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RESUMEN

TÍTULO: Compresión de datos śısmicos para reducir la limitación del ancho de

banda del puerto PCIe∗

AUTOR: Carlos Augusto Fajardo Ariza∗∗

PALABRAS CLAVE: Compresión, Cuello de botella, Datos śısmicos, Entrada/Salida, FPGA,

GPU, HPC, Huffman, Transformación Wavelet.

DESCRIPCIÓN:

Nosotros proponemos una estrategia para reducir el impacto del cuello de botella Entrada/Salida

en un cluster heterogéneo, en el contexto de las aplicaciones śısmicas. La estrategia está basada

en un proceso de compresión/descompresión optimizado. La estrategia comprime los datos en

campo, mientras son adquiridos, usando un algoritmo de compresión optimizado. Las operaciones

de transferencia desde la memoria principal hasta la memoria del nodo son ejecutadas usando

los datos comprimidos para reducir el tiempo de transferencia. La descompresión de los datos es

ejecutada dentro del nodo antes de que el dato sea procesado.

La estrategia se diseñó para dos tipos de clusters heterogeneos. El primer tipo de clúster

usa GPUs y el segundo usa FPGAs. Por un lado, nuestros resultados muestran que las etapas

secuenciales en el proceso de descompresión se convierten rápidamente en un cuello de botella en

el cluster basado en GPUs. De otro lado, la implementación de la estrategia en un clúster basado

en FPGAs, nos permitió proponer una arquitectura computacional espećıfica, la cual se optimizó

para las etapas secuenciales del proceso de descompresión.

La implementación de nuestra estrategia en un cluster con FPGAs puede acelerar el proceso

de transferencia hasta 10× para una relación de compresión de 16 : 1 y hasta 3× para una relación

de compresión de 7 : 1. Por consiguiente, nuestra estrategia efectivamente reduce el impacto del

cuello de botella de Entrada/Salida de datos y puede mejorar el rendimiento general de un cluster

basado en FPGAs.

∗ Trabajo de investigación.
∗∗ Facultad de ingenieŕıas Fisico Mecánicas Doctorado en Ingenieŕıa - Área Electrónica. Director: Javier Castillo.



ABSTRACT

TITLE: Seismic Data Compression to reduce the PCIe Bandwidth Limitation∗

AUTOR: Carlos Augusto Fajardo Ariza∗∗

KEYWORDS: Compression, FPGA, GPU, HPC, Huffman, Seismic data, Wavelet Trans-

form.

DESCRIPTION:

We propose a strategy based on an optimized compression/decompression process to reduce

the impact of the I/O bottleneck in a heterogeneous cluster, using seismic data as study case.

Our strategy involves to compress the seismic data on-site while they are being acquired by a

custom lossy compression algorithm. The transfer operations, from the disk to the node memory,

are performed by using compressed data to reduce the I/O transfer time. Decompression occurs

in the node before the data is processed.

We designed the strategy for two types of clusters widely used in computationally intensive

algorithms, such as seismic applications. The first type of cluster is a GPU-based and the

second one is an FPGA-based cluster. On the one hand, our results show that the use of a

GPU-based cluster to perform the sequential stages of the decompression process generates a

bottleneck because this architecture is not optimized for serial processes. On the other hand,

the implementation of the strategy in an FPGA-based cluster allows us to propose a custom

architecture, which is optimized for the sequential stages of the decompression process. This

optimized architecture let us to overcome the bottleneck created by the sequential stages of the

decompression process.

Our results show that the speedup in the transfer process (including the decompression pro-

cess) strongly depends on the compression ratio: as the compression ratio increases, the speedup

in the transfer process improves. The implementation of our strategy into an FPGA-based cluster

can speed up the transfer operations up to 10× for a compression ratio of 16:1 and up to 3×

for a compression ratio of 7:1. Therefore, our strategy effectively reduces the impact of the I/O

bottleneck and can improve the cluster’s overall performance.

∗ Trabajo de investigación.
∗∗ Facultad de ingenieŕıas F́ısico Mecánicas Doctorado en Ingenieŕıa - Área Electrónica. Director: Javier Castillo.



Introduction

This dissertation is motivated by the increasing need of computational power in the construction

of subsurface images (i.e. seismic applications). These high-resolution images have demanded

more computational power than has been available [3, 4, 5].

The oil and natural gas are currently the main energy sources around the world. About

55.9% of the total energy consumption comes from these primary energy sources [6]. Over the

past 115 years, the oil companies have produced about one trillion of barrels of oil equivalent.

Some conservatives projections suggest that in the next 20 years, the companies will have to find

and produce another trillion of barrels of oil equivalent to supply the increasing demand [7].

The main technique used by oil companies to locate possible oil and gas reservoirs is the

construction of subsurface images by seismic surveys. These images are interpreted by experienced

geophysics and geologists, who establish whether there are reservoirs. However, the easy oil

reservoirs around the world have now been located and exploited. These easy reservoirs were

confined in relative unchallenging environments (e.g. shallow waters). Now, the companies have

the challenge to find and produce oil and gas from tough areas with problematic geological

formations, in deep waters or challenging environments [3, 8].

Motivation

The construction of subsurface images has motivated a considerable amount of research in the

last years in the fields of both Geophysics and High Performance Computing (HPC). Several

research works in HPC have aimed to reduce the processing time, which is now in the order of

weeks or even months [3, 9, 10, 11, 12, 13].

Universidad Industrial de Santander 15



Moreover, the localization of hydrocarbons in tough areas will require, among other things,

to make subsurface images with a better resolution than those used in the past for the easy oil.

The construction of these high-resolution images implies several computational challenges. For

example, it will require acquiring and processing an enormous amount of seismic data, in the

order of hundreds of Terabytes.

On the other hand, it is well-known that a significant challenge for any modern computational

systems is the Input/Output bottleneck [14, 15, 16, 17]. This bottleneck arises in the construction

of subsurface images because of the amount of required memory in a single node. For example,

the implementation of seismic applications can easily require one terabyte of space in a single

node. However, the currently available on-chip memory in one of these nodes (e.g. FPGAs and

GPUs) is counted only in tens of Mega bytes [18, 19].

Consequently, when the seismic applications are implemented in heterogeneous clusters, it is

required to make transferring operations between the CPU main memory and the node memory

through the PCI Express bus. These transferring operations significantly reduce the overall

performance, especially in applications that require transferring a considerable amount of data

between the CPU main memory and the node memory. This penalty is due to the long latencies

in CPU main memory and the low-speed in the PCIe bus (bandwidth). Thus, each time that

the node requires making Input/Output operations on the CPU main memory, it has to stay idle

waiting for data arrive. These idle waiting times generate a penalty on the overall performance

of the computer system [16, 17, 20].

Thesis statement and Contributions

This dissertation presents a strategy to improve the transfer operations between the disk and the

node memory through the PCI Express bus by using an optimized compression/decompression

process, in the context of seismic applications.

The proposed strategy involves to compress the seismic data on-site while they are being

acquired. Then, the compressed data are transferred to the head node (in the processing center),

where they are sent to each node memory. Once the compressed data arrived at the node, they

are decompressed before being processed.

It is important to highlight that we did not take into account the compression time because

this process can be performed on-site. This compression process can be developed between

Universidad Industrial de Santander 16



repetitions of the seismic experiment used by the oil companies to acquire the seismic data [3].

In our tests, compressing a seismic shot lasted a few tens of seconds. This time is assumable

because it is quite small compared to the time between repetitions of the seismic experiment.

Figure 1 sketches a serial version of the time constrains in the proposed strategy. Note that,

the strategy requires that the compressed data transfer time (t1) plus the decompression time

(t2) has to be less than the Traditional I/O transfer time (ttrad):

t1 + t2 < ttrad. (1)

Time

Compressed seismic
 data transfer time

Decompression time

Traditional I/O transfer time 

t1 t2
ttrad

Figure 1: Time constrains in the proposed strategy (Serial version)

Compression algorithms have been traditionally designed to compress the seismic data as

much as possible with no time constraints at all. In our case, however, we are limited by Equa-

tion 1.

As will be shown later, these algorithms seek to preserve the relevant geophysical information,

to reduce the noise and to find redundancy. These three processes can not be implemented in

just one stage. Thus, compressing seismic data requires several stages. On the other hand, the

decompression algorithms perform the inverse process of each one of these stages. Achieving

better compression ratios require to add new stages in the compression process or include new

stages with major computational complexity. However, these new stages increasing the processing

time.

Furthermore, the literature reports that better compression ratios are obtained by using

some sequential stages. These stages make that the decompression of a single datum takes an

enormous amount of processor cycles [21, 22, 23]. As a consequence of this trade-off between the

compression ratio and the processing time, previous works have failed to speed up the transfer

process by using a compression strategy [24, 25]. In these research works, when the sequential

stages were implemented in parallel architectures, they quickly become the bottleneck in the

decompression process.

Universidad Industrial de Santander 17



Other research work overcame the sequential bottleneck by using a co-processing strategy

(CPU + GPU) to reduce the impact of the I/O operations between the disk and a heterogeneous

cluster [26]. The sequential stages were developed on CPU, and the parallel stages were developed

on GPU. This co-processing strategy is not an option in our case, because we deal with the I/O

bottleneck between the disk and the node. Therefore, we require to develop all the decompression

process on the parallel architecture. Thus, one of the main challenges in this dissertation is to

design and implement a compression-decompression strategy that has high performance in terms

of both compression ratio (to reduce t1) and decompression time (to reduce t2) in a parallel

architecture.

The proposed strategy was implemented in an FPGA-based cluster by using a custom ar-

chitecture optimized for the sequential stages of the decompression process. The results showed

that the proposed strategy reduces the impact of the I/O bottleneck in this type of cluster. The

transfer operations are speedup up to 10× for a compression ratio of 16:1 and up to 3× for a com-

pression ratio of 7:1. This speedup could improve the overall performance in the heterogeneous

clusters, especially for those applications that are limited by I/O transfer operations.

Therefore, this thesis presents the first successfully implementation of a compression-transfer-

decompression strategy to speedup the transfer process from the main memory to device memory

in a heterogeneous cluster. Additionally, the thesis also presents the first computational archi-

tecture for a parallel Huffman decoding on an application whose dynamic range is unbounded.

Dissertation Outline

This dissertation is organized as follows: Chapter 1 gives a brief introduction about data compres-

sion theory to understand the terminology used in this dissertation. This chapter also presents an

analysis of the most significant research works on seismic data compression and on those research

works that have addressed the I/O issue by using a compression strategy.

Chapter 2 analyzes the transformation stage. This analysis aims to select a specific trans-

formation scheme. This chapter also establishes some key parameters for the computational

implementation of the transformation stage.

Chapters 3 and 4 describe the implementations of the decompression process in GPUs and

FPGAs respectively. These chapters give details of the optimizations done in the decompression

algorithms to improve its performance in both devices.

