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RESUMEN

TÍTULO: DISEÑO Y OPTIMIZACIÓN DE UN SISTEMA COMPRESIVO PARA LA ADQUISICIÓN DE

VIDEO ESPECTRAL *

AUTOR: Kareth Marcela León López **

PALABRAS CLAVE: Muestreo compresivo, video espectral, aperturas codificadas, diseño de sis-

tema de adquisición.

DESCRIPCIÓN: Los videos espectrales contienen información espacial y espectral de una escena

en el tiempo, implicando un conjunto de cubos de datos tridimensionales. Los sistemas de adquisición

de video espectral compresivo (CSVS) adquieren de manera comprimida los videos mediante la

codificación y proyección de cada cuadro espectral en un sensor bidimensional, resultando en un

conjunto de cuadros espectrales comprimidos. El video es reconstruido a partir de estas medidas

comprimidas usando un algoritmo de recuperación, asumiendo que la señal tiene una representación

escasa en una base de transformación. La calidad del video espectral reconstruido depende de la

base de transformación, la apertura codificada (CA) usada en el sistema CSVS y el método de re-

construcción. Hasta la fecha, se han realizado diferentes esfuerzos para incrementar la calidad de

reconstrucción de estos videos tal como agregar una cámara extra para adquirir información adi-

cional. Sin embargo, éstas soluciones son costosas o ineficientes en aplicaciones prácticas. Según

la literatura, es posible obtener un alto rendimiento diseñando conjuntamente la base, la CA y el

procedimiento de recuperación. Sin embargo, hasta donde se tiene conocimiento, no existe trabajos

previos sobre el diseño conjunto de éstas etapas en sistemas CSVS, donde la información espec-

tral es valiosa. Esta tesis estudia diferentes estrategias para diseñar y optimizar un sistema CSVS

para mejorar la calidad de los cuadros espectrales reconstruidos. Una primera estrategia implica

el diseño conjunto de la base de transformación y del método de recuperación usando una repre-

sentación tensorial de orden superior. Y una segunda estrategia implica la optimización del sistema

usando redes neuronales convolucionales, aprovechando la creciente cantidad de datos disponibles

en la comunidad cientı́fica. Los experimentos numéricos sobre diferentes bases de datos a partir de

* Tesis doctoral

** Escuela de ingenierı́a de sistemas e informática. Director: Ph.D. Henry Arguello Fuentes.
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las metodologı́as propuestas muestran calidades de reconstrucción superiores en comparación con

técnicas de la literatura.
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ABSTRACT

TITLE: DESIGN AND OPTIMIZATION OF A COMPRESSIVE SPECTRAL VIDEO SENSING SYS-

TEM *

AUTHOR: Kareth Marcela León López **

KEYWORDS: Compressive sensing, spectral video, coded aperture, acquisition system design.

DESCRIPTION: Spectral videos contain spatial and spectral information of a scene across time,

entailing a set of three-dimensional data cubes. Compressive spectral video sensing (CSVS) systems

compressively acquire 4D spectral videos by encoding and projecting each spectral frame onto a two-

dimensional sensor, resulting in a set of compressed spectral frames. Then, a recovery algorithm is

employed to obtain the spectral video from the compressed measurements, where it is assumed

that the signal is sparse on some transformation basis. Particularly, the quality of the recovered

spectral video mainly depends on the representation basis, the coded aperture (CA) used in the

CSVS system and the applied method for the recovering. Up to date, different efforts have been made

for increasing the reconstruction quality of the videos such as adding an extra camera to acquire side

information. However, these solutions are costly or inefficient for practical applications. According to

the literature, state-of-the-art performance can be obtained by jointly designing the basis, the CA and

the recovery procedure. Nonetheless, up to our knowledge, there is no prior work concerning the joint

design of these stages in CSVS systems, where the spectral information is valuable. This dissertation

studies different strategies for designing and optimizing a CSVS system to obtain an image quality

improvement on the reconstructed spectral frames. A first strategy entails the jointly sparse basis

representation and recovery method design based on a higher-order tensor representation. And a

second strategy involves the optimization of the CSVS system based on convolutional neural networks

taking advantage of the increasing amount of data available in the scientific community. Extensive

numerical simulations on different datasets evaluate the performance of the reconstructed videos from

the proposed methodologies showing superior accuracy scores against state-of-the-art techniques.

* Doctoral Thesis

** Department of Systems Engineering and Informatics. Director: Ph.D. Henry Arguello Fuentes.
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EXTENDED ABSTRACT

Spectral videos contain spatial and spectral information of a scene across time, en-

tailing a set of three-dimensional data cubes. Such four-dimensional (4D) spectral

videos have gained relevance in applications such as disease detection on crops,

surveillance, early cancer detection, among others. Compressive spectral video

sensing (CSVS) systems compressively acquire 4D spectral videos by encoding

and projecting each spectral frame onto a two-dimensional sensor, resulting in a set

of compressed spectral frames. Then, a recovery algorithm is employed to obtain

the spectral video from the compressed measurements, assuming that the signal is

sparse on some transformation basis. Particularly, the quality of the recovered spec-

tral video mainly depends on the representation basis, the coded aperture (CA) used

in the CSVS system and the applied method for the recovery. Up to date, different

efforts have been made for increasing the reconstruction quality of the videos such

as adding an extra camera to acquire side information or increasing the number of

shots per frame to better conditioning the system, yielding a less ill-posed inverse

problem. However, these solutions are costly or inefficient for practical applications.

Recent works have exploited deep learning methods for recovering spectral videos,

nonetheless, the CA is set to random structure patterns. According to the literature,

state-of-the-art performance can be obtained by jointly designing the basis, the CA

and the recovery procedure. Nonetheless, as far as we know, there is no prior work

concerning the joint design of these stages in CSVS systems, where the spectral

information is valuable.

This dissertation aims to address different strategies for designing and optimizing a

CSVS system to obtain an image quality improvement on the reconstructed spectral

frames. A first strategy entails the jointly sparse basis representation and recov-

ery method design based on a higher-order tensor representation. The higher-order

19



structure in 4D spectral videos is crucial for exploiting the inherent redundancy of the

information. Given that conventional CS-based-acquisition modeling of optical sys-

tems and, in turn, the sparse representation models rely on the data representation

in vector/matrix form (leading to a high computational burden), the proposed design

aims to exploit the video tensor-based representation to simultaneously learn and

reconstruct the sparse transform and the spectral video under a CSVS framework.

Then, contrary to traditional offline dictionary learning methods, the proposed tensor

sparsifying transform is updated online from the data, while being reconstructed.

A second strategy involves the optimization of the CSVS system based on convolu-

tional neural networks taking advantage of the increasing amount of data available

in the scientific community. In this scenario, the CA of the CSVS system and the

recovery method are jointly designed in an end-to-end (E2E) network, in which the

sparse representation is substituted by convolution layers that learn complex fea-

tures from the data. The E2E cost function is set to find the best CA set where

the distance between the original and the recovered video is minimized. Extensive

numerical simulations on two spectral video datasets evaluate the accuracy of the

reconstructed videos from the proposed methodologies showing superior accuracy

scores against state-of-the-art techniques.

Additionally to the main objectives of this dissertation, a practical application of spec-

tral videos (with low temporal resolution) from satellite remote sensing data for crop

monitoring in agriculture is presented. To date, detecting anomalies in time series

of multi-temporal spectral remote sensing images for crop monitoring is generally

performed using a large sample of historical data at a pixel level. Conversely, the

proposed framework involves an anomaly detection, localization, and classification

methodology that exploits the temporal information contained in a given season at a

parcel level to detect and localize outliers using hidden Markov models (HMM).
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1. Introduction

Spectral video acquisition (which includes multispectral and hyperspectral videos)

involves the sensing of spatial information across several wavelengths at different

instants of time 1234. The spectral-spatial information at different time lapses is rel-

evant in practical and scientific applications such as object tracking 56, background

subtraction 78, endoscopy-based early cancer detection 9, and monitoring and char-

1 Kareth León-López, Laura Galvis, and Henry Arguello. “Temporal Colored Coded Aperture De-
sign in Compressive Spectral Video Sensing”. In: IEEE Transactions on Image Processing 28.1
(2018), pp. 253–264.

2 Lizhi Wang et al. “High-speed hyperspectral video acquisition by combining Nyquist and compres-
sive sampling”. In: IEEE transactions on pattern analysis and machine intelligence 41.4 (2019),
pp. 857–870.

3 Xuemei Hu et al. “Multispectral video acquisition using spectral sweep camera”. In: Optics ex-
press 27.19 (2019), pp. 27088–27102.

4 Kareth M León-López and Henry Arguello Fuentes. “Online Tensor Sparsifying Transform Based
on Temporal Superpixels From Compressive Spectral Video Measurements”. In: IEEE Transac-
tions on Image Processing 29 (2020), pp. 5953–5963.

5 Fengchao Xiong, Jun Zhou, and Yuntao Qian. “Material based object tracking in hyperspectral
videos”. In: IEEE Transactions on Image Processing 29 (2020), pp. 3719–3733.

6 Lulu Chen et al. “Object Tracking in Hyperspectral-Oriented Video with Fast Spatial-Spectral Fea-
tures”. In: Remote Sensing 13.10 (2021), p. 1922.

7 Yannick Benezeth, Désiré Sidibé, and Jean-Baptiste Thomas. “Background subtraction with mul-
tispectral video sequences”. In: IEEE International Conference on Robotics and Automation
workshop on Non-classical Cameras, Camera Networks and Omnidirectional Vision (OMNIVIS).
Hong Kong, China, 2014, p. 6.

8 Andrews Sobral et al. “Online stochastic tensor decomposition for background subtraction in mul-
tispectral video sequences”. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops. 2015, pp. 106–113.

9 Raimund Leitner et al. “Multi-spectral video endoscopy system for the detection of cancerous
tissue”. In: Pattern Recognition Letters 34.1 (2013), pp. 85–93.
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acterization of crops behavior 1011. The acquisition of these four-dimensional (4D)

data (2D spatial, 1D spectral, and 1D temporal dimensions) using spectral imaging

sensors is generally expensive and requires high storage and elevated processing

load due to the high-dimensionality of the data 53. On the other hand, spectral video

acquisition via compressive spectral imaging, termed compressive spectral video

sensing (CSVS), has shown promising results and arises as an alternative for reduc-

ing dimensionality, processing and sensor costs 121321415.

For CSVS, snapshot compressive spectral imaging systems have been extended to

acquire spectral frames of dynamic scenes by multiplexing the spatio-spectral infor-

mation 1613117. Moreover, even though the temporal information is not multiplexed

10 Qiang Zhang et al. “Missing data reconstruction in remote sensing image with a unified spatial–
temporal–spectral deep convolutional neural network”. In: IEEE Transactions on Geoscience and
Remote Sensing 56.8 (2018), pp. 4274–4288.

11 Kareth M. León-López et al. “Anomaly Detection and Classification in Multispectral Time Series
based on Hidden Markov Models”. In: IEEE Transactions on Geoscience and Remote Sensing
60 (2022), pp. 1–11. DOI: 10.1109/TGRS.2021.3101127.

12 Ashwin A Wagadarikar et al. “Video rate spectral imaging using a coded aperture snapshot spec-
tral imager”. In: Optics express 17.8 (2009), pp. 6368–6388.

13 Xun Cao et al. “Computational snapshot multispectral cameras: toward dynamic capture of the
spectral world”. In: IEEE Signal Processing Magazine 33.5 (2016), pp. 95–108.

14 Samuel Pinilla et al. “Salient Motion Detection for Spectral Video on the Compressive Domain”.
In: 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP). IEEE. 2019, pp. 106–110.

15 Ziyi Meng, Jiawei Ma, and Xin Yuan. “End-to-end low cost compressive spectral imaging with
spatial-spectral self-attention”. In: European Conference on Computer Vision. Springer. 2020,
pp. 187–204.

16 Claudia Correa, Henry Arguello, and Gonzalo Arce. “Spatiotemporal blue noise coded aperture
design for multi-shot compressive spectral imaging”. In: JOSA A 33.12 (2016), pp. 2312–2322.

17 Kareth León-López et al. “Higher-Order Tensor Sparse Representation for Video-Rate Coded
Aperture Snapshot Spectral Image Reconstruction”. In: 2019 IEEE 8th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE. 2019, pp. 704–

22
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or compressed under the CSVS framework, the temporal correlations joined to the

spectral-spatial redundancies are exploited through a sparsifying transform either in

the encoding or the decoding steps to yield suitable sensing or reconstruction proto-

cols for high quality frames 12174. Typically, the encoding step in the CSVS framework

encompasses the dispersion and codification of the input scene in the optical path

before the light is impinged at the sensor, where the dispersion and codification are

usually performed by using elements such as a prism and a coded aperture (CA), re-

spectively. Then, a reconstruction algorithm is employed to estimate a version of the

underlying scene from the compressed frames 12161. Different works in the literature

have presented strategies to improve the recovered image quality by either design-

ing the CA 116 or by customizing the recovery algorithm 4218 in a data-independent

manner.

Recently, data-driven deep learning approaches have shown state-of-the-art perfor-

mance in terms of image quality when the CA and the recovery algorithm are jointly

designed in video compressing sensing by exploiting tones of data available nowa-

days 192021. However, these approaches disregard the spectral information of the

dynamic scene, and the multiplexing is conducted across the temporal dimension

708.

18 Crisostomo Alberto Barajas-Solano, Juan-Marcos Ramirez, and Henry Arguello. “Spectral Video
Compression Using Convolutional Sparse Coding”. In: 2020 Data Compression Conference
(DCC). IEEE. 2020, pp. 253–262.

19 Michael Iliadis, Leonidas Spinoulas, and Aggelos K Katsaggelos. “Deep fully-connected networks
for video compressive sensing”. In: Digital Signal Processing 72 (2018), pp. 9–18.

20 Yuqi Li et al. “End-to-end video compressive sensing using anderson-accelerated unrolled net-
works”. In: 2020 IEEE International Conference on Computational Photography (ICCP). IEEE.
2020, pp. 1–12.

21 Mu Qiao et al. “Deep learning for video compressive sensing”. In: APL Photonics 5.3 (2020),
p. 030801.
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aimed at compressing a sequence of video frames into a single 2D measurement.

Other works such as 15 have exploited self-attention in deep neural networks for

learning an end-to-end approach on snapshot compressive spectral imaging at video

rates for spectral images and video reconstruction, however, the CA is fixed and not

optimized across time.

1.1. Motivation

The increasing interest in multispectral and hyperspectral image acquisition, mostly

used for remote sensing and collected by sensors mounted on satellites, has boosted

the development of several spectral imaging systems. Recent progress on snapshot

compressive imagers has made possible the acquisition of spectral images at video

rate, showing promising approaches for real applications 1522. Despite recent ad-

vances, these methods disregard the joint design of the encoding element and the

recovery procedure by fixing the coded aperture element, leading to the same cod-

ification across the different spectral frames. Additionally, a sparse representation

transform for such 4D data has not been totally exploited to achieve a better repre-

sentation and compression.

This dissertation investigates the joint design of the sparsifying transform and the re-

covery method via higher-order tensors to properly exploit the high-dimensionality of

spectral videos. Moreover, considering that the encoding pattern is crucial for having

high image quality frames, this dissertation explores coding design strategies tied to

the recovery procedure for compressive spectral video sensing, taking advantage of

the increasing amount of data available for data-driven approaches.

22 Xin Yuan, David J Brady, and Aggelos K Katsaggelos. “Snapshot compressive imaging: Theory,
algorithms, and applications”. In: IEEE Signal Processing Magazine 38.2 (2021), pp. 65–88.
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1.2. Dissertation Objectives and Organization

The specific objectives of this dissertation are defined as follows:

• To perform a sparsity analysis of spectral videos to determine the multidimen-

sional transformation that better preserves the relevant data.

• To design a high-dimensional-representation-based algorithm for the spectral

video recovery from the compressed measurements such that the computation

time is reduced and the image quality of the reconstruction is improved.

• To design the system sensing matrix to minimize the number of projections

required for the system considering the spatio-temporal correlation of spectral

videos.

• To acquire a dataset of spectral videos in a laboratory prototype.

• To verify the performance of the transformation basis, the system sensing ma-

trix and the developed algorithms by numerical experiments using the synthetic

and the acquired real spectral videos.

This dissertation is organized as follows: Chapter 2 establishes the basic concepts

involved in the dissertation. The mathematical modeling of the state-of-the-art CSVS

acquisition systems is presented. The traditional methods for recovering the com-

pressed scene are described.

Chapter 3 presents a sparsity transformation based on tensor decomposition which

updates the coefficients online and recovers the compressed spectral video. In com-

pressive spectral video acquisition, tackling dictionary learning is time-consuming

since it increases the computational complexity and presents drawbacks for real-

time processing, where offline learning is required. Then, this Chapter introduces a
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tensor-decomposition learning (TenDL) framework for simultaneous online sparsify-

ing and recovering the spatial-spectral-temporal information of a spectral video per-

formed on several temporal superpixels (TSP-TenDL) for time processing reduction.

The framework is composed of two main stages: preprocessing and joint estima-

tion. The preprocessing stage includes a strategy for a grayscale approximation of

the video to provide a suitable initialization of the sparsifying basis to be learned.

To fully exploit the high signal correlation, a set of temporal superpixels is estimated

from the grayscale approximation, reducing the reconstruction time of the large-scale

data. Then, the outcome of the first stage is used to estimate the basis and the sig-

nal coefficients, where an optimization problem is solved to learn and reconstruct

the basis and the signal, respectively, following a block-descent coordinate strategy.

The proposed approach is compared from simulations with an offline-learned based

method, traditional matrix-based recovery algorithms and the tensor-based recovery,

the two latter using a fixed basis, where TSP-TenDL exhibits higher image quality

results and lower computation time. The proposed methodology is presented for re-

constructing videos from measurements obtained using the video 3D-CASSI system

in Chapter 3 and measurements obtained using the video-CASSI system in Chapter

4, where the formulation of the methodology is adapted to the spatio-spectral shifted

measurements of the video-CASSI system.

Chapter 5 introduces an end-to-end (E2E) deep learning approach to jointly design

the coded aperture and the reconstruction method for improving the reconstruction

quality of spectral video frames under the CSVS framework. The proposed formu-

lation takes advantage of state-of-the-art denoising networks to provide a two stage

learning for exploiting the spatio-spectral and the spatio-temporal correlations. Simu-

lations on a set of real sequences acquired in the Optics lab of the High Dimensional

Signal Processing (HDSP) research group and a set of multispectral videos of the

literature show the significant advantages of designing the E2E network, leading to
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1dB and 5dB improvements in PSNR compared to deep-learning and traditionally

iterative based approaches, respectively. Notice that Chapters 3 and 4 introduce

a design methodology for the sparse representation and the recovery method con-

sidering only the scene under observation (letting fixed the CA) whereas, Chapter

5 introduces a data-driven framework for jointly designing the recovery and the CA

using a collection of databases.

Annex 4 extends the scope of this dissertation to provide a solution for a practical

application of spectral video data in agriculture monitoring. Specifically, this Chap-

ter presents a parcel-level anomaly detection and classification framework using

features extracted from spectral videos at low-temporal resolution (multitemporal-

multispectral images acquired from satellites) via hidden Markov models. The pro-

posed method in this extension Chapter exploits the temporal information contained

in remote sensing time series of a given season using hidden Markov models (HMM).

The anomaly detection part is based on the learning of HMM parameters associ-

ated with unlabeled normal data, that are used in a second step to detect abnor-

mal crop parcels referred to as anomalies. The learned HMM can also be used in

time segments to temporally localize the anomalies affecting the crop parcels. The

detected and localized anomalies are finally classified using a supervised classifier,

e.g., based on support vector machines. The proposed method was studied in french

crops.

1.3. Research Contribution

The contents of this dissertation have been published in the following journals and

conferences:

Journal Papers:

• K. León-López, and H. Arguello, “End-to-End Spatio-Temporal Binary Coded

Aperture Design and Recovery in Compressive Spectral Video Sensing”, In
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preparation to be submitted in a Journal (2021).

• K. León-López, F. Mouret, H. Arguello, and J-Y. Tourneret, “Anomaly detection

and classification in multispectral time series based on hidden Markov models”,

IEEE Transaction on Geoscience and Remote Sensing, (2021).

• K. León-López, and H. Arguello, “Online tensor sparsifying transform based on

temporal superpixels from compressive spectral video measurements”, IEEE

Transaction on Image Processing, Vol. 29, pp. 5953-5963, Apr. (2020).

• K. León-López, L. Galvis, and H. Arguello, “Temporal colored coded aperture

design in compressive spectral video sensing”, IEEE Transaction on Image

Processing, Vol. 28, No. 1, pp. 253 - 264, Jan. (2019).

Conference Papers:

• K. León-López, E. Vargas, F. Rojas Morales, and H. Arguello, “Higher-order

tensor sparse representation for video-rate coded aperture snapshot spec-

tral image reconstruction”, IEEE 8th International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le gosier, Guade-

loupe, December 2019.

Other contributions:

Journal Papers:

• O. Villarreal, K. León-López, D. Espinosa, W. Agudelo, and H. Arguello. “Seis-

mic source reconstruction in an orthogonal geometry based on local and non-

local information in the time slice domain”. Journal of Applied Geophysics, 170,

103846, Nov. (2019).

Conference Papers:
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• K. León-López, J. M. Ramı́rez, W. Agudelo and H. Arguello, “Regular Multi-

Shot Subsampling and Reconstruction on 3D Orthogonal Symmetric Seismic

Grids via Compressive Sensing”, 2019 XXII Symposium on Image, Signal Pro-

cessing and Artificial Vision (STSIVA), Apr. 2019, pp. 1-5.

• J. Monsegny, J. Monsalve, K. León-López, M. Becerra, W. Agudelo, and H.

Arguello. “Fast marching method in seismic ray tracing on parallel GPU de-

vices”. In Latin American High Performance Computing Conference (CARLA),

Bucaramanga, Colombia, September 2018.

• S. Pinilla, K. León-López, D. Molina, A. Camacho, A., and H. Arguello. “Sub-

sampling Schemes for the 2D Nuclear Magnetic Resonance Spectroscopy”. In

Computational Optical Sensing and Imaging (pp. CTu5D-3). Optical Society of

America, June 2018.
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2. COMPRESSIVE SPECTRAL VIDEO SENSING

This chapter overviews some background topics related to this dissertation. First,

the compressive-sensing-based sampling scheme for video rate spectral imaging is

presented. Then, some compressive spectral video sensing architectures are de-

scribed. Later, the recovery problem for compressive spectral video measurements

is presented.

