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Titulo: análisis De Incertidumbre De Un Modelo hidrogeológico Inverso En El Norte De 

Bucaramanga *. 

Autor: Óscar Fabián Sánchez Ortiz** 

Palabras Clave: Incertidumbre, Modelado Hidrogeológico, MODFLOW 6, IES, Galería 

Descripción: 

El modelado hidrogeológico para el diseño de infraestructura requiere una cuantificación sólida de las incertidumbres 
de pronósticos para reducir los costos y optimizar la inversión. Construimos un modelo numérico de aguas 
subterráneas para pronosticar los caudales producidos por la construcción de una galería de drenaje. La galería se 
encuentra sobre un acuífero aluvial no confinado en Bucaramanga, Colombia, donde el agua subterránea está causando 
inestabilidad en el suelo. Se implementaron enfoques emergentes para el modelado, como el “modelado 
programático”, el “pronóstico primero” y la “cuantificación temprana de la incertidumbre” (EUQ). El software 
utilizado incluyó MODFLOW 6 y PEST++, con los paquetes Flopy y Pyemu como interfaces de Python. El enfoque 
programático combinado con Git y GitHub para la documentación del modelo permite una alta transparencia y 
reproducibilidad para cualquier persona que desee auditar el modelado y el pronóstico de incertidumbre. La 
cuantificación de la incertidumbre se realizó utilizando el método de conjuntos iterativos suavizado (IES), el 
complemento de Shur (lineal) y Monte Carlo de espacio nulo (NSMC). La evaluación del modelo a través de EUQ 
probó los efectos de la parametrización previa del refinamiento de la cuadrícula en el pronóstico de flujo, lo que ayudó 
a corregir fallas en la conceptualización del modelo. Además, el IES demostró ser más liviano computacionalmente y 
suficientemente robusto para manejar la no linealidad e inestabilidades del modelo, pero la asimilación de datos fue 
deficiente en el modelo. A pesar de eso, IES fue más eficiente computacionalmente que los otros métodos. Debido a 
la falta de linealidad y las inestabilidades del modelo, la matriz jacobiana y la optimización por Gauss-Levenberg-
Marquardt tuvieron problemas que se heredaron al NSMC y el método lineal. Sugerimos usar IES con EUQ cuando 
el objetivo principal es la cuantificación de la incertidumbre de un pronóstico que depende del nivel freático. 
  

 
* Proyecto de grado 
** Facultad de Ciencias, Escuela de Fisica. Maestria en Geofisica. Director. Wilfredo del Toro Rodríguez Civil Eng., 
Msc Co-director Sandra Rocío Villamizar Amaya Civil Eng., Msc, Phd 
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Abstract 

 

 

Title: Uncertainty Analysis Of An Inverse Hydrogeological Model In The North Of 

Bucaramanga*. 

Author: Óscar Fabián Sánchez Ortiz** 

Keywords: Uncertainty, Hydrogeological Modelling, MODFLOW 6, IES, Gallery 

Description: 

Groundwater modeling for infrastructure design requires a robust quantification of forecast uncertainties associated 
with porous media and other hydrological variables. Understanding, quantifying, and minimizing the uncertainty 
associated with numerical models reduces costs and optimizes investment; therefore, a reliable, open, and replicable 
model is appropriate. We built a groundwater numerical model to forecast flows yielded by a drainage gallery 
construction. The gallery is over an unconfined alluvial aquifer in Bucaramanga, Colombia, where groundwater is 
causing ground instability in an urbanized area greater than 1 km2. The model implemented emerging approaches for 
workflow modeling such as programmatic modeling, forecast first, and early uncertainty quantification (EUQ). The 
software used included MODFLOW 6 and PEST++ for forward and inverse modeling, respectively, with Flopy and 
Pyemu packages as Python interfaces, all of them open source. Python's programmatic approach using open-source 
software combined with Git and GitHub for model documentation allows high transparency and reproducibility for 
anyone who wants to audit the model construction process and forecast uncertainty analysis. Quantification of forecast 
flow uncertainty was performed using iterative ensemble smoother (IES), Shur’s complement (Linear), and Null Space 
Monte Carlo (NSMC). The assessment of model structure through EUQ tested the effects of prior parameterization of 
the grid refinement in the flow forecast helping to find and fix several flaws in the model conceptualization. Besides, 
the IES demonstrated to be lighter in computational burden and robust enough to handle non-linearity and instabilities 
of the model, but data assimilation was poor in the model, showing null improvement in the forecast after the first 
iteration. Despite that, IES was more computationally efficient than NSMC and Shur’s complement and much more 
reliable than the linear method. Due to model non-linearity and instabilities, the Jacobian and the Gauss-Levenberg-
Marquardt optimization had problems that were carried over to the NSMC and the linear method.  We suggest that 
IES with EUQ should be used when the main goal of the modeling is the uncertainty quantification of a forecast that 
depends on the water table. 
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Introduction 

 

 

Groundwater models are usually built to forecast the results of a proposed action related to 

the management of water resources (Anderson et al., 2015; White, 2017). However, other purposes 

of groundwater modeling are hindcasting (to recreate past conditions) and screening (to develop a 

better understanding of the system) (Anderson et al., 2015). In any case, model calibration (also 

known as inverse problem or history matching) has been considered essential for groundwater 

modeling because it allows to decrease the uncertainty of model parameters (Zhou et al., 2014) as 

well as to get the most probable model for the given data (Anderson et al., 2015); therefore, 

decreasing the uncertainty of model predictions. In forecast modeling of groundwater systems, 

future conditions are usually determined using calibrated models where uncertainty limits are 

reported, but the uncertainty quantification is highly challenging because it is an attempt to 

quantify what is unknown (Linde et al., 2017) 

Subsurface construction of infrastructure below the water table generates risks associated 

to groundwater drainage which demands critical decision making. This requires a robust 

quantification of uncertainty prior construction because groundwater systems cannot be 

exhaustively investigated (Sundell et al., 2019; Zhou et al., 2014), and decisions must be taken 

under uncertainty (Sundell et al., 2019). Tunnel construction, a specific case of subsurface 

infrastructure, requires detailed modeling due to the potential significant effects on the 

environment during and after their placement. One of those effects is the drainage of groundwater 

and the inevitable reduction of surface stream flows during construction. Furthermore, knowing 

the order of magnitude of the drainage flow produced by its presence would allow to more 
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accurately determine the initial investment and operating maintenance costs, both of which could 

make feasible or unfeasible a project (Suescún, 2016). Although there are examples of uncertainty 

quantification of tunnels in groundwater systems (Benedek & Dankó, 2009; Gokdemir et al., 2022; 

Suescún, 2016), only a few publications are available describing the modeling of these structures 

using a three-dimensional tool such as  MODFLOW (Zaidel et al., 2010). 

When a decision must be taken, the likelihood of undesired effects is assessed alongside 

relevant management decision thresholds which are defined on the basis of ecological, economic 

and/or cultural objectives (Hemmings et al., 2020). However, using any method to make decisions 

through history matching and uncertainty quantification is still an expensive process, and history 

matching does not always help to reduce the uncertainty of a forecast. Moreover, history matching 

has the potential to corrupt the quantification of predictive uncertainty hence, it is not always 

recommended to carry out a complete history matching process (Hemmings et al., 2020). 

