APLICACIÓN DE ANÁLISIS EXERGÉTICO PARA LA EVALUACIÓN DE PROCESOS DE PRODUCCIÓN DE BIOETANOL DE SEGUNDA GENERACIÓN

KARINA ANGÉLICA OJEDA DELGADO

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FISICO-QUÍMICAS ESCUELA DE INGENIERÍA QUÍMICA DOCTORADO EN INGENIERÍA QUÍMICA BUCARAMANGA 2011

APLICACIÓN DE ANÁLISIS EXERGÉTICO PARA LA EVALUACIÓN DE PROCESOS DE PRODUCCIÓN DE BIOETANOL DE SEGUNDA GENERACIÓN

KARINA ANGÉLICA OJEDA DELGADO

Tesis doctoral presentada como requisito parcial para optar por el título de

Doctor en Ingeniería Química

Director

Dr.Sc. Viatcheslav Kafarov

Profesor Titular Universidad Industrial de Santander

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FISICO-QUÍMICAS ESCUELA DE INGENIERÍA QUÍMICA DOCTORADO EN INGENIERÍA QUÍMICA BUCARAMANGA 2011

AGRADECIMIENTOS

Quiero aprovechar este momento para agradecer a todas las personas que hicieron posible de manera directa e indirecta el desarrollo de este trabajo.

Primero deseo agradecer a mi director de Tesis, el Profesor Kafarov, por su constante apoyo, amistad y confianza, lo cual me permitió desarrollar muchos aspectos de mi vida profesional en el área de la investigación. Sé que la experiencia adquirida durante mi trabajo bajo su tutoría ha enriquecido de manera inigualable mi formación profesional.

Al Profesor Mahmoud El-Halwagi de la Universidad de Texas A&M en Estados Unidos, por habernos recibido y acogido tan gratamente durante nuestra pasantía de investigación en TAMU, por todos los momentos que en los que dedicó su tiempo a debatir ideas conmigo y por permitirnos vivir esa experiencia increíble como parte del Process Integration and System Optimization Group. Agradezco también a todos los compañeros de TAMU que nos brindaron su asesoría y amistad durante ese tiempo y a nuestros amigos de la UIS en College Station por todo su apoyo.

A mis amigos y compañeros del Centro de Investigación para el Desarrollo Sostenible en Industria y Energía, y a quienes pertenecieron al Centro de Investigación en Simulación y Control de Procesos, por su amistad y colaboración desde mi pregrado. A Favio, Iván, Carlos, Marisol y todos aquellos que hicieron parte de esta experiencia de vida. A mis amigos Sandra Ramírez y Andrés Muñoz por su constante apoyo y amistad durante todos estos años. También quiero expresar mi gratitud a los profesores de la Escuela de Ingeniería Química de la Universidad Industrial de Santander, quienes han contribuido a mi formación académica; a los profesores Humberto Escalante, Álvaro Ramírez y Leonardo Acevedo por sus aportes para la versión final de esta tesis y especialmente a COLCIENCIAS por la beca-crédito otorgada a mi mediante la Convocatoria de apoyo a Doctorados Nacionales 2006.

Finalmente, y no menos importante, quiero agradecer a mi familia Ojeda-Delgado y Sánchez-Tuirán por su apoyo constante, a mi hija Jimena por todo el tiempo sacrificado y las situaciones que tan pequeña tuvo que afrontar. A Eduardo, porque más que mi esposo es mi amigo, mi compañero y mi equipo de trabajo. A mis abuelos, a Ledy, a Tía Gloria y Juan Carlos por su constante apoyo y ayuda durante este tiempo, y a mis padres y mi hermano, en especial a mi Madre quien lucho con su corazón para verme ser convertida en profesional y desde el cielo continúa alentándome cada mañana para alcanzar esos sueños compartidos.

DEDICATORIA

A MI MADRE, QUIEN ME ENSEÑO EL CAMINO

Y A MI HIJA, QUIEN ME BRINDO LA FUERZA PARA SEGUIRLO.

TABLA DE CONTENIDO

INTRODUCCIÓN	17
1. ANÁLISIS EXERGÉTICO E INTEGRACIÓN DE PROCESOS	32
1.1. ANÁLISIS EXERGÉTICO	32
1.1.1. Eficiencia exergética del proceso	38
1.1.2. Análisis exergético para el diseño sostenible de biorefinerías	39
1.2. INTEGRACIÓN DE PROCESOS	43
2. ANÁLISIS EXERGÉTICO DE REACTORES DE HIDRÓLISIS ENZIMÁTICA PARA LA TRANSFORMACIÓN DE BIOMASA	
LIGNOCELULÓSICA EN ETANOL	46
2.1. MODELAMIENTO DEL REACTOR	46
2.1.1. CSTR (Continuous Stirred-Tank Reactor)	51
2.1.2. PFR (<i>Plug-Flow Reactor</i>)	53
2.2. COMPARACIÓN DE LOS BIOREACTORES ENZIMÁTICOS	54
3. MODELAMIENTO Y SIMULACIÓN DE LAS RUTAS EN	
ASPEN PLUS [™]	62
3.1. ESPECIFICACIONES DE LOS COMPONENTES	62
3.2. SELECCIÓN DE LOS PRETRATAMIENTOS	66
3.2.1. Pretratamiento con ácido diluido	68
3.2.2. Pretratamiento con agua líquida caliente (LHW)	69
3.2.3. Pretratamiento con explosión de vapor catalizada con ácido	70
3.2.4. Pretratamiento con solventes orgánicos (organosolv)	71

3.2.4.1. Solución organosolv (Etanol –Agua)	71
3.2.4.2. Solución organosolv con catalizador (Etanol-Agua- H_2SO_4)	72
3.3. SELECCIÓN DE LAS TECNOLOGÍAS DE HIDRÓLISIS	72
3.3.1. Hidrólisis y Fermentación Separadas (SHF)	74
3.3.2. Hidrólisis y Fermentación Simultáneas (SSF)	75
3.3.3. Hidrólisis y Co - Fermentación Simultáneas (SSCF)	76
3.4. PURIFICACIÓN	77
3.5. DESCRIPCIÓN DE LOS CASOS DE ESTUDIO	78
3.5.1. Procesos con tecnología SHF	79
3.5.2. Procesos con tecnología SSF	80
3.5.3. Procesos con tecnología SSCF	81
4. COMPARACIÓN DE RUTAS MEDIANTE ANÁLISIS	
EXERGÉTICO	83
4.1. DESARROLLO METODOLÓGICO DEL ANÁLISIS EXERGÉTICO	84
4.1.1. Comparación de pretratamientos	90
4.1.2. Comparación de rutas tecnológicas usando SHF	91
4.1.3. Comparación de rutas tecnológicas usando SSF	92
4.1.4. Comparación de rutas tecnológicas usando SSCF	94
4.1.5. Comparación de SHF, SSF y SSCF para biomasa pretratada	
con ácido diluido	99
4.1.6. Comparación de SHF, SSF y SSCF para biomasa pretratada	
con LHW	101
4.1.7. Comparación de SHF, SSF y SSCF para biomasa pretratada	
explosión de vapor catalizado	102
4.1.8. Comparación de SHF, SSF y SSCF para biomasa pretratada	
con solventes orgánicos	103

5. INTEGRACIÓN DE PROCESOS	106
5.1. METODOLOGÍA PARA LA INTEGRACIÓN ENERGÉTICA	106
5.1.1. Integración Energética. Caso 2 (LHW-SHF)	108
5.1.2. Integración Energética. Caso 8 (Explosión catalizada-SSF)	111
5.1.3. Integración Energética. Caso 12 (LHW-SSCF)	114
5.1.4. Integración Energética. Caso 13 (Explosión catalizada-SSCF)	117
6. RUTA PROPUESTA	121
7. CONCLUSIONES Y RECOMENDACIONES	128
7.1. CONCLUSIONES GENERALES DE LA INVESTIGACIÓN	128
7.2. RECOMENDACIONES PARA TRABAJO POSTERIOR	130
BIBLIOGRAFIA	131
ANEXOS	147

LISTA DE TABLAS

Tabla 1. Eficiencia energética y rendimientos de biomasas primarias	18
Tabla 2. Parámetros de los modelos	51
Tabla 3. Principales compuestos del proceso basados en la base de	
datos del NREL	64
Tabla 4. Pretratamientos evaluados	67
Tabla 5. Exergía química de los principales compuestos del proceso	87
Tabla 6. Principales resultados del análisis exergético	89
Tabla 7. Corrientes frías y calientes para la integración – Caso 2	
(LHW - SHF)	109
Tabla 8. Comparación de alternativas de integración – Caso 2 (LHW - SHF)	111
Tabla 9. Corrientes frías y calientes para la integración – Caso 8	
(Explosión de vapor catalizada-SSF)	112
Tabla 10. Comparación de alternativas de integración – Caso 8	
(Explosión de vapor catalizada-SSF)	114
Tabla 11. Corrientes frías y calientes consideradas – Caso 12 (LHW-SSCF)	115
Tabla 12. Comparación de alternativas de integración Caso 12 (LHW-SSCF)	117
Tabla 13. Corrientes energéticas consideradas – Caso 13	118
Tabla 14. Comparación de alternativas de integración – Caso 12	120

LISTA DE FIGURAS

Figura 1. Metodología de análisis basado en exergía	20
Figura 2. Metodología general para el trabajo de investigación	25
Figura 3. Consumo de energía global en el proceso de producción	
de biocombustibles de segunda generación.	41
Figura 4. Eficiencias exergéticas de CSTR y PFR	57
Figura 5. Exergía consumida y producida en los reactores CSTR y PFR	58
Figura 6. Pérdidas exergéticas respecto a la temperatura del reactor	59
Figura 7. Efecto de la concentración de xilosa en la eficiencia	
exergética de los reactores	60
Figura 8. Pretratamiento con ácido diluido – Aspen Plus™	69
Figura 9. Pretratamiento con LHW – Aspen Plus™	70
Figura 10. Pretratamiento con explosión de vapor catalizada con ácido	
– Aspen Plus™	71
Figura 11. Pretratamiento con solución organosolv – Aspen Plus™	72
Figura 12. Esquema simplificado de Sacarificación y Fermentación	
Separadas (SHF)	75
Figura 13. Esquema simplificado de Sacarificación y Fermentación	
Simultáneas (SSF)	76
Figura 14. Esquema simplificado de Sacarificación y	
Co-Fermentación Simultáneas (SSF)	77
Figura 15. Esquema simplificado del Proceso de Purificación	78
Figura 16. Esquema general de los procesos usando SHF	79
Figura 17. Esquema general de los procesos usando SSF	80

Figura 18. Esquema general de los procesos usando SSCF	82
Figura 19. Eficiencias exergéticas para las etapas de pretratamiento	90
Figura 20. Irreversibilidades y emisiones totales de exergía Casos 1-5	91
Figura 21. Eficiencias exergéticas por etapas Casos 6-10	93
Figura 22. Irreversibilidades totales por etapas Casos 6-10	93
Figura 23. Relación Neta de Energía Casos 11-15	95
Figura 24. Renovabilidad vs. bioenergía de entrada (%).	96
Figura 25. Eficiencia exergética - Casos 11-15.	96
Figura 26. Emisiones Exergéticas Totales- Casos 11-15	98
Figura 27. Comparación SHF, SSF y SSCF para biomasa pretratada	
con ácido diluido	99
Figura 28. Comparación SHF, SSF y SSCF para biomasa pretratada-LHW	101
Figura 29. Comparación SHF, SSF y SSCF para biomasa	
pretratada con explosión de vapor catalizada	103
Figura 30. Comparación SHF, SSF y SSCF para biomasa	
pretratada con solventes orgánicos (Etanol-Agua)	104
Figura 31. Comparación SHF, SSF y SSCF para biomasa	
pretratada con solventes orgánicos (Etanol-Agua-Ácido)	104
Figura 32. GCC para el Caso 2 (LHW - SHF)	110
Figura 33. GCC para el Caso 8 (Explosión de vapor catalizada-SSF)	113
Figura 34. GCC para el Caso 12 (LHW-SSCF)	116
Figura 35. GCC para el Caso 13 (Explosión de vapor catalizada-SSCF)	119
Figura 36. Combinación de pretratamiento LWH y Explosión de Vapor	122
Figura 37. Etapa SSF con reciclo	123
Figura 38 Impactos ambientales potenciales (PEI) – Caso propuesto	124
Figura 39 GCC – Caso propuesto	126

LISTA DE ANEXOS

ANEXO A. Información estadística sobre producción y consumo de etanol	148
ANEXO B. Valores usados en la base de datos de ASPEN PLUS	153
ANEXO C. Principales características de los casos simulados	155
ANEXO D. Principales resultados de los análisis exergéticos de	
las rutas simuladas	171
ANEXO E. Redes de Intercambio de Calor (HEN) diseñadas para los casos	186

RESUMEN

TITULO: APLICACIÓN DE ANÁLISIS EXERGÉTICO PARA LA EVALUACIÓN DE PROCESOS DE PRODUCCIÓN DE BIOETANOL DE SEGUNDA GENERACIÓN^{*}

AUTORA: KARINA ANGÉLICA OJEDA DELGADO**

PALABRAS CLAVES: Análisis exergético, Bioetanol de segunda generación, Hidrólisis enzimática, SHF, SSF, SSCF, Integración de procesos.

DESCRIPCIÓN:

Actualmente, existe un gran interés mundial en la producción de biocombustibles. Sin embargo, los biocombustibles de primera generación han sido ampliamente debatidos sobre el uso de biomasa con fines alimenticios para su producción. En este sentido, las investigaciones se han enfocado en el estudio de otras materias primas potenciales para la producción biocombustibles de bajo costo y que no afecten la seguridad alimentaria de la población; sin embargo, la implementación del proceso de biocombustibles de segunda generación a escala industrial requiere un análisis detallado desde el punto de vista exergético que permita orientar adecuadamente el desarrollo tecnológico en este campo.

En este trabajo investigativo se desarrolló una metodología basada en análisis exergético para comparar diferentes alternativas tecnológicas para la producción de bioetanol a partir de material lignocelulósico, las cuales fueron simuladas usando el software Aspen Plus[™] con el fin de guiar el diseño de un esquema de producción para el aprovechamiento del material lignocelulósico con un mínimo consumo energético externo.

La tesis se ha dividido en seis capítulos principales: El Capítulo I describe de manera conceptual los principales aspectos del análisis exergético y de la integración de procesos. El Capítulo II dedicado a la aplicación del análisis exergético en reactores de hidrólisis enzimática. El Capítulo III describe las características de la simulación de las rutas de producción. En el Capítulo IV se describe de manera detallada la comparación de dichas rutas usando la metodología de análisis exergético. En el Capítulo V la metodología de integración de procesos fue aplicada de las rutas de mejores resultados exergéticos y finalmente en el Capítulo VI se describen las alternativas de producción propuestas con base en los análisis realizados. Así, los resultados de este trabajo podrán ser utilizados como una herramienta eficaz para el análisis y desarrollo de este tipo de procesos.

^{*}Tesis doctoral

^{**}Facultad de Ingenierías Fisicoquímicas. Posgrado en Ingeniería Química. Director: Dr.Sc. Viatcheslav Kafarov

SUMMARY

TITLE: APPLICATION OF EXERGY ANALYSIS FOR THE SECOND GENERATION BIOETHANOL PRODUCTION PROCESSES EVALUATION *

AUTHOR: KARINA ANGÉLICA OJEDA DELGADO**

KEYWORDS: Exergy analysis, Second generation bioethanol, Enzymatic hydrolysis, SHF, SSF, SSCF, Process integration.

DESCRIPTION:

Nowadays, biofuel production is one of the worldwide most interesting research areas. However, first generation biofuels production has been criticized because of the food vs. fuel debate. As a result, research has been focused on the development of new potential sources for the second generation biofuel production. Thus, lignocellulosic material is a potential feedstock for ethanol production because of its low cost and no apparent role in alimentary security. However, to achieve its implementation at an industrial scale an exergy analysis is needed in order to correctly focus the technological development of this field. In this research, an exergy-analysis approach was developed to compare several technological alternatives of second generation bioethanol production from lignocellulosic material. Aspen Plus[™] software was used in order to design a biomass-to-biofuel production scheme with minimal external energy consumption.

This thesis has been divided into six main chapters: Chapter I describes main concepts about exergy analysis and process integration. Chapter II is focused on the application of exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. Chapter III describes the features of modeling and simulation of bioethanol production routes using Aspen Plus ™. Later, the Chapter IV describes the comparison of these simulated routes using exergy analysis methodology. In Chapter V the process integration methodology was applied as a complement to the most favorable exergetic routes reported in the previous chapters and finally in Chapter VI, the proposed production alternatives based on the analysis performed are described.

The analytical approach based on the exergy concept proposed in this work provides a decision-making tool useful with other technological schemes.

^{*}Ph.D. Thesis

^{**}Physical-Chemical Engineering Faculty.Chemical Engineering Postgraduate. Advisor: Viatcheslav KAFAROV, Dr.Sc.

INTRODUCCIÓN

La actividad agraria en Colombia es uno de los renglones económicos más importantes del país; diversas regiones poseen plantaciones como la caña de azúcar, la palma africana, el plátano, la papa, entre otros, que pueden ser cultivadas durante todo el año debido al gran favorecimiento climático en el territorio nacional; esto le permite tener diferentes fuentes de biomasa primaria y a su vez un gran número de residuos agrícolas que pueden ser usados para la producción de biocombustibles de segunda generación[‡]. Es claro que el bagazo, como fuente de material lignocelulósico para la fabricación de diversos productos de valor agregado, puede representar un importante avance tecnológico y un gran aprovechamiento en términos económicos para la industria azucarera. Sin embargo, es importante analizar si el uso actual del bagazo está aprovechando de manera óptima las características de este material, las cuales abrirían nuevas alternativas de abastecimiento en la demanda de biocombustibles líquidos en Colombia y permitiría la producción de otros productos de valor agregado de gran utilidad para otras industrias.

Actualmente, existe un gran interés nivel mundial en la producción de etanol a partir de biomasa lignocelulósica. Países como USA y China, han enfocado sus principales programas de biocombustibles a la producción eficiente de etanol desde el punto de vista económico y en la utilización de biomasa agrícola o forestal para su producción (Anexo A). El uso de materiales celulósicos en la industria de biocombustibles reducirá la competencia con cultivos alimenticios, factor ampliamente atacado con las biomasas primarias e incrementará la

[‡]Ojeda, K., Sánchez, E., Kafarov, V., "BIOCOMBUSTIBLES LÍQUIDOS EN COLOMBIA" En: *Biocombustibles Líquidos en Iberoamérica*. Argentina ISBN: 978-987-652-043-0- Ed.: Ediciones Cooperativas, p.107 - 123,2009.

eficiencia en el uso de la tierra comparado con los biocombustibles de primera generación (Singh & Singh, 2010). Sin embargo, los biocombustibles de segunda generación también presentan desventajas tecnológicas actuales, como altos requerimientos de agua para su producción y un alto consumo energético lo que genera cuestionamientos sobre si puede justificarse un desarrollo sostenible de esta industria considerando la alta eficiencia energética reportada para las biomasas primarias (Tabla 1). De esta manera, es necesario verificar si el consumo energético del proceso es menor a la energía obtenida con el biocombustible producido.

Piomaca	Eficiencia energética	Rendimiento
DIOIIIdSd	(obtenida/consumida)	(l/hectárea /año)
Caña de azúcar	8.3	9,000
Yuca	1.2	4,500
Remolacha	1.5	5,000
Sorgo	2.9	4,400
Maíz	1.7	3,200

		7 . •			
Ishis 1	- HICIANCIA	anaraatica	v randimiantae	do hiomacac	nrimariae
ιανία ι.	LIIUGIUUA	cheruellea			o printianas

Fuente: Ojeda et al, 2012

Por otra parte, se han propuesto una gran cantidad de rutas tecnológicas para la obtención de bioetanol de segunda generación[§], sin embargo, no existe un consenso sobre cuáles de estas alternativas representan las opciones más

[§] Información reportada en: **Ojeda, K., El-Halwagi, M., Kafarov, V**., "Design of lignocellulosic feedstock biorefinery based on biochemical processing platform using process integration methodologies and exergy analysis." En: Integrated Biorefineries: Design, Analysis, and Optimization. (El-Halwagi, M. and Paul, S.)CRC Press/Taylor & Francis (2012). En edición.

adecuadas para la implementación de este tipo de procesos a escala industrial, generando una dificultad de selección de tecnologías para los sectores industriales. Lo anterior permitió identificar la necesidad del desarrollo de una metodología de análisis que permitiera la comparación y selección de esquemas tecnológicos considerando aspectos energéticos.

Tradicionalmente, las metodologías de análisis de procesos han sido centradas principalmente en aspectos económicos y ambientales, sin embargo la mayor parte de las tecnologías de producción de bioetanol de segunda generación no han sido implementadas a escala industrial por lo que una comparación basada en análisis económico para estos procesos emergentes no es justificable.

Teniendo en cuenta lo anterior, en esta investigación fue propuesta una metodología de comparación y selección centrada en el análisis exergético de diferentes rutas de obtención de bioetanol, apoyada en puntos específicos, con análisis ambiental (Figura 1), y en un proceso posterior de aplicación de principios de integración de procesos con el fin de plantear un esquema de producción integrado para el aprovechamiento del material lignocelulósico con un mínimo consumo energético externo. Así, los resultados de este trabajo podrán ser utilizados en el futuro como una herramienta eficaz para el análisis y gestión de este tipo de procesos.

Figura 1. Metodología de análisis basado en exergía

Las investigaciones actuales en el área de Ingeniería de Procesos se han expandido hacia el planteamiento de métodos para alcanzar el desarrollo sostenible de los sistemas. La implementación de un proceso sostenible para el aprovechamiento integral de la biomasa lignocelulósica, con el objetivo de producir biocombustibles de segunda generación, requiere un análisis profundo de aspectos económicos, ambientales, sociales y energéticos. Desde el punto de vista científico y tecnológico, la sostenibilidad y la renovabilidad de una fuente de energía son difíciles de cuantificar (Berthiaume *et al.*, 2001). Análisis ambientales brindan evaluaciones cualitativas de los impactos ambientales por la utilización de fuentes de energía, pero los pesos dados subjetivamente limitan mucho el alcance de las contribuciones ambientales y usualmente impiden mediciones sostenibles objetivas. Por otro lado, la exergía brinda una manera conveniente de unificar mediciones de diferentes tipos de materiales y energía y evalúa la calidad de los recursos y su degradación en los procesos de conversión (Yang *et al.*, 2007).

La cuantificación de la exergía termodinámica puede ser usada para evaluar y mejorar los procesos de producción ya que puede ayudar a entender mejor los beneficios de las energías renovables. La exergía claramente identifica las mejoras en eficiencia y las reducciones en las pérdidas energéticas atribuidas a las tecnologías desarrolladas. Muchos autores sugieren que la consideración de la exergía en el análisis de proceso direcciona mejor las estrategias sobre el impacto al ambiente y permite alcanzar una eficiente utilización de recursos (Hepbasli *et al.*, 2007; Rosen *et al.*, 2008). Además, la exergía puede proveer la base para una medición efectiva del potencial de impacto de una sustancia sobre el medio ambiente y la economía (Schaumann, 2007).

Durante la revisión del estado del arte sobre exergía, se observó que este concepto ha sido aplicado a procesos de producción en la industria petroquímica, química, del papel y acero, entre otras (Zafer & Arif, 2008; Arif *et al.*, 2007). En países como Japón, Suecia y Turquía, los procesos de conversión de energía (industriales y de recursos materiales) son expresados en términos del concepto de exergía; en estos países los balances de exergía de sus recursos forman parte integral de sus políticas gubernamentales (Rojas, 2005; Zafer & Arif 2007).

Los estudios relacionados con el análisis exergético de procesos industriales han sido enfocados a temáticas como la co-generación de energía donde autores como Abusoglu y Kanoglu (2008) y Silveira y Tuna (2003) utilizan la metodología del mínimo costo exergético para plantas de co-generación. Szargut *et al.* (2002) extendieron el análisis energético convencional hacia el análisis de consumo exergético acumulativo (CECA- *Cumulative exergy consumption analysis*), el cual considera los valores de la exergía primaria consumida en todos los enlaces del sistema energético y tecnológico en conexión con la fabricación del producto

considerado. El CECA fue aplicado originalmente a procesos industriales considerando los requerimientos energéticos. Luego Berthiaume y Bouchard (1999) extendieron el concepto a consumo de exergía acumulativa (CExC) considerando el consumo exergético de los productos. Además, propusieron el concepto de consumo neto de exergía (CNEx). Sahoo (2008) usó la programación evolutiva para hacer el análisis exergético-económico del sistema de co-generación.

La biomasa lignocelulósica, ampliamente estudiada por varios autores por su contribución a la reducción de los gases invernadero, también ha sido objeto de estudios exergéticos como el reportado por Ptasinski *et al.* (2007), en el cual se menciona la necesidad del análisis exergético de la gasificación de la biomasa debido a la baja eficiencia de los gasificadores. Martin *et al.* (2006) realizaron análisis exergético a la combustión combinada de biomasa y carbón pobre. Fryda *et al.* (2008) realizaron un análisis exergético de la gasificación en lecho fluidizado de la biomasa; Brown *et al.* (2007) realizaron una integración energía a partir de biomasa; Pellegrini y Oliveira (2007) realizaron análisis exegético de la gasificación de la partir de biomasa; Pellegrini y Oliveira (2007) realizaron análisis exegético de la gasificación de bagazo de caña.

En relación al uso del análisis exergético en producción de biocombustibles, Berthiaume *et al.* (2001) describieron un método para cuantificar la renovabilidad de un biocombustible (etanol de maíz) considerando el ciclo ideal CO₂-glucosaetanol para mostrar que la exergía puede ser analizada a través de ciclos termodinámicos naturales. La cantidad de exergía fue usada para evaluar la desviación del comportamiento ideal causado por el consumo de fuentes no renovables. Yang *et al.* (2007) realizaron análisis exergético usando el método energético acumulativo para identificar la renovabilidad de la producción de alcohol de maíz en China incluyendo todos los recursos no renovables, transporte, producción agrícola, transporte y el tratamiento de los sub-productos. Este estudio no incluye la combustión de etanol por considerar solamente el proceso de producción. Talens *et al.* (2007) han incursionado este tipo de análisis a la producción de biodiesel, sugiriendo el análisis de flujos exergéticos como una herramienta de contribución ambiental para contabilizar residuos y emisiones, determinar la eficiencia exergética y comparar otras fuentes de energía usando políticas económicas y ambientales definidas para el uso de recursos. Ellos determinaron que el proceso de producción de biodiesel presentaba pérdidas bajas de exergía.

