero de los muros H.1 (Figura 65a) y V.6 (Figura 65b), donde se observa que para el punto de desempeño de la estructura, los muros aún se encuentran en estado elástico, es decir su deformación es inferior al límite de fluencia (0.0021).

Figura 65.

Diagrama esfuerzo-deformación fibra extrema a tensión H.1 y V.6.

Nota: Las figuras representan el comportamiento de la fibra más alejada a tensión, evaluada en el primer piso para los muros (a) H.1 y (b) V.6.

En cuanto a la fibra extrema de concreto, en la Figura 66ase presenta la curva esfuerzo deformación de los muros H.1, en la que se observa que el concreto del muro DES presenta

mayor capacidad de esfuerzo y deformación frente al concreto del muro DMO, esto atribuido al confinamiento proporcionado al muro DES del cual carece el DMO. En la Figura 66b, se presenta la curva esfuerzo deformación del muro *V.6*, en la cual se observa el mismo comportamiento de la Figura 66a, resaltando que para este caso los dos muros (DMO y DES) tienen elementos de confinamiento con las mismas dimensiones e igual cuantía de refuerzo longitudinal, pero diferente cuantía volumétrica (igual número de ramas pero diferente separación vertical), mostrando la influencia del acero transversal en el comportamiento del concreto en los elementos bajo estudio.

Figura 66.

Diagrama esfuerzo-deformación extrema a compresión, primer piso muros H.1 y V.6.

Nota: Las figuras representan el comportamiento de la fibra más alejada a compresión, evaluada en el primer piso para los muros (a) H.1 y (b) V.6.

Muros con relaciones de aspectos inferiores al 11%, (grupo B)

En este grupo se encuentran los muros *H.3, H.4, H.5, H.6* en dirección X y *V.1* y *V.7* en dirección Y, los cuales presentaron un estado similar en las fibras extremas a tensión y compresión en el punto de desempeño de la estructura.

A manera de ejemplo en la Figura 67a se presenta la relación esfuerzo-deformación de la fibra extrema de acero del muro *H.3* y en la Figura 67b la del muro *V.1*, sobre las cuales se observa que para el punto de desempeño, los muros bajo análisis ya iniciaron su incursión en el rango inelástico, superando la deformación límite de fluencia (0.0021).

Figura 67.

Diagrama esfuerzo-deformación fibra extrema a tensión muros H.3 y V.1.

Nota: Las figuras representan el comportamiento de la fibra más alejada a tensión, evaluada en el primer piso para los muros (a) H.3 y (b) V.1.

El comportamiento de la fibra extrema de concreto se presenta en la Figura 68a y Figura 68b para los muros *H.3* y *V.*1, respectivamente. Cabe recordar que los muros DMO presentan mayores longitudes de elemento de borde y cuantías de refuerzo longitudinal pero menor cuantía volumétrica respecto al muro DES, a pesar de ello se mantiene el comportamiento en el cual los mayores valores de demanda de esfuerzo y deformación unitaria las presenta el muro DES, lo que permite concluir que el refuerzo transversal tiene un mayor impacto en el mejoramiento del concreto a compresión que el refuerzo longitudinal.

Figura 68.

Diagrama esfuerzo-deformación fibra extrema a compresión, primer piso muro H.3 y V.1.

Nota: Las figuras representan el comportamiento de la fibra más alejada a compresión, evaluada en el primer piso para los muros (a) H.3 y (b) V.1.

Muros con relaciones de aspectos entre 11 y 19% (grupo C)

Este grupo lo conforman los muros *V.2, V.3* y *V.4*, todos orientados en dirección Y. al revisar la curva esfuerzo-deformación de la fibra extrema de acero se observa que para el punto de desempeño, los muros aún se encuentran en estado elástico (Figura 69), sin embargo, su deformación se encuentra más cerca de la deformación limite (0.0021) que en los muros pertenecientes al grupo A (muros con Ap>19%).

Con relación a la fibra extrema de concreto a compresión se encontró un comportamiento similar a los del grupo B, es decir, la capacidad de deformación de la fibra de concreto bajo estudio es mayor en los muros DES que en los DMO, como se observa en la Figura 70.

Figura 69.

Diagrama esfuerzo-deformación fibra extrema a tensión, primer piso muros V.3 y V.4.

Nota: Las figuras representan el comportamiento de la fibra más alejada a tensión, evaluada en el primer piso para los muros (a) V.3 y (b) V.4.

Figura 70.

Diagrama esfuerzo-deformación fibra extrema a compresión, primer piso V.3 y V.4.

Nota: Las figuras representan el comportamiento de la fibra más alejada a compresión, evaluada en el primer piso para los muros (a) V.3 y (b) V.4.

9.Conclusiones

En este trabajo se analizó una edificación con sistema muros de carga en concreto reforzado en una zona de amenaza sísmica intermedia diseñada para capacidades de disipación de energía moderada (DMO) y especial (DES), establecidas en el reglamento colombiano de construcción sismo resistente (NSR-10). El análisis se hizo mediante un modelo computacional de elementos finitos que incluyó la flexibilidad de la cimentación y los efectos P-Delta. Las principales conclusiones del estudio son:

 La estructura DMO presenta mayores cuantías de refuerzo longitudinal en los muros estructurales que requieren cuantías superiores a la mínima establecida (muros largos) en comparación a las requeridas por los muros DES, esto debido a que la estructura DMO presenta mayores fuerzas sísmicas de diseño, dado que el coeficiente de disipación de energía (R) es menor. A pesar de lo anterior, las cuantías volumétricas del refuerzo transversal de los elementos de borde de los muros en la estructura DES fueron mayores a la de los muros de DMO, esto como resultado de los requisitos establecidos en el capítulo C21 de la NSR10.

2. En los pisos en donde los muros de las dos estructuras requirieron elementos de borde (EB), la longitud en planta del EB de los muros DMO fue mayor que la de los muros DES, aunque los elementos de borde de los muros DES se extienden un mayor número de pisos con respecto al DMO debido a los limites más exigentes de los requisitos símicos para los elementos de borde en muros DES y a las mayores demandas de cuantías de refuerzo requeridas en DMO.

3. Del análisis estático no lineal se encontró que la estructura DES presenta mayor capacidad de desplazamiento con respecto al DMO, reflejado en un incremento del desplazamiento último de la edificación DES del 60% en dirección X y del 41% en dirección

Y. Este resultado es acorde a la filosofía de diseño en edificaciones con muros estructurales establecida en el reglamento NSR-10.

4. En el punto de desempeño, la estructura DES presenta un desplazamiento ligeramente mayor al de la estructura DMO (diferencias menores al 6% para las direcciones X y Y). Puesto que el nivel de amenaza sísmica se mantuvo constante para ambas edificaciones, se evidencia que la capacidad de disipación de energía con que se diseñó la edificación tiene poca influencia en la demanda de desplazamiento de diseño sísmico.

5. Los muros de las estructuras DMO y DES con relaciones de aspectos (Ap) mayores al 19% se mantuvieron en el rango elástico para la demanda de desplazamiento del punto de desempeño, mientras que aquellos muros con Ap menor al 19% si entraron en el rango inelástico. Lo anterior fue verificado a partir del análisis de resultados de las fibras extremas a tensión (acero) y compresión (concreto) de cada muro.

6. El orden en que los muros estructurales alcanzaron los límites de rotación de los estados de desempeño ocupación inmediata (IO) y seguridad a la vida (LS) no fue de forma consecutiva en altura de pisos. Lo anterior se atribuye a que las transiciones de refuerzo se realizaron cada tres pisos para la mayoría de los muros DMO y DES, aumentando los valores de rotación en los pisos donde se realiza el cambio de configuración de refuerzo longitudinal, lo que podría ocasionar que la aparición de rotulas plásticas no se presente de forma consecutiva trasladándolas a los niveles superiores.

7. Se encontró que los efectos P- Δ en las dos edificaciones (DMO y DES) tienen una mayor afectación en la dirección con menor densidad de muros (dirección X).

10.Recomendaciones

- Se recomienda realizar un análisis dinámico no lineal siguiendo las recomendaciones de ASCE 41-17, con el objetivo de evaluar los efectos de los modos superiores en la respuesta del edifico.
- Teniendo en cuenta las limitaciones del método de modelado de rotulas plásticas usado en el desarrollo del trabajo se sugiere un análisis en el que se tome en cuenta la influencia del cortante en el comportamiento de la estructura
- 3. Dado que el proyecto desarrollado focalizado en la capacidad de desplazamiento de la estructura se recomienda realizar trabajos complementarios que introduzcan la evaluación de posibles fallas que puedan llegar a afectar la estabilidad de la estructura como la fractura del acero o falla por cortante de los muros estructurales.

Referencias Bibliográficas

American Concrete Institute: Farmington Hills. (2011). Building Code Requirements for Structural Concrete (Aci 318-11) and Commentary Reported By Aci Committee 318.

ASCE. (2014). Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 41-13).

- Asociación Colombiana de Ingeniería Sísmica. (2010). Normas Colombianas de Diseño y Construcción Sismo Resistente (NSR-10).
- Benjumea Royero, J. M., Sotelo Monroy, F. S., Celis Melo, C. E., & Chio Cho, G. (2016). Efecto del grado de capacidad de disipación de energía sísmica seleccionado en las cantidades de obra de muros de concreto reforzado. *Revista Tecnura*, 20(50), 15–28. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a01
- Chaparro Tarazona, A. C. (2017). INFLUENCIA DE LA CAPACIDAD DE DISIPACIÓN DE ENERGÍA SELECCIONDA EN EL COMPORTAMIENTO SÍSMICO Y COSTO DE EDIFICIOS APORTICADOS DE CONCRETO REFORZADO LOCALZADOS EN ZONA DE AMENAZA SÍSMICA BAJA E INTERMEDIA EN COLOMBIA.
- Gonzáles, V., Botero, J. C., Rochel, R., Julián, V., & Martha, Á. (2005). Propiedades mecánicas del acero de refuerzo. *Ingeniería y Ciencia*, *1*, 67–76.
- Idris, Y., & Yahya, J. (2017). The Behaviour Study of Shear Wall on Concrete Structure by Pushover Analysis. International Journal on Advanced Science Engineering Information Technology, 7(4), 1127–1133.
- Kircher, C. A., Nassar, A. A., Kustu, O., & Holmes, W. T. (1997). Development of building damage functions for earthquake loss estimation. *Earthquake Spectra*, Vol. 13, pp. 663– 682. https://doi.org/10.1193/1.1585974

- Mwafy, A. M., & Elnashai, A. S. (2001). Static pushover versus dynamic collapse analysis
 of RC buildings. *Engineering Structures*, 23(5), 407–424.
 https://doi.org/10.1016/S0141-0296(00)00068-7
- Powell, G. H. (2010). *MODELING FOR STRUCTURAL ANALYSIS* (Computers and structure. Inc, Ed.). Berkeley, California, USA.
- Prada, M., Carrillo, J., & Gélvez, C. (2017). Variación de las cuantías de acero de refuerzo de muros de concreto para las categorías de disipación de energía definidas en NSR-10. *Revista Ingenierías Universidad de Medellín*, 16(30), 29–47.
 https://doi.org/10.22395/rium.v16n30a2
- Thomsen, J. H., & Wallace, J. W. (2004). Displacement-Based Design of Slender Reinforced
 Concrete Structural Walls—Experimental Verification. *Journal of Structural Engineering*, 130(4), 618–630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
- Uribe, S. L., & Gutierrez, C. D. (2014). Influencia En Las Cantidades De Obra De Una Edificación Con Sistemas De Muros De Carga Al Modificar Los Requisitos Mínimos De Capacidad De Disipación De Energía En Zonas De Amenaza Sísmica Intermedia (UNIVERSIDAD INDUSTRIAL DE SANTANDER). https://doi.org/153981
- Wallace, J. W. (2014). Reassessing ACI 318 ShearWall Provisions Based on Recent Earthquake and Test Observations. In M. Fischinger (Ed.), *Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society* (Vol. 32, pp. 449–467). https://doi.org/10.1007/978-94-017-8875-5
- Wood, S. L. (1992). Design of R/C Structural Walls: Balancing Toughness and Stiffness. In
 P. Farjfar & H. Krawinkler (Eds.), *Nonlinear seismic analysis and design of reinforced concrete buildings* (Taylor and, Vol. 1, p. 174).

Apéndices

Apéndice A. Porcentajes de participación modos de vibración

Para el análisis modal espectral realizado se tuvieron en cuenta 45 modos de vibración, asumiendo tres grados de libertad por piso. En la Tabla 57 se muestran los porcentajes de participación modal (PPM) acumulados de los modos tenidos en cuenta.

Tabla 57.

Modos de vibración de la estructura.

Piso	PPM X	PPM Y	PPM Z
	%	%	%
Modo 1	63.69	0	0
Modo 2	63.69	63.83	0
Modo 3	63.69	63.83	63.93
Modo 4	83.83	63.83	63.93
Modo 5	83.83	84.08	63.93
Modo 6	83.83	84.08	84.22
Modo 7	90.85	84.08	84.22
Modo 8	90.85	91.04	84.22
Modo 9	90.85	91.04	91.23
Modo 10	94.41	91.04	91.23
Modo 11	94.41	94.49	91.23
Modo 12	94.41	94.49	94.69
Modo 13	96.46	94.49	94.69
Modo 14	96.46	96.45	94.69
Modo 15	96.46	96.45	96.64
Modo 16	97.72	96.45	96.64
Modo 17	97.72	97.66	96.64
Modo 18	97.72	97.66	97.81
Modo 19	98.52	97.66	97.81
Modo 20	98.52	98.45	97.81

Piso	PPM X	PPM Y	PPM Z
	%	%	%
Modo 21	98.52	98.45	98.57
Modo 22	99.05	98.45	98.57
Modo 23	99.05	98.99	98.57
Modo 24	99.4	98.99	98.57
Modo 25	99.4	98.99	99.06
Modo 26	99.4	99.36	99.06
Modo 27	99.63	99.36	99.06
Modo 28	99.63	99.36	99.4
Modo 29	99.79	99.36	99.4
Modo 30	99.79	99.61	99.4
Modo 31	99.79	99.61	99.63
Modo 32	99.89	99.61	99.63
Modo 33	99.89	99.78	99.63
Modo 34	99.95	99.78	99.63
Modo 35	99.95	99.78	99.78
Modo 36	99.98	99.78	99.78
Modo 37	99.98	99.88	99.78
Modo 38	99.99	99.88	99.78
Modo 39	99.99	99.88	99.88
Modo 40	99.99	99.94	99.88
Modo 41	99.99	99.94	99.94
Modo 42	99.99	99.97	99.94
Modo 43	99.99	99.97	99.94
Modo 44	99.99	99.97	99.97
Modo 45	99.99	99.97	99.98

Apéndice B.Verificación de irregularidades

Dando cumplimientos a lo establecido en la tabla A.3-6 de NSR-10, se analizan las irregularidades a considerar para el análisis y diseño de las estructuras a evaluar.

Irregularidades en planta

Irregularidad torsional, 1AP y 1BP

$$1.4\left(\frac{\Delta_1 + \Delta_2}{2}\right) \ge \Delta_1 > 1.2\left(\frac{\Delta_1 + \Delta_2}{2}\right)$$
$$\Delta_1 > 1.4\left(\frac{\Delta_1 + \Delta_2}{2}\right)$$

Figura 71.

Identificación de nodos usados en chequeo de irregularidades.

Tabla 58.