Furthermore, ill effects arise in the history matching when there is not enough parameterization 

detail (coarse discretization) producing parameter compensation, bias, or underestimation of the 

uncertainty, even in relatively complex parameterization schemes (>2000 adjustable parameters). 

However, it was found that reduced parameterization schemes are enough for some types of 

forecasting and decision-making, especially when uncertainty is calculated without or before 

history matching (Knowling et al., 2019; White, Knowling, et al., 2020). 

Based on the dangers around simplified coarse models, modelers may be tempted to “err 

on the side of caution” using a fine discretization. Nonetheless, this may introduce complications 

related to fine grids such as numerical instabilities, excessive computational burden, or increase of 

input data needs, among others (Knowling et al., 2019; White, Knowling, et al., 2020). To address 

and overcome the dangers related with model design, John Doherty & Moore, 2020; White, (2017) 
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criticized the usual workflow in which forecasts are done in groundwater models, proposing a 

framework oriented to prioritize and monitor the forecast throughout the model construction and 

uncertainty quantification. John Doherty & Moore, (2020) synthetized a framework to design 

groundwater models through strategic abstraction/simplification of parameters and processes to 

optimize the model building for the making of a particular prediction by the assimilation (or not) 

of pertinent information. In the same line, Hemmings et al., (2020) proposed a workflow to address 

decision support modeling under uncertainty where the model structure is tested saving time and 

computational resources. It starts with a prior uncertainty quantification that accomplishes two 

objectives: the identification of prior data conflicts (inability of the prior ensemble to match 

observations) and assessing the proximity of the forecast to the decision threshold. The First 

objective indicates that the model must be reformulated to represent the reality and avoid bias 

through history matching, and the latter is important because if the prior forecast uncertainty is far 

from the decision threshold, it allows to discard (or accept) the possibility of something “bad” 

happening. Therefore, once the objective of the modeling is fulfilled, the modeling process stops 

(Hemmings et al., 2020). 

However, if data assimilation is needed to reduce the uncertainty, the workflow moves 

towards an abridge history matching and a preliminary approximation of the posterior uncertainty. 

This allows to assess whether data assimilation can reduce forecast uncertainty. If it does, either 

the modeling process is stopped because the uncertainty reduction is enough to address the 

management decision, or history matching is continued because it is helping to the uncertainty 

analysis (Hemmings et al., 2020). In case that history matching does not inform the forecast and 

the forecast uncertainty is not satisfactory for decision support purposes, the modeling process 

must be stopped and the workflow can be restarted recasting forecasts, model design, 
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parameterization etc., to improve the flow of information from the observations to the model 

parameters and forecasts (Hemmings et al., 2020). 

Most of the uncertainty algorithms are computationally restricted by the number of 

adjustable parameters because they require running many direct models to assimilate information 

(i.e., by building a Jacobian matrix)(Li et al., 2018; White, 2018). This may lead to simplifications 

that can result in bias in the predictions (White, 2018). Uncertainty analysis in a groundwater 

model can be done through basic or advanced approaches (the latter with a higher computational 

burden), and their results are usually shown either as standard deviations or confidence intervals. 

The basic approach may consist of a linear uncertainty analysis based on the Jacobian matrix and 

a Bayesian approach, which is also known as Shur’s complement (Anderson et al., 2015; Fienen 

et al., 2010). Error variance is another method commonly used for linear uncertainty analysis 

(Moore & Doherty, 2005; White et al., 2014, 2016). While uncertainty quantification by linear 

methods is usually good enough for basic engineering cases with the advantage of minimal 

computational burden, most of the groundwater modeling problems are non-linear (Anderson et 

al., 2015) requiring advanced approaches. 

The Monte Carlo (MC) is the most common method for advanced uncertainty analysis. It 

makes a large number of simulations to explore model uncertainty using probability density 

functions to define parameters without assuming any linearity, and filtering the predictions to 

allow only models with target objective functions slightly above the minimum value obtained by 

the inverse modeling (Anderson et al., 2015). To overcome the computational burden of the MC 

method, there are more efficient variations such as the Monte Carlo Markov Chain (MCMC) 

method, which favors combinations of parameters with a good fit of the target objective function 

(also known as phi) (Anderson et al., 2015). MCMC is a recommended method to avoid the 
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underestimation of the uncertainty in many problems, as are the hydro geophysical inverse models 

(Linde et al., 2017). 

The Null Space Monte Carlo (NSMC) is another modified MC version, widely used 

because it reduces the burden of calibration-constrained MC in highly parameterized models. 

NSMC pre-conditions the ensemble of exploring parameters (or combination of parameters) that 

are uninformed by the calibration dataset, yielding parameter sets that should be close to an 

acceptable value of the calibration objective function (Anderson et al., 2015; M. Tonkin & 

Doherty, 2009; White et al., 2016). 

Stochastically calibrated methods, such as the Ensemble Kalman filter (EnKF), emerged 

as an alternative to uncertainty methods that rely on a uniquely calibrated model. These methods 

generate an ensemble of multiple realizations that assimilate data meanwhile representing multiple 

combinations of parameters with realistic patterns of spatial variability (Zhou et al., 2014). The 

EnKF is computationally efficient compared to classical gradient-based methods(such as Gauss-

Levenberg-Marquardt) and it is becoming increasingly popular for inverse modeling in 

hydrogeology (Li et al., 2018). However, more recently, the iterative ensemble smoother (IES) 

emerged achieving results comparable to EnKF with much less computation cost (Li et al., 2018). 

It has been demonstrated that IES can be used to easily address history matching and uncertainty 

quantification of highly parameterized models, enabling low-cost access to decision support 

analyses (White et al., 2021). 

To the best of our knowledge there are no groundwater models of tunnels in the literature 

applying the principles of strategic abstraction, forecast first and early uncertainty quantification. 

Neither we found application of IES to groundwater models of drifts, galleries, or tunnels. The 

purpose of this research was to apply these recent workflow trends to address uncertainty of flow 
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yield in an underground gallery structure. Moreover, we assessed the suitability of the different 

types of uncertainty quantification to get insights of the convenience or inconvenience of such 

methods to assess flow forecast. 

Our case of study is based on the work of (UIS & AMB, (2019) where they built a 

groundwater numerical model to forecast flows yielded by a projected drainage gallery. The 

gallery would rest over an unconfined alluvial aquifer in Bucaramanga, Colombia, where 

groundwater is causing ground instability in an urbanized area greater than 1 km2 (UIS & AMB, 

2018, 2019). Many groundwater models were elaborated and calibrated along the different stages 

of the gallery design to forecast its drawdown and flow. The study obtained a wide range of results 

in the estimation of hydraulic conductivities and flows making evident that high uncertainty was 

present in the modeling process (UIS & AMB, 2018, 2019). The models in the 2019 study (UIS & 

AMB, 2019) were calibrated in steady state (but uncertainty was not assessed) by using a scarcely 

parameterized approach, using zonation and Tikhonov as regularization devices to address the ill-

conditioning typically of inverse groundwater models (Anderson et al., 2015).  