Universidad Industrial de Santander 18



Chapter 5 presents and discuss the results of the proposed strategy. The conclusions and

future work are drawn in chapter 6. Appendix 6 provides a description of the seismic datasets

used in this dissertation. Finally, Appendix 6 lists the papers that have been published based on

the research work performed in this dissertation.
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Chapter 1

Seismic Data Compression

As mentioned, the oil companies make subsurface images to locate possible oil and gas reservoirs.

The construction of these images requires seismic surveys over the area to explore. These surveys

aim to collect the geophysical information by acquiring a huge amount of seismic data, which are

processed to construct the subsurface image. These seismic data are stored in files up to hundreds

of Terabytes. This amount of data demands a huge storage and transmission capacity. Hence,

as the size of the seismic data has grown, the oil industry has been developing data compression

algorithms to make the storage more efficient and to reduce both the transmission time and

transmission costs.

In this chapter, we first give a brief introduction to data compression theory to understand

the terminology used in this dissertation (for further details see [27, 28]). We also introduce

the seismic data and present its main characteristics. Then, a review of the related work is

presented, which is divided into two main parts: research works on seismic data compression and

the efforts that have been done for reducing the I/O bottleneck by using a compression strategy.

The chapter ends with a discussion about these research works.

1.1 Data compression

The compression process aims to reduce the number of bits per sample required to represent

a given amount of information. Here is important to note that information and data are not

synonymous. The data is the mean by which information is conveyed, thus we can use different

data sizes to represent the same amount of information.

Let S be a string of n elements from an alphabet Σ = {a1, a2, . . . aσ} of cardinality σ. Let

Universidad Industrial de Santander 20



Data compression

Pi be the probability of occurrences of ai in S.

According to Shannon’s source coding [29], S is optimally compressed by assigning to each

symbol a code-word of length

log2
1

Pi
= − log2 Pi (1.1)

Thus, the string S can be compressed down to nH bits, on average, but no further, where

H = −
σ∑
i=1

Pi log2 Pi. (1.2)

H is called the entropy, a quantity that determines the minimum average number of bits

needed to represent each element in S [29]. In other words, it is required at least as many bits

per element, on average, as the entropy to represent the string. The compressed string has the

same quantity of information as the original, but represented with a fewer number of bits.

Note that the entropy is larger when all n probabilities are similar, and it is smaller as they

become more and more different. This fact is used to define the redundancy, R, in the data, as

R = Hc −

[
−

σ∑
i=1

Pi log2 Pi

]
= Hc +

σ∑
i=1

Pi log2 Pi, (1.3)

which indicates the difference between the current number of bits per symbol used (Hc) and the

minimum number of bits per symbol required to represent the data set. In simple words, the

redundancy is the amount of wasted bits –unnecessary bits– in the data representation. There

are many strategies for data compression, but they are all based on the same strategy: reducing

redundancy.

The compression algorithms examine the data to find redundancies and try to remove them.

Finding redundancy can be viewed as a process of searching for patterns in the original data.

Once these patterns have been identified, the compression process is achieved by merging or

unifying these patterns.

Lossless and lossy compression

Lossless and lossy compression are terms that describe whether or not the original data is perfectly

reconstructed. The lossless compression allows the perfect reconstruction from the compressed

data, whereas in the lossy compression an approximation of the original data is reconstructed.

Generally, lossy compression methods produce a much larger compression ratio than lossless

compression ones.
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In general, lossy compression algorithms have three stages: transformation, quantization and

coding. The main difference between lossless and lossy compression methods is the quantization

stage, which makes an approximation of the original data (e.g. floating-point data) to a set of

integers. In others words, the quantization stage maps a large dataset on to a small one, which

causes lossy compression. Figure 1.1 shows the lossy compression algorithms.

T Q C

T Q C
-1 -1 -1

Transform Quantization Coding

Xn

Xn

...

Figure 1.1: Lossy compression algorithms

Transformation stage

In the context of compression data, the transform stage is used to obtain new representation of the

data, which has, on average, a smaller dynamic range than the original one. This reduction allows

the representation of the transformed data using fewer bits, which improves the compression ratio.

In other words, this stage reduces the entropy (H) of the original data. As will shown

in Chapter 2, this reduction is done by decorrelating the data, which allows a more compact

representation in the transformed domain. Thus, the coefficients, in the transformed domain, are

represented by a fewer number of bits.

Quantization stage

The transformation stage reduces the entropy of the seismic data, but no compression has oc-

curred so far because the number of coefficients is the same as the number of samples in the

original seismic data. In lossy compression algorithms, the stage that follows the transformation

is the quantization, which makes an approximation of the floating-point transform coefficients in

a set of integers. This stage reduces the dynamic range of the seismic data in some way.

In the quantization stage a floating-point number x ∈ (a, b) is mapped into a finite set of
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output levels yi, i = 1, 2, . . . , N , such that

Q(x) = yi (1.4)

Depending on how the levels yi are distributed, the quantizer can be uniform (Figure 1.2a) or

non-uniform (Figure 1.2b).

(a) (b)

Figure 1.2: Uniform and non-uniform quantization [1]

A set the data x can be uniformly quantized by using

yi = round

[
(x−min (x)) ∗ 2n − 1

max(x)

]
, (1.5)

Where max (x) and min (x) are the maximum and minimum values of the input x respectively,

and n is the number of bits used for the quantification.

The inverse process proceeds as follows:

x̃ = yi
max (x)

2n − 1
+ min (x) (1.6)

In a uniform quantization (Figure 1.2a), the number of quantization bits determines the

number of output levels, which is 2n. Thus, as the number of output levels is reduced the

possibility to compress the data increases.

It is in this step where the lossy part of the compression process occurs because of the

approximation process. Thus, after the quantization stage, a reduction in the SNR occurs.

Coding stage

The coding methods assign shorter code-words to the more frequent symbols and longer code-

words to the less frequent symbols (Equation 1.1). The compression is achieved by replacing all

characters from the input sequence with codes of smaller expected length.
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Huffman [30] introduced a coding method, which assigns code-words of integer variable length.

This coding method is optimal when the probabilities are integral powers of 2, which is rarely

true for real data. However, Huffman is the best among the methods that use code-words of

integer length. In 1978, it was shown by Gallager [31] that the maximum difference between the

expected code length and the optimum is bounded by

pm + log2
2 log2 e

e
≈ pm + 0.086 (1.7)

Equation 1.1 suggest that we should assign code-words of non-integer length to achieve the best

compression. The Arithmetic coding offers such a solution [32]. This method can be seen as a

generalization of Huffman coding in which probabilities are not constrained to be integral powers

of 2 and code-word lengths need not be integers. in the worst case, only 0.006 bits per symbol

worse than the optimum [33].

Measure of compression quality

The performance of a compression algorithm can be measured by using various criteria, which

depend on the nature of the application.

For lossless compression, common quantitative measures to express the performance of a

compression method involve a comparison between the size of the input file before compression

and the size of the output file after compression. Three of these measures are: the Compression

Ratio (CR), the Compression Factor (CF ), and the Saving percentage (SP ). These quantities

are defined as:

CR =
Number of bits before compression

Number of bits after compression
(1.8)

CF =
Number of bits after compression

Number of bits before compression
(1.9)

SP =
Number of bits before compression−Number of bits after compression

Number of bits before compression
(1.10)
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In lossy compression, the quality of reconstructed data is commonly measured by the signal

to noise ratio (SNR), the Peak signal to noise ratio (PSNR) and the Root Mean Squared Error

(RMSE), which are defined as:

SNRdB = 10 log10

∑n
i=1 Si

2∑n
i=1 (Si − S̃i)2

(1.11)

PSNRdB = 10 log10
max |Si|2∑n
i=1 (Si − S̃i)2

(1.12)

RMSE =

√√√√ 1

n

n∑
i=1

(Si − S̃i)2 (1.13)

where Si is the original data and S̃i is the decompressed data.

1.2 Seismic Data

The construction of a subsurface image is done by a seismic survey over the area to explore.

These surveys start with the localization of an array of sensors on the area to explore. Then a

1

2

3

4

Figure 1.3: Seismic Acquisition [2]

low-frequency artificial seismic source is activated (e.g. an explosive charge). This shot creates a

downward propagating wave-field (step 1 in Figure 1.3). Then, this wave-field is reflected from

the geological boundaries (step 2 in Figure 1.3). Finally, the reflected wave-field is detected by
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the sensors (step 3 in Figure 1.3) and recorded by a system recorder (step 4 in Figure 1.3). The

recorded wave-field contains geophysical information, which is of interest to Geoscientists.

The recorded curve from a single sensor is called seismic trace. A section of a seismic trace is

shown in Figure 1.4. Note that, the positive area of the curve is shaded black, while the negative

side is left unfilled. This format is commonly used to enhance the visual display [34].

3800 4000 4200 4400 4600 4800 5000 5200 5400
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p
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u
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e

Time (ms)
3800 4200 4600 5000 5400

Figure 1.4: Section of a seismic trace

Figure 1.5 shows a section of a seismic shot, i.e. the reflections recorded by all sensors during

a shot. Note that, the shaded area, in this case, is the right side of the curve. These seismic shots

are stored by using different formats [35]. One of the most used is the SEG-Y format, which was

developed by the Society of Exploration Geophysicists (SEG) [36]. This format adds a header to

the seismic trace samples, which contains information related to the survey (e.g. shot number,

source and receiver location, sampling frequency, etc.). In this dissertation we used 12 different

seismic shots, which were provided by Ecopetrol Oil Company. For further details about these

seismic shots see Appendix 6

Seismic trace samples are represented by using single-precision floating-point format. This

format uses 32 bits per symbol, which is mandatory for processing purposes. However, from

the Information Theory point of view, this format is longer than absolutely necessary, because

the entropy of the seismic data (H) is small than 32 bits per symbol. In other words, this

floating-point representation has redundancy.

Therefore, the seismic data can be considered as a combination of three types of compo-

nents: geophysical information, redundancy in the signal representation, and uncorrelated and
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Figure 1.5: Shot Gather Section

broadband noise from different types of sources [37],

Seismic trace = Information + Redundancy + Noise (1.14)

Seismic data compression algorithms seek to preserve the relevant geophysical information,

to reduce the noise and to find redundancy. These algorithms aim to compress the seismic data

as much as possible with a SNR above 40 dBs. This level of SNR is required to ensure that the

compression-decompression process is not a noise source for the later processing such as Stacking

or Migration [38, 39, 40, 41].

Figure 1.6 compares the decompressed version of our seismic shot 1 with the original one,

when it has been compressed at 40 dB of SNR. Note that no artifacts are observed in the time

domain. In the frequency domain (Figure 1.7), some changes are observed in the phase for high

frequencies. However, the relevant geophysical information is concentrated under 100 Hz.

Limits on Seismic Data Compression

Compressing seismic data requires lossy compression methods to reach ratios greater than 2 : 1.