2.1. Spectral Video Acquisition via Compressive Sensing

Different from the Nyquist-based sampling or full-sampling theory, compressive sam-

pling (CS) establishes that a signal can be recovered from a number of samples

significantly smaller than those required by the Nyquist criterion, if the signal has a

sparse or compressible representation in some known transform basis or dictionary
2324. In particular, a signal is sparse if most of its coefficients are zero, and a signal

is compressible if its coefficients decay quickly when sorted in decreasing order of

magnitude 25.

Based on CS, several compressive spectral video sensing (CSVS) architectures

have been developed and implemented, enabling the acquisition of dynamic spectral

scenes onto compressed observations 2612. Particularly, the coded aperture snap-

23 Marco F Duarte and Richard G Baraniuk. “Kronecker compressive sensing”. In: IEEE Transac-
tions on Image Processing 21.2 (2012), pp. 494–504.

24 Emmanuel J Candès and Michael B Wakin. “An introduction to compressive sampling”. In: IEEE
signal processing magazine 25.2 (2008), pp. 21–30.

25 Gabriel Cristóbal, Peter Schelkens, and Hugo Thienpont. Optical and digital image processing:
fundamentals and applications. John Wiley & Sons, 2013.

26 Ashwin Wagadarikar et al. “Single disperser design for coded aperture snapshot spectral imag-
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shot spectral imager (CASSI) is a remarkable architecture that has demonstrated

to be suitable for the acquisition of spectral video since the spectral information is

measured from a single exposure or snapshot on the camera sensor 1312271. Other

related methods for compressive spectral video acquisition, such as the hybrid spec-

tral video imaging system (HVIS) 2829 and the high-speed hyperspectral (HSHS) im-

ager 2, add an extra-camera into the optical path to acquire high spatial and spectral

resolution but require more complex optics configuration and calibration processes.

2.1.1. Matrix-form CSVS Modeling A CSVS system is principally composed of

four optical elements: a set of lenses, a coded aperture (CA) or mask, a dispersive

element, and a focal plane array (FPA) detector. Into the system, each 3D spectral

frame is encoded and dispersed to be integrated onto the 2D detector, where the

order of the encoding and dispersion procedures is set according to the optical con-

figuration of the specific system 261213. Mathematically, let F ∈ RI1×I2×I3×I4 be a dis-

crete spectral video where I1 × I2 represents the spatial size, I3 the spectral bands,

and I4 the number of video frames. Let f = [fT0 , f
T
1 , . . . , f

T
I4−1]

T be the column-wise

vector form of F , where f ∈ Rn and n = I1I2I3I4. Specifically, the column-wise vec-

torization is given by f = vec(F) = [fT0 , f
T
1 , . . . , f

T
I4−1]

T , where each frame fi4 is written

as fi4 = [f i40 , . . . , f i4I3−1], and whose entries can be expressed as (f i4
i3
)r = F(r−ℓI1),ℓ,i3,i4,

ing”. In: Applied optics 47.10 (2008), B44–B51.

27 Claudia V Correa-Pugliese, Diana F Galvis-Carreño, and Henry Arguello-Fuentes. “Sparse rep-
resentations of dynamic scenes for compressive spectral video sensing”. In: Dyna 83.195 (2016),
pp. 42–51.

28 Chenguang Ma et al. “Acquisition of high spatial and spectral resolution video with a hybrid cam-
era system”. In: International journal of computer vision 110.2 (2014), pp. 141–155.

29 Xun Cao et al. “High resolution multispectral video capture with a hybrid camera system”. In:
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011,
pp. 297–304.
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where ℓ = ⌊r/I1⌋, r = 0, ..., I1I2 − 1, i3 = 0, ..., I3 − 1, and i4 = 0, ..., I4 − 1. Then, the

acquisition procedure in a CSVS architecture can be modeled as



y0

...

yi4

...

yI4−1


︸ ︷︷ ︸

y

=



H0 0 · · · 0 0
. . .

... Hi4

...
. . .

0 0 · · · HI4−1


︸ ︷︷ ︸

H



f0
...

fi4
...

fI4−1


︸ ︷︷ ︸

f

+ω, (1)

for i4 = 0, ..., I4− 1, where yi4 = Hi4fi4 denotes the compressive projection for the i4-

th frame, fi4 is the vector-form of the i4-th spectral video frame, Hi4 is the i4-th CSVS

measurement matrix, and ω denotes the noise of the sensing system. In particular,

the structure of the measurement matrix Hi4 depends on the physical phenomenon

produced by the system, and its entries are the column vectorization of the coded

aperture (CA). In the next section, some state-of-the-art CAs are presented.

Succinctly, Eq. (1) can be expressed as

y = Hf + ω, (2)

where H ∈ Rm×n accounts for the encoding and dispersion processes for the I4

frames of the full video and y ∈ Rm represents the compressed measurement vector,

with m≪ n. Additionally, exploiting the fact that spectral videos can be highly sparse

or compressible in some basis, i.e. f = Ψθ, the set of CSVS outputs can be rewritten

as

y = HΨθ + ω = Aθ + ω, (3)

where A = HΨ is the sensing matrix of the system, θ ∈ Rn represents the sparse

coefficients of the signal and if θ has at most K non-zero entries, it is known as
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K-sparse, i.e., ||θ||0 ≤ K, with K ≪ n.

2.1.2. Sparse Transform The sparse representation bases used to exploit the

inherent redundancy of high-dimensional videos include synthesis dictionaries 3031,

analytical transforms such as Wavelets or Cosines 12, and analytical transforms

based on the Kronecker product of one-dimensional bases for each signal dimen-

sion 27. Particularly, the sparse representation based on the Kronecker product for a

4D spectral video can be expressed as

f = Ψ4Dθ = Ψ1 ⊗Ψ2 ⊗Ψ3 ⊗Ψ4θ, (4)

where {Ψr}4r=1 is a set of one-dimensional sparsifying transforms. Figure 1 illustrates

the sparse representation coefficients for four different transforms from a spectral

video with 128 × 128 spatial pixels, 8 spectral bands and 8 frames, where its RGB

representation and sorted coefficients are shown in Figure 1(a) and (b), respectively.

Figure 1(c) shows the coefficients using a 1D Wavelet transform, this is f = Ψ1Dθ;

Figure 1(d) shows the coefficients from a 2D Wavelet, where the sparsification is

applied on the spatial axis; Figure 1(e) shows the coefficients from the Kronecker

product between a 2D Wavelet, for the spatial dimension, and a 1D DCT, for the

spectral dimension; and Figure 1(f) shows the coefficients from the 4D Kronecker: a

Kronecker product between a 2D Wavelet, for the spatial dimension, a 1D DCT, for

the spectral dimensions, and a 1D DCT, for the temporal axis (this configuration was

30 Ajmal Mian and Richard Hartley. “Hyperspectral video restoration using optical flow and sparse
coding”. In: Optics express 20.10 (2012), pp. 10658–10673.

31 Lizhi Wang et al. “High-speed hyperspectral video acquisition with a dual-camera architecture”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 4942–
4950.
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selected based on the sparse transform analysis performed in 32 and in the exper-

iments reproduced in Annex 1). It can be noticed that the 4D Kronecker produces

the sparsest representation, since most of the information is concentrated in fewer

coefficients in comparison with the other bases, where the sparsest representation is

that in which a large number of projected coefficients are small enough to be ignored
33 (see Annex 1 for more details). Based on literature and Figure 1, the 2D Wavelet

transform provides the sparsest representation for the spatial information 3427, how-

ever, in practice, the signal must be of a dyadic length for a fast and a compact

representation.

The main limitations of the state-of-the-art bases for spectral video representation

are: First, learning synthesis dictionaries can be a time-consuming task and can in-

troduce drawbacks for real-time processing since it is necessary to learn the basis

offline from the acquired data to recover it later, such as in 2, where the learning and

reconstruction procedures take up to three hours for one spectral video scene. Sec-

ond, some analytical transforms such as Wavelets are image-size restrictive, e.g., for

having a fast and compact transformation the signal must be dyadic, and indepen-

dent of the data. Given these points, it is crucial for spectral video representations to

have more flexible bases that can be adapted to the time-varying information that im-

pinges on the sensor, and that can fully exploit the highly redundant information and

correlated structure of spectral videos without incurring in time-consuming learning

tasks.

32 Kareth Marcela León-López. “DISEÑO DE APERTURAS DE CODIFICACIÓN PARA LA
ADQUISICIÓN COMPRESIVA DE IMÁGENES ESPECTRALES DINÁMICAS [recurso electron-
ico]”. M.S. Thesis. Bucaramanga, Colombia: Universidad Industrial de Santader (UIS), 2017.

33 Saad Qaisar et al. “Compressive sensing: From theory to applications, a survey”. In: Journal of
Communications and networks 15.5 (2013), pp. 443–456.

34 Gonzalo Arce et al. “Compressive coded aperture spectral imaging: An introduction”. In: IEEE
Signal Processing Magazine 31.1 (2014), pp. 105–115.
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Figure 1. Sparse representation comparison of (a) a spectral video with 128× 128
spatial pixels, 8 spectral bands and 8 frames between the (b) original spectral video
coefficients and its representation on the (c) 1D Wavelet, (d) 2D Wavelet, (e) 3D
Kronecker (2D Wavelet-DCT), and (f) 4D Kronecker (2D Wavelet-DCT-DCT)
transforms.

A suitable approach for high-dimensional spectral video is the tensor representa-

tion, where the inherent structure and the local correlation inside multidimensional

signals are considered 35. A remarkable tensor representation is the Tucker decom-

position which decomposes a higher-order array into a core tensor multiplied by an

orthogonal matrix along each mode. Figure 2 illustrates the Tucker decomposition of

a spectral video of size I1 × I2 × I3 × I4, where the symbol ×z denotes the mode-

z product, for z = 1, ..., 4 3536. Observe in Figure 2 that G ∈ RR1×R2×R3×R4 , with

35 Tamara G Kolda and Brett W Bader. “Tensor decompositions and applications”. In: SIAM review
51.3 (2009), pp. 455–500.

36 Andrzej Cichocki et al. “Tensor decompositions for signal processing applications: From two-way
to multiway component analysis”. In: IEEE Signal Processing Magazine 32.2 (2015), pp. 145–
163.
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Figure 2. Tensor representation of a spectral video via Tucker decomposition.

R1 ≤ I1, R2 ≤ I2, R3 ≤ I3, R4 ≤ I4, denotes the core tensor, which it is assumed

sparse, and the matrices U(z), z = 1, ..., 4, are the unitary matrices. It can be noticed

that each matrix U(z) accounts for one dimension of the higher-order array.

2.2. CSVS Architectures and Coded Aperture Design

In this section, two CSVS architectures are mathematically described: the video col-

ored coded aperture snapshot spectral imager (video-CASSI) and the ideal spatial-

spectral coded compressive spectral imager (3D-CASSI), where the main difference

between them is the shifting performed on the spectral information. Then, basic

properties used for designing the sensing matrix entries and recent approaches for

coded aperture design based on deep learning are presented.

2.2.1. Video Colored Coded Aperture Snapshot Spectral Imager Let f0(x, y, λ, t)

be a dynamic spectral source incoming into the video-CASSI system. Then, each

frame from the source is first encoded by a time-varying colored coded aperture

T (x, y, λ, t), where (x, y) represents the spatial coordinates, λ the wavelength com-

ponent, and t for the temporal dimension. Later, the resulting encoded source is

spectrally dispersed, to finally be integrated onto the sensor Yi4(x, y, t). Each pixel

in the sensor is a discretized measurement. In addition, during the integration time,

the time-varying coded aperture remains fixed for each frame, that is, each frame
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is modulated by a different pattern of the coded aperture. It is important to mention

that a time-varying colored coded aperture is composed of a set of 2D arrays whose

spatial points are optical filters, and where each array changes the filters position

across time. Specifically, the coded aperture pixels are different optical filters with

a specific spectral response which let certain frequency components of the source

pixel to pass and reject the remaining ones. That is, the pixels can operate on the

spectral axis as frequency-selective filters, i.e. as low pass, band pass, or high pass

optical filters. For illustration purposes, Figure 3(a) shows the optical elements in the

Video C-CASSI architecture 1, whose encoding element is a time-varying colored

coded aperture and their pixels spectral responses are shown in Figure 3(b).

As a matter of fact, the colored coded apertures based on optical filters in the CASSI

system are a modification of the traditional CASSI system, where the encoding ele-

ment is a block-unblock coded aperture, i.e. wavelength-independent patterns that

misuse the richness of the redundancy in the spectral information 26.

Figure 3. (a) Illustration of the video-CASSI system, where the encoding element is
a time-varying colored coded aperture whose pixels (b) correspond to a specific
spectral response.

In discrete form, the source f0(x, y, λ, t) can be written as (F i4
i3
)i1,i2. Then, the discrete
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output on the sensor for the i4-th frame F i4 can be written as

(Y i4)i1,i2 =

I3−1∑
i3=0

(F i4
i3
)i1,(i2−i3)(T

i4
i3
)i1,(i2−i3) + (Ωi4)i1,i2 , (5)

for i4 = 0, ..., I4−1, where F ∈ RI1×I2×I3×I4, (Y i4)i1,i2 denotes the measurement at the

(i1, i2)-th position on the detector at time i4, (T i4
i3
)i1,i2 ∈ {0, 1} represents the discrete

form of the time-varying colored coded aperture, where the optical filters responses

can be represented by a set of block-unblock elements; and (Ωi4)i1,i2 represents

the sensor noise 1. Observe that the sub-index (i2 − i3) represents the horizontal

dispersion induced by the dispersive element in the discrete model.

In matrix form, the acquisition model is equivalent to that in Eq. (2), where the struc-

ture of the video C-CASSI measurement matrix H ∈ RI1(I2+I3−1)I4×I1I2I3I4 is shown in

Figure 4 for I1 = 3, I2 = 3, I3 = 3 and I4 = 4 frames. Notice in Figure 4 that white

elements on the diagonal represent the transmissive elements in the time-varying

colored coded aperture.

2.2.2. Spatial-spectral Coded Compressive Spectral Imager A theoretical ar-

chitecture that allows spatial-spectral encoding of the information and achieves a

high performance is the 3D-CASSI 13. In the 3D-CASSI extended to video acqui-

sition, so-called video 3D-CASSI, the compressed measurements Y i4 for the i4-th

frame can be modeled as

(Y i4)i1,i2 =

I3−1∑
i3=0

(F i4
i3
)i1,i2(T i4

i3
)i1,i2 + (Ωi4)i1,i2 , i4 = 0, ..., I4 − 1, (6)

where the spectral video and the coded aperture are not spectrally sheared unlike

the previous architecture 13. In matrix form, the measurement set is modeled as

in Eq. (2), where the structure of the video 3D-CASSI measurement matrix H ∈

RI1I2I4×I1I2I3I4 is presented in Figure 5 for I1 = 3, I2 = 3, I3 = 3 and I4 = 4 frames.
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Figure 4. Video-CASSI measurement matrix H ∈ RI1(I2+I3−1)I4×I1I2I3I4 for
I1 = 3, I2 = 3, I3 = 3 and I4 = 4 frames. White squares on the diagonal depict
transmissive elements (unblock elements) in the random time-varying colored
coded aperture.

Notice that, compared with the video C-CASSI in Figure 4, there is no shifting on the

spectral bands, hence, spatial information preserves its structure.

In general, it can be noticed from the two described architectures that although spec-

tral frames are individually sampled, the sensing matrix and representation basis can

be designed to exploit temporal correlations from the underlying scene since some

information on the scene remains static over a time-lapse 137

2.2.3. Sensing Matrix Design The structure of the sensing matrix of a CSVS

system is given by both the specific configuration of the optical architecture and the

entries of the encoding element, i.e. the coded aperture pattern. Traditionally, the

entries of the coded aperture can be generated by following a random Gaussian

37 Henry Arguello and Gonzalo Arce. “Colored coded aperture design by concentration of mea-
sure in compressive spectral imaging”. In: IEEE Transactions on Image Processing 23.4 (2014),
pp. 1896–1908.

39



Figure 5. 3D-CASSI measurement matrix H ∈ RI1I2I4×I1I2I3I4 for
I1 = 3, I2 = 3, I3 = 3 and I4 = 4 frames.

or Bernoulli spatial distribution 2712, or by following a given structure such as the

Boolean-coded apertures, which provide a spatially random distribution while ex-

ploiting temporal correlation 16. However, different works have demonstrated that a

specific spatio-spectral and temporal design improves the reconstruction results 137.

In the literature, some works have proposed the sensing matrix design in compres-

sive sensing based on theoretical constraints such as in 38394041. However, in most

approaches the sensing matrix is a unitary dense Gaussian random matrix without a

specific structure, whose entries are drawn from zero mean Gaussian random vari-

38 Michael Elad. “Optimized projections for compressed sensing”. In: IEEE Transactions on Signal
Processing 55.12 (2007), pp. 5695–5702.

39 Gang Li et al. “On projection matrix optimization for compressive sensing systems”. In: IEEE
Transactions on Signal Processing 61.11 (2013), pp. 2887–2898.

40 Gang Li et al. “Designing robust sensing matrix for image compression”. In: IEEE Transactions
on Image Processing 24.12 (2015), pp. 5389–5400.

41 Tao Hong and Zhihui Zhu. “An efficient method for robust projection matrix design”. In: Signal
Processing 143 (2018), pp. 200–210.
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ables 42. Different from these designs, sensing matrices that model implementable

systems are highly structured, sparse and with binary entries due to the physical

device that encodes the information. In general, there are two main properties to

measure the recovery capabilities of sensing matrices: the restricted isometry prop-

erty (RIP) and the coherence 43.

Restricted Isometry Property: This property provides guidelines to determine the

sufficient number of projections in the system for signal reconstruction 143. More

specifically, for a given sensing matrix A ∈ Rm×n, it is said that A satisfies the RIP

of order K ≥ 1 if for the smallest restricted isometry constant δK ≥ 0, the inequality

(1− δK)||θ||22 ≤ ||Aθ||22 ≤ (1 + δK)||θ||22 holds for all θ ∈ Rn with |supp(θ) ≤ K|. The

RIP constant δK is then given by

δK(A) := max
|S|≤K

||AT
SAS − IRS ||22, (7)

where the maximum is over all subsets S with |S| ≤ K, and |S| = card(S), where

card(·) is the cardinality of the set, and AS ∈ Rm×S is a sub-matrix of A whose

columns are S columns of A 43. A properly way to design A is by minimizing the

constant δK to better satisfy the RIP 137.

Coherence: Similar to the RIP, the coherence property supplies directions to evalu-

ate the fundamental conditions of A for efficient reconstruction from the compressed

projections, where a low coherence is desired. Specifically, the coherence of the

sensing matrix A = HΨ can be defined as the maximum absolute value of the inner

product between any two normalized columns of A. In other words, coherence mea-

42 Yuri Mejia and Henry Arguello. “Binary Codification Design for Compressive Imaging by Uniform
Sensing”. In: IEEE Transactions on Image Processing 27.12 (2018), pp. 5775–5786.

43 Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Vol. 1.
3. Birkhäuser Basel, 2013.
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sures the correlation between H and Ψ, where a low correlation guarantees unique-

ness on the solution 1643. Formally, coherence of A = [a1, ..., an], with ||ai||2 = 1,

∀i ∈ [n], is defined as 43

µ(A) := max
1≤i ̸=j≤n

|⟨ai, aj⟩|. (8)

Works such as 44 have addressed the design and optimization of compressive spec-

tral imagers based on the analysis of the coherence of the sensing matrix, where

the sensing matrix structure is optimized in the sense that an upper bound of the

coherence is minimized.

2.3. Reconstruction Problem

The inverse problem to recover F from the measurements y = Hf entails the seek-

ing of the sparse solution of the underlying scene. For this, an unconstrained op-

timization problem that consists in minimizing an objective function composed of a

quadratic error term and a sparsity-promoting term has been posed. Formally, the

optimization problem is written as

θ̂ =argmin
θ

{
1

2
||y −Aθ||22 + ϕ(θ)

}
,

f̂ =Ψθ̂,

(9)

where A is the sensing matrix of the system and ϕ(θ) is a regularization function for

the sparsity-promoting solution 24271.

Different recent approaches have proposed to recover the underlying spectral signal

44 Alejandro Parada-Mayorga and Gonzalo R Arce. “Colored Coded Aperture Design in Compres-
sive Spectral Imaging via Minimum Coherence”. In: IEEE Transactions on Computational Imaging
3.2 (2017), pp. 202–216.
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by exploiting deep neural networks 4546. Thus, the weights of the network are trained

to recover a version of the signal from the compressed measurements. Even though

the training of the deep learning model is intensive, the recovery task is performed

in seconds, providing real-time reconstructions. Works such as 15 have recovered

spectral images at video-rates by using real coded apertures from the CASSI system,

where the coded aperture is set as random.

Other works in video compressive sensing have demonstrated that the training of the

weights of both the recovery and the coded aperture improves the reconstructions

results 212019. Thus, this dissertation explores the jointly training of the recovery and

coded aperture designs.

45 Daniel Gedalin, Yaniv Oiknine, and Adrian Stern. “DeepCubeNet: reconstruction of spectrally
compressive sensed hyperspectral images with deep neural networks”. In: Optics express 27.24
(2019), pp. 35811–35822.

46 Xin Miao et al. “l-net: Reconstruct hyperspectral images from a snapshot measurement”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019, pp. 4059–
4069.
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3. ONLINE TENSOR SPARSIFYING TRANSFORM FROM COMPRESSIVE

SPECTRAL VIDEO MEASUREMENTS

3.1. Introduction

Taking advantage of the fact that spectral videos can be highly sparse or compress-

ible in some bases, i.e. f = Ψθ, the measured projections can be rewritten as y =

HΨθ, where θ ∈ Rn represents the sparse coefficients of the signal over the spatial,

spectral and temporal axes 27. Thus, the set of CSVS outputs y = [y⊺
0,y

⊺
1, . . . ,y

⊺
I4−1]

⊺

can be rewritten as y = HΨθ = Aθ, where the matrix A ∈ Rm×n is named the CSVS

sensing matrix. It is important to highlight that the sensing matrix structure and its

entries depend on the used optical configuration. The underlying spectral video is

then recovered from f̂ = Ψ
(
argmin

θ
||y−HΨθ||22+ρ||θ||1

)
, where ρ is a regularization

constant.