Under these circumstances, we saw the necessity of performing the uncertainty analysis 

for a numerical groundwater model of the drainage gallery to identify the appropriate flow range 

for the gallery design using few available data in a highly parameterized model. Furthermore, we 

aimed at transparency and reproducibility through a programmatic approach (Bakker et al., 2016; 

White, Foster, et al., 2020) using python scripts and relevant packages such as Flopy (Bakker et 

al., 2016) and Pyemu (White et al., 2016). This is not a minor issue because there are strong calls 

from the scientific community for more clarity and reproducibility in geoscience and modelling 

papers. (Gil et al., 2016; White et al., 2021) 

 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 22 

1. Theoretical framework 

 

 

1.1 Groundwater modeling 

 

The groundwater modeling process has two main components: the conceptual model and 

the numerical model (Servicio de Evaluación Ambiental, 2012). The conceptual model relies on 

the experience and knowledge of the study site by the researchers; the numerical model is typically 

solved based on finite-difference or finite-element methods to simulate the groundwater flow. The  

3D groundwater flow is represented in transient state with a complex network of sources an sinks; 

MODFLOW is one of the well-known solvers of the groundwater flow equation (Equation 1) 

(Anderson et al., 2015): 
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Equation 1. Transient groundwater flow in 3D 

where, 

ℎ is the variable of interest representing the hydraulic head, which is the sum of pressure 

and elevation heads  

𝑥, 𝑦, 𝑧, 𝑡 are the independent spatial and time variables  

𝐾௫ ,  𝐾௬ , 𝐾௭  are the principal components of the hydraulic conductivity tensor, according to 

the Darcy equation 

𝑆௦  is the Storage parameter  

𝑊∗ are the water sources and sinks. 
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The MODFLOW 6 code solves the groundwater equations in steady and transient state. 

MODFLOW 6 is based on the control-volume finite-difference approach, where each cell can be 

connected to any number of surrounding cells allowing pinch out layers and a better fit of 

geological conditions (Langevin et al., 2017).  

Galleries and tunnels in MODFLOW are usually represented with the drain (DRN) 

boundary condition (Suescún, 2016; Zaidel et al., 2010). The DRN package simulates features that 

remove water from the groundwater system at a rate proportional to the difference between the 

head in the aquifer cell and a fixed drain elevation when the hydraulic head is above the drain 

elevation. Many physical conceptualizations can be approximated by the DRN package; for 

instance, Figure 1 shows a three-dimensional view of a buried drain tile as used for agriculture. 

The slope of the pipe is assumed to be large enough that once water enters to the pipe, it is carried 

away without filling it. Head losses occur through three processes: around the drain inside the cell, 

in the immediate vicinity where the hydraulic conductivity differs from the average value used in 

the cell (backfill material), and through the wall of the drainpipe. Those head losses may be taken 

proportional to the discharge and the proportionality constant is called the drain conductance 

(Langevin et al., 2017). 
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Figure 1. 

Drain conceptualization with factors affecting head loss around a buried drainpipe in a 

backfilled ditch (Langevin et al., 2017) 

 

 

1.2 Inverse model or model calibration 

 

In inverse modeling, comparison between simulated and observed values is carried out 

using a target function. Observed and simulated values are dependent variables of the system (i.e., 

hydraulic head). The parameter values that produce the “best fit” are defined as those producing 

the smallest value in the objective function (Hill & Tiedeman, 2007). Given the great amount of 

parameters involved in the calibration of most groundwater models, it is advisable to use all the 

available data without saving part of it for verification/validation (Anderson et al., 2015; J.e. 

Doherty & Hunt, 2010; Linde et al., 2017). 

Aquifer cell around the 
drain 
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PEST and PEST++ (Model-Independent Parameter Estimation and Uncertainty Analysis) 

(J. E. Doherty et al., 2010; Welter et al., 2015; White, Hunt, et al., 2020)are the most used tools 

for parameter estimation in applied groundwater modeling. Among their notable features are (1) it 

has inversion methods to optimize the objective function (Anderson et al., 2015), and (2) 

PEST/PEST++ implements the subspace Gauss-Levenberg-Marquardt (GLM) algorithm for least-

squares parameter estimation (White, Hunt, et al., 2020). GLM is also known as maximum 

likelihood method, and it is frequently used with zonification to regularize the solution (assuming 

areas with homogeneous parameters) (Zhou et al., 2014). The equation of the GLM method 

according to Hill & Tiedeman, (2007) is shown in Equation 2 

(𝐶்𝑋௥
்

𝜔𝑋௥C + Im୰)Cିଵd୰ = 𝐶்𝑋௥
்𝜔൫𝑦 − 𝑦ᇱ(𝑏௥)൯ 

𝑏௥ାଵ = 𝜌௥𝑑௥ + 𝑏௥ 

Equation 2. GLM 

where, 

r is the number of the iteration 

𝑋௥ is the sensitivity matrix of the parameters in 𝑏௥ (also known as the Jacobian matrix) 

𝜔  is the weight matrix 

(𝑋௥
்𝜔𝑋௥) is the symmetrical matrix of NPxNP dimensions (Number of estimated 

parameters)  

d୰ is the vector of parameter change 

𝑏௥ is the vector of estimated parameters at the beginning of iteration r 

𝐶 is the scaling parameter. 

m୰ is the Marquardt parameter to correct vector d୰ (also known as 𝜆) 

𝜌௥ is the dampening parameter to avoid overshooting in the d୰ vector  



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 26 

When the Marquardt (𝜆) parameter is zero, the upgrade vector direction behaves like the 

Gauss-Newton (guided by the curvature/Hessian of the parameter space); as 𝜆 increases, the 

upgrade vector changes towards the solution of the gradient descent. PEST++ tests different values 

of 𝜆 to explore a larger portion of the parameter space (Welter et al., 2015). 

Calibration of highly parameterized models commonly requires regularization methods to 

achieve a more stable and smooth target objective function (Anderson et al., 2015). PEST++ uses 

Tikhonov regularization and truncated singular value decomposition as regularization devices 

(Welter et al., 2015). 