In other cases, for example, text compression (such as seismic trace headers), a higher compression

ratio can be achieved by using lossless methods. These compression ratios are higher since the

text files have frequently repeated symbols, while a seismic data is far less structured.
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Figure 1.6: Seismic traces of shot 1
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(a) Amplitude spectrum - Original traces
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(b) Amplitude spectrum - Decompressed Traces
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(c) Phase spectrum - Original traces

0 50 100 150 200
0

2

4

6

8

x 10
4

Frequency (Hz)

P
h
a
s
e
 i
n
 d

e
g
re

e
s

 

 

(d) Phase spectrum - Decompressed Traces

Figure 1.7: Spectrum of shot 1

1.3 Related Work

This dissertation is related to two main fields of knowledge: seismic data compression and I/O

bottleneck. These issues have been well studied and addressed from many points of view. The

first step in the development of this dissertation was a critical analysis of the most relevant

research works in both fields. The results of this review are summarized in this section. The first

part is dedicated to seismic data compression. The second part focus on those research works
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that have addressed the I/O bottleneck by a compression strategy.

Seismic data compression

In the 1980s and 1990s decades, much of the original work in lossy compression were developed

in the area of image compression [42, 43, 44, 45]. It was in the mid-1980s when the well-known

JPEG method was development by Joint Photographic Experts Group, which later (1992) became

a standard in lossy image compression. This standard is based on the cosine transform followed

by a quantization scheme that uses special matrices (e.g. Losheller Matrix [46]), and a coding

scheme composed by the Run Length Encoding and the Huffman Encoding [47]. However, this

standard is not adequate for seismic data compression because it introduces artifacts even at low

compression ratios [48].

In the early 1990s, Spanias et al.[49] stated that the Karhunen-Loeve Transform (KLT) [50]

offers a better performance in terms of data rates vs. normalized error, when it is compared with

other transform-based algorithms such as: Discrete Fourier Transform (DFT), Discrete Cosine

Transform and Walsh-Hadamard Transform (WHT). However, the KLT has a high computational

cost, which makes it impractical, especially for applications with time constrains.

It was in the 1990s decade when the Wavelet-based compression algorithms were a very

active research area, especially in the field of image compression [51, 52, 53, 54]. Several wavelet-

based algorithm have been proposed to compress seismic data [48, 41, 55, 56, 40]. The main

change among these algorithms is the way in which the Discrete Wavelet Transform (DWT) is

implemented. Several flavors of the DWT have been tested by changing parameters such as: the

dimension (1D, 2D and 3D), the filter type and length and, the number of levels of decomposition,

among others. These Wavelet-based algorithms showed a better performance over those based

in the traditional transformations, because of the capabilities of the Wavelets on representing

geophysical events in seismic data.

In the 2000s, a new series of transformations were successfully used in seismic data compres-

sion [57, 58, 59, 60, 61, 38, 62, 63]. These new transformations are General Filter Banks, which

give an extra freedom in selecting the appropriate frequency decomposition. This freedom is

used to suit the filter bank to seismic data, which improves the performance over Wavelet-based

algorithms in terms of SNR at the same compression ratio.

In two works in 2001 [64] and 2002 [38], Duval and et al. presented algorithms for compression

and denoising simultaneously. In these papers are shown how the Wavelet-based algorithms or
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filters banks could be used for denoising and compression at a time. They used the shrinkage or

wavelet thresholding to show how the lossy compression algorithms could be seen as a denoising

tool, instead a source of noise. The core idea is to discard some coefficients termed as noisy by

using one or several soft- or hard-thresholds.

Other research work has proposed to use Principal Component Analysis (PCA) to compress

seismic data [65]. The limitation of this algorithm is the high computational cost to calculate

the PCA.

Most recently, two compression algorithms based on the DWT and the Embedded Zerotree

Wavelet [66] have been proposed. The algorithms classify and group the Wavelet coefficients

according to specific patterns prior to quantizing and coding. These groups have a reduced

entropy, which improves the compression ratio. However, the addition of the Zerotree Wavelet

stage increases the computational complexity of the compression algorithm.

A uniform quantizer is generally used for seismic data compression [23, 49, 40, 63, 67, 68]

because the larger errors in the non-uniform quantization scheme are concentrated in larger

amplitudes, and usually, the larger amplitudes contain the relevant geophysical information. On

the other hand, the small amplitudes data have a good chance to be noise.

In seismic data compression the most used coding schemes have been Huffman [69, 55, 48]

and Arithmetic Coding [68, 63, 67, 39]. Sometimes a Run Length Encoding (RLE) [27] has been

used prior to the entropy coding stage [68, 48].

The Huffman coding has been investigated during the last years [70, 71, 72, 73], these research

works describe methods of storing and maintaining the Huffman tree. On the other hand, the

Arithmetic coding has also been investigated during the last years [74, 75, 76, 77, 78], these

research works deals with its high computational cost and how to store in an efficient way the

changing probabilities of symbol occurrences.

Facing the I/O bottleneck by using a compression strategy

In the context of the heterogeneous cluster, the I/O issue has been well studied and addressed

from many points of view. Despite all research in this area, the I/O latency continues to affect

the overall performance of the modern computational systems.

The main strategy to reduce the impact of the I/O bottleneck has been the use of memory

hierarchies. The goal in the designing of these memory hierarchies has been to provide memory

systems that enable a fast access to the recently used data.
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The reorganization of the stencil calculations to take advantage of the memory hierarchies

has been the subject of much investigation over the years [79, 80, 81]. Other strategies include,

for example, to hide memory latencies by switching between threads (on GPUs) or cores (on

FPGAs). thus, while a thread (or core) is making transfer operations, some other one can be

scheduled in its place [82, 83, 84].

In this review, we focus on those research works that have addressed this problem by using a

compression strategy.

To the best of our knowledge, the first work that using a compression strategy, trying to reduce

the I/O bottleneck, it was developed by Haugen in 2009 [20]. In his work, Haugen investigated

the feasibility of using a lossy compression algorithm to improve the bandwidth between CPU and

GPU through the PCIe bus. The strategy consists of compressing the seismic data before GPU

transfer, and it was tested in a GPU-based cluster. Haugen used the compression algorithm

developed by Rosten in 2000 [37], which is based on three stages: a filter bank, a uniform

quantization and finally, a coding scheme formed by Huffman and RLE.

The strategy did not speed up the I/O operations between the CPU and GPU. The results

showed that the transfer time by using the compression strategy was higher than the transfer

time without compression. However, they stated that the strategy could speed-up the transfer

speed over other slower buses, for example, over networks connections of 100Mbit/s.

One of the major drawbacks of this work was how the decoding process was implemented.

Huffman decoding has the highest computational cost in this algorithm, because of the variable

length of its code-words [22, 85, 86]. The Huffman algorithm was implemented by porting a

serial version, but not optimized to be implemented in parallel architectures. For this reason, the

decoding process became the bottleneck of the decompression process.

In 2011, Aqrawi et al. [26] investigated how to reduce the limitations of disk I/O using a

compression strategy. They aimed to improve these I/O limitations in a GPU-Based computa-

tional system, and tested the strategy using both HDDs (Hard disk drives) and SSDs (Solid state

disks). The application that motivated this research was a seismic filtering, which is a process

used to analyze the subsurface images. In this algorithm, the I/O operations spent most of the

execution time. Their results show that only the 10% of the execution time was used to perform

the filtering process itself, while the rest of time (90%) was spent in the transfer process.

They tested both lossless and lossy compression algorithms. On the one hand, the lossless

algorithms were based on a modified RLE (Run Length Encoding) and Huffman Encoding. They
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do not give specific details for their GPU implementation neither RLE nor Huffman coding. The

compression ratios obtained by these lossless compression methods were 1.2 and 1.4 for RLE and

Huffman respectively. These methods showed up to 1.4× faster than the traditional I/O transfer

process for HDD disks, but a negative speed up for SSD disks.

On the other hand, the lossy compression schemes were based on the DCT (Discrete Cosine

Transform) and the LOT (Lapped Orthogonal Transform). For the lossy compression methods,

they tested both transformations (DCT and LOT) in several dimensions. The best compression

ratio was 6.5, and it was achieved by using the 3D-DCT and the modified RLE. These lossy

methods showed up to 6× and 3.2× faster than the traditional I/O transfer process for HDD and

SDD disks respectively.

It is important remark that both RLE and Huffman algorithms showed a lower performance

on GPU than on CPU, due to its sequential nature. For this reason, these algorithms were finally

implemented on CPU. On the other hand, the transform stage was performed on GPU because

of its parallel nature.

This work differs from our work because the implementation used both the CPU and GPU

capabilities to develop the compression/decompression process. By using the CPU capabilities to

perform sequential algorithms, it was possible overcome the bottleneck caused by the sequential

nature of the RLE and Huffman lossless compression methods. In our case, we need to perform

the entire algorithm in a parallel architecture.

Then in 2012, Patel et al.[25] implemented the bzip2 lossless algorithm on GPU to compress

text. They stated that one motivation for their work it was to determine whether on-the-fly com-

pression is suitable for optimizing data transfer between CPU and GPU. The algorithm consists

of three stages: Burrows-Wheeler Transform(BWT) [87], Move-to-Front Transform (MFT) [88]

and Huffman Coding.

The BWT is a particular case of string sort, which was implemented by using a sorting algo-

rithm based on merge sort [89]. They did not give details for the reverse BWT implementation.

On the other hand, when MTF is applied to a string that has been transformed by BWT,

the overall entropy is reduced [88]. The MTF was parallelized by using a divide-and-conquer

strategy. They broke the input string in substrings and applied the MTF to these substrings.

Then, the two partial transformed substrings are used to create a new substring, which, in turn,

is transformed in a new substring, and so on. They left the parallel implementation of the reverse

MTF for future work.
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Finally, they parallelized the Huffman encoding by assigning a specific number of codes to

each block on the GPU. In this case, they assigned 4096 codes to thread-block, where each block

has 128 threads. The decoding process was parallelized by assigning each bit array to a thread

in the GPU.

In the implementation, the string sort in the BWT and Huffman stages were the bottleneck

in the implementation. They concluded that the implementation was not fast enough to optimize

data transfers between CPU and GPU.

1.4 Discussion

Different algorithms have been proposed to compress seismic data. They have been focused on

achieving higher compression ratios at a quality around 40 dB in terms of SNR. This level of

SNR guarantees that later processing, such as stacking or migration, does not introduce errors

caused by the compression process. Additionally, some works have stated that the compression

process can be considered as a denoising tool instead of a noise source.

In the literature, we did not find a compression standard or a universal rule on seismic data

compression. However, we found useful guidelines for the selection of the compression strategy,

especially if we take into account the computational complexity of the algorithms used.

Regarding the quantization stage, there seems to be a consensus about the use of a uniform

quantizer (Section 1.3). On the one hand, this quantizer minimizes the entropy for a fixed

SNR [90]. Therefore, if the uniform quantizer is followed by an entropy coder, such as Huffman

or Arithmetic, it will achieve the best compression ratio for a given SNR. On the other hand, the

larger errors in the non-uniform quantizer are concentrated in larger amplitudes, and usually,

the larger amplitudes contain the relevant geophysical information [90, 1].

