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Glossary 

 

AFS: Agroforestry systems. 

AGB: Above-ground biomass. 

CC: Canopy cover. 

CHM: Canopy height model. 

DSM: Digital surface model. 

DTM: Digital terrain model. 

D_mid: Density of midstory plants. 

D_over: Density of trees in overstory. 

H_mid: Mean height of plants in the midstory. 

H_over: Mean height of trees in overstory. 

H_sd_over: Standard deviation of heights in overstory. 

LAI: Leaf area index. 

Pcoa1: 1st principal coordinate axis, based on ordination with bird composition. 

Pcoa2: 2nd principal coordinate axis, based on ordination with bird composition. 

SfM point-clouds: Set of points with coordinates in the three axes (X, Y and Z), which represent 

the surface of terrain. 

UAV: Unmanned Aerial Vehicle. 
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Resumen 

 

Título: Estimación de la estructura forestal en agroforestales Andinos usando teledetección 3D 

con UAV * 

Autor: Sergio Andrés Bolívar Santamaría** 

Palabras Clave: Agroforestales, drones, teledetección, estructura del dosel, variables esenciales 

de la biodiversidad. 

 

Descripción: Los sistemas agroforestales (AFS) son de gran importancia para la conservación de 

la biodiversidad fuera de las áreas protegidas. La composición de las plantas de cultivo y de sombra 

en los AFS proporciona hábitats estructuralmente complejos y provee alimentos para muchas 

especies. Asimismo, la estructura del dosel es considerada una variable esencial de la 

biodiversidad, pero sólo recientemente puede evaluarse con vehículos aéreos no tripulados (UAV) 

utilizando nubes de puntos 3D. A pesar de la importancia de los AFS para la conservación, la 

estructura de su dosel no ha sido evaluada cuantitativamente de manera sistemática, y faltan 

estudios que traten de analizar la relación entre la estructura del dosel en los AFS y las variables 

derivadas de las nubes 3D en la región andina.  

Aquí muestro cómo pueden predecirse seis importantes variables de la estructura del dosel 

a través de un gradiente de complejidad desde AFS con cacao y café hasta bosque a partir de las 

características extraídas de las nubes de puntos 3D utilizando regresiones lineales múltiples. Para 

el índice de área foliar el mejor modelo obtuvo un R² de 0.82 y RMSE relativo = 24%, para la 

cobertura del dosel un R² de 0.81 y RMSE relativo = 13%, para la biomasa aérea R² de 0.81 y 

RMSE relativo = 10%, la densidad de los árboles de sombra fue predicha con un R² de 0.66 y 

RMSE relativo = 34%, la altura media y la desviación estándar de altura en el dosel se predijeron 

con un R² de 0.82 y 0.79 respectivamente, y RMSE relativo del 18% para ambas. El enfoque que 

se muestra en este estudio puede ayudar a hacer una caracterización precisa de la estructura del 

dosel usando UAV, lo cual podría ser utilizado para identificar zonas prioritarias de conservación 

en los paisajes agrícolas. 

 

 
* Trabajo de Grado 

** Facultad de Ciencias. Escuela de Biología. Maestría en Biología. Director: Björn Reu, Geoecólogo- PhD en 

Ciencias Naturales. 
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Abstract 

 

Title: Estimation of forest stand structure in Andean (agro)forests using 3D UAV remote sensing* 

Author: Sergio Andrés Bolívar Santamaría** 

Key Words: Agroforestry, drone, remote sensing, canopy structure, essential biodiversity 

variables. 

 

Description: Agroforestry systems (AFS) are of great importance for biodiversity conservation 

outside protected areas. The composition of crop and shade plants in AFS provides structurally 

complex habitats and provides food for many species. Also, canopy structure is considered an 

essential variable of biodiversity, but only recently it can be assessed with unmanned aerial 

vehicles (UAVs) using 3D point clouds. Despite the importance of AFS for biodiversity 

conservation, canopy structure has not been quantitatively evaluated in a systematic way, and 

studies that attempt to analyze the relationship between AFS canopy structure and variables 

derived from 3D clouds in the Andean region are lacking.  

Here, I show how six important variables of canopy structure can be predicted across a 

complexity gradient from AFS with cocoa and coffee to a natural forest from the characteristics 

extracted from the 3D point clouds using multiple linear regression. For leaf area index the best 

model obtained an R² of 0.82 with a relative RMSE = 24%, for canopy cover an R² of 0.81 and 

relative RMSE = 13%, for above-ground biomass an R² of 0. 81 and relative RMSE = 10%, the 

density of shade trees was predicted with an R² of 0.66 and relative RMSE = 34%, the mean height 

and the standard deviation of height in the canopy were predicted with an R² of 0.82 and 0.79 

respectively, and relative RMSE of 18% for both. The approach shown in this study can help make 

an accurate characterization of the canopy structure using UAVs, which can be used to identify 

priority conservation areas in agricultural landscapes. 

 

 

 
*   Degree Work 
** Faculty of Sciences. School of Biology. Master’s in biology. Director: Björn Reu, Geoecologist - PhD in Natural 

Sciences. 
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Introduction 

Agroforestry systems (AFS) are a land-use type where crops are managed with shade trees 

and grazing animals (Nair, 1985). In the Andean region AFS are mainly composed of coffee, cacao 

and a mixture of crops under the shade of trees, which increase the complexity of structure as 

compared with monocultures. Therefore, AFS have the ability to conserve habitat and provide food 

for different species and have been recognized as refuges for biodiversity in the tropics (Bhagwat 

et al., 2008)⁠. AFS provide a series of benefits that influence the ecosystem at different spatial scales 

and dimensions (Jose, 2009)⁠; e.g. demonstrating a positive impact on nutrient cycling and the 

presence of edaphic fauna (Petit-Aldana et al., 2019)⁠. In addition, AFS function as corridors for 

mammals (Williams-Guillén et al., 2006)⁠, contributing to improved connectivity at the landscape 

scale (Asare et al., 2014; Schroth & Harvey, 2007)⁠. Specifically, the canopy layer of AFS promotes 

the regulation of microclimate (Siles et al., 2010; Jiménez-Pérez et al., 2019) and the presence of 

organisms that facilitate nutrient cycling, pollination and pest control, which can increase 

productivity at the farm level (Maas et al., 2013)⁠. For this reason, it has been suggested that 

implementing AFS in agricultural land around protected areas can help to conserve biodiversity 

more effectively (Bhagwat et al., 2008; Swallow et al., 2006). AFS also represents a great 

opportunity to mitigate the effects of climate change because of their carbon sequestration potential 

(Nair et al., 2010), as well as social benefits, such as poverty reduction and socio-ecological 

resilience, because they provide food and multiple economic benefits to farmers (Waldron et al., 

2017; Garrity, 2006). The complex structure of AFS and their heterogeneous composition have 

favored the presence of migratory birds (Díaz-Bohórquez et al., 2014), the abundance of dung 
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beetles (Neita & Escobar, 2012)⁠ and the richness of amphibians in Colombian agroecosystems 

(Brüning et al., 2018)⁠. 

In the Colombian Andes, AFS consisted mainly of cacao and coffee crops, under a canopy 

composed of the genera Inga spp., Erythrina spp., Ficus spp., Cordia spp., Musa spp. and Citrus 

spp. (Bosselmann et al., 2009; Orozco et al., 2012)⁠. These species have shown to have a high 

carbon fixation capacity (Albrecht & Kandji, 2003; Hernández-Vasquez et al., 2012)⁠, allowing to 

store up to 87.37 Mg ha-1 in above-ground biomass (Orozco et al., 2012)⁠.  Canopy structure of 

AFS depends largely on the type of management at the farm level (Deheuvels et al., 2012), for 

example, crop management with low intensity will allow a higher presence of woody plants. In 

AFS, shade trees represent the largest amount of above-ground biomass and this is related to the 

volume they occupy (Proulx et al., 2015). For this reason, a valuation of their potential as a carbon 

sink and their positive effect on habitat conservation can serve to include them into frameworks 

for payments for environmental services (Bhagwat et al., 2008)⁠.  