En relación al análisis exergético en biocombustibles de segunda generación la información reportada en la literatura es muy limitada. Velásquez *et al.* (2010) analizaron la producción de etanol a partir de banana y sus residuos mediante análisis exergético y de renovabilidad. Tan *et al.*, (2010) compararon la producción de etanol a partir del fruto de la palma mediante análisis exergético. Recientemente han sido publicados algunos artículos en este campo resultados de esta investigación como se mencionará más adelante.

Así, el objetivo general de esta investigación fue: Aplicar la metodología de análisis exergético para la evaluación de procesos de producción de bioetanol de segunda generación como herramienta de diseño de procesos con el mínimo consumo de recursos energéticos externos.

Con base en lo anterior, los objetivos específicos propuestos para esta investigación fueron:

23

- Definir las características físico-químicas del material lignocelulósico y el pretratamiento para la liberación de las fracciones de celulosa, hemicelulosa y lignina.
- Identificar los esquemas de producción de bioetanol a partir de residuos lignocelulósicos.
- Selección de modelos de proceso de conversión de material lignocelulósico en etanol.
- Simular cada una de las rutas de obtención de biocombustibles a partir de biomasa lignocelulósica.
- Contabilizar las pérdidas energéticas por equipo/corriente en cada una de las rutas analizadas a través de un análisis exergético y evaluar eficiencia energética del proceso en general.
- Proponer un esquema de producción de biocombustibles con el mínimo consumo de recursos energéticos externos basado en el análisis exergético.

Para lo anterior, la tesis fue desarrollada siguiendo el esquema metodológico presentado en la Figura 2.

Con base en la metodología establecida, la tesis se ha dividido en seis capítulos principales: El Capítulo I describe de manera conceptual los principales aspectos del análisis exergético y de la integración de procesos. El Capítulo II está dedicado a la aplicación del análisis exergético en reactores de hidrólisis enzimática considerando modelos ideales. El Capítulo III describe las características del modelamiento y simulación de las rutas de producción de bioetanol a partir de material lignocelulósico usando Aspen Plus[™]. Posteriormente en el Capítulo IV se describe de manera detallada la comparación de dichas rutas simuladas usando la metodología de análisis exergético. En el Capítulo V la metodología de integración

de procesos fue aplicada de manera complementaria a las rutas de mejores resultados exergéticos reportados en los capítulos anteriores y finalmente en el Capítulo VI se describen las alternativas de producción propuestas con base en los análisis realizados.

NOVEDAD CIENTÍFICA

- Con este trabajo se desarrolló y aplicó por primera vez la metodología de análisis exergético para la selección y evaluación de tecnologías de producción de biocombustibles de segunda generación.
- Se analizó, por primera vez, el desempeño de reactores enzimáticos ideales basado en análisis exergético.
- Se analizó y comparó, por primera vez, diferentes pre-tratamientos y tecnologías (SHF, SSF, SSCF) mediante análisis exergético.
- Se combinaron los conceptos de exergía e integración de procesos para el análisis y selección de rutas de producción de bioetanol de segunda generación

IMPORTANCIA PRÁCTICA

Este trabajo permitió el establecimiento de una metodología de análisis basada en conceptos de exergía que permite la comparación y selección de rutas tecnológicas para la producción de biocombustibles de segunda generación. Esto brinda una herramienta en la toma de decisiones y propone bases de análisis para su utilización con otros esquemas tecnológicos

Publicaciones

Algunos resultados de la investigación se han publicado en:

<u>Revistas</u>

Ojeda, K., Sánchez, E., Suarez, J., Ávila, O., Quintero V., El-Halwagi, M., Kafarov, V. Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass. *Industrial & Engineering Chemistry Research.*, 2011, 50 (5), pp 2768–2772

Ojeda, K., Suarez, J., Ávila, O., Kafarov, V. Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production -Part 1. *Chemical Engineering Research and Design*, *Volume 89, Issue 3, March 2011, Pages 270-279*

Ojeda, K., Sánchez, E., Kafarov, V. Sustainable ethanol production from lignocellulosic biomass - Application of exergy analysis, *Energy* (2010), doi:10.1016/j.energy.2010.08.017

Ojeda, K., Kafarov, V. Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. *Chemical Engineering Journal* 154 (2009) 390–395.

Ojeda, K., Rondón, S., Quintero V., Kafarov, V. Evaluación de sostenibilidad de la producción de biocombustibles de segunda generación mediante la aplicación de análisis exergético. *Prospect.* Vol. 7, No. 2, (2009), págs. 19-26 ISSN 1692-8261

Sánchez, E., Ojeda, K., Kafarov, V. Diseño de producción conjunta biodiesel – bioetanol. *Revista Energía y Computación*. Ed. 27 Vol. 15 Nº 1. 2007. ISSN 0121-5299

Capítulos de libros

González, E., Kafarov, K., Ojeda, K., González, M., Cata, Y. "Posibilidades de producción de bioetanol utilizando de forma paralela sustratos azucarados y residuos lignocelulósicos" Posibilidades prospectivas de producción de bioetanol aprovechando integralmente los residuos agroindustriales sin agredir el medio ambiente. Cubaenergia, 2006. **ISBN 959-7136-44-9**

Ojeda, K., Sánchez, E., Kafarov, V. "Biocombustibles líquidos en Colombia" Biocombustibles Líquidos en Iberoamérica. Argentina, 2009.**ISBN 978-987-652-043-0**

Ojeda, K., El-Halwagi, M., Kafarov, V., "Design of lignocellulosic feedstock biorefinery based on biochemical processing platform using process integration methodologies and exergy analysis" En: **Integrated Biorefineries: Design, Analysis, and Optimization**. (El-Halwagi, M. and Paul, S.)CRC Press/Taylor & Francis (2012).En edición.

Trabajos en eventos

Ojeda, K., Sánchez, E., El-Halwagi, M., Kafarov, V. "Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways" XIX International Conference on Chemical Reactors CHEMREACTOR-19.Austria, 2010.

Ojeda, K., Sánchez, E., Suarez, J., Ávila, O., Quintero V., El-Halwagi, M., Kafarov, V. "Application of computer-aided process engineering and exergy analysis for evaluation of different routes of biofuels production from lignocellulosic biomass" International-Mexican Congress on Chemical Reaction Engineering- 2010.

Ojeda, K., Kafarov, V. "Sustainable ethanol production from lignocellulosic biomass - Application of exergy analysis". 5thDubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems.Croatia, 2009.

Ojeda, K., Quintero, V., Kafarov, V. "Análisis exergético de la producción de etanol como herramienta para evaluar la sostenibilidad de biocombustibles de segunda generación". IV Simposio de Química Aplicada – SIQUIA 2009. Colombia, 2009.

Ojeda, K., Kafarov, V. "Uso de material lignocelulósico de la caña para la producción sostenible de biocombustibles de segunda generación". XI Seminario Internacional de Medio Ambiente y Desarrollo Sostenible - SIMADS 2008. Colombia, 2008.

Ojeda, K., Sánchez, E., Kafarov, V. "Colombian Biofuels Perspective" 4thDubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems.Croatia, 2007.

Ojeda, K., Sánchez, E., Kafarov, V. "Proposal of joint production of Biodiesel -Bioethanol fuels in Colombia" 4thDubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems. Croatia, 2007.

Sánchez, E., Ojeda, K., Kafarov, V. "Producción conjunta de biocombustibles: Biodiesel-Bioetanol" X Seminario Internacional de Medio Ambiente y Desarrollo Sostenible - SIMADS 2007. Colombia, 2007.

Ojeda, K., Sánchez, E., Hernández, L., Kafarov, V. "Desarrollo sostenible de la industria de biocombustibles en Colombia" **X Seminario Internacional de Medio Ambiente y Desarrollo Sostenible - SIMADS 2007. Colombia, 2007.**

Ojeda, K., Sánchez, E., Kafarov, V. "Situaciones y perspectivas de los biocombustibles en Colombia" - 6thInternational congress of distributed generation and energy in rural places, Campinas – Brazil, 2006. Proceedings online. Available from: <http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC000000 022006000200041&lng=en&nrm=abn>. Access on: Nov. 17th of 2010. Ojeda, K., Sánchez, E., González, E., Prias, O., Kafarov, V. "Posibilidades colombianas para la producción conjunta de biocombustibles y co-generación de energía" **In** *4*th *International workshop of energy and environment, Cuba, 2006.* (In Spanish)

1. ANÁLISIS EXERGÉTICO E INTEGRACIÓN DE PROCESOS**

1.1. ANÁLISIS EXERGÉTICO

La exergía es la máxima cantidad de trabajo útil que puede obtenerse de un sistema por intercambio de materia y energía con el medio a través de un proceso reversible (Yang *et al.* 2006, Sciubba & Wall, 2007). La exergía es la porción de energía que es enteramente convertible en todas las otras formas de energía. Los conceptos de exergía han sido aplicados a conversión de energía, optimización de procesos, diagnóstico, análisis de sistemas complejos y análisis de sostenibilidad, entre otros.

La exergía es un potencial termodinámico, es una medición general de la diferencia del sistema respecto a un estado de referencia, por esta razón requiere dos estados diferentes para su definición. La exergía es evaluada respecto a un ambiente de referencia. Este actúa como un sistema infinito y es una fuente y un sumidero de calor y materiales. Este experimenta solamente procesos internamente reversibles en los cuales sus estados permanecen inalterados (por ejemplo, temperatura T_o , presión p_o y potenciales químicos, μ_{io} , para cada uno de los componentes *i* permanecen constantes) (Dincer & Rosen, 2007).

Cualquier corriente de materia, calor o trabajo puede ser asociado con un contenido exergético, el cual es definido por *T*, *P* y *x* de la corriente y del estado de referencia, el cual normalmente es el ambiente en el cual el sistema opera (Sorin *et al*, 1998).

^{**}Algunos conceptos tomados de: **Ojeda K., Quintero V., Rondón S., Kafarov V**., Evaluación de sostenibilidad de la producción de biocombustibles desegunda generación mediante la aplicación de análisis exergético. *Prospect*.Vol. 7, No. 2, Julio - Diciembre de 2009, págs. 19-26

De acuerdo con Sorin *et al.* (1998), es posible calcular los contenidos de exergía de todas las corrientes de entrada y salida de un sistema y establecer su balance exergético global. Sin embargo, el total de exergía de entrada de un sistema real es siempre más alta que la exergía de salida, debido a que hay una cierta cantidad de exergía que es destruida de manera irreversible dentro del sistema. Esta exergía, hace referencia a las pérdidas de exergía interna y está directamente relacionada con las irreversibilidades termodinámicas del sistema. Un balance exergético, por definición, solo existe para procesos reversibles. Así, para procesos reales en los cuales las irreversibilidades son mayores que cero, la exergía nunca está en balance (Wall, 1988).

Es importante distinguir entre la exergía destruida causada por las irreversibilidades y la exergía desechada debido a exergía no usada en el proceso. Ambas representan perdidas de exergía, pero las irreversibilidades, por definición, no tienen exergía ni efectos ambientales (Akkaya *et al.*, 2007).

Con el cálculo de pérdidas exergéticas (por ejemplo, destrucción y desecho), es posible visualizar las mejoras en los procesos. Generalmente, cuando las pérdidas exergéticas son altas, podemos considerar mejorar primero esa parte del proceso; sin embargo, cada parte del sistema tiene una dependencia de las demás, así que una mejora en una parte puede incrementar las pérdidas en otras, generando iguales o mayores pérdidas exergéticas en el proceso modificado que en la configuración original (Gong & Wall, 1997).

Para un sistema, la transferencia de exergía puede estar asociada específicamente a tres formas principales: transferencia de calor (exergía térmica), transferencia de trabajo (exergía de trabajo) y flujos másicos (exergía de materia). La exergía térmica asociada con la transferencia de calor a temperatura constante esta dada por (Ec. 1):

33

$$E_Q = \left(1 - \frac{T_0}{T}\right)Q\tag{1}$$

Donde:

- E_Q : Exergía térmica
- T: Temperatura
- *T*₀: Temperatura de referencia
- Q: Calor transferido

El término en paréntesis se conoce como el *Factor de eficiencia de Carnot*. Esto implica que solo una fracción de la energía contenida en la corriente de calor puede ser convertida en trabajo y esto depende de la temperatura de la fuente y de los alrededores. El estudio de la transferencia de calor brinda una interesante perspectiva sobre la inevitable producción de entropía y pérdidas de exergía. Esto implica que existen unas pérdidas exergéticas inherentes a la transferencia de calor. Sin importar que tan eficiente sea la transferencia de calor, el solo hecho de tener un gradiente de temperatura es suficiente para que ocurran pérdidas de exergía.

El flujo de exergía asociada con el trabajo realizado por un sistema es equivalente a la cantidad de trabajo transferido. De igual manera, la exergía asociada con la electricidad también es equivalente a la energía (Dincer & Rosen, 2007). Así, el coeficiente de exergía para el trabajo y la electricidad es igual a 1 (Talens *et al.* 2007). El contenido de exergía de una corriente material es la cantidad de trabajo que puede ser producido por llevar esa corriente a equilibrio térmico, mecánico y químico con un estado de referencia por una serie de operaciones secuenciales reversibles. Este proceso puede ser realizado en dos pasos (Sorin *et al*, 1998):

- El equilibrio térmico y mecánico es alcanzado a través de interacciones (la temperatura y presión final de la corriente son las mismas que para el estado de referencia).
- La corriente es llevada a equilibrio químico con el estado de referencia por intercambios reversibles de calor y masa ocurridos a la presión y temperatura de referencia.

De esta manera, la exergía E de un sistema puede ser escrita como se muestra en la Ecuación 2 (Wall, 1988).

$$E = S(T - T_0) - V(p - p_0) + \sum_i n_i (\mu_i - \mu_{i0})$$
⁽²⁾

Donde:

- S: Entropía
- V: Volumen
- n; Número de moles de la sustancia i
- T: Temperatura
- p: Presión
- μ_i : Potencial químico de la sustancia *i*

El subíndiceo describe el estado cuando existe un equilibrio termodinámico con el ambiente de referencia.

La exergía de una corriente material está constituida por su exergía física y química, así como las pérdidas exergéticas debido a la mezcla de sustancias (en caso de corrientes multi- componentes).

La exergía física de un flujo material puede ser escrita como se muestra en la Ecuación 3.

$$E_{fis} = H - H_0 - T_0(S - S_0)$$
(3)

Donde:

- H: Entalpía
- S: Entropía
- T: Temperatura

La exergía química de una sustancia es el máximo trabajo útil que puede ser producido por el proceso de equilibrio químico y físico de la sustancia con el ambiente. De acuerdo con Trubaev (2006), las exergías químicas y termomecánicas pueden ser calculadas a partir de los datos termodinámicos de la sustancia.

La exergía química de varios combustibles puede ser evaluada apropiadamente si se conoce la composición elemental, usando las correlaciones propuestas por Szargut *et al.* (1988).

En el caso de biomasa, la exergía química puede calcularse usando las correlaciones para combustibles usando el valor calórico neto o LHV (Lower

Heating Value), y las fracciones másicas de los materiales orgánicos, sulfuros, agua y ceniza presentes en la biomasa (Ec. 4) (Ptasinski *et al.,* 2007).

$$E_{ch,total} = w_{org} (\beta LHV_{org}) + w_S (E_{ch,S} - C_S) + w_{agua} E_{ch,agua} + w_{ceniza} E_{ch,ceniza}$$
(4)

Donde:

E _{ch} :	Exergía química (kJ/kg)
Wj:	Fracción másica del compuesto <i>i</i>
<i>LHV_{org}:</i> org.fr.)	Valor calorífico inferior de la fracción orgánica por kilogramo (kJ/kg

β: Relación entre la exergía química y el LHV de la sustancia orgánica seca (adimensional)

C_S: Valor calorífico del sulfuro (kJ/kg)

El factor β puede calcularse usando las correlaciones estadísticas desarrolladas por Szargut y Styrylska (1964) y a lo reportado por Hepbasli (2008) (Ec. 5).

$$\beta = \frac{1.042 + 0.2160 \left(\frac{w_{H_2}}{w_c}\right) - 0.2499 \left(\frac{w_{O_2}}{w_c}\right) \left[1 + 0.7884 \left(\frac{w_{H_2}}{w_c}\right)\right] + 0.045 \left(\frac{w_{N_2}}{w_c}\right)}{1 - 0.3035 \left(\frac{w_{O_2}}{w_c}\right)} (5)$$

La exergía estándar de muchos compuestos está disponible en la literatura (Utlu & Hepbasli 2008, Ayres & Ayres 1999). Cuando no puede ser hallada, ésta puede ser calculada para cualquier sustancia pura utilizando su energía libre de Gibbs de formación (Ayres *et al.*, 2006).

De igual manera, las pérdidas exergéticas debido a la mezcla de sustancias deben ser consideradas para el cálculo de la exergía química de las corrientes. Generalmente, estas pueden ser calculadas mediante la Ecuación 6 (Ojeda & Kafarov, 2009).

$$E_{ch,mix} = \sum_{i} y_i E_{ch,i} + RT_0 y_i ln y_i$$
(6)

Donde:

- *E_{ch,i}*: Exergía química estándar de la sustancia i
- R: Constante de los gases ideales
- *T*₀: Temperatura de referencia
- *y*;: Fracción molar de la sustancia i

1.1.1. Eficiencia exergética del proceso

La eficiencia en la utilización de un recurso en cualquier proceso puede ser medido a través del cálculo de la eficiencia exergética (Yang *et al.*,2006). En todo proceso existen pérdidas de exergía debido a sus irreversibilidades, estas pérdidas se reflejan en la eficiencia termodinámica del sistema. Así, la eficiencia exergética (T) es usada para medir el grado de utilización de un recurso y las características termodinámicas de un proceso (Ec. 7).

$$\tau = \frac{exergía \ obtenida}{exergía \ consumida} \tag{7}$$

El análisis de flujos de exergía, a través del cálculo de la eficiencia exergética, brinda una herramienta para identificar los residuos y pérdidas de energía del proceso detectando áreas que requieren mejoras tecnológicas (Talens *et al.* 2007). La exergía también representa un importante indicador para medir la
calidad del material y comparar diferentes procesos de producción especialmente en la comparación de fuentes de energía renovable.

1.1.2. Análisis exergético para el diseño sostenible de biorefinerías.

Varios indicadores relacionados a exergía han sido desarrollados con el objetivo de analizar los procesos de una manera cuantitativa (Tonon *et al.*, 2006):

- Eficiencia de Segunda ley: la cual evalúa el desempeño del sistema para convertir la exergía de entrada en exergía asociada a los productos.
- Eficiencia potencial de Segunda ley: la cual evalúa el potencial adicional de eficiencia exergética derivada del aprovechamiento de las corrientes de salida que existen pero que no son consideradas como productos útiles o no son efectivamente usadas. Estos productos son útiles normalmente, solo a condiciones particulares.
- Costo de productos: el cual determina la eficiencia de usar recursos económicos para obtener los productos. Este costo es expresado en bases exergéticas para comparar diferentes productos.
- Diferencia relativa de costo: la cual expresa el incremento relativo en el costo promedio por unidades de exergía entre los componentes de alimentación y productos.
- Factor exergoeconómico: el cual compara el costo de capital de la planta respecto al costo de las irreversibilidades asociadas al proceso. Estas últimas involucran un incremento en la cantidad de energía y materia (y su incremento en el costo) para obtener el mismo producto, si se compara con un proceso ideal.

- Factor de renovabilidad: el cual compara la exergía en el producto con el consumo de exergía durante el tratamiento de residuos y la preparación de la entradas no renovables (trabajo de restauración) (Berthiaume *et al.,* 2001)
- Indicador de intercambio ambiental: el cual describe en intercambio entre el ambiente y los productos deseados. Si el trabajo de restauración asociado con los procesos de tratamiento de residuales es mayor que la exergía contenida en los productos, este indicador será menor que 1, indicando que el proceso de producción no es ambientalmente viable cuando la economía humana intercambia energía y materiales con el ambiente.

Otro punto que debe ser considerado en la producción de biocombustibles es la "Energía consumida vs. La energía contenida en el biocombustibles producido". El procesamiento de fuentes de energía no renovables usualmente involucra el consumo de recursos no renovables (NRR, *Non-Renewable Resource*) (Ojeda *et al.,* 2010a). Cuando la exergía contenida en un NRR es alterada a través de un proceso irreversible, el ambiente también se considera alterado. Así, muchas investigaciones se han enfocado en la contabilización de exergía por el consumo de NRR con el objetivo de medir el impacto ambiental de procesos de manufactura (Neelis *et al.,* 2004).

De acuerdo con WORC (2006), la biomasa energética debe cultivarse o ser producida de manera sostenible para brindar beneficios ambientales netos. Dentro de los criterios para juzgar la sostenibilidad en la producción de biomasa energética puede destacarse el Balance Neto de Energía, el cual menciona que debe existir mayor cantidad de energía en la biomasa que la energía consumida para producirla (sobre su ciclo de vida). Esto incluye la energía para cultivo, fertilización, trasporte, etc. De esta manera, es necesario verificar que los biocombustibles de segunda generación representen una buena alternativa para el desarrollo sostenible de esta industria. En este sentido, el consumo de energía global en la producción de etanol a partir de material lignocelulósico, como el bagazo de caña, es menor que en los procesos que usan materiales no residuales, debido a que en este proceso se usa parte de la energía global en el proceso tradicional de aprovechamiento de la caña; por lo tanto el consumo energético correspondiente a las etapas de cultivo es contabilizado en el proceso tradicional de azúcar (Ojeda *et al.*, 2010a) (Figura 3).

Figura 3. Consumo de energía global en el proceso de producción de biocombustibles de segunda generación.

El desarrollo sostenible requiere recursos energéticos sostenibles y el uso eficiente de tales residuos (Dincer & Rosen, 2007). La medida de renovabilidad de una fuente de energía usando métodos de contabilización de energía tradicional es cuestionable debido a que estos métodos están basados en la primera Ley de la Termodinámica, la cual incluye el principio de conservación de energía. Sin embargo, los cálculos de rendimientos energéticos, los cuales pueden indicar si existe algún tipo de energía neta ganada o perdida, deben tener en cuenta todas las formas de energía (incluyendo la energía química de todos los materiales) y la segunda Ley de la Termodinámica, la cual reconoce los cambios en la calidad o aprovechamiento de la energía (Berthiaume *et al.*, 2001).

El análisis exergético está relacionado con la sostenibilidad debido a que al incrementar la sostenibilidad en el uso de la energía, debemos considerar no solo las pérdidas de energía, sino también las pérdidas en exergía. Una de las principales ventajas del análisis exergético sobre el análisis energético es que la exergía contenida en los flujos de un proceso es mejor evaluada que la energía, ya que la exergía indica la fracción de energía que es realmente usada y útil. La aplicación de análisis exergético a un componente, proceso o sector puede guiar sobre como mejorar la sostenibilidad reduciendo las pérdidas exergéticas. Así, para justificar la producción de biocombustibles de segunda generación es necesario confirmar, mediante análisis exergético, que la energía obtenida a partir de la biomasa lignocelulósica es mayor que la energía consumida en la producción de etanol.

Por otro lado, la exergía está mejor relacionada con los efectos ecológicos que la energía, lo cual hace a los flujos exergéticos mejores indicadores ecológicos. El contenido exergético de un recurso natural puede ser interpretado como una medida de su potencial de utilidad. La exergía contenida en los residuales puede

ser una medida de su potencial para causar daño ambiental. Las emisiones de sustancias que son comunes en el ambiente (vapor de agua, entre otros) contienen menos exergía que las emisiones de sustancias menos comunes. Las emisiones con altos contenidos exergéticos están asociadas a un desperdicio de recursos en los procesos. Un alto contenido exergético debido a una transferencia de calor significa alta diferencia de temperatura con el ambiente, el cual genera grandes impactos ambientales. Algunos materiales de desecho alcanzan un equilibrio ecológico con el ambiente, sin embargo, exergía no familiar puede tener un gran potencial de causar importantes impactos (Wall & Gong, 2001). Debido a las altas pérdidas exergéticas causadas por las irreversibilidades, es necesario introducir al proceso mayor exergía para compensar esta pérdida, lo cual puede tener un impacto ambiental (un efecto indirecto de la exergía de destrucción) (Wall & Gong, 2001).

1.2. INTEGRACIÓN DE PROCESOS

La metodología de integración de procesos es una herramienta para el diseño y análisis que enfatiza en las etapas del proceso (El-Halwagi, 2006). La integración de procesos ofrece una metodología de trabajo que permite una fuerte interacción entre las unidades del proceso, los recursos y las corrientes, determinando unos objetivos de desempeño para el proceso y generando decisiones que permiten el alcance de esos objetivos. La integración de procesos involucra las siguientes actividades (El-Halwagi, 2006):

 Identificación de tareas: El primer paso es identificar las metas que deseamos alcanzar y describirlas. Para esta caracterización, se debe describir la información más importante y los límites del sistema.

- Determinación de objetivos: Permite la identificación de los valores mínimos o máximos de integración (*Targets*) para un sistema, previo al diseño de estrategias de implementación. La determinación de estos objetivos permite identificar los máximos rendimientos del proceso, permitiendo obtener mejoras potenciales y alcanzables.
- Generación de alternativas (Síntesis): Debido a la gran cantidad de posibles soluciones que permiten alcanzar el objetivo (*Target*), es necesario determinar aquellas configuraciones de interés y representar las alternativas de re-diseño del proceso.
- Selección de alternativas (Síntesis): Una vez se han generado las posibles alternativas, es necesario obtener la solución óptima para el objetivo propuesto. La generación y selección de alternativas son actividades de síntesis de procesos.
- 5. Análisis de las alternativas seleccionadas: Se deben evaluar las alternativas seleccionadas mediantes técnicas de análisis de procesos.