Relating to the coding schemes, Huffman and Arithmetic have been the most used on seismic

data compression, thanks to its performance in terms of compression ratio and its relatively low

computational cost.

We tested both coding schemes with our seismic datasets. Figure 1.8 shows the performance

in three of our datasets, in terms of compression ratio vs. SNR. In this case, we used a Wavelet-

based compression algorithm with a uniform quantization (from 6 to 14 bits). Figure 1.8 also

shows the optimum compression ratio, which is calculated by using the entropy of the quantized

wavelet coefficients (Equation 1.2).
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The Arithmetic coding exhibited a superior performance for low levels of SNR and was very

close to the optimum compression ratio. For values of SNR around 40 dB, both Huffman and

Arithmetic showed similar performance, which was very close to the optimum.
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Figure 1.8: SNR vs CR for Huffman and arithmetic coding. Figure also shows the maximum CR
achievable.

It is important to remark that the Arithmetic coding has a higher computational complexity

than the Huffman coding. From the computational complexity perspective, the Huffman coding

is a better option, when the aim is to achieve an SNR around 40 dB.

Regarding the transformation stage, its selection remains an open problem for the seismic

data compression [91]. We analyze this stage in Chapter 2.
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Decorrelating seismic data

We aim to develop a compression strategy which has a high performance in terms of compression

ratio and decompression time. The transformation stage plays an important role regarding these

parameters because the transformation can improve the compression ratio and its computational

cost affects the decompression time.

Several transformations have been used to compress seismic data (see section 1.3). However,

the main objective of these works has been to compress seismic data as much as possible without

time constrains. Thus, it is necessary to develop an analysis that also includes time constrains

that are imposed by the proposed strategy.

In this chapter, we analyze the transformation stage. The analysis aims to select the transfor-

mation and to establish key parameters at the moment of implementing the whole transformation

stage. The analysis is performed from both compression ratio and decompression time points of

view.

2.1 Seismic Data Decorrelation

Seismic data compression aims to represent the seismic data in a way that requires fewer bits

than the original way. This process has been achieved successfully because the seismic data have

a form or structure, which is predictable. In other words, the seismic data have redundancy (see

Section 1.1). Figure 2.1 shows a section of the Dataset 1 (Shot 1). Note that, there is a correlation

between neighboring data, both in the vertical direction (time) and horizontal direction (space).

To illustrate this correlation, Figure 2.2 shows the dispersion diagram of pairs of adjacent

seismic samples (in vertical direction). Each (x, y)-point is conformed by a sampled data and its
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Figure 2.1: Shot Gather Section

neighbor. Note the relationship about the y = x line, which illustrates the correlation between

neighbor data samples.
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Figure 2.2: Adjacent seismic data

By rotating by 45◦ about the center the dispersion diagram shown in Figure 2.2, we can

obtain a new dispersion diagram, as shown in Figure 2.3. Note that, this new distribution has

a smaller dynamic range than the original one, and thus, we can encode these values with fewer

bits.

Figure 2.4 shows the histograms obtained from a seismic data set before and after the rotation
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Figure 2.3: Rotation Decorrelation (Adjacent data)

respectively. The rotated data has a narrower distribution and therefore a better chance to reach

an improved compression ratio.
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Figure 2.4: Histogram for a seismic data set. (a) Histogram of the data values of the seismic
data. (b) Histogram of the rotated data.

We can analyze these dispersion diagrams from a statistical point of view. The dispersion

diagram shown in Figure 2.2 has a positive covariance (σxy > 0), because of the lineal relationship
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between neighbor sampled data. On the other hand, the dispersion diagram shown in Figure 2.3

has a covariance close to zero ( σxy ≈ 0) [92]. Thus, the rotation has decorrelated the data, i.e. the

value of the first component gives few information to the second component. This decorrelation

allows the reduction on both the dynamic range of the data and entropy (H).

Optimal decorrelation

We may define a seismic shot as a matrix [X] with N vectors, where each column-vector xj is a

seismic trace, i.e.

[X] = [x1 x2 x3 · · · xN ] (2.1)

In general, this seismic shot is decorrelated when the covariance between two different traces is

zero, i.e.,

Cov(xi,xj) =

0 i 6= j

σ2 i = j
(2.2)

Where σj
2 is the variance of xj . Thus, the covariance matrix Cn×n of the decorrelated process

must be diagonal, such that:

Cn×n =


Cov(x1,x1) Cov(x1,x2) . . . Cov(x1,xn)

Cov(x2,x1) Cov(x2,x2) . . . Cov(x2,xn)
...

...

Cov(xn,x1) Cov(xn,x2) . . . Cov(xn,xn)

 =


σ1

2 0 . . . 0

0 σ2
2 . . . 0

...
...

0 0 . . . σn
2

 (2.3)

The optimal transformation: Karhunen-Loève Transform (KLT)

It is possible to represent the transformation stage as a matrix operation as

Y = [B][X] (2.4)

Where [Y] is the transformed data, [B] is the linear transformation matrix, which is a basis for

the new space and, [X] is the original seismic data. Alternatively, each transform column vector,

yi of [Y], can be calculated as

yi = [B]xi (2.5)
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If it is assumed that [B] is an orthonormal basis, i.e. [B][B]T = [I], which can be achieved by

using a Gram-Schmidt process [93], the total energy under the transformation is preserved, i.e. ,

‖yi‖2 = yi
Tyi

= ([B]xi)
T ([B]xi)

= xi
T [B] [B]T xi

= xi
T xi

= ‖xi‖2

(2.6)

For optimal decorrelation, it is required to find a linear transformation matrix, [B], which pro-

duces a diagonal covariance matrix for the transformed data.

If we assume that [B] is an orthonormal basis, the desired matrix [C ]Y can be calculated from

the original covariance matrix [C ]X [50], as,

[C ]X [B] = [B][C ]Y (2.7)

Since [C ]Y is diagonal, Equation 2.7 can be re-written for each column vector as

[C ]Xbj = λjbj (2.8)

Where, the column vectors bj are the basis of the new representation and the coefficients λj are

the covariances of the transformed data (See equation 2.3).

Note that, Equation 2.8 is the eigenvalue problem [93], where the column vectors bj and the

coefficients λj are the eigenvectors and eigenvalues respectively of the covariance matrix, [C ]X ,

of the original data.

The transformation defined by the eigenvalues of the covariance matrix is the Karhunen-Loève

transform (KLT) [50]. This method is also referred to as the Hotelling Transform or Principal

Components Analysis (PCA) [94].

Thus, the KLT is the optimal transform for Gaussian data, in the sense of the decorrela-

tion [95]. This transformation offers a natural basis, which allows an optimal decorrelation of

the data. However, this transformation is computationally expensive and sometimes could be

impractical because of the basis vectors are not constant but data dependent [49, 65, 96].
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2.2 KLT vs. Discrete Wavelet Transform (DWT)

We are interested in testing the Discrete Wavelet Transform (DWT) in this dissertation because

it offers some implementation alternatives that could help us to reduce the decompression time

(see Chapter 3).
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Figure 2.5: KLT vs. Discrete Wavelet Transform

To establish the performance of the DWT, we compare a KLT-based algorithm with a DWT-

based algorithm, which is based on the CDF 2.2 filter (see section 2.4). The algorithms are

the same except for the transformation stage. Figure 2.5 compares the performance of both

algorithms in terms of SNR (in dBs) vs. Compression Ratio (CR) in three of our datasets. Note

that the DWT performs similar to the KLT, and sometimes the DWT performance is better,

because the KLT is optimal under the assumption of Gaussian data.

2.3 DWT by the Lifting Scheme

The DWT has traditionally been developed by convolutions, and its implementation demands a

large number of computational and storage resources.
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A new approach has been proposed by Swelden [97] for wavelet transformation, which is

called the lifting scheme. This mathematical formulation requires less computational and storage

resources than the convolutional implementation.

Basically, the lifting scheme changes the convolution operations into matrix multiplications

of the image with complementary filters, which allows for in-place computation, reducing the

amount of both computation and storage resources [98]. At each step of the lifting method, the

image is filtered by a set of complementary filters (i.e. , a low-pass filter and its complementary

high-pass filter) that allows perfect reconstruction of the image. In the next step of lifting the

low-pass filtered image is again filtered by set of complementary filters, and so on. Each step

of the lifting scheme can be inverted, so that the image can be recovered perfectly from its

wavelet coefficients. A rigorous mathematical explanation of the wavelet transform using the

lifting scheme can be found in [97, 99, 100].

2.4 Implementing the DWT

The DWT can be implemented in different flavors by using different filter types, filter lengths,

number of decomposition levels and dimensions. To establish how these different flavors affect the

performance regarding the compression ratio, we implemented several 2D lifting-based algorithms

to compress different seismic data sets. Results for different filter type, filter length and number

of decomposition levels were established.

The type of filter

To classify the compression ratio according to the selected type of filter, we used three different

types and varied their lengths, and their number of vanishing moments. The types of filters

used were: Biorthogonals (Bior), Cohen-Daubechies-Feauveau (CDF) and Daubechies (Db). The

experiments were performed in the following order:

1. 2D lifting-wavelet decomposition (1-level) using different filters.

2. Uniform quantization from 6 to 14 quantization bits.

3. Huffman entropy coding.
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Figures 2.6 to 2.8 show the performance of the algorithms based on Biorthogonals (Bior),

Cohen-Daubechies-Feauveau (CDF) and Daubechies (Db). Each mark in theses figures corre-

sponds to a number of quantization bits from 6 to 14. For simplicity we only show three filters

for each dataset (low, medium and high performance). However, we observed that for each type

of filter there is a range of vanishing moments that achieves a better performance.

The best performance was obtained by using: Daubechies filters with a number of vanishing

moments either 4 or 5, Biorthogonal filters with a number of vanishing moments from 5 to 8, and

CDF filters with a number of vanishing moments from 2 to 4. In all other cases, a lower CR was

achieved. These number of vanishing moments were required for both the decomposition filter

and the reconstruction filter. In all cases, when either fewer or more of these vanishing moments

were used, a lower CR was achieved.
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Figure 2.6: CR vs. SNR for the Dataset 1.

Figure 2.9 compares the best results among the three types of filters. Note that there are no

significant differences between them.

The number of the decomposition levels

The discrete wavelet transform (DWT) can be applied in different levels of decomposition [101].

We compress the seismic data using different levels of the wavelet decompositions to determine

the influence of the decomposition levels in the improvement of the compression ratio. The

experiment was performed in the following order:
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Figure 2.7: CR vs. SNR for the Dataset 2
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Figure 2.8: CR vs. SNR for the Dataset 3

1. 2D lifting-wavelet decomposition, using different levels of decomposition (From 1 to 7)

2. Uniform quantization using 12 quantization bits.

3. Huffman entropy coding.

Figure 2.10 shows the compression ratio vs the number of levels of decomposition. Note that
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Figure 2.9: CR vs. SNR for all datasets. Best results for each type of filter at each dataset.

as the number of decomposition levels increases, the CR increases. This is true for all datasets,

until a particular number of decomposition levels is reached. After that level of decomposition,

the compression ratio holds almost constant. However, it is important to remark that as the

number of decomposition levels increases, the SNR is reduced due to the loss of quality in the

quantization process (Section 1.1). Therefore, it is necessary to choose the best compression ratio

above 40 dB (in terms of SNR) among the different levels of decomposition. Table 2.1 summarizes

our best results for three of our dataset.