To obtain f from the measurements y, CS theory establishes two principles: sparsity,

which is related to the signal under observation projected on a basis Ψ, and inco-

herence, which is related to the sensing matrix A 24. Particularly, the coherence of

A measures the largest correlation between any two columns of H and Ψ, where

a low coherence is desired. In this manner, the sparse representation basis Ψ re-

lates the two principles for the accurate signal recovery playing an important role in

the CS-based reconstruction protocol. To date, transformation bases such as an-

alytical transforms, e.g. Wavelets or Cosines 12, and learned dictionaries 302 have

been used to exploit the inherent redundancy of high-dimensional videos. Moreover,

sparse transforms based on the Kronecker product of one-dimensional bases for

each signal dimension have also been used 27. However, in the CSVS framework,

learning dictionaries can be a time-consuming task and can introduce drawbacks for

real-time processing since it is necessary to offline learn the basis from the acquired
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data and later, to recover the signal using the learned basis, such as in 2. Addition-

ally, some of the other bases are image-size restrictive and independent of the data,

such as the Wavelets. Therefore, it is crucial for CSVS reconstruction to have more

flexible bases that can be adapted according to the time-varying information.

In addition, it is well known in the literature that most of the CS-based-acquisition

modeling of optical systems and, in turn, the sparse representation models, rely on

the data representation in vector/matrix form 13. In consequence, high-dimensional

signals, as it is the case of spectral videos, measured by huge sensing matrices

are converted into very long vectors leading to a high computational burden 47. In

contrast, tensor data analysis offers the opportunity to model the data in its natural

representation, e.g. a spectral video can be modeled as a four-dimensional (4D) ar-

ray 48. Tensors are the high-order generalizations of vectors and matrices, where the

tensor decomposition allows the interaction between the multiple data dimensions

and, also, a compact representation of high-dimensional signals 35.

3.1.1. Tensor Sparsifying Transform and High-dimensional data Recent works

have modeled the CS problem based on tensors taking full advantage of the high-

47 Shmuel Friedland, Qun Li, and Dan Schonfeld. “Compressive sensing of sparse tensors.” In:
IEEE Trans. Image Processing 23.10 (2014), pp. 4438–4447.

48 Wenfei Cao et al. “Total variation regularized tensor RPCA for background subtraction from com-
pressive measurements”. In: IEEE Transactions on Image Processing 25.9 (2016), pp. 4075–
4090.
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order structure of the signals and better representing the data 495051. Thereby, based

on the Kronecker CS formulation proposed in 23, tensor CS modeling makes preserv-

ing the structure of the high-dimensional signal possible and separates the sensing

process along signal dimensions, easing the data storage and reducing computa-

tional complexity 4750. Moreover, several works have investigated sparsifying trans-

forms based on tensors for hyperspectral images, focusing on denoising and redun-

dancy reduction algorithms 5253. Other works have used tensor-based sparsifying

transforms by applying tensor factorization, such as the Tucker decomposition, to the

CS framework54. However, to date, the state-of-the-art has focused just on magnetic

resonance imaging (MRI) and dynamic MRI (dMRI) signals, and they report exten-

sive computation time in the numerical experiments making the method impractical

for real applications. In 48, a tensor-based sparse model using several similar groups

of patches for background subtraction was proposed, where the patch-based pro-

cessing greatly reduces the computational costs. However, this approach is focused

49 Zhixi Feng et al. “Superpixel Tensor Sparse Coding for Structural Hyperspectral Image Classifi-
cation”. In: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens 10.4 (2017), pp. 1632–1639.

50 Xin Ding, Wei Chen, and Ian J Wassell. “Joint sensing matrix and sparsifying dictionary optimiza-
tion for tensor compressive sensing”. In: IEEE Transactions on Signal Processing 65.14 (2017),
pp. 3632–3646.

51 Miguel Marquez, Hoover Rueda-Chacon, and Henry Arguello. “Compressive Spectral Light Field
Image Reconstruction via Online Tensor Representation”. In: IEEE Transactions on Image Pro-
cessing 29 (2020), pp. 3558–3568.

52 Xuefeng Liu, Salah Bourennane, and Caroline Fossati. “Denoising of hyperspectral images using
the PARAFAC model and statistical performance analysis”. In: IEEE Transactions on Geoscience
and Remote Sensing 50.10 (2012), pp. 3717–3724.

53 Lefei Zhang et al. “Compression of hyperspectral remote sensing images by tensor approach”.
In: Neurocomputing 147 (2015), pp. 358–363.

54 Yeyang Yu et al. “Multidimensional compressed sensing MRI using tensor decomposition-based
sparsifying transform”. In: PloS one 9.6 (2014), e98441.
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on background subtraction over grayscale videos where the spectral information is

discarded.

On the other hand, different from full-video processing, a promising field to better

use correlation and sparsity of high-dimensional signals is the employment of local

coherent patches on compressive video processing and reconstruction 55, usually

estimated from block matching55 or k-nearest neighbor48 techniques. In fact, the

idea of using patches based on superpixels for better handling large-scale datasets

has gained research interest in recent years 56. For video applications, the concept of

temporal superpixels (TSP) has been introduced to group local and coherent patches

of spatial information across time5657. However, this approach has not been exploited

in CSVS reconstruction, where the acquisition of compressed dynamic spectral in-

formation is considered.

This chapter presents a tensor-based model to simultaneously learn and reconstruct

the sparse transform and the spectral video under a CSVS framework. The proposed

tensor-decomposition-based learning model (TenDL) can be performed either on full-

images or onto patches obtained from temporal superpixels (TSP-TenDL), where

the TSP-TenDL model exhibits less computational complexity. Specifically, contrary

to offline dictionary learning, the proposed tensor sparsifying transform is updated

online from the data, while data are reconstructed.

To fully exploit the structure, as well as the high signal correlation within a 4D spectral

55 Bihan Wen, Saiprasad Ravishankar, and Yoram Bresler. “VIDOSAT: High-Dimensional Sparsify-
ing Transform Learning for Online Video Denoising”. In: IEEE Transactions on Image Processing
28.4 (2019), pp. 1691–1704.

56 Radhakrishna Achanta et al. “SLIC superpixels compared to state-of-the-art superpixel methods”.
In: IEEE transactions on pattern analysis and machine intelligence 34.11 (2012), pp. 2274–2282.

57 Jason Chang, Donglai Wei, and John W Fisher. “A video representation using temporal super-
pixels”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2013, pp. 2051–2058.
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Figure 6. Flowchart of the general steps of the proposed framework for the
simultaneously sparse transform learning and signal reconstruction. The dotted line
square marks off the developed strategy to estimate both a grayscale approximation
and the temporal superpixels patches from the compressed measurements.

video, the problem formulation is performed on tensor form with or without several

patches, since each patch contains highly-correlated information. The flowchart of

the proposed approach is pictured in Figure 6, where three stages are highlighted:

signal acquisition, preprocessing (dotted line square), and joint learning and recon-

struction. In the preprocessing stage, the parameter β establishes if the video is

processed either fully (β = 0) or by patches (β = 1). Then, after obtaining the mea-

surements from the CSVS sensor, the compressed video is used to first estimate a

grayscale approximation and second to compute the TSP, where the patches can be

efficiently computed from a TSP segmentation algorithm, such as 5657. Later, in the

reconstruction stage, the grayscale estimation is used to initialize the sparse trans-

form to be learned. An algorithm based on the block-coordinate descent method for

the simultaneous sparse transform learning and reconstruction optimization problem

is proposed. In the algorithm, if the process is performed on the patches stage, each

patch is independently reconstructed and then merged to obtain the spectral video.

Numerical experiments show an improvement by the TenDL and TSP-TenDL ap-

proaches compared to analytical and offline-learned bases in terms of peak signal-

to-noise ratio (PSNR) and structural similarity (SSIM) index on the reconstruction
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results. Gains of up to 7 dB of PSNR and 0.1 of SSIM are achieved with respect to

the state-of-the-art recovery and the tensor-based recovery with the fixed basis. The

impact of the number of TSP on the reconstruction when the data is processed on

patches and the reconstruction time are also analyzed.

Notation and Multilinear Algebra

Tensors are denoted by Euler script letters, e.g. X ∈ RI1×I2×...×IN is an N -th order

tensor. Matrices are denoted by boldface capital letters, e.g. X, and vectors are

denoted by boldface lowercase letters, e.g. x. The n-th matrix in a set is denoted

by adding a superscript in parenthesis as A(n). Subtensors can be created from

the original when a subset of indices is fixed. Slices are obtained by fixing all but

two indices, e.g. X:,:,i3,...,iN is a frontal slice of X 35, and fibers are vector-valued

subtensors defined by fixing every index except one. The mode-n matrix represen-

tation of a tensor X is denoted as X(n) ∈ RIn×(I1...×In−1×In+1...×IN ), and it is obtained

by arranging the mode-n fibers as the column of the resulting matrix. The mode-n

product between a tensor X ∈ RI1×I2×...×IN and a matrix A ∈ RJ×In is denoted as

Z = X ×n A, with Z ∈ RI1...×In−1×J×In+1...×IN , and in matrix representation is written

as Z(n) = AX(n). The Tucker decomposition is defined as a higher-order analogue

of the singular value decomposition, where the goal is to decompose a tensor X into

a core tensor B multiplied by a set of matrices A(n) ∈ RJn×In, for n = 1, ..., N , along

each mode 35:

X = B ×1 A
(1)...×N A(N) = JB;A(1), ...,A(N)K. (10)

Equivalently, the Tucker decomposition of Eq. (10) can be expressed as X(n) =

A(n)X(n)

(
A(N)⊗...A(n+1)⊗A(n−1)⊗...A(1)

)T
, where⊗ denotes the Kronecker product

and (·)T is the transpose.

The column-wise vectorization of a 4-th order spectral video tensor X ∈ RI1×I2×I3×I4
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is given by x = vec(X ) = [x⊺
0,x

⊺
1, . . . ,x

⊺
I4−1]

⊺, where each frame xi4 is written as

xi4 = [xi4
0 , . . . ,x

i4
I3−1], and whose entries can be expressed as (xi4

i3
)r = X(r−kI1),k,i3,i4,

where k = ⌊r/I1⌋, r = 0, ..., I1I2 − 1, i3 = 0, ..., I3 − 1, and i4 = 0, ..., I4 − 1. The

inverse operator of vec(·) that rearranges the vectorized signal to the original tensor

shape is denoted by vec−1(X ). Table 1 summarizes the above-mentioned notations

and operations. Note that notation in Table 1 is considered only for this Chapter.

Table 1. Notation summary

Notation Description

X ,X,x, x Tensor, matrix, vector, scalar

X:,:,i3,...,iN Frontal slice of tensor X
x:,i2,i3,...,iN Vector fiber of tensor X
X(n) Mode-n matrix representation or unfolding of tensor X
A(n) n-th matrix in a sequence

Z = X ×n A mode-n product between a tensor X ∈ RI1×I2×...×IN and a matrix A ∈ RJ×In

X = JB;A(1), ...,A(N)K Tucker decomposition of X , X = B ×1 A
(1)...×N A(N)

vec(X ) Column-wise vectorization of the tensor X
vec−1(X ) Rearrange vec(X ) in its original shape

3.2. Tensor-based Compressive Spectral Video Sensing (CSVS) Modeling

Snapshot compressive spectral cameras for capturing dynamic spectral images rely

on the modulation of the incoming light towards the camera sensor 13. Some com-

pressive spectral video sensing architectures include the video colored coded aper-

ture snapshot spectral imager (video C-CASSI) 1, the hybrid spectral video imaging

system (HVIS), the high-speed hyperspectral (HSHS) and the spatial-spectral coded

compressive spectral imager (3D-CASSI) for video-rate 13. In particular, the 3D-

CASSI provides a spatio-spectral modulation of the data cube using a 3D coded

aperture, also known as a colored coded aperture 37. In the video 3D-CASSI, the
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compressed measurements y can be modeled as

y(x′, y′, t) =

∫
f(x′, y′, λ, t)T (x′, y′, λ, t)dλ, (11)

where f(x′, y′, λ, t) denotes the dynamic spectral source, T (x′, y′, λ, t) represents the

time-varying colored coded aperture1, (x′, y′) represent the spatial coordinates, λ

denotes the wavelength component, and t accounts for the time axis.

A discretized spectral video scene can be represented as a fourth-order tensor F ∈

RI1×I2×I3×I4 , where I1 × I2 represents the spatial size, I3 the spectral bands, and I4

the number of video frames. In general form, the acquisition procedure in a CSVS

architecture can be expressed as

Y = H(F) +W , (12)

where H(F) : RI1×I2×I3×I4 → RI1×I2×I4 represents the CSVS operator and estab-

lishes the modulation and compression of the incoming signal. In particular, for the

video 3D-CASSI measurements Y ∈ RI1×I2×I4, the i4-th frame can be modeled as

Y:,:,i4 =

I3∑
i3=1

F:,:,i3,i4 ◦ T:,:,i3,i4 +W:,:,i4 , (13)

for i4 = 1, ..., I4, where ◦ denotes the Hadamard product (element-wise product),

F:,:,i3,i4 is a frontal slice of F ,W ∈ RI1×I2×I4 denotes the noise in the system, and T ∈

RI1×I2×I3×I4 represents the tensor form of the time-varying colored coded aperture (T-

CCA). In particular, the entries of the T-CCA can be generated by following a specific

design, as in 371, or by following a structure such as the Boolean coded apertures,

which provide a spatially random distribution and exploit the temporal correlation16.

Following the tensor notation, the spectral video F can be decomposed as a multi-

linear transformation of a dictionary basis {Ψ(n)}4n=1 ∈ RIn×In, along each mode-n,
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and a core tensor G ∈ RI1×I2×I3×I4 as follows

F = G ×1 Ψ
(1) ×2 Ψ

(2) ×3 Ψ
(3) ×4 Ψ

(4), (14)

where the core tensor G corresponds to the coefficients of F on each dictionary,

assumed to be sparse. Thus, Eq. (12) can be rewritten as

Y = H
(
G ×1 Ψ

(1) ×2 Ψ
(2) ×3 Ψ

(3) ×4 Ψ
(4)
)
+W , (15)

which is the general tensor-based CS acquisition model for a CSVS architecture.

3.3. TSP from Compressed Measurements for Online Learning and Recovery

Estimation

In this section, the concept of temporal superpixels (TSP) is introduced, and the

proposed strategy to compute the grayscale scene version that leads to an accurate

TSP estimation from the measurements is described. The problem to jointly learn

the sparse basis and recover the signal is formulated.

3.3.1. Temporal superpixel subtensors Spectral video tensors contain highly

redundant information such that several pixels share similar features in the spatial,

spectral, and temporal axes. Thus, these tensors can be partitioned into several

four-dimensional (4D) patches to speed up processing tasks or to alleviate storage

load. A 4D patch tensor Fd can be defined as a subtensor of F , where d = 1, ..., D

indicates the d-th 4D patch. A rough way to obtain the 4D patches consists in split-

ting up the 4D information following a regular grid over the spatial dimension across

time; however, these regular shapes entail the grouping of non-smooth regions. In

contrast, superpixels provide a suitable partition of the data, assigning each pixel to

a coherent spatial local region 56, and these local regions connected in successive
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frames are known as temporal superpixels 57.

Thus, a 4D patch obtained from a temporal superpixel method can be defined by

using the resulting segmentation label map L ∈ RI1×I2×I3×I4. For this, the 4D TSP

patch is written as a function of the set of indices that belong to a determined region

of the map, where the map has D labeled regions. Mathematically, the d-th 4D TSP

subtensor Fd ∈ RId1×Id2×Id3×Id4 of F can be expressed as

Fd = fd
id1i

d
2i

d
3i

d
4
= {fd

idj
}4j=1, (16)

where the subindices idj ∈ Idj belong to the d-th patch, where the patch has Id1 × Id2

spatial pixels, Id3 = I3 spectral bands, and a set of Id4 temporal frames. Notice that

TSP-based grouping yields an assembly of irregular shapes to model the underlying

scene. In particular, the TSP estimation can be conducted by grouping pixels, for in-

stance, based on the Euclidean distance of pixels 56 or following probabilistic models

as in 57.

On the other hand, given that in a CSVS system the signal is unknown, several

TSP subtensors can be obtained from the compressed projections Y as Yd = yd
id1i

d
2i

d
4
,

where the spectral dimension has been compressed. However, since the spatio-

spectral information has been encoded, yielding a non-smooth signal, the TSP esti-

mation from the measurements Y is unsuitable. This can result in inaccurate estima-

tions of the TSPs given that the TSP estimation is based on the pixel intensity 5657.

Thus, in the next subsection, a strategy to overcome this limitation is presented. Fig-

ure 7 illustrates the concept of TSP over a video, where two objects appear across

the temporal axis and, for illustration purposes, Figure 7(a) shows the trajectory of

the objects along time, and in Figure 7(b) the objects are segmented and labeled for

assembling the TSPs.
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Figure 7. Illustration of the information across different instants of time. (a) The
trajectory of the objects is drawn along the temporal axis. (b) The objects across
time are segmented and labeled to assemble the temporal superpixels, where three
regions are identified on the scene.

3.3.2. Grayscale Representation from the Compressed Video Aiming to ex-

ploit the spatio-temporal acquired measurements, a grayscale version of the scene

can be formed to estimate the TSP and provide a suitable initialization of the sparse

representation basis. In general for any CSVS architecture, the grayscale version of

the video can be attained from the compressed measurements in Eq. (12) by esti-

mating a preview of the scene from a coarse reconstruction, such as in 1, and then

projecting all the spectral bands of the frame to form a grayscale frame. Specifically,

from 1, the signal preview can be estimated by solving f̂Low = Ψ
(
argminθLow

||y −

HSTS(Ψθ)||22 + ρ||θ||1
)
, where S ∈ R(n/κ)×n is a spatial downsampling operator, with

a dimensional reduction factor κ; the subscript (·)Low denotes the low spatial resolu-

tion version, and then, the preview tensor is estimated as F̂ = vec−1(ST f̂Low). Then,

given the preview F̂ of the spectral video, the grayscale version of the i4-th frame

can be estimated as

YG
:,:,i4

=

I3∑
i3=1

F̂:,:,i3,i4 , (17)
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for i4 = 1, ..., I4. Following this, the set of the I4 frames containing the grayscale

approximation of the scene can be denoted as YG = {YG
:,:,1, ...,Y

G
:,:,I4
}, with YG ∈

RI1×I2×I4 . Considering that the 3D-CASSI sensing model projects the scene along

the spectral axis without shearing 13, a rapid grayscale approximation can be ob-

tained under a specific encoding by adding two consecutive measurement frames.

With this in mind, assume that the measurements Y are encoded by using time-

varying boolean colored coded apertures 16, thus the rapid spatial approximation for

the t-th frame can be obtained as

YG
:,:,t = Y:,:,t + Y:,:,t+1, (18)

for t = 1, ..., I4 − 1, where for the (I4)-th frame, the (I4 − 1)-th spatial approximation

is assigned, i.e. YG
:,:,I4

:= YG
:,:,I4−1. Therefore, when the video 3D-CASSI scheme

is employed, the rapid approximation can be estimated from Eq. (18) rather than

Eq. (17), avoiding the preview reconstruction. Subsequently, the obtained grayscale

tensor YG is then employed to estimate the TSP such that the subindices of the

segmented data can be used to segment the measurement tensor Y.

3.3.3. Joint Dictionary and Recovery Problem Formulation The inverse prob-

lem to recover F from the measurements Y entails seeking a sparse solution of the

underlying scene. The recovery problem for a fixed basis {Ψ(z)}4z=1 can be written

as

minimize
G∈RI1×I2×I3×I4

∥∥Y −H(G ×1 Ψ
(1) ×2 Ψ

(2) ×3 Ψ
(3) ×4 Ψ

(4)
)∥∥2

F

subject to ||vec(G)||1 ≤ S,

(19)

where the constant S denotes the sparsity level of the core tensor.

Let U(z) ∈ RIz×Iz , for z = 1, ..., 4, be the factor matrices that sparsify the core tensor
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G 58, then the joint sparse transform and reconstruction estimation can be expressed

as

{Û(z), Ĝ} ∈ argmin
{U(z)}4z=1,

G

∥∥∥Y −H(G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4)
)∥∥∥2

F

subject to ||vec(G)||1 ≤ S,

U(z)TU(z) = I(z), z = 1, .., 4,

(20)

where G ∈ RI1×I2×I3×I4 is the core tensor, and I(z) is an identity matrix.

Thus, according to the proposed TSP-based reconstruction methodology, the mea-

surements tensor Y is partitioned onto several 3D temporal superpixel subtensors.

Then, the objective function in Eq. (20) can be rewritten as follows

{
Ĝd,Û

(z)
d ,Û(3)

}
∈ argmin

Gd,U
(3)

{U(z)
d }2,4z=1

∥∥∥Yd −Hd

(
Gd ×1 U

(1)
d ×2 ...×4 U

(4)
d

)∥∥∥2

F

subject to ||vec(Gd)||1 ≤ S,

{U(z)
d

T
U

(z)
d = I(z)}z=1,2,4,

U(3)TU(3) = I(3),

(21)

where Yd = ydi1i2i4 is a temporal superpixel patch computed from the measurements,

Hd is the CSVS sub-operator selected for the indices i1i2i3i4 from the TSP, and the

set of the unitary matrices U
(z)
d for z = 1, 2, 4 is computed for each patch (with the

restriction that they must be orthogonal). Notice that for the third dimension of the

data, the unitary matrix U(3) is estimated without using the index d, denoting that the

spectral information is not partitioned along that axis.

58 Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multilinear singular value decom-
position”. In: SIAM journal on Matrix Analysis and Applications 21.4 (2000), pp. 1253–1278.
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3.4. Optimization Algorithm for the Basis Estimation and Signal Recovering

In this section, two algorithms are presented for the joint sparse-transform estimation

and signal recovery processes: Algorithm 1, that summarizes the general steps of

the proposed framework, and Algorithm 2, which presents the steps of the proposed

algorithm based on block-coordinate descent (BCD) method to solve the problem in

Eq. (20). The proposed BCD-based method is explained in general form, and then,

it is used for each temporal patch from the main algorithm.

3.4.1. General Algorithm As discussed in subsection 3.3.3, even though the pro-

posed framework is focused on the TSP-based transform, it is possible to solve the

problem without partitioning the data, however, this implies much more processing

time as it will be shown in Section 3.5. Algorithm 1 receives the parameter β ∈ {0, 1}

as input that selects the TSP-based processing (β = 1) or the full-data processing

(β = 0), the measurements Y, an initial 1D transform Ψ0 for the third dimension,

and the approximated number of temporal superpixels D. Then, for the TSP-based

processing (TSP-TenDL) when β = 1, the label map is estimated from the grayscale

tensor YG, taking into account the number of desired TSPs. In line 3, the Ω(·) opera-

tor represents the TSP estimation operation, where the set of irregular TSPs ŶG and

the label map L are obtained. Then, it is necessary to extract the TSP in a regular

form to be processed, since TSP-based grouping generates irregular shapes. That

operation is represented by ∆(·) in line 4 and 5, where each TSP patch is taken in a

rectangular form for its processing, whose rectangular shape is given by the largest

spatial size of a patch in that specific TSP (see Figure 6 ‘Regular shape TSPs Ex-

traction’ box for an intuitive illustration). As a result, the sets of regular-shape TSPs

Ỹ = {Ỹd}Dd=1 and ỸG = {ỸG
d }Dd=1 are obtained, where Ỹd = {Yi1i2i4|(i1, i2, i4) ∈ L}.