Un gran número de contribuciones han sido desarrolladas en el campo de la integración de procesos (EI-Halwagi, 2006). Desde la perspectiva de integración de recursos, la integración de procesos puede ser clasificada, principalmente, en integración másica y energética. La integración energética es una metodología sistemática que brinda un entendimiento fundamental sobre la utilización de la energía en el proceso, y emplea este entendimiento en la determinación de estrategias óptimas de recuperación de energía. En un proceso tradicional, normalmente hay corrientes frías y calientes que requieren servicios industriales para cubrir los requerimientos energéticos del proceso (por ejemplo, agua de enfriamiento, refrigerantes, aceites de calentamiento, etc.). Así, las herramientas de integración permiten la reducción de estos requerimientos industriales

generando una reducción significativa en el costo de operación en los procesos. El objetivo de los diseños de redes de intercambio de calor, es aprovechar las corrientes calientes y frías para transferir energía entre las corrientes del proceso en lugar de usar servicios industriales externos (El-Halwagi *et al.*, 2009). Por otro lado, la integración másica es una metodología que brinda un análisis de los flujos másicos globales del proceso e identifica los objetivos de desempeño y optimización para el re-direccionamiento de especies a través del proceso. El análisis *pinch* para reciclo de material permite el diseño de estrategias de reciclo lo cual garantiza una mínima descarga de corrientes de desecho y una reducción en el uso de material fresco.

2. ANÁLISIS EXERGÉTICO DE REACTORES DE HIDRÓLISIS ENZIMÁTICA PARA LA TRASNFORMACIÓN DE BIOMASA LIGNOCELULÓSICA EN ETANOL^{⁺⁺}

Una variedad de modelos teóricos y empíricos han sido propuestos para describir la hidrólisis enzimática de materiales lignocelulósicos (Caminal *et al.*, 1985; Huang, 1975; Wald *et al.*, 1984; Converse & Optekar, 1993; Kurakake *et al.*, 1995; Parajó *et al.*, 1996; Holtzapple *et al.*, 1984). En este capítulo, el cual fue publicado en el trabajo de la referencia, se compararon dos reactores enzimáticos usando análisis exergético. Se seleccionó la etapa de hidrólisis como objeto de validación inicial, por ser una etapa significativa en el desempeño global del proceso. Para esto, el modelo cinético propuesto por Kadam *et al.* (2004) fue seleccionado para el modelamiento de los reactores enzimáticos porque este considera la inhibición por xilosa, uno de los mayores azúcares hidrolizados de la hemicelulosa, además de los efectos de la temperatura en la etapa de hidrólisis. Dicho modelo fue desarrollado y validado por sus autores en un rango de temperaturas entre 30-55°C, razón por la cual, en el análisis propuesto en esta etapa se consideraron condiciones similares para el proceso de simulación.

2.1. MODELAMIENTO DEL REACTOR

Kadam *et al.* (2004) modelaron tres reacciones: dos reacciones heterogéneas para el fraccionamiento de celulosa en celobiosa y glucosa y una reacción homogénea para la hidrólisis de celobiosa a glucosa. También consideraron el modelo de adsorción de Langmuir (Ec. 8). Además, cada reacción enzimática está potencialmente inhibida por los azúcares generados o por los ya presentes en el

^{††} Artículo publicado: Ojeda K., Kafarov, V., "Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol" **Chemical Engineering Journal** 154 (2009) 390–395

sistema; así, para simplificar el modelo, se consideró una inhibición competitiva en las reacciones enzimáticas por parte de celobiosa, glucosa y xilosa (Ecs. 9-11).

La hidrólisis de la celulosa es afectada por la acción sinergética entre la endo- β -1,4-glucanasa (EG), exo- β -1,4-celobiohidrolasa (CBH), exo- β -1,4-glucan glucohidrolasa, y β -glucosidasa. Las primeras tres enzimas producen celobiosa y glucosa; adicionalmente, la celobiosa es hidrolizada a glucosa por la acción de la β -glucosidasa. Ambos azúcares causan la inhibición hacia el producto final. Sin embargo, la celobiosa es un inhibidor mucho más fuerte que la glucosa (Kadam, *et al.*, 2004).

Celulosa	<u>r1</u>	Celobiosa
----------	-----------	-----------

Celulosa <u>r2</u> Glucosa

Celobiosa <u>r3</u> Glucosa

Adsorción de la Enzima

Isoterma de Langmuir

$$E_{iB} = \frac{E_{imax}K_{iad}E_{iF}S}{1 + K_{iad}E_{iF}}$$
(8)

Reacción de celulosa a celobiosa con inhibición competitiva de glucosa, celobiosa y xilosa.

$$r_{1} = \frac{k_{1r}E_{1B}R_{S}S}{1 + \frac{G_{2}}{K_{1IG}} + \frac{G}{K_{1IG}} + \frac{X}{K_{1IX}}}$$
(9)

Reacción de celulosa a glucosa con inhibición competitiva de glucosa, celobiosa y xilosa

$$r_{2} = \frac{k_{2r}(E_{1B} + E_{2B})R_{S}S}{1 + \frac{G_{2}}{K_{2IG}} + \frac{G}{K_{2IG}} + \frac{X}{K_{2IX}}}$$
(10)

Reacción de celobiosa a glucosa con inhibición competitiva de glucosa y xilosa.

$$r_{3} = \frac{k_{3r}E_{2F}G_{2}}{K_{3M}\left(1 + \frac{G}{K_{3IG}} + \frac{X}{K_{3IX}}\right) + G_{2}}$$
(11)

Donde:

- E_T Concentración total de enzima (g/kg)
- *E_B* Concentración de enzima adherida (g/kg)
- *E_F* Concentración de enzima libre (g/kg)
- E_{1B} Concentración de CBH y EG adherida (g/kg)
- E_{2B} Concentración de β -glucosidasa adherida (g/kg)

- E_{2F} Concentración de β -glucosidasa en la solución (g/kg)
- *E_{max}* Máxima masa de enzima que puede adsorberse sobre una unidad de masa de sustrato (g/g celulosa)
- G Concentración de glucosa (g/kg)
- G₂ Concentración de celobiosa (g/kg)
- *K_{ad}* Constante de disociación para reacción enzimática de adsorción/desorción (g/g celulosa)
- *k*_{ir} Constante de velocidad de reacción (kg/g.h)
- *K_{ilG}* Constante de inhibición por glucosa (g/kg)
- *K_{ilG2}* Constante de inhibición por celobiosa (g/kg)
- *K_{ilX}* Constante de inhibición por xilosa (g/kg)
- *K*_{3M} Constante de saturación del sustrato (g/kg)
- *r_i* Velocidad de reacción (g/kg.h)
- *R* Constante universal de los gases (cal/mol.K)
- *R*_s Reactividad del sustrato
- S Concentración del sustrato (g/kg)
- X Concentración de xilosa (g/kg)

Estas ecuaciones de velocidad asumen que: (1) la adsorción de la enzima sigue el comportamiento de la isoterma tipo Langmuir cuando las reacciones son de primer orden (r_1 y r_2) y ocurre sobre la superficie de la celulosa, (2) la matriz de celulosa es uniforme en términos de su susceptibilidad al ataque enzimático, (3) la actividad enzimática permanece constante, y (4) la conversión de celobiosa a glucosa ocurre en solución y sigue una cinética clásica de Michaelis-Menten (Kadam, *et al.*, 2004).

Los reactores CSTR (*Continuous Stirred-Tank Reactor*) y PFR (*Plug-Flow Reactor*) fueron seleccionados por ser considerados modelos de referencia para los procesos industriales. Se desarrolló un análisis de la eficiencia exergética de estos dos tipos de reactores usando biomasa lignocelulósica como materia prima para la producción de biocombustibles de segunda generación.

Para el desarrollo del proceso enzimático se consideró 1 ton/h de bagazo generado en una producción convencional de azúcar, con una composición (m/m): Celulosa 47.5%, Hemicelulosa 20%, y Lignina 32.5% (Nordini, 1994). Las propiedades para celulosa, glucosa y xilosa como temperatura, volumen y presión criticas; factor acéntrico, calor de formación a 298.15 K; calor de vaporización; entre otros fueron obtenidos de Wooley & Putsche, (1996). El modelo NRTL (*Non-Random Two Liquids*) fue escogido para el cálculo de los coeficientes de actividad para la fase líquida y la ecuación de estado SRK para la fase vapor. Se consideró un pretratamiento organosolv (solución (v/v) con Etanol 65%, NaOH 2.5% y agua) para la biomasa. La xilosa y la glucosa fueron usadas para representar las pentosas y hexosas, respectivamente. La celulosa removida en el paso de la delignificación fue diluida con agua en el reactor de hidrólisis para obtener una concentración de sólidos de 4% (m/m). Para el desarrollo de simulación en la etapa de hidrólisis se consideraron los resultados reportados por Kadam *et al.*,

(2004), con el fin de utilizar los parámetros estimados durante el desarrollo del modelo (Tabla 2).

Parámetro	Valor	Parámetro	Valor
K _{1ad} (g /g substrato)	0.4	<i>k</i> _{2r} (g/mg.h)	7.18
K₂ad (g /g substrato)	0.1	<i>K</i> _{2IG2} (g/kg)	132.0
<i>E</i> _{1max} (g /g substrato)	0.06	<i>K</i> _{2IG} (g/kg)	0.04
E _{2max} (g /g substrato)	0.01	<i>K</i> _{2IX} (g/kg)	0.2
<i>k</i> _{1r} (g/mg.h)	22.3	<i>k</i> _{3r} (h⁻¹)	285.5
K _{11G2} (g/kg)	0.015	<i>К</i> _{3М} (g/kg)	24.3
K _{1IG} (g/kg)	0.1	<i>K</i> _{3IG} (g/kg)	3.9
<i>K</i> _{11X} (g/kg)	0.1	K₃ıҳ (g/kg)	201.0

Tabla 2. Parámetros de los modelos

Fuente: Kadam et al., 2004

La ecuación de Arrhenius fue usada para predecir los efectos de la temperatura sobre la sacarificación de celulosa en todas las reacciones. Los balances de masa para cada reactor se presentan a continuación:

2.1.1. CSTR (Continuous Stirred-Tank Reactor)

Suposiciones:

• Condiciones de estado estable

- Biomasa lignocelulósica pre-tratada con solución organosolv.
- Enzima utilizada: Trichoderma reesei celulasas
- Conversión de celobiosa: 100%
- En términos de capacidad de inhibición, la xilosa fue usada para representar las pentosas (xilosa y arabinosa) y la glucosa fue usada para representar todas las hexosas (glucosa, galactosa y manosa). La xilosa, glucosa y celobiosa presentan inhibición competitiva en las reacciones de hidrólisis enzimáticas.

Balance de masa

Celulosa:

$$\dot{M}_0 - \dot{M} = m_T (r_1 + r_2) \tag{12}$$

Glucosa:

$$\dot{G} = m_T (r_3 + r_2)$$
 (13)

Donde:

М	Flujo másico de sustrato) (g/h	I)
---	--------------------------	--------	----

- ρ_m Densidad de la mezcla (kg/m³)
- m_T Masa de reacción (kg)
- \dot{G} Flujo másico de glucosa (g/h)
- *X_M* Conversión del sustrato

r Velocidad de reacción

2.1.2. PFR (Plug-Flow Reactor)

Suposiciones:

- Condiciones de estado estable
- Régimen de flujo tapón.
- Enzima utilizada: *Trichoderma reesei celulasas*
- Conversión de celobiosa: 100%
- En términos de capacidad de inhibición, la xilosa fue usada para representar las pentosas (xilosa y arabinosa) y la glucosa fue usada para representar todas las hexosas (glucosa, galactosa y manosa). La xilosa, glucosa y celobiosa presentan inhibición competitiva en las reacciones de hidrólisis enzimáticas.
- El sistema opera isotérmicamente (no cambia con la posición axial).

Balance de masa.

Celulosa:

$$\int_{0}^{X_{M}} \frac{dX_{M}}{(r_{1} + r_{2})} = \frac{\rho_{m}V}{\dot{M}_{0}}$$
(14)

Glucosa

$$-\int_{0}^{X_{M}} \frac{dX_{M}}{(r_{2}+r_{3})} = \frac{\rho_{m}V}{\dot{M}_{0}}$$
(15)

Donde:

- \dot{M} Flujo másico de sustrato (g/h)
- ρ_m Densidad de la mezcla (kg/m³)
- *X_M* Conversión del sustrato
- r Velocidad de reacción
- V Volumen (m³)

Las concentraciones de azúcar y sustratos son expresadas como g/kg. Por ejemplo: Gramos de sustancia por kilogramo de la masa total del sistema.

2.2 COMPARACIÓN DE LOS BIOREACTORES ENZIMÁTICOS

La exergía química de los componentes fue calculada utilizando las ecuaciones presentadas en el Capítulo I. Con esta información fueron calculados los flujos exergéticos de todas las corrientes a la entrada y salida de los sistemas.

Para ambos reactores, se consideró una cierta cantidad de exergía que es destruida en el sistema de manera irreversible, así el balance exergético de los procesos fue representado con la ecuación 16.

$$E_{in} - E_{out} = E_{int,loss} \tag{16}$$

Donde:

E _{in} :	Exergía total de entrada al reactor
E _{out} :	Exergía total de salida del reactor
E _{int,loss} :	Pérdidas internas de exergía

Parte de la exergía que sale del sistema (E_{out}), puede ser disipada al ambiente como pérdidas de calor, esto representa pérdidas externas para los reactores. Además, la corriente de exergía utilizable a la salida del reactor está compuesta por una parte que es producida en la reacción y por una fracción adicional que atraviesa el sistema sin sufrir ningún tipo de transformación, a esta última se le conoce como exergía transitoria (E_{tr}) (Sorin *et al.*, 1998).

La exergía química transitoria para los compuestos que no reaccionaron en el reactor está dada por la ecuación 17.

$$E_{tr} = \sum_{i} n_{nr,i} (e_{x,i} + RT_0 ln x_i)$$
(17)

Donde:

 E_{tr} :Exergía transitoria en el reactor $n_{nr,i}$:Flujo molar de los compuestos que no reaccionan $e_{x,i}$:Exergía química molar del componente puro

- *R*: Constante de los gases
- T: Temperatura
- *x*;: Fracción molar del compuesto i

Así, la exergía consumida y producida en los reactores está dada por las ecuaciones18 y 19:

$$E_{cons} = E_{in} - E_{tr} \tag{18}$$

$$E_{pro} = \sum_{i} n_i e_{x,i} \tag{19}$$

Donde:

*E*_{cons}: Exergía consumida en la etapa de reacción

E_{prod}: Exergía producida utilizable a la salida del reactor

*n*_{*i*}: Moles del compuesto i de la corriente utilizable que intervienen en la reacción

e_{x,i}: Exergía química molar del compuesto i

Para ambos casos, se consideró la eficiencia exergética de Segunda ley como la relación entre la exergía producida utilizable por el sistema (E_{prod}) y la exergía total de entrada (E_{in}) (Ec. 17).

$$\tau = \frac{E_{prod}}{E_{in}} \tag{17}$$

La comparación de eficiencias exergéticas entre los reactores CSTR y PFR es mostrada en la Figura 4. Se obtuvieron eficiencias exergéticas entre 64.27-68.12% para el CSTR y 65.21-72.06% para el PFR. Los reactores analizados presentaron un incremento en las eficiencias exergéticas durante el cambio en la temperatura de operación entre 40-50 °C, rango de operación de las enzimas celulasas. Sin embargo, a temperaturas más altas que 50°C, se observó una disminución de la eficiencia exergética. Esto puede explicarse al analizar la temperatura optima de la enzima, que es cercana a los 50°C, por lo cual esta empieza a desactivarse lentamente a temperaturas mayores (Caminal *et al.*, 1985). El reactor CSTR mostró una curva característica sigmoidal en el intervalo de temperaturas de 40-50°C. Como se conoce, el PFR puede ser considerado como una secuencia de CSTR, en este sentido, se obtuvieron mayores eficiencias exergéticas para el PFR comparadas con el CSTR.

Figura 5. Exergía consumida y producida en los reactores CSTR y PFR

La Figura 5 muestra las exergias consumidas (E_{cons}) y la exergía producida utilizable (E_{prod}) en los reactores CSTR y PFR. Los resultados muestran valores superiores para los flujos exergéticos del PFR. El sistema presenta perdidas exergéticas internas y externas que disminuyen la exergía utilizable producida en el sistema. La influencia de la temperatura del reactor sobre las pérdidas exergéticas es mostrada en la Figura 6. Las pérdidas exergéticas disminuyeron con el incremento inicial de la temperatura del reactor, pero aumentaron a temperaturas mayores que 50°C.

Figura 6. Pérdidas exergéticas respecto a la temperatura del reactor

De acuerdo con Sorin *et al.* (1998), en un reactor químico una cierta cantidad de exergía es destruida de manera irreversible dentro del sistema. Esta exergía, generalmente referida a pérdidas internas de exergía, está directamente asociada con las irreversibilidades termodinámicas en el sistema. Ambos bioreactores (PFR y CSTR) tienen pérdidas exergéticas, las cuales están asociadas a los efectos inhibitorios generados por la presencia de xilosa en el reactor y por los compuestos sin reaccionar durante el ataque enzimático.

El efecto inhibitorio de la concentración de xilosa sobre la eficiencia exergética de los reactores CSTR y PFR es mostrada en la Figura 7. Un incremento de 0 a 40 g de xilosa/kg de mezcla, generó una disminución en la eficiencia exergética del 35.87% y 30.98% para el CSTR y PFR, respectivamente, sugiriendo efectos significativos por la inhibición por xilosa en el reactor.

Figura 7. Efecto de la concentración de xilosa en la eficiencia exergética de los reactores

Para este estudio, se consideró inhibición competitiva; estas inhibiciones ocurren cuando el sustrato y el inhibidor tienen moléculas similares por lo cual compiten por un sitio idéntico sobre la enzima. El inhibidor reduce sustancialmente la velocidad enzimática a bajas concentraciones de sustrato; por lo tanto, la exergética eficiencia mostró reducción para ambos bioreactores. una Adicionalmente, las velocidades de reacciones bioquímicas son altamente dependientes de la temperatura y tienen un efecto considerable en el flujo de exergía a la salida de los reactores. El mecanismo de mezclado en el reactor CSTR generó mayores consumos energéticos; esta es una de las razones que hacen al reactor PFR más eficiente que el CSTR para hidrólisis enzimática.

Por otra parte, en una selección preliminar de un reactor es muy importante analizar la relación costo-beneficio. Cuando se usan reactores CSTR para reacciones consecutivas en el proceso (por ejemplo, celulosa-celobiosa-glucosa), varios elementos experimentan diferentes tiempos de residencia dentro del reactor, causando un comportamiento no ideal, el cual genera efectos negativos en el rendimiento. En contraste, en el reactor PFR, con un mínimo mezclado, el tiempo de residencia puede ser ajustado a valores cercanos al óptimo. Adicionalmente, el reactor PFR permite obtener mayores rendimientos de glucosa cuando ocurren reacciones paralelas (celulosa-celobiosa, celulosa-glucosa), debido al cambio gradual en la concentración de celulosa.

Los resultados obtenidos con este análisis permitieron identificar al PFR con empaquetamiento de enzimas como el bioreactor más eficiente para el proceso de hidrólisis enzimática. Este estudio preliminar, permitió además, validar la utilización de análisis exergético como un método efectivo para la evaluación de procesos de transformación de biomasa lignocelulósica en etanol. Sin embargo, la respuesta sobre si el proceso permite obtener un etanol con mayor contenido energético que la energía consumida en el proceso debe responderse con una aplicación detallada del análisis exergético a todas las etapas de la producción de biocombustibles de segunda generación, y así verificar el desarrollo sostenible de esta industria usando biomasa lignocelulósica.

3. MODELAMIENTO Y SIMULACIÓN DE LAS RUTAS EN ASPEN PLUS[™]^{±‡}

Muchas configuraciones han sido propuestas para la producción de etanol a partir de material lignocelulósico, las cuales incluyen etapas de pretratamiento, hidrólisis y fermentación (Wooley *et al.*, 1999; Wyman *et al.*, 2005). Existe una gran cantidad de métodos de pretratamiento o combinaciones de métodos disponibles, con sus respectivas ventajas y desventajas. La selección de una tecnología de pretratamiento influencia de manera significativa los costos y el rendimiento de las siguientes etapas de hidrólisis y fermentación.

Para evaluar la producción de biocombustibles de segunda generación fue necesario establecer una metodología de selección de varias rutas tecnológicas a través de la estimación de los efectos de parámetros como: rendimiento, condiciones de operación, consumo energético, disponibilidad tecnológica e impacto ambiental. Para esto, se realizó una valoración cualitativa de las diferentes tecnologías basado en la metodología propuesta por Mosier *et al.* (2005) e información reportada en la literatura (Yang & Wyman, 2008; US DOE, 2003).

3.1. ESPECIFICACIONES DE LOS COMPONENTES

Las simulaciones de los procesos de producción de biocombustibles se desarrolló en el simulador de procesos Aspen Plus™, el cual es uno de más usados actualmente en la industria de procesos químicos. Los procesos fueron simulados en estado estacionario y fueron divididos por jerarquías (etapas del proceso) de acuerdo a la ruta tecnológica seleccionada. El uso de Aspen Plus™ permite

^{‡‡}Apartes tomados de:**Ojeda K, Sánchez E. Kafarov, V.,**"Sustainable ethanol production from lignocellulosic biomass - Application of exergy analysis", *Energy* (2010), doi:10.1016/j.energy.2010.08.017

predecir el comportamiento de un proceso usando balances de masa y energía, relaciones de equilibrio y reacciones químicas.

Como se mencionó en los capítulos anteriores, el uso de biomasa lignocelulósica no afecta la seguridad alimentaria de la población. Por esta razón, el bagazo de caña de azúcar fue seleccionado como materia prima para la producción de etanol de segunda generación. En esta investigación, se compararon diferentes rutas tecnológicas de producción de bioetanol considerando una cantidad de bagazo típica producida en los ingenios azucareros del Valle del Cauca (1,200 ton/día).

Para todos los casos, se usó bagazo de caña con una composición másica como la siguiente:

Celulosa 23%

Hemicelulosa 11%

Lignina 13.5 %

Cenizas 2.5%

Humedad 50%

Promedio de producción 30.95 ton Bagazo/100 ton Caña

Aspen Plus[™] posee una amplia base de datos para la especificación de componentes puros y propiedades. Las propiedades físicas para muchos componentes usados en la simulación de procesos de producción de etanol a partir de material lignocelulósico no están disponibles en la base de datos de propiedades estándar de Aspen Plus[™]. Sin embargo, el Laboratorio de Energías Renovables de Estados Unidos (NREL, por sus siglas en inglés), generó una base de datos con las propiedades necesarias para simular componentes de la industria

de biocombustibles (Wooley & Putsche, 1996). En esta base de datos no fueron incluidos los isómeros de manera independiente. Todos los azúcares de cinco carbonos fueron considerados con las propiedades de la xilosa y los azúcares de seis carbonos con las propiedades de glucosa. Las propiedades de compuestos de biomasa como xilosa, glucosa, celulosa, lignina, entre otras, fueron desarrolladas por el NREL utilizando el modelo NRTL (*Non-Random Two Liquids*) para el coeficiente de actividad, La Ley de Henry para los gases disueltos y la ecuación de estado RKS (Redlich-Kwong-Soave) para la fase vapor.

Los principales componentes de las corrientes del proceso fueron especificados de acuerdo a la Tabla 3.

Tabla 3. Principales compuestos del proceso basados en la base de datos del NREL

Componente	Formula	Estado
Glucosa	C ₆ H ₁₂ O ₆	Líquido
Xilosa	$C_5H_{10}O_5$	Líquido
Celulosa	$C_6H_{10}O_5$	Solido
Xilan (Hemicelulosa)	$C_5H_8O_4$	Solido
Lignina	$C_{7.3}H_{13.9}O_{1.3}$	Solido
Celulasa (enzima)	$CH_{1.57}N_{0.29}O_{0.31}S_{0.007}$	Solido
Zymo	$CH_{1.8}O_{0.5}N_{0.2}$	Solido
Gypsum	CaSO ₄ .2H ₂ O	Solido

Fuente: Wooley & Putsche, 1996

En el ANEXO B, se presentan los valores de propiedades usados para simular las fracciones de biomasa en Aspen Plus[™].

El modelo termodinámico usado para la simulación de las rutas tecnológicas de etanol de segunda generación fue NRTL debido, entre otras cosas, a la necesidad de procesos de destilación. El estado de referencia para propiedades termodinámicas es 25°C y 1 atm. Para calcular entalpias, entropías y energía libre de Gibbs, Aspen Plus[™] usa la información de energía estándar de formación (DHFORM) y energía libre de Gibbs de formación estándar (DGFORM). Para el caso de los sólidos, se utiliza el calor de formación estándar para sólidos (DHSFRM) y la energía libre de Gibbs para sólidos (DGSFRM). Para el caso de los componentes de biomasa que no estaban presentes en la base de datos, se incluyó la entalpía estándar de formación y energía libre de Gibbs a 25°C (DHFORM, DGSFRM, DGFORM – ANEXO B) para el cálculo. Las presiones de vapor fueron determinadas mediante la Ecuación de Antoine. Para xilosa y glucosa los coeficientes de Antoine (PLXANT - ANEXO B) fueron incluidos de acuerdo a la base de datos de generada por el NREL, así como los coeficientes para determinar la capacidad calorífica (CPIG – ANEXO B).

Los modelos existentes en Aspen Plus[™] permiten al usuario construir el diagrama de flujo del modelo de simulación gráficamente. Para la simulación de los procesos de producción de bioetanol de segunda generación se simularon las etapas de pretratamiento, neutralización, hidrólisis, fermentación y purificación de acuerdo a las especificaciones de cada ruta seleccionada y basada en información experimental y/o teórica reportada en la literatura.

Para los procesos de pretratamiento, sacarificación y fermentación se usó el modelo de Aspen Plus *RStoic*, el cual permite la simulación de procesos con reacciones estequiométricas de conversión.

