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1. Introduction 

 

The “Delay scheduling” is a modification of linear control laws. This is a recent novel 

control technique that uses the CTCR paradigm (Cluster treatment of characteristic roots) 

to increase the robustness of the controllers by the tuning of gain. This gain makes the 

system more resilient and robust to the presence of a delay; it can reduce overshoots and is 

very useful when digital system communication protocols are used.  

 

The Pendubot mechanics in the most unstable equilibrium point become extremely 

nonlinear dynamic. This makes that the application of only linear controllers become a 

challenge, it has to be solved in the development of the project including the presence of a 

transport delay. 

 

The transport delay is very common in almost all digital systems. This difference of time 

between the real signal and the signal can be observed or generated. Transport delays make 

more unstable a controller and can limit the use of a feedback loop controller in many real 

industrial applications. 

 

This thesis project brings an opportunity to contribute to the state of art in this hot research 

area, produce libraries of “Delay scheduling”, and insight on the stability of time-delayed 

dynamic systems and create an experimental prototype to apply other control laws.  

 

This is the motivation of the research group DICBOT to develop and generate real products 

with high impact, creating a prototype to help in control teaching as well as research on the 

stability of nonlinear dynamic with time-delayed systems among others, applied to real 

dynamic problems as well as provided a solution to industries applications. 

 

Therefore, this research project is a study, development, and application of the “Delay 

scheduling” approach in an inverted articulated pendulum (Pendubot) experimental 
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testbed, controlled with PID, PQG, and H∞ control techniques. The “Delay scheduling” 

control approach will be validated applying the three control techniques in a real prototype 

experiment and later induce a time delay to prove the effectiveness of the “Delay 

scheduling” on a design of the two links under an actuated plant. 

 

Remarks: This is the first time, it has been proposed that use the CTCR paradigm 

implemented and validating on the Pendubot, as far we know. 
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1. Description of the project 

 

1.1 Tittle  

Linear Control with delay scheduling of an under actuated dynamic system  

 

1.2 Project’s Director 

• Professor: Carlos Borras Pinilla. Ph.D.., MSc. 

• Professor: Universidad Industrial de Santander. UIS- Colombia 

• School of Mechanical Engineering. 

 

1.3 Project’s Co-director 

• Professor:  Nejat Olgac. Ph.D., MSc. 

• Professor of University of Connecticut- USA 

• Department of Mechanical Engineering 

 

1.4 Project’s Co-director 

• Professor:  Daniel Alfonso Sierra Bueno. Ph.D. 

• Professor: Universidad Industrial de Santander. UIS- Colombia. 

• School of Electrical, Electronic and Telecommunications Engineering 

 

1.5 Interested entities in the project 

• UIS (Industrial University of Santander) 

• UCONN (University of Connecticut) 

 

1.6 Cost of the project 

The project has a total cost of $ 41.155.765.oo (11.000. USD) (See details in cost section) 
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2. Problem Statement 

 

Most of the electronics, control and automation of industrial systems have a transport delay. 

This delay is a lag between the observed signal and the original signal (Olgac & Sipahi, 

1995). This can be caused by the sensor and actuators.  Either in some industrial dynamic 

actuators or some engineering problems, the delay can reach a value of ten seconds.  

The problems caused by a high delay are the following: 

• Reduce the range of possible gains in a controller 

• Increase the overshoot of controllers 

• In some cases make a system unstable using classical controllers. 

In consequence of these effects caused by delays, in these years the delay become hot 

research and recurrent investigation topic as can be seen in the following figure. 

 

Figure 1.  The number of scientific publications per year in the delay topic (Web of Science, n.d.) 

This causes that at this moment the investigation of delays is still in progress and there 

are some applications and improvements in many fields that have not been considered.  
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3. Justification 

 

3.1 Research Question 

Can the “Delay Scheduling” method increase the robustness of classical controllers to 

handle a significant delay value in the Pendubot prototype? 

 

3.2 Detailed Justification 

To solve the problem of the delay one of the most common solutions is to design a robust 

control that neglects the effect of the delay and other disturbances. This solution has some 

problems, one of these is that an advanced control technique requires a high computation 

capacity and reduces the setting times. 

Another alternative is to use “Delay scheduling” this technique uses the CTCR paradigm 

to determine the stability pockets of a feedback-controlled system. These pockets 

determine the delay range that the system can handle. The idea of this control Technique 

is to increase the size of the stability pockets and at the same time improve the behavior of 

the controller (Albertos & Garcia, 2007). 

The principal advantage of this technique is that Colombia is still in an automation process 

for their industries. This produces that the most used controller only can execute PID 

controllers and their variations. Considering this the use of a technique that allows 

increasing the robustness of the controllers most used in the country. 

The selection of the other two control techniques (LQG and H∞) was defined because don’t 

require states feedback, are linear, and can be written in the S domain. This selection is 

suitable to apply the delay scheduling and the implementation of the controllers. 

The Pendubot was selected because it is an extremely nonlinear system. This fact and the 

under-actuated condition of the Pendubot makes that controlling this prototype with linear 
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controllers became a challenging work. Another characteristic of interest in the Pendubot 

is that can change the operation zone, passing from unstable to an extremely stable system. 

This can help in future projects developed by the University. 
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4. Objectives 

 

4.1 General Objective 

Assess the behavior of the control laws PID, LQG, and H∞ with "Delay scheduling" in an 

under-actuated and unstable pendulum platform using Simulink and Arduino. 

 

4.2 Specific Objective 

• Build a nonlinear mathematical model of the unstable under-actuated pendulum 

based on the real prototype and using physical variables obtained with a grey box 

identification method. 

• Apply the control laws in the prototype without any delay, tuning the controllers in 

continuous space and using a linearized model of the Pendubot 

• Apply the delay scheduling in all the previously designed controllers, inducing a 

delay based on the results of the CTCR method, comparing the results with the 

previously tuned controllers. 
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5. State of art 

 

5.1 Linear control techniques on inverted pendulums 

The pendulum-based systems are a common topic in control research. Due to this, many 

pendulum-based systems were controlled using linear techniques. The most basic 

technique used to control inverted pendulums is the PID controller and its variations. 

 

5.2 PID Controllers on inverted pendulums 

The PID controller in inverted pendulums can be applied in continuous or discrete form 

and is modified to increase the robustness. The most basic form of PID appears in figure 2 

(Olgac & Sipahi, 1995). 

 

Figure 2. PID Basic structure on the inverted pendulum (Olgac & Sipahi, 1995) 

This setup ensures the equilibrium of the pendulum without any control over the 

displacement of the car. Applying the following control equation (Spong & Block, 1995): 

𝐹𝑥 = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑝 ∗ ∫𝑒(𝑡) 𝑑𝑡 + 𝐾𝑝 ∗
𝑑𝑒(𝑡)

𝑑𝑡
 

Equation 1. PID Control Law 
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To improve the performance of this structure several methods that modify the gains of the 

system are implemented. That is the case of the PSO (particle swarm optimization) 

algorithms which are used as an optimization algorithm that changes the gains of the 

controller over time (Spong & Block, 1995). 

 

Figure 3. PID Basic structure improved with PSO algorithm (Olgac & Sipahi, 1995) 

The previous structures ensure the equilibrium of the system without controlling the car 

displacement. Therefore, structures that apply multiple loops were created as it appears in 

figure 4 (Spong & Block, 1995).  

 

 

Figure 4. PID structure improved with a second loop to control car displacement (Spong & Block, 1995) 

The PID control in figure 4 uses the second loop as decoupled systems which means faster 

responses but increases the overshoot (Spong & Block, 1995). 

Another option is the cascade structure. This case also uses two controllers with the 

difference that the internal loop ensures the displacement of the base and the second 
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controls the equilibrium at the same time that interacts with the internal PID. The 

advantages of the cascade controller are lower overshoots and reduced instability caused 

by the aggressive change of the set point. 

 

Figure 5. PID cascade structure for inverted pendulum (Spong & Block, 1995)) 

The PID controller can be modified in several ways to produce new structures and 

additionally, can be mixed with other controllers. This is the case of the PID mixed with 

the LQR controller. This controller can control the car position with a faster response than 

the previous controllers and at the same time ensure the stability of the pendulum with 

better performance due to the LQR loop (Zhang, M., & Tarn, T. J. (2002)). 
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Figure 6. PID mixed with LQR in a two-loop structure (Brian, A., & Jhon, M. (1990)) 

5.3 LQR Controllers on inverted pendulums 

The LQR is a powerful controller highly used on systems with stringent requirements. This 

technique uses the mathematical model of the system and the Q and R matrices to find the 

optimal gains. This control technique is applied as a regulator or as a servo controller.  

When the LQR is used as a regulator, the applied structure can be observed in figure 7. 

 

Figure 7.  LQR controller as regulator (Ogata, K. (2010)) 

As a regulator, the LQR controller is calculated using a Q square matrix with the size equal 

to the number of states and an R square matrix with the size equal to the number of control 

inputs. The regulator structure is used to hold the system on an equilibrium point and reject 

the perturbations. 

When path tracking is required, the servo controller structure is used. This structure 

requires the implementation of an extra state that is the integration of error. This 
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modification ensures a zero steady-state error. For the case of an inverted pendulum, the 

extra state refers to the car position. The diagram of this structure is shown in figure 8. 