Canopy structure may serve as an indicator of the complexity of the habitat. The 

characterization of vertical and horizontal vegetation structure has been proposed as an 

approximation of the heterogeneity and complexity of the habitat (Rutten et al., 2015)⁠. Moreover, 

habitat structure has been defined as one of the Essential Biodiversity Variables (EBV), which are 

measurements required for study, monitoring and management of biodiversity change (Pereira et 

al., 2013). The monitoring of habitat structure as an EBV is useful to know the extent of forest or 

land-use types that provide carbon storage, such as AFS. Ground-based methods such as Terrestrial 

Laser Scanning (TLS, Seidel et al., 2011), distance-based measurements and hemispheric canopy 

images have allowed the characterization of tree density (Mitchell, 2010)⁠, leaf area index, canopy 
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cover (Guevara-Escobar et al., 2005)⁠ and above-ground biomass (Segura et al., 2006); however, 

field measurements still require a great deal of time, money and prior knowledge.  

The multispectral information captured by satellites allows for estimating biophysical 

parameters of vegetation such as above-ground biomass (Hall et al., 2006; Kashung et al., 2018), 

foliar cover (Korhonen et al., 2015; Ma et al., 2017) and the fraction of absorbed photosynthetically 

active radiation (fAPAR) (Li & Guo, 2016). Satellite information is limited in estimating canopy 

structure at fines scales because of their coarse resolution (Wulder et al., 2004) and the constant 

presence of clouds in the tropics. 

In order to assess the canopy structure of AFS at a fine scale it is important to achieve a 

higher spatial and temporal resolution than provided by satellite sensors (Günlü & Kadiogullari, 

2018). The development of new remote sensing (RS) technologies, such as unmanned aerial 

vehicles (UAVs) in recent decades has succeeded in reducing costs for the characterization of 

canopy structure in a more frequent way (Koh & Wich, 2012; Wich & Koh, 2018). Nowadays, 

UAVs have become an efficient alternative to perform monitoring of canopy structure at a more 

detailed level (Paneque-Gálvez et al., 2014). However, there is still no standard method for a 

simple and rapid assessment and monitoring of AFS and their canopy structure as a biodiversity 

indicator. Here, I suggest to use the concept of canopy space-filling proposed by Prestzch (2014) 

to understand the amount of space occupied by tree components (Juchheim et al., 2017). According 

to Pretzsch (2014), the space-filling can be summarized in two main characteristics, intensity, and 

scale. The intensity of space-filling refers to the occupation of space in two dimensions, and it is 

related to the density of trees and foliar cover. On the other hand, the scale of space-filling is 

related to height distribution of the trees. Greater variability in the canopy height presupposes a 

greater number of microhabitats for the different species that inhabit the canopy.  
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Information obtained from the SfM point-clouds has shown to be useful for the three-

dimensional characterization (or space-filling) of the canopy at local scales (Wich & Koh, 2018; 

Iglhaut et al., 2019). Images captured from UAVs with low-cost RGB cameras can be used to 

generate 3D point-clouds using the Structure from Motion (SfM) photogrammetric range imaging 

technique (Ullman, 1979). Recently, many open-source or proprietary tools such as Ecosynth, 

Point Cloud Library (PCL), and Agisoft Metashape, have been developed for the generation, 

manipulation, and analysis of SfM-derived 3D point-clouds. With these tools the reconstruction of 

dense point-clouds (between 27 and 117 points per m²) and estimation of the volume they occupy 

has become possible (Chang et al., 2018)⁠. 

Ecological and evolutionary processes in animal assemblages can be affected by the 

available area and habitat heterogeneity. The species-area relationship (SAR), for example, states 

that the number of species increases with the surface area (Lomolino, 2000)⁠. In terrestrial 

ecosystems, at regional scales (i.e. islands, landscapes) surface area has been identified as one of 

the factors which explains biodiversity (Krauss et al., 2004; Steffan-Dewenter, 2003)⁠. While at 

local scale (i.e. farms, plots) heterogeneity in canopy structure has been shown to be an influential  

factor on microhabitat generation, for beetles (Gatti et al., 2018; Parisi et al., 2019)⁠, amphibians 

and reptiles (Deheuvels et al., 2014; Wanger et al., 2009). 

In AFS, high tree density or also high intensity of space-filling has been shown to have a 

positive impact on the abundance of earthworms and other macroinvertebrates (Pauli et al., 2009; 

Pauli et al., 2011). While, cover and canopy height have also been associated with increased 

presence of spiders (Stenchly et al., 2012), birds and bats (Bakermans et al., 2012; Harvey & 

González Villalobos, 2007)⁠. SfM point-clouds accompanied by field sampling have been useful 

for estimating structural variables that serve as biodiversity indicators (Saarinen et al., 2018)⁠. 
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These include: mean tree height (Jayathunga et al., 2019)⁠, basal area, stem volume (Puliti et al., 

2015)⁠, crown diameter (Panagiotidis et al., 2017)⁠ and canopy gaps (Bagaram et al., 2018)⁠. In 

addition, SfM point-clouds data has been used to estimate above-ground biomass and the space-

filling for monocultures (Miller et al., 2017) temperate and tropical forests (Kachamba et al., 

2016). Characteristics derived from SfM point-clouds have been related to the abundance of 

frugivorous birds in recovering forests (Zahawi et al., 2015). However, there is a lack of studies 

looking at AFS and forest that relate variables derived from SfM point-clouds and canopy structure 

characterized on the ground (Guimarães et al., 2020).  

This study aims to estimate AFS canopy structure using variables generated from SfM-

point clouds, both related to the space-filling concept. As an application for biodiversity 

assessments, it will also explore the relationship between space-filling by AFS and the diversity 

and species composition of birds reported for the study area. I hypothesize that it is possible to 

predict variables of canopy structure, such as tree height and density of shade trees in AFS using 

SfM-derived variables. 
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1. Objectives 

 

1.1.    Main objective 

To estimate forest canopy structure along a management intensity gradient from low shade 

agroforests with cacao and coffee to natural forest using drone remote sensing 

 

1.2.   Specific objectives 

● On ground characterization of forest canopy structure along a management 

intensity gradient from agroforests with cacao and coffee to near natural forest. 

● Quantification of the space-filling of AFS and natural forests using SfM point-

clouds obtained with drone images. 

● Evaluation of the relationship between (agro)forest canopy structure and space-

filling. 
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2. Methods 

2.1. Study area 

 

The study area is a micro-watershed (called Las Cruces) which is located in the northern 

part of the Colombian Andes belonging to the buffer zone of Serranía de los Yariguíes National 

Natural Park (SYNNP) in Santander. Las Cruces encompasses an extension of 5779 ha, has a mean 

temperature of 22.5 °C; altitudes range between 570 - 2650 m.a.s.l. and annual precipitations 

between 1500-1700 mm. This area is very important for the water supply and food production of 

the region, and at landscape level it exhibits an agricultural matrix which is mainly composed by 

near natural forests, cacao and coffee crops cultivated under shade, as well as monocultures, and 

some cattle pastures (Figure 1.). Las Cruces was selected as one of ten study sites of the GEF-

Satoyama project across the tropics around the world. Las Cruces has been studied between 2016 

and 2019; biological, social, and socio-economic assessments were carried out among 12 farms 

with different levels of agroforest management intensity. Biodiversity assessments were carried 

out for birds, using a point counts methodology; beetles and ants, using pitfalls and direct captures; 

and terrestrial vertebrates, studied through camera traps. 
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Figure 1  

Land cover classification of the study area. 