65

3.2. SELECCIÓN DE LOS PRETRATAMIENTOS

Se han planteado un gran número de pretratamientos (biológicos, químicos, físicos, térmicos), pero se ha observado que aquellos que emplean químicos ofrecen mayores rendimientos y reducen los costos globales del proceso (Yang&Wyman, 2008). La efectividad del pretratamiento depende del tipo de material, razón por la cual estos no pueden aplicarse de forma genérica a todas las materias primas, esto justifica una evaluación y comparación de las principales características y su aplicabilidad a bagazo de caña.

Mediante una revisión detallada de la información reportada en la literatura, se realizó la búsqueda de pretratamientos para el análisis teniendo en cuenta su aplicabilidad a materiales lignocelulósicos de características similares al bagazo de caña, los principales son descritos en la Tabla 4.

Teniendo en cuenta las características de los pretratamientos como madurez tecnológica, aplicabilidad a la biomasa, formación de inhibidores y rendimiento, se seleccionaron los pretratamientos con ácido diluido, explosión de vapor catalizada con ácido, agua líquida caliente y solventes orgánicos para su evaluación.

Tabla	4.	Pretratamientos	evaluados
<i>i</i> uniu	т.	1 Ionutarine mos	C Valuado S

Método	Reactivos	Condiciones típicas de operación	Hidrólisis de hemicelulosa	Formación de inhibidores	Recuperación de Xilosa	Efecto en la hidrólisis
Ácido diluido	Ácido	>160°C (2-10 min) 0.75-5% ácido H ₂ SO ₄ , HCL o HNO ₃ cargas de sólidos (5- 10%de sustrato seco /mezcla)	80-100%	Si (requiere neutralización del pH generando yeso)	75-90%	>85%
Alcalino	Base	NaOH diluído 24h, 60°C, Ca(OH) ₂ 4 h 120°C	>50%	Baja	60-75%	>65%
Explosión de vapor	Ninguno	160-260°C p=0.69- 4.85 MPa (bagazo 188-243°C 0,5-44 min)	80-100% (Lignina no se solubiliza)	Si (furfural)	45-65%	>70%
Explosión de vapor catalizada con ácido	Ácido	160-220°C	70%	Si	>80%	>80%
LHW	Ninguno	170-230°C P>5 MPa Carga de sólidos <20% (1-46 min)	80-100% (Solubilización lignina 20- 50%)	Baja o nula	88-98%	>90 %
Explosión con Amoniaco	Amoniaco	90°C p=1.12-1.36 MPa 1-2 kg amoniaco/kg biomasa seca 30 min	0-60% (Solubilización lignina 10- 20%)	Nula (requiere recuperación del amoniaco)		50-90 % (dep contenido lignina)
Explosión con CO ₂	CO ₂	56,2 bar 4kg CO ₂ /kg fibra		Nula		75%
Organosolv	Solventes orgánicos	Solventes o sus mezclas con 1% de H ₂ SO ₄ o HCL o NaOH, 185-198°C 30-60 min pH 2,0-3,4	80%	(requiere recuperación del solvente)	>80%	

Fuente: Hamelinck et al., 2005; Mosier et al., 2005

Para la simulación de los pretratamientos se consideraron principalmente las siguientes reacciones:

H ₂ O + Hemicelulosa (Xilan)	> Xilosa
Hemicelulosa (Xilan)	\rightarrow Furfural + H ₂ O
H_2O + Celulosa	Glucosa
Lignina	Lignina soluble

3.2.1. Pretratamiento con ácido diluido

Durante este pretratamiento, la biomasa lignocelulósica fue pretratada con ácido diluido ($w(H_2SO_4) = 1.5 \%$, 438 K, 400 kPa) (Hamelinck *et al.*, 2005). Se consideró una degradación de la hemicelulosa del 90%. En este tipo de pretratamiento la lignina no es solubilizada (o muy poca) (Yang & Wyman, 2008). Adicionalmente se consideró una muy baja producción de furfural porque el proceso se lleva a cabo a temperaturas mayores de 121°C donde la producción de furfural puede evitarse (Converse *et al.*, 1989). La solución recuperada fue neutralizada con hidróxido de calcio. El esquema simulado es presentado en la Figura 8.

Figura 8. Pretratamiento con ácido diluido – Aspen Plus™

3.2.2. Pretratamiento con agua líquida caliente (LHW)

Durante este proceso, el bagazo fue pretratado con agua líquida caliente (6MPa, 461 K) (Lynd *et al.*, 2002; Laser *et al.*, 2002; Hamelinck *et al.*, 2005). No se consideró la formación de inhibidores durante este pretratamiento, por lo cual no se realizó un lavado posterior. El proceso causó una degradación del 85% de hemicelulosa y una solubilización parcial de lignina (30%) (Sánchez-Cardona, 2005). La neutralización de pH no fue necesaria. El esquema simulado es presentado en la Figura 9.

Figura 9. Pretratamiento con LHW – Aspen Plus™

3.2.3. Pretratamiento con explosión de vapor catalizada con ácido

El bagazo fue pretratado con explosión de vapor catalizada con ácido. En este método, el bagazo fue tratado con ácido sulfúrico y vapor saturado a alta presión (461K, 0.6 MPa, w(H₂SO₄) = 2.25%) y luego la presión fue rápidamente reducida. El proceso causó una degradación de hemicelulosa del 70% y la lignina no fue solubilizada (Hamelinck *et al.*, 2005, Soderstrom, *et al.*,2003, Kaar *et al*, 1998). Se consideró una baja formación de inhibidores. La corriente resultante del pretratamiento fue lavada y neutralizada. El esquema simulado es presentado en la Figura 10.

Figura 10. Pretratamiento con explosión de vapor catalizada con ácido – Aspen Plus™

3.2.4. Pretratamiento con solventes orgánicos (organosolv)

Para este tipo de proceso se consideraron dos alternativas de solventes orgánicos:

3.2.4.1. Solución organosolv (Etanol – Agua)

La biomasa fue pretratada con una solución organosolv [w(etanol) = 60% y w(agua)= 40%, 458 K, 2 MPa] (Sun-Cheng, 2002; Lynd *et al.*, 2002; Pan *et al.*,2005). Este proceso causó la degradación del 85% de hemicelulosa y una alta solubilización de lignina (85%). En este proceso, se requirió la recuperación del solvente (90%) (Sánchez-Cardona, 2005). El esquema simulado es presentado en la Figura 11.

3.2.4.2. Solución organosolv con catalizador ácido (Etanol-Agua- H₂SO₄)

Para este proceso, el bagazo de caña fue pretratado con una solución de solventes orgánicos mezclada con ácido [w(etanol) = 58.5%, w(agua) = 40% y w(H₂SO₄) = 1.5%] a 458 K y 2MPa (Pan *et al.*,2006; Pan *et al.*,2005; Lynd *et al.*, 2002). En este proceso, se requirió la recuperación del solvente (90%) y la posterior neutralización de pH. Este proceso causó la degradación del 93% de hemicelulosa y una alta solubilización de lignina (85%) (Sánchez-Cardona, 2005). El esquema simulado es presentado en la Figura 11.

Figura 11. Pretratamiento con solución organosolv – Aspen Plus™

3.3. SELECCIÓN DE LAS TECNOLOGÍAS DE HIDRÓLISIS

Las tecnologías de hidrólisis enzimática fueron objeto de este estudio. Cuando se usa hidrólisis enzimática, se pueden obtener diferentes niveles de integración de procesos de acuerdo a la alternativa tecnológica usada: Hidrólisis y Fermentación Separadas (o Secuenciales) (SHF, por sus siglas en inglés), Sacarificación y Fermentación Simultáneas (SSF, por sus siglas en inglés), Sacarificación y cofermentación simultáneas (SSCF, por sus siglas en inglés) y Bioprocesamiento consolidado (CBP, por sus siglas en inglés) (Hamelinck *et al.*, 2005). De acuerdo a la comparación realizada por Hamelinck *et al.* (2005) y a información reportada en la literatura (Oh *et al.*, 2000; Shao e*t al.*, 2009; Tomas-Pejo, *et al.*, 2008; Rosen *et al.*, 2008), para este estudio se seleccionaron las configuraciones SHF, SSF y SSCF; las cuales fueron simuladas y analizadas usando Aspen Plus™.

Para la simulación de las etapas de hidrólisis y fermentación se consideraron principalmente las siguientes reacciones:

Sacarificación

2Celulosa + H ₂ O	>	Celobiosa
H ₂ O + Hemicelulosa (Xilan)		Xilosa
Celobiosa + H ₂ O		2Glucosa
H_2O + Celulosa	>	Glucosa

Fermentación

Glucosa	>	2Acido Láctico
Glucosa	\longrightarrow	3 Acido acético
Glucosa		2 Etanol + 2 CO ₂ 73

$Glucosa + 1.2 NH_3$		$6S.cerv + 2.4 H_2O + 0.3 O_2$
Glucosa + 2 H ₂ O		2 Glicerol + O_2
Glucosa + 2 CO ₂	>	2 Acido succínico + O ₂
3Xilosa	>	5Etanol + 5 CO_2
Xilosa + NH ₃	>	5Zymo + 2 H ₂ O + 0.25 O ₂
3Xilosa + 5 CO ₂	>	5 Acido succínico + 2.5 O ₂
3Xilosa +5 H₂O	>	5 Glicerol + 2.5 O ₂
2 Xilosa	>	5Acido Láctico
3 Xilosa		5 Ácido acético

3.3.1. Hidrólisis y Fermentación Separadas (SHF)

Cuando se lleva a cabo SHF, la hidrólisis y la fermentación ocurren en dos reactores diferentes. En este proceso, cada etapa puede operar en condiciones óptimas de pH y temperatura. Sin embargo, la acumulación de glucosa y celobiosa en la etapa de hidrólisis inhibe la actividad enzimática de las celulasas. La fracción solida resultante del pretratamiento fue enviada a la etapa de SHF, la cual fue simulada usando las siguientes características: Sacarificación (101.325 kPa, 321 K), Fermentación (101.325 kPa, 303 K), Enzima celulasa: 18 FPU/g celulosa – Microorganismo: *S. cervisiase* (Eklunk-Zacchi, 1995; Sánchez-Cardona, 2007). Un esquema simplificado de esta etapa es mostrado en la Figura 12.

3.3.2. Hidrólisis y Fermentación Simultáneas (SSF)

En el proceso SSF, la hidrólisis enzimática y la fermentación ocurren en el mismo reactor, así la glucosa producida por acción de las enzimas es convertida directamente en etanol por los microorganismos de fermentación reduciendo la inhibición. La fracción sólida resultante del pretratamiento fue enviada a la etapa de SSF, la cual fue simulada usando las siguientes características: Simultáneas (SSF) (101.325 kPa, 308 K); Enzima celulasa 20 FPU/g celulosa; Microorganismo: *S. cervisiase* (Wooley *et al.*, 1999). Un esquema simplificado de esta etapa es mostrado en la Figura 13.

Figura 13. Esquema simplificado de Sacarificación y Fermentación Simultáneas (SSF)

3.3.3. Hidrólisis y Co - Fermentación Simultáneas (SSCF)

La tecnología de SSCF combina la hidrólisis enzimática con la fermentación de hexosas y pentosas en una etapa de reacción. (Lynd, 1996; Spatari *et al*, 2010). Esto reduce el número de reactores involucrados y evita el problema de producción de compuestos inhibitorios asociados con las enzimas. La fracción sólida resultante del pretratamiento fue enviada a la etapa de SSCF, la cual fue simulada usando las siguientes características: Sacarificación y Co-Fermentación Simultáneas (SSCF) (101.325 kPa, 314 K), Enzima celulasa 15 FPU/g celulosa - *Z. mobilis.* En estos casos se considera, *Z. mobilis* recombinante. El modelo de este proceso de SSCF está basado en el diseño tecnológico propuesto por el NREL (Wooley*et al.*, 1999), el cual presenta la utilización de este microorganismo con una conversión de glucosa a etanol de 92% y una conversión de xilosa a etanol del 85%. Un esquema simplificado de esta etapa es mostrado en la Figura 14.

Figura 14. Esquema simplificado de Sacarificación y Co- Fermentación Simultáneas (SSF)

3.4. PURIFICACIÓN

La corriente de producto, después de realizada la fermentación, es una mezcla de etanol, lignina residual, hemicelulosa y celulosa que no reaccionaron, cenizas, enzimas, microorganismos entre otros componentes y agua. En este proceso las concentraciones de etanol después de la fermentación usualmente son menores de 6 % en eso, por tal motivo se requiere un paso dentro del proceso que concentre este etanol y así pueda ser vendido. Para este proceso de recuperación se han propuesto diferentes técnicas de destilación y en algunos casos con membranas (Gil *et al.*, 2008; Hamelinck *et al.*, 2005; Cardona-Sánchez, 2007). Para este estudio se utilizaron tamices moleculares, ya que estos han mostrado ser una alternativa con bajos costos de operación aunque el costo de inversión es alto debido a la complejidad de la automatización y control inherente a esta

tecnología (Cardona-Sánchez, 2007). El esquema simplificado del proceso de purificación simulado es mostrado en la Figura 15.

3.5. DESCRIPCIÓN DE LOS CASOS DE ESTUDIO

Teniendo en cuenta la información descrita anteriormente, se realizó una combinación de las tecnologías de pretratamiento e hidrólisis para simular diferentes rutas globales de producción de etanol a partir de material lignocelulósico. Estos procesos fueron divididos por etapas para su respetivo análisis. En total fueron simulados y analizados 15 esquemas de producción usando la información descrita anteriormente.

3.5.1. Procesos con tecnología SHF

Los pretratamientos fueron combinados y simulados con la tecnología de SHF. El proceso fue dividido en jerarquías para su análisis como se describe en la Figura 16.

Figura 16. Esquema general de los procesos usando SHF

La biomasa lignocelulósica fue pretratada con el agente respectivo a condiciones específicas descritas en la sección 3.2. La solución recuperada (xilosa y lignina) fue neutralizada con hidróxido de calcio (Casos 1, 3 y 5) y la lignina fue precipitada. La celulosa fue enviada al reactor de sacarificación usando enzimas celulasas y posteriormente a la etapa de hidrólisis usando *S. cerevisiae* (Sección 3.3.1). El CO₂ obtenido en la etapa de fermentación fue enviado a una torre de absorción. La solución de etanol fue rectificada y enviada a tamices moleculares para remover el agua por encima del punto azeotrópico y obtener etanol anhidro. Los datos de los casos simulados son presentados en el Anexo C.

Caso 1. Pretratamiento Ácido + SHF	(Anexo C-1)
Caso 2. Pretratamiento LHW (Agua líquida caliente) + SHF	(Anexo C-2)
Caso 3. Pretratamiento Explosión de vapor catalizada + SHF	(Anexo C-3)
Caso 4. Pretratamiento Organosolv (Etanol+Agua) + SHF	(Anexo C-4)
Caso 5. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SHF	(Anexo C-5)

3.5.2. Procesos con tecnología SSF

Los pretratamientos también fueron combinados y simulados con la tecnología de SSF. El proceso fue dividido en jerarquías para su análisis como se describe en la Figura 17.

El material lignocelulósico fue pretratado usando las tecnologías descritas en la sección 3.2. Tanto la hemicelulosa degrada y la lignina fueron recuperadas y separadas en una etapa posterior. Para algunos procesos fue necesaria una etapa de neutralización posterior al pretratamiento (Casos 6, 8 y 10). El material pretratado fue enviado a un proceso SSF usando *S. cerevisiae* y enzimas celulasa. Las corrientes de fermentados fueron purificados con tamices moleculares para la obtención de etanol anhidro. Los datos de los casos simulados son presentados en el Anexo C.

Caso 6. Pretratamiento Ácido + SSF	(Anexo C-6)
Caso 7. Pretratamiento LHW + SSF	(Anexo C-7)
Caso 8. Pretratamiento Explosión de vapor catalizada + SSF	(Anexo C-8)
Caso 9. Pretratamiento Organosolv (Etanol+Agua) + SSF	(Anexo C-9)
Caso 10. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SSF	(Anexo C-10)

3.5.3. Procesos con tecnología SSCF

De igual manera, los pretratamientos también fueron combinados y simulados con la tecnología de SSCF. El proceso fue dividido en jerarquías para su análisis como se describe en la Figura 18.

Figura 18. Esquema general de los procesos usando SSCF

El material lignocelulósico fue pretratado con los procesos descritos en la sección 3.2. La biomasa fue enviada al reactor SSCF usando enzimas celulasas y *Z. mobilis*. Para los casos 11, 13 y 15 la biomasa pretratada fue neutralizada antes de entrar a la etapa de SSCF. La solución de etanol fue rectificada y enviada a tamices moleculares para remover el agua por encima del punto azeotrópico y obtener etanol anhidro. Los principales datos de los casos simulados son presentados en el Anexo C.

Caso 11. Pretratamiento Ácido + SSCF	(Anexo C-11)
Caso 12. Pretratamiento LHW + SSCF	(Anexo C-12)
Caso 13. Pretratamiento Explosión de vapor catalizada + SSCF	(Anexo C-13)
Caso 14. Pretratamiento Organosolv (Etanol+Agua) + SSCF	(Anexo C-14)
Caso 15. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SSCF	(Anexo C-15)

4. COMPARACION DE RUTAS MEDIANTE ANALISIS EXERGETICO⁵⁵

En este capítulo, se describen los principales resultados de los análisis exergéticos realizados a las rutas de producción seleccionadas. De igual manera, se comparan diferentes características de los procesos con el objetivo de evaluar la mejor opción tecnológica.

Una comparación exacta sobre los impactos de un proceso es un poco difícil debido a la falta de una unidad única de medición. Esto hace difícil comparar entre recursos renovables, por ejemplo la producción de energía de aire y biomasa. El análisis exergético considera las mismas unidades para todos los requerimientos energéticos.

4.1. DESARROLLO METODOLÓGICO DEL ANÁLISIS EXERGÉTICO

Como se conoce, la definición de un Ambiente de Referencia es requerida para obtener los valores de exergía de cualquier recurso. Así, el primer paso en el procedimiento es definir el estado de referencia para el análisis. Para establecer

^{§§}Información tomada de:

Ojeda, K., Suarez, J., Ávila, O., Kafarov, V. Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production - Part 1. *Chem. Eng. Res. Des.* (2010),doi:10.1016/j.cherd.2010.07.007 (ISSN (printed): 0263-8762. ISSN (electronic): 1744-3563)

Ojeda, K., Sánchez, E., Kafarov, V. Sustainable ethanol production from lignocellulosic biomass - Application of exergy analysis, *Energy* (2010), doi:10.1016/j.energy.2010.08.017 (ISSN: 0360-5442)

Ojeda, K., Sánchez, E., Suarez, J., Ávila, O., Quintero V., El-Halwagi, M., Kafarov, V. Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass.*Ind. Eng. Chem. Res, American Chemical Society*. (2010) 10.1021/ie100633g (ISSN (printed): 0888-5885. ISSN (electronic): 1520-5045)

una escala común para el cálculos de las propiedades termodinámicas de las sustancias, se estableció el estado de referencia estándar a P_0 = 1 atm y T_0 = 298.15, la humedad relativa del aire atmosférico fue 70% y la exergía química de la ceniza fue considerada despreciable para los cálculos.

Para el análisis exergético propuesto, las rutas de producción fueron divididas en etapas. De manera global, el balance exergético para el proceso puede ser calculado como:

$$\sum E_{xm,out} - \sum E_{xm,in} \pm \sum E_{x,Q} = I$$
(18)

$$\sum E_{xm,in} = E_{x,bagazo} + \sum E_{x,oth}$$
(19)

$$\sum E_{xm,out} = \sum (E_{x,aprov} + E_{x,waste})$$
(20)

$$E_{x,Q} = \left(1 - \frac{T_0}{T}\right)Q\tag{21}$$

 $E_{x,bagazo} = \beta LHV_{bagazo}(22)$

donde:

- *E_{xm,out}*: Exergía de las corrientes másicas de salida
- *E_{xm,in}*: Exergía de las corrientes másicas de entrada
- $E_{x,oth}$: Exergía de las corrientes másicas de entrada (no-bagazo)
- $E_{x,bagazo}$: Exergía de entrada con el bagazo
- $E_{x,aprov}$: Exergía de salida de productos aprovechables

$E_{x,waste}$:	Exergía de salida de corrientes de desecho
<i>E</i> _{x,Q} :	Exergía debido al intercambio de energía en el proceso
<i>l</i> :	Irreversibilidades
LHV:	Valor calórico (LHV _{bagazo} : 15.6 MJ/kg)
β:	Coeficiente de exergía específica. Ec. 5.

Para el cálculo de las exergías en corrientes materiales se consideró despreciable la exergía cinética y potencial. Así, los aportes exergéticos de cada corriente fueron calculadas con la Ec.23.

$$E_{xm} = H - H_0 + T_0(S - S_0) + \sum_i y_i E_{ch,i} + RT_0 y_i ln y_i$$
(23)

donde:

H: Entalpía

S: Entropía

- E_{ch}: Exergía química del componente puro
- R: Constante de los gases
- T₀: Temperatura de referencia
- yi: Fracción másica del componente i

El tercer principio de termodinámica, afirma que la entropía de una sustancia cristalina, pura y en equilibrio, puede tomarse como cero a la temperatura termodinámica del cero absoluto (0 K). En consecuencia la entropía puede

expresarse como aparece normalmente en las tablas termoquímicas. Al valor de la entropía en estado de referencia estándar se le denomina S_0 . Para el cálculo de entalpías se asigna cero a la entalpia de los elementos en sus formas más estables en el estado de referencia estándar. Así, la entalpía de formación de un compuesto se define entonces como la variación de entalpía durante la formación de dicho compuesto en el estado de referencia estándar a partir de los elementos que lo constituyen.

Las exergías químicas de los diferentes compuesto involucrados en los procesos seleccionados son presentadas en la Tabla 5, basados en los valores reportados por Szargut *et al.* (1988) y Hepbasli (2008).

La eficiencia exergética para el análisis fue definida como (Ec. 24)

$$\tau = \frac{\sum E_{x,aprov}}{\sum E_{xm,in}}$$
(24)

Índice de Sostenibilidad (SI)

Las relaciones entre exergía y ambiente brindan conocimiento sobre los impactos ambientales que pueden presentarse por la implementación de un proceso. Cuando la exergía se aproxima al 100%, los impactos ambientales se aproximan a cero (Rosen *et al.*, 2008). Cuando la eficiencia exergética es baja, la sostenibilidad de un proceso también es baja debido a las fuentes con contenidos exergéticos usados no son aprovechados de manera correcta generando a su vez, productos de desecho con alto contenido exergético lo que genera impactos ambientales.

	Exergía		Exergía		Exergía		Exergía
	específica		específica		específica		específica
	(MJ/kmol)		(MJ/kmol)		(MJ/kmol)		(MJ/kmol)
Etanol	1250.98	Enzima celulasa	145.65	Xilosa	1835.31	Furfural	2338.71
Agua (I)	0.9005	Glicerol	1705.66	Celulosa	3404.43	Sulfatode Calcio	8.6
Agua (g)	9.4912	Oxigeno	3.97	H_2SO_4	108.57	Celobiosa	6007.8
CO ₂	19.096	Amoniaco	337.9	Hemicelulosa	2826.64	Acido láctico	1541.72
Glucosa	2793.2	Ácido acético	908	Lignina	3449.52	Yoduro de potasio	129.06
Hidróxido calcio	53.7	Acido succínico	1609.4	CaO	110.2	Microorganismo	2671.96

Tabla 5. Exergía química de los principales compuestos del proceso

Fuente: La autora

Rosen *et al.* (2008) reportó que la sostenibilidad de una fuente de combustible puede ser expresada por el Índice de Sostenibilidad (SI) (Ec. 25) como el inverso del número de depleción. El factor de depleción (Dp) es la relación entre la exergía destruida y la exergía de entrada (Ec. 26). Así, el índice de sostenibilidad permite el análisis de la relación entre el impacto ambiental y la sostenibilidad respecto a la eficiencia exergética aplicado indirectamente a sistemas energéticos usando fuentes de energía renovable.

$$SI = \frac{1}{D_p}$$
(25)

$$D_p = \frac{E_D}{E_{in}} \tag{26}$$

Donde:

- SI: Índice de sostenibilidad
- Dp: Número de Depleción
- E_D: Exergía destruida en el sistema (Irreversibilidades)
- Ein: Exergía de entrada al sistema

Índice de Renovabilidad (IR)

El índice de renovabilidad de un sistema de producción de bioenergía es un indicar que permite identificar si el sistema de biocombustible puede ayudar a reducir la dependencia de los combustibles fósiles. Una renovabilidad mayor que la unidad es un requerimiento para el sistema tenga una ganancia neta de bioenergía (Ec. 27).

$$IR = \frac{Salida Neta \ de \ Bioenergía}{Entrada \ neta \ de \ energía \ fosil}$$
(27)

En el Anexo D se presenta de manera detallada las exergías calculadas por etapas para cada proceso. Los principales resultados son mostrados en la Tabla 6.

Caso	Pretratamiento	Tecnología	IRR**	Eficiencia exergética (%)			SI	IR
		de m		Pretratamiento	HF*	Purificación		
1	Ácido Diluido	SHF	50.56	54.43	45.6	67.27	1.37	0.731
2	LHW	SHF	23.85	76.45	43.8	65.29	1.62	0.837
3	Explosión catalizada	SHF	52.35	87.53	35.7	64.89	1.78	0.942
4	Organosolv (Etanol+agua)	SHF	34.79	24.97	60.81	66.79	1.14	0.794
5	Organosolv (Etanol+agua+ácido)	SHF	28.65	25.23	62.74	63.53	1.14	0.721
6	Ácido Diluido	SSF	37.47	54.43	40.44	68.61	1.90	0.951
7	LHW	SSF	23.43	76.45	38.73	67.36	4.25	1.532
8	Explosión catalizada	SSF	19.88	87.53	48.01	68.22	3.10	1.180
9	Organosolv (Etanol+agua)	SSF	45.03	24.97	57.09	65.95	1.70	1.020
10	Organosolv (Etanol+agua+ácido)	SSF	21.45	25.23	55.74	65.60	1.68	0.891
11	Ácido Diluido	SSCF	36.22	54.43	51.35	62.20	2.12	0.471
12	LHW	SSCF	30.66	76.45	45.82	61.87	2.57	0.249
13	Explosión catalizada	SSCF	20.37	87.53	42.28	61.60	1.73	0.435
14	Organosolv (Etanol+agua)	SSCF	41.14	24.97	58.32	61.74	1.33	0.113
15	Organosolv (Etanol+agua+ácido)	SSCF	31.69	25.23	60.61	62.27	1.34	0.109

Tabla 6. Principales resultados del análisis exergético

*Hidrólisis y Fermentación. **IRR: Total Irreversibilidades por Equipo(MJ/kg etanol) Fuente: La autora.