 

Figure 8. LQG Controllers on inverted pendulums 

The LQG controller is the combination of an LQR controller and a Kalman filter. This 

technique is highly used on inverted pendulums since it can be applied without measuring 

all the states. 

 

Figure 9. Block Diagram of LQG Controller (Banerjee & Pal, 2018) 

The main advantage of Kalman filters in linear dynamic systems is that they can be used 

to estimate the states of the system from input and output information of the model. 

Additionally, it is possible to add noise to the ideal system. One common way to implement 

the LQG controller in inverted pendulums is shown in the following figure: 
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Figure 10. Block Diagram of LQG Controller implemented in an inverted pendulum (Žilić et al., 2009) 

Where it includes the LQG controller and a compensator for friction effects. In this case, 

it is assumed that all state variables are available for feedback. The state feedback controller 

for the linear time-invariant single-input-multiple-output system is designed such that it 

brings the state trajectory x to the equilibrium point. For this case, the authors conclude 

that the LQG controller can effectively suppress the external disturbance and keep the 

pendulum deflection angle close to zero, even without the friction compensator. 

 

5.4 Pendubot 

The Pendubot is an underactuated mechanical system that is commonly used for nonlinear 

control education to bring the non-actuated link into the vertical unstable equilibrium. It is 

defined as a planar two-link manipulator robot with the actuated first link and its dynamics 

can be described using Lagrangian mechanics. The main goal is to design a feedback 

control law that ensures stable oscillations of the second link, which is the exponential 
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orbital stability of a periodic motion. To achieve this, it is important to remark that it should 

be possible to achieve any desired motion.  

 

5.4.1 Pendubot Control 

To control this complex system, several methods have been implemented. Those include 

methods that use energy-based controllers, hybrid controllers, and reduced-order stable 

controllers. 

 

 

Figure 11. Block Diagram of pendubot with a hybrid controller (Zhang & Tarn, 2002) 

The main conclusion of these attempts is that the Pendubot is a simple underactuated 

mechanical system that shows second-order nonholonomic properties, which makes it a 
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complex system to control, being that the reason why further methods might be 

implemented to keep improving the approaches and results. 

 

5.5 Time Delay 

Time-delay systems, TDS, are also known as after effect or dead-time systems, hereditary 

systems, and equations with deviating argument or differential-difference equations. These 

kinds of systems are part of the class of functional differential equations FDEs that are 

infinite-dimensional. It helps to increase expectations of dynamic performances since these 

models behave more similar to a real process. Moreover, the delay properties studies show 

benefits for control with the voluntary introduction of delays.  
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6. Theoretical framework 

 

6.1 Transfer Function (Ogata, 2010) 

In a linear system represented by a differential equation, the time-invariant transfer 

function is the ratio of the Laplace transform of the output or response function, assuming 

that the all-initial conditions are zero. 

𝑎0𝑦
(𝑛)

+ 𝑎1𝑦
(𝑛−1)

+ ⋯ + 𝑎𝑛−1𝑦̇ + 𝑎𝑛𝑦 = 𝑏0𝑦
(𝑚)

+ 𝑏1𝑦
(𝑚−1)

+ ⋯+ 𝑏𝑚−1𝑥̇ + 𝑏𝑚𝑦    (𝑛 ≥ 𝑚) 

Equation 2. Differential equation of a linear time-invariant system 

Where the input and the output of the system are x, y respectively.   

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑠) =  
ℒ[𝑜𝑢𝑡𝑝𝑢𝑡]

ℒ[𝑖𝑛𝑝𝑢𝑡]
|
𝑧𝑒𝑟𝑜 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 

 

=
𝑌(𝑠)

𝑋(𝑠)
=

𝑏0𝑠
𝑚 + 𝑏1𝑠

𝑚−1 + ⋯+ 𝑏𝑚−1𝑠 + 𝑏𝑚

𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛
 

Equation 3. The transfer function of the nth-order system 

If the denominator the power of s of the transfer function is n, then is called an nth-order 

system. 

 

6.2 State Space (Ogata, 2010) 

State-space is a mathematical model of a physic system, which represented throw 

differential equation of the relation between input, output, and state variables. The elements 

of the dynamic system must memorize the values of the input for 𝑡 ≥ 𝑡1.  

In a multiple-input, multiple-output system, better known as a MIMO system that has n 

integrator, and r inputs 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑟(𝑡), the m outputs 𝑦1(𝑡), 𝑢𝑦2(𝑡), … , 𝑦𝑚(𝑡). The 
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state variables of the n outputs of the integrators are 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡), and the system 

can be defined by 

𝑥̇1(𝑡) = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

𝑥̇2(𝑡) = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)
⋮

𝑥̇𝑛(𝑡) = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

 

Equation 4. State space 

 
𝑦1(𝑡) = 𝑔1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

𝑦2(𝑡) = 𝑔2(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)
⋮

𝑦𝑚(𝑡) = 𝑔𝑚(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

 

Equation 5. Outputs of the system 

 

𝒙(𝑡) = [

𝑥1(𝑡)

𝑥2(𝑡)
⋮

𝑥𝑛(𝑡)

] , 𝒇(𝒙, 𝒖, 𝑡) = [

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)
⋮

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

], 

 

𝒚(𝑡) = [

𝑦1(𝑡)
𝑦2(𝑡)

⋮
𝑦𝑛(𝑡)

] , 𝒈(𝒙, 𝒖, 𝑡) = [

𝑔1(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

𝑔2(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)
⋮

𝑔𝑛(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑢1, 𝑢2, … , 𝑢𝑟; 𝑡)

] ,   𝒖(𝑡) = [

𝑢1(𝑡)
𝑢2(𝑡)

⋮
𝑢𝑟(𝑡)

] 

Equation 6. System equation 

 

By linearizing the equation around the operating state, the linearized equation of state and 

the output equation are obtained, as 
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𝒙̇(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩(𝑡)𝒖(𝑡) 

Equation 7. Linearized equation of state 

𝒚(𝑡) = 𝑪(𝑡)𝒙(𝑡) + 𝑫(𝑡)𝒖(𝑡) 

Equation 8. Linearized equation of the output 

Where: 

• A(t) the state matrix 

• B(t) input matrix 

• C(t) output matrix 

• D(t) direct transmission matrix 

This linear continuous-time control system characterized in state space can be represented 

in a block diagram like in the next figure 

 

Figure 12. Block diagram of the linear, continuous-time control system represented in state space. 

If the system is invariant in the time equation can be simplified as: 
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𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) 

Equation 9. Linearized equation of state of a time-invariant system 

𝒚(𝑡) = 𝑪𝒙(𝑡) + 𝑫𝒖(𝑡) 

Equation 10. Linearized equation of the output of a time-invariant system 

 

6.3 Lagrange (Murray et al., 1994) 

It is a method that allows finding the maximum and minimum of a function of multiple 

variables with restriction, with which this method can reduce a restricted problem of n 

variables to one of n + λ unrestricted variables, where λ are called Lagrange multipliers. 

The system can be written as 

𝐹 = [

𝑚1𝐼 0

⋱
0 𝑚𝑛𝐼

] [
𝑟̈1
⋮
𝑟̈𝑛

] + ∑Γ𝑗𝜆𝑗

𝑘

𝑗=1

 

Equation 11. System dynamics as a vector 

Where 

• Γ1, … , Γ𝑘 𝜖 ℝ
3  They are the basis of the constraint forces and are not necessarily 

must to be orthonormal. 

• 𝜆1, … , 𝜆𝑘  ∈  ℝ𝑘   The Lagrange multipliers are a factor that gives the relative 

magnitude of the constrained forces relative to Γ𝑗. 

In a mechanical system, the equation of motion in generalized coordinates 𝑞 ∈  ℝ𝑚 and a 

Lagrangian L, and the external force Υ𝑖 acting on the ith coordinate can write as show 
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𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= Υ𝑖    𝑖 = 1,… ,𝑚 

Equation 12. Lagrange’s equation 

Without constraints can choose 𝑞 to a be a component of r, by 

𝑇 =
1

2
∑𝑚𝑖 ‖𝑟̇𝑖

2‖ 

Equation 13. Find q in r components 

 

That able to rearrange the Lagrange equation as 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
=

𝜕𝐿

𝜕𝑞
+ Υ  

Equation 14. Lagrange’s equation in vector form 

 

6.4 PID Control (Ogata, 2010) 

When the mathematical model of the plant is derivable, can determine, the parameters of 

the controller that can the transient and steady-state specifications of the closed-loop 

system. 

The PID controller parameter can be tuned based on the Ziegler and Nichols rules, to 

determine the values of the proportional gain Kp, integral time Ti, and derivative time Td 

based on the transient response characteristics of a given plant, these values can be found 

with the next equations 

Type of Controller Kp Ti Td 

P 
𝑇

𝐿
 ∞ 0 
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PI 0.9
𝑇

𝐿
 

𝐿

0.3
 0 

PID 1.2
𝑇

𝐿
 2L 0.5L 

Table 1. Ziegler–Nichols tuning rule based on step response of plant 

The function C(s)/U(s) can approximate to first-order system with a transport lag as 

follows: 

𝐶(𝑠)

𝑈(𝑠)
=

𝐾𝑒−𝐿𝑠

𝑇𝑠 + 1
 

Equation 15. First-order system with transport lag 

Of the equation table, obtain 

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) = 1.2

𝑇

𝐿
(1 +

1

2𝐿𝑠
+ 0.5𝐿𝑠) = 0.6𝑇

(𝑠 +
1
𝐿)

2

𝑠
 

Equation 16. Plant with PID controller 

This PID controller has a pole at the origin and double zeros at 𝑠 = −1/𝐿. 