 

Note. This map is from Bolívar & Reu (under revision) showing the location of field plots and 

sites. Canopy structure plots are shown as + and x, while bird biodiversity census sites are shown 

as circles. More detailed orthoimages from each site can be found in the appendix. For the 

evaluator: Three forest sites lack RS information, which could not be acquired due to the 

prohibition to visit the study area during the COVID-19 pandemic. 
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2.2. Sampling design and data acquisition 

 

I carried out the characterization of the canopy structure in 36 plots located in  12 farms 

along a gradient of management intensity from intact forest (part of SYNNP, 4 plots) to cacao (24 

plots) and coffee crops (8 plots) with low shade (Figure 2.). I characterized the canopy structure 

from April to October 2018, taking measurements from crop plants and shade trees using the point 

centered quarter method (PCQM) (Mitchell, 2010). My plots consist of a rearrangement of point 

locations in PCQM from a linear transect to a rectangular pattern. This was thought to achieve a 

high representation of structural heterogeneity inside each plot area and farm. I allocated 9 points 

every 15m between them inside the crops, getting a 30m x 30m plot (Figure 3a.). Using the 

waypoint averaging function in Garmin Oregon 650, I measured the coordinates of the central 

point (remeasuring it after 90 min 3 times using waypoint averaging) and corners points (once), in  

order to achieve the best accuracy of plot position possible. In contrast PCQM in the forest was 

carried out in two parallel transects with 4 points each and the coordinates of these plots’ location 

were taken based on the average of each of the corner points (Figure 3b.). In each point I divided 

the space in four quadrants for measuring distances until the nearest neighbor crop plant (in the 

forest plots this layer is represented by trees lower than 10 m) and the nearest neighbor shade tree, 

without resampling. In addition, I measured the diameter at breast height (D130 > 2.4 cm) for shade 

trees (or D20 for coffee and D30 for cacao) and measured the height of each sampled plant using a 

measuring tape or the Forestry Pro Ⅱ laser rangefinder/hypsometer in the case of shade trees. The 

measurements using this distance-based method allowed us to estimate tree density, mean height, 

and mean basal area per plot. 

Furthermore, on each AFS plot, I took four images using hemispherical canopy 
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photography, while three pictures were taken in the forest plots  (because the plot design is 

different in the forest) using a Canon PowerShot G6 with a fish-eye lens (182°, RAYNOX DCR-

CF187 PRO). The hemispherical pictures were taken at 1m of height and at twilight, avoiding the 

direct sunlight to achieve a good contrast between the canopy and the sky. The posterior analysis 

and estimation of leaf area index (LAI) and canopy cover (CC) were carried out using Gap Light 

Analyzer (GLA). 

 

Figure 2  

Land-use types considered in this study. 

 

Note. a) Near intact forest, b) agroforestry system with cacao, c) agroforestry systems with coffee. 
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Figure 3  

Plot design for on-ground characterization of canopy structure in AFS. 

 

Note. (a) and forests (b). Each sampling location for the Point-Centered-Quarter Method (PCQM) 

is shown with an arrow cross. Circles show the positions for hemispherical photography 

acquisition.  

 

2.2.1. On-ground variables estimation 

  

I estimated the density of crop and shade trees (number of individuals per plot area, D_mid 

& D_over, respectively) based on the average distance from the nearest neighbor using PCQM. I 

then added correction factors for estimated densities on each canopy layer; these were determined 

by the number of quadrants without sample (Mitchell, 2010; Warde & Petranka, 1981). Using the 

diameter (D20 , D30, D130) I calculated the basal area (BA) of each plant as radius2*π, then I 
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calculated the sum of BA and the mean height per plot. I used Gap Light Analyzer (GLA) software 

to estimate the LAI and CC for each of the hemispheric pictures taken on the plots, after this, I 

calculated the plot average. In addition, using allometric equations, I estimated above-ground 

biomass (AGB) for coffee (Segura et al., 2006), cacao, citrus fruits, and Musaceae plants 

(Somarriba et al., 2013) as well as shade trees (Alvarez et al., 2012). Due to the lack of species 

information in forest plots, for their allometric equations I used the average of wood density 

registered in a permanent forest plot from Alvarez et al. (2012) in San Vicente de Chucurí, which 

is close to the study area. With this I estimated the average of AGB for crop plants and shade trees 

and multiplied it by the number of individuals in each layer, the sum of these values was considered 

the total AGB estimated with the ground sampling data (Table 1.). We used Principal Component 

Analysis (PCA) to assess the main gradient in canopy structure across the plots of different land-

use types. 
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Note. In forest plots D_mid denotes the number of trees per plot with a height < 10m, while D_over 

denotes the number of trees over 10m. 

 

2.3. Remote sensing data and processing 

 

2.3.1. Capture of UAV photographs 

 

The aerial images were collected with a fixed wing drone “UAV Mapper” produced by 

TuffWing LLC, which has a flight autonomy of 45 minutes and the capacity to cover an area of 

approximately 100 Ha. The UAV Mapper also has an Inertial Measurement Unit (IMU) that allows 

Table 1  

Canopy structure variables estimated from on-ground measurements. 
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a basic stabilization during the flight to achieve zenital images. The UAV Mapper was equipped 

with a Canon S110 camera to acquire high resolution (.raw) RGB images, using a modified 

intervalometer script (Canon Hack Development Kit, CHDK). The Canon S110 has 12.1 MP of 

resolution, the focal length used to take pictures was 24 mm, while the aperture and ISO have 

automatic adjustment. 

Nine autonomous flights were designed in Mission Planner software (v1.3.11) (Oborne, 

retrieved from http://planner.ardupilot.com/) and carried out considering the geography of each 

site and an overlap over 90% between images in agreement with Frey et al. (2018). This allowed 

to cover all farms and forest area where canopy structure has been measured. An informed consent 

was signed by each farm owner giving permission to take the aerial photographs. Using a PC and 

the telemetry antenna as ground station, a team composed of observer and pilot (previously 

certificated by APD, official page: https://apd.ong/) executed and monitored the flight plans with 

Mission Planner (MP). The photographs were taken on a clear day, early in the morning or  around 

noon to minimize the effects of wind and shadows. In order to improve the accuracy of the location 

of 3D point-clouds we took coordinates with waypoint average function to use them as Ground 

Control Points (GCPs) along the photographed area. We geotagged each photograph with correct 

coordinates using the Geo tagging tool in Mission Planner. 

 

2.3.2. 3D point cloud generation 

 

Because of the high demand of data processing, all analyses were conducted in a Dell 

Precision tower 5810 Intel® Xeon® Processor E5-1620 v3 with a NVIDIA® Quadro®. I used 

Agisoft Metashape Professional (v1.6.2) (Agisoft LLC, St. Petersburg, Russia, 2019) for the 

http://planner.ardupilot.com/
https://apd.ong/
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reconstruction of orthomosaics (union of many photographs that are geometrically corrected) and 

SfM point-clouds (set of points in space, which have coordinates in the three axes, x, y and z) with 

the aerial images. In Agisoft, I defined high accuracy in the alignment of the photographs and 

thereafter I built the SfM point-clouds with a high level of quality. Based on SfM point-clouds I 

reconstructed the Digital Surface Model (DSM, raster which includes all objects over the earth’s 

surface). Finally, I exported SfM point-clouds in .las format and rasters with a Ground Sampling 

Distance (GSD) of 7 cm/pixel (i.e. orthomosaics and DSM) as .tiff files for further analysis. 

 

2.4. Data analyses 

 

2.4.1. Feature extraction from 3D point clouds 

 

 In summary, I generated 54 variables as proxies of the space-filling for 62 plots 

characterized on ground. However, 26 plots were not included in the analysis (presented with x in 

Figure 1.), if plantations were renewed (16 plots) or if aerial images in forest (over 10 plots) could 

not be obtained because of technical limitations. In order to predict the canopy structure variables 

obtained with on ground information (i.e. LAI, CC, AGB, height or density of trees) using 3D 

variables extracted from SfM point-cloud of each plot (related to space-filling concept). I handled 

and processed all the information exported by Agisoft using the R packages "raster", "lidR", 

"rgdal", "glcm", "geometry". First, I used the "lidR'' package in R to crop the .las files using a 20 

m radius circumference around the centroid of each plot (Figure 4.). I manually removed the 

outliers points in Agisoft Metashape Professional. Then, I classified the lowest points on each plot 

using a progressive morphological filter (pmf function of "lidR'' package) and made a spatial 
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interpolation using delaunay triangulation algorithm to obtain the Digital Terrain Model (DTM, 

bare ground surface without vegetation). Afterwards, I subtracted each DTM to their specific 3D 

point cloud using the lasnormalize() function and then, I deleted points below 0 meters, in order 

to obtain a clean Canopy Height Model (CHM, Height of vegetation on each pixel, Figure 5.). 