Table 2.1: Better results above of 40 dB

Dataset Level SNR CR

Data 1 3 42.45 13.56
Data 2 2 41.55 10.23
Data 3 2 42.08 13.92

2.5 Discussion

The KLT is considered the optimal transformation stage, in the context of compression data.

However, this transformation is dependent on the statistics of the sequence, i.e. when the statis-

tics change so also the KLT, which makes this transformation impractical because of its high

computational cost.
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Figure 2.10: CR vs number of decomposition levels for three datasets.

We compared the DWT with the KLT and no significant difference was observed, which makes

this transformation an option in our strategy.

The implementation of the DWT by using the lifting scheme reduces both the memory and

computational resources. On the one hand, the lifting-based approach improves the computa-

tional performance by a factor of two [102, 97]. On the other hand, this scheme allows a fully in

place calculation of the wavelet transform, i.e. no auxiliary memory is needed, and the data (e.g.

the seismic shot) can be replaced with its wavelet transform [97].

Regarding the wavelet filter used, it seems that the performance –regarding the SNR obtained

for a given compression ratio– is not strongly correlated with the type of filter [91]. It is possible to

achieve the best performance using different types of wavelet filters (e.g., Bior, CDF or Db) [91].

On the other hand, our results suggest that this performance is related to the number of vanishing

moments of the wavelet filter.

The most appropriate number of levels of decomposition can not be established, since the

compression ratio did not improve for a particular number of decomposition levels. Our re-

sults showed that a moderate number of decomposition levels (from 2 to 4) achieves the best

compression ratio at the same level of SNR.
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Chapter 3

GPU Implementations

As mentioned, the trade-off between the compression ratio and the processing time has not

allowed the use of a compression strategy to speed up the transfer process between the main

memory and the device memory.

In this chapter, we describe our efforts in optimizing the implementation of the decoding

process into the GPU architecture. The chapter shows the throughput results by using different

strategies of implementation. We also compare our throughput results with similar research

works.

The chapter shows that despite our efforts to speed up the decoding process, the throughput

obtained was no enough to improve the I/O transfer operations. Our tests showed that the time

spent in the decoding process was longer than the time to transfer the data without compression.

3.1 Selecting the coding Algorithm

Huffman and Arithmetic coding schemes offer a high performance in terms of compression ratio

(Section 1.1) and both have been widely used in seismic data compression (Section 1.3). How-

ever, as mentioned, the variable length of its code-words makes difficult to implement efficiently

these coding schemes in parallel architectures, such that the decoding process becomes the main

bottleneck in the decompression process.

On the other hand, the use of fixed-size codes coding schemes (e.g. Tunsdall Coding [103])

could be a better option for a parallel architecture. However, the performance of these fixed-size

coding schemes, in terms of compression ratio, does not allows a notable reduction the compressed

data transfer time (t1 in Equation 1) to improve the transfer speed.
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In Section 1.1, it was shown that both Huffman and Arithmetic coding schemes exhibit

similar performance at values of SNR around 40 dB. Nevertheless, Huffman coding has a lower

computational cost than the arithmetic coding.

For the reasons exposed above, we consider that the Huffman algorithm is the most appro-

priate coding scheme for achieving both a high compression ratio and the required throughput

in the compression-decompression strategy.

3.2 Huffman Coding Implementation

We describe the CPU implementation of the coding process and the GPU implementation of the

decoding process by an example. Let

W = [ACEBBCEBEEBEABDACDBEDAECBCEBABEECECBDBEA] (3.1)

be a string from an alphabet Σ = {A,B,C,D,E} of cardinality 5. The frequency of occurrences

of each symbol of Σ in W is shown in following table

Table 3.1: Frequency of each symbol in W

Symbol Frequency

A 6

B 11

C 7

D 4

E 12

The Huffman encoding algorithm develops a binary tree (in order to create a dictionary) as

follows:

1. The symbols are sorted in ascending order, according to their frequency (or probability) of

occurrence. These symbols are written orderly in the bottom nodes, i.e. the tree leaves, as

shown in Figure 3.1.

2. The nodes corresponding to the two less frequent symbols are grouped in order to create

a new node. The frequency of the new node is the sum of the frequencies of the grouped

nodes.
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3. The previous step is repeated for all nodes until remains only one node, i.e. the tree root.

At this node, the frequency of occurrence must be the number of data.

Figure 3.1: Huffman binary tree for the example data.

Once the binary tree is developed, the bits ’1’ and ’0’ are assigned to each branch (Figure 3.1).

The code-words for each symbol are obtained grouping these bits from the root to each leaf. The

dictionary consists of the symbols in the data and their respective code-word. Due to the variable

length of the code-words, it is required to save these lengths into the dictionary to decode the

information correctly. Table 3.2 shows the dictionary for the binary tree in Figure 3.1.

Table 3.2: Huffman dictionary for the example data.

Symbol Code-word
Code-
word

length

E 11 2

B 10 2

C 01 2

A 001 3

D 000 3

The compression is achieved by replacing each symbol in the data with the corresponding

Huffman code-word. As a result, it is obtained a bitstream that has the encoded data. On the

other hand, the decoding is done by comparing bit to bit such bitstream with the code-words in

the dictionary.

We propose a strategy that uses packets with headers, which seeks to force the alignment of

code words at packet boundaries, allowing us to parallelize the decoding process.

We implemented a procedure to reduce the bits required to save the dictionary, taking into

account the length of the code-words for our seismic data-sets. We saved the dictionary into two

32-bit vectors. The vector s contains the symbols and the vector c contains the code-words (using
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the first 27 bits) and its length (using the last 5 bits). Table 3.3 shows the saved dictionary for

our example using this procedure.

Table 3.3: Dictionary saved using two 32-bit vectors.

Vector s Vector c
Symbols Code-words & lengths

E 11xx . . .x 00010
B 10xx . . .x 00010
C 01xx . . .x 00010
A 001x . . .x 00011
D 000x . . .x 00011

On the other hand, the encoded data must be saved into another vector whose elements are

32-bit or 64-bit variables. In a traditional coding, the encoded data is saved into the vector as

a bitstream, no matter whether a code-word is saved into two different elements (highlighted

code-words in Figure 3.2) or not.

Figure 3.2: Encoded data using traditional coding for 32-bit variables.

Coding using 32-bit and 64-bit packets

As the GPUs are optimized to process the data using both 32-bit and 64-bit variables, we use

32-bit and 64-bit packets. Both strategies make use of the same dictionary.

In each 32-bit packet, 27 bits are used to save the encoded data, while 5 bits are used to save

how many symbols are in the packet (Figure 3.3). This arrangement takes into account that it

is possible to save up to 27 symbols encoded with 1-bit code-word. So, 5 bits are required to

indicate that there are up to 27 symbols in the packet.

The proposed strategy compels that no code-word will be divided into two different packets,

therefore, some packets will have unused bits (indicated as ’-’ in Figure 3.3). This way, each

packet can be treated as a small data-set that could be decoded individually. However, it is

required to create an additional vector (called index ) to know the position of the encoded symbols
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Figure 3.3: Encoded data using packets of 32 bits.

in the original data-set. Each element of index has the sum of symbols encoded in the previous

packets. Table 3.4 shows the index vector for the encoded data in Figure 3.3.

Table 3.4: Index vector for our example.

Packet Symbols per packet Index

1 12 0
2 10 12
3 13 22
4 5 35

In the 64-bit packets, 58 bits of each packet are used to save the encoded data while 6 bits

are used to save how many symbols are in the packets (Figure 3.4).

Figure 3.4: Encoded data using packets of 64 bits.

The packets allowed us to parallelize the decoding process, but they have a drawback. Due

to the unused bits and the additional index vector, the compression ratio is lower compared to a

traditional coding strategy (As shown in Section 3.4).

Figure 3.5 shows the compression ratio using these coding strategies. Prior to encode the

seismic data, a uniform quantization was applied to each dataset using 12 bits of quantization to

ensure an SNR above of 40 dB [91].

Note that the traditional coding provides better compression ratio, because all bits are used

to encode the data and no additional files are needed for the decoding process. Likewise, the
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Figure 3.5: Compression ratio

64-bit packets has better compression ratio than the 32-bit packets, since there are less unused

bits, on average, with the 64-bit packets.

3.3 Decoding implementation

The decoding process is developed by comparing the encoded data with the Huffman code-words

saved in the dictionary. The comparison is made taking into account the length of the code-words.

The decoding algorithm is as follows (Figure 3.6):

1. Read the first row in the dictionary in order to know the length of the first code-word.

2. Mask the encoded data using the logical AND operation. The mask has as many 1’s as bits

has the code-word. The other bits are 0.

3. Compare the masked bitstream with the code-words in the dictionary that have the same

length. If there is a match, save the decoded symbol and go to step 5. Otherwise, continue

with step 4.

4. Look for the next code-word length and return to step 2.

5. If all the symbols in the encoded data have been decoded, go to step 7. Otherwise, continue

with step 6.

6. Shift the encoded data to the left as many bits have the previous code-word decoded. Then,

go back to step 1 in order to decode the next symbol.
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7. The decoding process is over.

(a) Failed matching.

(b) Successful matching.

Figure 3.6: Decoding process by masking the encoded data.

Figure 3.6 shows how different masks are used to decode our encoded data. In Figure 3.6a,

no symbol is decoded, because the masked bitstream do not matches with any 2-bit code-word

in the dictionary. Figure 3.6b shows how the symbol A can be decoded, because its code-word

matches with the masked bitstream.

The decoding process can be parallelized assuming that one packet corresponds to an indi-

vidual dataset. This way, each packet can be executed by one GPU thread, taking into account

that symbols decoded by each thread must be organized according to the index vector.

3.4 Throughput results

The creation of the Huffman dictionary and the coding process itself, was implemented on a

CPU. The decoding algorithm was developed in CUDA 6.5 and implemented on a GeForce

GTX660 GPU with 3.0 CUDA capability. The algorithms were tested with three of our seismic

datasets.

The GPU implementation was done by using different threads-per-block distributions, i.e.

different block sizes. Figure 3.7 shows the required time to decode the datasets encoded with
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(b) Datasets encoded with 64-bit packets.

Figure 3.7: Decoding time using unidimensional blocks.
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(b) Datasets encoded with 64-bit packets.

Figure 3.8: Decoding time using bidimensional blocks.