 

6.5 Quadratic Optimal Regulator Systems - LQR Control (Ogata, 2010) 

This method gives a systematic way to find the state feedback control gain matrix; this is 

a plus over the pole-placement method. 

Given the equation 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 
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Equation 17. State-space system 

𝒖(𝑡) = −𝑲𝒙(𝑡) 

Equation 18. The K matrix of the control vector 

𝐽 = ∫(𝒙∗𝑸𝒙 + 𝒖∗𝑹𝒖)𝑑𝑡

∞

0

 

Equation 19. The performance index equation 

Where, 

• Q is a matrix that could be a real symmetric, or a Hermitian (positive-definite or 

positive-semidefinite) 

• R is a matrix that could be a real symmetric or a positive-definite Hermitian 

• u(t) in this case is unconstrained  

Is important that have in mind that the Q and R matrix determine the cost of energy and 

the relative significance of the error. 

The optimal configuration is shown in the next block diagram 

 

Figure 13. Quadratic optimal regulator configuration 

Substituting equation 14 into equation 13 yields 
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𝒙̇ = 𝑨𝒙 − 𝑩𝑲𝒙 = (𝑨 − 𝑩𝑲)𝒙 

Equation 20. System equation with K matrix 

Assume that the A - BK matrix is stable and for hence its eigenvalues have a negative real 

part.  

Substituting Equation 14 into 15 gives 

𝐽 = ∫(𝒙∗𝑸𝒙 + 𝒙∗𝑲∗𝑹𝑲𝒙)𝑑𝑡

∞

0

= ∫ 𝒙∗(𝑸 + 𝑲∗𝑹𝑲)𝒙 𝑑𝑡

∞

0

 

Equation 21. The performance index equation in terms of K 

To solve this integration and if that matrix A - BK is stable, there must be at least one positive definite matrix 

P that satisfies the following equation, for the system to be stable 

(𝑨 − 𝑩𝑲)∗𝑷 + 𝑷(𝑨 − 𝑩𝑲) = −(𝑸 + 𝑲∗𝑹𝑲) 

Equation 22. System equation with K and P matrix 

The new J is rewritten as 

𝐽 = ∫ 𝒙∗(𝑸 + 𝑲∗𝑹𝑲)𝒙 𝑑𝑡

∞

0

= −𝒙∗𝑷𝒙|0
∞ = −𝒙∗(∞)𝑷𝒙(∞) + 𝒙∗(0)𝑷𝒙(0) 

Equation 23. The performance index equation in terms of P and x 

Equation 19 can be reduced since all the eigenvalues of A - BK have negative real parts, 

and therefore x(∞)→0 

𝐽 = 𝒙∗(0)𝑷𝒙(0) 

Equation 24. The performance index equation in terms of P and x(0) 

Knowing that R must be a positive-definite Hermitian or real symmetric matrix, can define 

R as multiplication of a transpose T* and T (nonsingular matrix)  
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𝑹 = 𝑻∗𝑻 

Equation 25. Definition of R matrix 

In addition, the K matrix can rewrite as 

𝑲 = 𝑻−1(𝑻∗)−1𝑩∗𝑷 = 𝑹−1𝑩∗𝑷 

Equation 26. Optimal matrix K 

If the performance index in equation 15 is linear and is set by  

𝒖(𝑡) = −𝑲𝒙(𝑡) = −𝑹−1𝑩∗𝑷𝒙(𝑡) 

Equation 27. The control signal in function of R, B, and P matrix 

The matrix P in equation 22 must satisfy equation 16 or the next equation 

 

𝑨∗𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−1𝑩∗𝑷 + 𝑸 = 0 

Equation 28. Reduced-matrix Riccati equation 

Design steps: 

1. Solve equation 24 for P, if the result is a positive-definite matrix, the system is stable, 

or matrix A - BK is stable 

2. Use the matrix P to substitute into equation 22, and the result is the optimal matrix K  

The performance index is determined by 

𝐽 = ∫(𝒚∗𝑸𝒚 + 𝒖∗𝑹𝒖)𝑑𝑡

∞

0

 

Equation 29. Performance index in terms of u and R 

In addition, the output equation can be replaced by 
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𝒚 = 𝑪𝒙 

Equation 30. Output equation 

In the index performance, an rewrite as  

𝐽 = ∫(𝒙∗𝑪∗𝑸𝑪𝒙 + 𝒖∗𝑹𝒖)𝑑𝑡

∞

0

 

Equation 31. Performance index in terms of u, R, and C 

 

6.6 Linear Quadratic Gaussian System - LQG Control  

The Linear Quadratic Gaussian System (Brian & Jhon, 1990) (Montoro López, 1996) is 

combination of a Kalman filter, a Linear Quadratic Estimator (LQE) and a Quadratic 

Optimal Regulator (LQR).  This method facilities the analysis of linear systems with 

perturbation of withe noise and incomplete states. 

 

 

The linear dynamic system is given by the next equation 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑣(𝑡) 

Equation 32. State-space variables 

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝑤(𝑡) 

Equation 33. Output system 

Where 

• X is the variable vector of state-space  

• u is the vector inputs 

• y is the vector with the available outputs for retro alimentation 
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• v(t) withe additive Gaussian noise of zero means, with covariance 𝑄̂(𝑡)𝛿(𝑡 − 𝜏), 

where 𝑄̂ is nonnegative definite symmetric for all t 

• w(t) the measurable additive Gaussian noise of zero means, with covariance 

𝑅̂(𝑡)𝛿(𝑡 − 𝜏), where 𝑅̂ is nonnegative definite symmetric for all t 

• The matrix A, B, C, 𝑄̂ and 𝑅̂ are assumed to have continuous elements 

Having presented that v and w are independent processes,  𝑢(𝑡) can depend only on the 

lasts measure 𝑦(𝑡′), 0 ≤ 𝑡′ ≤ 𝑡, the performance index function can be written as 

𝐽 = 𝐸 (𝑥𝑇(𝑇)𝐹𝑥(𝑇) + ∫𝑥𝑇(𝑡)𝑄(𝑡)𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅(𝑡)𝑢(𝑡) 𝑑𝑡

𝑇

0

) ;  𝐹 ≥ 0, 𝑄(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 

Equation 34. Performance index 

Where 

• E is the expected value 

• T is the final hour (Horizon) can be finite or infinite 

 

Assume that the horizon tends to infinite the first term 𝑥𝑇(𝑇)𝐹𝑥(𝑇) of the performance 

index make insignificant and the operator E make a mean of the quadratic integral. To 

obtain the optimum feedback needs v and w, such as 

𝐸 {[
𝑤(𝑡)
𝑣(𝑡)

]} = [
0
0
] 

𝐸 {[
𝑤(𝑡)
𝑣(𝑡)

] [𝑤(𝜏)𝑇 𝑣(𝜏)𝑇]} = [
𝑅𝑤𝑤 0
0 𝑅𝑣𝑣

] 

Equation 35. E expected value E equation 

The process and measurement noises are considered uncorrelated, and the autocorrelations 

are given by Dirac delta functions. The estimator is given by 
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𝜉̇ = 𝐴𝜉 + 𝐵𝑢 + 𝐾𝑒(𝑦 − 𝐶) 

Equation 36. Estimator 𝜉̇ 

In the last equation, Ke is the solution to the next Riccati equation 

𝑃𝐽 = 𝑅𝑖𝑐 ([
𝐴𝑇 −𝐶𝑇𝑅𝑣𝑣

−1𝐶
−Γ𝑅𝑤𝑤 −𝐴

]) = 𝐴𝑃𝐽 + 𝑃𝐽𝐴
𝑇 + Γ𝑅𝑤𝑤Γ𝑇 − 𝑃𝐽𝐶

𝑇𝑅𝑣𝑣
−1𝐶𝑃𝐽 

Equation 37. Riccati equation 

𝐾𝑒 = 𝑃𝐽𝐶
𝑇𝑅𝑣𝑣

−1 

Equation 38. Riccati solution Ke 

In similarly the Kc is the solution of the next equation 

𝑃𝐻 = 𝑅𝑖𝑐 ([
𝐴 𝐵𝑊2

−1𝐵𝑇

−𝑊1 −𝐴𝑇 ]) = 𝐴𝑇𝑃𝐻 + 𝑃𝐻𝐴 + W1 − 𝑃𝐻𝐵𝑊2
−1𝐵𝑇𝑃𝐻 

Equation 39. Riccati equation 

𝐾𝑐 = 𝑊2
−1𝐵𝑇𝑃𝐻 

Equation 40. Riccati solution Kc 

The optimum feedback is 

𝑢 = −𝐾𝑐𝜉 

Equation 41. Optimum feedback LQG 

The general block diagram of an LQG is shown below 
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Figure 14. LQG block diagram (MatLab, n.d.) 