Singular value decomposition (SVD) is a method to solve ill-conditioned (i.e., non-unique 

solution) least square problems by factoring a G matrix (the Jacobian in groundwater calibration) 

(from the inverse problem Gm=d) into orthogonal matrices (Equation 3). Where 𝑆௣ is a diagonal 

matrix of positive values listed from highest to lowest (Aster et al., 2019b) 

𝐺𝑚 = 𝑑 

𝐺 = 𝑈𝑆𝑉் 

𝑆 = ൤
𝑆௣ 0

0 0
൨ 

Equation 3 Singular value decomposition 

where, 

𝐺𝑚 = 𝑑 is the mathematical model 

𝐺  is a function matrix 

𝑚 is the vector of model parameters, to be estimated in inverse problems 

𝑑 is a vector of discrete observations  

U and V are orthogonal matrices corresponding to the data and model space, respectively 

S is a diagonal matrix with diagonal elements called singular values. 
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In ill posed problems, the lowest values of matrix S are close to zero, indicating that there 

are projections of the parameters in the null space. To avoid the instability of the inverse model, 

those low values are truncated (TSVD). This generates a worse fit in data but avoids overfitting, 

especially where the noise is present (Aster et al., 2019a). SVD is usually used with Tikhonov 

regularization to avoid unreasonable values and overfitting (M. J. Tonkin & Doherty, 2005).The 

Tikhonov regularization incorporates the soft knowledge (i.e., prior knowledge of the solution) by 

augmenting the measurement objective function with a second regularization objective function 

(Equation 4) (Anderson et al., 2015). 

Φ௧௢௧௔௟ = ෍(w୧r୧)
ଶ +

௡

௜ୀଵ

෍൫f୧(p)൯

௤

௝ୀଵ

 

Equation 4 Target objective function with Tikhonov regularization 

where, 

The first term is the sum of squared weighted (w) residuals (r) 

The second is the sum of functions that penalizes deviation of the parameters (p) from the 

soft knowledge. 

Tikhonov regularization have different parameter-dependent functions to minimize (also 

known as different orders of Tikhonov regularization). Those regularization measures could be a 

function of preferred values (zeroth order), or values of the first or the second derivatives of the 

parameter matrix (m), reflecting preference for flat (first order) or smooth (second order) models 

(Aster et al., 2019c). 

Highly parameterized models have practical limits in the number of parameters for inverse 

modeling due to the computational burden of estimating a great quantity of parameters. This can 

be handled by using pilot points, where parameters are estimated in discrete locations distributed 
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over the model domain, and the rest of the node/cells are assigned by spatial interpolation. The 

geological and hydrogeological phenomena, although unknown in every point in space, usually 

shows some continuity behavior which can be expressed statistically by variograms or covariance 

matrices (J. E. Doherty et al., 2010). The pilot point method was developed to introduce spatial 

variability by kriging geostatistical interpolation (Zhou et al., 2014) 

 

1.3 Stochastic modeling and uncertainty analysis 

 

The maximum likelihood method yields a unique representation of the aquifer, 

heterogeneous enough to reproduce the observed data, but it does not necessarily represent the real 

spatial variability, failing in forecasting phenomena that depend on that variability (Zhou et al., 

2014). Stochastic modelling may be a better strategy because the calibration (or inverse model) 

can be described from a probabilistic approach as the method that selects the most probable model 

(and forecast) given the existing knowledge.  

The Bayes equation (Equation 5) describes the probability of A given information B. The 

posterior belief (𝑃(𝐴|𝐵)) is a function of the prior belief 𝑃(𝐴) and the likelihood 

𝑃(𝐵|𝐴)(Anderson et al., 2015). 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ⋅ 𝑃(𝐴)

𝑃(𝐵)
 

Equation 5 Bayes model 

The uncertainty analysis may be used to report an estimate of uncertainty surrounding a 

forecast to address a regulatory requirement or guide management decisions. To reach that 

objective there are different types of methods with different requirement of computational 

resources. Linear uncertainty analyses usually require only the sensitivity matrix, then little effort 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 29 

is required after calibration (Anderson et al., 2015). Two of the most common linear uncertainty 

methods are Shur’s complement and Error Variance Analysis (White et al., 2016). The first one is 

described in section 0 (Linear analysis within the Methodology). The second one is outlined in 

Equation 6 (Anderson et al., 2015). 

𝜎௦
ଶ = 𝑦௧𝐶(𝑝)𝑦 − 𝑦௧𝐶(𝑝)𝑋௧[𝑋𝐶(𝑝)𝑋௧ + 𝐶(𝜀)]ିଵ𝑋𝐶(𝑝)𝑦 

Equation 6 Error variance analysis in Bayes formulation 

𝜎௦
ଶ is the variance of the forecast uncertainty 

𝑦 is the parameter sensitivity vector of the forecast S 

𝐶(𝑝) is the parameter covariance matrix representing expert knowledge 

𝑋 is the Jacobian Matrix 

𝐶(𝜀) is the covariance matrix of measurement error of targets. 

There are more complex methods to assess uncertainty based on Monte Carlo with no 

assumptions of linearity (Anderson et al., 2015). The more relevant to our work is Null Space 

Monte Carlo (M. Tonkin & Doherty, 2009). The method is described in section 0(Post calibration 

Monte Carlo analysis within the Methodology) but here it is outlined in eight steps. 

1. From the base model calculate the sensitivity matrix and construct and calibrate super 

parameters (using SVD) 

2. Calculate the Jacobian (X) with the calibrated parameters  

3. Undertake SVD decomposition of  𝑋்𝑄𝑋 to get V1,V2, E1, E2 

4. Determine the number of columns in V1 and V2 (dimensionality of the solution space) 

5. Generate parameters stochastically using the covariance of parameters 

6. Estimate 𝑉ଶ𝑉ଶ
் and project differences between stochastic parameters and the 

calibrated parameters onto the null space. 
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7. Add the projected values to calibrated parameters values 

8. Recalibrate the super parameters in case of misfit. 

The IES algorithm is a useful tool to address uncertainty; it uses GLM but the Jacobian is 

calculated stochastically. It uses an ensemble of random models to develop history matching of all 

the models and simultaneously quantify their uncertainty. The approximated Jacobian matrix used 

in IES has a lower computational burden because the number of parameters is not linked to the 

number of runs necessary to get a Jacobian, allowing the history matching and uncertainty 

quantification of highly parameterized models (White, 2018). The mathematical implementation 

of IES is presented in section 0(Iterative Ensemble Smoother within the Methodology). 

 

 

2. Objectives 

 

 

2.1 Research question 

 

How to perform the best flow forecast uncertainty analysis of a drainage gallery located in 

the north of Bucaramanga using few data in a highly parameterized numerical model? 

 

2.2 General objective  

 

Perform the uncertainty analysis for a numerical groundwater model of a drainage gallery 

to identify the appropriate flow range for the gallery design. 
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2.3 Specific objectives  

 

Calculate the initial forecast flow by building a prior groundwater model of the north of 

Bucaramanga in transient state. 

Estimate the most probable flow at the gallery through inverse numerical modeling  

Analyze the uncertainty of flow forecast for the gallery using ensemble, Monte Carlo, and 

linear methods to identify the most suitable method for the site. 