32-bit and 64-bit packets using unidimensional blocks, while Figure 3.8 shows the decoding time

using bidimensional blocks. Note that, for 1D block sizes, the 256×1 distribution exhibits better

performance, while for 2D block sizes, the best performance is obtained with 16×16 distribution.

In all cases, better performances were obtained when datasets were encoded using the 32-bit

packets. So, the best performance was obtained using a block size of 256 × 1 threads to decode

datasets encoded with 32-bit packets.

3.5 Discussion

The results show that packets that have less encoded symbols, i.e. such that have larger code-

words, require more time to be decoded. This is because these code-words are at the end of the

dictionary, and they demand more searching time. In this sense, the throughput improves as the

compression ratio increases, because the average length of the code-words decreases.
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On the other hand, the GPU executes the algorithm in groups of 32 threads running in

parallel, which are called warps. As each packet is decoded by one thread, 32 packets are decoded

simultaneously in the warps. For packets that have a different number of encoded symbols, the

decoding time for each packet can be different into the warp. This difference in the decoding

time generates divergence [104], which affects the GPU performance. The results show that the

32-bit packets strategy reduces the divergence compared with the 64-bit strategy.

It is difficult to compare our results with other Huffman decoders implemented on GPU

because the nature of each dataset affects how it is encoded. Besides, the GPU technology is not

necessarily the same from one work to another. However, some comparisons can be made if we

take into account the throughput.

Table 3.5 compares our decoder with a predecessor work [24] that reports the decoding

throughput. The results suggest that the performance of our decoder could be superior to the

mentioned previous work.

Table 3.5: Predecessors Results

Author GPU device
Compression

Ratio
File Size

[MB]
Throughput

[MB/s]

Throughput
[Symbol ∗

106/s]

Our
decoder [86]

GeForce GTX660
at 980 MHz

1.6 275.3 260.71 65.18

Aqrawi
2010 [24]

Tesla C1060
at 1.3 GHz

1.4 244.14 116.26 29.07

The GPUs are successfully used with algorithms that exhibit a parallel behavior and are

designed to work in float-point format. However, when the decoding process is implemented into

the GPUs, the sequential stages quickly become the bottleneck in the overall process.

As mentioned, the throughput obtained for the decoding stage was no enough to speed up the

transfer operations between the main memory and node memory. In this sense, the decompression

process requires a custom architecture to overcome the sequential bottleneck that is generated

by the decoding stage.
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Chapter 4

FPGA Implementations

One of the main challenges in this dissertation is the implementation of the decoding process

into a parallel architecture, because of its sequential nature. In this chapter, we describe the

two computational architectures that were developed for the decoding process. We also present

the transformation stage, explaining how it was developed, and giving the results regarding the

processing time and the computational resources.

Finally, we summarize and discuss the throughput results obtained for both decoding and

transformation stages.

4.1 Huffman decoder Version 1

The decoding process requires to be developed at bit level. The first approach seeks to develop

a computational architecture that is optimized to perform the decoding process at bit level.

The general architecture of such decoder is shown in Figure 4.1. The decoder use a custom

memory (DATA MEMORY ) to store the string of compressed data. In this memory, each position

has only one bit. The Huffman dictionary is stored in the DICTIO MEMORY as follows:

• Each memory position has 32 bits.

– The 12 least significant bits are used to store the original representation of the symbols.

– The 20 most significant bits correspond to the Huffman codewords.

– The shortest codes are extended with the first bit of the codeword corresponding to

the most frequent symbol.
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Figure 4.1: Block diagram of Huffman decoder version 1.

• The dictionary is sorted in descending order according to the frequency of the symbols.

• Each time the length of the code-word changes, many FLAGs are added to the dictionary

as the number of increased bits in the length of the code-word. These FLAGs allow the

decoder to know how many bits of the encoded data must be compared with the codewords.

The CONTROL UNIT is responsible for controlling the decoding process and the communi-

cation with the memories.

On the one hand, when the length of the shortest codeword, Lsc, is only 1 bit, the control

unit disables the shift register, so the decoder only takes one clock cycle to decode it. In this

case, another clock cycle is needed to store the decoded symbol into RESULTS MEMORY. The

other symbols (i.e. those encoded with more than one bit) are decoded and stored in at least

5 clock cycles.

On the other hand, when Lsc > 1 bit, the control unit enables the shift register to compare the
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correct number of bits. In this case, the most frequent symbol is decoded in at least Lsc +3 clock

cycles, while the other symbols need at least Lsc + 5 clock cycles to be decoded.

This first version seeks to optimize the memory system and includes hardwired instructions

at bit level to speedup the decoding process.

4.2 Huffman decoder Version 2

Once achieved an optimized architecture to perform the decoding process at bit level, our second

version aims to improve the throughput by parallelizing the decoding process itself.

Several parallel Huffman decoders have been developed for applications where the dynamic

range is known and bounded, such as image or video applications [105, 106, 107]. A bounded

dynamic range helps to develop the computational architecture.

However, for seismic data, the dynamic range is wider and changes from one seismic dataset

to other. Furthermore, the behavior of the code-word lengths can change significantly from one

seismic dataset to the other.

We aim to develop a Huffman decoder that works for any of our seismic datasets, no matter

the dictionary length and the behavior of the code-word lengths.

We determined the necessity of a preliminary study that allowed us to establish the behavior

of the Huffman dictionaries generated for our seismic datasets. The study aimed to find all

parameters required to design a computational architecture to develop a parallel decoder.

Table 4.1 shows the length of the Huffman dictionaries, which were obtained when we encoded

the 12 seismic shot. Prior to encoding the seismic data, a uniform quantization was applied to

each dataset, which uses a number of quantification-bits which guarantees a SNR around 40 dB.

Table 4.1 also shows the result regarding compression ratio and SNR.

On the other hand, Table 4.2 shows the behavior of the code-words lengths. For example,

for the seismic shot 1, there are three code-words of 3-bits, two code-words of 4-bits, and four

code-words of 5-bits.

The preliminary study allowed us to establish that is hardly feasible to have full parallel

Huffman decoder for seismic data, because of the amount of computational resources that a full

parallel decoder would demand.

However, from Table 4.2 note that more than 50% of the data is encoded by using code-words

with lengths between 1 and 5 bits. In some cases, up to 80% of the data is encoded by code-words
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Table 4.1: Length of Huffman Dictionaries, CR and SNR

Quantization Dictionary Compression
Dataset Bits Length Ratio SNR

Shot 1 12 1235 5.79 43.13
Shot 2 12 1260 5.70 45.40
Shot 3 12 1406 5.21 45.09
Shot 4 12 1238 5.16 43.83
Shot 5 12 1563 6.58 45.69
Shot 6 11 1617 7.72 40.10
Shot 7 12 1622 6.16 45.85
Shot 8 11 1629 7.87 40.18
Shot 9 12 1313 8.20 44.12
Shot 10 11 1578 8.26 40.19
Shot 11 12 1438 10.02 44.87
Shot 12 12 948 8.02 44.08

with these lengths.

Therefore, by decoding in parallel the five most frequent symbols, it is guaranteed that, in

average, 67, 51% of the decoding process will be done in a parallel fashion.

Table 4.2: Code-word lengths

Seismic Representation
shot 1 bit 2 bits 3 bits 4 bits 5 bits percentage

Shot 1 0 0 3 2 4 58.26%
Shot 2 0 0 2 3 6 61.48%
Shot 3 0 0 0 5 6 53.16%
Shot 4 0 0 0 5 7 51.45%
Shot 5 0 1 2 2 2 65.09%
Shot 6 0 1 2 2 3 75.72%
Shot 7 0 1 2 2 2 61.51%
Shot 8 0 1 2 2 2 75.14%
Shot 9 1 0 2 0 2 73.87%
Shot 10 1 0 2 0 2 80.65%
Shot 11 0 1 2 2 2 76.12%
Shot 12 0 2 1 2 1 77.71%

Figure 4.2 shows the computational architecture of the Parallel Huffman decoder, which

decodes in a parallel fashion the first five code-words. This architecture was implemented into

an FPGA Virtex 5 XC5VFX70T.

The PARALLEL COMPARATOR is responsible for finding all code-words with lengths up

to 5 bits in a parallel fashion. This module has both a register set and comparator set, which

allowed us to decode all these code-words in just one clock cycle.
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Figure 4.2: Computational Architecture for the Parallel Huffman Decoder

On the other hand, the PARALLEL COMPARATOR is disabled when the code-word has

more than 5 bits of length. In this case, the comparison process is developed by the SERIAL

COMPARATOR by searching directly on the CODE-WORD memory. In this case, at least

three clock cycles are required to update the memory address and compare a new code word. An

additional clock cycle is required when there is a change in the code word length.

The CONCATENATER is responsible for loading the encoded data string in the decoding

process. This module loads a new 32-bit line when the decoding process has finished with a

memory position. Additionally, the module concatenates the appropriate number of bits on the

comparators.

The process is mainly controlled by two Finite State Machines (FSM). The first one (the

COMPARATOR CONTROL) handles the loading process of the set register into the PARALLEL
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COMPARATOR at the beginning of the process. The second FSM (the CONCATENATER

CONTROL) handles both the parallel and serial comparison processes.

As mentioned, when the code-word length is greater than 5 bits, the second version requires

at least four clock cycles to update the memory address and to compare a new code-word.

We found that these processes of update and compare are recurrent. In a new version (V2.1),

we reduce from 4 to 2, the number of clock cycles required to update the memory address and

to compare a new code-word. As shown in the next section, this reduction allowed us to improve

the overall performance in the decoding process.

4.3 Throughput Results for Decoding Process

Figure 4.3 shows the Throughput (in MB/s) vs the number of quantization bits, for a single core.

Note that, the version 2.1 offers a better performance, especially for high compression ratios.
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Figure 4.3: Throughput results for the decoding process (one core)

On the other hand, Figure 4.4 shows the average number of clock cycles for the three versions

of the Huffman decoder. Note that, there is a significant difference between the versions regarding

the average number of clock cycles.

4.4 Transformation stage

The DWT is traditionally developed by convolutions, which demand both a large number of

mathematical operations and a large amount of storage. The mathematical formulation for
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Figure 4.4: Average number of clock cycles for the Huffman Decoder versions

DWT proposed by Swelden [97] – called lifting scheme – requires less computation and storage

resources than the traditional DWT. The lifting-based implementation seeks to improve the

algorithm performance to calculate the wavelet transform by changing the convolution operations

for multiplication operations of Laurent polymonials [108].

The single-level of the traditional DWT is shown in Figure 4.5. The forward DWT consists in

applying the analysis filter pair h̃ – g̃ (low-pass and high-pass respectively), followed by a down-

sampling operation (Figure 4.5a). As a result, the input signal is decomposed in approximation

(LP ) and detail (HP ) coefficients, which correspond to the low and high-frequency components

respectively. The inverse DWT (IDWT) consists in upsampling the LP and HP coefficients

followed by applying the synthesis filters h and g (Figure 4.5b).