Dominan	Francina	aunanian	i- ani anda	$\mathbf{V}_{\mathbf{c}}$	an anima	infanian	i- ani anda	dinaga	ián	\mathbf{v}
Derivus.	сзушти	superior	izquieruu	V S	esquina	ingenior	іздиїєтии	unecc	1011.	Λ

Nivel	Δ_1 (Dir X)	Δ_2 (Dir X)	$1.4((\Delta_1 + \Delta_2)/2)$	$1.2((\Delta_1 + \Delta_2)/2)$	Δ_1	Verificación
N+37.50	0.0093	0.0093	0.0131	0.0112	0.0093	Regular
N+35.00	0.0093	0.0093	0.0131	0.0112	0.0093	Regular
N+32.50	0.0093	0.0093	0.0130	0.0111	0.0093	Regular
N+30.00	0.0092	0.0092	0.0128	0.0110	0.0092	Regular
N+27.50	0.0090	0.0090	0.0126	0.0108	0.0090	Regular
N+25.00	0.0087	0.0087	0.0122	0.0105	0.0087	Regular
N+22.50	0.0083	0.0083	0.0117	0.0100	0.0083	Regular
N+20.00	0.0079	0.0079	0.0110	0.0094	0.0079	Regular
N+17.50	0.0073	0.0073	0.0102	0.0087	0.0073	Regular
N+15.00	0.0065	0.0065	0.0092	0.0079	0.0065	Regular
N+12.50	0.0057	0.0057	0.0080	0.0068	0.0057	Regular
N+10.00	0.0047	0.0047	0.0066	0.0057	0.0047	Regular
N+7.50	0.0036	0.0036	0.0050	0.0043	0.0036	Regular
N+5.00	0.0023	0.0023	0.0032	0.0028	0.0023	Regular
N+2.50	0.0009	0.0009	0.0012	0.0011	0.0009	Regular

Tabla 59.

Esquina superior izquierda vs esquina superior derecha, dirección Y

Nivel	Δ_1 (Dir X)	Δ_2 (Dir X)	$1.4((\Delta_1 + \Delta_2)/2)$	$1.2((\Delta_1 + \Delta_2)/2)$	Δ_1	Verificación
N+37.50	0.0085	0.0085	0.0120	0.0103	0.0085	Regular
N+35.00	0.0085	0.0085	0.0120	0.0103	0.0085	Regular
N+32.50	0.0085	0.0085	0.0119	0.0102	0.0085	Regular
N+30.00	0.0084	0.0084	0.0118	0.0101	0.0084	Regular
N+27.50	0.0083	0.0083	0.0116	0.0099	0.0083	Regular
N+25.00	0.0080	0.0080	0.0112	0.0096	0.0080	Regular
N+22.50	0.0077	0.0077	0.0107	0.0092	0.0077	Regular
N+20.00	0.0072	0.0072	0.0101	0.0087	0.0072	Regular
N+17.50	0.0067	0.0067	0.0094	0.0080	0.0067	Regular
N+15.00	0.0060	0.0060	0.0085	0.0073	0.0060	Regular
N+12.50	0.0053	0.0053	0.0074	0.0063	0.0053	Regular
N+10.00	0.0044	0.0044	0.0061	0.0052	0.0044	Regular
N+7.50	0.0033	0.0033	0.0047	0.0040	0.0033	Regular
N+5.00	0.0022	0.0022	0.0030	0.0026	0.0022	Regular
N+2.50	0.0008	0.0008	0.0012	0.0010	0.0008	Regular

Tabla 60.

Esquina superior derecha vs esquina inferior derecha, dirección X.

	Δ_2 (Dir X)	$1.4((\Delta_1+\Delta_2)/2)$	$1.2((\Delta_1+\Delta_2)/2)$	Δ1	Verificación
.0093	0.0093	0.0131	0.0112	0.0093	Regular
.0093	0.0093	0.0131	0.0112	0.0093	Regular
.0093	0.0093	0.0130	0.0111	0.0093	Regular
.0092	0.0092	0.0128	0.0110	0.0092	Regular
.0090	0.0090	0.0126	0.0108	0.0090	Regular
.0087	0.0087	0.0122	0.0105	0.0087	Regular
.0083	0.0083	0.0117	0.0100	0.0083	Regular
.0079	0.0079	0.0110	0.0094	0.0079	Regular
.0073	0.0073	0.0102	0.0087	0.0073	Regular
.0065	0.0065	0.0092	0.0079	0.0065	Regular
.0057	0.0057	0.0080	0.0068	0.0057	Regular
.0047	0.0047	0.0066	0.0057	0.0047	Regular
.0036	0.0036	0.0050	0.0043	0.0036	Regular
.0023	0.0023	0.0032	0.0028	0.0023	Regular
.0009	0.0009	0.0012	0.0011	0.0009	Regular
	In (Dill X) 0093 0093 0093 0093 0093 0092 0090 0087 0083 0079 0073 0065 0057 0047 0036 0023 0009	A (DH X) D2 (DH X) 0093 0.0093 0093 0.0093 0093 0.0093 0092 0.0092 0090 0.0090 0090 0.0090 0087 0.0087 0083 0.0083 0079 0.0079 0073 0.0073 0065 0.0065 0057 0.0057 0047 0.0047 0036 0.0036 0023 0.0023 0009 0.0009	A (DH A) A (DH A) A (DH A) A (A	International (Diff X) International (Diff X) <thinternatis (diff="" th="" x)<=""> International (Diff X)</thinternatis>	Internet Internet

Tabla 61.

Esquina inferior izquierda vs esquina inferior derecha, dirección Y.

Nivel	Δ ₁ (Dir X)	Δ ₂ (Dir X)	$1.4((\Delta_1+\Delta_2)/2)$	1.2 (($\Delta_1+\Delta_2$)/2)	Δ1	Verificación
N+37.5	0.0085	0.0085	0.0120	0.0103	0.0085	Regular
N+35.00	0.0085	0.0085	0.0120	0.0103	0.0085	Regular
N+32.5	0.0085	0.0085	0.0119	0.0102	0.0085	Regular
N+30.00	0.0084	0.0084	0.0118	0.0101	0.0084	Regular
N+27.5	0.0083	0.0083	0.0116	0.0099	0.0083	Regular
N+25.00	0.0080	0.0080	0.0112	0.0096	0.0080	Regular
N+22.5	0.0077	0.0077	0.0107	0.0092	0.0077	Regular
N+20.00	0.0072	0.0072	0.0101	0.0087	0.0072	Regular
N+17.50	0.0067	0.0067	0.0094	0.0080	0.0067	Regular
N+15.00	0.0060	0.0060	0.0085	0.0073	0.0060	Regular
N+12.5	0.0053	0.0053	0.0074	0.0063	0.0053	Regular
N+10.00	0.0044	0.0044	0.0061	0.0052	0.0044	Regular
N+7.50	0.0033	0.0033	0.0047	0.0040	0.0033	Regular
N+5.00	0.0022	0.0022	0.0030	0.0026	0.0022	Regular
N+2.50	0.0008	0.0008	0.0012	0.0010	0.0008	Regular

Retrocesos excesivos en las esquinas, 2p

Se considera que la configuración en planta de la estructura no tiene retrocesos excesivos

en sus esquinas. A continuación, se anexan los cálculos realizados:

A > 0.15B y C > 0.15D

Figura 72.

Datos geométricos de la estructura irregularidad 2P

 $0.80 < 0.15 \ge 21.20$

0.80 < 3.18, clasificación: regular

 $2.95 < 0.15 \ge 25.40$

0.80 < 3.81, clasificación: regular

Discontinuidades en el diafragma, 3p

Se considera que una estructura presenta discontinuidad en el diafragma cuando las áreas de aberturas, entradas, retrocesos o huecos son mayores al 50 por ciento del área bruta. Teniendo en cuenta que la estructura bajo estudio no cumple con dicha condición, no se presenta irregularidad tipo 3P. A continuación, se presentan los cálculos realizados para la verificación:

$$C \ge D + C \ge E > 0.5 A \ge B$$

Figura 73.

Irregularidad por discontinuidad en el diafragma

Figura 74.

Datos geométricos de la estructura irregularidad 3P

 $5.70 \ge 8.35 + 5.70 \ge 8.35 < 0.5 \ge 21.20 \ge 25.40$

95.19 < 269.24, clasificación: regular

Desplazamiento del plano de acción de elementos verticales, 4p

La estructura se considera regular dado que todos los elementos verticales (muros portantes) del sistema de resistencia sísmica no tienen desplazamientos en el plano, es decir son continuos a lo largo de toda su altura.

Sistemas no paralelos, 5p

La estructura no presenta este tipo de irregularidad, teniendo en cuenta que las direcciones de acción horizontal de los elementos verticales del sistema de resistencia sísmica son paralelos y simétricos con respecto a los ejes ortogonales principales del sistema de resistencia sísmica.

Irregularidades en altura

Piso flexible (irregularidad en rigidez, irregularidad extrema en rigidez), 1aA y 1bA, irregularidad en la distribución de masas, 2A, irregularidad geométrica, 3A

En cumplimento en lo encontrado en la tabla A.3-7 Nota 1, cuando la deriva de cualquier piso es menor de 1.3 veces la deriva del piso siguiente hacia arriba, se considera que la estructura no presenta irregularidad de piso flexible ni irregularidad en la distribución de masas, como es el caso de la estructura bajo estudio. En la Tabla 62 se muestran los cálculos realizados para los valores de derivas de la estructura.

Tabla 62.

Relación de derivas de entrepis	s0.
---------------------------------	-----

	Sismo dirección x		Sism	o dirección y
	Deriva X	Comparación	Deriva Y	Comparación
Niveles	Δ	$\Delta i / \Delta i + 1$	Δ	$\Delta i / \Delta i + 1$
	%	%	%	%
Piso 15	0.936		0.0604	
Piso 14	0.9355	0.9995	0.0605	1.0017
Piso 13	0.9308	0.9950	0.0602	0.9950
Piso 12	0.920	0.9885	0.0595	0.9884
Piso 11	0.9016	0.9799	0.0584	0.9815
Piso 10	0.8743	0.9697	0.0567	0.9709
Piso 9	0.837	0.9573	0.0543	0.9577
Piso 8	0.7888	0.9424	0.0513	0.9448
Piso 7	0.729	0.9242	0.0475	0.9259
Piso 6	0.6569	0.9011	0.0429	0.9032
Piso 5	0.5717	0.8703	0.0374	0.8718
Piso 4	0.4729	0.8272	0.0311	0.8316
Piso 3	0.3598	0.7608	0.0238	0.7653
Piso 2	0.2323	0.6456	0.0155	0.6513
Piso 1	0.0881	0.3793	0.006	0.3871
Base	0		0	

Desplazamientos dentro del plano de acción, 4A

Considerando lo descrito en la tabla A.3-7 de NSR-10 ítem 4A, las estructuras bajo estudio no presentan irregularidad por desplazamiento dentro del plano de acción, dado que las edificaciones no presentan deslizamientos en el alineamiento de los elementos verticales y del sistema de resistencia sísmica. Por el contrario, los elementos son continuos desde la cimentación hasta la planta del último nivel.
Piso débil- discontinuidad en la resistencia, discontinuidad extrema en la resistencia, 5aA y 5bAa

Teniendo en cuenta que las edificaciones bajo estudio no presentan cambios de rigidez en altura y sus elementos estructurales presentan la misma geometría y materiales en todos los niveles, no se presentan discontinuidades de resistencia en la estructura, es decir la estructura no presenta irregularidad del tipo 5aA y 5bA.

Apéndice C. Verificación de derivas

En la Tabla 63 y Tabla 64 se muestran los valores de deriva obtenidos en el análisis de la edificación bajo estudio.

Tabla 63.

Valores de deriva sismo dirección X.

	Derivas	s de entrepiso	
Piso	Niveles	Dirección X	Dirección Y
	m	%	%
Piso 15	37.5	0.936	0.0502
Piso 14	35	0.9355	0.0502
Piso 13	32.5	0.9308	0.05
Piso 12	30	0.9201	0.0494
Piso 11	27.5	0.9016	0.0484
Piso 10	25	0.8743	0.0469
Piso 9	22.5	0.837	0.045
Piso 8	20	0.7888	0.0424
Piso 7	17.5	0.729	0.0393
Piso 6	15	0.6569	0.0355
Piso 5	12.5	0.5717	0.031
Piso 4	10	0.4729	0.0258
Piso 3	7.5	0.3598	0.0197
Piso 2	5	0.2323	0.0129
Piso 1	2.5	0.0881	0.005
Base	0	0	0

Tabla 64.

Valores de deriva sismo dirección Y.

	Derivas	s de entrepiso	
	Niveles	Dirección Y	Dirección X
	m	%	%
Piso 15	37.5	0.0604	0.8542
Piso 14	35	0.0605	0.8542
Piso 13	32.5	0.0602	0.8507
Piso 12	30	0.0595	0.8416
Piso 11	27.5	0.0584	0.8255
Piso 10	25	0.0567	0.8013
Piso 9	22.5	0.0543	0.7678
Piso 8	20	0.0513	0.7243
Piso 7	17.5	0.0475	0.6699
Piso 6	15	0.0429	0.6042
Piso 5	12.5	0.0374	0.5265
Piso 4	10	0.0311	0.4362
Piso 3	7.5	0.0238	0.3329
Piso 2	5	0.0155	0.2161
Piso 1	2.5	0.006	0.0826
Base	0	0	0

Apéndice D. Diseño placa de entrepiso

Diseño a flexión

En esta sección se muestra el resumen de los parámetros y los cálculos realizados para el diseño de las losas de entrepiso que hacen parte de la edificación bajo estudio, tomando una resistencia a la compresión del concreto de 28 MPa y una resistencia a la fluencia del acero de 420 MPa.

El recubrimiento usado para el diseño de las placas macizas de la estructura bajo estudio es igual a 25 mm, garantizado el cumplimiento de lo definido en la sección C.7.7.1 de NSR-10.

En la Figura 75 y Figura 76 se muestran los momentos provenientes de las combinaciones de diseño.

Se calcularon los momentos máximos resistentes para las distribuciones de refuerzo suministradas y se verificó que fueran inferiores a los momentos últimos provenientes de las combinaciones de diseño mostrados anteriormente. En la Tabla 65 y Tabla 66 se muestran los cálculos realizados para cumplir con las solicitaciones.

Figura 75.

Momentos de diseño placa de entrepiso (alrededor del eje X).

Figura 76.

Momentos de diseño placa de entrepiso (alrededor del eje Y).

Tabla 65.

Geom	etría		Cuantía	a Suministrada	
b	1	m			
h	0.125	m	As	2.565634	Cm ²
r	0.025	m	ρ	0.0026	
d	0.1	m			
Mater	riales		Momen	nto Máximo Res	sistente
f'c	28	MPa			
fy	420	MPa	Mu	0.947855153	Ton-m
φ	0.9		Mu	9.478551526	kN-m
Refue	rzo				
Фdb	7	mm	Mu= φ	ρ fy (1- (ρ (fy/	0.85f'c) 0.5) b d ²
Sep	0.15	m			
Cant	6.666667	und			

Momento ultimo resistente, Placa apartamentos (e=0.125).

Tabla 66.

Momento ultimo resistente, Placa pasillos (e=0.15).

Geom	etría		Cuantía	a Suministrada	
b	1	m			
h	0.15	m	As	2.945243	Cm ²
r	0.025	m	ρ	0.002356	
d	0.125	m			
Mater	iales		Momen	to Máximo Res	istente
f'c	28	MPa			
fy	420	MPa	Mu	1.362695505	Ton-m
φ	0.9		Mu	13.62695505	kN-m
Refue	rzo				
Фdb	7.5	mm	Mu= φ	ρ fy (1- (ρ (fy/	0.85f'c) 0.5) b d²
Sep	0.15	m			
Cant	6.666667	und			

Diseño a cortante.