In addition, can be expressed that an input filter y and an output u, with a Laplace transform,  

𝑈(𝑠) = 𝐹(𝑠)𝑌(𝑠) 

Equation 42.Transform to find the control action 

𝐹(𝑠) = [
𝐴 − 𝐾𝑒𝐶 − 𝐵𝐾𝑐

−𝐾𝑐
] 

Equation 43. Laplace transform of a LQG 

 

6.7 The H-Infinity (H∞) Control Technique 

The technique name is H-infinity, because the mathematic definition of the problem may 

be customary in the space H∞, in other words, all functions are bound to the right-half 

complex plane. This method tries to find how to minimize the H∞-norm of a transfer 

matrix, which represents the maximum overall frequencies of its largest singular value 

(Francis, 1987). In a difference with LQR method, the H∞ full state feedback can see how 

the disturbances affect the plant dynamics (Phillips & Athans, 1994), for this reason, is 

used to minimize the impact of perturbation in a closed-loop, and this can be measured in 

terms of stabilization or performance (Sirisha & S. Junghare, 2014). 

The rational transfer function matrix G(s) is in H1 if and only if all its poles are in the open 

left half-plane and it is proper too, in this case, the H1-norm can be defined as (Glover, 

2020): 
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‖𝐺(𝑠)‖∞ = 𝑠𝑢𝑝
𝑅𝑒𝑠>0

𝜎𝑚𝑎𝑥 (𝐺(𝑠)) = 𝑠𝑢𝑝
−∞<𝜔<∞

𝜎𝑚𝑎𝑥 (𝐺(𝑗𝜔)) 

Equation 44. H(∞)-norm 

Where 𝜎𝑚𝑎𝑥 denotes the largest singular value. 

In the case of a single input/single output a system with g(s) as its transfer function, and its 

H∞-norm, ‖g(s)‖_∞ obtain the maximum value of |g(jω)| and this is the maximum 

amplification of sinusoidal signals. On another hand, a MIMO system case obtains the 

system amplification of a vector of sinusoids. 

This system with transfer function G(s), has an input vector u(t)∈L_2 (0,∞) and an output 

vector y (t), with 𝑢̅(𝑠) and 𝑦̅(𝑠) as Laplace transforms (Glover, 2020). 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),   𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

Equation 45. State-space 

 

Figure 15. Lower linear fractional transformation: feedback system (Glover, 2020) 

With G(s) = D + C (sI - A)-1B, denote as (Glover, 2020): 

𝐺(𝑠) = [
𝐴 𝐵
𝐶 𝐷

] 

Equation 46. G(s) in matrix form 

And 𝑦̅(𝑠) = 𝐺(𝑠)𝑢̅(𝑠) if x (0) =0 
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In an input signals vector 𝑢(𝑡) ∈ ℒ2(0,∞) or equivalently, 𝑢̅(𝑗𝜔) ∈ ℒ2(−∞,∞), with the 

corresponding norm ‖𝑢‖2
2 = ∫ 𝑢(𝑡)∗∞

0
𝑢(𝑡)𝑑𝑡 (where x* denotes the conjugate transpose 

of the vector or a matrix x). For these inputs and outputs, the norm of the system can be 

expressed as (Glover, 2020): 

‖𝑦‖2 ≤ ‖𝐺(𝑠)‖∞‖𝑢‖2 

Equation 47. H(∞)-norm of G(s) 

A typical control problem is given as (Glover, 2020): 

[
𝑧̅
𝑦̅
] = 𝑃 [

𝑤̅
𝑢̅
] = [

𝑃11𝑤̅ 𝑃12𝑢̅
𝑃21𝑤̅ 𝑃22𝑢̅

] 

𝑢̅ = 𝐾𝑦̅ 

𝑦̅ = (𝐼 − 𝑃22𝐾)−1𝑃21𝑤̅ 

𝑢̅ = 𝐾(𝐼 − 𝑃22𝐾)−1𝑃21𝑤̅ 

𝑧̅ = (𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)−1𝑃21)𝑤̅ 

=: 𝐹𝑙(𝑃, 𝐾)𝑤̅ = : 𝑇𝑧←𝑤𝑤̅ 

Equation 48  Composition of an H infinity delay problem 

The lower Linear Fractional Transformation (LFT) is denoted by 𝐹𝑙(𝑃, 𝐾) 
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Figure 16. Upper linear fractional transformation (Glover, 2020) 

The object of the H∞-control is to catch a transfer function K, which makes it possible to 

stabilize the closed-loop system and minimizes ‖𝐹𝑙(𝑃, 𝐾)‖∞  

 

6.8 Delay or dead time 

The main problem to be solved in this project is the Transport Delay or Dead Time. This 

characteristic of the dynamic systems transports the variable response at a specific time. 

This phenomenon cause instability and poor control performance with classical control 

techniques (Sipahi & Olgac, 2005). 

This effect can be seen in fig 17, where the induced delay is of one second on a linear plant. 
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Figure 17. Delay applied on a linear system using MATLAB Simulink 

The delays may appear at a different point of the control loop, in fig 18 the three most 

common delays are shown: 

 

Figure 18. Control Loop with the most common delay cases (Olgac & Sipahi, 1995) (Cavdaroglu & Olgac, 2009) 

Case one is the delay between the controller and the plant to be controlled. This delay is 

caused commonly by the communication of the controller or also the dynamic of the 

actuators. The second delay is caused by the inner dynamic of the system, this appears 

when the state equations of the system contain a delay. And the third case appears in the 



42  

sensing process of the variables on the clear example for this case is the sensors used in 

radiotherapy. The three cases increase the limitation in the control design process (Roh & 

Oh, 1999) (Davison & Tonita, 2005).  

The mathematical representation in frequency space of transport delay is the following 

(Olgac & Sipahi, 1995). 

𝐷 =  𝑒− 𝜏 𝑠 

Equation 49. Transport delay in frequency space 

This representation brings accuracy to the model but increases the required resources to 

carry out some analysis. According to this Rekasius substitution can be used (Albertos & 

Garcia, 2007) 

𝑒−𝜏𝑠 =
1 − 𝑇𝑠

1 + 𝑇𝑠
 

Equation 50. Rekasius substitution used by (Albertos & Garcia, 2007) 

Both delay representations can be used according to the selected stability analysis. 

 

6.9 Stability analysis methods 

To control any delayed dynamic system, it is necessary to determine the stability of the 

entire system. Hence, many methods to perform an analysis for stability have been 

developed. 

 

 

6.9.1 Lyapunov stability 

The Lyapunov stability for the delayed system commonly uses the Razumikhin-function 

approach (Mazenc & Niculescu, 2001). This method is used on systems with the following 

form: 
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𝑥̇(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑡) 

Equation 51. System equation 

With the system defined the next step is to identify the two conditions used to determine 

stability. The first condition is that the system,  𝑥̇(𝑡) = 𝑓(𝑥(𝑡)) is globally asymptotically 

stable and a function  𝑉( 𝑥) and a positive non-decreasing function 𝜓( . ) can be found to 

satisfy the following asymptotically stable inequality (Mazenc & Niculescu, 2001): 

𝜕𝑉

𝜕𝑥
(𝑥)𝑓(𝑥) ≤ −2𝜓(𝑉(𝑥)) 

Equation 52. Globally asymptotically stable system 

The next condition requires that a continuous function 𝜀(𝑎, 𝑏)  ∈ [0,1] that satisfy the 

following inequality (Mazenc & Niculescu, 2001) 

|
𝜕𝑉

𝜕𝑥
(𝑎)𝑔(𝑎, 𝑏, 𝑡)| ≤ 𝜓(𝑉(𝑥)) + 𝜀(𝑎, 𝑏)𝜓(𝑉(𝑏)), ∀(𝑎, 𝑏) 

Equation 53.  Second condition for stability 

If a feedback system satisfies both conditions will be asymptotically stable and the range 

of the delay allowed can be determined. 

 

 

 

6.9.2 CTCR method 

The CTCR paradigm allows determining stability regions in multi-delayed systems 

according to  (Cavdaroglu & Olgac, 2009)(Sipahi & Olgac, 2005)(Zhang & Tarn, 2002). 

For the Pendubot case, a single delayed system is assumed, so the CTCR paradigm is only 

used for the one delay case. The CTCR paradigm begins its formulation with a classical 

time-delayed system with the form (Olgac & Sipahi, 1995): 
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𝑥 ̇ = 𝐴𝑥 + 𝐵𝑥(𝑡 − 𝜏) 

Equation 54. CTCR form, LTI-TDS 

𝑅𝑇|𝜔=𝜔𝑐𝑘
𝜏=𝜏𝑘𝑙

= 𝑠𝑔𝑛 [(
𝑑𝑠

𝑑𝜏
|𝑠=𝜔

𝑐𝑘𝑖

𝜏=𝜏𝑘𝑙

)] 

 𝑘 = 1,… ,  𝑚     𝑙 = 0,1, … ,∞ 

Equation 55. The equation for evaluating the stability of the system 

This equation is very complex to solve, so the recommended way (Mazenc & Niculescu, 

2001) to solve this stability problem is, to begin with, the characteristic equation of the 

system using the following form. 

det(𝑠𝐼 − 𝐴 − 𝐵 ∗ 𝑒−𝜏𝑠) = 0 

Equation 56. The characteristic equation of the system 

And with Rekasius's definition, the substitution is applied (Olgac & Sipahi, 1995). 