(a) Forward (b) Inverse

Figure 4.5: Discrete Wavelet Transform
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The polyphase matrix representation of a wavelet filter bank is given by:

P̃ (z) =

h̃e(z) h̃o(z)

g̃e(z) g̃o(z)

 (4.1)

P (z) =

he(z) ge(z)

ho(z) go(z)

 ,
where h̃e(z), h̃o(z), g̃e(z) and g̃o(z) denote the even and odd components of the analysis filters,

while he(z), ho(z), ge(z) and go(z) denote the even and odd components of the synthesis filters.

Since that any pair of complementary filters (h, g) can be factorized into a sequence of

triangular matrices –upper and lower– and a diagonal matrix [108]. The matrix P̃ (z) can be

factorized as:

P̃ (z) =

K 0

0 1/K

 m∏
i=1

1 s̃i(z)

0 1

 1 0

t̃i(z) 1

 (4.2)

where s̃i(z) and t̃i(z) are Laurent polynomials, m is the number of lifting steps and K is a

non-zero scaling factor.

The factorization of P̃ (z) allows a different way to decompose the signal –the lifting scheme–

as shown in Figure 4.6.
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(a) Forward
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X

-
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HP
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(b) Inverse

Figure 4.6: Lifting Scheme
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The decomposition process using the lifting scheme can be summarized in the following four

stages:

• Split: The signal X is split into odd component (Xo) and even component (Xe). This stage

is also called lazy wavelet.

• Predict: The even component is multiplied by the predict operator t̃(z) and added to the

original odd component to obtain the new odd component. This stage is also known as

dual lifting.

• Update: The new odd component is multiplied by the update operator s̃(z) and added

to the original even component to update the even component. This stage is also named

primal lifting.

• Scaling: Both odd and even components are multiplied by 1/K and K respectively.

In this scheme, the reconstruction process is performed by running the forward scheme back-

wards as shown in Figure ??. In the inverse scheme, the scaling factor is changed from K to

1/K and the signs of the coefficients in the Laurents polynomials s̃i(z) and t̃i(z) are flipped from

positive to negative.

Selecting the Wavelet Filter

In chapter 1 was established that regarding the wavelet filter, the performance is not strongly

correlated with the type of filter but the number of vanishing moments. In other words, it is

possible to achieve the best performance with any type of filter (e.g. Cohen-Daubechies-Feauveau,

Daubechies, etc.) by selecting the appropriate number vanishing moments for each type of filter.

In the lifting scheme, the filter CDF 2.2, which offers a high performance in terms of com-

pression ratio vs SNR (see section 2.4), involves two multiplications, which can be implemented

by using shift registers.

For the CDF 2.2 wavelet filter, the analysis low-pass filter has five coefficients while the

analysis high-pass filter has three coefficients as follows:

h̃(z) = −1
8z

−2 + 1
4z

−1 + 3
4z

0 + 1
4z

1 − 1
8z

2

g̃(z) = −1
2z

−2 + z−1 − 1
2z

0

(4.3)
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The corresponding polyphase matrix is:

P̃ (z) =

h̃e(z) h̃o(z)

g̃e(z) g̃o(z)



=


−1

8z
−1 + 3

4 −
1
8z

1
4 + 1

4z

−1
2z

−1 − 1
2 1

 .
(4.4)

This matrix can be factorized into two elementary matrices, as follows:

P̃ (z) =

1 1
4(1 + z)

0 1

 1 0

−1
2(1 + z−1) 1

 , (4.5)

Note that the lifting scheme will only include one predict and update step (i.e. m = 1 in

Equation 4.2).

This leads to the predict and update stages (in the time domain) being represented in the

following equations:

HP = x2i+1 − 1
2(x2i + x2i+2)

LP = x2i + 1
4(y2i+1 + y2i+3)

(4.6)

As mentioned, these multiplications can be implemented by using shift registers.

CDF 2.2 Lifting Wavelet architecture

We propose a computational architecture to calculate the inverse 1-D discrete wavelet trans-

form using a lifting-based scheme for the CDF 2.2 wavelet filter. As shown in Figure 4.7, the

architecture is divided into four main blocks: UPDATE, PREDICT, CONTROL and MEMORY.

The UPDATE and the PREDICT stages allow the reconstruction of both the odd and the

even samples respectively. The MERGE stage was carried out by controlling the addresses of the

dual-port memory while the results are being stored.

The control stage generates the addresses for the memory that contains the details and the

approximations which are processed by the update and predict stages. This stage also deals with

the control signals that allow to write and read the memory and the registers.
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Figure 4.7: Implementation Block Diagram

Throughput results

The design was implemented into a Virtex 5−XC5V FX70T FPGA. In order to verify the correct

operation of the architecture, both the detail and approximation coefficients were first loaded into

the memory using Memory Initialization Files (.MIF).

The reconstruction of both odd and even samples requires one clock cycle. Therefore, one

level of lifting transform, for an input data of size N , is computed in dN/2e clock cycles, two

levels require dN/2e + dN/4e cycles and so on. Thus, the number of clock cycles required to

perform L levels amounts to:⌈x
2

⌉
+
⌈x

4

⌉
+ . . .+

⌈ x
2L

⌉
≈

L∑
i=1

N

2i
= N(1− 0.5L) (4.7)

In addition, there are two clock cycles of latency to obtain the first odd sample and three

clock cycles to obtain the first even sample. Thus, our design requires 3L + N(1 − 0.5L) clock

cycles to compute L levels of 1D lifting scheme for data of size N .

4.5 Discussion

As far as we know, our Huffman decoder (Version 1) is the first computational architecture

published in the area of seismic data compression [22]. Other ones have been developed for
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Table 4.3: Percentage of representation for different number of quantization bits

Quantization Percentaje of
Seismic Shot bits CR SNR Representation

Shot 1

9 16.32 24.28 92.33 %
10 12.73 31.31 88.09%
11 9.68 37.11 80.37%
12 7.50 42.78 74.73%

Shot 2

9 15.86 26.05 91.61%
10 12.21 32.04 87.02%
11 9.67 37.71 78.75%
12 7.28 43.42 72.74%

Shot 3

9 12.38 25.99 87.27%
10 9.55 32.71 81.52%
11 7.64 39.11 75.70%
12 6.23 45.10 65.06%

images and video applications [105, 109]. Therefore, it is difficult to compare our results against

other Huffman decoder implemented on FPGA, since the nature of each dataset affects how it is

encoded. Besides, the FPGA technology is not necessarily the same from one work to another.

However, some estimations can be made if we take into account: the throughput, and the

logical resources used. A comparison of our Huffman decoder (Version 1) with some predecessors

works suggests that ours overcomes in terms of throughput, and the logical resources used [22].

The performance of the Huffman decoder depends on the compression ratio. Table 4.3 shows

the percentage of representation for a different number of quantization bits. Before encoding

the seismic data, a CFD 2.2 wavelet transform and a uniform quantization were applied to

each dataset. Note that as the number of quantization bits is increased, the percentage of

representation become smaller. For this reason, the decoding time is strongly related to the

compression ratio, because of the percentage of code-words that are decoding in parallel depends

on the compression ratio.

In regard to the transformation stage, we compare our design with other similar implementa-

tions. The comparisons take into account the number of clock cycles required to carry out L levels

of 1D lifting scheme. We also compared the resources used in the datapath, in terms of registers,

multipliers, and adders. Table 4.4 summarizes both hardware and clock cycles comparisons.

On the other hand, the software ISE reports that the maximum operating frequency for the

proposed architecture is 170MHz, so if we compare this operating frequency with a similar FPGA
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Table 4.4: Hardware and clock cycles comparisons

Resources used
Author Filter clock cycles Reg. Mult. Adders

Our design [102] 5/3 3L+N(1− 0.5L) 3 2 4
Lian [110] 5/3 4 + 2N(1− 0.5L) 14 4 8

Huang [111] 9/7 5 + 2N(1− 0.5L) 16 4 8
Liao [112] 9/7 N + L 10 8 8

implementation [113], our implementation is around 1.75 times faster.

Universidad Industrial de Santander 67



Chapter 5

Results

We tested the proposed strategy by implementing several decompression cores working in parallel.

The parallel implementation was carried out using two different decompression cores. The first

one consists of a uniform quantization and a Huffman coding. The second one is a transform-

based algorithm, which consists of the Lifting-Wavelet Transform, a uniform quantization and a

Huffman coding.

This chapter presents the speedup results in the transfer process between a CPU and an

FPGA, through the PCI Express bus. Finally, a summary and a discussion about these speedup

results is presented.

5.1 Parallel implementation

The platform used to test our strategy is shown in Figure 5.1. The system consists of a CPU

and the LXT ML507 Development Board, which includes a Virtex 5 XC5VFX70T FPGA. The

communication between CPU and FPGA was accomplished through PCIe bus.

Figure 5.2 shows the parallel architecture implemented, which has N decompression cores

working in parallel.

This architecture has an optimized memory system consisting of three memory banks. The

first bank is used to store the Huffman dictionary (MEMORY BANK 0 ). The second one is

used to store the compressed data (MEMORY BANK 1 ), and the third bank is used to store

the results of the decompression process (MEMORY BANK 2 ). Each bank has N dual port

memories with 4096 memory positions each.
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Figure 5.1: Co-processing platform

The ports of the memories are multiplexed and controlled by an access logic, which is respon-

sible for controlling read and write operations over the memories.

Connecting the CPU with the FPGA

The first step to achieve the CPU-FPGA communication is the implementation of a driver on

the CPU operating system, which is provided by Xilinx [114]. This driver must be modified

because the original version only allows to write the whole memory, but our strategy requires to

write in a particular memory position. To this end, an offset mechanism –called llseek [115]– was

implemented.

On the other hand, in the FPGA, we used the Endpoint Block for PCI Express provided

by Xilinx [116] as starting point. This module consists of a PCIe core and a storage system.

The PCIe core offers the hardware description required by the PCIe communication protocol to

transfer data via the PCIe bus. The storage system is used to store the data transferred.

In order to have direct access to the PCIe signals and increase the memory capacity, some

modifications on the original storage system were required. These modifications include a register

bank and connections to external memories (Figure 5.3). The register bank has 32 registers, which

are used to store the compression parameters needed during the decompression process. Such

parameters are sent by the CPU through the PCI bus.

5.2 Time schedule

Figure 5.4 shows the time schedule carried out to test the strategy. First, the Huffman dictionary

is sent and stored in all N the memories of MEMORY BANK 0. Then, each section of the
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Figure 5.2: Parallel architecture for the decompression process

compressed data is sent sequentially to each memory of MEMORY BANK 1. Note that once a

data section has been sent, the corresponding decompression core starts to operate.
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Figure 5.3: Communication module
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Figure 5.4: Time schedule carried out in the parallel architecture

5.3 Speedup Results

We compared the speedup results between two different implementations. The first one is a

compression-decompression algorithm without transformation stage (i.e. quantization and coding

stages), which aims to reduce the decompression time by removing the transformation stage. The

second one is a transform-based algorithm, which aim to improve the compression ratio by using

the transformation stage.