Para el diseño a cortante de la losa de entrepiso, se da cumplimiento a las especificaciones dadas en C.11.2 de NSR-10. Se revisó que el cortante de la losa para las combinaciones de diseño no superara el valor dado por la expresión:

$$\nu_c = \phi \ 0.17 \lambda \sqrt{f'_c} \ b \ d$$

En la Tabla 67 y Tabla 68 se muestran los valores de cortantes calculados para los espesores de placa del proyecto, los cuales son inferiores a los encontrados en los modelos realizados, mostrados en la Figura 77 y Figura 78.

Tabla 67.

Cortante resistente, Placa apartamentos (e=0.125).

Geometría			Corta	nte	
b	1	m			
h	0.125	m	Vu	19.6	kN
r	0.025	m			
d	0.125	m			
Materiales			Corta	nte que Resis	te el Concreto
f'c	28	MPa	φvc	674.70	kN/m²
fy	420	MPa	φVc	67.47	kN
φ	0.75			V _u ≤ΦVc	
			No rec	quiere Refuer	zo a Cortante

Tabla 68.

Geo	metría			Cortante	
b	1	m			
h	0.15	m	Vu	15.20	kN
r	0.025	m			
d	0.125	m			
Materiales			Cortant	e que Resiste e	l Concreto
f'c	28	MPa	φvc	674.70	kN/m²
fy	420	MPa	φVc	84.33	kN
φ	0.75			$V_u \leq \Phi V c$	
			No requ	iere Refuerzo	a Cortante

Cortante resistente, Placa apartamentos (e=0.15).

Figura 77.

Cortantes de diseño placa de entrepiso.

Figura 78.

Cortantes de diseño placa de entrepiso.

Diseño de elementos colectores

En esta sección se presentan los parámetros y cálculos realizados para el diseño de los elementos colectores de las losas de entrepiso.

Los elementos colectores fueron diseñados como elementos de transferencia de carga desde el diafragma hacia los muros de la edificación, sometidos a solicitaciones de tensión y compresión. El diseño se realizó teniendo en cuenta lo descrito en la sección A.3.3.9 de NSR-10, donde se establece que las conexiones entre elementos deben ser calculados para fuerzas sísmicas de diseño obtenidas a partir de la expresión $E = \frac{\Omega o F_S}{R} \pm 0.5A_a F_a D$, donde Fs corresponde a las fuerzas sísmicas obtenidas del análisis, R es el coeficiente de capacidad de disipación de energía correspondiente al sistema estructural de resistencia sísmica y D corresponde a la carga muerta que actúa sobre el elemento.

El cálculo de la fuerza sísmica Fs, se realizó a través del método fuerza horizontal equivalente y fue asignada como carga lineal al diagrama.

Como criterio se asumieron elementos colectores con sección transversal de .30x0.125, garantizando que el esfuerzo en los elementos no superan el límite establecido en la sección C.21 de NSR-10 (0.20 f'c), y se verifico que el refuerzo asignado satisficiera las fuerzas de compresión y tensión a las que estaban sometidos para las combinaciones de diseño B.2.4.5 y B.2.4.9.

A continuación se presenta a manera de ejemplo el cálculo detallado del elemento sobre el eje A de las estructuras bajo estudio.

Tabla 69.

Parámetros diseño de elementos colectores DMO.

Geometría M	uros				
Lw _{H.1.3}	1.7	m	Lw _{H.2.3}	1.7	m
tw H.1.3	0.2	m	tw H.2.3	0.2	m
Cargas Puntu	ales				
V H.1.3	56.35292	kN	V H.2.3	60.09972	kN
Geometria pla	aca				
t _{placa}	0.12	m	t _{placa}	0.12	m
Esquema en p	lanta				
L placa	5.6	m			
	V.4.1			V.5.1	
	1.70 m			1.70 m	
S placa			2.20 m		
Materiales					
F'c	28	Mpa	F'c	28	Mpa
Fy	420	Mpa	Fy	420	Мра
φFlexion	0.9		φFlexion	0.9	
φCortante	0.75		φCortante	0.75	
Ω	2.5		Ω	2.5	

Tabla 70.

Fuerza de diseño de los elementos colectores

1 Compaci	Donortidos on l	o nlogo				
1. Cargas		ia piaca	1			
Vu _{placa}	20.79511429	kN /m	l			
2. Cargas	Repartidas en l	los mur	'OS			
		kN			kN	
Vu _{H.1.3}	33.14877647	/m	Vu _{H.2.3}	35.35278	/m	Vu _{H.2.3}
		-2	20.8 kN/m			
	12.4 kN/m			14.6 kN/m		
3. Cargas	de tension dise	eño de r	nuros			
Tu _{V.4.1}	21.00122571	kN	Tu _{V.5.1}	-24.748	kN	
Ω Tu v.4.1	52.50306429	kN	Ω Tu v.5.1	61.87006	kN	
4. Ancho d	lel Colector					
Requerido			Requerido			
Wreq H.1.3	0.031251824	m	Wreq H.2.3	0.036827	m	
Maximo			Maximo			
Wmax H.1.3	1.05	m	Wmax H.2.3	1.05	m	
Ancho sun	ninistrado		Ancho sum	inistrado		
W H.1.3	0.3	m	WH.2.3	0.3	m	
	Cumple			Cumple		

Tabla 71.

Diseño de elementos colectores

5. Acero paralelo	al eje del muro				
Acero total			Acero total		
As _{H.1.3}	1.388969955	cm ²	As _{H.2.3}	1.636774	cm ²
As _{H.1.3}	0.000138897	m²	As _{H.2.3}	0.000164	m²
As _{sum.H1.3}	7.74	cm ²	As _{sum.H.2.3}	7.74	cm ²
As _{sum.H1.3}	0.000774	cm ²	As _{sum.H.2.3}	0.000774	cm ²
Acero sobre mure)				
As muro.H1.3	5.16	cm ²	As muro.H.2.3	5.16	cm ²
As muro.H1.3	0.000516	cm ²	As muro.H.2.3	0.000516	cm ²
Acero sobre place	ı				
As placa.H1.3	2.58	cm ²	As placa.H.2.3	2.58	cm ²
As placa.H1.3	0.000258	cm ²	As placa.H.2.3	0.000258	cm ²
	Cumple			Cumple	
6.Excrenticidad					
eTensión H.1.3	0.15	m	eTensión H.2.3	0.15	
e _{Compresión H.1.3}	0.015625912	m	e _{Compresión H.2.3}	0.018414	
7. Cargas					
Тр н.1.3	17.50102143		Тр н.2.3	20.62335	
Ср. н.1.3	0		Ср н.2.3	0	
8. Cortante refue	erzo placa				
φplaca	7	mm	φplaca	7	mm
separación	0.15	m	separación	0.15	m
# Capas	2	und	# Capas	2	und
ρt	0.004276057	adm	ρt	0.004276	adm
V _{S H.1.3}	26.939157		V _{S H.2.3}	26.93916	
9. Momento debi	do a excentricidad de	e refuer	Z0		
M _{H.1.3}	0	kN-m	M _{H.2.3}	0	kN-m
10. Acero requer	ido perpendicular al	muro			
por excentricida	d de refuerzo				
As muro.H.1.3	0	m²	As muro.H.2.3	0	m²
As muro.H.1.3	0	cm ²	As muro.H.2.3	0	cm ²
11. Acero requer	ido perpendicular al	muro			
por transferenci	a de cortante				
Fr _{H.1.3}	105.8802571	kN	Fr _{H.1.3}	109.0026	kN
μ _{H.1.3}	1		μ _{H.2.3}	1	
As muro.H.1.3	0.000336128	m²	As muro.H.2.3	0.000346	m²
As muro.H.1.3	3.361278005	cm ²	As muro.H.2.3	3.4604	cm ²
12. Acero total n	erpendicular al muro)			
As muro H 1.3	0.000336128	m²	As muro H 2 3	0.000346	m ²
As muro H 1 3	3,361278005	cm ²	AS muro H 2 3	3.4604	cm ²
- 11010.11.1.3	2.2012/0000		maro.11.2.5	21.001	

Tabla 72.

Parámetros diseño de elementos colectores DES

Geometría M	[uros				
Lw _{H.1.3}	1.7	m	Lw _{H.2.3}	1.7	m
tw _{H.1.3}	0.2	m	tw _{H.2.3}	0.2	m
Cargas Punt	iales				
V _{H.1.3}	46.40448	kN	V _{H.2.3}	50.16064	kN
Geometría pl	aca				
t _{placa}	0.12	m	t _{placa}	0.12	m
Esquema en j	planta		-		
L placa	5.6	m			
	V.4.1			V.5.1	
	1.70 m			1.70 m	
S placa		2	2.20 m		
Materiales					
F'c	28	Mpa	F'c	28	Мра
Fy	420	Mpa	Fy	420	Мра
$\phi_{Flexion}$	0.9		$\phi_{Flexion}$	0.9	
φ _{Cortante}	0.75		$\phi_{Cortante}$	0.75	
Ω	2.5		Ω	2.5	

Tabla 73.

Fuerza de diseño de los elementos colectores

1. Cargas	Repartidas en	la plac	ca			
Vu _{placa}	- 17.24377143	kN /n	n			
2. Cargas	Repartidas en	los mu	iros			
		kN			kN	
Vu _{H.1.3}	27.29675294	/m	Vu _{H.2.3}	29.50626	/m	Vu _{H.2.3}
		-17	7.2 kN/m			
	10.1 kN/m			12.3 kN/m		
3. Cargas	de tensión dise	eño de	muros			
Tu _{V.4.1}	17.09006857	kN	Tu _{V.5.1}	-20.8462	kN	
$\Omega \ Tu \ _{V.4.1}$	42.72517143	kN	$\Omega \ Tu \ _{V.5.1}$	52.11557	kN	

Requerido			Requerido		
W _{req H.1.3}	0.02543165	m	Wreq H.2.3	0.031021	m
Máximo			Máximo		
W _{max H.1.3}	1.05	m	W _{max H.2.3}	1.05	m
Ancho sum	inistrado		Ancho sum	inistrado	
W _{H.1.3}	0.3	m	W _{H.2.3}	0.3	m
	Cumple			Cumple	

Tabla 74.