𝑒−𝜏𝑠 =
1 − 𝑇𝑠

1 + 𝑇𝑠
 

Equation 57. Transfer function 

Expanding this term and applying the Routh Hurwitz the values of T can be found, to get 

an accurate set of T values, but the imaginary values, and the values that satisfy the 

necessary condition and the additional condition in (Cavdaroglu & Olgac, 2009). With the 

T values, the next step is to calculate the delay value τ using the following Equation 

(Cavdaroglu & Olgac, 2009). 

𝜏 =
2

𝜔
 [tan−1(𝜔𝑇) ∓  𝑙𝜋]    𝑙 = 0,1,2… 

Equation 58. The equation to convert the value of T in a real delay 

Where ω is the natural frequency of the value of T, and 𝑙  can take any value, but the 

closest’s values to zero are recommended (Cavdaroglu & Olgac, 2009). 
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With the delay values where a change of the stability appears, is necessary to apply the root 

tendency to determine if the delay value makes a stable or unstable system. 

 

6.10 Delay compensation control techniques 

With the most common stability criteria, the next step was to do short research of the 

most common method to control delayed systems. 

 

6.10.1 Classical Linear Design 

To tune up a classical linear controller in a delayed system, several methods have been 

developed. These methods can tune up control laws like PID, LQR, and their variances. 

These laws are the most common in the industrial environment, where delays are a common 

issue. 

One example of this method is observed in (Lee et al., 2000)that works with a classical 

PID structure and allows to identify of the gains based on the parameters of the model. This 

method is used for FODUP (first-order delayed unstable process) and SODUP (second-

order delayed unstable process), the general structures of the systems are the following: 

FODUP: 𝐺(𝑠) =  
𝐾𝑒−𝜃𝑠

𝜏𝑠−1
 

Equation 59. First-order delayed the unstable process 

SODUP: 𝐺(𝑠) =  
𝐾𝑒−𝜃𝑠

(𝜏𝑠−1)(𝑎𝑠+1)
 

Equation 60. Second-order delayed the unstable process 

After the mathematical process presented in (Lee et al., 2000) the following general 

structure of the controller is deduced. 
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𝐺𝑐(𝑠) = 𝐾𝑐 (1 +
1

𝜏𝐼𝑠
+ 𝜏𝐷𝑠) 

Equation 61. The general structure of the controller 

Where: 

• 𝐾𝑐 = 𝑓′(0) 

• 𝜏𝐼 = 𝑓′(0)/𝑓  (0) 

• 𝜏𝐼 = 𝑓′′(0)/2𝑓′ (0) 

• 𝜏𝐼 ≥ 0; 𝜏𝐷 ≥ 0 

 

6.10.2 Dead Time Compensation 

The dead time compensation is a highly used type controller that cancels the effect of the 

dead time in a closed-loop system, allowing the controller's design can be achieved using 

the classical procedure. The DTC (Deadtime compensation) has many variants depending 

on the study case (Albertos & Garcia, 2007). 

 

The most basic variant of the DTC is the Smith Predictor, This predictor has the following 

structure, represented by figure 19. 
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Figure 19. Control Loop of the Smith predictor [n4]  

Applying Block’s Algebra and considering there are no uncertainties in the model, the 

following expression is found (Matausek & Micic, 1999). 

𝑦(𝑠) =  
𝐾(𝑠)𝐺(𝑠)𝑒−𝐿𝑠

1 + 𝐾(𝑠)𝐺(𝑠)𝑒−𝐿𝑠  𝑟(𝑠) + (1 −
𝐾(𝑠)𝐺(𝑠)𝑒−𝐿𝑠

1 + 𝐾(𝑠)𝐺(𝑠)𝑒−𝐿𝑠)𝐺(𝑠)𝑒−𝐿𝑠𝑑(𝑠) 

Equation 62. The output of the Smith predictor [n4] 

As can be observed for this structure if the plant has an unstable pole the final system will 

be unstable and if also the system has an integrator the steady-state error will be different 

from zero.  

 

To solve the problem many structures were formulated like the one is proposed in 

(Matausek & Micic, 1999) for systems with integrators that are depicted in the following 

figure 20. 
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Figure 20. Control Loop of the DTC controller for integrator problems (Matausek & Micic, 1999) 

Where 

 𝐹(𝑠) =  𝐾0
1+𝑇𝑑𝑆

1+𝑇𝑓𝑆
 

Equation 63. Prefilter used to compensate the delay. 

To solve unstable systems the following structure is proposed (Matausek & Micic, 1999). 

As can be observed this structure increases the degrees of freedom in a high way. For that 

reason, the design process for this kind of system depends more on the designer. 

 

Figure 21. Control Loop of the DTC controller for unstable problems [n5] 

6.10.3 Delay scheduling 

Delay scheduling is a novel control law that works over a previously designed controller. 

This characteristic and the fact that is based on the CTCR method allow the implementation 

in most of the linear controllers (Cavdaroglu & Olgac, 2009). 
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The main structure of the delay schedule is depicted in the following figure. 

 

Figure 22. The main structure for delay scheduling control (Cavdaroglu & Olgac, 2009) (Zhang & Tarn, 2002) 

The purpose of the delay schedule is to get the gain and the possibility to add an extra delay 

to get better performance of the closed-loop system. 

The procedure to tune a controller with a delay scheduling method is the following: 

• Tune the controller assuming a model with no delay 

• Apply the CTCR paradigm to determine initial the stability pockets 

• Iterate the multiple Gains and get the stability map for each gain value 

• If a suitable delay can be added to get into a stability pocket with better response 

The main advantage of Delay scheduling is that takes advantage of the CTCR method of 

identifying more than one stability range of delay, allowing the addition of delay to pass 

from a pocket of delay to another one (Cavdaroglu & Olgac, 2009). Increasing the 

possibilities of work with an industrial system with high explicit delays (Zhang & Tarn, 

2002). 

6.10.4 Sliding Mode Control 

The Sliding Mode Control is a robust non-linear control law that can be modified to handle 

a delayed system adding a predictive state. 
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SMC controller to determine their stability using the Lyapunov criteria with the 

Razumikhin method for the delayed system. According to this, the two previously 

mentioned conditions have to be satisfied with the system to be stable (Roh & Oh, 1999). 

The delay system with uncertainties assumed for this SMC design is the following (Roh & 

Oh, 1999). 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏) + 𝑓0(𝑥(𝑡), 𝑡) + 𝑓1(𝑥(𝑡 − 𝜏), 𝑡) 

Equation 64. Delay system with uncertain for SMC  

To tune the SMC for this case it is necessary to define a predictor (predictive state) (Roh 

& Oh, 1999). 

𝑥̅(𝑡) =  𝑒𝐴𝜏𝑥(𝑡) + ∫𝑒−𝐴𝜃

0

−𝜏

+ 𝐵𝑢(𝑡 + 𝜃)𝑑𝜃 

Equation 65. Predictor to tune SMC 

The sliding surface defined is the following: 

𝜎(𝑥̅) = 𝑆𝑥̅ = 0 

Equation 66. Sliding surface 

After defining the surface the next step is to define the control law that for this case is the 

following (Roh & Oh, 1999). 

𝑢(𝑡) = 𝑢𝑒𝑞 + 𝑢𝑁 

Equation 67. Control equation for SMC 

Where 𝑢𝑒𝑞 is control action for the nominal system, and 𝑢𝑁 is the control action to suppress 

the uncertainties. The next step is to derivate 𝜎 and get 𝑢𝑒𝑞 getting the following result 

(Roh & Oh, 1999). 
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𝑢𝑒𝑞 = −[𝑆𝐵]−1𝑆𝐴 [𝑒𝐴𝜏𝑥(𝑡) + ∫ 𝑒−𝐴𝜃
0

−𝜏

+ 𝐵𝑢(𝑡 + 𝜃)𝑑𝜃  ] 

𝑢𝑒𝑞 = −[𝑆𝐵]−1𝑆𝐴𝑥̅ 

Equation 68. Control action of the nominal system 

And with the nominal control action, the final step is necessary to find the control action 

𝑢𝑁 that ensures the tracking of the trajectory (Roh & Oh, 1999). 

𝑢𝑁 = {−
(𝑆𝐵)−1𝜎𝑆𝑒𝐴𝜏𝐵

‖𝜎‖
𝛿(𝑥, 𝑡)     𝑖𝑓 ‖𝜎‖ ≠ 0

                  0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 69. Control action to suppress uncertainties 
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7. Methodology 

 

The project development will be divided into five stages with their corresponding activities. 

The stages will be explained in this section. 

 

7.1 Bibliography research  

This stage is the reading process for the articles and books with relevance to the topic. 

 

7.2 Mathematical Modeling of the plant  

In this stage, the prototype and the mathematical prototype are defined. And the 

mathematical model has defined the activities of this stage are the following: 

● Identify the failures in the current Pendubot and fix it  

● Select the most suitable equations to describe the motion of the Pendubot 

● Get the values of the physical properties of the prototype using a gray box method. 

● Perform the Best Fit Test to get the closest mathematical model. 

 

7.3 Implementation of the controllers without delay  

In this stage with the real prototype and the model, the control laws will be tuned and 

implemented in the Pendubot: 

● Program the Pendubot to read sensor and control actuators using Simulink. 

● Using the mathematical model to tune the three control laws 

● Implement the three controllers in Simulink and the Pendubot 

● Assess the behavior of the controllers 
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7.4 Application of the “Delay Scheduling” to the control LAWs  

In this stage with the tuned controlled the “Delay scheduling” will be applied to improve 

the performance of the controllers: 

• Extract the possible delay values for each controller using the CTCR paradigm. 