Using the CHM of each plot with an aggregated GSD of 30 cm/pixel, I calculated the mean, 

standard deviation, the skewness, maximum value and entropy of heights, I calculated the Vertical 

Complexity Index (VCI, sd of height/mean of height), Vertical Distribution Ratio (VDR, maximum 

height -median of height/maximum height), the percentiles of heights every 10% (Q10, Q20… 

Q90), density of heights over quartiles (denq25, denq50, denq75, denq90), CHM surface area 

using convex hull of point clouds (area_chull), volume based on voxels (v_voxels, Frey et al., 

2018) as 3D predictors. Textural features as homogeneity, contrast and dissimilarity, proposed by 

Haralick et al. (1973) were also estimated based on CHM (i.e. height raster) using the “glcm” 

package in R. Finally, I calculated the proportion of area cover by pixels over each height every 2 

m (i.e. s2 = relative area cover by pixels over 2 m, s4, s6, s8… s32) and, I extracted the values of 

probability distribution of heights between 0-1.25 m, 1.25-4.5m and higher than 4.5 m (Table 2.).  
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Figure 4  

RGB zenithal view of point clouds from each of 36 plots used in this study. 

 

Note. The radius of each circle is 20 meters. 
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Figure 5  

Canopy height models (CHM) of 36 plots used in this study. 
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Note. The height distribution of grid-cells of each CHM is shown as a violin. The color of the 

violins represents land-use type: purple for AFS with coffee, orange for AFS with cacao and 

green for forest plots. Black areas have no information. 
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Table 2  

3D variables derived from canopy height models of 36 plots used in this study. 

 

 

2.4.2. Canopy structure vs 3D variables 

 

I used linear models (eq. 1) to predict LAI, CC, AGB, D_over, H_over and H_sd_over from 

3D variables. To do so, I (1) calculated the Variance Inflation Factor (VIF) to exclude the highly 

correlated 3D variables, then (2) using the selected variables and the category of land-use type I 

constructed multiple linear regression models for each dependent variable, and (3) I ran a stepwise 
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selection of the variables to select the best model based on the Akaike Information Criterion (AIC). 

Finally, I removed from models, predictor the variables that were not statistically significant for 

them. To test the accuracy and calculate the variables coefficients of final models, I ran a 10 k-

fold cross validation with 10 iterations using the “caret” package (Kuhn, 2008). Based on cross 

validation I calculated the coefficient of determination (R²), Mean Absolute Error (MAE, eq. 2), 

Root Mean Square Error (RMSE, eq. 3), AIC and Relative Root Mean Square Error (RRMSE, eq. 

4) of models’ prediction with its additive and interactive term using as dummy predictor the land-

use type. Finally, I ran a prediction using the best models and made a regression between predicted 

and observed values. To facilitate interpretation and for comparison purposes I considered an R² 

lower than 0.5 a low correlation, between 0.5 - 0.7 as a good correlation and above 0.7 a strong 

correlation, as proposed by Guimarães et al. (2020) 

 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝  + 𝜀               (eq. 1) 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑗 − 𝑦𝑗̂|𝑛

𝑗 = 1
                                        (eq. 2) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑗 − 𝑦𝑗̂)2𝑛

𝑗 = 1  
                                (eq. 3) 

 

𝑅𝑅𝑀𝑆𝐸 =
 √

1

𝑛
∑ (𝑦𝑗−𝑦𝑗̂)2𝑛

𝑗 = 1  

1

𝑛
∑ 𝑦𝑗

𝑛
𝑗 = 1

𝑥100  

                           (eq. 4)   
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2.4.3. Canopy structure vs diversity and species composition of the avifauna 

 

In order to demonstrate the importance of canopy structure on AFS habitat structure I used 

a data set on bird diversity and species composition obtained in a previous study (Fromm, 2019).  

To do so, I added canopy structure and 3D variables from plot-level to site-level (i.e. farm or 

cultivation level) according to the sampling design used by Fromm (2019). I used the abundance 

of birds, biodiversity indices such as species richness and the Shannon index as well as species 

composition to demonstrate the relationship of these variables with canopy structure. Species 

composition was summarized in the first two axis of a Principal Coordinate Analysis (pcoa1 and 

pcoa2) using a species abundance matrix at the site level and the Bray-Curtis dissimilarity. Finally, 

I used Principal Component Analysis (PCA) to explore the relationship among variables. I noted 

that this analysis is a simple demonstration about a potential application of the work on canopy 

structure presented here (and not the objective). I also evaluated the accuracy of predictive models 

for canopy variables at site-level using a 3 k-fold cross validation with 100 replicates. 
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3. Results 

3.1. Gradient in canopy structure 

 

The multivariate analysis of canopy structure using PCA revealed a canopy structure 

gradient across the plots located in AFS (i.e. first PCA axis) and between AFS and forest plots (i.e. 

second PCA axis). The first axis explains 50.3 % of variance and is mainly related to height in 

midstory (H_mid), leaf area index (LAI), canopy cover (CC) and above-ground biomass (AGB). 

The second axis represents the 18.2% of the variance and the most related variables are density of 

shade trees (D_over), sum of basal area of midstory plants (BA_mid), standard deviation of height 

in overstory trees (H_sd_over) and density of midstory plants (D_mid, see Figure 6.). Therefore, 

apart from crops’ height (H_mid), differences between AFS with coffee and cacao are due to the 

amount of AGB and LAI. Otherwise, the density of shade trees (D_over) are similar for both types 

of AFS analyzed. The PCA also reveals a higher variation of height in the overstory (H_sd_over) 

for forests and AFS with cacao, while on AFS with coffee there is a lower percentage of canopy 

cover (CC) and higher density of crop’s plants (D_mid) than the cacao plots.  
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Note. a) Ordination of plots according to their canopy vegetation structure derived from Principal 

Component Analysis b) shows variables with high loading on PC1 and c) shows Variables with 

high loading on PC2. H stands for height; BA for basal area; D, is density of individuals in the 

midstory (mid) or overstory (over); CC, is canopy cover and AGB, is for above-ground biomass. 

 

The analysis of the canopy height models (CHMs) reveal systematic differences in height 

distribution among land-use types (Figure 7.), despite the fact that there is a great variation in 

height distribution among plots (Figure 5.). AFS with coffee show the highest values of probability 

distribution below 1.25 meters height, while AFS with cacao show the highest probability 

distribution between 1.25 and 4.5 meters height. The forest shows a broader range of probability 

of heights, mainly between 1.5 and 10 meters height, also with higher density in the upper canopy 

(from 12.5 meters onwards) as compared to the AFS. Based on those differences, I decided to 

Figure 6  

Ordination plot with on-ground variables. 
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include the mean, median, standard deviation and maximum values of probability distribution of 

heights (i.e. height distribution between these ranges, 0-1.25 m; 1.25-4.5m and 4.5-10 m) as 

predictor variables in the models, because of their potential to distinguish between land-use types. 

 

Figure 7  

Probability distribution of heights derived from the Canopy height models of the three land-use 

types. 

 

Note. The solid line marks 1.25 m height and the dotted line 4.5 m height, which are important 

thresholds showing in 3D predictors. 

 

A PCA using the 54 3D variables derived from SfM point-clouds listed in Table 1. didn’t 

show a clear separation of the three land-use types (Figure 8a.), indicating that not all predictor 

variables might be useful for considering them to distinguish canopy structure. For example, the 
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majority of 3D variables in the forest plots are not different from those found in AFS plots, there 

is also a greater variability of 3D variables in AFS with coffee than those found in forest. On the 

other hand, an ordination of plots using just variables extracted from probability distribution of 

heights showed a better distinction between forest and AFS plots (Figure 8b.).  
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Figure 8  

Ordination plot with 3D variables. 

 

Note. a) PCA based on all 3D variables generated from canopy height models. b) PCA based only 

on variables derived from the probability distribution of heights. All variables used for this analysis 

are listed and described in Table 1. 
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3.2. Predicting canopy structure from 3D variables 

 

3.2.1 Relationship between canopy structure and 3D variables at the plot-level 

 

During model construction 3D variables showed strong correlations among them and 

resulted in an elimination of the majority based on VIF and subsequent stepwise variable selection. 