Diseño de elementos colectores

Acero total Acero total As H1.3 1.13029554 cm² As H2.3 1.378719 cm² As H1.3 0.00011303 m² As H2.3 0.000138 m² Assum.H1.3 0.0001426 cm² Assum.H2.3 0.0001426 cm² Assum.H1.3 0.000246 cm² Assum.H2.3 0.000426 cm² As muro.H1.3 0.000284 cm² As muro.H2.3 0.000284 cm² As muro.H1.3 0.000142 cm² As puro.H2.3 0.000284 cm² As placa.H1.3 0.000142 cm² As placa.H2.3 0.000142 cm² As placa.H1.3 0.000142 cm² As placa.H2.3 0.000142 cm² As placa.H1.3 0.000142 cm² As placa.H2.3 0.000142 cm² Cumple Cumple Cumple Cumple 6.Excrenticidad Cumple 0.015511 T.7.7186 CpH1.3 0.012715825 m compresión H2.3 0.015511 T.9.72183 7 mr oplaca 7 mm separtación 0.15 m 62.0121 mp oplaca 7 mm separtación 0.15 m separtación 0.15 m <t< th=""><th>5. Acero paralelo</th><th>al eje del muro</th><th></th><th></th><th></th><th></th></t<>	5. Acero paralelo	al eje del muro					
As $_{H,1,3}$ 1.13029554 cm² As $_{H,2,3}$ 1.378719 cm² As $_{H,1,3}$ 0.00011303 m² As $_{H,2,3}$ 0.000138 m² As $_{M,m,H,1,3}$ 0.262 cm² As $_{M,m,H,2,3}$ 0.000426 cm² As $_{mon,H,1,3}$ 0.000284 cm² As $_{mun,H,2,3}$ 0.000284 cm² As $_{mon,H,1,3}$ 0.000124 cm² As $_{mun,H,2,3}$ 0.000284 cm² As $_{mun,H,1,3}$ 0.000124 cm² As $_{placa,H,2,3}$ 0.422 cm² As $_{placa,H,1,3}$ 0.000142 cm² As $_{placa,H,2,3}$ 0.000142 cm² As $_{placa,H,1,3}$ 0.012715825 m cumple Cumple Cumple Cumpteion H.1.3 0.012715825 m cm? 0.015511 7. Craga 7 Cargas 0 Cp H.2.3 0.15 0 Cp H.2.3 0 0 8. Cortante refuerzo placa 7 mm oplaca 7 mm separación 0.15 m separación 0.15 m separación 0.15	Acero total			Acero total			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As _{H.1.3}	1.13029554	cm ²	As _{H.2.3}	1.378719	cm ²	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As _{H.1.3}	0.00011303	m²	As _{H.2.3}	0.000138	m²	
ASsum.H.1.3 0.000426 cm ² Assum.H.2.3 0.000426 cm ² Acero sobre muro Assum.H.3 0.000284 cm ² Assum.H.2.3 2.84 cm ² Assum.H.3 0.000284 cm ² Assum.H.2.3 0.000284 cm ² Assum.H.3 0.000142 cm ² Assum.H.2.3 0.000142 cm ² Assum.H.3 1.42 cm ² Assum.H.2.3 0.000142 cm ² Assum.H.3 0.000142 cm ² Assum.H.2.3 0.000142 cm ² Assum.H.3 0.000142 cm ² Assum.H.2.3 0.000142 cm ² Assum.H.3 0.012715825 m eCompression H.2.3 0.015511 7 7. Cargas T T PH2.3 17.37186 7 Cp H.1.3 0.01271582 0 8 Separación 0.15 m separación 0.15 m separación 0.15 m gplaca 7 mm optas 2 und pt 0.004276 adm $\varphi laca 0.15 m separación<$	As _{sum.H1.3}	4.26	cm ²	As _{sum.H.2.3}	4.26	cm ²	
Acero sobre muro As $muro,H1.3$ 2.84 cm ² As $muro,H1.3$ 2.84 cm ² As $muro,H1.3$ 0.000284 cm ² As $muro,H2.3$ 0.000284 cm ² Acero sobre placa	As _{sum.H1.3}	0.000426	cm ²	As _{sum.H.2.3}	0.000426	cm ²	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Acero sobre muro						
As muro.H1.3 0.000284 cm ² As muro.H2.3 0.000284 cm ² Acer sobre placa As placa.H1.3 1.42 cm ² As placa.H2.3 1.42 cm ² As placa.H1.3 0.000142 cm ² As placa.H2.3 0.000142 cm ² Cumple Cumple Cumple 6.Excrenticidad eTensión H1.3 0.12715825 m eCompression H2.3 0.015511 7. Cargas TpH.13 14.24172381 TpH2.3 17.37186 CpH1.3 0 CpH2.3 0 8. Cortante refuerzo placa ϕ placa 7 mm ϕ placa 7 mm separación 0.15 m separación 0.15 m # Capas 2 und # Capas 2 und ρt 0.0042765 adm ρt 0.0044276 adm $V_{SH.13}$ 26.939157 $V_{SH2.3}$ 26.93916 9. Momento debido a excentricidad de refuerzo M H1.3 0 kN-m M H2.3 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo As muro.H.3 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.3 1.3 0.000138273 m ² As muro.H2.3 1.482104 cm ² 12. Acero total perpendicular al muro As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² As muro.H.13 0.000138273 m ² As muro.H2.3 0.000148 m ² Area 0.1207374452 cm ² Area 0.1402104 cm ² Area 0.1402104 cm ²	As muro.H1.3	2.84	cm ²	As muro.H.2.3	2.84	cm ²	
Acero sobre placa As placa.H.3 1.42 cm ² As placa.H.2.3 1.42 cm ² As placa.H.2.3 0.000142 cm ² Cumple Cumple <th< td=""><td>As muro.H1.3</td><td>0.000284</td><td>cm²</td><td>As muro.H.2.3</td><td>0.000284</td><td>cm²</td></th<>	As muro.H1.3	0.000284	cm ²	As muro.H.2.3	0.000284	cm ²	
As placaH1.3 1.42 cm ² As placaH2.3 1.42 cm ² As placaH1.3 0.000142 cm ² As placaH2.3 0.000142 cm ² Cumple Cumple Cumple Cumple Cumple 6Excreticidad 0.01571825 m $c_{compression H2.3}$ 0.015511 7. 7. Cargas 7 m $c_{cpH2.3}$ 0.015511 7. 7. 7. Cargas 0 CpH.3 0.15 m ecompression H2.3 0.015511 7. Cargas 0 CpH2.3 0 0 8. 0 0.004276037 8. Cortante refuerzo placa 7 m separación 0.15 m 9. 9. 9. 9. 9. 9. 0.004276037 adm 7. 9. 9. 9. 0.004276037 adm 9. 9. 9. 9. 9. 0.004276037 adm 9. 9. 9. 9. 9. 9. 0.004276037 adm 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	Acero sobre placa						
As 0.000142 cm² As $p_{laca,H1,3}$ 0.000142 cm² Cumple	As placa.H1.3	1.42	cm ²	As placa.H.2.3	1.42	cm ²	
Cumple Cumple 6.Excrenticidad $e_{\text{Compression H.1.3}}$ 0.15 m $e_{\text{Compression H.2.3}}$ 0.15 eCompression H.1.3 0.012715825 m $e_{\text{Compression H.2.3}}$ 0.015511 7. Cargas	As placa.H1.3	0.000142	cm ²	As placa.H.2.3	0.000142	cm ²	
6.Excrenticidad $e_{Compresion H.1.3}$ 0.15 m $e_{Compresion H.2.3}$ 0.15 $e_{Compresion H.1.3}$ 0.012715825 m $e_{Compresion H.2.3}$ 0.015511 7. Cargas T $T_{PH.1.3}$ 14.24172381 $T_{P H.2.3}$ 17.37186 $C_{PH.1.3}$ 0 $C_{P H.2.3}$ 0 8. Cortante refuerzo placa σ mm ϕ placa 7 mm ϕ Capas 2 und H Capas 2 und μ Capas 2 und μ Capas 2 und $V_{S H.1.3}$ 26.939157 $V_{S H.2.3}$ 26.93916 9 9. Momento debido a excentricidad de refuerzo M $M_{H.2.3}$ 0 kN-m $V_{S H.1.3}$ 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.2.3 0 m² As muro.H.2.3 0 m² As muro.H.2.3 0 m² <th colsp<="" td=""><td></td><td>Cumple</td><td></td><td></td><td>Cumple</td><td></td></th>	<td></td> <td>Cumple</td> <td></td> <td></td> <td>Cumple</td> <td></td>		Cumple			Cumple	
$\begin{array}{c} \text{eTension H.1.3} & 0.15 \text{ m} & \text{eTension H.2.3} & 0.15 \\ \hline \text{eCompression H.1.3} & 0.012715825 \text{ m} & \text{eCompression H.2.3} & 0.015511 \\ \hline \textbf{7. Cargas} & & & & & & & & & & & & & & & & & & &$	6.Excrenticidad						
eCompresión H.1.3 0.012715825 m $e_{Compresión H.2.3}$ 0.015511 7. Cargas Tp H.1.3 14.24172381 Tp H.2.3 17.37186 Cp H.1.3 0 Cp H.2.3 0 0 8. Cortante refuerzo placa 0 Cp H.2.3 0 9. Momento refuerzo placa 0 0.015 m separación 0.15 m m^{+} Capas 2 und H Capas 2 und T Cargas 2 und pt 0.004276057 adm pt 0.004276 adm 0.004276 adm $V_{SH.1.3}$ 26.939157 $V_{SH.2.3}$ 26.93916 9. Momento debido a excentricidad de refuerzo $M_{H.2.3}$ 0 kN-m $M_{H.1.3}$ 0 kN-m $M_{H.2.3}$ 0 kN-m $Por excentricidad de refuerzo As muro.H.2.3 0 cm2 0 cm2 As muro.H.1.3 0 cm2 As muro.H.2.3 0 cm2 0 cm2 H_{1.13} 1 \mu_{H.2.3} 1 \mu_{H.2.3} 1 As muro.H.2.3 1 Ae S muro.H.2.3 Pr H_{1.13} 1 \mu_{H.2.3} 1 \mu_{H.2.3} 1 As muro.H.2.3 1.482104 cm2 <$	eTensión H.1.3	0.15	m	eTensión H.2.3	0.15		
7. Cargas $T_{p H.1.3}$ 14.24172381 $T_{p H.2.3}$ 17.37186 $C_{p H.1.3}$ 0 $C_{p H.2.3}$ 0 8. Cortante refuerzo placa 0 7 mm oplaca 7 mm oplaca 7 mm separación 0.15 m separación 0.15 m # Capas 2 und # Capas 2 und opt 0.004276057 adm pt 0.004276 adm V_S H.1.3 26.939157 V_S H.2.3 26.93916 9 9. Momento debido a excentricidad de refuerzo M M.1.3 0 kN-m M.2.3 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo 0 cm² As muro.H.2.3 0 cm² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² As muro.H.2.3 0 cm² 11. Acero requerido perpendicular al muro por transferencia de cortante Fr Fr H.1.3 46.68627 kN Fr H.1.3 1 µ <td>e_{Compresión H.1.3}</td> <td>0.012715825</td> <td>m</td> <td>e_{Compresión H.2.3}</td> <td>0.015511</td> <td></td>	e _{Compresión H.1.3}	0.012715825	m	e _{Compresión H.2.3}	0.015511		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7. Cargas						
Cp H.1.3 0 Cp H.2.3 0 8. Cortante refuerzo placa $\ensuremath{\phi}$ $\ensuremath{\phi}$ $\ensuremath{\phi}$ $\ensuremath{\phi}$ $\ensuremath{\phi}$ placa 7 mm $\ensuremath{\phi}$ placa 7 mm $\ensuremath{\phi}$ placa 0.15 m separación 0.15 m $\ensuremath{\phi}$ 2 und # Capas 2 und $\ensuremath{\phi}$ 0.004276057 adm $\ensuremath{\phi}$ 0.004276 adm $\ensuremath{V}_{SH1.3}$ 26.939157 $\ensuremath{V}_{SH2.3}$ 26.93916 9 9. Momento debido a excentricidad de refuerzo M M 12.3 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN $\muro.H.1.3$	Трн.1.3	14.24172381		Тр н.2.3	17.37186		
8. Cortante refuerzo placa $\varphi placa$ 7 mm $\varphi placa$ 7 mm separación 0.15 m separación 0.15 m # Capas 2 und # Capas 2 und ϕt 0.004276057 adm ρt 0.004276 adm $V_{S H.1.3}$ 26.939157 $V_{S H.2.3}$ 26.93916 9 9. Momento debido a excentricidad de refuerzo M M 26.939157 $V_{S H.2.3}$ 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² I1. Acero requerido perpendicular al muro por transferencia de cortante Fr H.1.3 43.55613524 kN Fr H.1.3 1 $\mu_{H.2.3}$ 1 As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148	Ср н.1.3	0		Ср н.2.3	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8. Cortante refue	rzo placa					
separación 0.15 m separación 0.15 m # Capas 2 und # Capas 2 und pt 0.004276057 adm pt 0.004276 adm Vs H.1.3 26.939157 Vs H.2.3 26.93916 9. Momento debido a excentricidad de refuerzo M M.1.3 0 kN-m M.2.3 0 kN-m M.1.3 0 kN-m M.2.3 0 kN-m 0 m ² As muro.H.2.3 0 m ² As muro.H.1.3 0 cm ² As muro.H.2.3 0 cm ² 0 cm ² 0 cm ² 11. Acero requerido perpendicular al muro por transferencia de cortante r r 1 Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN 1 μ H.1.3 0.000138273 m ² As muro.H.2.3 0.000148 m ² 1 As muro.H.1.3 1.382734452 cm ² As muro.H.2.3 1.482104 cm ² 1 12. Acero total perpendicular al muro m 1 4.142104 cm ² 1 As muro.H.1.3 0.000138273 m ² As muro.H.2.3 0.000148 m ² 1 1 As muro.H.1.3 0.000138273 m ² As muro.H.2.3 0.000148 m ² 1 1	φplaca	7	mm	φplaca	7	mm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	separación	0.15	m	separación	0.15	m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	# Capas	2	und	# Capas	2	und	
Vs.H.3 26.939157 Vs.H.2.3 26.93916 9. Momento debido a excentricidad de refuerzo M. M. M. M. M.1.3 0 kN-m M.H.2.3 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo M. M. M. M. As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² II. Acero requerido perpendicular al muro por transferencia de cortante Fr H.1.3 46.68627 kN Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148	ρt	0.004276057	adm	ρt	0.004276	adm	
9. Momento debido a excentricidad de refuerzo $M_{H.1.3}$ 0 kN-m $M_{H.2.3}$ 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 m² As muro.H.2.3 0 m² o m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² Massessessessesses 0 cm² 11. Acero requerido perpendicular al muro por transferencia de cortante Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN Fr H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m²	V _{S H.1.3}	26.939157		V _{S H.2.3}	26.93916		
M _{H.1.3} 0 kN-m M _{H.2.3} 0 kN-m 10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo M muro momento As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² I1. Acero requerido perpendicular al muro por transferencia de cortante 0 m² As muro.H.2.3 0 cm² Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.382734452 cm² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m²	9. Momento debio	lo a excentricidad d	e refuer	Z0			
10. Acero requerido perpendicular al muro momento por excentricidad de refuerzo As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² 11. Acero requerido perpendicular al muro por transferencia de cortante 0 cm² As muro.H.2.3 0 cm² Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m²	M _{H.1.3}	0	kN-m	M _{H.2.3}	0	kN-m	
por excentricidad de refuerzo As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² 11. Acero requerido perpendicular al muro 0 cm² M² M² por transferencia de cortante	10. Acero requeri	do perpendicular al	muro n	nomento			
As muro.H.1.3 0 m² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 m² As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² 11. Acero requerido perpendicular al muro por transferencia de cortante 0 cm² 0 cm² Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 μ Samuro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² I2. Acero total perpendicular al muro As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.202724452 $cm² As muro.H.2.3 0.000148 m² $	por excentricidad	de refuerzo					
As muro.H.1.3 0 cm² As muro.H.2.3 0 cm² 11. Acero requerido perpendicular al muro por transferencia de cortante	As muro.H.1.3	0	m²	As muro.H.2.3	0	m ²	
11. Acero requerido perpendicular al muro por transferencia de cortante Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.382734452 cm² As muro.H.2.3 1.482104 cm² 12. Acero total perpendicular al muro As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.2.3	As muro.H.1.3	0	cm ²	As muro.H.2.3	0	cm ²	
por transferencia de cortante Fr H.1.3 43.55613524 kN Fr H.1.3 46.68627 kN μ H.1.3 1 μ H.2.3 1 As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.382734452 cm² As muro.H.2.3 1.482104 cm² I2. Acero total perpendicular al muro As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.2.3 0.000148 m²	11. Acero requeri	do perpendicular al	muro				
Fr $_{H.1.3}$ 43.55613524 kN Fr $_{H.1.3}$ 46.68627 kN μ $_{H.1.3}$ 1 μ $_{H.2.3}$ 1 1 As $_{muro.H.1.3}$ 0.000138273 m² As $_{muro.H.2.3}$ 0.000148 m² As $_{muro.H.1.3}$ 1.382734452 cm² As $_{muro.H.2.3}$ 1.482104 cm² 12. Acero total perpendicular al muro As $_{muro.H.1.3}$ 0.000138273 m² As $_{muro.H.2.3}$ 0.000148 m² As $_{muro.H.1.3}$ 0.200138273 m² As $_{muro.H.2.3}$ 0.000148 m²	por transferencia	de cortante					
μ H.1.3 1 μ H.2.3 1 As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.382734452 cm² As muro.H.2.3 1.482104 cm² I2. Acero total perpendicular al muro As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.2.3 1.482104 cm²	Fr _{H.1.3}	43.55613524	kN	Fr _{H.1.3}	46.68627	kN	
As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.382734452 cm² As muro.H.2.3 1.482104 cm² 12. Acero total perpendicular al muro As muro.H.2.3 0.000148 m² As muro.H.2.3 1.482104 cm² 12. Acero total perpendicular al muro As muro.H.2.3 0.000148 m² As muro.H.2.3 0.000148 m² As muro.H.2.3 0.000148 m²	μ _{H.1.3}	1		μ _{H.2.3}	1		
As muro.H.1.3 1.382734452 cm² As muro.H.2.3 1.482104 cm² 12. Acero total perpendicular al muro As muro.H.2.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As muro.H.1.3 1.3827374452 cm² As muro.H.2.3 0.000148 m²	As muro.H.1.3	0.000138273	m²	As muro.H.2.3	0.000148	m²	
12. Acero total perpendicular al muro As muro.H.1.3 0.000138273 m² As muro.H.2.3 0.000148 m² As 1.292724452 am² As 1.482104 am²	As muro.H.1.3	1.382734452	cm ²	As muro.H.2.3	1.482104	cm ²	
As $muro.H.1.3$ 0.000138273 m² As $muro.H.2.3$ 0.000148 m² As 1.282724452 m² As 1.482104 m²	12. Acero total ne	rnendicular al muro	<u> </u>				
A = 1 200724450 am2 A = 1 402104 am2	As up	0.000138273	, m ²	As use	0.0001/18	m ²	
AS muro $\mu_{1,2}$ = $1.38/(344)/(Cm^2)$ AS muro $\mu_{2,2}$ = $1.48/(104)/(Cm^2)$	AS muro H 1.3	1 382734452	cm ²	AS muro H 2 3	1 482104	cm ²	

Verificación de deflexiones

Teniendo en cuenta lo descrito en el capítulo C.9.5 de NSR-10, los elementos de concreto reforzado sometidos a flexión deben diseñarse para que posean una rigidez que evite deflexiones que puedan afectar el funcionamiento de la estructura. Por tal razón, se realiza el chequeo de deflexiones en las losas macizas de la estructura bajo estudio, dando cumplimiento a lo descrito en la sección C.9.5.3 de NSR-10. En la Tabla 75 y Tabla 78 se presentan los parámetros usados para la verificación de deflexiones de las losas con espesores 0.125y 0.15, respectivamente.

La deflexión se chequea estimando que las losas de entrepiso y cubierta soportan y están ligado a elementos no estructurales susceptibles a sufrir daño debido a grandes deflexiones, situación para la cual se establece un límite igual a $\delta_{maxima} = L/480$. En la Tabla 76 y Tabla 79 se muestra el resumen de resultados obtenidos para las deflexiones inmediatas, para la losa de entrepiso de 0.125m y 0.15m, respectivamente.

Teniendo en cuenta lo descrito en la tabla C.9.5 (b) de NSR-10, la deflexión evaluada es la que ocurre después de la unión de los elementos no estructurales (suma de la deflexión a largo plazo debido a todas las cargas permanentes después de unir los elementos no estructurales y la deflexión inmediata debida a cualquier carga viva adicional). En la Tabla 77 y Tabla 80 se muestran los valores de deflexión a largo plazo obtenidos durante el análisis para la losa de entrepiso de 0.125m y 0.15m, respectivamente.