 

 

3. Study Site 

 

 

3.1 General information of the study site 

 

The city of Bucaramanga is at the lowest point of the upper basin of the Lebrija River 

(CSRL), a 1,280 km2 watershed located in the northwestern foothills of the eastern Andean range 

of Colombia (Figure 2). A rough topography extends throughout 80% of its area, with slopes 

between 30 and 200%, in elevations that range between 1,000 and 3,500 m.a.s.l. The remaining 

20% of the area corresponds to rolling to flat terrain, located at the south-western side of the 

watershed with elevations between 640 and 1000 m a.s.l. The main rivers that drain along the basin 

(Suratá and Oro) are born in the Santander Massif (north-east extent of the basin) but their 

longitudinal profile softens substantially when they reach the Bucaramanga area (Gomez et al., 

2015). Annual precipitation in the area presents a bimodal trend marking two rainy seasons and 
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two dry (less rainy) seasons. In the mountainous Central area (elevations up to 1,800-2,000 

m.a.s.l.) the maximum rainfall can reach 2,000 millimeters per year. In the lowest (west) and 

highest (east) part of the basin, rainfall is between 700 and 900 mm per year. Isotopic an 

geochemistry data show that the alluvial aquifers in the lowest part of the basin receive their 

recharge from the upper part of the basin (Gomez et al., 2015). 

 

Figure 2. 

General study area 

 

Note. Adapted by the author from  Gomez et al., 2015 

 

The study site is in the city of Bucaramanga, specifically, on the northern side of the 

Bucaramanga’s plateau, in an area of 7 hectares (  
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Figure 3). The area is limited by The Suratá river on the north-east side, the Oro River on 

the north-west side, the Picha Creek on the south-west side, and the UIS Creek on the south-east 

side. The two main rivers that drain the CSRL (Suratá and Oro) are perennial in the study site. 

This area is of economic and social interest because there have been mass movements that have 

affected more than 5000 inhabitants and 2000 buildings in the last 40 years. A previous study 

proposed that to increase the safety factors in the area, it is necessary to decrease pore pressures 

by lowering the water table (UIS & AMB, 2018). To do this, a drainage gallery was proposed 

(location shown by the yellow arrow in   
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Figure 3). However, before constructing the gallery it is necessary to understand the 

behavior of the hydrogeological system; this would help to predict the geotechnical and 

environmental impact of this gallery.  
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Figure 3. 

Plane view of study area showing boundary conditions and location of the drainage gallery, 

northern Bucaramanga, the arrow in the gallery represents the direction of the construction 

process. 

 

Note. Source: author, using a” Google Hybrid” base map. 

 

3.2 Geological frame of the study zone 

 

In the area of Bucaramanga (Santander-Colombia), geology is complex with the upper part 

of the Lebrija Basin composed of weathered and fractured igneous or metamorphic rocks 

(Santander Mountain) with high slopes and the lower part (Bucaramanga plateau) composed of 

alluvial formation (Gomez et al., 2015). The Bucaramanga – Santa Marta Fault divides the two 

geologic systems (Gomez et al., 2015). 
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The geological frame of the study area is the Bucaramanga Formation, a quaternary deposit 

with composition from base to top: Organos Member (Qbo), Finos Member (Qbf), Gravoso 

Member (Qbg) and Limos Rojos member (Qblr) (Franco & Ramírez, 2018). The Organos member 

of the Bucaramanga Formation covers the area of interest (see Figure 4); it is a deposit whose 

lithological characteristics allowed inferring that it was formed under two sedimentary 

environments: alluvial processes and fluvial transport (Lima & Medina, 2015).  

From the granulometry, geometry, fabric, composition, and presence of organic matter 

within the Organos Member, it is possible to distinguish -in their order- 7 main sedimentary facies. 

- Facies Gm: Clast-supported gravels arranged chaotically with slight stratification 

- Facies P: Pedogenic carbonate 

- Facies Fr: Varicolored clays with the presence of organic matter. 

- Facies Sh: Massive sands with scattered pebbles and crude laminar stratification. 

- Facies Gms: Sand-supported gravels with slight imbrications. 

- Facies Gcm: Gravel supported. 

- Facies Pf: Ferricrete. 

The structural model that governs the study area is the Bucaramanga Fault system 

(Velandia & Bermúdez, 2018), which is presented as individual traces, with the complexity of 

ridges and elongated valleys controlled by synthetic riedel traces I, antithetical ( R’) and some 

post-Riedel strokes (P). the geology is partially distorted by the presence of rotational slip faults 

besides the faults of the structural system (see C-C’ profile of Figure 4, bottom). Those 

discontinuities in the geological system in the Organos member add complexity and uncertainty to 

the geological and hydrogeological knowledge of the region. 
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Figure 4. 

Geologic map of the study area. Top: plan view; Bottom: geologic profile for the C-C' section 

 

 

Note. Adapted by the Author from Gómez Arroyo & Gómez Palencia, 2021 and UIS & AMB, 2019 
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3.3 Drainage gallery 

 

Drainage galleries to improve slope stability are very common in big and deep landslides 

(Suarez, 2008). UIS & AMB, 2018 proposed a gallery to lower pore pressures in a pre-feasibility 

study, and UIS & AMB, (2019) upgraded the studies to detailed engineering. The gallery is to be 

located in the southeast zone of the study zone, starting its construction at the main creek of the 

area with a positive slope in the eastward direction, allowing the gallery´s discharge to flow west 

toward the creek. The location of the gallery and associated wells are shown in   
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Figure 3. 

The alignment of the gallery has a straight central axis with a total length of 525 m with a 

longitudinal slope of 1% (Figure 5). Eight gallery wells are proposed to help drain the aquifer in 

case low conductivity layers prevent it (Figure 6). The cross-section of the gallery has a horseshoe 

shape, covered with shotcrete, with a maximum height of 3.8m. Seven radial drains every 10 

meters allow to drawdown the water table (  
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Figure 7). The gallery construction rate is established at 2.2 m/d. 

 

Figure 5. 

Gallery Profile 

 

Note. Adapted by the author from UIS & AMB, 2019 

Figure 6. 

Gallery wells scheme 

East West 
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Note. Adapted by the author from UIS & AMB, 2019 
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Figure 7. 

Gallery design scheme 

 

Note. Adapted by the author from UIS & AMB, 2019 

 

3.4 Hydrogeological conceptual model for the study zone 

 

A recent review by Enemark et al., 2019 states that “hydrogeological conceptual models 

are collections of hypotheses describing the understanding of groundwater systems”.  For the case 

of our study zone, there are three studies that contribute to the general understanding of the system. 

Antolínez Quijano, 2014 proposed a general conceptual model of the entire Bucaramanga 

formation. UIS & AMB, 2019 proposed the conceptual model of the groundwater system  used in 

this work, and Medina Baez, 2021 complemented those findings with hydrochemistry analyses. 

The main processes described in the conceptual model used in this work are flow from south to 

north coming from a lateral recharge from the Bucaramanga’s plateau; local recharge by rain, and 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 43 

discharge to drains and rivers, especially the Suratá River (Figure 8). Despite the general 

understanding that these conceptual models are one of the major sources of uncertainty in 

groundwater flow and transport modeling (Enemark et al., 2019; Refsgaard et al., 2012), they 

provide a starting point for specific site analyses. For the case of this study site, the hypotheses are 

supported by previous studies (Antolínez Quijano, 2014; Gómez Arroyo & Gómez Palencia, 2021; 

Gomez et al., 2015; Medina Baez, 2021; UIS & AMB, 2018, 2019). More information about the 

conceptual model can be found in Appendix A. 