4.1.1. Comparación de pretratamientos

Los pretratamientos analizados fueron comparados mediante el análisis exergético. La Figura 19. presenta la comparación de eficiencias exergéticas para los pretratamientos. Se observó una menor eficiencia exergética en el pretratamiento usando ácido diluido. En el caso de los pretratamientos con solventes orgánicos, la alta degradación de la hemicelulosa y la solubilización de lignina favorecen la eficiencia de la etapa, sin embargo, cuando se considera el proceso de recuperación de solvente, los altos consumos energéticos generados por este proceso reducen de manera considerable las eficiencias exergéticas debido al aumento en la energía requerida.

Figura 19. Eficiencias exergéticas para las etapas de pretratamiento

Teniendo en cuenta que las etapas de los procesos están relacionadas y generan efectos exergéticos posteriores, los pretratamientos fueron evaluados en cada una de las tecnologías de hidrólisis y fermentación.

4.1.2. Comparación de rutas tecnológicas usando SHF

Los principales resultados del análisis exergético de esta comparación son presentados en la Figura 20.

Se observaron altas emisiones exergéticas para el caso 5 debido a la alta solubilización de lignina y al uso de ácido como catalizador. El proceso con menores irreversibilidades correspondió al caso 2, usando LHW. Se observó mayores eficiencias exergéticas en la etapa de fermentación de hexosas, reportando valores similares para todos los casos analizados, esto debido al uso de condiciones óptimas de operación para el microorganismo seleccionado. Algo similar ocurrió con la etapa de purificación, en la cual todos los casos presentaron eficiencias exergéticas cercanas al 60%.

Figura 20. Irreversibilidades y emisiones totales de exergía Casos 1-5

Los resultados muestran la necesidad de mejoras en la etapa de fermentación de pentosas y en la etapa de sacarificación, especialmente debido a los efectos inhibitorios que se presentan en esta etapa separada por la acumulación de glucosa y el compuesto intermedio celobiosa durante las reacciones enzimáticas. El uso de condiciones óptimas de operación en la etapa de sacarificación favoreció la eficiencia exergética para esta tecnología.

4.1.3. Comparación de rutas tecnológicas usando SSF

En el análisis exergético realizado, la generación de irreversibilidades y la eficiencia exergética fueron calculadas para los procesos usando tecnologías de sacarificación y fermentación simultáneas. En las Figuras 21 y 22 se muestra una comparación de todos los casos. Las mayores eficiencias fueron observadas para el caso 8 (Explosión de vapor catalizada + SSF). Para este caso, las mayores irreversibilidades fueron observadas en las etapas de pretratamiento y SSF. En contraste, las menores eficiencias exergéticas fueron observadas para los casos usando solventes orgánicos, debido al alto consumo energético en la etapa de recuperación del solvente. Las irreversibilidades representan las pérdidas de la calidad de los materiales y energía. Para todos los casos, la etapa con mayor potencial de mejoras fue SSF y pretratamiento. Estas mejoras incluyen reducción de los requerimientos energéticos y diseño de redes de reciclo material.

Figura 21. Eficiencias exergéticas por etapas Casos 6-10

Figura 22. Irreversibilidades totales por etapas Casos 6-10

En este estudio, el caso 7 presentó el índice de sostenibilidad más alto, por esta razón se pueden anticipar menores impactos ambientales. Adicionalmente, el índice de renovabilidad (salida neta de bioenergía/ entrada neta de energía fósil) mayor que 1 es un requerimiento mínimo para indicar que el sistema de biocombustible puede ayudar a reducir la dependencia de energía fósil. Este índice fue mayor que 1 para los casos 7, 8 y 9. Los casos 6 y 10 reportaron índices de renovabilidad menores de 1 debido al alto consumo energético de estos procesos. Sin embargo, la estrategia de reciclo de solvente favorece el aprovechamiento de el contenido exergético del solvente al recircularlo a la etapa de pretratamiento.

4.1.4. Comparación de rutas tecnológicas usando SSCF

Las rutas tecnológicas que incluían el uso de la tecnología SSCF fueron comparadas. La relación neta de energía (NER = energía neta de salida/energía neta de entrada) fue menor que 1 para todos los procesos (Fig. 23). Debido a que NER < 1 indica que el sistema de etanol combustible no presenta ganancia neta de energía, así estos procesos tienen mayor consumo energético y es necesario aplicar metodologías de integración de energía para reducir la entrada de recursos energéticos externos.

El Caso 13 (explosión de vapor) reportó el NER más bajo debido al vapor usado en la etapa del pretratamiento. Aunque los casos 14 y 15 tienen altos requerimientos de energía en la etapa de pretratamiento debido al proceso de recuperación de solvente, las mayores energías obtenidas mediante el etanol producido mejoro la relación neta de energía.

Figura 23. Relación Neta de Energía Casos 11-15

Un índice de renovabilidad (salida neta de bioenergía/entrada neta de energía fósil) mayor que 1 es un requerimiento mínimo para indicar que el sistema de biocombustible puede ayudar a reducir la dependencia sobre la energía fósil. Este índice fue mayor para el caso 11 (pretratado con ácido diluido), sin embargo, puede ser mayor que 1 cuando al menos el 53% de la energía de entrada proviene de recursos renovables. La Figura 24 muestra la variación del índice de renovabilidad en el sistema por la sustitución de recursos fósiles de entrada por recursos bioenergéticos. Así, el mínimo requerimiento de renovabilidad es alcanzado cuando el uso de recursos no-renovables es reducido en todos los procesos. Las rutas tecnológicas que incluyen pretratamiento con solventes orgánicos requieren una mayor sustitución de energía fósil de entrada para alcanzar el criterio mínimo para este tipo de procesos.

Figura 25. Eficiencia exergética - Casos 11-15.

La Figura 25 muestra las eficiencias exergéticas para todas las etapas de los casos considerados. Las mayores eficiencias exergéticas en el pretratamiento fueron reportadas para el Caso (explosión de vapor catalizada + SSCF). La alta presión requerida en el pretratamiento LHW (caso 12) disminuye la eficiencia en esta tecnología. Los casos 14 y 15 tiene bajas eficiencias exergéticas, especialmente debido al proceso de recuperación de solvente. Debido a que en el caso 12 (LHW + SSCF) no se usa ácido, las irreversibilidades generadas en la reacción de neutralización fueron evitadas. Así, para este caso las mayores eficiencias exergéticas fueron observadas en la etapa de separación y neutralización. Relacionado a la etapa de hidrólisis, las eficiencias exergéticas fueron más bajas que para otras etapas. La degradación de hemicelulosa y la solubilización de lignina alcanzada en la etapa de pretratamiento afectan la eficiencia exergética de la etapa SSCF. Los casos usando solventes orgánicos mostraron mayores eficiencias exergéticas para esta etapa debido al incremento de la accesibilidad del material al ataque enzimático (el pretratamiento organosolv permite una solubilización casi total de la lignina, alta hidrólisis de la hemicelulosa y una ruptura de las enlaces internos de lignina y hemicelulosa).

Figura 26. Emisiones Exergéticas Totales- Casos 11-15

La Figura 26 muestra las emisiones exergéticas para todos los casos. Las emisiones exergéticas más bajas fueron observadas para el caso que usa la tecnología LHW+SSCF en comparación con los otros pretratamientos, debido a que este proceso no usa químicos. El caso de pretratamiento con solventes orgánicos (usando ácido como catalizador) mostró las mayores emisiones exergéticas debido a la separación de lignina y los residuos de la neutralización de ácido. Para estos procesos se sugieren mejoras en las etapas de SSCF, el diseño de redes de integración energética y reciclo material para alcanzar un nivel aceptable de desarrollo sostenible en la producción de biocombustibles.

4.1.5. Comparación de SHF, SSF y SSCF para biomasa pretratada con ácido diluido

Todas las rutas tecnológicas propuestas usando biomasa pretratatada con ácido fueron comparadas de manera independiente. El balance exergético fue aplicado a cada proceso. Los resultados de esta etapa de comparación muestran las mayores irreversibilidades en la etapa de pretratamiento (25.24 MJ/kg etanol). Los principales resultados y la comparación de las eficiencias exergéticas para las configuraciones son mostradas en la Figura 27.

Figura 27. Comparación SHF, SSF y SSCF para biomasa pretratada con ácido diluido

Cada configuración fue analizada usando el concepto de exergía. SSF presentó las mayores emisiones de exergía (34.58 MJ/kg etanol), así se pueden anticipar mayores impactos ambientales. La reducción de emisiones contaminantes

asociadas con la producción de biocombustibles y el uso integrado de recursos representa el objetivo principal para la implementación de las tecnologías usados enzimáticas. En este sentido, es muy importante para la contabilización de los materiales y los residuos del proceso. Los resultados permitieron identificar mayores irreversibilidades totales para la tecnología SHF (21.63 MJ/kg etanol) comparadas con SSF y SSCF (9.25 y 8.77 MJ/kg etanol, respectivamente). Una de las principales razones de estas irreversibilidades es el efecto inhibitorio de la acumulación de glucosa y celobiosa en el reactor SHF. El inhibidor reduce sustancialmente la velocidad del ataque enzimático a bajas concentraciones de sustrato; de esta manera, las irreversibilidades se incrementaron y la eficiencia exergética se redujo. La utilización de las tecnologías SSF y SSCF permitió una significativa reducción en las irreversibilidades en la etapa de hidrólisis. Las eficiencias exergéticas fueron muy cercanas en las configuraciones SSF y SSCF (49.48% y 51.35%, respectivamente), sin embargo, la eficiencia exergética total del proceso fue mas alta para SSCF. La etapa separada de fermentación de xilosa aumentó las irreversibilidades totales para todos los casos, así, el uso de SSCF evita el problema asociado con los productos inhibitorios en las enzimas y genera menores productos indeseables. Estas ventajas resultan en un incremento en la velocidad de sacarificación comparada con otras tecnologías. Adicionalmente, la producción total de etanol en SSCF (6599.22 kg/h) fue mayor que para los procesos SHF y SSF (6196.39 y 6223.11 kg/h) considerando biomasa pretratada con ácido diluido. Las irreversibilidades representan perdidas en la calidad de los materiales y energía debido a disipación. Los resultados obtenidos sugieren algunas mejoras en las configuraciones de diseño de procesos de producción de etanol usando tecnologías de hidrólisis. Estos desarrollos incluyen reducción de los requerimientos de vapor del proceso, sistemas de cogeneración, o diseño de redes de intercambio de calor para la integración térmica del proceso.

4.1.6. Comparación de SHF, SSF y SSCF para biomasa pretratada con LHW

Todas las rutas tecnológicas propuestas usando biomasa pretratatada con agua líquida caliente fueron comparadas de manera independiente. El balance exergético fue aplicado a cada proceso. Los resultados de esta etapa de comparación muestran las mayores irreversibilidades en la etapa SSCF (16.18 MJ/kg etanol). Los principales resultados y la comparación de las eficiencias exergéticas para las configuraciones son mostradas en la Figura 28.

Figura 28. Comparación SHF, SSF y SSCF para biomasa pretratada con LHW

Para los procesos analizados, las mayores emisiones exergéticas fueron observadas en la etapa de SSF (32.12 MJ/kg etanol); así que nuevamente para esta tecnología pueden anticiparse mayores impactos ambientales. Las eficiencias exergéticas para todas las tecnologías fueron cercanas, sin embargo,

se observa una mayor eficiencia exergética para la tecnología SSCF. Al igual que en la comparación anterior, la etapa separada de fermentación de xilosa aumentó las irreversibilidades totales para todos los casos, así, el uso de SSCF evita el problema asociado con los productos inhibitorios en las enzimas y genera menores productos indeseables. Se observa que este tipo de pretratamiento presenta buenas ventajas ambientales y exergéticas lo cual favorece los resultados exergéticos de las etapas posteriores.

4.1.7. Comparación de SHF, SSF y SSCF para biomasa pretratada con explosión de vapor catalizado

Las rutas tecnológicas que incluían biomasa pretratada con explosión de vapor catalizada con ácido fueron comparadas. Los resultados de dicha comparación muestran mayores irreversibilidades en la etapa SHF (40 MJ/kg etanol), estas irreversibilidades están asociadas a los efectos inhibitorios generados por la etapa acumulación de glucosa durante la reacción enzimática. Los principales resultados y la comparación de las eficiencias exergéticas para las configuraciones son mostradas en la Figura 29.

Cuando se usa biomasa pretratada con ácido, las mayores eficiencias exergéticas se alcanzan en el uso de la tecnología SSF. Las emisiones exergéticas fueron cercanas para todas las tecnologías, sin embargo se observan mejores resultados para la tecnología SSCF. Las rutas tecnológicas usando pretratamiento con explosión de vapor presentan comportamientos favorables exergéticamente, sin embargo, se identifica la necesidad de integración energética por los requerimientos de vapor en el proceso.

102

Figura 29. Comparación SHF, SSF y SSCF para biomasa pretratada con explosión de vapor catalizada

4.1.8. Comparación de SHF, SSF y SSCF para biomasa pretratada con solventes orgánicos

Las tecnologías usando pretratamiento con solventes orgánicos fueron comparadas. Los principales resultados son presentados en las Figuras 30 y 31. Mayores eficiencias exergéticas fueron obtenidas cuando se usa pretratamiento con solventes orgánicos catalizados. Sin embargo, este tipo de pretratamiento presenta altos consumos energéticos y exergéticos relacionados con la etapa de recuperación de solvente. Cuando se usan solventes orgánicos sin catalizar se obtienen menores impactos ambientales.

Figura 30. Comparación SHF, SSF y SSCF para biomasa pretratada con solventes orgánicos (Etanol-Agua)

Figura 31. Comparación SHF, SSF y SSCF para biomasa pretratada con solventes orgánicos (Etanol-Agua-Ácido)

El uso de etanol como solvente orgánico brinda oportunidades de integración másica al proceso, sin embargo los altos requerimiento de energía deben ser analizados y reducidos mediante la implementación de redes de intercambio de calor. Para estos casos, se hace evidente la necesidad de utilizar estrategias de integración de procesos para el correcto diseño de sistemas sostenibles de biocombustibles.

5. INTEGRACIÓN DE PROCESOS***

Una vez las rutas tecnológicas fueron analizadas mediante el concepto de exergía, se realizó una evaluación de las posibilidades de integración energética del proceso de producción de etanol a partir de bagazo de caña de azúcar con la ayuda del software Aspen HX-Net® y así se determinaron diferentes alternativas de redes de intercambio energético, con el objetivo de reducir los servicios externos (Seider*et al,* 1996). En este capítulo se presentan la aplicación de la metodología de integración energética realizada a los procesos con mejores eficiencias exergéticas.

5.1. METODOLOGÍA PARA LA INTEGRACIÓN ENERGÉTICA

En un proceso normalmente hay diferentes corrientes calientes que deben ser enfriadas y varias corrientes frías que deben ser calentadas. El uso de servicios industriales externos paran todos los requerimientos de calentamiento y enfriamiento en un proceso no representa la alternativa más favorable económicamente. Por el contrario, el desarrollo de estrategias de integración de las corrientes de calentamiento y enfriamiento permite generar una reducción significativa de los costos operativos del proceso. El concepto clave es transferir calor desde las corrientes calientes del proceso a las corrientes frías en lugar de usar fuentes externas. El resultado de esta integración energética es una reducción simultánea de los servicios industriales externos para calentamiento y enfriamiento (El-Halwagi, 2006).

^{***} Apartes tomados de: Ojeda, K., Sánchez, E., Suárez, J., Ávila, O., Quintero V., El-Halwagi, M., Kafarov, V. "Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass" *Ind. Eng. Chem. Res, American Chemical Society*. (2010) 10.1021/ie100633g (ISSN (printed): 0888-5885. ISSN (electronic): 1520-5045)

El diseño óptimo de una HEN busca la mejor alternativa por las cuales las corrientes calientes dan energía a las corrientes frías obteniendo un mínimo costo de servicio de calentamiento, enfriamiento y de inversión.

Numerosos métodos han sido propuestos para el desarrollo de redes de intercambio de calor (HEN- *Heat Exchange Networks*) (El-Halwagi, 2006). Una de las técnicas con mejores características es el uso de análisis *pinch* el cual permite la identificación de los requerimientos mínimos de servicios industriales (*Targets*) previo al diseño de las red de intercambio. Este método usa diagramas de Temperatura-Entalpía (curva compuesta y gran curva compuesta) para representar las corrientes de los procesos y así hallar los mínimos requerimientos energéticos (Días, *et al*, 2010), considerando una diferencia de aproximación mínima de temperatura para los intercambiadores de calor ΔT_{min} .

Para la construcción de los diagramas *pinch* térmicos es necesario crear una representación global para todas las corrientes frías y calientes mediante la gráfica de la entalpía intercambiada respecto a su temperatura. El punto donde las dos curvas se tocan es llamado "punto *pinch*", y debido a que es el punto mínimo de factibilidad termodinámica del proceso, permite la identificación de los mínimos requerimientos de servicios energéticos externos.

En esta etapa de la investigación, fueron seleccionados aquellos procesos que presentaron los mejores resultados exergéticos. Para cada caso simulado se seleccionaron los datos de las corrientes calientes y frías del proceso. Posteriormente, se utilizó el análisis *pinch* térmico (Linnhoff-Hindmarsh, 1983; Papoulias-Grossmann, 1983) para realizar la integración energética y determinar

los mínimos requerimientos de servicios de calentamiento y enfriamiento. Para el desarrollo de la técnica se definió un $\Delta T_{min}=5^{\circ}C$.

Para seleccionar la mejor red de intercambio energético fueron analizados un caso base, en el cual se satisfacen los requerimientos energéticos con servicios externos, y cuatro casos de integración de la red de intercambiadores para cada una de las rutas de producción de etanol a partir de bagazo de caña. Para la selección de la ruta óptima se consideró como criterio la menor cantidad de servicios industriales requeridos. Con la anterior información se compararon los porcentajes de reducción de energía de cada diseño con respecto al caso base, y fue seleccionada la mejor opción de integración energética para cada ruta simulada.

5.1.1. Integración Energética. Caso 2 (LHW-SHF)

Las alternativas de integración energética mediante análisis *pinch* fueron analizadas para el Caso 2 (LHW-SHF). La información de las corrientes frías y calientes del proceso global consideradas para la integración son mostradas en la Tabla 7. Para esto se usó el software Aspen HX-NETTM. La Gran Curva Compuesta (GCC) fue generada (Linnhoff, 1993) usando un ΔT_{min} =5°C y se identificó el punto *pinch* (167-162°C). La GCC se ilustra en la Figura 32 y mostró los requerimientos mínimos para servicios de calentamiento y enfriamiento (1.986E+07 kJ/h y 2.224+08 kJ/h, respectivamente).

Corrientes	T entrada	T salida	Entalpia	Flujo	
calientes	[ºC]	[°C]	[kJ/h]	[kg/h]	
H1	167.2	25.0	6.12E+05	3.41E+03	
H2	168.3	25.0	1.27E+05	4.70E+01	
H3	150.0	98.9	7.23E+04	7.57E+02	
H4	48.0	30.0	5.68E+06	9.09E+04	
H5	150.0	25.0	6.75E+06	5.97E+03	
H6	167.2	25.0	4.23E+08	1.56E+05	
H7	167.2	30.0	2.54E+05	5.65E+03	
H8	93.2	26.7	2.39E+07	9.02E+04	
H9	74.1	47.8	1.07E+07	1.26E+04	
Corrientes	T entrada [ºC]	T salida	Entalpia	Flujo	
frías		[°C]	[kJ/h]	[kg/h]	
C1	25.0	188.0	1.89E+07	2.63E+04	
C2	25.0	186.4	9.91E+07	1.33E+05	
C3	77.7	150.0	8.47E+05	6.73E+03	
C4	32.8	62.8	1.10E+07	9.17E+04	
C5	86.2	96.2	1.39E+08	9.40E+04	

Tabla 7. Corrientes frías y calientes para la integración – Caso 2 (LHW - SHF)

Fuente: La autora

Figura 32. GCC para el Caso 2 (LHW - SHF)

Posteriormente, se diseñó la Red de Intercambio de Calor (HEN) para la integración energética del proceso. En el Anexo E-1 se presenta la alternativa seleccionada de acuerdo a sus características de intercambio de calor.

La HEN propuesta permitirá una reducción de servicios industriales de calentamiento del 92.04 % y de enfriamiento del 56.79 % (Tabla 8). Sin embargo, el diseño de la HEN requiere un mayor número de intercambiadores de calor (6 nuevos equipos, 20 en total), lo que puede generar un incremento en el costo de capital. Así, la selección final de una HEN debe ser apoyada en análisis económico de las alternativas.
Requerimientos	Caso Base	HEN Propuesta
Requentmentos	(Sin Integración)	(Integrado)
Calentamiento [kJ/h]	2.69E+08	2.14E+07
Enfriamiento [kJ/h]	5.18E+08	2.24E+08
Número de Unidades	14	20

Tabla 8. Comparación de alternativas de integración – Caso 2 (LHW - SHF)

Fuente: La autora

5.1.2. Integración Energética. Caso 8 (Explosión de vapor catalizada-SSF)

El análisis de alternativas de integración energética mediante análisis *pinch* también se realizó para el Caso 8 (Explosión de vapor catalizada-SSF). La Tabla 9 muestra las corrientes consideradas para el análisis de integración energética de este proceso. Para esto se utilizó el software Aspen HX-NETTM. El análisis *pinch* se realizó considerando un $\Delta T_{min}=5^{\circ}$ C. La GCC es mostrada en la Figura 33. Se identificó el punto *pinch* para este sistema (91.5-86.5 °C) y los mínimos requerimientos de servicios industriales para calentamiento y enfriamiento (4.84E+07 kJ/h y 6.31E+07 kJ/h, respectivamente).

Corrientes	T	T salida	Entalpia	Flujo
calientes	entrada [ºC]	[ºC]	[kJ/h]	[kg/h]
H1	168.3	25.0	1.46E+06	5.40E+02
H2	93.4	26.7	2.51E+07	9.36E+04
H3	119.7	50.0	5.63E+05	7.58E+03
H4	150.0	25.0	6.62E+06	5.86E+03
H5	50.0	30.0	7.40E+04	5.38E+03
H6	150.0	98.9	7.128E+04	7.45E+02
H7	167.2	25.0	1.264E+08	4.69E+04
H8	50.0	25.0	9.36E+04	2.15E+03
H9	73.8	44.5	1.07E+07	1.26E+04
Corrientes	T	T salida	Entalpia	Flujo
frías	[ºC]	[ºC]	[kJ/h]	[kg/h]
C1	25.0	100.0	9.32E+06	3.13E+04
C2	32.9	62.8	1.15E+07	9.51E+05
C3	77.7	150.0	8.31E+05	6.60E+03
C4	86.5	96.9	1.07E+07	1.26E+04

Tabla 9. Corrientes frías y calientes para la integración – Caso 8 (Explosión de vapor catalizada-SSF)

Fuente: La autora

Figura 33. GCC para el Caso 8 (Explosión de vapor catalizada-SSF)

Posterior al desarrollo del análisis *pinch*, se diseñó la HEN con ayuda del *software*. Se diseñaron diferentes alternativas de integración para este proceso, seleccionándose la presentada en el Anexo E-2. La HEN propuesta permite una reducción de servicios de enfriamiento de hasta el 63.35% y de servicios de calentamiento del 69.35% (Tabla 10). Sin embargo, y como en el caso anterior, este diseño requiere nuevos equipos para el intercambio de calor (10 nuevos, 23 en total), indicando un aumento en el costo de capital.

Dequerimientes	Caso Base	HEN Propuesta	
Requentmentos	(Sin Integración)	(Integrado)	
Calentamiento [kJ/h]	1.564E+08	4.794E+07	
Enfriamiento [kJ/h]	1.711E+08	6.264E+07	
Número de Unidades	13	23	
Fuente: La autora			

Tabla 10. Comparación de alternativas de integración – Caso 8 (Explosión de vapor catalizada-SSF)

5.1.3. Integración Energética. Caso 12 (LHW-SSCF)

El análisis de alternativas de integración energética mediante análisis *pinch* también se realizó para el Caso 12 (LHW-SSCF). La Tabla 11 muestra las corrientes consideradas para el análisis de integración energética de este proceso. Para esto se utilizó el *software* Aspen HX-NETTM. Para el análisis *pinch* se usó un ΔT_{min} =5°C. La GCC resultante del análisis *pinch* para este caso es mostrada en la Figura 34, la cual permitió la identificación del punto *pinch* para este sistema (167-162°C) y los mínimos requerimientos de servicios industriales para calentamiento y enfriamiento (1.986E+07 kJ/h y 2.108E+08 kJ/h, respectivamente).