Tabla 75.

Geo	metría				
bw h rv d d'	1000 125 25.00 96.50 28.50	mm mm mm mm	h d As' As		
Ref. transversal			Propiedades de los n	nateriales	
de	0				
Ref. superior					
db1	7	mm	fc	28	Мра
db2	0	mm	Ec	24,870	Mpa
db3	0	mm	Es	200,000	Mpa
# db1	7	und	n	8.04	
# db2	0	und	Inercia bruta		
# db3	0	und	Ig	16,276.04	cm^4
A's	253.33	mm ²			
Ref. inferior			Sección transformada		
db1	7	mm	(2n-1)A's	3,821.19	mm ²
db2	0	mm	nAs	2,037.26	mm²
db3	0	mm	a	500.00	
# db1	7	und	b	5,858.45	
# db2	0	und	c	-3.055E+05	
# db3	0	und	x	19.54	mm
As	253.33	mm²	I _{cr}	1,486.0	cm^4

Parámetros para Verificación de deflexiones, placa de entrepiso, espesor 0.125m.

Tabla 76.

Deflexiones inmediatas placa de entrepiso espesor 0.125m.

Momento actuante			Deflexión, sección bruta			
fr	3.28	Mpa	ξ	2.00		
yt	105.46	mm	p'	0.002625216		
Mcr	5.06	kN-m	$\lambda\Delta$	1.768		
MD	2.16	kN-m	ΔD	0.64	mm	
MSD	2.20	kN-m	ΔSD	0.65	mm	
ML	1.32	kN-m	ΔL	0.39	mm	

Tabla 77.

Deflexión a largo plazo-losa de entrepiso, espesor 0.125m.

D	Deflexión Δ1 Deflexión Δ2			Deflexión Δ3				
$\Delta 1 = 2$	$\Delta D + \Delta SD + \Delta T$	L	Δ2	$= \Delta \mathbf{D} + \Delta \mathbf{S} \mathbf{D}$			$\Delta 3 = \Delta D$	
M _A	5.68	kN-m	M _A	4.36	kN-m	M _A	2.16	kN-m
$(Mcr/M_A)^3$	0.709	kN-m	$(M_{cr}\!/M_A)^3$	1.57	kN-m	$(Mcr/M_A)^3$	12.89	kN-m
Ie	11,967.31	cm^4	Ie	24,660.62	cm^4	Ie	192,094.59	cm^4
Ι	11,967.31	cm ⁴	Ι	16,276.04	cm ⁴	Ι	16,276.04	cm ⁴
I/Ig	0.74		I/Ig	1.00		I/Ig	1.00	
$\Delta 1$	2.29	mm	Δ2	1.30	mm	Δ3	0.64	mm

Deflexión total						
ΔL	1.00	mm				
$\Delta_{\rm P}$	2.29	mm				
$\Delta_{ ext{PP}}$	0.64	mm				
Δт	2.65	mm				

Tabla 78.

Geometría								
bw	1000	mm		↑ ↑ 1 d' ′	▲			
h	150	mm			x			
rv	25.00	mm		d AS				
d	96.50	mm	h	┥╸╸┥╸╸	-			
d'	28.50	mm						
Ref transversal				DW Proniedades de los material	les			
do	0			Tropledades de los material				
Def annenien	0			Duonio do dos do los motoriol				
Kef. superior				Propiedades de los material	les			
db1	7.5	mm	f'c		28	Mpa		
db2	0	mm	Ec		24,870	Mpa		
db3	0	mm	Es		200,000	Мра		
# db1	7	und	n		8.04			
# db2	0	und	Inercia bruta					
# db3	0	und	Ig		16,276.04	cm^4		
A's	253.33	mm²						
Ref. inferior			Seco	ción transformada				
db1	7.5	mm	(2n-1)A's		4,424.53	mm ²		
db2	0	mm	nAs		2,358.93	mm²		
db3	0	mm	a		500.00			
# db1	7	und	b		6,783.47			
# db2	0	und	с		-4.132E+05			
# db3	0	und	х		22.75	mm		
As	253.33	mm²	I _{cr}		2,697.1	cm ⁴		

Parámetros para Verificación de deflexiones, placa de entrepiso, espesor 0.15m.

Tabla 79.

Momento actuante			Deflexión, sección bruta			
f _r	3.28	Мра	ξ	2.00		
y _t	127.25	mm	p'	0.002419244		
M _{cr}	7.25	kN-m	λ_Δ	1.784		
M_{D}	2.72	kN-m	Δ_{D}	0.467	mm	
M_{SD}	2.31	kN-m	Δ_{SD}	0.395	mm	
M_{L}	1.39	kN-m	$\Delta_{\rm L}$	0.237	mm	

Deflexiones inmediatas placa de entrepiso espesor 0.15m.

Tabla 80.

Deflexión a largo plazo-losa de entrepiso, espesor 0.15m.

Deflexión Δ1			D	Deflexión Δ2			Deflexión Δ3			
$\Delta_1 =$	$\Delta_{\rm D} + \Delta_{\rm SD} + \Delta_{\rm L}$		Δ	$\Delta_2 = \Delta_D + \Delta_{SD}$			$\Delta_3 = \Delta_D$			
MA	6.42	kN-m	MA	5.03	kN-m	MA	2.72	kN-m		
(Mcr/M _A) ³	1.439	kN-m	$(M_{\rm cr}/M_{\rm A})^3$	2.99	kN-m	(Mcr/M _A) ³	18.92	kN-m		
Ie	39,288.18	cm^4	Ie	78,659.05	cm^4	Ie	483,695.43	cm^4		
Ι	28,125.00	cm ⁴	Ι	28,125.00	cm^4	Ι	28,125.00	cm ⁴		
I/Ig	1.00		I/Ig	1.00		I/Ig	1.00			
Δ1	1.10	mm	Δ2	0.86	mm	Δ3	0.47	mm		

Deflexión total						
ΔL	0.24	mm				
ΔP	1.54	mm				
ΔPP	0.47	mm				
ΔT	1.31	mm				

Apéndice E. Diseño de cimentación

Para el diseño estructural de la cimentación se tomaron en cuenta los lineamientos descritos en la sección 8.4 de ASCE 41-17. En la Tabla 81 se muestran los parámetros geotécnicos de entrada usados para el análisis de la cimentación de las edificaciones bajo estudio.

Con los parámetros se calculó la rigidez elástica inicial del suelo de soporte para sus grados de libertad por medio de resortes desacoplados como lo indica la tabla 2-2a de NISTGCR-917-21. Se realizó la corrección debido al empotramiento de la cimentación (distancia d_e por debajo de la superficie) tomando las ecuaciones tabla 2-2b del NISTGCR-917-21. En la Tabla 82 se muestran los cálculos realizados.

Teniendo en cuenta que la losa de cimentación se considera un elemento flexible, se aplicó la ecuación 2.20-a de NIST GCR 12-917-21, con el fin de corregir la rigidez rotacional se aplican las ecuaciones 2.21a y 2-21b de NIST GCR 12-917-21 y se calcularon las rigideces asignadas a las áreas de la losa de cimentación como se observa en la Tabla 83 y en la Figura 79.

Tabla 81.

Datos de entrada análisis de cimentación.

Parámetros geotécnicos			
Clasificación del Suelo	Suelo		D
Módulo de Elasticidad del suelo	Е	Mpa	25
Velocidad de Onda	Vso	m/s	300
Gravedad	g	m/s²	9.81
Peso específico del suelo	γs	kN/m³	18
Capacidad Portante	Qa	kN/m²	250
Coeficiente de Poisson	v		0.3
Factor de seguridad	FS		3
Parámetros Sísmicos			
	Fa		1.4
aceleración horizontal pico efectiva	Aa, Ss		0.2
Aceleración de respuesta espectral	Sxs		0.28
Aceleración pico efectiva	Sxs/2.5		0.112
Datos Geométricos			
Ancho Losa Cimentación	В	m	22
Largo de la Losa	L	m	26.15
Distancia desde la superficie hasta la parte inferior del elemento en			
contacto con el suelo	D	m	1.1
Inercia dirección X	Ix	m4	23204
Inercia dirección Y	Iy	m4	32784
Suma de inercias	Jt	m4	55987

Tabla 82.

Rigidez estática en la losa de cimentación.

Parámetros calculados del suelo			
Módulo de Cortante inicial ASCE 8.4.2.2	GO	kN/m²	165137.61468
Relación de módulos de cortante	G/GO		0.48
Módulo de Corte efectivo	G	kN/m^2	79266.05505
Mitad del Ancho	B/2	m	11
Mitad del Largo	L/2	m	13.075
Rigidez de la cimentación en la superficie			
Grado de libertad x	Kx,sur	kN/m	5133265
Grado de libertad y	Ky,sur	kN/m	5210666
Grado de libertad z	Kz,sur	kN/m	6388698
Grado de libertad x	Kxx,sur	kN/m	693854280
Grado de libertad y	Kyy,sur	kN/m	898966747
Factor de corrección por empotramiento			
Grado de libertad x	βx		1.14933710
Grado de libertad y	βy		1.14933710
Grado de libertad z	βz		1.07295660
Grado de libertad x	βxx		1.11039882
Grado de libertad y	βуу		1.10681964
Rigidez de la cimentación en la superficie correg	gida		
Grado de libertad x	Kx,sur	kN/m	5899852.253
Grado de libertad y	Ky,sur	kN/m	5988812.061
Grado de libertad z	Kz,sur	kN/m	6854796.09
Grado de libertad x	Kxx,sur	kN/m	770454973.1
Grado de libertad y	Kyy,sur	kN/m	994994055.3

Tabla 83.

Rigidez asignada a la losa de cimentación simulando comportamiento flexible.

Corrección de rigidez Rotacional-cimentación flexible							
Coeficiente de reacción de la subrasante	kiz	kN/m³	11915.1679				
Relación de longitud	Re		0.4				
Rocking yy	Rk,yy		2.973475068				
Roking xx	Rk,xx		3.278940899				
Rigidez en los resortes asignados							
Longitud en la esquina	Re*L Hz	m	5.230				
Longitud en la esquina	Re*L Vt	m	4.400				
zona	Gris	kN/m³	11915.1679				
zona	Amarillo	kN/m³	35429.45467				
zona	Azul	kN/m³	39069.13132				
zona	Verde	kN/m³	37249.29299				

Figura 79.

Distribución de rigidez en el área de cimentación.

Verificación a cortante losa de cimentación

Para el diseño a cortante de la losa de entrepiso, se dio cumplimiento a las especificaciones dadas en C.11.2 de NSR-10. Se revisó que los cortantes para las combinaciones de diseño no superaran el valor dado por la expresión, $v_c = \phi 0.17\lambda \sqrt{f'_c} b d$, donde, *b*, es el ancho aferente y *d*, distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción. Con la altura suministrada se garantizó que la losa de cimentación no requiriera refuerzo para resistir cortante. En las Figura 80 y Figura 81 se muestra el diagrama de esfuerzos para la estructura DMO y en la Figura 82 y Figura 83 la estructura DES.

Figura 80.

Diagrama de cortantes V13 estructura DMO.

Figura 81.

Diagrama de cortantes V23 estructura DMO.

Figura 82.

Diagrama de cortantes V13 estructura DES.

Figura 83.

Diagrama de cortantes V23 estructura DES.

Diseño a Flexión losa de cimentación.

Refuerzo mínimo por retracción.

Teniendo en cuenta lo descrito en C.7 de NSR-10, la cuantía mínima de refuerzo, $\rho_{Retracción}$, es de 0.0018. Tomando un ancho aferente de diseño de un metro se calculó el área mínima de refuerzo mediante la ecuación $As_{Retracción} = \rho_{Retracción} b h$, donde b es el ancho aferente y h la altura total de la placa. El área mínima de refuerzo resultante para una altura de placa de 0.90m es de 16.2 cm²/m. Una vez calculada el área mínima de refuerzo se busca una distribución que satisfaga el área encontrada. En la Tabla 84 se encuentra la configuración seleccionada para el refuerzo de la placa.

Tabla 84.

Distribución y	área de	refuerzo	suministrado	a la	placa	de	cimentación
2					4		

Espesores Diámetro de la Var		Separación	AsminSuministrado		
m	φ	m	cm²/m		
0.900	3/4" pulg	0.15	18.9		

Refuerzo por solicitaciones a flexión.

Para el diseño por flexión de la placa de cimentación se calcularon los momentos máximos resistentes para las distribuciones de refuerzo indicadas en la Tabla 39. Estos se compararon con las solicitaciones de momentos obtenidas de las combinaciones de diseño (Figura 84 y Figura 85 momentos de diseño edificación DES. Figura 86 y Figura 87 los momentos de diseño edificación DMO). En los casos donde el refuerzo base (Tabla 84) no superaba la demanda de momento, se suministró refuerzo adicional hasta satisfacer dichas condiciones En la Tabla 85 se listan los momentos resistentes usados en el diseño de la losa.

Tabla 85.

Momentos resistentes en losa de cimentación.

Espesor	Refuerzo Suministrado	Momento Resistente		
m		kN-m/m		
0.90	1 φ 3/4" C/.15	580.52		
0.90	1 φ 3/4" C/.15+1 φ 5/8" C/.15	969.49		
0.90	1 φ 3/4" C/.15+1 φ 3/4" C/.15	1136.96		

Figura 84.

Diagrama de momentos M11 estructura DES.

Figura 85.

Diagrama de momentos M22 estructura DES.

Figura 86.

Diagrama de momentos M11 estructura DMO.

Figura 87.

Diagrama de momentos M22 estructura DMO.

Diseño a cortante vigas de cimentación.

En la Tabla 86 se muestran los resultados obtenidos para el refuerzo proporcionado y en la Figura 88 y Figura 89 los diagramas de cortante para las capacidades de disipación DMO y DES obtenidas mediante el modelamiento.

Tabla 86.

Cortante resistente vigas de cimentación.

Geometría			Cortantes			
b	1	m	a)Avs	0.000276117	m²	
h	0.9	m	b)Avs	0.000156225	m²	
r	0.075	m	c)Avs	1.66667E-07	m²	
d	0.825	m				
Materiales			Cortantes Resistente acero de refuerzo			
f´c	28	Mpa	φVsmax	2160.917383	kN	
$\mathbf{f}_{\mathbf{y}}$	420	Mpa	a).φVs	358.7789315	kN	
φ	0.75		b).φVs	202.9952693	kN	
					c). ϕVs	
Refuerzo			Verificación de diseño			
cant ramas	4					
Фest	3/8	pulg	φVc	556.5999321	kN	
S	0.2		Vu	915.379	kN	

Figura 88.

Diagrama de cortante vigas estructura DES.

Figura 89.

Diagrama de cortante vigas estructura DMO.

Diseño a flexión vigas de cimentación.

Refuerzo mínimo vigas de cimentación.

Teniendo en cuenta lo descrito en C.10.5.1 de NSR-10, el área mínima por flexión, As_{minimo} , se calculó mediante la ecuación $As_{minimo} = 0.25\sqrt{f'_c}b_w d/f_y \ge 1.4b_w d/f_y$, donde *b*, es el ancho de la viga y *d*, la distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción, encontrando que el área mínima de refuerzo para una sección transversal de 1.00x0.90m es de 27.23 cm². Una vez calculada el área mínima de refuerzo se buscó una distribución que cumpliera el área exigida. En la Tabla 87 se encuentra la configuración seleccionada para el refuerzo proporcionado a la viga.

Tabla 87.

Distribución y área de refuerzo suministrado a las vigas de cimentación.