After that, the JOINTESTIMATION algorithm, which is explained in detail in the next

section, is run for each TSP patch.
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When all the patches are recovered, these are merged using the MERGING function

in line 9, which takes the initial indices from the labeled tensor and assigns the

recovered patch to the specific indices for each patch. On the other hand, for the full-

data processing (TenDL) when β = 0, the JOINTESTIMATION algorithm is run over

the high-resolution compressed video.

3.4.2. BCD-based Formulation In general form, the problem in Eq. (20) can be

efficiently solved using an alternating minimization approach. More precisely, setting

F = JG;U(1),U(2),U(3),U(4)K59, Eq. (20) can be reformulated as

minimize
{U(z)}4z=1,

G,F

∥∥Y −H(F)∥∥2

F
+ λ||vec(G)||1,

subject to F = JG;U(1),U(2),U(3),U(4)K

U(z)TU(z) = I(z), z = 1, .., 4,

(22)

where the variable F is introduced and λ > 0. Thus, the augmented Lagrangian of

Eq. (22) can be written as

LA

(
G,F , {U(z)}4z=1,Q

)
=

∥∥Y −H(F)∥∥2

F
+ λ||vec(G)||1

+ (λ/2)
∥∥F − JG;U(1),U(2),U(3),U(4)K +Q

∥∥2

F
+

4∑
z=1

IU
(
U(z)

)
,

(23)

where Q is the Lagrange multiplier and IU
(
U(z)

)
is an indicator function defined as

IU
(
U(z)

)
=

1, if U(z) ∈ U

0, otherwise
, (24)

59 Alternative notation for the tensor decomposition from Eq. (10).
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where U =
{
U ∈ RIz×Iz |UTU = I

}
, z = 1, ..., 4.

Equation (40) can be iteratively solved by the following three steps, where each

variable is updated while the others are fixed:

F̃k+1 sub-problem:

F̃k+1 ∈ argmin
F

λ

2

∥∥∥Fk − JGk;U(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2

F
+

1

2

∥∥Y −H(Fk

)∥∥2

F
. (25)

The subproblem in Eq. (25) can be solved as the linear problem given by

f̃ =λvec(JGk;U(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K) +HT (vec(Y))

=λf +HT (Hf),
(26)

where f is zero-initialized, H is the sensing matrix that encloses the projection op-

eration performed by the camera, HT denotes the transpose operation for H, and f̃

can be found from the conjugate gradient (CG) method reported in 60 (Section 2.3.1,

Fig. (2.5)). Note that the preconditioner in the CG algorithm is fixed to an identity

matrix.

G̃k+1 sub-problem:

G̃k+1 ∈ argmin
G

λ

2

∥∥∥Fk+1 − JGk;U(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2

F
+ τ ||vec(Gk)||1, (27)

where this subproblem-update is a proximal operator evaluation, whose closed-form

60 Richard Barrett et al. Templates for the solution of linear systems: building blocks for iterative
methods. Vol. 43. Siam, 1994.
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solution can be obtained from the well-known soft shrinkage operator given by

G̃k+1 = vec−1
{
Sλ/τ

(
vec(Fk+1 + Gk), λ/τ

)}
, (28)

with Sλ/τ (x, β) := sgn(x)max(|x|−β, 0) as the soft thresholding operator, and λ, τ > 0

are regularization parameters.

Algorithm 1: TSP-TenDL / TenDL Main Algorithm
Input: Y ∈ RI1×I2×I4;

Ψ0: Initial 1D transform (e.g. DCT);
D : desired number of TSP (default D = 10);
β ∈ {0, 1}: 1 for TSP-TenDL processing,
0 for TenDL processing;

1 Initialize: U(3) ← Ψ0; Compute YG via Eq. (18)
2 if β = 1 then ▷ TSP-TenDL approach

3 {ŶG, L(i1, i2, i4) } ← Ω(YG, D) ▷ TSP guess

4 Ỹ ←∆(Y ,L(i1, i2, i4)) ▷ Patch extraction

5 ỸG ←∆(ŶG,L(i1, i2, i4))
6 for d = 1 to D do
7 F̃d ← JOINTESTIMATION

(
Ỹd, ỸG

d ,U
(3)
)

8 F̂ ← MERGING
(
{F̃d}Dd=1,L(i1, i2, i4)

)
9 else ▷ TenDL approach (full-image)

10 F̂ ← JOINTESTIMATION
(
Y ,YG,U(3)

)
Output: Recovered Spectral Video F̂ ∈ RI1×I2×I3×I4

Online Transform Refinement Ũ
(z)
k+1 for z = 1, ..., 4 After estimating F̃k+1 and

G̃k+1, the sparse transform is refined for each dimension as

Ũ
(z)
k+1 ∈ argmin

{U(z)}4z=1

λ

2

∥∥∥Fk+1 − JGk+1;U
(1)
k ,U

(2)
k ,U

(3)
k ,U

(4)
k K +Qk

∥∥∥2

F
+ Iz

(
U(z)

)
. (29)
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Note that this subproblem can be alternatively written in a general form for the mode-

z as

Ũ
(z)
k+1 ∈ argmin

U(z)

λ

2
||F(z) −U(z)G(z)(U

(Z) ⊗ ...U(z−1) ⊗U(z+1) ⊗U(1))T +Q(z)||2F + Iz
(
U(z)

)
,

(30)

for z = 1, ..., Z, where Z = 4, are the modes of the tensor, such that each matrix U(z)

can be refined by using the mode-z of the Eq. (29). Problem in Eq. (30) is known as

the Orthogonal Procrustes problem 61, whose closed-form solution is given by

Ũ
(z)
k+1 = SVT , (31)

where S and VT are obtained from the matrix-based singular value decomposition

(SVD) of the factor
(
F(z) +Q(z)

)(
G(z)

(
U(Z) ⊗ ...U(z−1) ⊗U(z+1)...⊗U(1)

)T )T , i.e.

SΣVT =SVD
(
(F(z) +Q(z))

(
G(z)(U

(Z) ⊗ ...

⊗U(z−1) ⊗U(z+1)...⊗U(1))T
)T )

. (32)

Thus, the sparse transform update is reduced to the computation of Eq. (31) for

z = 1, 2, 3, 4. And finally, the multiplier is updated as

Q̃k+1 = Qk + F̃k+1 − JG̃k+1; Ũ
(1)
k+1, Ũ

(2)
k+1, Ũ

(3)
k+1, Ũ

(4)
k+1K. (33)

The main steps of the BCD-based optimization are summarized in Algorithm 2,

where the inputs are the measurements tensor Y, the grayscale approximation YG

and the initial guess for U(3). Algorithm 2 starts with zero-initialization of the tensors

61 Hui Zou, Trevor Hastie, and Robert Tibshirani. “Sparse principal component analysis”. In: Journal
of computational and graphical statistics 15.2 (2006), pp. 265–286.
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Fk,Gk,Qk according to the size of the input Y and the number of spectral bands

I3. In line 4, a suitable initialization of the sparse transform is performed by using

the grayscale approximation from the multilinear SVD operation (MLSVD), since the

MLSVD decomposition asserts that the obtained factor matrices U(z) ∈ RIz×Iz are or-

thogonal 58. Then, while some stopping criterion is not satisfied, such as the number

of iterations or the tolerance error, the BCD steps are computed. Finally, the recov-

ered tensor F̂ is obtained from the estimated core tensor and the learned basis.

Algorithm 2: Joint Sparse Basis and Signal Estimation

1 Function JOINTESTIMATION
(
Y ,YG, Ũ

(3)
k

)
2 Initialize: {J1, J2, J3} ← size of Y
3 {Fk,Gk,Qk} = 0 ∈ RJ1×J2×I3×J4

4 JŨ(1)
k , Ũ

(2)
k , Ũ

(4)
k K← MLSVD

(
YG

)
, k = 0;

5 while some stop criterion is not satisfied do
6 Update F̃k+1 by solving Eq. (25)
7 Update G̃k+1 from Eq. (28)
8 Update Ũ

(1)
k+1, Ũ

(2)
k+1, Ũ

(3)
k+1 and Ũ

(4)
k+1 via Eq. (31)

9 Update the multiplier Q̃k from Eq. (33)
10 k = k + 1

11 F̌ = JG̃k; Ũ(1)
k , Ũ

(2)
k , Ũ

(3)
k , Ũ

(4)
k K

12 return F̌

3.4.3. Complexity Analysis In previous works on CSVS, vector-based algo-

rithms such as the gradient projection for sparse reconstruction (GPSR)62 or the

sparse reconstruction by separable approximation (SpaRSA) 63 have been used

62 Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems”. In: IEEE Journal
of selected topics in signal processing 1.4 (2007), pp. 586–597.

63 Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. “Sparse reconstruction by separa-
ble approximation”. In: IEEE Transactions on Signal Processing 57.7 (2009), pp. 2479–2493.
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to recover the spectral video 127. In particular, to reconstruct the 4D tensor F ∈

RI1×I2×I3×I4, a vector-based algorithm leads to a computational complexityO
(
(I1I2I3I4)

α
)

per iteration, where the exponent α > 1 is empirically estimated: for SpaRSA α =

1.05 and GSPR α = 1.0663. It can be noticed that if the size of the video increases,

the complexity of the problem also increases.

On the other hand, the computational complexity of the proposed approach is mainly

given by the updates of the tensors F̃k+1 and G̃k+1 from the MLSVD estimation and ba-

sic tensor operations. These processes demand a computational cost ofO(J1J2I3J4)+

O(min(Jn
∏

n̸=m J2
m, J

2
n

∏
n̸=m Jm)), where, if the process is performed by TSPs, Jn ≪

In, with Jn denoting the size of the largest temporal patch from the patches set, for

n,m = {1, 2, 3, 4}. But, if the procedure is performed by full-video processing, then

Jn = In, which entails the increasing of computation costs since MLSVD computation

cost increases as much as the scale of the tensor.

Hence, the resulting cost for the JOINTESTIMATION step in Line 6-7 of Algorithm 1 is

O(D
C
(J1J2I3J4+min(Jn

∏
n̸=m J2

m, J
2
n

∏
n̸=m Jm))), for D TSPs, where C is the number

of available cores for parallel processing. For the case of full-video processing, Line

10 of Algorithm 1, the cost is O(I1I2I3I4 +min(In
∏

n ̸=m I2m, I
2
n

∏
n̸=m Im)).

3.5. Simulations and Results

Numerical experiments over three spectral videos were carried out by simulating the

set of compressive measurements of Eq. (13) to analyze the performance of the

proposed sparse transform learning and recovery approach. The first and second

datasets are cropped sections of the scene in 30, named in this Chapter as Video

1 and 2, respectively. The third dataset is a real sequence64 of spectral images

acquired in the Optics Lab of the High Dimensional Signal Processing (HDSP) re-

64 The video sequence dataset can be made available upon email request to: henarfu@uis.edu.co
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search group at Universidad Industrial de Santander, named Video 3. Table 2 shows

the dimensions of all spectral videos.

Table 2. Size of the spectral videos used for simulations

Spatial pixels Spectral Bands Number of frames
Size I1 I2 I3 I4

Video 1 128 128 8 8
Video 2 256 256 8 32
Video 3 128 128 24 16

The CSVS system employed for the simulations was the video 3D-CASSI. A set

of time-varying random boolean colored coded apertures was used for all the ex-

periments, in particular, the entries of these patterns are realizations of a Bernoulli

random variable with parameter p = 0.5. Each boolean pattern is generated for two

consecutive frames such that the sum of the patterns in the ensemble along each

spatial coordinate is equal to a constant c. For the grayscale tensor estimation, the

strategy presented in Eq. (18) was adopted.

On the other hand, the simple linear iterative clustering algorithm (SLIC)65 was used

to generate the temporal superpixels, which generates the TSPs based on k-means

clustering and the Euclidean distance 56. This algorithm was chosen for its simplic-

ity and speedy performance, however, other implementations can be employed for

the patch segmentation and extraction such as that proposed in 57, since the TSP

algorithm is just used for the grouping of coherent pixels along spatio-temporal axes.

The proposed TSP-TenDL and TenDL approaches are compared with a fixed analy-

sis basis on the tensor-form problem in Eq. (20), an offline dictionary-learning-based

approach, and the traditional vector-form inverse problem for CSVS. More specifi-

cally, by denoting ΨW as an 1D Wavelet-basis and ΨD as an 1D-Discrete Cosine

65 Implementation available online at https://www.epfl.ch/labs/ivrl/research/

slic-superpixels/
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basis (DCT), the fixed analysis basis in Eq. (20) is set as follows: U(1) = ΨW and

U(2) = ΨW for the spatial dimensions, U(3) = ΨD and U(4) = ΨD for the spectral and

the temporal dimensions 271, named as ‘WWDD-TenD’, given the initial letters of the

used bases the sparsity analysis between the WWDD transform and the proposed

transform is presented in the Annex 1. For the case of the traditional vector-form

inverse problem in CSVS, the basis Ψ4D is fixed as the Kronecker product given by

Ψ4D = ΨW ⊗ΨW ⊗ΨD ⊗ΨD, here referred to ‘WWDD-Vec’, since the vector-form

recovery is used. On the other hand, for the offline dictionary-learning approach,

the simultaneous spectral sparse (3S) model proposed in 2 was employed with an

acceleration-rate parameter K = 1, for a fair comparison with the proposed method

(see 2 Eq.(1)-(3)). To get the side information, which is used for the dictionary learn-

ing step in the 3S model, were considered two scenarios: an additional camera

(Panchromatic camera) and the grayscale approximation presented in section 3.3.2,

named as 3SDL-Vec and 3SDLg-Vec, respectively. The patches for the dictionary

learning in the 3SDL-Vec and 3SDLg-Vec methods are set based on the obtained

results in 2 as 6 × 6 × K, where MN patches for the KSVD-based learning were

extracted. Also, since there are three regularization parameters in the model, it was

performed an exhaustive search of these parameters to get the higher PSNR in the

signal recovery.

In summary, the methods to be compared are as follows: the proposed TSP-TenDL

and TenDL models, the proposed tensor-based modeling with the fixed basis: WWDD-

TenD, the vector-form recovery with the fixed basis: WWDD-Vec, the dictionary-

learning-based method with simultaneous sparse model using a PanChromatic cam-

era: 3SDL-Vec, and using the grayscale approximation: 3SDLg-Vec. The peak

signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) metrics are

used to evaluate the image quality of the reconstructions, and for the spectral recon-

struction assessment, the root mean squared error (RMSE) is employed. The PSNR,
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given in decibels (dB), is related to the mean squared error (MSE) as 10 log10(MAX2/MSE),

where MAX is the maximum possible value of an image pixel. Meanwhile, the SSIM

measures the similarity between two images, taking values from 0 to 1, 1 being the

value obtained when two identical images are compared. For the RMSE metric, the

smaller the RMSE values, the better the reconstruction results.

3.5.1. Comparison of the Recovery Results Several experiments were per-

formed to evaluate the accuracy of the reconstructions with the proposed recovery

approach66. Subsection 3.5.3 analyzes the impact of the number of TSPs in the

reconstruction results and in the computation time for the TSP-TenDL method. In

this subsection, just for comparison purposes, the number of TSP in the TSP-TenDL

method is fixed to D = 10, which is the default value in Algorithm 1. Specifically,

this value was chosen as default since it provides a trade-off between high PSNR

reconstruction and short processing time. Figure 8 shows an RGB representation

of the original and reconstructions of frames 1, 5 and 10 of each video from each

method, where the quality of reconstruction in terms of the average PSNR is also

shown. Note that the obtained reconstructions from the TSP-TenDL and TenDL out-

perform the other approaches up to 7 dB, as can be seen in the reconstructed video

1. Annex 2 depicts the spectral bands from each reconstruction method and each

spectral video.

To illustrate the spectral accuracy of the proposed approach, the spectral signature

(i.e. a spatial point along the spectral bands) of two spatial points in the frames 10,

20, and 30 of the spectral video 2 are pictured for: a static zone in Figure 9, and a

dynamic zone in Figure 10. The RMSE of each profile is provided in the legend of

each picture. For the point P1 in the static zone, despite there is no motion along

66 All simulations were performed in a desktop architecture with an Intel(R) Xeon(R) CPU E5-1603
v3 @ 2.80 GHz processor, 128 GB RAM.
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Figure 8. RGB profile of the originals (1st column) and the reconstructed frames 1,
5 and 10 of each video by using the WWDD-Vec (2nd column), the WWDD-TenD
(3rd column), the 3SDL-Vec (4th column), the 3SDLg-Vec (5th column), the TenDL
(6th column) and the TSP-TenDL (7th column) methods. PSNR is shown for each
selected frame.

the temporal dimension, the proposed bases TenDL and TSP-TenDL produce more

accurate reconstruction than the other approaches. On the other hand, for the point

P2 in the dynamic zone, the reconstructed spectral signatures using the TSP-TenDL

and TenDL methods (discontinued line -⋄ and -⋆) are closer to the original spectrum

in comparison to the profiles obtained with the other approaches.

Table 3 summarizes the obtained results in terms of average PSNR, SSIM and

RMSE. In particular, the RMSE metric is estimated on the spectral axis to evaluate

the accuracy in the spectral reconstruction, i.e. the values are obtained by computing

the averaged error of each spectral signature. Table 3 and Figures 8-10 demonstrate

that reconstruction results from the TSP-TenDL and TenDL approaches exhibit lower

RMSE values and higher PSNR-SSIM values resulting in higher accuracy in compar-

ison with the other methods, where the best (highest and lowest) values are in bold

and underlined. Note that, in general, the best performance is achieved by the TSP-
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TenDL method. Regarding the performance of the 3SDL-Vec approach compared to

the 3SDLg-Vec, it can be noticed that by using the proposed grayscale approxima-

tion a slightly similar accurate reconstruction can be achieved, where the additional

camera can be replaced by a grayscale version from measurements. Considering

this, it is possible to disregard the additional camera and compute the grayscale from

measurements to obtain the initial dictionary for the offline-learning model, bearing

in mind that a slightly lower recovery performance is obtained when the grayscale

approximation is used. In addition, Table 4 provides the computation time from the

different approaches when D = 10 on the TSP-TenDL method. In these results, the

TSP-TenDL exhibits a lower computation time in comparison with the fixed-basis-

based approaches, where speedups of up to 1.6× with respect to the WWDD-Vec

and 6.6× with respect to the WWDD-TenD are achieved. On the other hand, even

though the 3SDL-Vec method takes less time for the video 3 recovery, the recon-

struction accuracy is lower than the proposed method.

Table 3. Mean of PSNR, SSIM and RMSE (on the spectral axis) of the
Reconstructed Videos using the Different Approaches. The standard deviation is
shown into the brackets.

PSNR (dB) - SSIM
Video 1 Video 2 Video 3

Method PSNR SSIM PSNR SSIM PSNR SSIM
WWDD-Vec 31.26 (0.70) 0.933 (0.004) 30.31 (0.49) 0.923 (0.006) 30.70 (2.8) 0.851 (0.017)
WWDD-TenD 30.31 (0.66) 0.931 (0.005) 30.56 (0.40) 0.930 (0.005) 32.08 (2.6) 0.843 (0.010)
3SDL-Vec 29.84 (0.73) 0.915 (0.008) 27.47 (0.30) 0.854 (0.007) 30.59 (2.5) 0.832 (0.022)
3SDLg-Vec 29.30 (0.73) 0.907 (0.009) 26.64 (0.30) 0.835 (0.008) 30.35 (2.5) 0.823 (0.023)
TenDL 35.61 (0.66) 0.978 (0.003) 33.97 (0.16) 0.962 (0.002) 34.62 (1.97) 0.907 (0.021)
TSP-TenDL 37.17 (0.67) 0.980 (0.004) 33.44 (0.23) 0.960 (0.00) 34.77 (1.8) 0.915 (0.021)

RMSE
Method Video 1 Video 2 Video 3
WWDD-Vec 0.0206 (0.0026) 0.0299 (0.0019) 0.0221 (0.0036)
WWDD-TenD 0.0228 (0.0028) 0.0241 (0.0016) 0.0196 (0.0024)
3SDL-Vec 0.0252 (0.0038) 0.0371 (0.0019) 0.0229 (0.0034)
3SDLg-Vec 0.0269 (0.0040) 0.0411 (0.0020) 0.0236 (0.0035)
TenDL 0.0136 (0.0014) 0.0175 (0.0006) 0.0137 (0.0022)
TSP-TenDL 0.0110 (0.0012) 0.0176 (0.0007) 0.0130 (0.0023)
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Table 4. Computation time from the different approaches

Time (seconds)

WWDD-Vec WWDD-TenD 3SDL-Vec 3SDLg-Vec TenDL TSP-TenDL
Video 1 100.1 405 111.3 101.6 326.8 61.7
Video 2 1275.2 5955 959.4 1288.8 6137.5 954.1
Video 3 828.8 3411.6 350.5 373.1 3393.8 519.4

3.5.2. Convergence of the Proposed Algorithm To show the convergence of

the proposed recovery algorithm, each iteration of the objective function in Eq. (22)

is evaluated using the test videos. In addition, the PSNR from the estimated signal

is computed on each iteration. Figure 11 shows the convergence of the algorithm

for 300 iterations. Note that the curves converge to a minimum point after some

iterations, and PSNR values become constant after the iteration number 200.

3.5.3. Impact of the number of TSPs in the Reconstruction Results Video

3 was reconstructed from the TSP-TenDL approach by selecting different number

of TSPs. Particularly, video 3 was selected for this analysis since both its spectral

and temporal resolution are higher than the other videos, attributes that show the

usefulness of the proposed approach. Figure 12 illustrates the performance of the

reconstruction results when the number of the desired TSPs goes from 5 up to 220,

where the zero-position in the plot is referred to the reconstruction from the TenDL

method.

It can be noticed in Figure 12(a) that increasing the number of TSP leads to an

improvement in the PSNR and SSIM values. However, increasing the number of

TSP can entail an increase in the complexity of the algorithm since the complexity

also depends on the number of TSPs. In spite of this, computation time is still much

lower than that of the TenDL method. Figure 12(b) shows the computation time of

reconstructions in seconds by using the proposed approaches when it is assumed

that the same number of cores in the CPU as the number of TSPs (−◦ line) are
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available, and when there are 28 cores in the CPU working in parallel (−▷ line).