Both implementations use our Huffman decoder version 2.1 to speedup the decoding process
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Figure 5.5: Speedup results

(see section 4.2). On the other hand, the transform-based algorithm uses our CDF 2.2 Lifting

Wavelet architecture (see section 4.4) to implement the transformation stage.

Figure 5.5 shows the speedup results of both implementations, for different values of com-

pression ratio.

The speedup was calculated as follows:

speed up =
ttrad
t1 + t2

, (5.1)
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where t1 is the compressed data transfer time, t2 is the decompression time and ttrad is the

traditional transfer time (tt).

As expected, the speedup improves as the number of decompression cores increases. As

mentioned, the Huffman decoder performance depends on the compression ratio (see section 4.3).

Therefore, the speedup improves as the compression radio increases, since the increase of the

compression ratio reduces both the transfer and decompression times.

Including a transformation stage

The inclusion of a transformation improves the compression ratio (see chapter 2), which improves

the Huffman decoder performance (see chapter 4). However, the inclusion of an inverse transfor-

mation stage could increase the decompression time, which compromises the overall performance.

Our CDF 2.2 Lifting Wavelet architecture [102] allowed us to implement the transform-based

algorithm in a pipeline fashion. In such an implementation, the processing time is equal to the

longest module in the decompression process. As the CDF 2.2 Lifting Wavelet architecture has

a throughput of 2 datum per clock cycle and the inverse quantization stage has a throughput of

1 datum per clock cycle, the decompression time is governed by the decoding time. Therefore,

the quantization and 1D-Transformation stages did not increase the decompression time, which

explains the improved performance.

5.4 Discussion

Previous works have failed to speed up the transfer process by using compression strategies [20, 25]

because of the trade-off between compression ratio and decompression time. We have imple-

mented a optimized parallel architecture to face this trade-off.

The decompression process was implemented in a pipeline fashion, allowing the inclusion of

the transformation stage without increasing the decompression time, i.e. decompression time is

governed by the stage that takes more clock cycles.

In this case, the decompression time is governed by the decoding process. Therefore, the

strategy depends on the compression ratio. As the compression ratio increases, the achieved

speedup also increases.

Our results shows that the proposed strategy achieves a poor performance for a number of

quantification bits above 11 (Figure 5.5). There are two principal reasons for this poor perfor-
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Discussion

mance.

With this number of bits of quantification, the percentage of code-words that can be decoded

in parallel is reduced (see Table 4.3 in Chapter 4). In this case, the performance can be improved

by extending the computational architecture to decode more code-words in parallel. This strategy

increases the amount of computational resources and could decrease the operating frequency.

A second reason is due to the proposed strategy is dependent on the amount data that are

transferred. As the amount of the decompressed data increases the performance is improved

because ttrad, in Equation 5.1, is proportional to the amount of data. The results showed in Fig-

ure 5.5 were obtained by storing the compressed data at the maximum FPGA memory capacity.

The dotted line in Figure 5.6 estimates, by a spline interpolation, the speed up for a larger

FPGA. Note that with 24 decompression cores, it will be achieved a speed up of 4×. Our results

are inconclusive regarding the maximum number of cores that can operating currently into the

parallel implementation.

Speed up with transform.
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Figure 5.6: Estimated speed up for a compression ratio of 7.51 (12 bits of quantification)
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Chapter 6

Conclusions

For intensive computing algorithms, heterogeneous clusters have demonstrated to be more effi-

cient than homogeneous ones, when the algorithms can take advantage of the computing capa-

bility of parallel co-processors [117].

The implementation of these applications on heterogeneous clusters still have computational

challenges. The I/O operations between main memory and node memory are one of the most

limiting factors in the overall performance in these heterogeneous clusters. This I/O bottleneck

is directly related to the well-known memory wall problem, which has been well studied [15, 118,

119] and addressed from many points of view [81, 83, 84].

This bottleneck has drawn attention over the last years because the overall performance in the

heterogeneous clusters is mainly determined by the performance of these I/O operations rather

than the processing speed of the computational co-processors [16, 17, 120].

We propose a strategy based on an optimized compression/decompression process to reduce

the impact of the I/O bottleneck in a heterogeneous cluster. The strategy involves to compress

the seismic data on-site while they are being acquired. The transfer operations from disk to node

memory are done by using the compressed data to reduce both the load time from the disk and

the transfer time through the PCIe bus.

The implementation of the strategy in a HPC heterogeneous cluster faced us against some

challenges. It was required to propose a compression/decompression strategy that offered a high

performance in terms of both compression ratio and decompression time. However, there is a

trade-off between these two variables.

A key aspect to implement the decoding process into a GPU-based cluster was the use of

a strategy that uses packets with headers. This strategy seeks to force the alignment of the
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code words at packet boundaries, allowing us to parallelize the decoding process. However, the

use of packets with headers reduces the compression ratio, which also reduces the throughput

of the decoding process (see Chapter 3). Additionally, processing the code-words at bit level

generates a time overhead in the GPU, because this architecture is optimized to work at single

and double floating-point format. Thus, the obtained throughput was not enough to fulfill the

time constrains established in the proposed strategy.

The GPU implementation allowed us to identify the necessity of a custom architecture to op-

timize the decompression process and its specific requirements. This computational architecture

must include:

• A custom memory system to save the encoded data that optimize the storing of the string

of compressed data without affecting the compression ratio.

• A custom bank registers that provides a fast storing of the temporal data required in the

decompression process.

• Hardwired instructions to perform the decoding process at bit level.

• A pipeline fashion design to improve the throughput.

This custom architecture is mainly based on our Huffman decoder version 2.1 (see section 4.2)

and our CDF 2.2 Lifting Wavelet architecture (see section 4.4). The optimized architecture allows

a reduction in the number of clock cycles required to decompress a single sample. This reduction

depends on the compression ratio. Our architecture improves the throughput several ten-folds

when it is compared with our optimized GPU implementation or with similar research works (see

section 4.3).

As mentioned, the performance of the compression strategy depends on the compression ratio.

As floating-point format applications require lossy compression methods to reach ratios greater

than 2:1 [37], our strategy is only feasible for those floating-point format applications that allow

lossy compression.

The results show that our strategy requires compressing the seismic data with 9 bits of quan-

tification to achieve a speedup above of 9×, for a parallel implementation with 11 decompression

cores (Figure 5.5a). In this case, a compression ratio of 16.32 is achieved for this number of bits

of quantification.
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The strategy requires compressing the seismic data with 12 bits of quantification to double

the performance of the transfer operations, in an implementation with 11 decompression cores

(Figure 5.5d). In this case, a compression ratio of 7.51 is achieved for this number of bits of

quantification.

As expected, the proposed strategy is limited by the I/O bottleneck itself, which means that

the number of the decompression cores working concurrently is limited by the amount of seismic

data that can be sent to the FPGA. Our results are inconclusive regarding the maximum number

of cores that can operating currently into the parallel implementation.

The transformation stage was implemented by using the CDF 2.2 biorthogonal filter to reduce

the amount of logical resources and improve the computational performance. Each transformation

core offers a throughput of two samples per clock cycle. On the other hand, the decoding stage

needs 10 clock cycles, in average, to decode a single sample. As these stages were implemented

in pipeline, the transformation stage stays idle for 8 clock cycles, in average, because of the

difference between these throughputs. In this sense, the inclusion of another type of filter can

increase the compression ratio, at the same level of SNR (see section 2.4) without increasing the

decompression time. This inclusion can improve the overall performance in the decompression

strategy.

Implications and impact

The next generation of HPC nodes will include application-specific integrated circuits (ASICs) be-

cause of power and cooling constraints [121, 122, 123]. Our compression/decompression strategy

can be implemented into these ASIC-based clusters by implementing the proposed architecture

into the ASIC.

As an ASIC implementation has a higher speed than an FPGA implementation [124], the

strategy in these ASIC-based clusters can offer a higher performance than in a FPGA-based

cluster.

Towards the use of the compressed data directly

We use the best variable length coding scheme among the methods that use code-words of integer

length (see section 1.1), which allows us to achieve a compression ratio very close to the optimum

at a relatively low computational cost (see section 1.4). However, the compressed sequence, i.e.
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the bit-stream with the code-words, is useful only for reducing the size of the data, but not for

processing directly.

To find a compression strategy that allows processing the compressed data directly can achieve

significant savings in I/O efforts and computational cost. This compression strategy must not be

based on an entropy coding, because this compression scheme offers a bit-stream that does not

have a mathematical relationship with the original data.

The use of a compression algorithm such as Matching Pursuit [125], which compress the data

by a mathematical approximation could be an option in this sense.

Future Work

As the overall performance in the heterogeneous clusters is mainly determined by the performance

of the I/O operations rather than the processing speed of the computational co-processors [16, 17,

120], our strategy can improve the cluster’s overall performance because it reduces the impact of

the I/O bottleneck. However, our results are inconclusive regarding the impact of the proposed

strategy in the cluster’s overall performance.

We are interested to test the impact of the proposed strategy in the overall performance in

an FPGA-based cluster for a specific application, such as seismic migration. In this sense, it

is required to select and implement a specific seismic migration (e.g. Reverse Time Migration)

in an FPGA-based cluster and test the overall performance with and without the compression

strategy.

On the other hand, we are interested in exploring the possibility to develop a seismic migration

by using the compressed data directly. A seismic migration on a compressed domain raises several

questions for further research: What is it the most appropriate compression algorithm?, Which

seismic migration is feasible to develop in a compressed domain?, Is it required to develop a new

migration operator?
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Appendix A: Seismic data

The data sets used in this dissertation were provided by Ecopetrol Oil Company [126] that is a

sponsor of this research project.

We used 12 seismic shots, where each shot is a collection of 96 seismic traces, having 3584 sam-

ples each. These seismic traces are in common source, i.e. the seismic data comes from a single

shot and 96 receivers. The common source is the usually way as the seismic data are collected.

These seismic shots are part a marine seismic survey on the Caribbean coast of Colombia.

The survey was carried out by Geosource Inc. Table 6.1 summarizes some technical details of

this survey.

Table 6.1: Summary of technical details of the Marine Survey

Number of total shots 3437
Number of receivers (hydrophones) 96

Length of the survey 86 Km
Offset Rank 225m – 2600m
Field Filters 8 Hz a 18db/oct

128 Hz a 72db/oct
Acquisition time 7s

∆t (sampling period) 2ms
Source depth 9.1m

Receiver depth 15m

Figure 6.1 shows sections of four of these seismic shots. The vertical direction corresponds to

the recorded curves from the sensors, in this case, hydrophones. Note that, the positive area of

the curve is shaded black, while the negative side is left unfilled. This format is commonly used

to enhance the visual display [34]. As shown in Figure 6.2, the relevant geophysical information
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is concentrated at low frequencies.
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Figure 6.1: Seismic traces of different shots
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(c) Amplitude spectrum - Shot 4
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Figure 6.2: Frequency Amplitude and Phase spectrum
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