Sección transversal Diámetro de la Varilla		cantidad	AsminSuministrado
m	φ	und	cm ²
1.00X.90	7/8" pulg	8	30.96

Refuerzo por solicitaciones a flexión.

Para el diseño por flexión de las vigas de cimentación se calcularon los momentos máximos resistentes (935.73kN-m) para las distribuciones de refuerzo indicadas en la Tabla 87, y se comparan con los momentos dados por las combinaciones de diseño mostrados en la Figura 90 y

Figura 91 para las vigas de cimentación de la estructura DMO y DES, respectivamente.

Figura 90.

Diagrama de Momentos de diseño DMO.

Figura 91.

Diagrama de Momentos de diseño DES.

Apéndice F. Diseño de muros estructurales

En esta sección se muestran los cálculos realizados para el primer piso de un muro tipo (V.1.1 en Figura 92) para cada una de las capacidades de disipación.

Figura 92.

Identificación muro diseñado.

En la Tabla 88 y Tabla 89 se muestra las solicitaciones obtenidas del análisis para la capacidad DMO y DES, respectivamente. Los cálculos de diseño se realizaron teniendo en cuenta que todos los muros de la edificación DMO y DES presentan los mismos materiales, al igual que una misma distribución geométrica en planta y altura. En la Tabla 90 se muestran los valores usados en las edificaciones diseñadas. Los parámetros normativos tomados en el diseño estructural se muestran en la Tabla 91 y Tabla 92 para capacidad DMO y DES

respectivamente. Una vez mostrados los parámetros de entrada se realiza la verificación de las dimensiones del muro tipo en la Tabla 93 y Tabla 94 se realiza el resumen de los cálculos realizados.

Tabla 88.

Solicitaciones obtenidas para estructura DMO.

		ones	ies		
Nombre	Combos	Mu (Kn-m)	Pu oNu (Kn)	Vu (Kn)	δu=
		kN-m	kN-m	kN	m
V.1.1	Diseño B.2.4.1	5.522	3384.041	2.025	0.000
V.1.1	Diseño B.2.4.2	6.643	3327.800	2.436	0.000
V.1.1	Diseño B.2.4.3	6.643	3327.800	2.436	0.000
V.1.1	Diseño B.2.4.4	5.927	3167.602	2.173	0.000
V.1.1	Diseño B.2.4.5.A Max	9005.125	3167.602	279.373	0.021
V.1.1	Diseño B.2.4.5.A Min	8993.271	3167.603	275.026	0.021
V.1.1	Diseño B.2.4.5.B Max	25468.648	3167.602	781.224	0.060
V.1.1	Diseño B.2.4.5.B Min	25456.794	3167.603	776.877	0.060
V.1.1	Diseño B.2.4.6	3.550	2175.455	1.302	0.000
V.1.1	Diseño B.2.4.7.A Max	9002.747	2175.454	278.501	0.021
V.1.1	Diseño B.2.4.7.A Min	8995.648	2175.455	275.898	0.021
V.1.1	Diseño B.2.4.7.B Max	25466.271	2175.455	780.352	0.060
V.1.1	Diseño B.2.4.7.B Min	25459.172	2175.455	777.749	0.060
Tabla 89.

Solicitaciones obtenidas para estructura DES.

		Solicitaci	ones		
Nombre	Combos	Mu (Kn-m)	Pu oNu (Kn)	Vu (Kn)	δu=
		kN-m	kN-m	kN	m
V.1.1	Diseño B.2.4.1	5.522	3384.041	2.025	0.000
V.1.1	Diseño B.2.4.2	6.643	3327.800	2.436	0.000
V.1.1	Diseño B.2.4.3	6.643	3327.800	2.436	0.000
V.1.1	Diseño B.2.4.4	5.927	3167.602	2.173	0.000
V.1.1	Diseño B.2.4.5.A Max	7205.285	3167.602	223.933	0.017
V.1.1	Diseño B.2.4.5.A Min	7193.431	3167.603	219.587	0.017
V.1.1	Diseño B.2.4.5.B Max	20376.104	3167.602	625.414	0.048
V.1.1	Diseño B.2.4.5.B Min	20364.250	3167.603	621.067	0.048
V.1.1	Diseño B.2.4.6	3.550	2175.455	1.302	0.000
V.1.1	Diseño B.2.4.7.A Max	7202.908	2175.454	223.061	0.017
V.1.1	Diseño B.2.4.7.A Min	7195.809	2175.455	220.458	0.017
V.1.1	Diseño B.2.4.7.B Max	20373.727	2175.455	624.542	0.048
V.1.1	Diseño B.2.4.7.B Min	20366.627	2175.455	621.939	0.048

Tabla 90.

Propiedades geométricas muro tipo estructura DES y DMO.

Geomet	Geometría Materiales									
Lw=	hw	hp	e	r	d	Ag	F'c	F'y	Es	β1
m	m	m	m	m		m ²	Mpa	Mpa	Мра	
					C.11.9.4					C.10.2.7.3
6.95	37.5	2.5	0.25	0.025	5.56	1.7375	28	420	200000	0.85

Tabla 91.

Parámetros muro tipo estructura DMO.

	Parámetros										
Ctransicion M	C _b cm	P _{umin} kN	ФРь kN	ΦP _{transicion} kN	Φcortante	Ф _{сотр} .	ΦTension	ФFlexoCom.	ec	escomp.	es Flexión
					Sec C.9.3.2.3						
2.60	4.07	4865	14228.4	9523.73	0.75	0.65	0.9	0.9	0.003	0.0021	0.005

Tabla 92.

Parámetros muro tipo estructura DES.

					Parámet	ros					
Ctransicion	Cb	Pumin	ΦP _b	$\Phi P_{transicion}$	Φcortante	Φcomp.	Φ_{Tension}	ФFlexoCom.	ec	escomp.	es Flexión
m	cm	kN	kN	kN							
					Sec C.9.3.2.3						
2.60	4.07	4865	13931.2	10339.02	0.75	0.65	0.9	0.9	0.003	0.0021	0.005

Tabla 93.

Revisión dimensiones del muro tipo para capacidad de disipación DMO.

H _w /L _w	Lw/b _w	Clasificación	α _t	$M_u/V_u-L_w/2$	V _{umax}	$\Phi V_c/V_{umax}$	Chequeo
				m	kN	Relación	ΦVc<=Vumax
C.21.9.4.1	C.21.9.4.1	C.21.9.4.1	C.21.9.4.1	C.11.9.6	C.11.9.3		C.11.9.3
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00044	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00053	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00053	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00047	Cumple
5.396	27.80	Muro	0.17	28.758	4578.605	0.061	Cumple
5.396	27.80	Muro	0.17	29.225	4578.605	0.0601	Cumple
5.396	27.80	Muro	0.17	29.126	4578.605	0.1706	Cumple
5.396	27.80	Muro	0.17	29.2937	4578.605	0.170	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00028	Cumple
5.396	27.80	Muro	0.17	28.851	4578.605	0.0610	Cumple
5.396	27.80	Muro	0.17	29.130	4578.605	0.0603	Cumple
5.396	27.80	Muro	0.17	29.159	4578.605	0.170	Cumple
5.396	27.80	Muro	0.17	29.259	4578.605	0.170	Cumple

Tabla 94.

Revisión dimensiones del muro tipo para capacidad de disipación DES.

H _w /L _w	Lw/b _w	Clasificación	αt	M_u/V_u - $L_w/2$	Vumax	$\Phi V_c/V_{umax}$	Chequeo
				m	kN	Relación	ΦVc<=Vumax
C.21.9.4.1	C.21.9.4.1	C.21.9.4.1	C.21.9.4.1	C.11.9.6	C.11.9.3		C.11.9.3
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00044	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00053	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00053	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00047	Cumple
5.396	27.80	Muro	0.17	28.701	4578.605	0.0490	Cumple
5.396	27.80	Muro	0.17	29.284	4578.605	0.0480	Cumple
5.396	27.80	Muro	0.17	29.105	4578.605	0.137	Cumple
5.396	27.80	Muro	0.17	29.314	4578.605	0.136	Cumple
5.396	27.80	Muro	0.17	-0.748	4578.605	0.00028	Cumple
5.396	27.80	Muro	0.17	28.816	4578.605	0.0487	Cumple
5.396	27.80	Muro	0.17	29.165	4578.605	0.0482	Cumple
5.396	27.80	Muro	0.17	29.147	4578.605	0.136	Cumple
5.396	27.80	Muro	0.17	29.272	4578.605	0.136	Cumple

A continuación se muestra el diseño a cortante siguiendo los lineamiento de NSR-10, en la Tabla 95 y Tabla 96 se resume el cálculo de la resistencia a cortante del concreto, la resistencia que debe asumir el acero y el número de capas requeridas y suministradas al muro bajo estudio para las capacidades DMO y DES respectivamente.

Tabla 95.

Resistencia a cortante acero y concreto muro con capacidad DMO.

	Calculo	de PV c			Calculo	ΦVs	
ΦV _{c1}	ΦV_{c2}	ΦV _{c3}	ΦVc	ΦV _{capas}	#Capas	#Capas	$\mathbf{V}_{\mathbf{s}}$
kN	kN	kN	kN	kN	requerida	Sum.	kN
C.11.9.5	C.11.9.6	C.11.9.6	C.11.9.5	C.21.9.2.3	C.21.9.2.3		C.11.9.9.1
937.787	1997.032	0.000	937.787	1172.233	1	2	0.000
937.787	1988.596	0.000	937.787	1172.233	1	2	0.000
937.787	1988.596	0.000	937.787	1172.233	1	2	0.000
937.787	1964.566	0.000	937.787	1172.233	1	2	0.000
937.787	1964.566	500.995	500.995	1172.233	1	2	0.000
937.787	1964.566	497.402	497.402	1172.233	1	2	0.000
937.787	1964.566	498.153	498.153	1172.233	1	2	283.071
937.787	1964.566	496.884	496.884	1172.233	1	2	279.993
937.787	1815.744	0.000	937.787	1172.233	1	2	0.000
937.787	1815.744	471.594	471.594	1172.233	1	2	0.000
937.787	1815.744	469.717	469.717	1172.233	1	2	0.000
937.787	1815.744	469.522	469.522	1172.233	1	2	310.831
937.787	1815.744	468.859	468.859	1172.233	1	2	308.890

Tabla 96.

Resistencia a cortante acero y concreto muro con capacidad DES.

	Calculo	de P Vc			Calculo	ΦVs	
ΦV _{c1}	ΦV _{c2}	ΦV _{c3}	ΦVc	ΦV _{capas}	#Capas	#Capas	Vs
kN	kN	kN	kN	kN	requerida	Sum.	kN
C.11.9.5	C.11.9.6	C.11.9.6	C.11.9.5	C.21.9.2.3	C.21.9.2.3		C.11.9.9.1
937.787	1997.032	0.000	937.787	1172.233	1	2	0.00
937.787	1988.596	0.000	937.787	1172.233	1	2	0.00
937.787	1988.596	0.000	937.787	1172.233	1	2	0.00
937.787	1964.566	0.000	937.787	1172.233	1	2	0.00
937.787	1964.566	501.445	501.445	1172.233	1	2	0.00
937.787	1964.566	496.953	496.953	1172.233	1	2	0.00
937.787	1964.566	498.312	498.312	1172.233	1	2	127.10
937.787	1964.566	496.726	496.726	1172.233	1	2	124.34
937.787	1815.744	0.000	937.787	1172.233	1	2	0.00
937.787	1815.744	471.828	471.828	1172.233	1	2	0.00
937.787	1815.744	469.482	469.482	1172.233	1	2	0.00
937.787	1815.744	469.604	469.604	1172.233	1	2	154.94
937.787	1815.744	468.776	468.776	1172.233	1	2	153.16

Tabla 97.

Cuantía de refuerzo transversal muro con capacidad DMO.

	Refuerzo transversal (alma del muro)									
Φdbt	Фvclim	Vu<ΦVc/2	ρt	ρt	ρt	ρt	ρt	ρt		
	kN		a.1)	a.2)	a)	b)	c)			
	C.21.9.2.1	C.14.3.2	C.14.3.3	C.11.9.9.1	C.11.9.8	C.21.9.2.1	C.21.9.4.1	Requerido		
No3	457.860	Si	0.0020	0.0000	0.0020	0.002	0	0.0020		
No3	457.860	Si	0.0020	0.0000	0.0020	0.002	0	0.0020		
No3	457.860	Si	0.0020	0.0000	0.0020	0.002	0	0.0020		
No3	457.860	Si	0.0020	0.0000	0.0020	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0000	0.0000	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0000	0.0000	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0006	0.0006	0.0025	0	0.0025		
No3	457.860	No	0.0020	0.0006	0.0006	0.0025	0	0.0025		
No3	457.860	Si	0.0020	0.0000	0.0020	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0000	0.0000	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0000	0.0000	0.002	0	0.0020		
No3	457.860	No	0.0020	0.0007	0.0007	0.0025	0	0.0025		
No3	457.860	No	0.0020	0.0007	0.0007	0.0025	0	0.0025		

Tabla 98.

Cuantía de refuerzo transversal muro con capacidad DES.

		F	Refuerzo t	ransversal (alma del r	nuro)		
Φdbt	Φvclim	Vu<ΦVc/2	ρt	ρt	ρt	ρt	ρt	ρt
	kN		a.1)	a.2)	a)	b)	c)	
	C.21.9.2.1	C.14.3.2	C.14.3.3	C.11.9.9.1	C.11.9.8	C.21.9.2.1	C.21.9.4.1	Requerido
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	No	0.0020	0.0003	0.0003	0.0025	0.000000	0.0025
No3	457.86	No	0.0020	0.0003	0.0003	0.0025	0.000000	0.0025
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	Si	0.0020	0.0000	0.0020	0.002	0.000000	0.0020
No3	457.86	No	0.0020	0.0004	0.0004	0.0025	0.000000	0.0025
No3	457.86	No	0.0020	0.0003	0.0003	0.0025	0.000000	0.0025

Tabla 99.

Separación de refuerzo transversal muro con capacidad DMO.

		S	eparación re	fuerzo transv	versal		
Astransv	a) S transv	b) S transv	c) S transv	c) S transv	S transv	S transv	ρt
		C.11.9.9.3	C.11.9.9.3	C.11.9.9.3	Requerido	Sum.	sum
cm²/m	cm	cm	cm	cm	cm	cm	
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
3.12500	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
3.12500	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.50000	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
3.12500	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
3.12500	22.720	139.000	75.0	45.0	22.720	20.00	0.0028

Tabla 100.

Separación de refuerzo transversal muro con capacidad DES.

		S	eparación re	fuerzo transv	versal		
Astransv	a) S transv	b) S transv	c) S transv	c) S transv	S transv	S transv	ρt
		C.11.9.9.3	C.11.9.9.3	C.11.9.9.3	Requerido	Sum.	sum
cm²/m	cm	cm	cm	cm	cm	cm	
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
3.125	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
3.125	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
2.500	28.400	139.000	75.0	45.0	28.400	20.00	0.0028
3.125	22.720	139.000	75.0	45.0	22.720	20.00	0.0028
3.125	22.720	139.000	75.0	45.0	22.720	20.00	0.0028

Tabla 101.

Cuantía refuerzo longitudinal muro con capacidad DMO.