Notice in the zoomed section on Figure 12(b) that the computing time is reduced

when the video is processed by patches instead of the full-data, where for the TenDL

method (zero-position on the plot) the time reaches around 3400 seconds (≈ 57 min)

to reconstruct the video 3, meanwhile the TSP-TenDL in parallel takes less than 520

seconds (≈ 9 min) to obtain the reconstruction result from just 10 TSPs. That is, a

speedup of 6.3× for the TSP-TenDL approach. As can be seen from the obtained

numerical results, the TSP-TenDL approach not only exhibits higher accuracy in the

reconstruction results but less computation time.

3.6. Conclusions

In this Chapter, a framework for online sparse transform learning and reconstruction

procedures that exploits the high-order structure and the compressed measurements

of spectral video tensors was introduced. The framework is based on the tensor de-

composition and the temporal superpixel processing to fully exploit the high signal

correlation. In particular, the video-rate spatial-spectral coded compressive spec-

tral imager (video 3D-CASSI) was considered for the study. Numerical experiments

over different spectral videos show that the proposed approach improves the spatial,

spectral and temporal accuracy of the reconstructions when compared to analytical

and offline-learned bases. In particular, gains of up to 7 dB of PSNR and 0.1 of SSIM

are obtained with respect to the state-of-the-art recovery methods and the tensor-

based recovery with the fixed basis. In addition, a speedup from 1.6× up to 6.6×

is achieved compared with state-of-the-art counterparts. It is important to highlight

that the obtained results were run on a CPU architecture, where the acceleration

and performance are limited in comparison with GPU or specialized architectures

for parallel programming. Thus, more sophisticated devices can be used to obtain

more accelerated reconstruction results offering a promising future for the study of
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real-time applications on compressive spectral videos.
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Figure 9. Spectral signature comparison for the different approaches in the point P1
on a static zone of the video 2 across the frames 10, 20 and 30, where the RMSE of
each profile is shown in the legend. The zoomed section shows that the TenDL and
TSP-TenDL methods provide a closer spectral response to the original than the
other methods.
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Figure 10. Spectral signature comparison for the different approaches in the point
P2 on a dynamic zone of the video 2 across the frames 10, 20 and 30, where the
RMSE of each profile is shown in the legend.
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Figure 11. Verification of the convergence of the proposed method for each video
from the objective function evaluation (plotted in logarithmic scale) and the
progressive PSNR reconstruction for 300 iterations.

Figure 12. Impact of the number of TSPs in the reconstruction process and
computing time using the video 3. Zero-position on the plot refers to the result from
the TenDL method. (a) PSNR (left axis) and SSIM (right axis) when the number of
TSP grows up to 220. (b) Computing time when the number of cores in CPU is the
same as the number of TSP (−◦ line) and when 28 cores are used working in
parallel (−▷ line).
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4. HIGHER-ORDER TENSOR SPARSE REPRESENTATION FOR VIDEO-CASSI

RECONSTRUCTION

In this Chapter, the methodology previously presented in Chapter 3 is extended and

adapted to the video-CASSI system in the full-data processing mode (i.e., without

TSP patches), considering that the spectral-spatial information is shifted and mixed

at the encoding step. The methodology is evaluated on measurements with different

levels of noise67

4.1. Video-rate CASSI Model

Let T be the four-dimensional (4D) time-varying colored coded aperture in discrete

form, F ∈ RI1×I2×I3×I4 the fourth-order tensor representation of the discrete spectral

video, where I1 × I2 represents the spatial size, I3 the spectral bands, and I4 the

number of video frames. Then, the video C-CASSI acquisition procedure of the i4-th

frame can be expressed as

(Y i4)i1,i2 =

I3−1∑
i3=0

(F i4
i3
)i1,i2−i3 ◦ (T i4

i3
)i1,i2−i3 + (W i4)i1,i2 (34)

for i4 = 0, ..., I4 − 1, i1 = 0, ..., I1 − 1, i2 = 0, ..., I2 − 1, where ◦ denotes the

Hadamard product, (Y i4)i1,i2 is the acquired projection at the (i1, i2) position at time

i4, W ∈ RI1×J2×I4 denotes the noise in the system, with J2 = I2+ I3− 1, and (T i4
i3
)i1,i2

and (F i4
i3
)i1,i2 are the elements in the (i1, i2, i3, i4) position of the arrays T and F ,

respectively.

67 Note that, since tensors of order three or higher are called higher-order tensors, higher-order ten-
sor sparse representation it is equivalently referred to the tensor sparsifying transform performed
on the high-dimensionality of the spectral videos.
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Alternatively, the spectral video F can be written in vector form as f ∈ Rn, with

n = I1I2I3I4. Thus, the video C-CASSI acquisition model can be expressed in matrix

form as the projection of f into the video-CASSI sensing matrix H ∈ Rm×n as y = Hf ,

where H accounts for the encoding and dispersion processes and y ∈ Rm represents

the compressed measurement vector, with m = J2I4 and m≪ n. Moreover, given the

fact that spectral videos can be highly sparse or compressible in some representation

basis, i.e., f = Dθ, the acquired projections can be rewritten as y = HΨθ, where

θ ∈ Rn is a K-sparse representation of the signal over the spatial, spectral and

temporal axes, with K ≪ n, and Ψ can be selected as a Wavelet or a Cosine basis 1.

In addition, the Ψ basis can be set as the Kronecker product between different basis,

e.g., for a spectral video the basis can be expressed as Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 ⊗Ψ4,

where Ψn is the transformation that sparsifies the n−th dimension of the data and

Ψ ∈ Rn×n. Finally, the set of the video C-CASSI outputs y = [yT
0 ,y

T
1 , . . . ,y

T
I4−1]

T can

be rewritten as

y = HDθ + ω = Aθ + ω, (35)

where the matrix A ∈ Rm×n represents the video-CASSI sensing matrix and ω is the

noise of the system.

Then, the compressed measurements vector is used to recover the signal, where

the inverse problem entails the reconstruction of the spatial, spectral and temporal

information of the underlying scene. The recovery problem can be written as

f̂ = ΨT
{
argmin

θ
||y −HΨθ||22 + ρ||θ||1

}
(36)

where ρ is a regularization constant.
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4.2. Signal Recovery based on Higher-Order Tensor Transform

Unlike the above-mentioned sparsifying transformation, the spectral video F can be

decomposed as a multilinear transformation of a dictionary basis {U(z)}4z=1 ∈ RRz×Rz ,

along each z-mode, and a core tensor G ∈ RI1×I2×I3×I4 as follows:

F = G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4), (37)

where the core tensor G corresponds to the coefficients of F on each dictionary

basis, with R1 ≤ I1, R2 ≤ I2, R3 ≤ I3, and R4 ≤ I4. Figure 13 illustrates the higher-

order decomposition of a spectral video, i.e., a four-dimensional tensor.

Figure 13. Illustration of the higher-order decomposition of a spectral video scene.

Considering the higher-order sparse representation of Eq. (37), the recovery prob-

lem can be reformulated as

min
U(z),G

∥∥y −H vec(G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4))
∥∥2

2

subject to ∥vec(G)∥1 ≤ K,

U(z)TU(z) = I(z), z = 1, ..., 4,

(38)

77



where G ∈ RI1×I2×I3×I4, U(z) is a dictionary for each dimension z = 1, ..., 4, vec(·) →

{RI1×I2×I3×I4 :→ RI1I2I3I4} is an operator that arranges a tensor into a column-wise

vector. Observe that due to the vec(·) operation over the tensor representation of the

signal, the acquisition model of Eq. (35) is still used in the recovery problem. Notice

that Eq. (38) can be also written as

argmin
U(z),x,G

∥y −Hx∥22

subject to x = vec(G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4)),

∥vec(G)∥1 ≤ K,

U(z)TU(z) = I(z), z = 1, ..., 4,

(39)

where x is an auxiliary variable. An alternating direction method can be used to solve

Eq. (39) 68. The augmented Lagrangian function of problem in Eq. (39) is

Lρ

(
G,x,U(z),B

)
= ∥y −Hx∥22 + λ||vec(G)||1

+
λ

2
∥x− vec(G ×1 U

(1) ×2 U
(2) ×3 U

(3) ×4 U
(4)) + vec(B)∥22

+
4∑

z=1

IU
(
U(z)

)
, z = 1, ..., 4,

(40)

where λ > 0, B is the Lagrange multiplier, and the indicator function IU
(
U(z)

)
is given

by IU
(
U(z)

)
=

{
U(z) ∈ U → 1

}
, where U = {U ∈ RJz×Jz : U(z)TU(z) = I(z)}. The

problem in Eq. (40) can split into three main subproblems related to the variables

G,x, and U(z), where each subproblem is iteratively updated while the others are

68 Stephen Boyd et al. “Distributed optimization and statistical learning via the alternating direction
method of multipliers”. In: Foundations and Trends® in Machine learning 3.1 (2011), pp. 1–122.
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fixed. Specifically, the x subproblem is formulated as

xp+1 = argmin
x

∥y −Hxp∥22 +
λ

2
∥x− vec(X p) + vec(Gp)∥22, (41)

where X p = Gp ×1 U
(1)
p ×2 U

(2)
p ×3 U

(3)
p ×4 U

(4)
p , and the solution can be found using

a conjugate gradient. On the other hand, the G subproblem is given by

Gp+1 = argmin
G

τ ∥vec(Gp)∥1 +
λ

2
∥xp+1 − vec(X p) + vec(Bp)∥22, (42)

where τ is a regularization parameter. The solution for the G subproblem can be ob-

tained from the well-known soft-thresholding operation. Then, the U(z) subproblem

is written as

U
(z)
p+1 = argmin

U(z)

IU
(
U(z)

)
+

λ

2
∥xp+1 − vec(Gp+1 ×1 U

(1)
p ×2 U

(2)
p ×3 U

(3)
p ×4 U

(4)
p ) + vec(Bp)∥22,

(43)

for z = 1, ..., 4, whose solution can be found by using the Higher-Order Orthogonal

Iteration algorithm reported in 69 [Section 4.2, Algorithm 4.2, step 2], where, for each

z-th dimension, the U(z) matrix is refined while the other matrices are kept constant.

Finally, the Lagrange multiplier is updated as

Bp+1 = Bp − Gp+1 ×1 U
(1)
p+1 ×2 U

(2)
p+1 ×3 U

(3)
p+1 ×4 U

(4)
p+1 + vec−1(xp+1), (44)

where B0 is zero-initialized. Algorithm 3 summarizes the steps of the alternating di-

rection scheme, where the stopping criterion can be the number of iterations. Finally,

the recovered spectral video is obtained as F̂ = Ĝ ×1 Û
(1) ×2 Û

(2) ×3 Û
(3) ×4 Û

(4).

69 Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors”. In: SIAM journal on Matrix Analysis and
Applications 21.4 (2000), pp. 1324–1342.
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Algorithm 3: Higher-order Representation-based Recovery Algorithm
Input : y, H, λ > 0, τ > 0

22 B0 = 0, x0 = 0, p = 0, U(n)
0 : set an initial 1D transform for each dimension n (e.g.

a Cosine)
3 while Some stopping criterion is not satisfied do
55 Update xp+1 by solving Eq. (41)
77 Update Gp+1 by solving Eq. (42)
8 for n = 1, ..., 4 do

1010 Update U
(n)
p+1 by solving Eq. (42)

1212 Update the multiplier Bp+1 by Eq. (44)
1414 p = p+ 1

Output: Ĝ, Û(n)

4.3. Simulations and Results

In order to evaluate the proposed algorithm for compressive spectral video recovery,

three multi-spectral videos were sensed using the model in Eq. (35). The first dataset

is a cropped section of the scene taken from 30 called ‘Boxes’. The second is a

synthetic video of a moving window over a static spectral scene taken from 70 called

‘Windows’, and the third dataset is a real scene of a surveillance camera taken from
7 called ‘Cars’. The ‘Boxes’ and ‘Windows’ datasets exhibit a resolution of 128(I1)×

128(I2) spatial pixels, I3 = 8 spectral bands, and I4 = 8 frames, and the ‘Cars’ dataset

exhibits 128(I1) × 128(I2) pixels of spatial resolution, I3 = 7 spectral bands, and

I4 = 8 frames. For the different experiments, realizations of temporal colored coded

apertures with a transmittance of 0.25 were employed 1, where the transmittance

is defined as the portion of light intensity passing through the aperture code with

70 Fumihito Yasuma et al. CAVE Projects: Multispectral Image Database. 2008. URL: http://www.
cs.columbia.edu/CAVE/databases/multispectral/.
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respect to the overall intensity 71. The peak signal-to-noise ratio (PSNR) and the

structural similarity index (SSIM) metrics were used to quantify the reconstruction

quality.

The set of compressed videos were recovered with the proposed method based on

sparse tensor representation and the traditional recovery method using the GPSR

algorithm 62, so-called ‘Proposed’ and ‘Traditional’, respectively. The representa-

tion basis for the traditional reconstruction problem is selected as follows. Denoting

ΨDWT and ΨDCT as a 1D-Discrete Wavelet Transform (DWT) and a 1D-Discrete Co-

sine Transform (DCT), respectively, then, the sparse representation is the Kronecker

product given by Ψ = ΨDWT ⊗ΨDWT ⊗ΨDCT ⊗ΨDCT
271. For Algorithm 1, the dictio-

naries were initialized using a 1D DCT for each dimension. And, even though there

are no convergence guarantees to find a global minimum given the non-convexity of

the problem, in practice, the algorithm reaches PSNR values higher than its coun-

terparts after 100 iterations. The regularization parameters (λ, τ, ρ) were tuned via

cross-validation.

Figure 14 shows an RGB representation of the original frames 1, 4 and 7 and the

reconstructions obtained from the traditional and the proposed recovery methods,

where the quality of reconstruction of the frame in terms of the average PSNR over

the spectral frames is also shown. Notice that the reconstructions obtained from the

proposed recovery outperform the traditional from 1dB up to 5dB.

To evaluate the performance of the proposed basis with respect to the additive noise

produced in the acquisition process, the set of measurements from spectral videos

were simulated by adding levels of Gaussian noise of 15, 20, 25, 30, and 50 decibels.

Table 5 summarizes the obtained results in terms of average PSNR and SSIM. Ob-

serve that the lowest PSNR values are obtained using the real dataset ‘Cars’, never-

71 Laura Galvis et al. “Coded aperture design in compressive spectral imaging based on side infor-
mation”. In: Applied optics 56.22 (2017), pp. 6332–6340.
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Figure 14. RGB representation of the original frames 1, 4 and 7 (1rst column) of the
test videos and the recovery results from the traditional method (2nd column) and
the proposed recovery (3rd column). The PSNR of each frame is also shown.

theless, the performance of the proposed approach exceeds the traditional recovery.

In general, the reconstruction results obtained from the proposed approach exhibit

higher PSNR and SSIM values than those obtained with the traditional method.

Figures 15, 16, and 17 illustrate the comparison of spectral bands from the recon-

struction with 25 dB of noise on the measurements. Observe that in general the

proposed method entails better reconstructions in comparison with the traditional

method.

82



Table 5. Average reconstruction PSNR and SSIM from different levels of noise and
the three spectral video datasets.

PSNR
SNR Noise Level [dB] 15 20 25 30 50

Boxes Traditional 21.52 25.56 28.17 28.92 28.94
Proposed 23.61 27.03 28.76 31.21 33.95

Windows Traditional 25.78 26.94 27.09 27.18 27.52
Proposed 26.84 28.65 30.09 31.49 32.13

Cars Traditional 20.05 23.05 23.67 24.26 24.40
Proposed 21.57 24.02 25.20 26.07 27.00

SSIM
SNR Noise Level [dB] 15 20 25 30 50

Boxes Traditional 0.563 0.805 0.870 0.905 0.908
Proposed 0.673 0.825 0.871 0.928 0.966

Windows Traditional 0.702 0.710 0.829 0.864 0.872
Proposed 0.737 0.824 0.863 0.905 0.932

Cars Traditional 0.644 0.838 0.868 0.893 0.897
Proposed 0.724 0.842 0.877 0.906 0.921

4.4. Conclusions

In this Chapter, a higher-order sparse representation-based recovery algorithm that

exploits the high-order structure spectral videos in the coded aperture snapshot

imaging architecture has been presented. The spectral video is modeled by using

a higher-order decomposition for taking advantage of the structure and for fully ex-

ploiting the inherent redundancy of the data. The recovery algorithm refines the rep-

resentation basis while the reconstruction proceeds. Numerical simulations demon-

strated that considering the higher-order representation of the high-dimensional sig-

nal in the recovery problem leads to an improvement in the reconstruction accuracy,

even in the presence of Gaussian noise in the measurements.
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Original ProposedTraditional Original ProposedTraditional

Frame 1 Frame 8

Figure 15. Spectral bands of the original and reconstructions from the frames 1 and
8 of the Boxes video 1 with 25dB of level of noise.
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Original ProposedTraditional Original ProposedTraditional

Frame 1 Frame 8

Figure 16. Spectral bands of the original and reconstructions from the frames 1 and
8 of the Windows video 1 with 25dB of level of noise.
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Original ProposedTraditional Original ProposedTraditional

Frame 1 Frame 8

Figure 17. Spectral bands of the original and reconstructions from the frames 1 and
8 of the Cars video 1 with 25dB of level of noise.
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5. END-TO-END SPATIO-TEMPORAL BINARY CODED APERTURE DESIGN

AND RECOVERY IN COMPRESSIVE SPECTRAL VIDEO SENSING

5.1. Introduction

Spectral video acquisition via compressive spectral imaging, named compressive

spectral video sensing (CSVS), has shown promising results and arisen as an alter-

native for dimensionality, processing, and sensor costs reduction 121321415. To this

end, snapshot compressive imaging (SCI) systems have been extended to acquire

spectral image frames from dynamic scenes by multiplexing the spatio-spectral in-

formation 1613117. Some SCI architectures employed for spectral video acquisition

include the coded-aperture snapshot spectral imager (CASSI) 27114 and the spatial-

spectral coded compressive spectral imager (3D-CASSI) 4. Although the temporal

information under the CSVS framework is not multiplexed or compressed, the tem-

poral correlations joined to the spatial and spectral redundancies are exploited in the

encoding and decoding steps to yield suitable sensing and reconstruction protocols

for the scene under observation 12174. The encoding step in the CSVS encompasses

the dispersion and codification of the input scene in the optical path before the light is

recorded at the sensor. Typically, the dispersion and codification are obtained using

optical elements such as a prism and a coded aperture (CA) or mask, respectively.

Then, a reconstruction algorithm is employed to estimate a version of the underlying

scene from the compressed frames 12161. Different works in the literature have pro-

posed strategies to improve the recovered image quality by either designing the CA

pattern 116 or by customizing the recovery algorithm 4218 independently of the data

under observation. The CA can be composed of binary pixels 2716, which entails the

block or unblock encoding of the scene, or colored pixels, which indeed are optical

filters that modulate the scene with a specific wavelength for a richness encoding of
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the spectral information 3744. Random distributions of the CA elements are typically

used for compressive image acquisition. Nonetheless, several works have proposed

to design these patterns for better sensing and to exploit the scene under observa-

tion, providing better image quality reconstructions. The interest of the CA design

problem has become a research study area in the last decade. In particular, state-

of-the-art in CA design for the acquisition of spectro-temporal scenes includes both

binary CAs, such as the blue noise (BN) patterns 16; and colored CAs, such as the

temporal colored coded aperture (TCCA) 721. And, although the colored CAs provide

a richer sensing than binary CAs, the binary CAs are much easier to implement on

real experiments 15.

Recently, data-driven deep learning (DL) approaches have shown outstanding per-

formances in terms of image quality when the CA and the recovery algorithm are

jointly designed by exploiting tons of current available data in video compressing

sensing 19732021. However, these approaches disregard the spectral information

of the dynamic scene, and the multiplexing is lead across the temporal dimension

aimed at compressing a sequence of video frames into a single 2D measurement.

Other works such as 15 have exploited self-attention mechanisms in DL on SCI at

video rates for spectral images and video reconstruction, however, the CA is fixed,

i.e. it is not learned from the training data. Finally, authors in 74 have demonstrated

the potential of designing the CA and the recovery problem by considering either

physical constraints in the SCI system like the binarization of the mask or the opti-

72 Kareth León-López, Laura Galvis, and Henry Arguello Fuentes. “Spatio-spectro-temporal coded
aperture design for multiresolution compressive spectral video sensing”. In: 2017 25th European
Signal Processing Conference (EUSIPCO). IEEE. 2017, pp. 728–732.

73 Jiawei Ma et al. “Deep tensor admm-net for snapshot compressive imaging”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2019, pp. 10223–10232.

74 Jorge Bacca, Tatiana Gelvez, and Henry Arguello. “Deep Coded Aperture Design: An End-to-End
Approach for Computational Imaging Tasks”. In: arXiv preprint arXiv:2105.03390 (2021).
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Figure 18. Proposed E2E architecture composed of the optical (CSVS) layer, which
is a layer that emulates the video acquisition while learns the coded aperture
pattern; and the recovery block (so-called STNET), which learns the weights for
recovering the videos. A set of I4 frames of a spectral video go through the optical
layer. Then, the recovery block takes as input the I4 video measurements and
outputs the recovered version of the video and the resulting CA from the training.
Spectral, temporal, and spatial convolutional layers are applied for recovering the
video, where the Permute operation swaps the spectral and the temporal
dimensions to operate the convolutions across the time axis.

mal number of multiple snapshots, where the methodology is presented for different

applications and signals such as hyperspectral and depth images but not for spectral

dynamic scenes, where the signal is changing across time.

This Chapter presents an end-to-end (E2E) deep learning approach to jointly design

a set of binary CAs and the reconstruction method for sensing and recovery spec-

tral videos from CASSI compressed measurements. The proposed E2E network is

composed of the optical (CSVS) layer, which encodes the inputs while learns the

binary CA from the training data; and the recovery block (so-called STNET since it is

based on spatio-spectro-temporal convolutions), which applies convolutions across

the different dimensions of the spectral video to minimize the error between the mea-

surements and the projection of the network output into the system. The weights of

the optical layer are particularly restricted in the loss function to be binary for ob-

taining a set of designed binary CAs, which are easier to implement in the CASSI

system. The loss function of the proposed E2E network then attempts to learn the
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weights for obtaining the best CA pattern meanwhile learns the weights for recov-

ering the best version of the training dataset from the measurements. Figure 18

illustrates the proposed E2E architecture for the spectral video CA design and re-

construction. Observe that the input to the recovery block is a transposed version of

the measurements. Then, the underlying signal goes through three sub-networks:

the spectral, the temporal, and the spatial modules, for exploiting the different di-

mensions of the signal. The proposed E2E approach gains of up to 1dB compared

with a state-of-the-art E2E architecture and 5dB compared with a traditional recov-

ery method using BN patterns. It is important to highlight that the resulting binary

CAs are designed to acquire a single snapshot per frame for doing a more realistic

scenario that can be implemented using optical devices. Additionally, note that the

CSVS architecture employed for showing the profit of the E2E methodology is the

CASSI system, nonetheless, the approach can be extended to other compressive

spectral-based architectures such as the 3D-CASSI by adjusting the optical layer

sensing.