For LAI the best model indicated by AIC includes the variables hskew, hEntropy, VCIsd, denq75, 

s1.25_max, s4.5_sd and Land-use and resulted in predictions with an R² of 0.82 after 10-fold cross-

validation. For CC the best model resulted in predictions with an R² of 0.81 (also after 10-fold 

cross-validation) and a relative root mean squared error (RRMSE) of 13%; this model includes 

hskew, VCIsd, denq75, COVAR, Q10, s4.5_sd and Land-use. The best model for AGB showed the 

lowest RRMSE (10%) among all models with a R² = 0.81. This was the only model which included 

textural features such as glcm_contrast and glcm_second_moment, as well as denq75,  s4.5_sd and 

s4.5_med, indicating that for AGB the height distribution of the CHM is less important. For density 

of overstory trees (D_over) the best model includes hEntropy, denq90, area_chull, s32, 

s1.25_max, s4.5_sd, s10_sd and Land_use, achieving a good prediction with a R² = 0.66. The 

predictive model for the height of overstory trees (H_over) includes only three variables 

area_chull, s4.5_sd and Land-use, achieving a R² = 0.82 and RRMSE = 18%. Finally, for the 

variation of height distribution in the overstory layer (H_sd_over) the best predictive model 

includes hmax, VCIsd, COVAR, Q10 and Land-use and resulted in predictions with an R² = 0.79.  
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Note. all values are based on a repeated 10 k-fold cross validation. 

 

In general, taking land-use type into account as a predictor variable significantly reduced 

the AIC in the models (Table 3.). The additive form of the models showed the lowest AIC, but the 

interactive form of models for AGB and D_over obtained similar AIC values as the additive ones. 

Besides land-use type, the most used quantitative variable in predictive models, was the standard 

deviation of probability distribution between 1.25 and 4.5 m (s4.5_sd), followed by density of 

heights over 75% percentile (denq75) and the standard deviation of vertical complexity index 

(VCIsd, more details in Table 5.) all of which are derived from the vertical height distribution of 

the CHMs. Since almost all models improved when land-use type (i.e. AFS with cacao, AFS with 

coffee or forest) variable was included as predictor, the evidence  indicates that a certain amount 

of structural variation among land-use types remains uncaptured by 3D variables derived from 

SfM point-clouds. 

The evaluation of the calibration of the models, using simple linear regression between 

Table 3  

Regression model accuracy metrics for multiple linear models fitted to each dependent variable. 
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predicted vs observed (PO) response values (Figure 9.) reveals that the slope is not significantly 

different from 1 and the bias is constant across the ranges. The PO charts for LAI, CC, AGB and 

D_over, showed marked differences (i.e. higher values) of observed values between forest and 

AFS, while for H_over and H_sd_over these values did not differ. Also, for the predicted values 

of height variables (mean, sd) AFS plots had similar or even higher values than those found in 

forest. 

 

Figure 9  

Predicted vs observed scatter plots, using the best linear model for each variable. 

 

Note. a) Leaf area index (LAI), b) Canopy cover (CC), c) Logarithm of above-ground biomass (log 

AGB), d) Density of overstory trees (D_over), e) Mean height of overstory trees (H_over), f) 

Standard deviation of height in overstory layer (H_sd_over). R².CV is for cross-validated R². 
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Table 4  

Regression model accuracy metrics for multiple linear models fitted to each predictor variable at 

the site-level. 

 

Note. All statistics are based on a 100 repeated 3-fold cross-validation 

 

3.2.2. Relationship between canopy structure and 3D variables at site-level 

 

Based on the AIC, the best model for LAI prediction at site-level used denq90, area_chull 

and glcm_mean and showed an R² = 0.91 (RRMSE = 37%). For prediction of CC, were used 

denq90 and s1.25_max in the best model, this model yielded an R² = 0.81 and 28% of relative 

RMSE. The best model to predict AGB was composed by denq90, area_chull and 

glcm_second_moment as predictors, achieving a R² = 0.86 and a 30% of RRMSE. The best model 

for H_sd_over had the highest R² = 0.93 among all models, and a RRMSE of 33% using hmax, 

glcm_mean and COVAR as predictors (Table 4.). 
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Table 5  

The most important predictors and the number of its appearances on the best models at plot-

level. 

 

 

The most useful variable for predictive models at site-level was density of heights over the 

90% quantile (denq90). In fact, the models which only include denq90 show high accuracy to 

predict CC and AGB with 77% and 82%, respectively. The inclusion of area_chull in the LAI and 

AGB models decreases the R² and the accuracy (i.e. higher RRMSE), but also reduces the AIC. 

Textural features as glcm_mean and glcm_secon_moment improve predictions of LAI and AGB at 

site-level. Finally, the maximum value in CHMs (hmax) was only important for prediction of 

H_sd_over. 
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Table 6  

The most important predictors and its number of appearances on the best models at site level. 

 

 

3.3. The importance of canopy structure for the diversity and composition of the avifauna 

 

Using canopy structure variables as predictors for the diversity and species composition of 

the avifauna present in the study area reveals interesting relationships. There are stronger 

relationships between canopy structure variables, bird abundance and composition, than canopy 

structure and bird biodiversity. All relationships are negative, CC, LAI and AGB explained between 

37% and 44% of bird biodiversity (Figure 10., upper row), while they explained between 47 and 

70% of the variation in bird abundance (Figure 10., middle row). For 3D variables the most related 

variable to richness, Shannon’s diversity index and abundance of birds was s10_max (probability 

distribution of heights in CHMs, see section 3.1.1), which explained between 48% and 74% of 

bird diversity and abundance (Figure 10., bottom row). Sites where the probability to find heights 

between 4.5 - 10 m is higher, presented lower diversity and abundance of birds (Figure 10.).  
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Figure 10  

Scatter plot using the most related canopy structure variables with bird biodiversity. 

 

Note. Upper row) best relationships with bird biodiversity, Middle row) best relationships with 

bird abundance. On the bottom row, we show the major relationships between 3D variables 

(s10_max), richness, the Shannon’s diversity index and abundance of birds. 
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Species composition is in contrast explained by different variables indicating the density 

and height distribution of the shade tree canopy layer (i.e. overstory) explaining the percentages 

between 40 and 64 percent of variation in species composition. In general, bird composition 

captured by pcoa1 was mainly related to the intensity of space-filling, while pcoa2 had strong 

relationships with variables related to the scale of space-filling (Figure 11.). For instance, pcoa1 

was highly correlated with density of shade trees (D_over, which is an indicator of the intensity of 

space-filling), and pcoa2 was mainly related to mean height and standard deviation of overstory 

(H_over, H_sd_over), canopy variables related to scale of space-filling . The highest correlation 

of bird composition with 3D variables was between pcoa2 and percentage of canopy cover over 

20 m (s20, explained 78% of the axis related with abundance of generalist species), followed by 

pcoa2 with glcm_contrast (61% of variation explained) and pcoa1 with denq90 (which explained 

44% of variation in bird composition).  
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Figure 11  

Regression between bird composition, canopy structure and 3D variables. 

 

Note.  Bird composition as revealed by the first axis of a Principal Coordinate analysis on species 

abundance), canopy structure variables (upper row) and 3D variables derived from SfM point-

clouds (bottom row).  

 

Principal Component Analysis between variables of canopy structure measured at site-

level, 3D variables, species diversity and composition of the avifauna revealed the following 

relationship among variables: all vegetation structure variables were highly related with at least 

one 3D variable, moreover, birds biodiversity was related with at least one class of canopy 

structure variable or both (measurements on the ground and 3D variables, Figure 12.). Species 

richness and bird abundance decrease when variables related with intensity and scale of space-
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filling (i.e. D_over, AGB, LAI, CC, denq90, s10_med, s10_max) increase, however the species 

composition also changes when decreasing species richness and bird abundance. 

 

Figure 12  

Principal component analysis with the most related variables with bird composition and 

biodiversity. 

 

Note. PCA shows the correlation between canopy structure variables (green vectors), 3D variables 

derived from SfM point-clouds (blue vectors) and variables of bird biodiversity and species 

composition (derived from Principal Coordinate Analysis, pcoa, as red vectors) at the site-level.  
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4. Discussion  

I was able to predict six important canopy structure variables (LAI, CC, AGB, D_over, 

H_over and H_sd_over) that can affect the space-filling of AFS using RGB images acquired with 

a drone, the SfM imaging technique and derived 3D variables. The predictions were more accurate 

at plot-level than at site-level, especially for variables related to the intensity of space-filling 

(D_over and LAI). 