			Re	efuerzo long	itudinal			
Φ_{dbl}	ρι	ρι	ρι	ρι	ρι	ρι	ρι	ρι _{Muro}
	a.1)	a.2)	a)	c)	d)	e)	FlexoComp•	Requerida
	C.14.3.2	C.11.9.9.4	C.11.9.8	C.21.9.2.1	C.21.9.4.3	C.21.9.4.1		
No5	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No5	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No5	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No5	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No5	0.0012	0.0025	0.0025	0.0012	0.0012	0.0012	0	0.0025
No5	0.0012	0.0025	0.0025	0.0012	0.0012	0.0012	0	0.0025
No5	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.0093	0.0093
No5	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.00933	0.00933
No5	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No5	0.0012	0.0025	0.0025	0.0012	0.0012	0.0012	0.0010	0.0025
No5	0.0012	0.0025	0.0025	0.0012	0.0012	0.0012	0.001	0.0025
No5	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.0107	0.0107
No5	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.01065	0.01065

Tabla 102.

Cuantía refuerzo longitudinal muro con capacidad DES.

				Refuerzo lo	ngitudinal			
Φdbl	ρΙ	ρΙ	ρΙ	ρl	ρl	ρl	ρl	pl Muro
	a.1)	a.2)	a)	c)	d)	e)	FlexoComp.	Requerida
	C.14.3.2	C.11.9.9.4	C.11.9.8	C.21.9.2.1	C.21.9.4.3	C.21.9.4.1		
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.0061	0.0061
No4	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.00617	0.0061
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	0	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	8.21E-05	0.0012
No4	0.0012	0.0025	0.0012	0.0012	0.0012	0.0012	7.85E-05	0.0012
No4	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.00745	0.0075
No4	0.0012	0.0025	0.0025	0.0025	0.0025	0.0025	0.00745	0.0074

Tabla 103.

Separación refuerzo longitudinal muro con capacidad DMO.

Aslong	a). Slong	b). Slong	c). Slong	d). Slong	Slong	Slong
X Cara	C.11.9.9.4	C.11.9.9.5	C.11.9.9.5	C.11.9.9.5	Requerido	Sum.
cm²/m	cm	cm	cm	cm	cm	cm
1.50	133.33	231.67	75.00	45.00	45.00	12.25
1.50	133.33	231.67	75.00	45.00	45.00	12.25
1.50	133.33	231.67	75.00	45.00	45.00	12.25
1.50	133.33	231.67	75.00	45.00	45.00	12.25
3.13	64.00	231.67	75.00	45.00	45.00	12.25
3.13	64.00	231.67	75.00	45.00	45.00	12.25
11.67	17.14	231.67	75.00	45.00	17.14	12.25
11.66	17.15	231.67	75.00	45.00	17.15	12.25
1.50	133.33	231.67	75.00	45.00	45.00	12.25
3.13	64.00	231.67	75.00	45.00	45.00	12.25
3.13	64.00	231.67	75.00	45.00	45.00	12.25
13.32	15.02	231.67	75.00	45.00	15.02	12.25
13.31	15.03	231.67	75.00	45.00	15.03	12.25

Tabla 104.

Aslong	a). Slong	b). Slong	c). Slong	d). Slong	Slong	Slong
X Cara	C.11.9.9.4	C.11.9.9.5	C.11.9.9.5	C.11.9.9.5	Requerido	Sum.
cm²/m	cm	cm	cm	cm	cm	cm
1.50	86.00	231.67	75.00	227.00	75.00	12.25
1.50	86.00	231.67	75.00	228.00	75.00	12.25
1.50	86.00	231.67	75.00	229.00	75.00	12.25
1.50	86.00	231.67	75.00	230.00	75.00	12.25
1.50	86.00	231.67	75.00	231.00	75.00	12.25
1.50	86.00	231.67	75.00	232.00	75.00	12.25
7.59	16.99	231.67	75.00	233.00	16.99	12.25
7.58	17.01	231.67	75.00	234.00	17.01	12.25
1.50	86.00	231.67	75.00	235.00	75.00	12.25
1.50	86.00	231.67	75.00	236.00	75.00	12.25
1.50	86.00	231.67	75.00	237.00	75.00	12.25
9.31	13.85	231.67	75.00	238.00	13.85	12.25
9.31	13.86	231.67	75.00	239.00	13.86	12.25

Separación refuerzo longitudinal muro con capacidad DES.

Tabla 105.

δu/hw	clim	Requiere	Esfuerzos	Esfuerzo lim	Esfuerzo lim	Requiere
C.21.4.4.1	C.21.9.6.2	E.B	kN/m ²	kN/m ²	kN/m ²	E.B
	m	C.21.9.6.2		C.21.9.6.3	C.21.9.6.3	C.21.9.6.3
0.0035	3.3095	No	1950.39	8400	6160	No
0.0035	3.3095	No	1918.58	8400	6160	No
0.0035	3.3095	No	1918.58	8400	6160	No
0.0035	3.3095	No	1826.03	8400	6160	No
0.0035	3.3095	No	6297.44	8400	6160	Requiere
0.0035	3.3095	No	6291.56	8400	6160	Requiere
0.0035	3.3095	No	14477.65	8400	6160	Requiere
0.0035	3.3095	No	14471.76	8400	6160	Requiere
0.0035	3.3095	No	1253.82	8400	6160	No
0.0035	3.3095	No	5725.24	8400	6160	No
0.0035	3.3095	No	5721.72	8400	6160	No
0.0035	3.3095	No	13905.45	8400	6160	Requiere
0.0035	3.3095	No	13901.93	8400	6160	Requiere
	δu/hw C.21.4.4.1 0.0035	ôu/hw clim C.21.4.40 C.21.9.62 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095 0.0035 3.3095	ðu/hwclimRequiereC.21.4.41C.21.9.62E.B0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No0.00353.3095No	ðu/hwclimRequiereEsfuerzosC.21.4.4.0C.21.9.6.2E.BkN/m²0.00353.3095No1950.390.00353.3095No1918.580.00353.3095No1918.580.00353.3095No1826.030.00353.3095No6297.440.00353.3095No6291.560.00353.3095No14471.650.00353.3095No1253.820.00353.3095No5725.240.00353.3095No5721.720.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.3095No13005.450.00353.30	ðu/hwclimRequiereEsfuerzosEsfuerzosIsfuerzosC.21.4.4.1C.21.9.6.2k.N/m²k.N/m²k.N/m²0.014S.3095No1950.3984000.00353.3095No1918.5884000.00353.3095No1918.5884000.00353.3095No1250.0384000.00353.3095No6291.5484000.00353.3095No14471.6584000.00353.3095No1253.8284000.00353.3095No5721.7284000.00353.3095No1309.5484000.00353.3095No5721.7284000.00353.3095No1309.5484000.00353.3095No5721.7284000.00353.3095No1309.5484000.00353.3095No1309.548400	ðu/hufelmRequiereEsfuerzoEsfuerzoIesfuerz

Verificación pertinencia elemento de borde capacidad DMO.

Tabla 106.

С	δu/hw	clim	Requiere	Esfuerzos	Esfuerzo lim	Esfuerzo lim	Requiere
	C.21.4.4.1	C.21.9.6.2	E.B	kN/m ²	kN/m ²	kN/m ²	E.B
		m	C.21.9.6.2		C.21.9.6.3	C.21.9.6.3	C.21.9.6.3
1.4497	0.0070	1.6548	No	1950.39	5600	4200	No
1.4405	0.0070	1.6548	No	1918.58	5600	4200	No
1.4405	0.0070	1.6548	No	1918.58	5600	4200	No
1.4135	0.0070	1.6548	No	1826.03	5600	4200	No
1.4135	0.0070	1.6548	No	5403.16	5600	4200	Requiere
1.4135	0.0070	1.6548	No	5397.27	5600	4200	Requiere
1.4135	0.0070	1.6548	No	11947.33	5600	4200	Requiere
1.4135	0.0070	1.6548	No	11941.44	5600	4200	Requiere
1.2500	0.0070	1.6548	No	1253.82	5600	4200	No
1.2500	0.0070	1.6548	No	4830.96	5600	4200	Requiere
1.2500	0.0070	1.6548	No	4827.43	5600	4200	Requiere
1.2500	0.0070	1.6548	No	11375.13	5600	4200	Requiere
1.2500	0.0070	1.6548	No	11371.60	5600	4200	Requiere

Verificación pertinencia elemento de borde capacidad DES.

Teniendo en cuenta lo descrito en NSR-10 cuando el elemento presenta una cuantía de refuerzo longitudinal mayor e igual al uno por ciento (1%) el elemento debe ser confinado mediante estribo cerrado, por lo cual se toma como elemento confinado en el muro de capacidad DES toda la longitud del muro, como se muestra en la Tabla 107. Dado que el muro mostrado presenta una cuantía de refuerzo inferior al 1% se suministró un elemento de borde acorde a la distribución de refuerzo tal como se indica en la Tabla 108.

Tabla 107.

1. Long. E.B.	2. Long. E.B.	Long. E.B.	Long. E.B.
m	m	m	m
C.21.9.6.4	C.21.9.6.4	Requerido	Suministrado
1.0090	0.8520	1.0090	6.9500
1.0009	0.8480	1.0009	6.9500
1.0009	0.8480	1.0009	6.9500
0.9781	0.8366	0.9781	6.9500
0.9781	0.8366	0.9781	6.9500
0.9781	0.8366	0.9781	6.9500
0.9781	0.8366	0.9781	6.9500
0.9781	0.8366	0.9781	6.9500
0.8368	0.7659	0.8368	6.9500
0.8368	0.7659	0.8368	6.9500
0.8368	0.7659	0.8368	6.9500
0.8368	0.7659	0.8368	6.9500
0.8368	0.7659	0.8368	6.9500

Longitud de elemento de borde (elemento confinado) capacidad DMO.

Tabla 108.

1. Long. E.B.	2. Long. E.B.	Long. E.B.	Long. E.B.
m	m	m	m
C.21.9.6.4	C.21.9.6.4	Requerido	Suministrado
0.7563	0.7249	0.7563	0.7250
0.7472	0.7203	0.7472	0.7250
0.7472	0.7203	0.7472	0.7250
0.7211	0.7068	0.7211	0.7250
0.7211	0.7068	0.7211	0.7250
0.7211	0.7068	0.7211	0.7250
0.7211	0.7068	0.7211	0.7250
0.7211	0.7068	0.7211	0.7250
0.5596	0.6250	0.6250	0.7250
0.5596	0.6250	0.6250	0.7250
0.5596	0.6250	0.6250	0.7250
0.5596	0.6250	0.6250	0.7250
0.5596	0.6250	0.6250	0.7250

Longitud de elemento de borde (elemento confinado) capacidad DES.

En la Tabla 109 y Tabla 110 se muestra la configuración de los elementos confinados para el muro mostrado (V.1.1) y en la Tabla 111 y Tabla 112 se presentan las separaciones en altura para la capacidad DMO y DES respectivamente.

Tabla 109.

Configuración de refuerzo elemento confinado muro DMO.

LE.B.	Фdbl	Фest	#Ramas// X	#Ramas// Y	bcx	bcy	Ach	Ashx	Ashy
m			und	und	m	m	m ²	cm ²	cm ²
6.95	No5	No3	57	2	6.90	0.2	1.38	40.47	1.42

Tabla 110.

Configuración de refuerzo elemento confinado muro DES.

Le.b.	Φdbl	Фest	#Ramas// X	#Ramas// Y	bcx	bcy	Ach	Ashx	Ashy
m			und	und	m	m	m ²	cm ²	cm ²
0.725	No4	No3	6	2	0.6750	0.2	0.135	4.26	1.42

Tabla 111.

Separación en altura de refuerzo elemento confinado muro DMO.

a) Sep	b) Sep	c) Sep	d) Sep	e) Sep	sep
cm	cm	cm	cm	cm	cm
C.21.4.4.3	C.21.9.6.4	C.21.9.6.4	C.21.6.4.4	C.21.6.4.4	Requerida
8.3333	9.54	15	10.519	11.8333	8.3333

Tabla 112.

Separación en altura de refuerzo elemento confinado muro DES.

a) Sep	b) Sep	c) Sep	d) Sep	e) Sep	sep
cm	cm	cm	cm	cm	cm
C.21.4.4.3	C.21.9.6.4	C.21.9.6.4	C.21.6.4.4	C.21.6.4.4	Requerida
12.5000	12.72	15	14.663	17.7500	12.5000

En la Figura 94 se muestra el diagrama de interacción para el refuerzo suministrado al muro bajo estudio, para la configuración de refuerzo de la Figura 93.

Figura 93.

Distribución de refuerzo muro V.1.1 capacidad DMO.

Figura 94.

Diagrama de interacción configuración de refuerzo muro V.1.1 capacidad DMO.

En la Figura 96 se muestra el diagrama de interacción para el refuerzo suministrado al muro bajo estudio, para la configuración de refuerzo de la Figura 95

Figura 95.

Distribución de refuerzo muro v.1.1 capacidad DES.

Figura 96.

Diagrama de interacción configuración de refuerzo muro V.1.1 capacidad DES.

Apéndice G. Caracterización del concreto

Concreto Confinado

Para realizar la curva esfuerzo deformación del concreto confinado, se usa el modelo de Mander, teniendo en cuenta los siguientes criterios: separación y diámetro del refuerzo longitudinal y transversal.

En la Tabla 113. se muestran los parámetros usados para el cálculo del elementos de confinamiento, en la Figura 93 y Figura 95 se muestra un esquema del refuerzo suministrado y en la Figura 97 se presenta las gráficas de los concretos usados en el muro V.1.1 en los tres primeros pisos de la edificación DMO y DES, respectivamente.

Figura 97.

Curvas de Mander elemento confinado muro V.1.1.1 DMO y DES.

Tabla 113.

Parámetros curva de Mander elemento confinado muro V.1.1.1 DMO y DES.

	Estructura	DMO		Estructura DES				
Parámetros	geométricos	Cálcul	os realizados	Parámetros	geométricos	Cálcul	os realizados	
B (mm)	250	ρεε	0.0185005	B (mm)	250	ρεε	0.0185005	
H (mm)	850	Asx	497	H (mm)	850	Asx	497	
r (mm)	25	ρx	0.0125743	r (mm)	25	ρx	0.0125743	
Bc	190.5	Asy	142	Bc	190.5	Asy	142	
Hc	790.5	ρy	0.0149081	Hc	790.5	ρу	0.0149081	
Ac	150590.25	pos	0.0274825	Ac	150590.25	pos	0.0274825	
Refuerzo Longitudinal		ρο	0.0137412	Refuerzo Longitudinal		ρο	0.0137412	
#Barras	14	ke	0.6967051	#Barras	14	ke	0.6967051	
dl	5/8			dl	5/8			
Área Total	2786	fl'x	3.6794488	Área Total	2786	fl'x	3.6794488	
Refuerzo T	ransversal	fl'y	4.3623612	Refuerzo T	ransversal	fl'y	4.3623612	
de	3/8	fl'	4.020905	de	3/8	fl'	4.020905	
de	9.5	Co	onfinado	de	9.5	Co	onfinado	
Ae	71	f'cc	49.175698	Ae	71	f'cc	49.175698	
#Ramas x	7	ECC:	0.0095627	#Ramas x	7	ECC:	0.0095627	
#Ramas y	2	Esec:	5142.4226	#Ramas y	2	Esec:	5142.4226	
S (mm)	50	r	1.2606718	S (mm)	50	r	1.2606718	
S' (mm)	40.5	ecu:	0.0414945	S' (mm)	40.5	ecu:	0.0414945	

Apéndice H. Clasificación del diafragma

Fuerzas horizontales para la clasificación del diafragma

Para la clasificación del diafragma la obtención de las cargas horizontales se realiza teniendo en cuenta lo descrito en la sección 7.4.1.3 de ASCE 41-17, usando la expresión:

$$V = C_1 C_2 C_m S_a W$$

Donde:

 C_1 = Factor de modificación para relacionar los desplazamientos inelásticos máximos esperados con los desplazamientos calculados para la respuesta elástica lineal. Para periodos fundamentales mayores de 1.0 s, C1=1.00

 C_2 = Factor de modificación para representar el efecto de la forma de histéresis, la degradación de la rigidez cíclica y el deterioro de la resistencia en la respuesta de desplazamiento máximo. Para períodos fundamentales mayores de 0.7 s, C2 = 1.0

 S_a = Aceleración del espectro de respuesta en el periodo fundamental.