The main contribution of the method of this Chapter relies on the E2E approach for

CA designing and recovering spectral videos from compressive snapshot imaging

systems using a single snapshot per frame by exploiting the spectral, spatial, and

temporal correlations of the scenes.

5.2. Video CASSI System Modeling

Let F ∈ RI1×I2×I3×I4 be a discretized spectral video scene represented as a fourth-

order tensor, where I1 × I2 denotes the spatial size, I3 the spectral bands, and I4 the

number of video frames. Then, in general form, the acquisition procedure in a CSVS

architecture can be expressed as

Y = HT (F) +W , (45)
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where HT (F) : RI1×I2×I3×I4 → RI1×J2×1×I4 represents the CSVS operator whose

operation depends on both the CA T and the optical configuration of the system,

and J2 denotes the number of rows of the resulting measurements.

For the video CASSI system, the measurements Y ∈ RI1×J2×I4 in the i4-th frame can

be modeled as

Yi1,i2,i4 =

I3∑
i3=1

Fi1,(i2−i3),i3,i4 ⊙ Ti1,(i2−i3),i4 +Wi1,i2,i4 , (46)

for i4 = 1, ..., I4, where ⊙ denotes the element-wise multiplication, W ∈ RI1×J2×I4

denotes the noise in the system with J2 = (I2 + I3− 1), and T ∈ RI1×I2×I4 represents

the tensor form of the binary CA. In general, the entries of the T can be generated

either by following a specific design, as in 16, or by following random structures such

as Bernoulli or Gaussian random distributions 2715.

The sensing process of the system can be compactly formulated in matrix form as

y =HT f +w, (47)

where y and f are the column-vectorized versions of Y and F , and HT ∈ Rm×I1I2I3I4

is the CSVS sensing matrix that models the CA and shifting effects of the system,

and m is set as m = I1(I2 + I3 − 1)I4 for the video CASSI system given the shifting

produced by the dispersion element.

5.3. End-to-End (E2E) Learning Approach

5.3.1. Loss Function and Regularization Let Nθ{·} denotes the spatial-spectral-

temporal (STNET) convolutional neural network (CNN) to be trained with weights θ.

From a set of L training spectral videos, the cost function of the E2E approach is
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given by

(F∗, T ∗) ∈ argmin
T ,θ

1

L

L∑
ℓ=1

∥∥Yℓ −Nθ

{
HT (F ℓ)

}∥∥2

2
+ τR(T ), (48)

where τ is a regularization constant, and R(T ) is a regularization function to induce

the weights of T being designed following specific properties such as binary entries,

or efficient number of snapshots 7574. Typically, in compressive video systems, the

acquisition of multiple snapshots of a given frame is not contemplated, due to the

scene is rapidly changing across time. On the other hand, the binarization constraint

provides a suitable CA that can be implemented in real acquisition systems using

digital micromirror devices (DMD) 37. Mathematically, the binarization constraint is

written as

R(T ) =
∑

i1i2i3i4

(
T 2 ⊙ (1− T )2

)
i1i2i3i4

, (49)

where ⊙ denotes the element-wise product 74. Then, Eq. (49) is minimized into the

cost function (48) when the elements in T are either (0) or (1). In this way, the binary

CA and recovery network weights are jointly trained in the E2E network.

5.3.2. Network Architecture As shown in Figure 18, the proposed E2E network

is mainly composed of the optical layer and the recovery block. The optical layer

initially generates a CA at random with I1 × I2 spatial resolution and I4 temporal

frames. Then, the operation in Eq. (46) is performed for each video of the training

set. After obtaining the measurements Y, an operator of the form H⊤
T (Y) is applied,

where the operator can be conducted by a repeat copy operation of Y I3 times,

considering the shifting of the CASSI, and an element-wise multiplication with T .

75 Catherine F Higham et al. “Deep learning for real-time single-pixel video”. In: Scientific reports
8.1 (2018), pp. 1–9.
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These two operations are performed efficiently in tensor form to avoid extra steps in

the vectorization and to reduce the storage of huge matrices. Finally, the weights of

the CA are binarized using Eq. 49 during the training process.

On the other hand, the recovery block is composed of three sub-networks: the spec-

tral, temporal, and spatial networks, where the spectral and temporal networks work

independently and the spatial network employs as backbone the well-known Unet ar-

chitecture 7674. In particular, the spectral network is composed of a 3D convolutional

layer followed by its corresponding transpose operator and then a 2D convolution

operation performed across time. The temporal network starts the process by swap-

ping the spectral and temporal dimensions of the input, then, two 3D convolutions

and their transposes are applied, followed by a 2D convolution. The outputs of the

spectral and temporal networks are summed to the input of the recovery layers. The

resulting summed tensor passes through a set of 2D convolution layers that input to

the spatial network. For the spatial network based on the Unet, the 2D convolutions

operations are estimated across the spectral video frames using a time distributed

wrapper, where the spectral dimension correspond to the dimensionality of the out-

put space of the convolution. It is important to mention that all layers in the proposed

architecture use ReLU as their activation function.

5.4. Simulations and Results

5.4.1. Spectral Video Datasets The numerical experiments were conducted

on a multispectral video dataset provided by a hyperspectral object tracking chal-

lenge775. A total of 39 videos, 29 for training and 10 for testing, were chosen from

76 O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image
Segmentation”. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI).
vol. 9351. LNCS. Springer, 2015, pp. 234–241.

77 Dataset link: https://www.hsitracking.com/contest/
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the dataset. To prepare the dataset for the training, a preprocessing and augmen-

tation procedures are applied to each spectral video sequence. Figure 19 illustrates

the flowchart of the procedures to get (a) a cleaned and (b) augmented subset of

training and validation data. In the procedure, the input spectral video with D spec-

tral frames is temporally segmented according to the a given time window length I4,

resulting in ⌊D/I4⌋ subsequences. Then, each subsequence is visually inspected

across the spectral bands to detect bands with errors. If it is found a band with an

errors such as missed information, the subsequence is discarded. If there are not

errors, the subsequence is spatially resized to a given size and the normalized with

a min-max normalization. After this preprocessing, each subsequence is randomly

stored either in the training or validation data folder. For augmentation, operations

such as random rotation, random scale, and vertical and horizontal displacements

are applied three times per sequence segment, obtaining, in this way, 3 augmented

variations of each subsequence per subset. Regarding the testing dataset, this set

is preprocessed using the procedure illustrated in Fig. 19 (a), omitting the augmen-

tation procedure, and only the first subsequence of each video is selected for the

testing database. For analysis purposes, two testing datasets are used, the Test-

ing Dataset 1 are videos that are not related to the training neither to the validation

data; these videos are used to evaluate the generalization of the network to natural

scenes. And the Testing Dataset 2 are 10 subsequences videos extracted from the

validation set (but not used in the validation) used to show the performance of the

network on videos with similar information of the background but different information

on the foreground, since the scene has changed.

After preprocessing and data augmentation, the total number of spectral videos for

the training stage was 526 with a spatial resolution of 128 × 128 spatial pixels, 16

spectral bands in the wavelength from 470nm to 620nm with a step of 10nm, and
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Figure 19. Illustration of the dataset (a) preprocessing and (b) augmentation
procedures of one spectral video sequence with an initial temporal resolution D. In
the Visual Spectral Bands Inspection step, if the sequence segment has errors
across the spectral bands, the sequence is discarded.

I4 = 8 frames per second (FPS)78. And the resulting number of spectral videos for

validation was 146. All the spectral videos of this dataset are videos with associated

challenging factors, including illumination variations, occlusions, deformations, mo-

tion blur, low resolution, among others 78. These factors allow the network to learn

more realistic features from the real world than when using a synthetic controlled

dataset. The set of spectral videos used for the testing part are shown in Figures 20

and 21, where each row shows a given second of the video and each column shows

the different scenes in an RGB false colour representation.

78 Note that the original videos in (Fengchao Xiong, Jun Zhou, and Yuntao Qian. “Material based
object tracking in hyperspectral videos”. In: IEEE Transactions on Image Processing 29 [2020],
pp. 3719–3733) have 25 FPS, however, for evaluation purposes in this work, the videos were
cropped to 8 frames, leading to 8 FPS.
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On the other hand, five real sequences of spectral images acquired in the Optics Lab

of the High Dimensional Signal Processing (HDSP) research group at Universidad

Industrial de Santander were used to assess the designed CAs. All the sequences

were acquired with a CCD camera, and the wavelengths were selected in the range

of 470nm to 620nm with a step of 10nm, to keep the uniformity with the previously de-

scribed multispectral video dataset. The real sequences, named as Campesina, Toy

Car, Hat, Lego, and Chiva, contain different kinds of controlled movements such as

vertical/horizontal displacement of an object and circular motion in the background.

For the vertical and circular movements of the objects, two Thorlabs devices were

used: a single-axis translation stage with standard micrometer device, and a high-

precision rotation mount for 25.4 mm device, respectively. For more details of the

dataset refers to the Annex 3. The videos were resized to 128× 128× 16× 8. Figure

22 shows 3 frames of three sequences (named Campesina, toy car, and hat) in (a)

an RGB representation and (b) the given wavelength for each last frame in (a).

Figure 20. Testing Dataset 1. RGB false colour representation of the 10 spectral
videos used for testing. Each row shows the image frame in the seconds 0, 0.37,
and 1 (or the frames 1, 5, and 8) of each video.

5.4.2. Compared Methods and Performance Metrics For comparison purposes,

the alternating direction method of multipliers algorithm (ADMM) for minimizing the
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Figure 21. Testing Dataset 2. RGB false colour representation of the 10 spectral
videos used for testing. Each row shows the image frame in the seconds 0, 0.37,
and 1 (or the frames 1, 5, and 8) of each video.

Figure 22. Illustration of three real sequences (i.e., Campesina, toy car, and hat)
acquired in the Optics Lab of the HDSP research group. (a) RGB representation of
three frames. (b) Subset of spectral bands from the last frame in (a).
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ℓ2 − ℓ1 problem is employed with a 4D fixed sparse basis composed of the Kro-

necker product between a 2D Wavelet, a 1D discrete Cosine, and a 1D Wavelet

basis 14. The ADMM algorithm was run with a realization of random CA (denoted

as ADMM+Rand CA) and the blue noise (BN) patterns (denoted as ADMM+BN CA)
16. The window size parameter for the BN realization was set as 3 × 3 and K = 2

snapshots to assure a similar transmittance per frame respect to the other coded

apertures of the comparison. Further, the BN CA is repeated and concatenated 4

times to cover the temporal window of 8 frames of the spectral video. Additionally,

the learned CAs from the proposed E2E approach, named ST-CA, were used for

running the ADMM to evaluate the different codification in the recovery algorithm

(denoted as ADMM+ST-CA). The ADMM algorithm works with 1000 iterations and

the parameters are set such that the best performance is obtained for each video

and each CA. Finally, the proposed approach STNET is compared in simulations

against the spatial Unet sub-network (Proposed E2E Unet) 76, where the CA and re-

covery are jointly trained as in the proposed approachbut the spectro-temporal CNN

are removed. All the experiments were performed on noise-free measurements. The

proposed STNET and the Unet were implemented on Tensorflow by using the Adam

optimizer. The weights were initialized using a Gaussian distribution with standard

deviation 0.05 and the batch-size was set as 24. The number of epochs is set to

1000 and the learning rate is varied between 10−3 and 10−4. The reconstruction per-

formance is evaluated in terms of peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) index.

5.4.3. Evaluation on a Testing Dataset 1 Figure 23 shows the performance of

the different methods and CAs compared to the proposed approaches. Note that the

STNET network outperforms the iterative ADMM in around 5dB and the E2E Unet

network in up to 1dB in terms of PSNR. Figure 24 illustrates the performance of

the ADMM recovery by using the Rand-CA, BN-CA, and the ST-CAs, where can be
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observed that the sensing based on the resulting ST-CAs provides a better sensing

and thus a better reconstruction of the spectral videos.

Figure 23. Comparison results in terms of PSNR and SSIM by using different
methods and CAs on 10 spectral videos.

In Figure 27 is illustrated an RGB profile of the fifth frame of each testing video

(columns) and its corresponding reconstruction from the different methods (rows).

As can be seen, the proposed approach overall outperforms the compared methods.

Furthermore, observe that the spatial artifacts in the reconstruction are reduced by

using the proposed approach.

5.4.4. Evaluation on a Testing Dataset 2 Table 6 shows the performance of the

different methods and CAs compared to the proposed approaches. Note that the

STNET network outperforms the iterative ADMM in around 5dB and the E2E Unet

network in up to 1dB in terms of PSNR.

To illustrate the spectral accuracy of the proposed network, a spatial point along

the spectral bands, aka spectral signature, is pictured in Figure 29 from three con-
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Figure 24. ADMM recovery performance using the different coded apertures in
terms of PSNR on the 10 testing spectral videos.

secutive frames of Video 1. Notice that the spectral signature resulting from the

proposed method obtains higher SSIM values respect to the other methods at each

point frame, demonstrating a better recovery of the data in the spectral axis.
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Figure 25. RGB profile of the original frame 5 (1st row) and the reconstructed frame
of each testing video by using the different methods. The PSNR and SSIM values
are shown for each given spectral frame.
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Figure 26. Continuation-Fig. 25.

102



Figure 27. RGB profile of the original frame 5 (1st row) and the reconstructed frame
of each testing video by using the different methods. The PSNR and SSIM values
are shown for each given spectral frame.
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Figure 28. Continuation - Fig. 27.
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Table 6. Comparison results in terms of PSNR and SSIM by using different methods
and CAs on the Testing Dataset 2, spectral videos correlated to the Training
Dataset.

Method ADMM&BN ADMM&ST-CA Proposed E2E-Unet Proposed STNET

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Video 1 23,80 0,749 26,16 0,818 29,41 0,906 30,04 0,917
Video 2 28,90 0,897 30,72 0,915 33,56 0,959 34,17 0,964
Video 3 27,12 0,834 28,94 0,869 30,87 0,911 31,29 0,919
Video 4 21,77 0,610 23,08 0,689 27,12 0,888 27,14 0,894
Video 5 26,49 0,879 27,54 0,877 30,73 0,943 30,86 0,947
Video 6 27,01 0,881 29,21 0,902 32,14 0,958 32,45 0,963
Video 7 25,09 0,844 27,09 0,871 31,49 0,954 31,93 0,958
Video 8 24,48 0,810 25,88 0,824 26,26 0,887 26,28 0,890
Video 9 30,08 0,881 31,64 0,887 36,90 0,969 37,14 0,971
Video 10 27,75 0,834 29,95 0,865 33,13 0,918 33,48 0,923

5.4.5. Evaluation on the Real Sequences Furthermore, for evaluating the CA

design against the state-of-the-art BN, the dataset of Figure 22 was reconstructed

using the ADMM algorithm with both the BN and the ST-CA patterns. Table 7 shows

the obtained results from the ADMM using the different real sequences in terms of

PSNR and SSIM. Observe that the designed ST-CA from spectral videos obtained

better performances than the BN patterns, with gains of up to 4dB.

Table 7. CA evaluation of the blue noise CA and the ST-CA designs using the
ADMM recovery procedure on a set of real sequences.

ADMM + CA Campesina Toy Car Hat Lego Chiva
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BN-CA 25,76 0,700 26,65 0,760 23,78 0,548 23,87 0,716 25,02 0,671
ST-CA 27,52 0,779 30,66 0,849 25,67 0,655 25,98 0,797 27,48 0,774

5.5. Conclusions

Inspired by existing works in DL for compressive image recovering, this Chapter in-

troduces an E2E framework in compressive spectral video sensing to jointly learn
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the CA pattern and the recovery method from the data. The proposed architecture

relies on two main layers, the CSVS layer and the recovery layer, to train the weights

for obtaining the best CA and reconstructed video. Numerical experiments using

multispectral videos show that the proposed architecture outperforms the ADMM al-

gorithm and the Unet network in up to 5dB and 1dB in terms of PSNR, respectively.

Additionally, the designed CA set from the proposed E2E network is compared in the

ADMM algorithm against the BN to reconstruct the set of real sequences, where a

gain of up to 4dB was achieved. It can be noticed that the resulting CA is designed

for a given time window period specified by the number of frames of the training

database. This implies that it is used one measurement per frame for recovering the

set of spectral data cubes, while temporal correlations are exploited in the recovery

process. In this way, considering that state-of-the-art CA designs on compressive

spectral imaging require multiple shots of the same scene to get high quality recon-

structions, the proposed approach minimize the required number of measurements

to obtain high quality results by doing a design based on the acquisition of a single

shot per spectral frame.

As future work, it would be interesting to conduct experiments on real hardware,

considering that the designed CAs are implementable on DMD devices. Moreover,

further investigation should be conducted to evaluate the interest of the proposed

approach for the joint CA design and reconstruction of spectral videos in others DL

architectures such as unrolling networks. Another interesting future work includes

the extension of the proposed E2E approach for designing colored CA (i.e., optical

filters based CA) in the context of compressive spectral video sensing.
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6. DISCUSSION AND CONCLUSION

In this thesis, we have presented a couple of approaches to jointly design the op-

tical system and the recovery procedure for compressive spectral video acquisition

and reconstruction. For the design, three key elements of the compressive spec-

tral video pipeline were identified: the sparse representation, the coded aperture,

and the recovery method. The results indicated that high quality reconstructions are

obtained considering even only two of the three key elements such as in the tensor-

based approach where is learned the sparse basis and the recovery. Nonetheless,

by simultaneously designing the CA and the recovery, the learned pattern and the in-

ference consider correlations across the different dimensions of the data. Indeed, the

presented approaches demonstrated that, by exploiting the correlations across the

multiple dimensions of spectral videos and into the higher-order array representation,

outstanding reconstructions can be obtained from the compressed measurements by

using only one shot per measurement.

The implementation of snapshot compressive imaging (SCI) systems to acquire

spectral video (or CSVS) using a single snapshot is a concept that would allow un-

precedented benefits in real and practical applications. While SCI-based research

has focused on designing protocols for multiple snapshots, these results demon-

strate that, into a time window, the sensing design across the temporal axis can be

exploited for better sensing the scene under observation. These CSVS architectures

are still a developing technology requiring high-dimensional encoding and recover-

ing. While we have started to explore their optimal design, there still exists several

issues to address, including the real implementation of these theoretically optimized

systems. Even so, the advances and approaches presented in this thesis showed

the potential of exploiting these kinds of signals for efficient acquisition and recovery,

where high-quality recovered videos and low-time processing can be achieved.
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Finally, the most important factor to advance technology beyond the limits of tradi-

tional approaches to spectral video acquisition is jointly designing the optical systems

and recovery algorithms, which has been pursued in computational photography for

several years. The approaches described in this thesis are key steps toward the

next-generation of computational video cameras. Nonetheless, further research is

needed to pave the way between the theoretical insights and the real system imple-

mentation.
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ANNEXES

Annex A. SPARSITY ANALYSIS

State-of-the-Art Sparse Transform Bases

The results of the sparsity analysis performed on 32 are reproduced in this Annex to

show the performance of sparse transforms on the spectral videos under study.

Based on the CS literature, a signal is said to be S-sparse if it has only S non-

zero coefficients. Otherwise, if a large number of coefficients are small enough to

be ignored, the signal is said to be compressible 3324. Given that spectral videos

are compressible in some sparse transforms, one way to evaluate the compression

capabilities of the sparse transforms is by considering only few coefficients on the

basis to represent the data. Specifically, this procedure consists on keeping a given

percentage of the largest absolute coefficients in the basis and using them in the

inverse basis to estimate an approximation of the original signal 27.

The videos shown in Figure 30 are used to evaluate the compression capabilities of

a set of bases from the state-of-the-art which are combinations of Wavelet (W) and

discrete Cosine transforms (D) transforms. For the comparison, the following com-

binations were used for the spatial, spectral, and temporal dimensions, respectively:

WWDD, WWWW, WWWD, WWDW. Figures 31 and 32 shows the PSNR and aver-

age SSIM performances for the different bases. It can be noticed that in Fig.31 even

though the WWDW obtains a comparable performance against the WWDD in terms

of PSNR for low percentage values, the WWDD sparsification leads better SSIM val-

ues. On the other hand, from the Windows video sparsification, it can be seen that

the best performance is obtained by using WWDD.
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Figure 30. RGB representation of the spectral videos used for the sparsity analysis
with 128× 128 spatial pixel, 8 frames and 8 spectral bands, so called Windows (top)
and Chiva (bottom) videos.

Complementary Comparison of the Proposed Tensor Transform

A sparsity analysis in terms of quality of reconstruction given the percentage of coef-

ficients is presented in Figure 33 by using the ‘Chiva’ spectral video (or Video 3 from

Chapter 3). For comparison purposes, the proposed tensor representation (pro-

posed in Chapter 3) is employed in a full-data way (TenDL), in TSP patches (TSP-

TenDL) and in regular patches (RegP-TenDL), i.e., the spatial dimension is divided

in a regular grid of nr sub tensors, for the example, it was used nr = 4. Additionally,

the regular patches are used for estimating the WWDD Kronecker transformation

(RegP-WWDD) and all the mentioned bases are compared against the Kronecker

from the full-data (WWDD). As can be noticed, the tensor-based transforms obtain

higher PSNR and SSIM even when the coefficients are only the 0.1% of the total

amount of data. Additionally, as presented in Chapter 3, the TSP-TenDL transform
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Figure 31. Evaluation of the compression capabilities of state-of-the-art bases for
the ‘Windows’ spectral video

outperforms the other sparse representation bases.
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Figure 32. Evaluation of the compression capabilities of state-of-the-art bases for
the ‘Chiva’ spectral video.

Figure 33. Evaluation of the compression capabilities for the different sparse
representations in terms of PSNR and SSIM respect to the percentage of
coefficients used for estimating the ‘Chiva’ spectral video.
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Annex B. COMPLEMENTARY RESULTS: CHAPTER 3

Additional results for showing the spectral information of the reconstructed videos

are presented as follows.
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Figure 34. Spectral bands of the frame 1 from the original and reconstructions of
the spectral video 1.
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Figure 35. Spectral bands of the frame 1 from the original and reconstructions of
the spectral video 2.
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Original WWDD-VecWWDD-TenD 3SDL-Vec 3SDLg-Vec TenDL TSP-TenDL

Figure 36. Spectral bands of the frame 1 from reconstructions of the spectral video
3 with L=24 - continuation
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Original WWDD-VecWWDD-TenD 3SDL-Vec 3SDLg-Vec TenDL TSP-TenDL

Figure 37. Spectral bands of the frame 1 from reconstructions of the spectral video
3 with L=24 - continuation
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Original WWDD-VecWWDD-TenD 3SDL-Vec 3SDLg-Vec TenDL TSP-TenDL

Figure 38. Spectral bands of the frame 1 from reconstructions of the spectral video
3 with L=24 - continuation
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Annex C. LABORATORY PROTOTYPE

Taking advantage of the Optics laboratory of the HDSP research group, a lab pro-

totype camera to acquire a spectral video dataset was mounted with the help of the

laboratory team by using the following optical elements79: (1) An objective lens, (2)

a monochromatic FPA detector, (3) a monochromatic light source 80. And, for the

vertical and circular movements of the objects, two Thorlabs devices were used: a

single-axis translation stage with standard micrometer device, and a high-precision

rotation mount for 25.4 mm device, respectively. Figure 39 shows the prototype built

on the optics laboratory of the HDSP research group.