• Generate an artificial delay considering the stability range for each controller  

• Apply the “Delay scheduling ” method in each controller 

• Assess the behavior of the controllers with “Delay scheduling” 

 

7.5 Collect data and publish papers  

In this stage, the results obtained in each stage will be compiled and will be published in 

the corresponding proceedings or journals and the final project document. 
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8. Schedule 

 

 

 

Table 2. Schedule of the project. 
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9. Prototype 

 

The real prototype is a previously built Pendubot in the laboratory of dynamic systems in 

the Mechanical Engineering School at the Industrial University of Santander.

 

Figure 23. The equilibrium point of Pendubot 

 

Figure 24. The electronic circuit of Pendubot 

The Pendubot has the following components: 
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• Arduino Mega 2560 

• Dual motor shield Sparkfun 8 amp 

• Handmade Arduino shield for encoder 

• PITTMAN loGoc dc motor 24V 

• Voltage source 24 V 10 amp 

• Encoder  with 2500 ppr for each link 

  

This prototype was built as an educative prototype for the laboratory of dynamics system 

in the Industrial university of Santander. The prototype was designed to satisfy the 

following characteristics: 

• Be modular to be implemented as other control problems 

• Use Open source software and hardware 

• Be easy to transport 

This leads to a prototype suitable for the implementation of advanced control techniques 

and educational uses. 
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10. Mathematical Modelling 

 

The mathematical model of a Pendubot is a two-link robot with only one actuator on the 

first link. The selected actuator was a permanent magnet DC motor.  To model the systems 

the generalized coordinates used can be observed in figure 26. 

 

Figure 25. Pendubot DOF diagram 

To get a better approximation of the mathematical model the following considerations were 

applied. 

• Bars with a non-centrical  mass centroid 

• Viscous friction present on each link 

• Neglect the effect of the sensors wires 

• Consider an ideal DC linear motor 

Looking to simplify the modeling process it was divided into two steps, mechanical 

modeling, and electrical modeling.  
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10.1 Mechanical modeling 

The mechanical model of the Pendubot was carried on using the LaGrange method. This 

method requires the following steps: 

• Potential and kinetic energy definition 

• Lagrangian definition 

• Derivation of the lagrangian 

• Simplification of the equations 

According to this, the first step is to find the expression that defines the potential and kinetic 

energy using the following parameters 

Parameter Definition 

𝑚1 Mass of the first link 

𝑚2 Mass of the second link 

𝐼1 Z moment of inertia of the first link 

𝐼2 Z moment of inertia of the second link 

𝑙1 length of the first link 

𝑙𝑐1 length of the first link centroid 

𝑙𝑐2 length of the second link centroid 

𝑞1 The angle of the first link  

𝑞2 The angle of the second link 

𝑏1 The viscous friction coefficient of the first 

link 

𝑏2 The viscous friction coefficient of the 

second link 

𝑔 The gravity value 

𝜏 The torque applied by the motor 

Table 3. Parameters for mechanical modeling 
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Figure 26. Pendubot parameters diagram 

Using the physical definition for each energy the following expressions were obtained. 

 

𝑇 =
1

2
𝑚1((𝑙𝑐1𝑞1̇)

2) +
1

2
𝐼1𝑞1̇

2

+
1

2
𝑚2((𝑙1𝑞1̇ sin(𝑞1) + 𝑙𝑐2𝑞2̇ sin(𝑞2))

2

+ (𝑙1𝑞1̇ cos(𝑞1) + 𝑙𝑐2𝑞2̇ cos(𝑞2))
2) +

1

2
𝐼2(𝑞1̇ + 𝑞2̇)

2  

Equation 70. Kinetic Energy of the Pendubot  

𝑈 = 𝑚1 𝑔 (𝑙𝑐1 cos(𝑞1)) + 𝑚2 𝑔 (𝑙1 cos(𝑞1) + 𝑙𝑐2 cos(𝑞2)) 

Equation 71. Potential Energy of the Pendubot  

After this the lagrangian was calculated like this: 
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𝐿 = 𝑇 − 𝑈 

Equation 72. LaGrangian equation  

𝐿 =
1

2
𝑚1((𝑙𝑐1𝑞1̇)

2) +
1

2
𝐼1𝑞1̇

2

+
1

2
𝑚2((𝑙1𝑞1̇ sin(𝑞1) + 𝑙𝑐2𝑞2̇ sin(𝑞2))

2

+ (𝑙1𝑞1̇ cos(𝑞1) + 𝑙𝑐2𝑞2̇ cos(𝑞2))
2) +

1

2
𝐼2(𝑞1̇ + 𝑞2̇)

2  

− 𝑚1 𝑔 (𝑙𝑐1 cos(𝑞1)) + 𝑚2 𝑔 (𝑙1 cos(𝑞1) + 𝑙𝑐2 cos(𝑞2)) 

Equation 73. LaGrangian expression 

Replacing this onto the Euler-Lagrange equation it takes the following expression: 

𝑑

𝑑𝑡
(
𝑑𝐿

𝑑𝑞̇
) − (

𝑑𝐿

𝑑𝑞
) =  𝐹 

Equation 74. Euler-Lagrange Equation 

Assuming the following generalized forces vector: 

𝐹 = [
𝜏 − 𝑏1(𝑞1̇) + 𝑏2(𝑞2̇)

−𝑏2(𝑞2̇)
] 

Equation 75. Generalized Forces   

After the mathematical process and group the terms in matrices  the following expression 

is obtained : 

𝑀(𝑞) 𝑞̈ + 𝐶(𝑞,  𝑞̇) 𝑞̇ + 𝑁(𝑞, 𝑞̇) = 𝜏𝑚 
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𝑀(𝑞) = [
𝜃1 + 𝜃2 + 2𝜃3𝑐𝑜𝑠 (𝑞2) 𝜃2 + 2𝜃3𝑐𝑜𝑠 (𝑞2)

𝜃2 + 2𝜃3𝑐𝑜𝑠 (𝑞2) 𝜃2
] 

Equation 76. Inertials terms matrix 

𝐶(𝑞,  𝑞̇) = [
−𝜃3𝑠𝑖𝑛 (𝑞2)𝑞2̇ −𝜃3𝑠𝑖𝑛 (𝑞2)(𝑞2̇ + 𝑞1̇)
𝜃3𝑠𝑖𝑛 (𝑞2)(𝑞2̇) 0

] 

Equation 77. Coriolis terms matrix  

𝑁(𝑞,  𝑞̇) = [
𝜃3𝑔𝑐𝑜𝑠(𝑞1) + 𝜃3𝑔𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑏1𝑞1 − 𝑏2(𝑞2̇)̇

𝜃5𝑔𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑏2𝑞2̇
] 

Equation 78. Non conservative and gravity matrix 

𝜃 =  

[
 
 
 
 
𝜃1

𝜃2

𝜃3

𝜃4

𝜃5]
 
 
 
 

=

[
 
 
 
 
 𝑚1𝑙𝑐1

2 + 𝑚2𝑙1
2 + 𝐼1

𝑚2𝑙𝑐2
2 + 𝐼2

𝑚2𝑙1𝑙𝑐2
𝑚1𝑙𝑐1 +
𝑚2𝑙𝑐2

𝑚2𝑙1
]
 
 
 
 
 

 

Equation 79. Replaced terms matrix 

 
10.2 Electrical modeling 

The Pendubot has a DC permanent magnet motor to apply torque to the first link the 

diagram of this kind of motor is the following: 

 

Figure 27. Diagram of the DC permanent magnet motor (Ogata 2010) 

This model had been highly developed and used, for this reason, the equation for this 

motor adapted to the pendubot model is the following (Ogata 2010): 



62  

𝑑𝑖

𝑑𝑡
 =

1

𝐿𝑚

(−𝑅𝑚𝐼 + 𝑉 − 𝐾𝑒𝑞1̇) 

Equation 80. Current equation for a DC motor 

𝜏𝑚1 = (𝐾𝑡𝑖) 

Equation 81. Relation between Torque and current 

10.3 Parameter tuning 

With a properly defined model, the next step is to tune the physical parameters. This was 

carried on using the grey box method. 

The methodology used to find these parameters is the next one: 

 

Figure 28. Methodology for model estimation 

The experimental data acquired was a single step of PWM with multiple values on the 

Motor with a sample time of 20 milliseconds. The range of PWM values is (-255 to 255).  

An example of the acquired data is the next figures. 

Experimental 
Data adquisition

Grey box tuning
Model 

validation
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Figure 29.  Experimental response of the first link 

 

Figure 30.  Experimental response of the second link 

The grey box method was implemented using the grey box toolbox of MatLab. The 

following initial parameters were considered: 
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  Parameter Initial Value 

𝜃1 0.01 

𝜃2 0.01 

𝜃3 0.01 

𝜃4 0.01 

𝜃5 0.01 

𝑅𝑎 3.94 

𝐾𝑒 20 

𝐾𝑡 2.5  

𝐿 0.1 

𝑏1 0.001 

𝑏2 0.001 

Table 4. Initial conditions for grey box estimation. 