Corrientes	T entrada	T salida	Entalpia	Flujo
calientes	[°C]	[°C]	[kJ/h]	[kg/h]
H1	167.2	25.0	6.12E+05	3.41E+03
H2	150.0	25.0	7.30E+06	6.45E+03
H3	92.9	26.7	2.49E+07	9.39E+04
H4	167.2	40.0	1.25E+05	1.70E+02
H5	167.2	25.0	4.23E+08	1.56E+05
H6	168.3	25.0	1.84E+05	6.81E+01
H7	168.3	41.0	7.35E+04	5.58E+03
H8	150.0	98.9	8.61E+04	8.85E+02
H9	75.9	47.5	1.46E+07	1.51E+04
Corrientes	T entrada	T salida	Entalpia	Flujo
frías [ºC]	[°C]	[°C]	[kJ/h]	[kg/h]
C1	25.0	188.0	1.89E+07	2.63E+04
C2	48.8	62.8	5.42E+06	9.44E+04
C3	25.0	186.4	9.91E+07	1.33E+05
C4	77.1	150.0	9.33E+05	7.34E+03
C5	85.8	95.0	1.56E+08	1.09E+05

Tabla 11. Corrientes frías y calientes consideradas - Caso 12 (LHW-SSCF)

Fuente: La autora

Figura 34. GCC para el Caso 12 (LHW-SSCF)

Posterior al desarrollo del análisis *pinch*, se diseñaron diferentes alternativas de integración para este proceso, seleccionándose la presentada en el Anexo E-3. La HEN propuesta permite una reducción de servicios de enfriamiento de hasta el 58.9% y de servicios de calentamiento del 92.3% (Tabla 12). Sin embargo, y como en el caso anterior, este diseño requiere nuevos equipos para el intercambio de calor (7 nuevos, 21 en total), lo que podría representar un aumento en el costo de capital.

	Caso Base	HEN Propuesta	
Requerimientos	(Sin Integración)	(Integrado)	
Calentamiento [kJ/h]	2.80E+08	2.16E+07	
Enfriamiento [kJ/h]	5.18E+08	2.13E+08	
Número de Unidades	14	21	
Fuente: Le eutere			

Tabla 12. Comparación de alternativas de integración – Caso 12 (LHW-SSCF)

Fuente: La autora

5.1.4. Integración Energética. Caso 13 (Explosión de vapor catalizada-SSCF)

El análisis de alternativas de integración energética mediante análisis *pinch* también se realizó para el Caso 13 (Explosión de vapor catalizada-SSCF). La Tabla 13 muestra las corrientes frías y calientes del proceso consideradas para la integración energética. La Gran GCC (Fig. 35) fue obtenida usando un $\Delta T_{min}=5^{\circ}$ C. Como resultado del análisis se identificó el punto *pinch* para este sistema (91-86°C). Usando la información del diagrama se identificaron los mínimos requerimientos de servicios industriales para calentamiento y enfriamiento (5.718E+07 kJ/h y 7.301E+07 kJ/h, respectivamente).

Corrientes	T	T salida	Entalpia	Flujo
calientes	entrada [ºC]	[°C]	[kJ/h]	[kg/h]
H1	168.33	25.00	2.25E+06	8.36E+02
H2	119.72	50.00	5.63E+05	7.58E+03
H3	113.73	40.00	1.35E+06	6.01E+02
H4	168.33	41.00	5.73E+04	4.54E+03
H5	150.00	25.00	6.90E+06	6.10E+03
H6	50.00	30.00	7.40E+04	5.38E+03
H7	93.21	26.67	2.50E+07	9.37E+04
H8	167.22	25.00	1.26E+08	4.69E+04
H9	150.00	98.89	8.21E+04	8.44E+02
H10	50.00	25.00	9.36E+04	2.15E+03
H11	75.87	47.53	1.47E+07	1.51E+04
Corrientes	T	T salida	Entalpia	Flujo
frías	entrada [ºC]	[ºC]	[kJ/h]	[kg/h]
C1	48.81	62.78	5.42E+06	9.42E+04
C2	25.00	100.00	9.32E+06	3.13E+04
C3	77.09	150.00	8.84E+05	6.94E+03
C4	86.06	95.70	1.46E+08	1.01E+05

Tabla 13. Corrientes energéticas consideradas - Caso 13

Fuente: La autora

Figura 35. GCC para el Caso 13 (Explosión de vapor catalizada-SSCF)

Posteriormente, se diseñó la HEN con ayuda del *software*. Se diseñaron diferentes alternativas de integración para este proceso, seleccionándose la presentada en el Anexo E-4. La HEN propuesta permite una reducción de servicios de enfriamiento de hasta el 57.7% y de servicios de calentamiento del 63.4% (Tabla 14).

Los procesos analizados permitieron identificar gran potencial en estos procesos para la reducción de requerimientos energéticos externos, mediante el aprovechamiento de las corrientes calientes y frías el proceso de producción de biocombustibles de segunda generación.

Deguerigientes	Caso Base	HEN Propuesta	
Requerimientos	(Sin Integración)	(Integrado)	
Calentamiento [kJ/h]	1.62E+08	5.92E+07	
Enfriamiento [kJ/h]	1.77E+08	7.51E+07	
Número de Unidades	15	24	

Tabla 14. Comparación de alternativas de integración – Caso 12

6. RUTA PROPUESTA

La síntesis de procesos está orientada a la generación de diferentes configuraciones que pueden llegar a ser alternativas viables para la producción de un determinado producto. Durante la generación de esquemas de procesos, se establecen las relaciones necesarias entre las unidades de operación y el proceso para organizar los flujos de materia y energía considerando reglas heurísticas del diseño. La síntesis de procesos establece que la propuesta de nuevas configuraciones de procesos deben estar acompañadas por el análisis a un nivel más profundo donde se consideren fenómenos termodinámicos, o usando metodologías basadas en optimización (Cardona-Sánchez, 2007). Debido a que las tecnologías de conversión de biomasa en etanol no están maduras tecnológicamente, el uso de síntesis de procesos representa una importante herramienta en el diseño de configuraciones con mejores características tecno-económicas y ambientales (Cardona-Sánchez 2007).

Normalmente, la evaluación de los procesos productivos incluyen dos factores de análisis: El económico y el ambiental. Como se mencionó en los capítulos anteriores, en esta investigación el criterio de comparación estuvo basado en las eficiencias exergéticas de las rutas tecnológicas apoyado, en casos particulares, de análisis ambientales e integración de procesos para su completo análisis.

En esta etapa final de la metodología de análisis desarrollada en esta investigación, se diseñó un esquema tecnológico basado en los resultados de los capítulos anteriores, y dicha propuesta fue analizada con herramientas exergéticas y ambientales, así como fue incluida también la evaluación de estrategias de integración de procesos.

Los resultados obtenidos en los capítulos anteriores, permitió contemplar diferentes alternativas de diseño para la obtención de bioetanol de segunda generación. Como etapa final de la metodología desarrollada, se propone un esquema para este tipo de procesos el cual incluye una combinación en serie de pretratamientos Explosión de vapor catalizada y LHW (Figura 36).

Figura 36. Combinación de pretratamiento LWH y Explosión de Vapor

El uso en serie de estos pretratamientos presenta mejores eficiencias exergéticas (92%) al aprovecharse los altos contenidos exergéticos a la salida del pretratamiento con explosión de vapor catalizada para el pretratamiento LHW.

Aunque se esperaría obtener mejores rendimientos y una disminución de los consumos energéticos globales con la utilización de la tecnología SSCF, es necesaria una mayor profundización en el desarrollo de microorganismos capaces

de fermentar de manera conjunta y en condiciones óptimas las hexosas y pentosas presentes en la biomasa pre-tratada. Debido a lo anterior, en esta etapa se ha considerado la tecnología SSF como alternativa para el diseño del proceso de bioetanol a partir de material lignocelulósico propuesto. En esta etapa se consideró el reciclo directo de una fracción de biomasa sin reaccionar en la etapa SSF (Figura 37). De igual manera, el uso de tecnologías de empaquetamiento disminuye los efectos generados por la pérdida de enzimas y microorganismos en la etapa de reacción.

Como se mencionó anteriormente, el proceso propuesto fue analizado ambientalmente. La estrecha relación del concepto de exergía con impactos ambientales favorece el establecimiento de una unidad de comparación uniforme para los procesos de transformación de biomasa. Sin embargo, en casos donde las comparaciones exergéticas tuvieron márgenes estrechos de variación, se consideraron indicadores ambientales, los cuales junto con los resultados exergéticos del proceso permite la generación de procesos ambientalmente amigables.

Una de las herramientas usadas para la generación de indicadores en procesos bioquímicos es el Algoritmo de Reducción de Residuos (WAR *Algorithm*) diseñado por la Agencia de Protección Ambiental de Estados Unidos. Este algoritmo esta basado en la determinación de los Impactos Potenciales Ambientales (PEI) el cual es una cantidad conceptual para representar los impactos ambientales promedios generados por las emisiones de materia y energía de los procesos. El esquema tecnológico propuesto fue analizado mediante al algoritmo WAR (Fig. 38).

El algoritmo de reducción de residuos maneja ocho diferentes categorías de impactos. Estos pueden agruparse en cuatro efectos atmosféricos: Acidificación (AP), Cambio Climático (GWP), Capa de ozono (ODP), oxidación fotoquímica

(PCOP); dos efectos de toxicidad humana: por ingestión (HTPI) y por inhalación o exposición (HTPE); y dos efectos de eco-toxicidad: acuática (ATP) y terrestre (TTP). El proceso analizado posee gran impacto ambiental por el alto uso de fuentes de agua y energía. En este análisis se consideró que la demanda energética estaba cubierta con combustibles fósiles los cuales generan grandes emisiones atmosféricas e impactan casi todas las categorías analizadas; si estos combustibles son sustituidos por fuentes de bioenergía o la energía requerida por el proceso es abastecida con las corrientes energéticas no aprovechadas, se obtendrá una reducción de las emisiones de CO₂ generadas y por lo tanto se reducirán los efectos negativos ambientales.

Posteriormente, para el diseño propuesto fueron analizadas diferentes alternativas de integración másica y energética con el objetivo de determinar los mejores diseños globales.

En el proceso de integración energética se consideró un $\Delta T_{min} = 2^{\circ}C$, óptimo para este proceso. La GCC (Fig. 39) permitió determinar los requerimientos mínimos de servicios para calentamiento y enfriamiento (1.45E+7 kJ/h y 2.76E+8 kJ/h, respectivamente).

Figura 39. GCC – Caso propuesto

El caso propuesto sin ningún tipo de integración energética, requiere servicios industriales de calentamiento de 2,907E+8 kJ/h y de enfriamiento de 5,297E+8. Sin embargo, con el diseño de la red de intercambio de calor descrita en el Anexo E-5, se lograría una disminución de los servicios energéticos externos de 93.6% para calentamiento y 51.2% para enfriamiento; reducciones un poco mayores que para los casos reportados anteriormente. Es importante resaltar, que los porcentajes de reducción calculados para todos los casos, representan los máximos alcanzables desde el punto de vista teórico, sin embargo en un proceso de implementación a condiciones más específicas, deben establecerse estrategias que permitan un implementación factible desde el punto de vista termodinámico y considerando las condiciones reales del proceso de producción.

El proceso también incluyó el análisis *pinch* para reciclo material, para este análisis, se identificaron las corrientes y etapas que permitían la integración mediante un reciclo directo basado en los resultados de la simulación. El principal objetivo de diseño fue reducir el uso de agua fresca y el agua de desecho en el proceso. Todos los otros componentes en las corrientes fueron considerados impurezas. El desarrollo del análisis *pinch* de material, permitió la identificación de los mínimos flujos de agua fresca y agua de desecho, anticipando que el establecimiento de estrategia de reciclo para este proceso, permite la reducción de hasta el 47% de agua fresca y el 23% del agua de desecho. Esto claramente brindaría ventajas ambientales y económicas al proceso.

7. CONCLUSIONES Y RECOMENDACIONES

7.1. CONCLUSIONES GENERALES DE LA INVESTIGACIÓN

La investigación en el área de biocombustibles de segunda generación se ha fortalecido en los últimos años enfocándose principalmente a la evaluación de las tecnologías óptimas para los diferentes tipos de biomasa disponible. Sin embargo, como se mencionó al inicio de este trabajo la adecuada selección o diseño de rutas tecnológicas, dentro del gran abanico de alternativas actuales, representa una preocupación latente en las empresas que buscan la implementación a escala industrial de procesos de producción de bioetanol de fuentes celulósicas.

De esta manera, y con el objetivo de brindar nuevas herramientas de análisis que contribuyan a la solución del problema mencionado, en este trabajo de investigación se desarrolló y aplicó la metodología de análisis exergético para la selección y evaluación de tecnologías de producción de biocombustibles de segunda generación.

Los diferentes pasos metodológicos desarrollados, permitieron la comparación inicial de reactores enzimáticos ideales y de diferentes pre-tratamientos y tecnologías (SHF, SSF, SSCF) mediante análisis exergético. La información reportada sobre análisis exergético aplicado a etapas bioquímicas de producción de bioetanol aún es limitada; sin embargo, mediante los resultados obtenidos fue posible contribuir al conocimiento a través el análisis y discriminación entre un gran número de alternativas tecnológicas con el uso de criterios exergéticos, permitiendo el planteamiento de esquemas de producción con características energéticas más favorables. Adicionalmente, la metodología incluyó los conceptos de exergía, análisis ambiental e integración de procesos para el análisis y selección de rutas, brindando un esquema jerárquico para la toma de decisiones

en el campo de síntesis de procesos de producción de bioetanol de segunda generación.

El alto consumo de agua y energía para este tipo de tecnologías genera efectos adversos en la población razón por la cual es necesario la implementación de estrategias de integración de procesos para aprovechar las corrientes energéticas y másicas del mismo mediante alternativas óptimas de reciclo. Al realizar la integración energética para los casos con mejores resultados exergéticos, se observó un alto potencial de aprovechamiento y reciclo de corrientes energéticas al proceso, especialmente relacionados con la reducción de los servicios de calentamiento con fuentes energéticas externas.

Los resultados obtenidos del análisis descrito en este trabajo, permitieron la propuesta de un diseño que brinda mayores eficiencias exergéticas en todas las etapas de proceso, al tiempo que se obtienen rendimientos favorables para la producción de bioetanol. De igual manera, las emisiones exergéticas y ambientales pueden ser reducidas con la implementación de las estrategias de integración de procesos aplicadas a la ruta tecnológica propuesta. La aplicación de este tipo de análisis como herramienta en la síntesis de procesos es esencial para mejorar la eficiencia de los sistemas, permitiendo una maximización de los beneficios derivados de los recursos de biomasa, mientras se minimizan los impactos negativos (como el daño ambiental).

Teniendo en cuenta lo anterior, el establecimiento de una metodología de análisis basada en conceptos de exergía, brinda una herramienta en la toma de decisiones y propone bases de análisis para su utilización con otros esquemas tecnológicos. Esto permite pensar en nuevos procesos bioquímicos que pueden ser analizados y comparados con ayuda de este tipo de metodologías.

7.2. RECOMENDACIONES PARA TRABAJO POSTERIOR

El desarrollo de esta tesis doctoral fue limitado al uso de información teórica reportada por diferentes fuentes sobre las tecnologías de producción de bioetanol de segunda generación, dicha información permitió la simulación y análisis de las rutas comparadas; así, se sugiere que el trabajo posterior este orientado hacia la consideración de mayor información experimental y modelos más específicos de los procesos que permita la aplicación de la metodología desarrollada a casos más detallados para su análisis.

Para esta investigación se consideraron cinco diferentes pretratamientos y tres configuraciones de hidrólisis y fermentación. Sin embargo, una aplicación detallada de la metodología de análisis exergético a otras rutas tecnológicas y a todas las etapas de producción, brindará herramientas suficientes para verificar si la producción de biocombustibles genera una ganancia energética neta con diferentes tecnologías.

Adicionalmente, se identificó la necesidad de complementar las decisiones de diseño con análisis económicos que no fueron considerados en esta tesis, pero que pueden brindar otros criterios de diseño para este tipo de procesos.

Igualmente, se recomienda como trabajo posterior el desarrollo de modelos combinados de ACV, Exergía e Integración de Procesos que permitan una comparación directa de las etapas y esquemas de proceso.

BIBLIOGRAFIA

ABUSOGLU, Aysegul, KANOGLU, Mehmet. Exergetic and thermoeconomic analysis of diesel engine powered cogeneration: Part 1 – Formulations En: Appl. Therm. Eng. Febrero, 2009, vol. 29 Nº 2-3, p. 234-241.

AKKAYA, Ali, SAHIN, Bahri, ERDEM, Heseyim. Exergetic Performance Coefficient Analysis of a Simple Fuel Cell System.En: Int. J Hydrogen Energy. Diciembre, 2007, vol. 32 Nº 17, p. 4600-4609.

AYRES, Robert, AYRES, Leslie. Accounting for resources, 2: the life cycle of materials. 1 ed. Cheltenham, Reino Unido: Edward Elgar Publishing Limited, 1999. 381 p.

BERTHIAUME, Richard, BOUCHARD, Christian, ROSEN, Marc. Exergetic evaluation of the renewability of biofuel. En: Exergy, An International Journal, 2001, vol. 1 Nº 4, p. 256-268

BROWN, David, GASSNER, Martin, FUCHINO, Tetsuo, MARÉCHAL, François. Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. En: Applied Thermal Engineering. Agosto, 2009, vol. 29 Nº 11-12, p. 2137-2152. CAMINAL, G. LÓPEZ-SANTIN, J. SOLA, C. Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose.En: Biotechnol. Bioeng. Septiembre, 1985, vol. 27 Nº 9, p. 1282–1290.

CARDONA, Carlos. SÁNCHEZ, Óscar. Fuel ethanol production: Process design trends and integration opportunities. En: Bioresource Technology. Septiembre, 2007, vol. 98 Nº 12, p. 2415-2457.

CHEVALIER, J., ROUSSEAUX, P. Classification in LCA: building a coherent family of criteria. En: International Journal of Life Cycle Assessment. Noviembre, 1999, Vol. 4 Nº6, p. 352-356.

CONVERSE, A., WARTENG, I., GRETHLEIN, H., OOSHIMA, H. Kinetics of thermochemical pretreatment of lignocellulosic materials. En: Appl.Biochem. Biotechnol.1989, Vol. 20-21 N^o 1, p.63-78.

CONVERSE, A., OPTEKAR, J. A synergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of synergism experimental results. En: Biotechnol. Bioeng. Junio, 1993, Vol. 42 N^o 1, p. 145–148.

DIAS, Marina, ENSINAS, Adriano, NEBRA, Silvia, MACIEL Rubens, ROSSELL, Carlos, WOLF, Maria. Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. En: Chemical Engineering Research and Design. Septiembre, 2009, Vol. 87 N^o 9, p-1206-1216.

DINCER, Ibrahim, ROSEN, Marc. Exergy: Energy, Environment and Sustainable Development. 1 ed. Oxford, Reino Unido: Elsevier. 2007, 451 p.

EKLUND, Robert, ZACCHI, Guido. Simultaneous saccharification and fermentation of steam-pretreated willow. En: Enzyme and Microbial Technology. Marzo, 1995, Vol. 17 Nº 3, p. 255-259.

EL-HALWAGI, Mahmoud, HARELL, Dustin, SPRIGGS, Dennis.Targeting cogeneration and waste utilization through process integration.En: Applied Energy. Junio, 2009, Vol 86 Nº 6, p. 880-887.

EL-HALWAGI, Mahmoud.Process Integration.Process Systems Engineering. A Series edited by George STEPHANOPOULOS and Efstratios PISTIKOUPOLUS Volume 7. ELSEVIER Academic Press.395 p.

FRYDA, I. PANOPOULOS, K., KARL, J. KAKARAS. E. Exergetic analysis oxide fuel cell and biomass gasification integration with heat pipes. En: Exergy. 2008, Vol. 33, p. 292-299.

GIL, I., UYAZÁN, A., AGUILAR, J., RODRÍGUEZ, G., CAICEDO, L. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation. En: Brazilian Journal of Chemical Engineering. 2998, Vol. 25, p. 207-215. GONG, M., WALL, G. On exergetics, economics and optimization of technical processes to meet environmental conditions. International Conference on Thermodynamic Analysis and Improvement of Energy Systems. 2007, Beijing, China, June 10-13.

HAMELINCK C., HOOIJDONK G., FAAIJ, A. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. En: Biomass and Bioenergy. 2005, Vol. 28, p. 384–410.

HEPBSALI, Arif, UTLU, Zafer, AKDENIZ, Cengiz. Energetic and exergetic aspects of cotton stalk production in establishing energy policies. En: Energy Policy. Mayo, 2007, vol. 35 N°5, p. 3015-3024

HOLTZAPPLE, M., CARAM, H., HUMPHREY A.A Comparison of two empirical models for the enzymatic-hydrolysis of pretreated poplar wood. En: Biotechnol. Bioeng. 1984, Vol. 26, p. 936–941.

HUANG, A. Kinetic studies on insoluble cellulose–cellulase system, En: Biotechnol. Bioeng. 1975, Vol. 17, p. 1421–1433.

KAAR, W., GUTIÉRREZ, C., KINOSHITA, C. Steam explosion of sugarcane bagasse as a pretreatment for convertion to ethanol. En: Biomass and Bioenergy. 1998, Vol. 14 Nº 3, p. 277-287.

KADAM, K., RYDHOLM, E., MCMILLAN, J. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.En: Biotechnol. Prog. 2004, Vol. 20, p. 698–705.

KAFAROV, Viatcheslav, OJEDA, Karina, SÁNCHEZ, Eduardo. Situación y perspectiva de biocombustibles en Colombia. En: AGRENER, Campinas, Brasil, 2006, June 6-8.

KANOGLU, M., DINCER, I., CENGEL, Y. Exergy for better environment and sustainability. En: Environ. Dev. Sustain. 2008, doi: 10.1007/s10668-008-9162-3.

KURAKAKE, M., SHIRASAWA, T., OOSHIMA, H., CONVERSE, A., KATO, J. An extension of the Harano–Ooshima rate expression for enzymatic hydrolysis of cellulose to account for changes in the amount of adsorbed cellulase. En: Appl. Biochem. Biotechnol. 1995, Vol. 50, p. 231–241.

LASER, M., SCHULMAN, D., ALLEN, S., LICHWA, J., ANTAL, M., LYND, L. A comparison of liquis hot water and steam pretreatments of sugar cane bagasse for bioconvertion to ethanol. En: Bioresource Technology. 2002, Vol. 81, p. 33-44.

LINNHOFF, B. Pinch analysis – A state of the art overview. En: Trans.Int. Chem. Eng. Res. Des. 1993 Vol. 71, p. 503-522.

LINNHOFF, B., HINDMARSH, E. The pinch design method for heat exchanger networks. En: Chem. Eng. Sci., 1983, Vol. 38 Nº 5, p. 745-763.

LYND, L. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, Economics, the Environment, and Policy. En: Annu. Rev. Energy Environ. 1996, Vol. 21, p. 403-465.

LYND, L., WEIMER, P., VAN ZYL, W., PRETORIOUS, I. Microbial cellulose utilization: Funfamentals and biotechnology. En: Microbiology and Molecular Biology Reviews. 2002, Vol. 66 Nº 3, p. 506-577.

MARTIN, C., VILLAMAÑAN, M., CHAMORRO, C., OTERO, J., CABANILLAS, A., SEGOVIA, J. Low-grade coal and biomass co-combustionon fluidized bed: exergy analysis. En: Energy. 2006, Vol. 31, p. 330–344.

MARTÍNEZ, H. La importancia de los biocombustibles en Colombia. Ministro de Minas y Energía. 2007. Bucaramanga.

MOSIER N., WYMAN C., DALE B., ELANDER R., HOLTZAPPLE, M., LADISCH M., LEE, Y. Features of promising technologies for pretreatment of lignocellulosic biomass. En: Biores Technol. 2005, Vol. 96, p. 673–686.

NEELIS, M., VAN DER KOOI, H., GEERLINGS J. Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications. En: Int J Hydrogen Energ. 2004, Vol. 29, p. 537-545.

NORDINI, A. Chemical elemental characteristics of biomass fuels. En: Biomech. Bioeng. 1994, Vol. 6, p. 339–347.

OH, K., KIM, S., JEONG, Y., HONG, S. Bioconversion of Cellulose into Ethanol by Nonisothermal Simultaneous Saccharification and Fermentation. En: App Biochem Biotechnol. 2000, Vol. 89, p.15-30.

OJEDA, Karina, EL-HALWAGI, Mahmoud., KAFAROV, Viatcheslav. Design of lignocellulosic feedstock biorefinery based on biochemical processing platform using process integration methodologies and exergy analysis. En: Integrated Biorefineries: Design, Analysis, and Optimization. (EI-Halwagi, Mahmoud and Paul Stuart) CRC Press/Taylor & Francis. 2010. En edición.

OJEDA, Karina, KAFAROV, Viatcheslav. Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol.En: Chemical Engineering Journal. 2009, Vol. 154, p. 390–395. (ISSN: 1385-8947)

OJEDA, Karina, RONDÓN, Sergio, QUINTERO Viviana, KAFAROV, Viatcheslav Evaluación de sostenibilidad de la producción de biocombustibles de segunda generación mediante la aplicación de análisis exergético. En: Prospect. 2009, Vol. 7 Nº 2, p. 19-26 (ISSN: 1692-8261) OJEDA, Karina, SÁNCHEZ, Eduardo, KAFAROV, Viatcheslav. Biocombustibles líquidos en Colombia. En: Biocombustibles Líquidos en Iberoamérica. Argentina, ISBN 978-987-652-043-0

OJEDA, Karina, SÁNCHEZ, Eduardo, KAFAROV, Viatcheslav. Sustainable ethanol production from lignocellulosic biomass - Application of exergy analysis. En: Energy, 2010. doi:10.1016/j.energy.2010.08.017 (ISSN: 0360-5442)

OJEDA, Karina, SÁNCHEZ, Eduado, SUÁREZ, Jairo, ÁVILA, Omar, QUINTERO Viviana, EL-HALWAGI, Mahmoud, KAFAROV, Viatcheslav. Application of computer-aided process engineering and exergy analysis to evaluate different routes of biofuels production from lignocellulosic biomass. En: Ind. Eng. Chem. Res, American Chemical Society. 2010. 10.1021/ie100633g (ISSN (printed): 0888-5885. ISSN (electronic): 1520-5045)

OJEDA, Karina, SUÁREZ, Jario, ÁVILA, Omar, KAFAROV, Viatcheslav. Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production - Part 1. En: Chem. Eng. Res. 2010. Des.,doi:10.1016/j.cherd.2010.07.007 (ISSN (printed): 0263-8762. ISSN (electronic): 1744-3563)

PAN, X., ARATO, C., GILKES, N., GREGG, D., MABEE, W., PYE, K., XIAO, Z., AHANG, X. SADDLER, J. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade

ethanol and co-products. En: Biotechnology and Bioengineering. 2005, Vol. 90 № 4, p. 473-481.