 

Figure 8. 

Conceptual model scheme. 

 

Note. Adapted by the author from UIS & AMB, 2019 
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4. Methodology 

 

 

This study develops an uncertainty assessment of the forecasted flows yielded by a 

drainage gallery to be built over an unconfined aquifer. To obtain a better assessment of the 

posterior uncertainty of the forecasted variables (i.e., to better assess the uncertainty of the modeled 

flows), we applied relevant approaches such as forecast first - FF  (White, 2017), strategic 

abstraction - SA (John Doherty & Moore, 2020), early uncertainty quantification – EUQ 

(Hemmings et al., 2020) and programmatic approach – PA (Bakker et al., 2016; White et al., 2016, 

2021; White, Foster, et al., 2020) throughout the different stages (represented by rectangles) of the 

workflow (  
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Figure 9). FF and SA were applied from model setup through the assessment of the model 

structure (1 - 3), EUQ was applied from model setup through the assessment of posterior 

uncertainty (1 - 4), and PA was used in almost the entire workflow (1 - 7). As the arrows show, 

some processes are interdependent along the workflow, while others are not (i.e., iterative 

ensemble smoother - IES (4) vs. linear uncertainty analysis (6)).  
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Figure 9. 

Graphical representation of the workflow 

 

 

4.1 Model Setup [1] 

 

We used the MODFLOW 6 code to solve groundwater equations in steady and transient 

state.  MODFLOW 6 is based on the control-volume finite-difference approach, where each cell 

can be connected to any number of surrounding cells allowing pinch out layers and a better fit of 

geological conditions. The Groundwater flow model in MODFLOW 6 (GWF) is divided into 

“packages” where a package is the part of the model that deals with a single aspect of a simulation. 

Packages included within the GWF model include those related to internal calculations of 

groundwater flow (discretization, initial conditions, hydraulic conductance, and storage), stress 

packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and 

evapotranspiration), and advanced stress packages (streamflow routing, lakes, multi-aquifer wells, 
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and unsaturated zone flow) (Langevin et al., 2017). Conceptual model inputs were taken mainly 

from UIS & AMB, 2019 where boundary conditions were slightly modified, but raster geological 

inputs are exactly the same. Details of the model setup are shown in the following subsections. 

 

4.1.1 Boundary conditions (BCs). 

 

The addition or removal of water from a groundwater flow model is represented either as 

a perimeter or internal boundary condition (BC) and are frequently used to represent streams, lakes, 

springs, wetlands and other more sophisticated features (Anderson et al., 2015). In this work, BCs 

that enter water into the model (lateral and local recharge) change accordingly to precipitation 

patterns which are taken from the weather and climate Colombian authority (IDEAM). BCs for 

the study zone can be seen in Figure 12. 

Local recharge is defined as a Recharge BC (Rech) (Neuman-type BC); it changes daily as 

a percent of the total rain in the area (Figure 10) (10%, according to the water budget presented in 

UIS & AMB, 2018). Creeks are defined as drain BCs (DRN) (Cauchy-type BC); Oro and Suratá 

rivers (to the north) are defined as constant head BCs (CHD) (Dirichlet-type BC). Hydraulic heads 

in CHD and DRN BC are set 1 m above the ground surface. 
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Figure 10. 

Daily precipitation in the study area where the 10% is used as local recharge (Bucaramanga 

IDEAM Gauge). Data after February 2021 was not available, then data of 2017 was used to fill 

the gap in the future time. 

 

 

Lateral recharge from the Bucaramanga plateau is introduced by a general head BC (GHB) 

(Cauchy-type BC) that is typically used to simulate flow from a distant boundary located outside 

of the model domain (Anderson et al., 2015). This is done applying a conductance estimated by 

taking distance (approximately 2000 m from the original water source used for Antolínez Quijano, 

2014), the model layer thickness, the cell size,  and permeability from the initial value set in the 

model (Table 1). Lateral recharge varies monthly, and proportional to monthly rain. Variability of 

head values in the source is around 1020 and 1040 (Antolínez Quijano, 2014) and were made 

proportional the maximum and minimum variation in monthly rain. The piezometric surface 

predicted by previous models around our proposed GHB shows a gradient correlated with the 
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gradient of the ground surface (Antolínez Quijano, 2014); because of this, the top surface of the 

model was used to correct the hydraulic head in the GHB toward lower values (Figure 11). 

 

Figure 11. 

Range of monthly variations of hydraulic heads[m] in GHB proportional to rain. Top: monthly 

variations of rain[mm], bottom monthly variations of hydraulic heads in GHB 

 

 

 

The gallery is modelled as a drain BC just like the gallery wells, using the detailed design 

schedule and drawings of the previous study (UIS & AMB, 2019). The typical section ( 
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Figure 7) shows the geometry and number of drains that will control the conductance value. 

The drain condition is activated when the gallery in each cell is completely built, this is checked 

using the gallery construction rate (2.2 meters of gallery per day). Wells are also activated when 

they are completely built in the scheduled construction and are modelled as drain BCs; the bottom 

of the drain is set to be 2.5 meter above gallery top. 

The gallery construction process must be modelled in transient state because the maximum 

flow happens when the gallery is completely built or before that. Besides, activating all the drain 

BCs of the gallery suddenly, would result in an overestimation of the maximum flows caused by 

the abrupt gradient change. Modelling the gallery only in steady state would show the flow in the 

long term, which is less than the maximum value. 

 

Figure 12. 

Boundary conditions 
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4.1.2 Horizontal grid discretization. 

 

The model is built using the MODFLOW 6´s DIS package to configure an irregularly 

structured grid with a coarse discretization in areas away from the gallery, and a more refined grid 

at and around the gallery zone. The spacing transition between the refined and coarse grid was 

done using a smooth factor of 1.5 to avoid convergence problems. Schemes of model discretization 

are shown in Figure 13 and Figure 14 

 

4.1.3 Vertical discretization and hydraulic properties 

 

Model layers were defined according to the geological layers, but vertical gradients seen 

through piezometer data suggested that more vertical discretization was needed.; thus, geological 
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layers with many model layers were defined, using the same hydraulic conductivity which was 

assigned by employing the same external file. Additionally, a minimum thickness was introduced 

to avoid model errors by pinch outs. When a geological layer disappears, those zero-thickness cells 

are assigned as vertical through cells in the idomain package.  

Four model layers were defined initially, but the first one is divided in two different 

geological units that are not continuous: Qd (orange color), a local colluvial layer, and Graboso 

member Qbg (red color) pinching out in the north of the study zone (Figure 13). Qbg can be 

important because it has an aquifer known as Superior Aquifer of Bucaramanga. The layers 

following vertically down are Qbo2 (upper Organos member of Bucaramanga Formation, grey 

color), Qbo1 (Lower Organos member of Bucaramanga Formation, light blue color), and rock 

(dark blue color).  

Figure 13. 