Those values produce the following response on the systems compared to the experimental 

data: 

 

Figure 31. Model behavior for initial parameters 

After the tung process using the trust-region reflective newton algorithm  with an absolute 

and relative tolerance of 1𝑥10−10 , the following parameters were obtained. 
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Parameter Value 

𝜃1 0.493 

𝜃2 0.804 

𝜃3 0.430 

𝜃4 6.204 

𝜃5 7.851 

𝑅𝑎 3.94 

𝐾𝑒 0.610 

𝐾𝑡 20.637  

𝐿 0.1 

𝑏1 0.001 

𝑏2 0.001 

Table 5. Final parameters values 

These parameters obtain a 93 % of best fit with the initial data as can be observed in the 

following figure. 

 

Figure 32. Performance of the model with tune data 

Testing the model with different data as validation the following model is obtained: 
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Figure 33. Performance of the model with validation data 

This performance shows that the model can predict accurately the behavior of the real 

prototype. 

10.4 Lineal model 

Despite the non-linear model being well-tuned, to tune the controllers it is required a linear 

model to apply the design techniques and the delay scheduling. 

To get the linear model the Taylor series method is used to obtain the following A, B, C, 

and D matrix assuming the equilibrium point of 𝑞1 =  𝜋 and 𝑞2 =  0. 
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𝐵 =

[
 
 
 
 

0
0
0
0

−0.4706]
 
 
 
 

 

Equation 82.B matrix of the linear system 

𝐶 = [
0 0 1 0 0
0 0 0 1 0

] 

Equation 83. C matrix of the linear system 

𝐷 = [
0
0
] 

Equation 84.D matrix of the linear system 

The step response of this system is unstable which makes sense to the nonlinear model on 

this equilibrium point as is shown in the next figure. 

 

Figure 34. Step response of the linear system 
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11. Controllers design 

 

Because the CTCR and the delay scheduling method require a non-linear continuous 

model, all the controllers had to be designed in this form, and in the implementation step, 

it can be discretized. 

11.1 PID design 

Because the equilibrium of the second link only can be obtained when the adding of the 

two angles is equal to 𝜋 for this reason the following structure was implemented to control 

the system: 

 

Figure 35. One DOF PID control structure 

After the tuning process the following controller constants were obtained: 

 Constant Value 

𝐾𝑝 -38000 

𝐾𝑖 -67750 

𝐾𝑑 -4745 

𝑁 35000 

Table 6. One DOF PID constants 

The obtaining response to an initial state perturbation  is the following: 
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Figure 36.  Disturbance response of the two links red is first link and blue second link 

As can be observed the final value of the angular position for each link is non-zero. And 

also was observed several chattering in the initial response of the system for this reason a 

second PID was tuned. This new PID is a 2 DOF controller using the following structure. 

 

Figure 37. Two DOF PID control structure 

This structure was tuned also using auto tune algorithms obtaining an improved response, 

and their constants are the following. 
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Constant Value 

𝐾𝑝1 -38000 

𝐾𝑖1 -67750 

𝐾𝑑1 -4745 

𝑁1 35000 

𝐾𝑝2 -833.299 

𝐾𝑖2 -503.904 

𝐾𝑑2 -307.229 

𝑁2 10.884 

Table 7. Two DOF PID constants 

The disturbance response of this PID control leads the system to the equilibrium point and 

reduces the chattering in the initial seconds. 

 

Figure 38.  Disturbance response of the 2 DOF PID 

11.2 LQG design 

The LQG controller is a mixture of an LQR controller with a Kalman estimator. For this 

reason, the first step is to design the LQR controller. 
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To apply a state-space controller it is required to determine the controllability of the system. 

For this reason, the controllability matrix was calculated by obtaining the following matrix. 

𝑀𝑐 = 1𝑥 106

[
 
 
 
 
0
0

0 0.0015
0.0001 −0.0022

−0.0527 1.5039
0.0824 −2.3678

0
0 0.0000
0 0.0001

0.0015 −0.0527
−0.0022 0.0824

0 0 −0.0005 0.0142 −0.2965 ]
 
 
 
 

 

Equation 85. Values of the controllability matrix 

Fiding the rank of the controllability matrix it was observed a rank of 5 which means that 

the system can control all the states. After this, it is required to define the Q and R matrix 

according to the considered limitations of the real system obtaining the following values. 

𝑄 =

[
 
 
 
 
100
0

0 0
100 0

0 0
0 0

0
0 100
0 0

0 0
100 0

0 0 0 0 1 ]
 
 
 
 

 

Equation 86. Q matrix for the LQR design 

𝑅 = [0.001] 

Equation 87. R matrix for the LQR design 

Solving the Ricatti equation it was obtained the following gains to the controller. 

𝐾 = 1𝑥 104

[
 
 
 
 

0.2959
0.2367
1.9867
2.0772

−0.0399]
 
 
 
 

 

Equation 88. Values of gains of the controller 

 

The closed-loop poles of the system are the following: 
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𝑃𝑜𝑙𝑒𝑠 = 1𝑥 102

[
 
 
 
 

−0.0116
−0.0760 + 0.0080 𝑖
−0.0760 − 0.0080 𝑖
−1.0540 + 1.0165 𝑖
−1.0540 − 1.0165 𝑖]

 
 
 
 

 

Equation 89. The closed-loop poles of the system 

As can be observed the all the real part of the poles is negative which mean that system is 

fully stable. Implementing the system in Simulink the following structure is applied. 

 

Figure 39. LQR implementation in Simulink 

 

The response of the system with a disturbance of 0.1 [rad] is smooth with no chattering and 

leads the angles of the links to the equilibrium point. 
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Figure 40.  LQR response with disturbance on the first link 

After the tuning process of the LQR controller, the next step is to build the Kalman 

estimator. 

To tune an estimator the first step is to find the observability of the system for that reason 

the observability matrix is calculated: 

𝑀𝑜𝑏 = 1𝑥 105

[
 
 
 
 

0
0

0 0.0001
0.0001 0

0 0
0 0

−0.0022
0 0.0017

−0.0006 −0.0001
−0.0006 0.0008
0.0001 −0.0310

0.1548 0 −0.2633 0.0325 1.1198 ]
 
 
 
 

 

Equation 90. Values of the observability matrix 

The rank of this matrix is 5, which means the system is observable for all the states in the 

system. That leads to the next step in the Kalman filter design is to select the Q and R 

matrix that represent the noise level for the sensors and actuators. 
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𝑄𝑛 = [0.00012] 

Equation 91. Noise level for the sensors 

𝑅𝑛 = [0.00012 0
0 0.00012] 

Equation 92. Noise level for the actuators 

Calculating the Kalman filter the obtained L matrix that allows the state estimation is the 

following. 

𝐿𝑜𝑏 =

[
 
 
 
 

184.5546
−125.1679
18.4325
−5.4177
−18.4177

−105.3324
305.3975
−5.4177
24.1131
9.4479 ]

 
 
 
 

 

Equation 93. Values of the state estimation 

With the tuned Kalman filter, the estimator and the controller can be mixed in one state-

space system using the following expression. 

𝐴𝑛𝑒𝑤 = 𝐴 − 𝐿𝑜𝑏 ∗ 𝐶 − (𝐵 − 𝐿𝑜𝑏 ∗ 𝐷) ∗ 𝐾 

Equation 94. A matrix for the LQG controller 

𝐵𝑛𝑒𝑤 = 𝐿𝑜𝑏 

Equation 95. B matrix for the LQG controller 

𝐶𝑛𝑒𝑤 = −𝐾 

Equation 96. C matrix for the LQG controller 

𝐷𝑛𝑒𝑤 = 0 

Equation 97. D matrix for the LQG controller 

 

Applying this system on Simulink the following diagram is obtained. 
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Figure 41.  LQG controller implemented in Simulink 

Testing the performance of the LQG against angle perturbation controllers generates the 

following results. 

 

Figure 42. LQG response against angle perturbation 
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11.3 H∞ controller design 

Looking for tuning a controller with a balance between performance and robustness is was 

applied the mixed-sensitivity loop shaping algorithm. This algorithm uses three weighting 

sensitivity functions to synthesize the controller. 

After the tuning process, the following parameters for the three weightings (𝑊1,𝑊2,𝑊3) 

functions were selected. 

Parameter Value 

𝐷𝑐 𝑔𝑎𝑖𝑛 𝑓𝑜𝑟 𝑊1 1 

 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊1 0.01 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑓𝑜𝑟 𝑊1 0.1 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊1 1 

𝐷𝑐 𝑔𝑎𝑖𝑛 𝑓𝑜𝑟 𝑊2 0.3 

 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊2 0.4 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑓𝑜𝑟 𝑊2 0.32 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊2 32 

𝐷𝑐 𝑔𝑎𝑖𝑛 𝑓𝑜𝑟 𝑊3 0.01 

 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊3 1 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑓𝑜𝑟 𝑊3 0.1 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑊3 1 

Table 8. Weighting functions parameters 

Plotting the bode diagram of the weighting generates the following diagram:

 

Figure 43. Bode diagram of the weighting functions 
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After the tuning process using the mixsyn method produce a controller with order 13.  And 

the feedback response against an angle disturbance produces the following response. 

 

Figure 44. H-infinity response against an angle perturbation 

 

11.4 Controllers comparison 

Looking for an objective comparison between the controllers, three parameters were 

selected to assess the behavior of the strategies. These parameters are the settling time, 

percentage of overshoot, and the maximum disturbance accepted for the controller. 

After multiple tests, the following index of the performance of each controller was 

obtained. 