PAPOULIAS, S., GROSSMAN, I. A structural optimization approach in process synthesis. Part II: Heat recovery networks. Comput. Chem. Eng. 1983 Vol. 7, p. 707-721.

PARAJÓ, J.C. ALONSO, J.L. SANTOS, V. Development of a generalized phenomenological model describing the kinetics of the enzymatichydrolysis of alkaline-treated pine wood. En: Appl. Biochem. Biotechnol. 1996, Vol. 56, p. 289–299.

PELLEGRINI, L. OLIVEIRA S Jr., Exergy Analysis of sugarcane bagasse gasification. En: Exergy. 2007, Vol. 32, p. 314-327

PERRY, R.H. CHILTON C.H., Chemical Engineer's Handbook, 6th ed., MacGraw-Hill, New York, R.H. Perry, C.H. Chilton (Eds.), 1992.

PTANSINSKI KJ, PRINS M, PIERIK A, Exergetic evaluation of biomass gasification. En: Energy. 2007, doi:10.1016/j.energy.2006.06.024

RFA.Renewable Fuels Association. Reporte, (2010) (Online www.ethanolrfa.org)

ROJAS I. Análisis de Exergía en dos Puntos Críticos en una Industria Productora de Harina de Pescado, Puerto Rico, Universidad de Puerto Rico Recinto Universitario de Mayagüez. 2005.

ROSEN, M., DINCER, I., KANOGLU, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact, En: Energy Policy. 2008, Vol. 36, p. 128-137.

SAHOO.P.K. Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming.En: Applied Thermal Engineering. 2008, Vol. 28 Nº 13, p. 1580-1588.

SÁNCHEZ, E., OJEDA, K, KAFAROV, V. Diseño de producción conjunta biodiesel – bioetanol. En: Revista Energía y Computación. 2007, Ed. 27 Vol. 15 Nº 1. (ISSN: 0121-5299)

SÁNCHEZ, O., CARDONA, C. Producción biotecnológica de alcohol carburante I: Obtención a partir de diferentes materias primas. En: Interciencia. 2005, Vol. 30 Nº 11, p. 671-678.

SÁNCHEZ, O., CARDONA, C. Producción de alcohol carburante: Una alternativa para el desarrollo agroindustrial. 2007. ISBN: 978 – 958 – 44 – 1194 – 5. Manizales, Colombia.

SCHAUMANN, G. The Efficiency of the rational use of energy. En: Applied Energy. 2007, Vol. 84 Nº 7-8, p. 719-728.

SCIUBBA, E., WALL, G. A brief Commented History of Exergy From the Beginnings to 2004, En: Int. J. of Thermodynamics. 2007, Vol. 10, p. 1-26.

SEIDER, W., SEADER, J., LEWIN, D. Product and Process Design Principles.Synthesis, Analysis, and Evaluation.Second edition. Ed: John Wiley and Sons. 1996 p. 302-315.

SILVEIRA, J., TUNA, C. Thermoeconomic analysis method for optimization of combined heat and power systems. Part I, En: Progress in Energy and Combustion Science. 2003, Vol. 29, p. 479–485

SINGH, N., SINGH., A. Production of liquid biofuels from renewable resources. En: Progress in Energy and Combustion Science. 2010, Article in Press, doi:10.1016/j.pecs.2010.01.003

SÖDERSTRÖM, J., PILCHER, L., GALBE, M., ZACCHI, G. Two-step steam pretreatment of softwood by dilute H₂SO₄ impregnation for ethanol production. En: Biomass and Bioenergy. 2003, Vol. 24, p. 475-486.

SORIN, M., LAMBERT, J., PARIS, J. Exergy flows analysis in chemical reactors. En: Trans IchemE. 1998, Vol 76, Part A, p. 389-395. SPATARI, S., BAGLEY, D., MACLEAN, H. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. En: Bioresource Technology. 2010, Vol. 101, p. 654–667

SUN, Y., CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. En: Bioresource technology. 2002, Vol. 83, p. 1-11.

SZARGUT, J., ZIEBIK, A., STANEK, W. Depletion of the non-renewable natural exergy resources as measure of the ecological cost. En: Energy Convers. Manage. 2002, Vol. 43, p. 1149-1163

SZARGUT, J., STYRYLSKA, T. Approximate evaluation of the exergy of fuels. Brennst. Warme Kraft, Vol. 16 Nº 12, p. 589–96 (In German).

SZARGUT, J., MORRIS, D., STEWARD, F. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. En: Hemisphere Publishing Corporation: New York. 1988.

TALENS, L., VILLALBA, G. GABARRELL X. Exergy analysis applied to biodiesel production. En: Res. Conserv. Recycl. 2007, Vol. 51, p. 397–407.

TAN, H., LEE, K., MOHAMED, A. Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. En: Bioresource Technology. Julio, 2010, Vol. 101 Nº 14, p. 5719-5727.

TOMAS-PEJO, E., OLIVA, J., BALLESTEROS, M., OLSSON, L. Comparison of SHF and SSF Processes From Steam-Exploded Wheat Straw for Ethanol Production by Xylose-Fermenting and Robust Glucose-Fermenting Saccharomyces cerevisiae Strains. En: Biotechnol Bioeng. 2008 Vol. 100 N^o 6, p. 1122-1131

TONON, S., BROWN, M., LUCHI, F., MIRANDOLA, A., STOPPATO, A., ULGIATIC, S. An integrated assessment of energy conversion processes by means of thermodynamic, economic and environmental parameters. En.Energy. 2006, Vol. 31, p. 149–163.

TRUBAEV, P. Exergy Analysis of Thermal Processes in the Building Materials Industry. En: Theoretical Foundations of Chemical Engineering. 2006, Vol. 40 № 2, p. 175–182.

US DOE.(2003) US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Transportation Technologies. Washington DC USA.. See also: http://www.ott.doe.gov/biofuels/

UTLU, Z., HEPBASLI, A. Energetic and exergetic assessment of the industrial sector at varing dead(reference) state temperaturas: A review with a illustrative example. En: Renewable & sustainable energy and reviews. 2008, Vol. 12, p. 1277-1301.

VELÁSQUEZ, H., RUIZ, A., OLIVEIRA, S. Ethanol Production from Banana Fruit and its Lignocellulosic Residues: Exergy and Renewability Analysis. En: Int. J. of Thermodynamics. 2007, Vol. 12 Nº 3, p. 155-162.

WALD, S. WILKE, C., BLANCH, H. Kinetics of the enzymatic hydrolysis of cellulose. En: Biotechnol. Bioeng. 1984, Vol. 26, p. 221–230.

WALL, G. Exergy flows in industrial processes. En: Energy. 1988, Vol. 13 Nº 2, p. 197-208.

WALL, G., GONG, M. On Exergy and Sustainable Development – Part 1: Conditions and concepts. En: Exergy Int. J. 2001, Vol. 1 Nº 3, p. 128-145.

WOOLEY, R., RUTH, M., SHEEHAN, J., IBSEN, K., MAJDESK, H., GALVEZ, A. Lignocellulosic biomass to ethanol process design and economics utilizing cocurrent dilute acid prehydrolysis and enzymatic hydrolysis. Current and futuristic scenarios.Technical Report NREL/TP-580-26157. National Renewable Energy Laboratory, Golden, CO, USA. 1999.

WOOLEY, J., PUTSCHE, V. USDOE, Development of an ASPEN PLUS Physical Property Database for Biofuels Components, available online www.p2pays.org/ref/22/21210.pdf. 1996. WORC.BiofuelsSustainableCriteria,Seealso:http://www.worc.org/userfiles/Biofuels%20Sustainability%20Criteria.pdf.2006.

WYMAN, C., DALE, B., ELANDER, R., HOLTZAPPLE, M. LADISH, M., LEE, Y. Coordinated developmente of leading biomass pretreatment technologies. En: Bioresorce technology. 2005, Vol. 96, p. 1959-1966

YANG, B., WYMAN, C. Pretreatment: the key to unlocking low-cost cellulosic ethanol. En: Bioprod Bioref. 2008, Vol. 2, p. 26–40.

YANG, L., HU, S., CHEN, D., ZHANG, D. Exergy analysis on eco-industrial systems. En: Science in China: Series B Chemistry. 2006, Vol. 49 N^o 3, p. 281-288.

YANG, Q., CHEN, B., JI, X., HE, Y., CHEN, G. Exergetic evaluation of cornethanol production in China, Commun.Nonlinear Sci. Numer.Simul. doi:10.1016/j.cnsns.2007.08.011. 2007.

ZAFER, U., ARIF, H. A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method.Renewable and Sustainable Energy Reviews. 2007 Vol. 11 N^o 7, p. 1438-1459 ZAFER, U., ARIF, H. Energetic and exergetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example. Renewable and Sustainable Energy Reviews. 2008, Vol. 12 N^o 5, p. 1277-1301.
ANEXOS

ANEXO A. INFORMACIÓN ESTADÍSTICA SOBRE LA PRODUCCIÓN Y CONSUMO DE ETANOL

PRINCIPALES PRODUCTORES MUNDIALES DE ETANOL COMO COMBUSTIBLE 2001-2008 (MILLONES DE LITROS)								
Año	2001	2002	2003	2004	2005	2006	2007	2008
Estados Unidos	6,684	8,151	10,617	12,880	14,755	18,381	24,552	34,968
Brasil	11,031	11,961	13,601	14,289	14,838	16,478	20,500	24,950
UE	259	309	462	535	913	1,608	1,803	2,816
China	0	289	800	1,000	1,200	1,400	1,700	1,900
Canadá	225	230	230	230	255	255	720	950
India	0	0	0	150	100	120	140	350
Tailandia	0	0	0	6	67	135	192	322
Colombia	0	0	0	0	27	266	272	256
Otros	47	50	86	80	138	132	278	567
Total	18,246	20,990	25,796	29,170	32,293	38,775	50,157	67,079
PRINCIPALES CONSUMIDORES MUNDIALES DE ETANOL COMO COMBUSTIBLE 2001-2008 (MILLONES DE LITROS)								
PRINCIPAL (MILLONES	ES CONSI DE LITROS	UMIDORES 5)	MUNDIAL	ES DE E	TANOL CO	OMO CON	BUSTIBLE	2001-2008
Año	ES CONSI DE LITROS	2002	MUNDIAL	ES DE E	2005	омо сом 2006	2007	2001-2008
PRINCIPAL (MILLONES) Año Estados Unidos	ES CONSI DE LITROS	2002 7,892	MUNDIAL 2003 10,734	ES DE E 2004 13,279	2005 15,240	2006 20,636	2007 25,917	2001-2008 2008 36,341
PRINCIPAL (MILLONES Año Estados Unidos Brasil	ES CONSI DE LITROS 2001 6,567 11,151	JMIDORES 2002 7,892 11,028	MUNDIAL 2003 10,734 11,548	ES DE E 2004 13,279 12,080	2005 15,240 12,612	2006 20,636 12,699	2007 25,917 16,204	2001-2008 2008 36,341 19,962
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE	ES CONSI DE LITROS 2001 6,567 11,151 283	JMIDORES 2002 7,892 11,028 299	MUNDIAL 2003 10,734 11,548 646	ES DE E 2004 13,279 12,080 1,012	2005 15,240 12,612 1,487	OMO CON 2006 20,636 12,699 1,909	2007 25,917 16,204 2,650	2001-2008 2008 36,341 19,962 3,405
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China	ES CONSI DE LITROS 2001 6,567 11,151 283 0	JMIDORES 2002 7,892 11,028 299 289	MUNDIAL 2003 10,734 11,548 646 800	ES DE E 2004 13,279 12,080 1,012 1,000	Z005 15,240 12,612 1,487 1,200	OMO CON 2006 20,636 12,699 1,909 1,400 1,400	2007 25,917 16,204 2,650 1,700	2001-2008 2008 36,341 19,962 3,405 1,900
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China Canadá	ES CONSU DE LITROS 2001 6,567 11,151 283 0 225	JMIDORES 2002 7,892 11,028 299 289 230	MUNDIAL 2003 10,734 11,548 646 800 230	ES DE E 2004 13,279 12,080 1,012 1,000 230	Z005 15,240 12,612 1,487 1,200 255	OMO CON 2006 20,636 12,699 1,909 1,400 255	BUSTIBLE 2007 25,917 16,204 2,650 1,700 700	2001-2008 2008 36,341 19,962 3,405 1,900 1,400
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China Canadá India	ES CONSU DE LITROS 2001 6,567 11,151 283 0 225 0	JMIDORES 2002 7,892 11,028 299 289 230 0	MUNDIAL 2003 10,734 11,548 646 800 230 0	ES DE E 2004 13,279 12,080 1,012 1,000 230 150	Z005 15,240 12,612 1,487 1,200 255 100	OMO CON 2006 20,636 12,699 1,909 1,400 255 120 120	BUSTIBLE 2007 25,917 16,204 2,650 1,700 700 140	2001-2008 2008 36,341 19,962 3,405 1,900 1,400 350
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China Canadá India Tailandia	ES CONSI DE LITROS 2001 6,567 11,151 283 0 225 0 0 0	JMIDORES 2002 7,892 11,028 299 289 230 0 0	MUNDIAL 2003 10,734 11,548 646 800 230 0 0	ES DE E 2004 13,279 12,080 1,012 1,000 230 150 6	Z005 15,240 12,612 1,487 1,200 255 100 67	OMO CON 2006 20,636 12,699 1,909 1,400 255 120 127	BUSTIBLE 2007 25,917 16,204 2,650 1,700 700 140 176	2001-2008 2008 36,341 19,962 3,405 1,900 1,400 350 340
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China Canadá India Tailandia Colombia	ES CONSU DE LITROS 2001 6,567 11,151 283 0 225 0 225 0 0 0 0	JMIDORES 2002 7,892 11,028 299 289 230 0 0 0 0 0	MUNDIAL 2003 10,734 11,548 646 800 230 0 0 0 0	ES DE E 2004 13,279 12,080 1,012 1,000 230 150 6 0	Z005 15,240 12,612 1,487 1,200 255 100 67 23	DMO CON 2006 20,636 12,699 1,909 1,400 255 120 127 262 262	BUSTIBLE 2007 25,917 16,204 2,650 1,700 700 140 176 283	2001-2008 2008 36,341 19,962 3,405 1,900 1,400 350 340 247
PRINCIPAL (MILLONES Año Estados Unidos Brasil UE China Canadá India India Tailandia Colombia Otros	ES CONSU DE LITROS 2001 6,567 11,151 283 0 225 0 225 0 0 0 0 47	JMIDORES 2002 7,892 11,028 299 289 230 0 0 0 50	MUNDIAL 2003 10,734 11,548 646 800 230 0 0 0 86	ES DE E 2004 13,279 12,080 1,012 1,000 230 150 6 0 64	Z005 15,240 12,612 1,487 1,200 255 100 67 23 102	DMO CON 2006 20,636 12,699 1,909 1,400 255 120 127 262 244	BUSTIBLE 2007 25,917 16,204 2,650 1,700 700 140 176 283 365	2001-2008 2008 36,341 19,962 3,405 1,900 1,400 350 340 247 591

Fuente: Organización Internacional del Azúcar (OIA)

PROYECTOS DE E	TANOL CELUL	OSICO EN ESTADOS UN	IDOS		
Compañía	Ubicación	Tecnología	Producción	Materia Prima	Notas
Abengoa	York, NE Hugoton, KS		11.6 mgy 11.6 mgy	Biomasa	Ha estado en operación desde 2007.La nueva planta se espera que comience a operar en 2012.
AE Biofuels	Butte, MT	Hidrólisis de celulosa a temperatura ambiente	Pequeña escala	Biomasa	Utiliza enzimas en proceso de patente a temperatura ambiente. La producción comenzó en 2008
Bluefire Ethanol	Lancaster, CA Fulton, MS	Arkenol Process Technology (Tecnología de hidrólisis ácida concentrada)	3.1 mgy 18 mgy	Residuos verdes, residuos de madera y otros residuos celulósicos urbanos	
California Ethanol +Power, LLC (ce+p)	Imperial Valley, CA		66 mgy	Usa energía proveniente del bagazo	Cada planta convierte caña de azúcar en 66 millones de galones de etanol combustible por año, 49.9 MW de electricidad, 880,000 millones de pies cúbicos de biometano 33,000 toneladas de biomasa y 28,000 toneladas de fertilizante. Diseñada y construida por Fagen, Inc., y apoyada por la firma brasilera Dedini.
Coskata	Madison, PA	Tecnología de fermentación biológica. Son propietarios de microorganismos y eficientes diseños de bioreactor en procesos de conversión de tres pasos	40,000 gal/año	Biomasa, madera, residuos sólidos municipales, bagazo y otros residuos agrícolas	

DuPont Danisco Cellulosic Ethanol LLC (University of Tennessee/Genera Energy LLC)	Vonore, TN	Tecnología de hidrólisis enzimática	250,000 gal/año	Fibras de maiz	La producción comercial esta programada para 2012
Frontier Renewable Resources, LLC (owned by Mascoma Corporation 75% and JM Longyear LLC 25%)	Kinross Township, Michigan	Tecnología de bioprocesamiento consolidado Mascoma (CBP)	Inicialmente 40 mgy	Mezcla de residuos de madera	Visite www.frontier-renewable .com
ICM Inc.	St. Joseph, MO	Procesamiento bioquímico y termoquímico	No reportada	Biomasa lignocelulósica	El proyecto modificara la planta de etanol de maíz existente en St. Joseph para producir etanol celulósico
logen Corp.	TBD	Tecnología enzimática	TBD	Residuos agrícolas	Opera desde 2004, La planta de demostración logen en Ottawa, Canadá, convierte biomasa en 3 millones de litros de etanol por año (cerca de 793,000 galones). logen Corp. Suspendió sus operaciones en Igaho en 2008
KL Process	Upton, WY	Proceso térmico y mecánico	1.5 mgy	Madera suave y residuos de madera	Opera intermitentemente
Mascoma	Rome, NY	Bioprocesamiento consolidado(CBP)	0.5 mgy	Biomasa lignocelulósica, incluyendo residuos de madera	La planta piloto validara la Tecnología Mascoma. Se plantea la escala a producción comercial en Michigan para 2013
New Planet Energy	Vero Beach, FL	INEOS Bio Ethanol process (gasificación, fermentación y destilación)	Primera etapa 8 mgy; 2da etapa 21 mgy; 3ra etapa, 100	Residuos sólidos municipales (MSW); papel sin reciclar; residuos agrícolas y biomasa energética	La preparación del sito se espera que comience en 2008, la primera etapa para iniciar en 2010 y la segunda etapa en 2011

			mgy		
Pacific Ethanol	Boardman, OR	BioGasol	2.7 mgy	Residuos	La planta de demostración será ubicada anexa a la Planta de etanol de maíz, Pacific Ethanol existente
POET	Scotland, SD Emmetsburg, IA	BFRAC™ separa el jugo de maíz de la fibra y cascara	20,000 gal/año 31.25 mgy	Fibras y cascara de Maíz	La planta Emmetsburg, IA después dela expansión producirá 125 mgy de etanol, de los cuales el 25% será etanol celulósico. La planta espera comenzar su producción a finales de 2011
Qteros	Chicopee, MA (adjacent to the Westover Air Force Base)	Bioprocesamiento Consolidado usando su Q Microbe™, la cual puede convertir directamente caso todas las formas de celulosa en etanol	Planta piloto a pequeña escala	bagazo y residuos de maíz	
Range Fuels Inc.	Soperton, GA	Propietarios de un proceso de conversión termoquimico en dos pasos	<10 mgy (primera fase); permitido para 100 mgy	Madera, pero el proceso es capaz de usar grasas y residuos agrícolas	La planta Soperton esta siendo construida en fases. La capacidad anual de la primera fases, la cual se espera que empiece a operar a finales de 2010 es <10 mgy de biocombustibles celulósicos

University of Florida's Institute of Food and Agricultural Sciences Buckeye Technologies Inc. Myriant Technologies LLC (formed by BioEnergy International, LLC)	Perry, FL	Myriant Technologies LLC empleará la bacteria E-coli geneticamente mdificada desarrollada por la Universidad de la Florida para convertir biomasa en azúcar.	Escala piloto 400 galones/día	Bagazo de caña, cascarilla de arroz, madera y otras materias primas	Myriant Technologies LLC opera su propia planta en la University of Florida. Esta planeada para comenzar a operar a finales de 2010.
Verenium Verenium/BP Biofuels	Jennings, LA Highlands County, FL	Fermentación de C5 y C6	1.4 mgy 36 mgy	Bagazo de caña y caña de azúcar	El propósito de la planta de demostración es reducir el riesgo de escalamiento y brindar una validación de los modelos de costo de la producción de etanol celulósico. Vercipia Biofuels junto a Verenium y BP Biofuels, planean construir su proyecto de etanol a escala comercial en el Sur de Florida para comenzar a operar en 2012.
ZeaChem	Boardman, OR	Hibrido de fermentación bioquímica y gasificación termoquímica. La tecnología usa procesos conocidos y organismos actuando naturalmente. Puede producir biocombustibles y bioquímicos.	250,000 gal/año	Pinos. La planta demostrativa podrá procesar varios materiales	ZeaChem anunció el inicio dela construcción en Nov 18 de 2009 y el escalado en Febrero de 2010. Tendran la planta demostrativa para finales 2010.

Fuente: RFA, 2010

mgy: millones de galones por año

ANEXO B. VALORES USADOS EN LA BASE DE DATOS DE ASPEN PLUS (NREL BIOFUELS)

Propiedad	Propiedad en ASPEN TM	Unidades	Glucosa	Xilosa	Celulosa	Hemicelulosa	Lignina	Celulasa	Z.mobilis
Peso Molecular	MW		180.15	150.132	162.1435	132.117	122.493	22.8398	24.6264
Temperatura Crítica	TC	К	1011.1	890.42					
Presión crítica	PC	Pascal	6,200,000	6,577,700					
Volumen crítico	VC	cum/Kmol	0.4165	0.3425					
Factor acéntrico	OMEGA		2.5674	2.3042					
Calor de Formación, GI	DHFORM	kJ/Kmol	-1,256,903	-1,040,020					
Energía libre de Form	DGFORM	kJ/Kmol	-909,330						
Calor de formación, solido	DGSFRM	kJ/Kmol			-976,362	-762,416	-1,592,659	-74,944	-130,500
Presión de vapor	PLXANT/1	Pascal	1182.2	481.33					
	PLXANT/2		-84682	-46623					
	PLXANT/3		0	0					
	PLXANT/4		0.1564	2.1e-2					
	PLXANT/5		-175.85	64.331					
	PLXANT/6		-2.377e-5	6.224e-6					
	PLXANT/7		2	2					
	PLXANT/8		573.15	573.15					
	PLXANT/9		993.15	873.15					

Capacidad calorífica, GI	CPIG/1	J/kmolK	-5846.2	-4349.1					
	CPIG/2		1005.4	832.38					
	CPIG/3		-0.85893	-0.70717					
	CPIG/4		2.8702e-4	2.352e-4					
	CPIG/5		-5.653e-10	-2.025e-10					
	CPIG/6		0	0					
	CPIG/7		573.15	573.15					
	CPIG/8		1033.2	1023.2					
Capacidad calorífica, sólido	CPSPO1/1	J/kmolK			-11704	-9529.9	31431.7	35533	38409
	CPSPO1/2				672.07	547.25	394.427	0	0
	CPSPO1/3-6				0	0	0	0	0
	CPSPO1/7				298.15	298.15	298.15	298.15	298.15
	CPSPO1/8				1000	1000	1000	1000	1000
Capacidad calorífica, líquido	CPLDIP/1	J/kmolK	207431	172857					
	CPLDIP/2-5		0	0					
	CPLDIP/6		250	250					
	CPLDIP/7		1000	1000					

ANEXO C. PRINCIPALES CARACTERÍSTICAS DE LOS CASOS SIMULADOS

Tabla C-1.	Principales	características	de la	simulación	de	producción	de etanol-	Caso	1
------------	-------------	-----------------	-------	------------	----	------------	------------	------	---

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Neutralización	
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	Agente	Ca(OH) ₂
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Fermentación	
Pretratamiento	Ácido Diluido	Bioagente	S. cervisiase
Agente	H ₂ SO ₄ (1.5 %)	Presión - Temperatura	101.325 kPa, 303 K
Temperatura, Presión	438 K, 400 kPa	Contenido de etanol	5.6%
Carga de sólidos	10%	Destilación	
Tipo de proceso	Continuo	Número de Columnas	2
Degradación de hemicelulosa	90%	Etanol contenido en el destilado (1era columna)	59.1%
Solubilización de lignina	1%	Etanol contenido en el destilado (2da columna)	93%
Sacarificación		Tecnología de deshidratación	Tamices moleculares
Enzima	Celulasa: 18 FPU/g celulosa	Producto	Etanol
Presión, Temperatura	101.325 kPa, 321 K	Composición	99%
Carga de sólidos	8.5%	Flujo másico	6196.39 kg/h

Degradación de celulosa	85%	

Tabla C-2. Principales características de la simulación de	producción de etanol- Caso 2
--	------------------------------

Característica	Valor	Característica	Valor	
Materia Prima	Bagazo de caña	Fermentación		
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Bioagente	S. cervisiase	
Flujo másico	1200 ton/día	Presión - Temperatura	101.325 kPa, 303 K	
Pretratamiento	LHW	Contenido de etanol	5.2%	
Agente	Agua			
Temperatura, Presión	461 K, 6 MPa	Destilación		
Carga de sólidos	13%	Numero de columnas	2	
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	61%	
Degradación de hemicelulosa	85%	Etanol contenido en el destilado (2da columna)	90.7%	
Solubilización de lignina	30%	Tecnología de deshidratación	Tamices moleculares	
Sacarificación		Producto	Etanol	
Enzima	Celulasa: 18 FPU/g celulosa	Composición	99%	
Presión,	101.325 kPa, 321 K	Flujo másico	4907.28 kg/h	

Temperatura		
Carga de sólidos	10%	
Degradación de celulosa	75%	

Tabla C-3. Principales características de la simulación de producción de etanol- Caso 3