Simplified 3D model representing the initial model discretization and hydraulic conductivity 

assignment 
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Vertical permeability was defined as anisotropy Kv/Kh. Specific storage (Ss) and specific 

yield (Sy) were defined in the Storage package (STO) in the same way as hydraulic conductivity. 

Table 1 shows the hydraulic properties set at the beginning of the modelling process. These values 

were proposed by the author based on UIS & AMB, 2019. An example of the model setup is shown 

in Figure 14 with profiles and boundary conditions. 

 

Table 1. 

Initial hydraulic properties used for the geological layers of the model 

Formation k[m/s] kv(anisotropy) Ss Sy 
Qd 1.00E-07 1.00E-01 1.00E-04 1.00E-01 

Qbg 1.00E-05 1.00E-01 1.00E-04 1.00E-01 
Qbo2 1.00E-07 1.00E-01 1.00E-04 1.00E-01 
Qbo1 1.00E-08 1.00E-01 1.00E-04 1.00E-01 
rock 1.00E-09 1.00E-01 1.00E-05 1.00E-01 

Figure 14. 

Model structure scheme of the numerical groundwater model. Top-left plane view:  hydraulic 

conductivities of the first model layer; bottom-right plane view: boundary conditions for the first 

model layer (recharge in purple, drains in cyan, GHB in aquamarine); top-right and bottom-left 

show model cross-sections A-A’ and B-B´, respectively. 
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4.1.4 Time window and temporal discretization 

 

The time window used for the modeling process is four and a half years, using daily stress 

periods, starting on the first day of 2017 and finishing in mid-2021. The first stress period was set 

as steady and de the following as transient (in the STO package) to use the steady-state model 

solution as initial condition for the transient time steps. Daily time steps of 86400 seconds (seconds 

in one day) were set for each transient stress period because the model is defined in international 

units (seconds). The gallery starts its construction in the third year and 3 months (starting on day 

1185). The first 3 years of modelling are used to “heat up” an calibrate the model. Then recharge 

values used at the beginning are recycled and used again for the following time steps. Gallery 

construction takes place until day 1424. From there, their BCs will be active until the end of the 

simulation (finishing on day 1642). 

 

4.1.5 Transparency and reproducibility 

 

Reproducibility and transparency were intended throughout the process; this implied an 

important effort in the programmatic approach. We used Python with its libraries to build up the 

model and Git/Git Hub to document it, as outlined in Figure 15. Open-source software combined 

with Git and GitHub for model documentation allows high transparency and reproducibility for 

anyone who wants to audit the model construction process and forecast uncertainty analysis. 

Python libraries are the interface for direct and inverse software modelling. Flopy (Bakker et al., 

2016) handles MODFLOW 6 which solves the groundwater equations in steady and transient state. 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 56 

Pyemu (White et al., 2016) is the python framework that interacts with Pest++, a software used for 

uncertainty analysis (White, Hunt, et al., 2020). 

The philosophy of the model’s construction follows an automatic approach to allow a 

constant review in model design. Python’s Flopy library builds inputs for model runs taking GIS 

inputs to define extension, domain, boundary conditions and model layers. Cell sizes and the 

number of layers supplied in the code determine thicknesses and boundary condition (BC) cells by 

taking data from shapefiles and raster files and adapting them to the model estructure. 

 

Figure 15. 

Tool workflow used to guarantee reproducibility and transparency.  
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4.2 Prior numerical modelling  

 

4.2.1 Prior uncertainty quantification [2] 

 

Following the methodology of Hemmings et al., (2020) we developed a prior modelling to 

identify a suitable setting for the model to reproduce field observations and assess its effect in 

model forecast. Many parameters settings were tested to identify its effects on model outputs, 

especially flow forecast (White, 2017). 

We defined parameters to be statistically modelled using Pyemu and Pest++. The Pestpp-

ies executable was used with zero iteration (noptmax parameter in Pest control file) to develop the 

prior modelling; then, every input used here can be used as input in the iterative ensemble smoother 

(ies) process (process [4] in Figure 6). 

The parameters selected to be statistically varied are horizontal hydraulic conductivities, 

vertical conductivities, specific storage, specific yield, general head conductance and recharge. To 

allow heterogeneity in realizations we used pilot points every 2 cells in hydraulic properties and 1 

conductance per layer in GHB. A variability was assigned to those parameters to define a 

probability density function which determined the variability of the prior parameters. 

 

4.2.2 Assessment of model structure [3] 

 

We modified the model in search of a balance between simplicity and accuracy (John 

Doherty & Moore, 2020), avoiding a complex setting to attain data assimilation and evade prior 

data conflicts. After setting model complexity as “complex” in the MODFLOW 6 solver and the 
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statistical variability of parameters (Table 2) in a pest++ file, we ran many Monte Carlo (MC) 

models with gaussian distributions of parameters and assessed the optimum configuration of the 

model. 

 

Table 2. 

Variability of parameters. Initial high and low multipliers assigned to groups of parameters 

represent ±2 standard deviations of the initial values in a Gaussian distribution. The maximum 

and minimum bound restrict the values of possible parameters in the history matching. 

Parameter group 
Low bound 
multipliers 

high bound 
multipliers 

Minimum 
bound 

Maximum 
bound 

Horizontal hydraulic 
conductivity (HK) 

0.1 10 1e-10 1E-4[m/s] 

Vertical hydraulic 
conductivity (Kv/Kh) 
(VK) 

0.1 10 100 0.01 

Specific Storage (SS ) 0.1 10 1e-6 1e-2 
Specific yield (SY) 0.3 3 0.01 0.5 
General head 
conductance (Cond) 

0.1 10 0 
100(virtually 

unlimited) 
Recharge (Rech) 0.3 3 0 1100 [mm/yr] 

 

We analyzed the results of prior MC modelling using mainly two types of graphics. The 

first type shows all the prior realizations of one observation of the model (and sometimes compared 

with a measured field value) (Figure 16, top). The second shows the frequency of maximum flows 

yielded by the gallery (Figure 16, bottom). When measured field values are outside of the ensemble 

of prior modelled values (prior data conflict), the structure of the prior model must be reviewed to 

avoid biases generated by history matching compensation. This prior data conflict can be neglected 

if the misfit is in non-important observations, which are those deemed uncorrelated with the model 

forecast (i.e., observations far from the gallery or very deep). 
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Figure 16. 

Example of output graphs generated by the prior Monte Carlo analysis used to assess model 

structure. Top: ensemble of results of one model observation (grey) compared with the 

correspondent field observation (red). Bottom: histogram showing the distribution of maximum 

flows in the stochastic realizations.  

 

 

4.3 History Matching and uncertainty quantification. 

 

We compared model observations with available piezometer data at points where this 

information was reported from previous studies (Medina Baez, 2021; UIS & AMB, 2019) (Figure 

17), vibrating wire piezometers have more than one observation as is shown in Table 4. These 

points are mainly located at or around the gallery zone. Model observations were placed also in 

the gallery and its wells to monitor the behavior of flows in those BCs. Although field observations 
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were used in the prior modelling, they were used only to identify prior data conflicts. In this phase 

those observations were used for data assimilation, which allowed updating the initial parameters. 