Parameter PID LQG H ∞ 

Settling time [Seg] 5.83 3 1.7 

Overshoot [%] 623 515 608 

Maximum disturbance [rad] 0.03 0.17 0.08 

Table 9. The performance index for each controller 

The three controllers were plotted to evidence the different performance of each controller 

monitoring the response of the first link as can be observed in the following figure. 
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Figure 45. Response of the three controllers against a little perturbation 

This analysis evidences the common fact that the PID is the controller with the lower 

performance. But analyzing the behavior of the LQG is observed that is the most tolerant 

to angle perturbations, and the H ∞ controller is the fastest one. 
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12. Delay scheduling 

 

Before the implementation of the controllers to the real prototype it is required to apply the 

CTCR method to find the delay tolerance for each controller. This is necessary because the 

real prototype has a minimum sample time of 1 milliseconds. According to this if a 

controller has a maximum delay tolerance lower than 1 milliseconds, it has to be improved 

using the delay scheduling before the codification and implementation. 

 

12.1 PID delay scheduling 

The first step to use the CTCR paradigm is find the characteristic equation of the closed 

loop system, and using the Rekasius substitution. 

 

The delay was introduced afther the control action and the alpha gain to improve the 

controller was setted before the delay according to the following diagram: 

 

 

Figure 46 Implementation of the delay and alpha gain 

After using the mason theorem an extract the coefficients of the characteristic equation the 

following expression was obtained to apply the Routh–Hürwitz method, Obtaining the 

following expression: 
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Figure 47 Characteristic equation coefficients for PID 

The system after applying de CTCR paradigm in the initial controller It was obtained a 

value of 0.34 [ms], for this reason, it was necessary to tune the alpha gain to increase the 

delay tolerance of the system. After this process, it was observed that the maximum delay 

value of delay for the PID is 3.51 [ms]. This tuning process makes it possible to implement 

the controller in the real experiment. The delay scheduling plot obtained can be observed 

in the following figure. 

 

 

 

Figure 48 Delay tolerance of the PID 
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12.2 LQG delay scheduling 

For the case of the PID controller, the mason theorem was easily applied because of the 

controller's response as a transfer function. But for the case of the LQG controller, a general 

matrix form was applied according to the following equation. 

 

 

𝑇𝑓𝑝𝑙𝑎𝑛𝑡 = 𝐶𝑝𝑙𝑎𝑛𝑡(𝑆 ∗ 𝐼 − 𝐴𝑝𝑙𝑎𝑛𝑡)
−1

∗ 𝐵𝑝𝑙𝑎𝑛𝑡 ∗
1 − 𝑇𝑠

1 + 𝑇𝑠
 

 

 

𝑇𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝐷𝑠𝑔𝑎𝑖𝑛(𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑆 ∗ 𝐼 − 𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟)
−1 ∗ 𝐵𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 + 𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟) 

 

 

𝑇𝑓𝑠𝑦𝑠 =
𝑇𝑓𝑝𝑙𝑎𝑛𝑡 ∗ 𝑇𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

1 − 𝑇𝑓𝑝𝑙𝑎𝑛𝑡 ∗ 𝑇𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
 

 

This general form allows passing every linear controller in a matrix form where 𝑇𝑓𝑠𝑦𝑠 could 

be a vector of transfer function where they keep the same characteristic equation. 

Using this method on the LQG controller the next characteristic equation coefficients were 

obtained. 

 

 

  

Figure 49 characteristic equations coefficients of LQG 

Applying the CTCR paradigm and the delay scheduling process was observed that the 

default delay tolerance is about 17.5 [ms]. After the test on the gain in different ranges, it 

was observed that in contrast to the PID controller the gain does not increase significantly 

the tolerance of the controller. This behavior can be observed in the following figure. 
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Figure 50 Delay scheduling of the LQG controller 

 

12.3 H∞ delay scheduling 

For the case of the H∞ control, an order reduction was applied to reduce the computational 

time and other issues like the  “out of memory” error produced by the long size of symbolic 

expressions. 

 

After the order reduction process, the same method used on the LQG was implemented 

obtaining the following characteristic equation coefficients.  

 

Figure 51characteristic equations coefficients of H infinity 

This controller was the only one of the three controllers that after the delay scheduling 

process obtain two pockets. As the LQG controller, the gain does not increase significantly 
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the delay tolerance. The maximum delay tolerance for this controller is 12.5[ms]. The delay 

scheduling response of the system is the following. 

. 

 

 

Figure 52 Delay scheduling of H infinity controller 

Analyzing the stability pockets it was observed that the pocket with a higher delay value 

does not stabilize the system. This was discovered by applying the number of unstable 

roots on that pocket. This shows that the system became more unstable at this point, passing 

from 4 unstable roots to 8 unstable roots. 
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13. Experimental implementation 

Implementing all the controllers on the real prototype with a sample rate of 1 [kHz] the 

following response of the controllers were obtained. 

 

For the PID controller, it was observed an extremely aggressive response but it keeps 

stable, but only with the gain tuned with delay scheduling to its maximum value. The 

system keeps oscillating between -7 to 7 degrees. 

 

 

 

Figure 53 Experimental response of the PID controller 

The LQG controller has a smoother response and does not require the LQG gain tuned. 

Applying the tuned gain with a value of 1.07  the system keeps oscillating about a value of 

-2 to 2 degrees. The response of the system can be observed in the following figure. 
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Figure 54Experimental response of the LQG controller 

 

The Response of the H infinity is the smoother one of the controllers. With a tuned gain of 

a value of  0.95 that is the most optimal for delay tolerance. With this gain, the system 

oscillates between  -1.2 to 1.2 degrees.  The obtained data of this controller is the following 

one. 
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Figure 55 Experimental response of the H infinity controller 

Applying the delay using the delay with a resolution of 1 [ms] the following table with 

results was obtained. 

 

 

Table 10 Comparison of the delay response 

Parameter Calculated 

value(linear)  

Calculated 

value(non 

linear) 

Experimental 

value 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝑃𝐼𝐷 3.5ms 3.54 3 ms 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 𝐿𝑄𝐺 17.56 ms 17.4 15 ms 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦 𝑓𝑜𝑟 H∞  12.51 ms 12.4 10 ms 

 

The error presented on these values could be caused by the inner delay of the motor driver, 

the non-linearities ignored for the mathematical modeling, or the linearization process.  
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14. Conclusions 

After the development of the process, it was observed some facts that have to be remarked. 

One of the first facts is although the mathematical modeling has accuracy the linearization 

of the process reduces the reaching of the controllers making that if the system pass from 

the range of -10 to 10 degrees the stability cannot be recovered. 

 

Another interesting fact was that the LQG and the LQR model has significant differences 

between them this could be because the model is highly nonlinear and the dynamic of the 

observer is not fast enough in comparison to the controller dynamics 

 

Analyzing the behavior of the controllers against the delay tolerance it was observed that 

the PID has the lower tolerance of the three controllers but has the higher improvement by 

the delay schedule, this could be caused by the simplicity of their structure. 

 

By the literature research, it was observed that the stable systems can be improved with 

delay scheduling more than the unstable systems. This is because the stable system has 

more probability to have more stability pockets than the unstable 

 

The order of the H infinity controller is the main disadvantage of this controller at the 

moment to apply the delay scheduling, this is because it increases the computational time 

of the delay scheduling calculation up to 20 hours in a desktop computer with the following 

specifications: 

 

• 16 GB RAM DDR4 3200Mhz 

• Ryzen 5 3400G 4.0 Ghz 

• Graphic Card Radeon VEGA 11 

• Windows 10 

 

This project mainly evidence that the more complex controller cannot be improved 

significantly by the uses of the delay scheduling as was observed obtaining only a 5 % 

increasing of the tolerances delay in comparison to the PID that gets an improvement of a 

1000% on the delay tolerance. 

 

Also was observed that the CTCR method is very accurate between the nonlinear model 

and the linear model, but in the real system a difference of the 16 % is observed. 
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15. Results 

 

The results that will be obtained in the project are the following: 

● Proceeding paper of IMECE 2020 conference. Already submitted. Oral 

presentation scheduled by November 15-18, 2020. Portland, Oregon, USA. “Robust 

control of a Pendubot improved with delayed scheduling”.  

● Proceeding paper of CIIMA 2021 conference. Already submitted. Oral presentation 

scheduled by October 28, 2021. Bucaramanga, Santander, Colombia.  

“DELAY SCHEDULING OF A LQR AND PID CONTROLLED PENDUBOT USING CTCR METHOD”. by helio 

Schneider., Carlos Borrás., Nejat Olgac., ASME-IMECE2020-Portland,Oregon ., USA. 

● Functional experimental prototype with datasheet. (design of the two link 

underactuated planar robot called Pendubot) 

● New Matlab libraries for "Delay scheduling". 

● Final Document (Master Thesis)with all the generated knowledge  
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16. Budget 

Table 2. Budget of the project. 

 

Concept Category Cost (COP) 

Project´s Director Human resource (64 weeks) 7.680.000 

Principal Investigator Human resource (64 weeks full time) 26.334.090 

Laptop Hardware 1.800.000 

Arduino Due Hardware(Procesador pendubot) 162.400 

Encoder Hardware(sensorica) 337.218 

Matlab License Software 3.522.057 

Word License Software 440.000 

Papers bibliography Literature cost 880.000 

Total Cost $41.155.765.oo 
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