Figure 39. Spectral video camera laboratory prototype

79 Hardware provided by the HDSP lab.

80 Hoover Rueda, Henry Arguello, and Gonzalo Arce. “DMD-based implementation of patterned
optical filter arrays for compressive spectral imaging”. In: JOSA A 32.1 (2015), pp. 80–89.
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The different databases acquired in the laboratory are shown in Figures 40, 41, 42

and 43, where some spectral bands of the video are pictured. Table 8 shows the

resolution of each database.

Table 8. Size of the acquired spectral videos

Size Spatial pixels Spectral Bands Number of frames
Video (type of motion) I1 I2 I3 I4

Vertical Movements (Fig. 40) 776 1032 31 46
Angular (Fig. 41) 776 1032 31 14
Vertical inclined (Fig. 42) 776 1032 31 41
Vertical (Lego) (Fig. 43) 776 1032 31 46
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Figure 40. Spectral video scene: Vertical movements
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Figure 41. Spectral video scene: Circular movements

140



Figure 42. Spectral video scene: Vertical and horizontal movements
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Figure 43. Spectral video scene: Vertical movements
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Annex D. ANOMALY DETECTION AND CLASSIFICATION IN MULTISPECTRAL

TIME SERIES BASED ON HIDDEN MARKOV MODELS

Introduction

Multispectral images have been widely used in many studies to explore the vegeta-

tion properties of plants through the extraction of vegetation indices 81828384. In the

last decade, researchers have proposed to use multi-temporal images for several

applications including change detection 85 and landcover classification 8687, where

the challenge is mainly to exploit the redundancy and correlation across the spatial,

spectral, and temporal dimensions of the images.

Hidden Markov models (HMM) are classical tools to analyze time series, allowing

temporal correlations to be extracted with the introduction of latent variables inter-

81 Fred Baret and Gerard Guyot. “Potentials and limits of vegetation indices for LAI and APAR
assessment”. In: Remote Sensing of Environment 35.2 (1991), pp. 161–173.

82 Amanda Veloso et al. “Understanding the temporal behavior of crops using Sentinel-1 and
Sentinel-2-like data for agricultural applications”. In: Remote Sensing of Environment 199 (2017),
pp. 415–426.

83 Albert J Peters et al. “Drought monitoring with NDVI-based standardized vegetation index”. In:
Photogrammetric Engineering and Remote sensing 68.1 (2002), pp. 71–75.

84 Linglin Zeng et al. “A review of vegetation phenological metrics extraction using time-series, mul-
tispectral satellite data”. In: Remote Sensing of Environment 237 (2020), p. 111511.

85 Jorge Prendes et al. “A Bayesian nonparametric model coupled with a Markov random field for
change detection in heterogeneous remote sensing images”. In: SIAM Journal on Imaging Sci-
ences 9.4 (2016), pp. 1889–1921.

86 Cristina Gómez, Joanne C White, and Michael A Wulder. “Optical remotely sensed time series
data for land cover classification:A review”. In: ISPRS Journal of Photogrammetry and Remote
Sensing 116 (2016), pp. 55–72.

87 Miguel A Garcı́a et al. “Using Hidden Markov Models for Land Surface Phenology: An Evaluation
Across a Range of Land Cover Types in Southeast Spain”. In: Remote Sensing 11.5 (2019),
p. 507.
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acting with the data 888990. Different works have shown that HMM are valuable tools

for modeling the dynamic behavior of crops across time, where the dynamics of veg-

etation is related to the phenology, chemical nutrients, climatic conditions, or water

stress of crops 9192. Some specific tasks for crop analysis based on HMM include

crop recognition 93, crop classification 8894, and time evolution featuring 92. In addi-

tion, an analysis of the normalized difference vegetation index (NDVI) using the HMM

framework is proposed in 91, where the NDVI changes are used to characterize the

dynamics of the vegetation during a temporal window.

An important task in crop monitoring is the detection of anomalies that can represent

risks for the harvest 8395. Detecting nutrient stresses or drought helps to better under-

88 Sofia Siachalou, Giorgos Mallinis, and Maria Tsakiri-Strati. “A Hidden Markov Models Approach
for Crop Classification: Linking Crop Phenology to Time Series of Multi-Sensor Remote Sensing
Data”. In: Remote Sensing Letters 7.4 (2015), pp. 3633–3650.

89 Lawrence R Rabiner. “A tutorial on hidden Markov models and selected applications in speech
recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.

90 Sofia Siachalou, Giorgos Mallinis, and Maria Tsakiri-Strati. “Analysis of Time-Series spectral
index data to enhance crop identification over a Mediterranean rural landscape”. In: IEEE Geo-
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stand the management of nutrients and, in turn, leads to reduce cultivation costs and

increases crop efficiency 968297. Thus, depending on the kind of detected anomalies,

the farmers can take action to reduce the adverse effects of the phenomenon that

produces the anomaly response.

Anomaly detection (AD) (which includes outlier and novelty detection) is a widely

studied problem that relies on the identification of patterns or events that differ from

the expected normal behavior of the majority of the data 98. The existing AD meth-

ods can be grouped into several categories based on classification/learning, nearest

neighbours, clustering, statistical, and deep learning techniques 9899 (see 1009899101

for comprehensive reviews). In particular, AD as a learning task can be supervised,

semi-supervised, or unsupervised 98102101, where the major challenge is the lack of

labeled training instances 101.

In practical applications, it is generally easier to get access to labeled instances for

221 (2019), pp. 508–521.

96 Clement Atzberger. “Advances in remote sensing of agriculture: Context description, existing
operational monitoring systems and major information needs”. In: Remote sensing 5.2 (2013),
pp. 949–981.

97 Héctor Vargas, Ariolfo Camacho, and Henry Arguello. “Spectral unmixing approach in hyperspec-
tral remote sensing: a tool for oil palm mapping”. In: TecnoLógicas 22.45 (2019), pp. 131–145.

98 Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey”. In: ACM
Computing Surveys (CSUR) 41.3 (2009), pp. 1–58.

99 Raghavendra Chalapathy and Sanjay Chawla. “Deep learning for anomaly detection: A survey”.
In: arXiv preprint arXiv:1901.03407 (2019).

100 Markos Markou and Sameer Singh. “Novelty detection: a review—part 1: statistical approaches”.
In: Signal Processing 83.12 (2003), pp. 2481–2497.

101 Miryam Elizabeth Villa-Pérez et al. “Semi-supervised anomaly detection algorithms: A compara-
tive summary and future research directions”. In: Knowledge-Based Systems (2021), p. 106878.

102 Marco AF Pimentel et al. “A review of novelty detection”. In: Signal Processing 99 (2014),
pp. 215–249.
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normal data than getting access to anomalies, which leads to novelty detection 101.

Novelty detection aims at learning a model of normality from a set of data consid-

ered as normal to detect unobserved events, or novelties, in a semi-supervised mode
100102. On the other hand, outlier detection is generally defined as the detection of

some data points, referred to as outliers, that seem to be inconsistent with the rest

of the training set 102. The main difference between novelties and outliers is that

the detected novelties do not always correspond to anomalies 99100. This distinction

is interesting in the context of crop monitoring at a parcel level since subtle devia-

tions in data can be the result of external factors such as cloud or forest shadows

and not due to anomalies damaging the crops 103104. Several AD algorithms have

been investigated in the literature. Some of the most relevant and well-established

techniques include the autoencoders (AE) 105, the local outlier factor 106 or its proba-

bilistic version the local outlier probability 107, the one-class support vector machine

103 Pierre Defourny et al. “Near real-time agriculture monitoring at national scale at parcel resolution:
Performance assessment of the Sen2-Agri automated system in various cropping systems around
the world”. In: Remote sensing of environment 221 (2019), pp. 551–568.

104 Florian Mouret et al. “Outlier Detection at the Parcel-Level in Wheat and Rapeseed Crops Us-
ing Multispectral and SAR Time Series”. In: Remote Sensing 13.5 (2021). DOI: 10.3390/

rs13050956.

105 Mark A Kramer. “Nonlinear principal component analysis using autoassociative neural networks”.
In: AIChE journal 37.2 (1991), pp. 233–243.

106 Markus M Breunig et al. “LOF: identifying density-based local outliers”. In: Proc. ACM SIGMOD
Int. Conf. on Management of Data. Dallas, TX, USA, 2000, pp. 93–104.

107 Hans-Peter Kriegel et al. “LoOP: local outlier probabilities”. In: Proc 18th ACM Conf. Inform.
Knowl. Manage. (CIKM ’09). Hong Kong, China, 2009, 1649–1652.
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(OC-SVM) 108, the isolation forest 109, and the k-nearest neighbour (kNN) 110.

Some recent works have proposed to solve the AD problem using HMM 111112. In

particular, an HMM-based kernel was included in the traditional OC-SVM method in
111. However, this kernel was defined assuming some specific kind of anomaly, e.g.,

resulting from mean-value jumps, which is a too strong assumption for crop monitor-

ing. An interesting framework for AD in multivariate time series was proposed in 112,

where a set of transformations was used to unify the time series and estimate ap-

propriate features. However, the resulting AD algorithm was trained in a supervised

mode, using normal and abnormal labels for the training samples, which are difficult

to obtain in most crop monitoring applications.

In satellite remote sensing images, AD has been conducted either directly on the

spectral image pixels 113 or on vegetation indices 11495115 computed from the com-

108 Bernhard Schölkopf et al. “Estimating the support of a high-dimensional distribution”. In: Neural
Computation 13.7 (2001), pp. 1443–1471.

109 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In: Proc. Int. Conf. on Data
Mining. Pisa, Italy, Dec. 2008, pp. 413–422. DOI: 10.1109/ICDM.2008.17.

110 Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient algorithms for mining outliers
from large data sets”. In: Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. 2000, pp. 427–438.

111 Nico Görnitz, Mikio Braun, and Marius Kloft. “Hidden Markov anomaly detection”. In: International
Conference on Machine Learning. Lille, France, Jan. 2015, pp. 1833–1842.

112 Jinbo Li, Witold Pedrycz, and Iqbal Jamal. “Multivariate time series anomaly detection: A frame-
work of Hidden Markov Models”. In: Applied Soft Computing 60 (2017), pp. 229–240.

113 Chein-I Chang and Shao-Shan Chiang. “Anomaly detection and classification for hyperspectral
imagery”. In: IEEE transactions on geoscience and remote sensing 40.6 (2002), pp. 1314–1325.

114 Erik R Venteris et al. “Detection of anomalous crop condition and soil variability mapping using a
26 year Landsat record and the Palmer crop moisture index”. In: International journal of applied
earth observation and geoinformation 39 (2015), pp. 160–170.

115 Felix Rembold et al. “ASAP: A new global early warning system to detect anomaly hot spots of
agricultural production for food security analysis”. In: Agricultural systems 168 (2019), pp. 247–
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bination of several spectral bands. Existing studies such as 95114 exploit historical

NDVI data to detect anomalies by comparing new observations against a full set of

past observations at the global level. However, analyzing historical data at a parcel

level is difficult in the proposed framework because of crop rotation and of missing

data (due to the presence of clouds that cover some parcels).

Finally, it is interesting to mention some other works such as 90104, which have

demonstrated that crops analyzed at a parcel level from multi-temporal vegetation

indices and vegetation phenology provide suitable knowledge of crops across time.

Nevertheless, these studies have not addressed the problem of classifying and iden-

tifying possible factors that are damaging the harvest.

This Chapter introduces a framework for AD and classification of remote sensing time

series at a parcel level based on HMM, allowing the detection, temporal localization

and classification of anomalies. The proposed method referred to as AD-HMM learns

the normal dynamic behavior of crops in a given season using several HMM whose

parameters are estimated from normal data (i.e., data without any anomaly). Abnor-

mal time series are then detected as those being unlikely to have been generated by

these HMM. One advantage of AD-HMM is that the learned HMM can be used for

specific time segments of the tested time series, allowing anomalies to be localized

during specific time intervals. In a second step, the proposed AD algorithm is com-

plemented by standard classifiers such as SVMs in order to determine the type of

detected anomalies.

Up to our knowledge, this is the first approach providing an AD and classification

framework to analyze remote sensing time series at the parcel level for detection,

localization, and classification of anomalies, facing limitations such as low-temporal

resolution. Consequently, the proposed method cannot be globally compared to a

257.
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state-of-the-art reference. In order to evaluate the performance of the AD step, we

considered some very popular methods such as OC-SVM, IF and HMAD in order

to appreciate the interest of using HMMs. Numerical experiments conducted using

synthetic and real data show the interest of the proposed strategy, allowing abnormal

parcels to be detected, localized, and classified.

Proposed Method

Parcel-wise Feature 
Extraction (median, IQR)

Parcel profiles

In
pu

ts

Image preprocessing and 
Feature Extraction

(a)

Multispectral images

Anomaly Detection
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HMM-based Anomaly Detection

Supervised Anomaly
Classification
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anomaly
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Available Class 
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Figure 44. Flowchart illustrating the main steps and outputs of the proposed
approach: (a) Learning step, where multi-temporal/multispectral images and parcel
profiles are used to extract features of time series for a given parcel, and (b) Test
step. Gray shaded squares indicate the different tasks, namely image
preprocessing, AD-HMM learning, AD, anomaly localization, and anomaly
classification.

This section presents the proposed AD and classification approach, which is sum-

marized in the detailed flowchart depicted in Figure 44. Note that the gray shaded

squares highlight the main steps of the method: (1) image preprocessing yielding

features at the parcel level, (2) learning HMM associated with normal parcels re-

ferred to as AD-HMM learning, (3) AD at the parcel level (point AD), which includes

the localization of anomalies, and (4) anomaly classification. Next subsections de-

scribe each procedure following the flowchart of Figure 44.

Image Preprocessing and Feature Extraction The image preprocessing step

requires multi-temporal and multispectral images, and the corresponding parcel bound-

aries (e.g., resulting from a parcellation database such as the land parcel identifica-
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tion system (LPIS116)117). A set of temporal vegetation indices (VIs) is extracted from

these images. For this study, five vegetation indices derived from the visible, near-

infrared (NIR), and short-wave infrared (SWIR) were estimated based on images

acquired by the Sentinel-2 sensor118. These VIs are summarized in Table 9 and the

corresponding spectral bands are provided in Table 10.

Table 9. Vegetation indices estimated from multispectral images, where NIR, R, G,
SWIR, and Re denote the near-infrared, red, green, short-wave infrared, and
red-edge bands.

Vegetation Index (VI) Formula

Normalized difference VI 119120 NDVI =
NIR− R

NIR + R

Green-Red VI 121 GRVI =
G− R

G+R

Normalized difference water Index (SWIR) 122 NDWISWIR =
NIR− SWIR

NIR + SWIR

Normalized difference water Index (Green) 123 NDWIG =
G−NIR

G+NIR

Modified Chlorophyll Absorption Ratio Index
using the Optimized Soil Adjusted VI 124

MCARI/OSAVI =
(Re− IR)− 0.2(Re− R)

(1 + 0.16)
NIR− R

NIR + R+ 0.16

Two statistical indicators, namely the median and interquartile range (IQR), were

computed for each temporal VI, where the IQR is defined by the difference between

the 75th and 25th percentiles of the indicator. The motivation for employing statistical

indicators for the temporal VIs is that they encompass the mean and dispersion of

the VIs with a reduced computational load in the data processing. The preprocessing

116 LPIS is a system based on images of agricultural parcels used in European countries as a tool to
check the eligibility of agricultural land for subsidiary payments.

117 Katarzyna Kocur-Bera. “Understanding information about agricultural land. An evaluation of the
extent of data modification in the Land Parcel Identification System for the needs of area-based
payments–a case study”. In: Land Use Policy 94 (2020), p. 104527.

118 Sentinel-2 (S2A & S2B) level 2A images were downloaded with a spatial resolution of 10-60 m
and a spectral resolution of 13 bands. The theoretical revisit time is 5 days. Bands with a lower
spatial resolution were resampled to obtain a spatial resolution of 10×10 meters, and images with
a cloud coverage greater than 20% were removed from the database.
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Table 10. Spectral bands of the Sentinel-2A multispectral images employed in the
VIs Estimation

Spectral band
Band 3
Green

Band 4
Red

Band 5
Red-Edge

Band 8
NIR

Band 11
SWIR

Wavelength (µm) 0,560 0,665 0,705 0,842 1,610
Resolution (m) 10 10 20 10 20

step provides K features for each parcel of the multi-temporal image and for each

time instant, i.e., N × K × T features, where N is the total number of available

parcels and T denotes the number of time instants.These features are the median

and the interquartile range of 5 vegetation indices reported in Table 9, leading to

K = 2×5 = 10 features. To define the extracted time series, let X(n) = [x
(n)
1 , ...,x

(n)
T ]⊤

in RT×K denotes all the time series computed for the n-th parcel (with n = 1, ..., N ),

where x
(n)
t ∈ RK is the feature vector at time t ∈ {1, ..., T}, and K is the number of

features. Finally, XAD = {X(1), ...,X(N)} is the set of N time series extracted from

the normal multispectral images and included in the learning set for AD.

The construction of the set XAD is referred to as parcel-wise feature extraction, since

it extracts statistics from the temporal VIs to build a set of features from the multi-

temporal images and their parcel boundaries. The obtained time series are then

validated by experts to make sure that they correspond to a normal behavior for

AD-HMM learning. Note that the anomalies identified by the expert are excluded

from the database and saved (with an anomaly label) in another set denoted as XAC,

which will be used in the anomaly classification procedure (see 104 for further details

about the database construction).

AD based on HMM Learning

HMM for Temporal Vegetation Indices Hidden Markov models (HMM) are dou-

bly stochastic processes defined using an unobservable (hidden) state process,
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which can be observed via another set of stochastic processes produced by a se-

quence of observations 89. HMM allow the characterization of dynamic systems via

a set of hidden states s = {s1, ..., sD} which are inferred from the observations of the

system, where D is the number of states in the model. Concisely, an HMM can be

formally described by the unknown parameters θ = {π,A,B}, where π ∈ RD is the

initial probability vector, which defines the initial probabilities of the system to be in

the different states, A ∈ RD×D is the transition probability matrix, which relates the

state changes of the hidden latent variable, and B is the emission probability matrix,

which is the probability of observing a given value in state s.

In particular, given the n-th time series of temporal VIs X(n), the hidden state se-

quence that reveals a possible state z
(n)
t ∈ {s1, ..., sD} of x(n)

t across time is denoted

as Z(n) = [z
(n)
1 , ...,z

(n)
T ]⊤. On the other hand, the entries of the transition probabil-

ity matrix A are given by ai,j = P (z
(n)
t = si|z(n)

t−1 = sj), which is the probability of

transition from a state sj to the state si, for i, j ∈ {1, ..., D}. Finally, the entries of

the emission probability matrix B are given by bi,t = P (x
(n)
t |z

(n)
t = si), which defines

the probability density function of the time-sample x
(n)
t at time t given that x(n)

t is in

the state si. More precisely, in the proposed analysis, the emission probability distri-

bution B is assumed to be a mixture of Gaussian distributions, with M multivariate

normal densities. Note that the set of states s is typically related to phenological

stages that describe the life cycle of vegetation 889091.

The detection of anomalies in the AD-based HMM is made using two hypotheses

defined as follows

H0 : Absence of anomaly

H1 : Presence of anomaly,

where under hypothesis H1 a given parcel X(n) is supposed to be abnormal whereas

it corresponds to a normal behavior under hypothesis H0. The likelihood of a given
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parcel is defined as

P (X(n)|θ) =
∑

allZ(n)

P (X(n)|Z(n),θ)P (Z(n),θ)

=
∑

z
(n)
1 ,...,z

(n)
T

π
z
(n)
1
b
z
(n)
1 ,1

a
z
(n)
1 ,z

(n)
2
... a

z
(n)
T−1,z

(n)
T
b
z
(n)
T ,T

.
(50)

To correctly model and learn the temporal structure of the underlying data for AD, the

HMM model parameter vector θ is estimated by maximizing the log-likelihood, i.e.,

θ̂ = argmax
θ

log
N∑

n=1

P (X(n)|θ), (51)

where θ̂ is the parameter vector that better explains XAD. A local optimal solution of

Problem (51) can be found via the Baum-Welch algorithm 89.

Generating Different HMM-models The estimator θ̂ defined in (51) is associated

with all the parcels contained in the training set XAD. In order to account for differ-

ent possible structures in the underlying data, it is proposed to build several HMM

associated with subsets of Ns samples chosen in XAD, with Ns ≪ N . These sub-

sets are built using blocks of time series chosen randomly in XAD, which leads to L

HMM models denoted as Θ̂ = {θ̂1, ..., θ̂L}, with θ̂ℓ = {π(ℓ),A(ℓ),B(ℓ)} for ℓ = 1, ..., L.

These subsets of time series will be denoted as {X ℓ}Lℓ=1 with X ℓ ∈ RNs×K×T and

XAD =
⋃L

ℓ=1X ℓ. The choice of the parameter L will be discussed in Section 5.

AD-HMM Learning Algorithm 4 summarizes the main steps of the proposed AD-

HMM learning, corresponding to the second gray box in Figure 44(a). This algorithm

receives the set of time series XAD, the number Ns of subsets used to learn a single

model, the number of HMM states D, and the number of models L to be learned.

Default values resulting from simulations conducted on real images are provided
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for each parameter. In the initialization step (Line 1), the number of components

M used in the Gaussian mixture model used for the emission probability distribution

introduced in 3 was computed directly from the input data. A strategy to estimate this

number of Gaussians is to use the number of local maxima in the data histogram and

to reduce this number until the algorithm performance decreases significantly. In the

next step, a random index selection of Ns time series stacked in X ℓ is performed,

indicating the parcels to be selected from the set XAD, as detailed in the previous

subsection. The HMM model parameters θ are then randomly initialized 89. Finally,

the HMM model parameters are estimated using the Baum-Welch procedure and

stacked into the set Θ̂ = {θ̂1, ..., θ̂L}, where θ̂ℓ = {π(ℓ),A(ℓ),B(ℓ)}.