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Fermentación	
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	Bioagente	S. cervisiase
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Presión - Temperatura	101.325 kPa, 303 K
Pretratamiento	Explosión de vapor catalizada con ácido	Contenido de etanol	5.4%
Agente	H ₂ SO ₄ (2.25%)		
Temperatura	461K	Destilación	
Carga de sólidos	13%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	52.9%
Degradación de hemicelulosa	70%	Etanol contenido en el destilado (2da columna)	92.7%
Solubilización de lignina	-	Tecnología de deshidratación	Tamices moleculares
Sacarificación		Producto	Etanol
Enzima	Celulasa: 18 FPU/g	Composición	99%

	celulosa		
Presión, Temperatura	101.325 kPa, 321 K	Flujo másico	5452.01 kg/h
Carga de sólidos	10%		
Degradación de celulosa	75%		

Tabla C-4. Principales características de la simulación de producción de etanol- Caso 4

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Fermentación	L
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	Bioagente	S. cervisiase
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Presión - Temperatura	101.325 kPa, 303 K
Pretratamiento	Organosolv	Contenido de etanol	5.6%
Agente	w(etanol) = 60% y w(agua)= 40%		
Presión, Temperatura	2014 kPa, 458 K	Destilación	
Carga de sólidos	5%	Numero de columnas	2
Degradación de hemicelulosa	86%	Etanol contenido en el destilado (1era columna)	58%
Solubilización de lignina	85%	Etanol contenido en el destilado (2da columna)	92.9%
Recuperación del	90%	Tecnología de	Tamices

solvente		deshidratación	moleculares
Sacarificación		Producto	Etanol
Enzima	Celulasa: 18 FPU/g celulosa	Composición	99%
Presión, Temperatura	101.325 kPa, 321 K	Flujo másico	6060.82 kg/h
Carga de sólidos	9.7%		
Degradación de celulosa	80%		

Tabla C-5. Principales características de la simulación de producción de etanol- Caso 5

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Neutralización	I
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	Agente	Ca(OH) ₂
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Fermentación	
Pretratamiento	Organosolv	Bioagente	S. cervisiase
Agente	w(etanol) = 58.5%, w(agua) = 40% y w(H ₂ SO ₄) = 1.5%	Presión - Temperatura	101.325 kPa, 303 K
Presión, Temperatura	2014 kPa, 458 K	Contenido de etanol	5.2%
Carga de sólidos	5%	Destilación	
Degradación de hemicelulosa	93%	Numero de columnas	2
Solubilización de lignina	85%	Etanol contenido en el destilado (1era columna)	57%

Recuperación del solvente	87%	Etanol contenido en el destilado (2da columna)	92%
Sacarificación		Tecnología de deshidratación	Tamices moleculares
Enzima	Celulasa: 18 FPU/g celulosa	Producto	Etanol
Presión, Temperatura	101.325 kPa, 321 K	Composicion	99%
Carga de solidos	9.1%	Flujo másico	6071.01 kg/h
Degradación de celulosa	75%		

Tabla C-6. Principales características de la simulación de producción de etanol- Caso 6

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	celulosa de	80%
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 308 K
Pretratamiento	Ácido Diluido	Contenido de etanol	5.4%
Agente	H ₂ SO ₄ (1.5 %)	Neutralización	Ca(OH) ₂
Temperatura, Presión	438 K, 400 kPa	Destilación	
Carga de sólidos	10%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era	57.2%

		columna)	
Degradación de hemicelulosa	90%	Etanol contenido en el destilado (2da columna)	93.3%
Solubilización de lignina	1%	Tecnologia de deshidratacion	Tamices moleculares
Tecnología	SSF	Producto	Etanol
Enzima	Celulasa 20 FPU/g celulosa	Composición	99%
Bioagente	S. cervisiase	Flujo másico	6223.19 kg/h

Tabla C-7. Principales características de la simulación de producción de etanol- Caso 7

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	80%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 308 K
Pretratamiento	LHW	Contenido de etanol	5.5%
Agente	Agua		
Temperatura, Presión	461 K, 6 MPa	Destilación	
Carga de sólidos	13%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	57.4%

Degradación de hemicelulosa	85%	Etanol contenido en el destilado (2da columna)	93.6%
Solubilización de lignina	30%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSF	Producto	Etanol
Enzima	Celulasa 20 FPU/g celulosa	Composicion	99%
Bioagente	S. cervisiase	Flujo masico	6182.97 kg/h

Tabla C-8. Principales características de la simulación de producción de etanol- Caso 8

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	80%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 308 K
Pretratamiento	Explosión de vapor catalizada con ácido	Contenido de etanol	5.5%
Agente	H ₂ SO ₄ (2.25%)		
Temperatura	461K	Destilación	
Carga de Sólidos	13%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	54.5%
Degradación de	70%	Etanol contenido en	93.2%

hemicelulosa		el destilado (2da columna)	
Solubilización de lignina	-	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSF	Producto	Etanol
Enzima	Celulasa 20 FPU/g celulosa	Composición	99%
Bioagente	S. cervisiase	Flujo másico	5858.51 kg/h

Tabla C-9. Principales características de la simulación de producción de etanol- Caso 9

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	81%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 308 K
Pretratamiento	Organosolv	Contenido de etanol	5.4%
Agente	w(etanol) = 60% y w(agua)= 40%		
Presión, Temperatura	2014 kPa, 458 K	Destilación	
Carga de sólidos	5%	Numero de columnas	2
Degradación de hemicelulosa	86%	Etanol contenido en el destilado (1era columna)	57.7%
Solubilización de	85%	Etanol contenido en	93.3%

lignina		el destilado (2da columna)	
Recuperación del solvente	90%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSF	Producto	Etanol
Enzima	Celulasa 20 FPU/g celulosa	Composición	99%
Bioagente	S. cervisiase	Flujo másico	6268.84 kg/h

Tabla C-10. Principales características de la simulación de producción de etanol- Caso 10

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	9.8%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	80%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 308 K
Pretratamiento	Organosolv	Contenido de etanol	5.4%
Agente	w(etanol) = 58.5%, w(agua) = 40% y w(H ₂ SO ₄) = 1.5%	Neutralización	Ca(OH) ₂
Presión, Temperatura	2014 kPa, 458 K	Destilación	
Carga de sólidos	5%	Numero de columnas	2
Degradación de hemicelulosa	93%	Etanol contenido en el destilado (1era columna)	58.9%

Solubilización de lignina	85%	Etanol contenido en el destilado (2da columna)	93.4%
Recuperación de solvente	87%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSF	Producto	Etanol
Enzima	Celulasa 20 FPU/g celulosa	Composición	99%
Bioagente	S. cervisiase	Flujo másico	6433.17 kg/h

Tabla C-11. Principales características de la simulación de producción de etanol- Caso 11

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	8.6%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	88%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 314 K
Pretratamiento	Ácido Diluido	Contenido de etanol	7%
Agente	H ₂ SO ₄ (1.5 %)	Neutralización	Ca(OH) ₂
Temperatura, Presión	438 K, 400 kPa	Destilación	
Carga de sólidos	10%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	61.3%

Degradación de hemicelulosa	90%	Etanol contenido en el destilado (2da columna)	92.4%
Solubilización de lignina	1%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSCF	Producto	Etanol
Enzima	Celulasa 15 FPU/g celulosa	Composición	99%
Bioagente	Z. mobilis	Flujo másico	6599.36

Tabla C-12. Principales características de la simulación de producción de etanol- Caso 12

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	88%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 314 K
Pretratamiento	LHW	Contenido de etanol	7%
Agente	Agua		
Temperatura, Presión	461 K, 6 MPa	Destilación	
Carga de sólidos	13%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	60.4%
Degradación de	85%	Etanol contenido en	92.4%

hemicelulosa		el destilado (2da columna)	
Solubilización de lignina	30%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSCF	Producto	Etanol
Enzima	Celulasa 15 FPU/g celulosa	Composición	99%
Bioagente	Z. mobilis	Flujo másico	6453.82 kg/h

Tabla C-13. Principales características de la simulación de producción de etanol- Caso 13

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	10%
Composición	Celulosa 23%, Hemicelulosa 11% Lignina 13.5 % Cenizas 2.5% Humedad 50%	Degradación de celulosa	88%
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 314 K
Pretratamiento	Explosión de vapor catalizada con ácido	Contenido de etanol	7.4%
Agente	H ₂ SO ₄ (2.25%)	Neutralización	Ca(OH) ₂
Temperatura	461K	Destilación	
Carga de sólidos	13%	Numero de columnas	2
Tipo de proceso	Continuo	Etanol contenido en el destilado (1era columna)	57.3%
Degradación de hemicelulosa	70%	Etanol contenido en el destilado (2da	92.3%

		columna)	
Solubilización de lignina	-	Tecnologia de deshidratacion	Tamices moleculares
Tecnología	SSCF	Producto	Etanol
Enzima	Celulasa 15 FPU/g celulosa	Composición	99%
Bioagente	Z. mobilis	Flujo másico	6099.62 kg/h

Tabla C-14. Principales características de la simulación de producción de etanol- Caso 14

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	9.7%
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	Degradación de celulosa	88%
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	1200 ton/día	Presión, Temperatura	101.325 kPa, 314 K
Pretratamiento	Organosolv	Contenido de etanol	7.8%
Agente	w(etanol) = 60% y w(agua)= 40%		
Presión, Temperatura	2014 kPa, 458 K	Destilación	
Carga de sólidos	5%	Numero de columnas	2
Degradación de hemicelulosa	86%	Etanol contenido en el destilado (1era columna)	60.3%
Solubilización de lignina	85%	Etanol contenido en el destilado (2da	92.4%

		columna)	
Recuperación del solvente	90%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSCF	Producto	Etanol
Enzima	Celulasa 15 FPU/g celulosa	Composición	99%
Bioagente	Z. mobilis	Flujo másico	6480.03 kg/h

Tabla C-15. Principales características de la simulación de producción de etanol- Caso 15

Característica	Valor	Característica	Valor
Materia Prima	Bagazo de caña	Carga de sólidos	9%
	Celulosa 23%,		
	Hemicelulosa 11%		
Composición	Lignina 13.5 %	celulosa de	88%
	Cenizas 2.5%		
	Humedad 50%		
Flujo másico	másico 1200 ton/día Presión, Temperatura		101.325 kPa, 314 K
Pretratamiento	Organosolv	Contenido de etanol	7.9%
Agente	w(etanol) = 58.5% , w(agua) = 40% y w(H ₂ SO ₄) = 1.5%	Neutralización	Ca(OH) ₂
Presión, Temperatura	2014 kPa, 458 K	Destilación	_
Carga de sólidos	5%	Numero de columnas	2
Degradación de hemicelulosa	93%	Etanol contenido en el destilado (1era columna)	58%

Solubilización d lignina	85%	Etanol contenido en el destilado (2da columna)	90%
Recuperación de solvente	87%	Tecnología de deshidratación	Tamices moleculares
Tecnología	SSCF	Producto	Etanol
Enzima	Celulasa 15 FPU/g celulosa	Composición	99%
Bioagente	Z. mobilis	Flujo másico	6679.98 kg/h

ANEXO D. PRINCIPALES RESULTADOS DE LOS ANÁLISIS EXERGÉTICOS DE LAS RUTAS SIMULADAS

Tabla D1. Caso 1. Pretratamiento Acido + SHF

	Pretratamiento	Sacarificación	Fermentación	Fermentación	Purificación
				Pentosas +	
				Neutralización	
Exergy input					
- Flow					
(MJ/h)					
	807523,08	382229,27	178909,66	83383,77	207178,34
Exergy					
output -					
Flow (MJ/h)	579268,31	392473,90	177719,47	74143,93	207671,81
Exergy - Q					
(MJ/h)					
output	407000 40	4000.00	10.15	444 50	07007.00
	107883,16	1093,39	40,15	444,58	27837,93
Exergy - Q					
(MJ/h) input	36029,63	486,46	932,36	34,42	42444,46
Totales Irrev					
por equipos					
(MJ/kg					
etanol)					
	25,24	21,63	0,19	1,22	2,28
Emisiones					
de Exergía					
(MJ/kg					
etanol)	19,38	34,58	3,45	3,78	6,41
Eficiencia	0,5443	0,4656	0,8694	0,6080	0,6727

	Pretratamiento	Sacarificación	Fermentación	Fermentación	Purificación
				Pentosas	
Exergy input					
- Flow					
(MJ/h)	555400.00	404400 47	470000.05	40400470	000000.04
	555126,29	401190,47	176608,95	131694,70	206688,04
Exergy					
output -					
Flow (MJ/h)	534377,67	356003,13	175954,05	126269,17	205826,02
Exergy - Q					
(MJ/h)					
output	77149.000	907.64	20.62	454 70	06070.04
	77140,209	027,01	39,02	454,70	20072,21
Exergy - Q					
(MJ/h) input	132535,78	10,562	18,68	73,63	41205,40
Totales Irrev					
por equipos					
(MJ/kg					
etanol)	40.00	7 40	0.44	0.04	0.54
	12,93	7,43	0,11	0,84	2,54
Emisiones					
de Exergía					
(MJ/kg					
etanol)	1,30	30,16	3,35	12,66	7,36
Eficiencia	0,7645	0,4384	0,882	0,3845	0,6529
Exergy – W					
(MJ/h)	1081,07				

Tabla D2. Caso 2. Pretratamiento LHW + SHF

	Pretratamiento	Sacarificación	Fermentación	Fermentación	Purificación
				Pentosas +	
				Neutralización	
Exergy input					
- Flow					
(MJ/h)					100404.00
	562307,89	4/4148,45	170434,58	59972,21	188404,62
Exergy					
output -					
Flow (MJ/h)	534659,88	427356,25	169154,37	55546,84	186789,15
Exergy - Q					
(MJ/h)					
output	00050.00	4470.07		004.00	05050.05
	23059,80	1178,07	144,49	361,38	25053,95
Exergy - Q					
(MJ/h) input	40533,96	504,85		28,22	39265,67
Totales Irrev					
por equipos					
(MJ/kg					
etanol)	a a z a				
	8,273	40,32	0,2083	0,65	2,90
Emisiones					
de Exergía					
(MJ/kg					
etanol)	1,284	47,25	3,64	3,03	7,16
Eficiencia	0,8753	0,3575	0,8758	0,6504	0,6489

Tabla D3. Caso 3. Pretratamiento Explosión de vapor catalizada con ácido + SHF

	Pretratamiento	Sacarificación	Fermentació	Fermentación	Purificación
			n	Pentosas	
Exergy input					
- Flow					
(MJ/h)	1802047 01	284001 02	174240 91	220222.20	204024 40
Everav	1802047,01	204991,02	174240,81	229323,30	204024,49
euteut					
FIOW (IVIJ/N)	1644016,55	242940,55	173288,89	211367,93	212589,79
Exergy - Q					
(MJ/h)					
output	000005.00	050 70	00.44	700 54	07007.00
-	233635,60	650,73	39,14	728,51	27337,80
Exergy - Q					
(MJ/h) input	288455,79	340,06	18,67	33,36	41883,99
Totales Irrev					
por equipos					
(MJ/kg					
etanol)	23 94	6.88	0 1536	2 84	0.98
Emisiones	20,01		0,1000	2,01	0,00
de Exercía					
(MJ/kg					
(the) (g					
etanol)	0,13	11,45	3,4381	26,38	7,97
Eficiencia					
	0,8313 (0,2497)	0,6081	0,8748	0,2244	0,6679
Exergy - W					
(MJ/h) input	1248,01				

Tabla D4. Caso 4. Pretratamiento Organosolv (Etanol+Agua) + SHF

	Pretratamiento	Sacarificación	Fermentación	Fermentación	Purificación
				Pentosas +	
				Neutralización	
Exergy input					
- Flow					
(MJ/h)					
	1771801,80	272103,99	171645,50	253663,24	216708,02
Exergy					
output -					
Flow (MJ/h)	1741829,85	238185,35	166477,19	249803,05	223392,84
Exergy - Q					
(MJ/h)					
output					
	228038,29	878,97	37,45	818,16	27428,69
Exergy - Q					
(MJ/h) input	282991,87	327,47	941,45	36,14	42222,92
Totales Irrev					
por equipos					
(MJ/kg					
etanol)	40.00	10.01		0.40	
	13,20	12,94	0,831	0,42	1,26
Emisiones					
de Exergía					
(MJ/kg					
etanol)	38,12	10,85	3,167	27,98	9,15
Eficiencia	0,8699				
	(0,2523)	0,6274	0,8508	0,2749	0,6353
Exergy - W					
(MJ/h) input	1223,27				

 Tabla D5. Caso 5. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SHF

	Pretratamiento	SSF	Fermentación	Purificación
			Pentosas +	
			Neutralización	
Exergy input				
- Flow				
(MJ/h)	907522.09	202764 00	00000 77	202024 45
	607523,06	362764,06	03303,77	202931,45
Exergy				
output -				
Flow (MJ/h)	579268,31	323620,72	74143,93	208164,19
Exergy - Q				
(MJ/h)				
output	407000 40	0005.04		0704070
	107883,16	2035,81	444,58	27846,72
Exergy - Q				
(MJ/h) input	36029,63	488,58	34,42	42849,42
Totales Irrev				
por equipos				
(MJ/kg				
etanol)				
	25,24	9,25	1,418	1,56
Emisiones				
de Exergía				
(MJ/kg				
etanol)	19,38	27,56	3,76	6,34
Eficiencia	0,5443	0,4044	0,6080	0,6861

Tabla D6. Caso 6. Pretratamiento Acido + SSF

	Pretratamiento	SSF	Fermentación	Purificación
			Pentosas	
Exergy input				
- Flow				
(MJ/h)	555126,29	401725,29	131694,70	206359,58
Exergy				
output -				
Flow (MJ/h)	534377,67	512447,05	126269,17	206220,22
Exergy - Q				
(MJ/h)				
output	77148,26	2709,64	454,70	27558,57
Exergy - Q				
(MJ/h) input	132535,78	12,71	73,637	42361,68
Totales Irrev				
por equipos				
(MJ/kg				
etanol)	12,93	7,25	0,84	2,41
Emisiones				
de Exergía				
(MJ/kg				
etanol)	1,306	32,121	12,66	6,25
Eficiencia	0,7645	0,3873	0,3845	0,6736
Exergy – W (MJ/h)	1081,078			

Tabla D7. Caso 7. Pretratamiento LHW + SSF

Tabla D8. Caso 8. Pretratamiento Explosión de vapor catalizada con ácido + SSF

	Pretratamiento	SSF	Fermentación	Purificación
			Pentosas +	
			Neutralización	
Exergy input				
- Flow				
(MJ/h)	562307,89	324683,26	59972,21	191428,48
Exergy				
output -				
Flow (MJ/h)	534659,88	310638,30	55546,84	192750,11
Exergy - Q				
(MJ/h)				
output	23059,80	2121,88	361,38	26509,34
Exergy - Q				
(MJ/h) input	40533,96	507,00	28,22	41288,53
Totales Irrev				
por equipos				
(MJ/kg				
etanol)	8,27	8,66	0,653	2,297
Emisiones				
de Exergía				
(MJ/kg				
etanol)	1,281	46,08	3,037	5,800
Eficiencia	0,8753	0,4800	0,6504	0,6822

	Pretratamiento	SSF	Fermentación	Purificación
			Pentosas	
Exergy input				
- Flow				
(MJ/h)	1902047 01	295514.07	100222.20	214622 42
	1602047,01	200014,07	109323,30	214032,42
Exergy				
output -				
Flow (MJ/h)	1644016,55	252851,28	54516,17	217617,73
Exergy - Q				
(MJ/h)				
output	000005.00	4500.47	700 544	07005 00
	233635,60	1536,47	728,514	27935,93
Exergy - Q				
(MJ/h) input	288455,79	342,20	33,36	42940,89
Totales Irrev				
por equipos				
(MJ/kg				
etanol)	00.04	5 000	0.047	1.00
	23,94	5,038	2,847	1,92
Emisiones				
de Exergía				
(MJ/kg				
etanol)	0,13	14,35	8,664	7,64
Eficiencia	0,8312 (0,2497)	0,5709	0,4985	0,6595
Exergy – W				
(MJ/h)	1248,01			

Tabla D9. Caso 9. Pretratamiento Organosolv (Etanol+Agua) + SSF

	Pretratamiento	SSF	Fermentación	Purificación
			Pentosas +	
			Neutralización	
Exergy input				
- Flow				
(MJ/h)	4774004 00	070540 40	050000.04	004075.00
-	1771801,80	272542,49	253663,24	221975,98
Exergy				
output -				
Flow (MJ/h)	1741829,85	388213,67	249803,05	226118,09
Exergy - Q				
(MJ/h)				
output	220220.20	4700.04	040.40	00040 40
	228038,29	1796,84	818,16	28648,10
Exergy - Q				
(MJ/h) input	282991,87	329,59	36,14	43755,36
Totales Irrev				
por equipos				
(MJ/kg				
etanol)	40.00	0.40		4 70 4
	13,20	6,13	0,4201	1,704
Emisiones				
de Exergía				
(MJ/kg				
etanol)	38,125	12,35	27,987	8,048
Eficiencia	0,8699		0,2749	
	(0,2523)	0,5574		0,6560
Exergy - W	1223,27			
(MJ/h) input				

Tabla D10. Caso 10. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SSF

Tabla D11. Caso 11. Pretratamiento Acido + SSCF

	Pretratamiento	SSCF	Neutralización	Purificación
Exergy input				
- Flow				
(MJ/h)	007500.00	400000.00	00400.07	0 14 7 47 70
	807523,08	469926,26	82488,87	241/4/,/8
Exergy				
output -				
Flow (MJ/h)	579268,31	409771,15	77855,60	247117,90
Exergy - Q				
(MJ/h)				
output	407000 40	0070.04	400.00	20102 11
	107883,16	2879,34	133,09	30183,44
Exergy - Q				
(MJ/h) input	36029,63	647,74		45654,52
Totales Irrev				
por equipos				
(MJ/kg				
etanol)				
	25,24	8,77	0,681	1,53
Emisiones				
de Exergía				
(MJ/kg				
etanol)	40.00	05 47	0.000	40.04
	19,38	25,47	0,283	10,34
Eficiencia	0,5443	0,5135	0,9211	0,622

	Pretratamiento	SSCF	Purificación
Exergy input			
- Flow			
(MJ/h)	555126,29	518255,24	237706,10
Exergy			
output -			
Flow (MJ/h)	534377,67	411408,68	243038,28
Exergy - Q			
(MJ/h)			
output	77148,269	2630,28	29599,18
Exergy - Q			
(MJ/h) input	132535,78	215,06	44945,37
Totales Irrev			
por equipos			
(MJ/kg			
etanol)	12,93	16,18	1,55
Emisiones			
de Exergía			
(MJ/kg			
etanol)	1,309	26,93	10,557
Eficiencia	0,7645	0,4582	0,6187
Exergy – W (MJ/h)	1081,07		

Tabla D12. Caso 12. Pretratamiento LHW + SSCF
Tabla D13. Caso 13	3. Pretratamiento	Explosión	de vapor	catalizada con	ácido +	SSCF
--------------------	-------------------	-----------	----------	----------------	---------	------

	Pretratamiento	SSCF	Neutralización	Purificación
Exergy input				
- Flow				
(MJ/h)	500007.00	520020.00	50077.04	004040 70
	562307,89	530820,09	59077,31	224816,79
Exergy				
output -				
Flow (MJ/h)	534659,88	466432,18	54610,83	230087,04
Exergy - Q				
(MJ/h)				
output	00050.00	0500.04	440.00	00000 07
	23059,80	2569,24	118,60	28238,87
Exergy - Q				
(MJ/h) input	40533,96	646,78	0,00	43488,63
Totales Irrev				
por equipos				
(MJ/kg				
etanol)				
	8,27	10,24	0,22	1,636
Emisiones				
de Exergía				
(MJ/kg				
etanol)	4.00			10.00
	1,28	39,62	0,025	10,62
Eficiencia	0,8753	0,4228	0,9689	0,6160

	Pretratamiento	SSCF	Purificación
Exergy input			
- Flow			
(MJ/h)	1802047,01	409688,67	239322,34
Exergy			
output -			
Flow (MJ/h)	1644016,55	305959,75	244683,68
Exergy - Q			
(MJ/h)			
output	233635,60	2767,71	29719,22
Exergy - Q			
(MJ/h) input	288455,79	445,04	45151,64
Totales Irrev			
por equipos			
(MJ/kg			
etanol)	23,94	15,649	1,55
Emisiones			
de Exergía			
(MJ/kg			
etanol)	0,13	10,29	10,66
Eficiencia	0,8312 (0,2497)	0,5832	0,6174
Exergy – W			
(MJ/h)	1248,01		

 Tabla D14. Caso 14. Pretratamiento Organosolv (Etanol+Agua) + SSCF

	Pretratamiento	SSCF	Neutralización	Purificación
Exergy input				
- Flow				
(MJ/h)	1771801,80	403058,44	252721,12	244687,21
Exergy				
output -				
Flow (MJ/h)	1741829,85	301971,91	243694,99	250053,94
Exergy - Q				
(MJ/h)				
output	228038,29	2701,95	496,24	30495,94
Exergy - Q				
(MJ/h) input	282991,87	454,17	0,00	45994,29
Totales Irrev				
por equipos				
(MJ/kg				
etanol)	13,2011	14,79	2,18	1,516
Emisiones				
de Exergía				
(MJ/kg				
etanol)	38,12	8,054	24,69	10,332
Eficiencia	0,869			
	(0,2523)	0,6061	0,6569	0,6227
Exergy - W				
(MJ/h) input	1223,27			

Tabla D15. Caso 15. Pretratamiento Organosolv (Etanol+Agua+Ácido) + SSCF

ANEXO E. REDES DE INTERCAMBIO DE CALOR (HEN) DISEÑADAS PARA LOS CASOS

Figura E.1. HEN Diseñada - Caso 2 (LHW-SHF)

Figura E.2. HEN Diseñada – Caso 8 (Explosión de Vapor – SSF)

Figura E.3. HEN Diseñada – Caso 12 (LHW-SSCF)

Figura E.4. HEN Diseñada – Caso 13 (Explosión de vapor catalizada-SSCF)

Figura E.5. HEN Diseñada – Caso Propuesto