 

4.1. Performance of predictive models of canopy structure variables 

 

Considering the relative root mean square error (RRMSE), the best predicted variable was 

AGB with a R² of 0.81 and 10% of RRMSE, followed by CC (R² = 0.82, RRMSE =  13%) and 

LAI (R² = 0.81, RRMSE = 24%). The predictive model for AGB without the inclusion of land-use 

type resulted in a R²  of 0.58 and a RRMSE of 17% which is similar to the performance reported 

for the estimation of AGB in tropical woodlands (Kachamba et al., 2016). For AGB the inclusion 

of land-use type improved the performance of the final model, reducing the RRMSE by 7%. This 

indicates that some variation of canopy structure cannot be captured by variables derived from 

SfM point-clouds, most likely because of their limitation to penetrate into lower canopy layers. In 

addition, the estimation of AGB in tropical forests can be affected by multiple factors such as the 

accuracy of height determined by on-ground measurements, which may limit the reconstruction of 

SfM point-clouds in dense canopies (Laurin et al., 2019). Also, environmental conditions at the 

time of image acquisition, the number of matched images and overlap among images can affect 

the quality of point-clouds reconstructions. Although in this study I did not use Terrestrial Laser 
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Scanning (TLS) which has been recognized as the best ground-based method for characterizing 

the distribution of canopy biomass (Seidel et al., 2011). I demonstrated that it is possible to 

generate accurate results using a low-cost methodology. The final predictive model for AGB had 

similar values of R² and RMSE compared to previous studies considering site-specific as well as 

global calibration (Zahawi et al., 2015). 

Predictions for LAI were of similar or even better performance that the one reported on 

other studies, even without land-use type inclusion. For example, LAI has been predicted in a 

temperate riparian forest with a R² of 0.62 and a RMSE of 0.4, using percentiles of heights (at 40% 

and 95%) and the shape of the probability distribution of height values, as predictors (Axe, 2018). 

I also found that the predictive model of LAI included variables related to the probability 

distribution of heights (i.e. denq75, s1.25_max and s4.5_sd). My predictions for LAI, CC and AGB, 

which include the density of heights above the 75% percentile (denq75) showed higher R² and 

lower RMSE compared to predictions of LAI by Zhang et al. (2019) where they also used as 

predictors quartiles of the height distribution in CHMs (RH25, RH50, RH75 and RH100). In 

addition, a study estimated the overstory canopy cover (CC) in forest plantations from China with 

a R² of 0.52 but a similar RMSE = 0.12 (Li et al., 2020). This may be due to the fact that the canopy 

structural gradient investigated here is more pronounced (i.e. from low canopy cover of AFS to 

dense forest) as compared to the canopy structural gradients in other studies (e.g. forest plantation 

or forest). Nevertheless, in the context of AFS with coffee and cacao, the results highlight that 

AGB, CC and LAI as indicators for management and key ecosystem characteristics can be well 

derived using low-cost drone remote sensing. 

In mountainous tropical forests the accuracy for predictions of canopy height has been 

successful using SfM-derived CHMs as well as lidar-derived CHMs (Chung et al., 2019), despite 
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the continuous tree canopy layer. Although my predictions of the heights of shade trees in the 

canopy (H_over) had good adjustment (R² = 0.82), it showed a substantial lower R² and higher 

error rate, as compared for example to the dominant height predicted by Puliti et al. (2015). This 

difference could be generated by two main reasons, 1) the less accurate DTM, derived from lowest 

points in SfM point-clouds because the study area is located in a mountainous region, 2) the low 

accuracy of height in GCPs can generate systematic errors in CHMs, since they were taken using 

the waypoint averaging function of handheld GPS instead of Differential Global Positioning 

System (DGPS), which is slightly more accurate on the Z-axis (height measurement) (Benassi et 

al., 2017). However, predictions of mean canopy height in other tropical forests in Indonesia have 

been successful using information derived from SfM point-clouds, even without the inclusion of 

GCPs information (Swinfield et al., 2019). In my study, the gradient of canopy cover is large 

(many AFS have a discontinuous canopy layer, because of the low density of shade trees), 

therefore it was possible to make good characterization of canopy height in low dense canopy 

crops as AFS with coffee using SfM point-clouds. 

SfM point-cloud reconstructions in tropical and temperate forests have shown to capture 

little information at ground-level in dense canopies (Wallace et al., 2016; Roşca et al., 2018; 

Swinfield et al., 2019) and this is one of the main concerns to characterize midstory vegetation. In 

my case, since low shade AFS do not have dense canopies the SfM reconstructions were able to 

capture some information at low canopy heights. Therefore, the forests showed higher probability 

of heights over 4.5 m while in AFS with coffee showed higher probabilities under 1.25 m (Figure 

7.). Recently Giannetti et al. (2018) proposed the use of DTM-independent variables to avoid the 

need for an accurate DTM to derive CHMs. In order to predict mean value and standard deviation 

of height in tallest trees, Giannetti et al. (2020) included in their models homogeneity (i.e. a textural 



AGROFOREST STAND STRUC. AND 3D UAV REMOTE SENS. 52 

 

 

feature), percentile of 70% of heights as well as the proportion of points over 30% and 70% 

percentiles (d3, d7) but these models presented a lower R² and accuracy compared to my results. 

Hence, the generation of DTM based on the lowest points of SfM point-clouds reveals that (like 

my approach), could improve results of prediction using multiple linear models. 

In this study, the prediction of the density of trees in the overstory D_over  (34% of RRMSE 

with a mean of 15.14 trees per 900 m²) also known as Stem number (Sn) was similar to their 

estimation using metrics derived directly from DSM (Puliti et al., 2019). However, the most 

important variables used by Puliti et al. (2019) such as glcm second_moment, 10% percentile, min, 

max and median of DSM were different from those used in my model. This suggests that different 

sources of information (CHM instead of DSM) affect the selection of predictor variables, and DTM 

reconstruction has an impact over minimum and maximum values registered in the CHMs. Stem 

number is a little explored variable in this kind of studies (Guimarães et al., 2020) and has usually 

lower correlations with predictors than those found for DBH, AGB and height variables (Cao et 

al., 2019). Even if the prediction is based on airborne lidar information the number of trees per 

plot has been associated with big errors in dense covers, despite their ability to derive information 

under the canopy layer (Gobakken & Næsset, 2004). Nevertheless, it is an important variable to 

predict in the context of AFS, because the presence of trees decreases erosion and is linked with 

soil conservation (Meylan et al., 2017). Overall, the best models (i.e. with the lowest AIC) at the 

site-level (i.e. aggregation of several plots at a site), showed higher RRMSE than those found at 

the plot-level. This result contradicts the findings by Puliti et al. (2019), where stand (or site) level 

models performed better than plot-level models, probably due to the reduction of extreme 

observations because of site level averaging. In this study, I found that the site level models 

predicted D_over and LAI less well, which can be related with differences in the number of plots 
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aggregated by site, high variation of 3D variables between plots belonging to the same site, and 

also the error induced by the inclusion of canopy trees that were not measured on the field.  

 

4.2. Variable importance of 3D predictors 

 

3D variables related to the intensity of space-filling (density of height over 75% and 90% 

percentiles, denq75 - denq90) were the most important predictors of D_over, CC and logAGB (see 

Table 5. and Table 6.). For example, denq90 along with variation in the probability distribution of 

heights between 4.5 - 10 m (s10_sd) were positively correlated with D_over, which indicates that 

a high number of values over 90% quantile or between 4.5 - 10 m are indicators of a higher 

intensity of canopy space-filling, CC is positively correlated with denq75 and VCIsd, which 

indicates that the number of values of height over 75% quantile and a higher variation in the 

distribution of heights are related to a dense canopy cover. AGB was positively correlated with 

denq75 and median of the probability distribution of heights between 1.25 - 4.5 m (s4.5_med), 

which indicates that the presence of higher number of values over 1.25 m and 75% quantile in the 

CHM is related with higher amounts of biomass. The best model for AGB was the only one which 

included textural features: glcm_contrast and glcm_second_moment (also called energy). Texture 

variables extracted from a height raster of the canopy have not been used in other studies for the 

prediction of above-ground biomass; this is an important result since its inclusion increases R² and 

decreases RRMSE. 