Algorithm 4: AD-HMM Learning Procedure
Input: XAD: Set of time series associated with parcels;

Ns: # of images per model (default Ns = 100);
L: # of models to be learned (default L = 10);
D : # of states (default D = 18);

1 Initialize: M : Estimate the number of Gaussian mixtures;
2 for ℓ = 1 to L do
3 Built X ℓ by randomly selecting Ns parcels in XAD;
4 Initialize θℓ = {π(ℓ),A(ℓ),B(ℓ)};
5 θ̂ℓ ← BAUM-WELCH(X ℓ,θℓ,M,D);

Output: L HMM models Θ̂ = {θ̂1, ..., θ̂L} and their subsets of time series X ℓ.

HMM-based AD For the testing part (see Figure 44(b)), AD is first performed

at the parcel level to detect abnormal parcels. The detected anomalies are then

localized in time as explained in Section 5. The proposed strategy is composed of 1)

a point AD step detecting abnormal parcels, and 2) a contextual AD 98 step allowing

the starting time of the anomaly to be estimated.
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AD at the Parcel Level The probability that a time series Y = [y1, ...,yT ]
⊤ has

been generated by the ℓ-th learned model is written as

wℓ = logP (Y |θ̂ℓ), (52)

for ℓ = 1, ..., L, where w = [w1, ..., wL]
⊤ ∈ RL is a vector containing the log-probabilities

of the test signal with respect to the L HMM models learned using Algorithm 1. Note

that the log-probability in (52) is determined following the procedure in Table III, i.e.,

using the forward-algorithm 89, where αi,t is the probability of partial observation of

the time series at time t and state i (so-called forward variable), a(ℓ)i,j and b
(ℓ)
j,t are the

elements of the matrices A(ℓ) and B(ℓ) for the ℓ-th model with parameter vector θ̂ℓ.

Consequently, (52) is the sum of the forward variables αi,t across t providing a unique

probability wℓ for a given parcel.

Table 11. Estimation of Log-Probabilities for a Test Signal.

Forward-procedure for the ℓ = 1, ..., L models

1) αi,1 = π
(ℓ)
i b

(ℓ)
i,t (Initialization)

2) αi,t+1 =
[∑D

j=1 αt a
(ℓ)
i,j

]
b
(ℓ)
j,t (Induction)

3) logP (Y |θ̂ℓ) =
∑D

j=1 αi,T (Ending)

The final AD rule (at the parcel level) is defined as:

w∗ = max
ℓ=1,...,L

wℓ

H1

≶
H0

τ, (53)

where w∗ is the probability associated with the most likely model class (with the high-

est probability) and τ is a threshold related to the probability of false alarm (PFA) and

the probability of detection (PD) of the test. More precisely, the value of τ was deter-

mined as the point of the ROC curve (expressing the PD as a function of the PFA)
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located the closest to the ideal point (PFA,PD) = (0, 1) 125. Looking carefully at the

proposed AD rule (53), a tested time series is declared as normal if the highest prob-

ability w∗ exceeds the threshold τ , i.e., if a least one of the L models associated with

the normal HMM models is likely to correspond to the observations. This detection

rule is motivated by the fact that it is assumed that L different HMM models capture

the possible temporal structures or signal dynamics of normal time series.

Anomaly Localization via Segmentation When a tested time series Y has

been declared as abnormal in (53), it goes into the second step devoted to anomaly

localization. In this step, the HMM models Θ̂ = {θ̂1, ..., θ̂L} determined using Algo-

rithm 1 are used on time segments
[
tρ1 , tρ2

]
= {t | tρ1 ≤ t ≤ tρ2} (instead of analyzing

the complete time series) to determine the starting point of the anomaly in the time

series. Consider the forward variable αi,t−1 at time t − 1 in its scaled version de-

fined as α̃i,t−1 = αi,t−1/
∑D

i=1 αi,t−1, where i = 1, ..., D, and D is the number of HMM

states. The probability of having Y generated by the model θ̂ at time t can be written

in terms of αi,t−1 as follows

ut = 1/
(∑D

i=1 α̃i,t−1ai,jbi,t−1

)
, (54)

where ut depends on the scaled forward variable α̃i,t−1, the transition probability ai,j,

and the emission probability at time t − 1. Note that this expression for ut results

from the first-order Markov chain rule, which assumes that the current state (at time

t) depends only on its predecessor state (at time t− 1) 89. Note also that the forward

variable αi,t−1 is used in its scaled version α̃i,t−1 to avoid overflow. Indeed, this vari-

able relies on the sum of a large number of terms, as shown in the induction step

125 Steven M Kay. Fundamentals of statistical signal processing. Prentice Hall signal processing
series. Upper Saddle River, NJ: Prentice Hall PTR, 1993.
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of the forward procedure. The log-likelihood of the time series in the time segment

[tρ1 , tρ2 ] is defined as

logP (ytρ1
, ...,ytρ2

|π,A, bi,[tρ1−1,tρ2−1]) = −
tρ2∑

t=tρ1

ut, (55)

where ut has been defined in (54), and bi,[tρ1−1,tρ2−1] is the emission probability for the

time interval
[
tρ1 , tρ2

]
, for i = 1, ..., D. As a result, the probability that a time series

[ytρ1
, ...,ytρ2

] has been generated by the ℓ-th learned model on the segment [tρ1 , tρ2 ]

can be computed as

wℓ,[tρ1 ,tρ2 ]
= logP

(
ytρ1

, ...,ytρ2
|π(ℓ),A(ℓ), b

(ℓ)
i,[tρ1−1,tρ2−1]

)
, (56)

where wℓ,[tρ1 ,tρ2 ]
is the vector containing the log-probabilities of the different models

in the time interval [tρ1 , tρ2 ].

The anomaly localization studied in this Chapter considers four time intervals associ-

ated with different phenological stages of crop growth to identify potential anomalies.

These intervals are referred to as Growing, Flowering, Adult-phase, and Senescence

(displayed in Figure 8 (a)), as in 9193. The hypothesis test to localize the anomaly in

a given interval is defined as

wS = max
ℓ=1,...,L

wℓ,[tρi ,tρj ]

H1

≶
H0

τS, (57)

where S ∈ {Growing, Flowering, Adult-phase, Senescence} denotes the growth

stage under analysis in the hypothesis test, τS is a threshold depending on the prob-

ability of false alarm and the probability of detection of the test sample for a given

stage S, wS contains the probabilities the phenological stage S given the tested time

series, tρi denotes the beginning of the given stage, and tρj represents the end of

the stage. Note that (53) defines the parcel detection rule whereas (57) localizes the
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anomaly in one of the pre-defined phenological stages.

Anomaly Classification A final step can be included in the analysis to identify

the anomaly that has affected the parcel Y using a supervised classifier. After an

anomaly has been localized using the steps displayed in Figure 44(b), we propose

to classify the detected anomaly into one of the C classes defined by the user and

corresponding to the possible types of anomalies affecting the analyzed crop.

The set of features used for the classification is composed of the abnormal time

series that has been detected in (53), whose different feature vectors are introduced

as columns in the input matrix. More precisely, the feature matrix for training the

classifier is of the form XAC = [x1, ...,xR], where xr = [xr,1, ..., xr,KT ]
⊤ is a vector

containing the KT features extracted from the r-th time series at all time instants. It

is important to highlight that each time series xr selected for training the classifier

contains an abnormal time series from XAC with the corresponding label, denoted

by vr ∈ {1, ..., C}, where C is the total number of classes. In the testing part, the

classifier generates for each time series y = [y1, ..., yKT ]
⊤ a label vy ∈ {1, ..., C}

indicating the class of the anomaly y.

Simulation Results

The performance of the proposed methodology126 is evaluated on real data127. AD is

evaluated in terms of precision, recall, and area under the precision-vs-recall curve

(AUC), whereas the overall accuracy (OA), the kappa coefficient, and the probabil-

126 For the AD-HMM implementation, we used the HMM toolbox available online at https://www.
cs.ubc.ca/~murphyk/Software/HMM/hmm.html.

127 An complementary analysis conducted on synthetic data is provided in the journal paper (Kareth
M. León-López et al. “Anomaly Detection and Classification in Multispectral Time Series based on
Hidden Markov Models”. In: IEEE Transactions on Geoscience and Remote Sensing 60 [2022],
pp. 1–11. DOI: 10.1109/TGRS.2021.3101127).
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ities of correct classification are used for anomaly classification128. The precision,

and recall are defined as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false

positives, and false negatives129. On the other hand, the probability of correct classi-

fication for class c (denoted as Pc) is defined as

Pc =
1

Rc

Rc∑
r=1

δ(vr, v̂r), (58)

where Rc is the total number of training vectors of the class c ∈ {1, ..., C}, vr and v̂r

are the true and estimated labels of the r-th training vector of class c and δ(·) is an

indicator such that δ(vr, v̂r) = 1, if vr = v̂r, and zero otherwise.

Study Area The research site displayed in Figure 45 is located in Beauce, North

of France. This site contains a lot of crop fields such as rapeseed and wheat. A set

of 13 multispectral Sentinel-2 images was selected between October 2017 and June

2018.

The dataset was processed to level 2A using the MAJA130 processing chain 131.

128 The higher the value of the metric, the better the detection or classification.

129 The detection threshold was determined using the point of the AUC curve located the closest to
the ideal point (0, 1).

130 MAJA is available on the PEPS (Plateforme d’Exploitation des Produits Sentinel) platform of the
French National Center for Space Studies (Centre National d’Études Spatiales, CNES).

131 Olivier Hagolle et al. “A multi-temporal and multi-spectral method to estimate aerosol optical thick-
ness over land, for the atmospheric correction of FormoSat-2, LandSat, VENµS and Sentinel-2
images”. In: Remote Sensing 7.3 (2015), pp. 2668–2691.
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Figure 45. Study area located in Beauce, North of France.

A set of 1924 rapeseed parcels was extracted from the images with the support

of agronomists, as illustrated in Figure 44(a). The resulting dataset was analyzed

with the aim of labeling part of the data for evaluation purposes. The anomalies

found in the data were related to vegetation phenology problems, crop heterogeneity,

boundary errors, wrong crop type, and shadow perturbations. Vegetation phenology

problems (illustrated in Figure 46(a)) are associated with problems during the plant

development such as early/late growth, early/late senescence (plant degradation),

and early flowering. On the other hand, heterogeneity corresponds to the spatial

heterogeneous development of the crop, which can indicate the presence of crop or

soil diseases and can affect the crop at any moment of growth. Boundary errors and

wrong crop type are anomalies describing problems related to the database delin-

eation and wrong target crop. Note that the rapeseed data and their corresponding

labels are the same than those used in 104. It is important to note that the labeling

used in the real simulations was performed with the help of agronomist experts by

visual-interpretation using all the available images and by using all the time series
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of the different VI features to compare any analyzed parcel to the rest of the dataset
104.

The partitioning of the dataset for AD was randomly performed as follows: N = 500

normal parcels were selected for AD-HMM learning and the remaining 1424 parcels

(697 normal parcels and 727 anomalies) were considered for the testing phase. The

test parcels detected as anomalies were then considered as input data for the classi-

fiers. Based on the anomalies found in the database, the anomaly classification step

considers the following classes: late growth, early senescence, late senescence,

and other, where “other” is a class containing all the anomalies that do not belong

to the previous three classes. These anomalies are non-agronomic anomalies (such

as errors in parcel boundaries, wrong crop type, or shadow perturbations) or agro-

nomic anomalies affecting a very small number of parcels (such as early growth,

early flowering, and crop heterogeneity).

For illustration purposes, Figure 46 displays (a) the expected temporal profile of the

NDVI median with anomalies related to problems in the vegetation phenology such

as early/late growth, early/late senescence, and early flowering, and (b) the distri-

bution of a set of 500 normal and abnormal NDVI medians. As can be seen in the

histograms and in the zoomed portion, the normal and abnormal data have different

distributions, allowing anomalies to be classified. Note that the different vegetation

phenological stages for the rapeseed crops indicated in the top of Figure 46(a) are

located between the vertical gray dotted lines and were selected based on 82104.

Analysis of vegetation indices To analyze the impact of using different time

series of VIs for AD, Figure 47 compares the performance of the proposed AD-HMM

algorithm using the median and IQR of different combinations of VIs introduced in

Table 9. More precisely, Figure 47 shows the AUC values obtained for different VI

combinations after averaging the results of 10 Monte Carlo runs. Note that all the VIs

were scaled such that each column of the feature matrix take its values in the interval
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Figure 46. Temporal profiles and distribution of normal (blue) and abnormal data. a)
Five typical time series profiles for agronomic anomalies are shown, where the
shaded blue section corresponds to the normal time series. b) Histogram of 500
time series of normal (blue) and abnormal (gray) NDVI median for three dates,
which illustrates how the distribution of abnormal data deviates respect to the
normal data, leading potential anomalies to be detected by the proposed approach.
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(0, 1) (minimum-maximum scaling). One can observe that the performance of AD-

HMM is very similar when using different VI combinations. Therefore, the remaining

analyses will be performed with NDVI only. When using NDVI only, the estimated

number of Gaussians in the mixture model was fixed to M = 6.

The overall performance of the proposed AD-HMM algorithm depends on the pa-

rameters Ns, L, and D, that need to be adjusted. The number of states was varied

in the set {3, 9, 12, 15, 18} whereas the values of Ns and L were chosen in the set

{10, 25, 50, 100, 200}. For D = 18, the averaged AUC metrics vary in the interval

[0.80, 0.83], and the best performance for all the VIs was obtained when Ns = 100

and L = 10. These values were selected in the rest of the analysis, in particular to

display Figure 47.

P
re
ci
si
o
n

Recall

Figure 47. Performance of the AD-HMM detection using the median and IQR of
different temporal vegetation indices, where the AUC value of each VI combination
is shown in the legend.
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AD Results The experiments conducted on real data using the proposed AD

approach were compared to different algorithms including IF-N, OC-SVM-N, and

HMAD. All the algorithms were run using the NDVI features. The parameters of

the algorithms were set by cross validation. For OC-SVM-N, the outlier ratio was

set to ν = 0.1, and the kernel parameter for the RBF kernel was estimated using

Jaakkola’s heuristic 132. The IF-N algorithm was run using 1000 isolation trees and

a sub-sampling ratio of 256. The outlier fraction used in HMAD was set to ν =

0.3. Figure 48 summarizes the performance of the different algorithms, where the

proposed approach obtains slightly better results than OC-SVM-N and IF-N. The

poor performance obtained with HMAD is probably due to the fact that the anomalies

affecting crop parcels are not limited to mean changes but also lead to variance

changes for which the HMAD algorithm is not adapted.
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Figure 48. Performance of different AD methods to detect abnormal parcels in the
real dataset.

132 Tommi Jaakkola, Mark Diekhans, and David Haussler. “Using the Fisher kernel method to detect
remote protein homologies.” In: Proc. Int. Conf. on Intelligent Systems for Molecular Biology.
Heidelberg, Germany, Aug. 1999, pp. 149–158.
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Time Anomaly Localization The signals detected as abnormal in the previous

step were then analyzed to localize the anomalies affecting the crops. For an easier

interpretation, the acquisition dates presented in Figure 46 were transformed into

integer values following the time intervals associated with the different phenological

stages of rapeseed crops as follows: Growing= {t|1 ≤ t ≤ 4}, Flowering= {t|5 ≤

t ≤ 6}, Adult= {t|7 ≤ t ≤ 9}, and Senescence= {t|10 ≤ t ≤ 13}.

Figure 49 shows the results obtained for three time series with growth and wrong

type problems, where the estimated value of S ∈ {Growing, Flowering, Adult-phase,

Senescence} by the proposed AD-HMM is indicated in the top of each figure as “De-

tected Stage” whereas the class of the anomaly is referred to as “True Class”. The

lattice box on the plots in Figure 49 highlights the detected stage. Note that based on

the learned models, the proposed approach can estimate when the temporal struc-

ture deviates from the normal behavior, even, for subtle deviations as shown in the

plot of the middle for Late Senescence problems.

Anomaly Classification After AD and Localization The last step of the pro-

posed algorithm classifies some classes of anomalies detected in the rapeseed

crops. To evaluate the classification performance on the available samples, the

leave-one-out cross-validation (LOOC) strategy was considered. LOOC consists in

leaving one vector out of the database, training the classifier with all the remain-

ing samples, testing the classifier with the vector removed from the database and

repeating these operations R times, where R is the size of the database. This strat-

egy was selected given the few number of training samples available for anomaly

classification. The classifiers considered in this section were the random forest (RF)

algorithm with 100 trees and a maximum number of features set to the square root

of the number of columns of the feature matrix, the k-nearest neighbor (k-NN) clas-

sifier with k = 3, and the support vector machine algorithm with linear (SVM-LN)

and Gaussian (SVM-RBF) kernels, with a regularization parameter C = 1. The dif-
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Figure 49. Time anomaly localization for three tested parcels of rapeseed crops
affected by different anomalies. Each plot displays the median (top) and IQR
(bottom) of the NDVI features. The box in the top indicates the class of the anomaly
and the detected stage. The lattice box highlights the detected stage.

ferent parameters values of the classifiers were chosen in order to obtain the best

performance. The multi-class strategy used in the SVM-based classifiers was based

on the One-Against-One voting strategy 133. In addition, the synthetic minority over-

sampling technique (SMOTE) was used to oversample the training set to mitigate the

unbalanced nature of the dataset 134.

133 F. Melgani and L. Bruzzone. “Classification of hyperspectral remote sensing images with sup-
port vector machines”. In: IEEE Transactions on Geoscience and Remote Sensing 42.8 (2004),
pp. 1778–1790.

134 Nitesh V. Chawla et al. “SMOTE: Synthetic Minority over-Sampling Technique”. In: J. Artif. Int.
Res. 16.1 (2002), 321–357.
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Table 12 shows the estimated probability of correct classification, overall accuracy,

and kappa coefficient for the different classifiers obtained using 10 Monte Carlo runs

(where the highest values are highlighted in bold and the corresponding standard de-

viations are indicated into brackets). Note that the number of samples is presented in

average. As can be observed, the highest value of Pc is obtained for the SVM-RBF

classifier, whereas the better OA and value of kappa were obtained from the RF

classifier. These two classifiers provide the overall best classification performance.

The resulting confusion matrix of the SVM-RBF classifier for the 10th realization is

shown in Table 13, where 618 samples were detected using AD-HMM. Note that the

class other, which contains anomalies such as heterogeneity, wrong crop type, er-

rors in parcel boundaries, and shadow perturbations, allows us to be close to a real

scenario where anomalies that cannot be explained by abnormal plant growing are

often present. It is important to mention here that in the rapeseed crops of this study,

those classes (wrong crop type, heterogeneity, and shadow perturbations) affect ei-

ther the whole time series or some time intervals in a random way, yielding anomalies

located in any time interval. This lack of structured patterns increases the complex-

ity of the classification, which explains the relatively poor classification performance

obtained for this class. Additional information resulting from other data, e.g., from

synthetic aperture radar images, might be considered to improve the classification

performance. This work is currently under investigation.

Conclusions

A method for detecting, localizing, and classifying anomalies that affect agricultural

crops based on hidden Markov models (HMM) and machine learning was presented.

The proposed anomaly detection based on HMM (AD-HMM) exploited the temporal

structure of time series of vegetation indices extracted from multispectral images

to perform both point (parcel-wise) and contextual (temporal-wise) anomaly detec-
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Table 12. Performance results for the different classifiers (Leave-One-Out Cross
validation). Note that the number of samples is presented in average.

# Classes # Samples SVM-LN SVM-RBF KNN RF
1 Late Growth 179,1 (5,8) 0,79 (0,01) 0,82 (0,00) 0,81 (0,01) 0,81 (0,01)
2 Early Senescence 51,3 (3,0) 0,91 (0,03) 0,94 (0,02) 0,84 (0,04) 0,72 (0,02)
3 Late Senescence 28,8 (1,0) 0,97 (0,01) 1,00 (0,01) 0,92 (0,01) 0,73 (0,03)
4 Other 352,3 (1,8) 0,59 (0,01) 0,60 (0,00) 0,61 (0,01) 0,76 (0,01)

Average Pc 0,81 (0,01) 0,84 (0,00) 0,79 (0,01) 0,75 (0,01)
OA (%) 69,16 (0,42) 71,32 (0,43) 70,26 (0,90) 77,04 (0,49)
kappa 0,54 (0,01) 0,57 (0,01) 0,54 (0,01) 0,62 (0,01)

Table 13. Confusion matrix for the SVM-RBF classifier for realization # 10 (Pc: 0.83,
OA: 70.1%, kappa: 0.57)

Detected AD-HMM: 618 Predicted Class
Classes Late Growth Early Senescence Late Senescence Other

Tr
ue

C
la

ss Late Growth 151 6 16 11
Early Senescence 1 49 0 4
Late Senescence 0 0 28 0
Other 55 61 26 210

tion. The proposed method also allowed the detected anomalies to be temporally

localized and classified into pre-defined classes, information that is valuable for crop

monitoring. A comparison with classical anomaly detection algorithms, in terms of

precision and recall, provided very promising results. An interesting property of the

proposed anomaly detection algorithm is its capacity of localizing and classifying the

anomalies located within each time series by exploiting the previously learned HMM

models, where the outcomes of these steps provide a complementary knowledge to

the farmers and producers for monitoring their crops.

Further investigation should be conducted to evaluate the interest of the proposed

approach for detecting anomalies in other kinds of crops to characterize their dy-

namic behavior. Moreover, it would be interesting to generalize the proposed ap-

proach to non-homogeneous Markov chains in order to handle transitions between

states defined by non-stationary time series. Another interesting further work is the
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extension of the proposed AD-HMM to time series of vegetation indices estimated

from multiple remote sensing sources, e.g., extracted from synthetic aperture radar

(SAR) images or vegetation optical depth (VOD) retrievals derived from microwave

sensors (these vegetation indices have been used in phenology studies in 84). Fi-

nally, it could also be interesting to investigate the application of the proposed ap-

proach to features estimated from other kinds of sensors such as compressive multi-

temporal/multispectral sensors 135136, which acquire the images using a compressed

format.

135 J. M. Ramirez and H. Arguello. “Spectral Image Classification From Multi-Sensor Compres-
sive Measurements”. In: IEEE Transactions on Geoscience and Remote Sensing 58.1 (2020),
pp. 626–636. DOI: 10.1109/TGRS.2019.2938724.

136 H. Vargas and H. Arguello. “A Low-Rank Model for Compressive Spectral Image Classification”.
In: IEEE Transactions on Geoscience and Remote Sensing 57.12 (2019), pp. 9888–9899.
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