 $C_{\rm m}$ = Factor de masa efectiva para tener en cuenta los efectos de participación de masa modal más altos obtenidos de la Tabla 7-4. Para periodos fundamentales mayores de 1.0 s, $C_m = 1.00$

$$C_{vx} = \frac{w_x h_x^{\ k}}{\sum_{i=1}^n w_i h_i^{\ k}}$$

Teniendo en cuenta que tanto la estructura DMO y DES tienen periodos superiores a 1 s los parámetros C_1, C_2, C_3 y C_m se tomaron igual a 1.

Para el cálculo de la variable, W, no fue tomado en cuenta el peso de los elementos de cimentación y se consideró el mismo valor tanto para la estructura DMO como para la DES (89701.0094 kN), ya que las dos comparten la misma geometría en planta y en altura.

Teniendo en cuenta que las dos edificaciones tienen una distribución de refuerzo diferente, los elementos estructurares presentaron una variación en la rigidez, se presentaron periodos de vibración diferentes, obteniendo periodos de 1.391 s y 1.413 s en dirección X y de 1.173 s y 1.216 s en dirección Y para la edificación DMO y DES, respectivamente.

Los datos y las fuerzas pseudo laterales para la clasificación del diafragma se encuentran consignadas en Tabla 114 y Tabla 115

Tabla 114.

Distribución de p	pseudo fuerzas	laterales en altura	, estructura DMO
-------------------	----------------	---------------------	------------------

Sism	o X		Sismo Y				
Т	1.391	s	Т	1.173	s		
K	1.44550		К	1.33650			
Sa	0.345075		Sa	0.409207			
Cortante Basal	24217.94	kN	Cortante Basal	28719	kN		

			Sismo X			Sismo Y		
Nivel	\mathbf{W}	h	$\mathbf{W} \mathbf{h}^{\mathbf{K}}$	Cvx	Fx	$\mathbf{W} \mathbf{h}^{\mathbf{K}}$	Cvx	Fy
	kN	m		kN	kN		kN	kN
15	3597.2243	37.5	678000	0.11986	2902.707	456730.8	0.1147	3294.928
14	4678.7716	35	798146	0.1411	3417.084	541724.9	0.1361	3908.089
13	4678.7716	32.5	717066	0.12676	3069.960	490641.1	0.1232	3539.563
12	4678.7716	30	638720	0.11291	2734.539	440863.8	0.1107	3180.461
11	4678.7716	27.5	563232	0.09957	2411.353	392464.1	0.0986	2831.298
10	4678.7716	25	490743	0.08675	2101.007	345524.4	0.0868	2492.667
9	4678.7716	22.5	421417	0.0745	1804.202	300139.9	0.0754	2165.257
8	4678.7716	20	355444	0.06284	1521.753	256423.9	0.0644	1849.882
7	4678.7716	17.5	293051	0.05181	1254.633	214512.3	0.0539	1547.526
6	4678.7716	15	234516	0.04146	1004.027	174573.3	0.0439	1259.399
5	4678.7716	12.5	180184	0.03185	771.416	136820.8	0.0344	987.047
4	4678.7716	10	130506	0.02307	558.734	101538.8	0.0255	732.517
3	4678.7716	7.5	86105.9	0.01522	368.643	69127.56	0.0174	498.697
2	4678.7716	5	47917.4	0.00847	205.148	40207.33	0.0101	290.062
1	5760.3189	2.5	21660.5	0.00383	92.735	19601.68	0.0049	141.410

Tabla 115.

Distribución de pseudo fuerzas laterales en altura, estructura DES.

Sis	mo X		Sismo Y				
Т	1.413	s	Т	1.216	S		
K	1.45650		К	1.35800			
Sa	0.339703		Sa	0.394737			
Cortante Basal	23840.87439	kN	Cortante Basal	27703.25	kN		

			Sismo X			Sismo Y		
Nivel	W	h	$\mathbf{W} \mathbf{h}^{\mathbf{K}}$	Cvx	Fx	$\mathbf{W} \mathbf{h}^{\mathbf{K}}$	Cvx	Fy
	kN	m		kN	kN		kN	kN
15	3597.2243	37.5	705576	0.12037	2869.818	493744.2	0.115744	3206.479
14	4678.7716	35	829979	0.1416	3375.804	584758.1	0.137079	3797.542
13	4678.7716	32.5	745058	0.12711	3030.402	528773.2	0.123955	3433.965
12	4678.7716	30	663069	0.11312	2696.928	474310.2	0.111188	3080.271
11	4678.7716	27.5	584144	0.09966	2375.911	421449.6	0.098796	2736.982
10	4678.7716	25	508430	0.08674	2067.958	370283.5	0.086802	2404.699
9	4678.7716	22.5	436100	0.0744	1773.765	320919.2	0.07523	2084.117
8	4678.7716	20	367352	0.06267	1494.144	273483.2	0.06411	1776.057
7	4678.7716	17.5	302424	0.05159	1230.062	228127.4	0.053478	1481.508
6	4678.7716	15	241607	0.04122	982.696	185039.2	0.043377	1201.684
5	4678.7716	12.5	185260	0.03161	753.514	144456	0.033863	938.128
4	4678.7716	10	133854	0.02284	544.430	106692	0.025011	692.880
3	4678.7716	7.5	88035.7	0.01502	358.071	72188.01	0.016922	468.804
2	4678.7716	5	48773.2	0.00832	198.377	41622.97	0.009757	270.308
1	5760.3189	2.5	21879.9	0.00373	88.993	19991.67	0.004686	129.830

Apéndice I. Verificación efectos P- Δ

Teniendo en cuenta lo descrito en la sección 12.8.7 de ASCE 7-10 se verifico que el índice de estabilidad Q_i , fuera inferior al máximo coeficiente de estabilidad $\theta_{\text{max}} = 0.5/\beta \cdot C_d$, donde, Cd=5; β =1.00 y a 0.25.

Se realiza el cálculo del índice de estabilidad θ i mediante la ecuación (sección A.6.2.3 de NSR-10):

$$\theta_{i} = \frac{P_{i} \cdot \Delta_{cm}}{V_{i} \cdot h_{pi}}$$

Donde, Pi es la suma de carga vertical total, incluyendo muerta, sobre impuesta y 1.25 Viva que existe en el piso i y todos los pisos localizados por encima y Δ cm es la deriva del piso i, en la dirección bajo estudio, j, medida en el centro de masa del piso, como la diferencia entre el desplazamiento horizontal del piso i menos el del piso i-1 en la misma dirección j.

En la Tabla 116 y Tabla 117 se presentan los caculos realizados para la estructura DMO y en la Tabla 118 y Tabla 119 estructura DES para las direcciones X y Y.

Tabla 116.

Verificación de los efectos P- Δ dirección X, estructura DMO.

	Sismo dirección X											
Niveles	P.Propio	S.Impuesta	C.viva	Pi	Piacum.	Derivas	Vx	θ				
	kN	kN	kN	kN	kN		kN					
15	2250.99974	1170.63	702.378	4299.6022	4299.60224	0.0144	2902.7069	0.0213906				
14	3332.54702	1170.63	702.378	5381.1495	9680.75176	0.0144	6319.791	0.0221133				
13	3332.54702	1170.63	702.378	5381.1495	15061.90128	0.0144	9389.7509	0.0230651				
12	3332.54702	1170.63	702.378	5381.1495	20443.0508	0.0142	12124.2897	0.0240171				
11	3332.54702	1170.63	702.378	5381.1495	25824.20032	0.0140	14535.6423	0.0248868				
10	3332.54702	1170.63	702.378	5381.1495	31205.34984	0.0137	16636.6497	0.0256033				
9	3332.54702	1170.63	702.378	5381.1495	36586.49936	0.0131	18440.8517	0.0260855				
8	3332.54702	1170.63	702.378	5381.1495	41967.64888	0.0125	19962.6047	0.0262432				
7	3332.54702	1170.63	702.378	5381.1495	47348.7984	0.0116	21217.238	0.0259961				
6	3332.54702	1170.63	702.378	5381.1495	52729.94792	0.0106	22221.2646	0.0252316				
5	3332.54702	1170.63	702.378	5381.1495	58111.09744	0.0094	22992.6808	0.023823				
4	3332.54702	1170.63	702.378	5381.1495	63492.24696	0.0080	23551.415	0.0216265				
3	3332.54702	1170.63	702.378	5381.1495	68873.39648	0.0064	23920.0583	0.0183844				
2	3332.54702	1170.63	702.378	5381.1495	74254.546	0.0045	24125.206	0.0139059				
1	4414.0943	1170.63	702.378	6462.6968	80717.2428	0.0023	24217.9407	0.0077691				

Tabla 117.

Verificación de los efectos P- Δ dirección Y, estructura DMO.

			9	Sismo direcc	ción Y			
Niveles	P.Propio	S.Impuesta	C.viva	Pi	Piacum.	Derivas	Vy	θ
	kN	kN	kN	kN	kN		kN	
15	2250.99974	1170.63	702.378	4299.6022	4299.60224	0.012502	3294.929	0.016314
14	3332.54702	1170.63	702.378	5381.1495	9680.75176	0.012505	7203.0192	0.0168065
13	3332.54702	1170.63	702.378	5381.1495	15061.90128	0.012464	10742.583	0.0174755
12	3332.54702	1170.63	702.378	5381.1495	20443.0508	0.012357	13923.0452	0.0181436
11	3332.54702	1170.63	702.378	5381.1495	25824.20032	0.012163	16754.3444	0.0187474
10	3332.54702	1170.63	702.378	5381.1495	31205.34984	0.011864	19247.0124	0.0192352
9	3332.54702	1170.63	702.378	5381.1495	36586.49936	0.011437	21412.2701	0.0195421
8	3332.54702	1170.63	702.378	5381.1495	41967.64888	0.010867	23262.153	0.0196053
7	3332.54702	1170.63	702.378	5381.1495	47348.7984	0.010148	24809.6795	0.0193673
6	3332.54702	1170.63	702.378	5381.1495	52729.94792	0.009278	26069.0791	0.0187666
5	3332.54702	1170.63	702.378	5381.1495	58111.09744	0.008249	27056.1261	0.0177172
4	3332.54702	1170.63	702.378	5381.1495	63492.24696	0.007051	27788.643	0.0161103
3	3332.54702	1170.63	702.378	5381.1495	68873.39648	0.005657	28287.3402	0.0137735
2	3332.54702	1170.63	702.378	5381.1495	74254.546	0.004069	28577.4024	0.0105728
1	4414.0943	1170.63	702.378	6462.6968	80717.2428	0.0022	28718.812	0.0061833

Tabla 118.

Verificación de los efectos P- Δ dirección X, estructura DES.

	Sismo dirección X											
Niveles	P.Propio	S.Impuesta	C.viva	Pi	Piacum.	Derivas	Vx	θ				
	kN	kN	kN	kN	kN		kN					
15	2250.99974	1170.63	702.378	4299.6022	4299.60224	0.014736	2869.8182	0.02207768				
14	3332.54702	1170.63	702.378	5381.1495	9680.75176	0.014731	6245.6226	0.02283314				
13	3332.54702	1170.63	702.378	5381.1495	15061.90128	0.014675	9276.0249	0.02382846				
12	3332.54702	1170.63	702.378	5381.1495	20443.0508	0.014542	11972.9524	0.02482954				
11	3332.54702	1170.63	702.378	5381.1495	25824.20032	0.01431	14348.8638	0.02575426				
10	3332.54702	1170.63	702.378	5381.1495	31205.34984	0.013958	16416.8221	0.02653158				
9	3332.54702	1170.63	702.378	5381.1495	36586.49936	0.01345	18190.5868	0.02705182				
8	3332.54702	1170.63	702.378	5381.1495	41967.64888	0.012765	19684.7305	0.02721485				
7	3332.54702	1170.63	702.378	5381.1495	47348.7984	0.011905	20914.7927	0.02695162				
6	3332.54702	1170.63	702.378	5381.1495	52729.94792	0.010855	21897.4885	0.02613923				
5	3332.54702	1170.63	702.378	5381.1495	58111.09744	0.009603	22651.003	0.02463647				
4	3332.54702	1170.63	702.378	5381.1495	63492.24696	0.008151	23195.4331	0.02231152				
3	3332.54702	1170.63	702.378	5381.1495	68873.39648	0.006467	23553.5039	0.01891032				
2	3332.54702	1170.63	702.378	5381.1495	74254.546	0.004564	23751.8812	0.01426825				
1	4414.0943	1170.63	702.378	6462.6968	80717.2428	0.002339	23840.8743	0.00791907				

Tabla 119.

Verificación de los efectos P- Δ dirección Y, estructura DES

	Sismo dirección Y											
Nivele		S.Impuest										
S	P.Propio	а	C.viva	Pi	Piacum.	Derivas	Vy	θ				
	kN	kN	kN	kN	kN		kN					
	2250.9997		702.37	4299.602		0.01293	2206 4702	0.0173433				
15	4	1170.63	8	2	4299.60224	4	5200.4792	4				
	3332.5470		702.37	5381.149		0.01293	7004 0224	0.0178811				
14	2	1170.63	8	5	9680.75176	7	7004.0224	4				
	3332.5470		702.37	5381.149	15061.9012	0.01289	10437.988	0.0186102				
13	2	1170.63	8	5	8	7	3	3				
	3332.5470		702.37	5381.149		0.01279	13518.260	0.0193432				
12	2	1170.63	8	5	20443.0508	1	3	5				
	3332.5470		702.37	5381.149	25824.2003	0.0126	16255.243	0.0200172				
11	2	1170.63	8	5	2	0.0120	5	3				
	3332.5470		702.37	5381.149	31205.3498	0.01230	18659.943	0.0205778				
10	2	1170.63	8	5	4	5	2	7				
	3332.5470		702.37	5381.149	36586.4993	0.01187	20744.060	0.0209511				
9	2	1170.63	8	5	6	9	8	1				
	3332.5470		702.37	5381.149	41967.6488	0.01130	22520.118	0.0210731				
8	2	1170.63	8	5	8	8	5	7				
	3332.5470		702.37	5381.149		0.01050	24001.626	0.0208912				
7	2	1170.63	8	5	47348.7984	0.01039	7	4				
	3332.5470		702.37	5381.149	52729.9479	0.00970	25203.310	0.0203109				
6	2	1170.63	8	5	2	8	7	2				
	3332.5470		702.37	5381.149	58111.0974	0.00865	26141.438	0.0192351				
5	2	1170.63	8	5	4	3	8	8				
	3332.5470		702.37	5381.149	63492.2469	0.00742	26834.319	0.0175681				
4	2	1170.63	8	5	6	5	2	7				
	3332.5470		702.37	5381.149	68873.3964	0.00595	27303.123	0.0150268				
3	2	1170.63	8	5	8	7	5	1				
	3332.5470		702.37	5381.149		0.00425	27573.431	0.0114451				
2	2	1170.63	8	5	74254.546	0.00423	9	4				

			702.37	6462.696		0.00224	27703.262	0.0065323
1	4414.0943	1170.63	8	8	80717.2428	2	1	7

Apéndice J. Planos estructurales edificación DMO

Apéndice K. Planos estructurales edificación DES