Canopy variables related to the scale of space-filling (LAI, H_over and H_sd_over) were 

mainly determined by 3D variables based on canopy heights and their vertical distribution  (VCIsd, 

denq75 and s4.5_sd). Though vertical complexity index (VCI) was initially proposed as a metric 
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derived from lidar points-clouds (van Ewijk et al., 2011), in this study VCIsd based on SfM point-

clouds proved to be useful for LAI, and H_sd_over predictions. Prediction of LAI was mainly 

determined by VCIsd and denq75, which were positively correlated to the dependent variable. The 

prediction of H_over was negatively related to s4.5_sd, which indicates that areas with a low 

density of values between 1.25 - 4.5m, usually have a higher mean canopy height. On the other 

hand, H_sd_over was positively correlated with VCIsd, COVAR and Q10, demonstrating the utility 

of these 3D variables (which characterize the distribution of heights) for prediction of the scale of 

space-filling. 

Variables based on the probability distribution of heights (also related to scale of space-

filling) such as s4.5_sd and s1.25_max represent an useful source of information for prediction of 

almost all canopy structure variables except for H_sd_over. The s4.5_sd had negative coefficients 

in final models of LAI, CC, AGB and H_over, which indicates that a high probability to find heights 

(in CHMs) between 1.25 - 4.5 m is related with low canopy cover (CC) and smaller amounts of 

above-ground biomass (AGB). This pattern can be due to the occupation of a large part of the lower 

canopy area by cacao or coffee crops (compared to saplings in forest), reducing the availability of 

space to find tall shade trees. At the plot-scale the surface area of the convex hull (area_chull) was 

also identified as an important variable for predictions of D_over and H_over. This has not been 

reported in previous works using a plot-based approach, but my result shows that an increase in 

the surface of point-clouds can indicate high numbers of trees and high variation of heights in 

shade trees. The coefficient of variation of heights (COVAR) was useful to predict CC and 

H_sd_over, although COVAR has been used for the characterization of maize, aquatic plants and 

vineyards. Only the study of Axe (2018) used it to predict LAI in riparian forests. This highlights 
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the importance of the aforementioned 3D variables to predict both intensity and scale of canopy 

space-filling. 

Previous works showed that the most important SfM point-cloud derived predictors for 

canopy structure have been related to height measurements as percentiles of heights. For example, 

Ota et al. (2017) found that 90% percentile (h90) of CHMs was the most important variable to 

estimate mean height. For LAI the percentile of 95% (P95) combined with the coefficient of 

variation (CV) were significant predictors (Axe, 2018). In addition, prediction of AGB (using 

multiple linear regression) in tropical woodlands showed that the most useful SfM point-cloud 

metrics were Hmax, H30 (30% percentile), D0, D1, D2 (Proportion of points above 0, 10 and 20% 

percentile) and variance of height - Hvariance (Kachamba et al., 2016; Domingo et al., 2019). 

Model performance and predictor variables varied for the majority of response variables 

between plot and site-level (Table 3 and Table 4). The best predictive models for canopy structure 

at the site-level (i.e. farm or cultivation) obtained higher R² than the models fitted at plot-level. 

Nevertheless, at site-level the RRMSE also increased, which indicates an increase in model bias. 

For example, LAI was predicted by denq90, and the area of the convex hull (area_chull), variables 

that were not included in the LAI model at plot-level. However, denq90 is highly related to denq75, 

and the latter was important for prediction of LAI, CC and AGB at plot-level. This indicates that 

similar 3D information was important for accurate predictions; however, the redundancy of 

information among the many 3D variables resulted in ‘switching’ predictors. Best models for CC 

and AGB at site-level also changed denq75 for denq90, including s1.25_max and area_chull, 

respectively. D_over prediction at the site-level also included denq90, denq75 and VCIsd as 

predictors, however the relative RMSE was higher than 100%, which indicates the loss of the 

models’ ability to predict density of shade trees (D_over) at the  site-level. Therefore, I suggest for 
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future studies the use of an approach at the plot-level. In this study, the aggregation to the site-

level was only done to allow the evaluation of the impact of canopy structure on avian diversity 

and composition (see section 5.5.). For H_over the best model included s4.5_med, which is highly 

related to s4.5_sd, an important predictor variable at plot-scale. On the other hand, area_chull was 

not selected for the best model at site-level and instead the 10% quantile (Q10) and the proportion 

of cover by pixels over 30 m (s30) were selected. Finally, the coefficient of variation of heights 

(COVAR) and the maximum height in CHM (hmax) were retained for the best model of H_sd_over 

at site-level. Predictors seem to change according to spatial scale, however variables from the best 

models at the site-level seem to maintain a close relationship with their counterparts at plot-level. 

 

4.3. Space-filling of canopy across land-use types 

 

Forest showed to have higher intensity of space-filling than AFS, based on higher values 

of LAI and CC at the upper canopy, as well as higher, AGB and D_over in general (Figure 9.). On 

the other hand, the scale of space-filling did not differ between forest and AFS, since some AFS 

plots exceeded the average height (H_over) and the variation of heights (H_sd_over) found in 

forest plots. These results highlight the importance of complex structure in AFS where high trees 

and a high variation in heights are similar to intact forest areas.  

The inclusion of land-use type as an additive term (a not interaction term) in the multiple 

linear regression model resulted in significant improvements for prediction of all canopy structure 

variables. This indicates differences in canopy structure (or architecture) between land-use types 

that cannot be captured by the 3D variables generated in this study. This might be caused by an 

insufficient characterization of the midstory by those metrics because of the limitations of SfM 
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point-clouds to capture aspects of the lower canopy. Nevertheless, metrics such as denq90, VCIsd 

and the probability distributions of heights (s1.25_max, s4.5_sd and s10_sd) in CHMs can help to 

include specific features of each land-use type and estimate canopy structure variables 

successfully. 

Variables derived from digital aerial photogrammetry point-clouds can help to characterize 

vertical and horizontal canopy structure in temperate forests (Jayathunga et al., 2019). 

Nevertheless, they seem to better predict features related with canopy height (scale of space-filling) 

rather than variables related to the intensity of space-filling (Noordermeer et al., 2019). Those 

studies also demonstrate that forest canopy structure classes (i.e. young forest, low productivity 

and high productivity forest) are important for predictions and can be characterized based on those 

3D metrics. However, temperate forests are composed of fewer species than tropical forests that 

have many plant species and many different growth forms. Fortunately, it is possible to relate land-

use type with 3D variables derived from SfM point-clouds, because human interventions can 

generate an unique 3D vegetation structure (Guo et al., 2017), which is also the case for AFS (i.e. 

AFS with coffee having a higher intensity of space-filling at the lower canopy than AFS with 

cacao). Moreover, potential areas where national Corine Land Cover classification has identified 

cacao crops, coffee plantations and dense natural forest can be used as targets to apply the 

predictive models presented here. UAVs have higher potential to include in the monitoring and 

management of biodiversity-friendly agricultural landscapes (Librán-Embid et al., 2020) and SfM 

point-clouds has been seen as an optimal tool for 3D mapping of ecosystems in the new era of 

spatial ecology (D'Urban Jackson et al., 2020).  
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4.4. Space-filling as driver of bird diversity and species composition  

 

Bird species richness and Shannon's diversity index was strongly correlated to AGB, LAI, 

CC and probability distribution of heights between 4.5 - 10 m (s10_max). The relationships were 

negative, which indicates that the most biodiversity sites were identified as AFS with low above-

ground biomass and low canopy cover over 4.5 m. This can be influenced by landscape metrics as 

proximity to forest but also to an underestimation of the true diversity of birds in the forest. The 

latter may be due to the low conditions of detectability of bird species through observation in dense 

covers or the low availability of food resources during time of sampling. Thus, I recommend 

sampling the diversity of organisms at different times of the year, in order to generate better 

diversity estimation comparable between land-use types and to the variables derived from the SfM 

point-clouds. 

I also found a good but negative relationship between CC, LAI, AGB and bird abundances, 

where sites with the highest CC and AGB showed the lowest bird abundance. These results differ 

from other neotropical AFS studies (Philpott & Bichier, 2012) where the abundance of birds was 

higher in the forest. The lowest abundance of birds was found in forest but also increased in AFS 

according to the canopy shade. The data showed that bird composition changes drastically between 

forests and AFS, with more specialists in forest but generalist and more abundant species reported 

in crops, which was also reported by Harvey & González Villalobos (2007). This pattern and the 

higher abundance of birds in AFS with high shade can be due to the presence of trees of Fabaceae 

family members on farms which increase the visit of insectivorous bird species (Narango et al., 

2019).  
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Although I did not find a good relationship between D_over, H_sd_over and bird 

abundances, bird composition (pcoa1 and pcoa2) registered the strongest correlation with D_over, 

LAI, AGB and with 3D variables related to intensity and scale of space-filling (denq90, s20 and 

glcm_contrast, see Figure 11.). In my study the relative RMSE of D_over prediction at site level 

was over 100% which indicates a limitation of 3D variables to predict this important feature for 

bird diversity at larger scales. Studies in tropical regions have found a positive relationship 

between abundances of birds and higher complexity in vertical structure (Mahiga et al., 2019). In 

2004 Naidoo found that high vertical heterogeneity was related to presence of specialists instead 

of generalist species, but these dynamics can be influenced by landscape metrics as the proximity 

to intact forest patches (Laube et al., 2008). Canopy structure variables such as tree density 

(Naidoo, 2004) and vertical vegetation heterogeneity (Laube et al., 2008) have shown great 

influence over bird composition. For this reason, knowing the number of trees per area and the 

canopy height will help to guide sustainable management for bird conservation.   

Multiple sources of errors can influence the prediction of canopy structure at site-level and 

therefore relationships of SfM-derived variables with fauna inventories should be taken with 

caution. For example, plant species diversity and composition in tropical AFS is an important 

factor which affects bird species diversity (Perfecto et al., 2004), however I did not evaluate plant 

composition in forest plots and thus I cannot evaluate the influence of trees biodiversity over the 

reported bird abundances.  

The good relationships between canopy structure and variables derived from SfM point-

clouds suggests that 3D information obtained with processing of UAV aerial images can be used 

as training data for satellite information (Kato et al., 2015). For instance, the Global Ecosystem 

Dynamics Investigation (GEDI) which seeks to characterize 3D forest structure using a LIDAR 
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full-waveform needs a calibration - validation (cal/val) procedure (Dubayah et al., 2020) that could 

be done using SfM information. In addition, this information could also help to improve accuracy 

of global, regional, and national monitoring schemes which seek for Essential Biodiversity 

Variables (EBV) (Proença et al., 2017). In a few words, it is important to characterize (agro)forest 

structure using RS because it can help to monitor the reduction in the complexity of canopy 

structure (Dupuis et al., 2020; Bourgoin et al., 2020), recovery (Zahawi et al., 2015) and disasters 

in tropical forests (Kato et al., 2017). Using the approach presented here I was able to characterize 

AFS space-filling and I showed that it is related to bird species diversity and composition. This 

shows on the one hand that we can monitor 3D canopy architecture of AFS in a cheap manner and 

that it is relevant for bird habitat structure. In other words, 3D variables acquired with drones can 

serve as EBV and also as potentially mapped from space (i.e. GEDI). 

 

5. Conclusions 

In this study, by using variables derived from SfM point-clouds, I showed that the intensity 

of space-filling is higher in forest than in AFS, while its scale did not differ between both land-use 

types. Traditional field data acquisition can be successfully used as ground truth data to develop 

predictive models using variables derived from SfM point-clouds, even using low-cost equipment 

and sensors (i.e. handheld GPS, low-cost RGB camera) and in rough terrain. Multiple linear 

regression with variable selection and cross-validation can predict canopy structure variables 

related to the space-filling (LAI, CC, AGB, D_over, H_over and H_sd_over) with high accuracy 

and low error rates. The prediction of canopy structure variables improved significantly when 

including land-use type, which indicates a limitation of this approach, potentially related to the 



AGROFOREST STAND STRUC. AND 3D UAV REMOTE SENS. 61 

 

 

limited characterization of the low canopy. Finally, applying the concept of space-filling to predict 

habitat quality for birds highlights its importance for the estimation of habitat complexity. This 

gives avenue to use it as an essential biodiversity variable, which allows the recognition of the 

biodiversity conservation potential of Andean agro-ecosystems.  

 

6. Recommendations 

In mountain regions many sources of error appear to impact 3D models reconstruction from 

SfM point-clouds, such as the light conditions, the slope, weather conditions as well as geometrical 

properties of the canopy (Rahlf et al., 2017). For this reason, it is important to take into 

consideration these parameters in the planification of flight plans, image acquisition and 

processing. Spectral information represents an opportunity to include species-specific information 

(Puliti et al., 2019) and has shown to be useful for land cover classification (De Luca et al., 2019). 

Thus, the inclusion of spectral information (e.g. using multispectral cameras such as the Micasense 

RedEdge-MX) can enhance predictions of canopy structure which depends on land-use type. 

However, in tropical regions where many land-use types consist of diverse species mixtures, the 

incorporation of spectral data faces other challenges, such as the radiometric calibration in aerial 

photographs. I recommend the use of ethylene-vinyl acetate as reference panels for reflectance 

calibration (Jeong et al., 2018), in order to make measurements of different flights comparable 

between them (Packalén & Maltamo, 2007). But also if it is possible, and the  budget of research 

allows it, I suggest the use of a terrestrial laser scanning, the incorporation of a high precision GPS 

device to GCPs measurements and the use of a light sensor which can help to improve calibration 

of reflectance. 
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The use of information extracted from drone images can enrich future research in 

biodiversity conservation and ecological monitoring (Díaz-Delgado & Mücher, 2019). Aerial 

images have a high number of applications, for example, the mapping of ecosystem services and 

EBV’s, delineation of organisms (i.e. between trees and shrubs, as well as between species) and 

even upscaling ecological variables from drone to satellite images (e.g. Sentinel 2). Therefore, I 

recommend the use of variables extracted from SfM point-clouds which can help to describe 

canopy structure and variables related with fauna biodiversity, for future studies where species 

distributions or habitat suitability is the objective. These studies also can be interesting to 

understand differences of the relationships between canopy structure complexity and biodiversity 

for different faunistic groups.  
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Appendices 

Appendix A  

Application of PCQM in AFS and forest plots. 

 

Note. The images show procedures to measurements and recording of distances between points, to 

the nearest neighbors, D130 , and height. 
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Appendix B  

Picture taking of hemispheric photographs. 

 

Note. On the bottom left, positions of hemispherical photographs inside each plot are marked 

with circles. Top left shows an example of a photograph taken in this study inside a cacao crop. 

Camera accomodation to take the pictures at 1 m of height is presented on the right. 
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Appendix C  

Example of takeoff and retrieval procedure using the UAV mapper. 

 

Note: Upper row shows the takeoff position, against the wind to gain lift and thrust. Bottom row 

shows the use of parachute during landing. The home site for each flight was an area without dense 

vegetation or buildings because of the way to takeoff of a fixed wing drone. The landing of each 

flight was made in the opposite direction to the wind and always assisted with the remote control. 

In order to prevent collisions, we sometimes use the parachute, which can help a lot with landing 

in mountainous areas where large trees are present. Before each flight with the UAV, we had to 

do the compass calibration with the tip facing north while rotating around its three axes for 

approximately one minute. Altitude of flights varies between 150 and 200 m over the home and 

this only depended on the site topography and the associated risks.  
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Appendix D  

Orthoimages from two neighboring farms with different intensity of management for AFS with 

cacao. 

 

Note. The background is a land cover classification constructed with multispectral images of 

Sentinel-2 satellite. This is a zoom in Figure 1. Included into the document. 
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Appendix E  

Orthoimage of a riparian farm with high shade AFS with cacao. 

 

Note. on the left of the image we see the stream of Las Cruces. Again, this is the zoom in Figure 

1. (see body of the document) 
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Appendix F  

Two orthoimages of four neighbor farms. 

 

Note. The orthomosaics show differences in light intensity due different environmental conditions 

at time flights. 
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Appendix G  

Orthoimage of a riparian farm and little village inside Las Cruces micro-watershed. 
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Appendix H  

Orthoimage of a farm which has multiple productive systems, as AFS with cacao, coffee, and 

fish. 
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Appendix I  

Two orthoimages of three different farms. 

 

Note. differences in light conditions are observed even inside one scene due the presence and fast 

movement of clouds. 
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Appendix J  

Orthoimage of the farm to which forest belongs. 

 

Note. the forest is located to the south-east region of orthomosaic. 

 