The history matching process requires a model observation for each field observation, 

except for the boundary conditions where observations are used to monitor the flows. Also, for 

each field observation we set up a measurement error (Table 3) to indicate measurement precision 

(reliability) and weights (relative importance) in the history matching process. 

 

Table 3. 

Measurement error of every observation expressed as a standard deviation 

Observation desvstd Observation desvstd 
P-Gal-S1 0.2 P-RN-S7_1 1 
P-Gal-S2 0.2 P-RN-S7_2 0.7 
P-Gal-S3 0.2 P-RN-S7_3 0.5 
P-Gal-S4 0.2 P-RN-S7_4 0.5 
P-Gal-S5 0.2 P-E3-S6_1 0.7 
P-Gal-S6A 0.2 P-E3-S6_2 0.5 
P-LZ-4 0.2 P-E3-S6_3 0.5 
P-M-6 0.2 P-E3-S6_4 0.5 
P-MS-1 0.2 P-E3-S6_5 0.5 
P-MS-2 0.2 P-VR-S_1 0.5 
P-VR-1 0.2 P-VR-S_2 0.5 
  P-VR-S_3 0.5 

 

The parameters modified in the history matching process are the same as above (section 

0); the parameterization structure is shown in Table 5. To allow model heterogeneity but reducing 

the number of adjustable parameters, pilot points were configured in some parameters using 

Kriging and semi variograms to express covariance between close spatial parameters. The semi 

variogram used was exponential with a range of 3 times the maximum separation of the pilot points 

(6 times the separation of the outer refinement). The drain conductance was not set as an adjustable 
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parameter; instead, it was set as a high value, making the hydraulic conductivity in the area control 

the flow to the BC (Anderson et al., 2015). 

 

Figure 17. 

Model observations used for history matching and BCs 

 

 

Table 4. 

Depth of observations (m) in vibrating wire piezometers 

Piezometer Sensor Depth (m) 
P_RN_S7_4 10.5 
P_RN_S7_3 40.5 
P_RN_S7_2 91.5 
P_RN_S7_1 121.5 
P-VR-S_3 26.5 
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Piezometer Sensor Depth (m) 
P-VR-S_2 40.5 
P-VR-S_1 77.5 
P-E3_S6_5 9 
P-E3_S6_4 23.5 
P-E3_S6_3 35.5 
P-E3_S6_5 50.1 
P-E3_S6_1 141.5 

 

Table 5. 

Settings for the adjustable parameters in history matching. *Constant parameters are those that 

don’t have horizontal heterogeneity. 

Parameter Name Parameter type External files to modify 
Horizontal hydraulic 
conductivity (HK) 

Pilot Point Geological layers - HK 

Vertical hydraulic conductivity 
(VK) 

Pilot Point Geological layers - VK 

Specific Storage (SS) Pilot Point Geological layers - SS 
Specific yield (SY) Pilot Point Geological layers - SY 
General head conductance 
(Cond) 

Constant* Model layers - Cond 

Recharge (Rech) Constant* 
One Median Recharge value - 
Rech 

 

4.3.1 Iterative ensemble smoother (IES) [4] 

 

Once a suitable model configuration was defined, we proceeded to execute data 

assimilation by iterative ensemble smoother (IES) and assess forecast uncertainty at the same time. 

We did it using Pestpp-ies which implements a reformulated Gauss-Levenberg-Marquardt 

algorithm. The latter uses a Jacobian matrix derived empirically from an ensemble of random 

parameter values (White, 2018). The empirical Jacobian matrix then is used to update the 
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parameters of the ensemble of realizations. The mathematical formulation is described in Equation 

7. 

 

𝛥ఏ = − ቀ൫𝐽௘௠௣
் 𝛴ఌ

ିଵ𝐽௘௠௣൯ + (1 + 𝜆)𝛴ఏ
ିଵቁ

ିଵ

(𝛴ఏ
ିଵ(𝛩 − 𝛩଴) + 𝐽௘௠௣

் (𝐷௦௜௠ − 𝐷௢௕௦)) 

𝐽௘௠௣ ≈ 𝛴ఌ

ଵ
ଶ 𝛥௦௜௠𝛥 ௣௔௥

ିଵ 𝛴
ఏ

ି
ଵ
ଶ 

𝛥௦௜௠ = 𝛴ఌ

ି
ଵ
ଶ(𝐷௦௜௠ ⊖  𝐷ഥ௦௜௠)/ඥ𝑁௘ − 1 

𝛥௣௔௥ =
𝛴

ఏ

ି
ଵ
ଶ(𝛩 ⊖  𝛩ത)

ඥ𝑁௘ − 1
 

Equation 7. GLM and IES formulation for ensembles 

Where: 

𝐷௢௕௦ , 𝐷௦௜௠ are the observation and simulated-equivalent ensembles 𝑁௘x𝑁௢௕௦ 

𝛩, 𝛩଴ are the current and initial parameter ensembles 𝑁௘x𝑁௣௔௥ 

𝛥ఏ is the parameter update matrix 

𝐽௘௠௣ is the empirical Jacobian 

𝐷ഥ௦௜௠, 𝛩ത are the mean values of the simulated equivalents to observations and parameter 

across their respective ensembles 

𝑁௘ is the number of realizations 

⊖ denotes a broadcast subtraction operation 

𝜆 The Marquardt dampening parameter 

𝛴ఏ is the prior parameter covariance matrix 

𝛴ఌ is the measurement noise covariance matrix 

𝛥௦௜௠ is the change in simulated values 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 64 

𝛥 ௣௔௥
ିଵ  is the change in the parameters 

In accordance with Hemmings et al., (2020), an abridge history matching is desirable 

before a complete data assimilation because sometimes there is not much improvement in the 

model forecast, or just because the modelling objective could be already achieved with one 

iteration. Then we tested if the field data contains valuable information for the model forecast with 

one iteration of IES and checked results.  

Most of the parameters and settings used for IES (Equation 7) are the same as those used 

in the prior analysis of chapter 0 since the pest++ executable is the same, and parameters are almost 

the same for both analyses. The covariance matrix of observations was defined automatically by 

PEST++ using measurement errors. The number of realizations was initially set to 100 but was 

updated according to our findings. “Autodataloc” was used as true to use the automatic 

functionality of pest to define the localization matrix. To deal with the problem of excessive run 

times caused by random parameters, if an overdue simulation has already taken more than twice 

the average run time, it is declared failed by default (White, 2018). Because of this, in every 

iteration there will be a different number of successful models, different to the initial number of 

realizations, because there are failed and delayed models. 

Finally, we developed a complete history matching coupled with uncertainty quantification 

with many iterations where we sampled a posterior distribution of parameters and the flow 

forecast. 
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4.3.2 Model Calibration [5]. 

 

We optimized the model parameters to get the “most probable” unique model with the 

minimum heterogeneity necessary to match field observations. The optimization is carried out with 

Pestpp-GLM which implements a subspace Gauss-Levenberg-Marquardt(GLM) algorithm 

(White, Hunt, et al., 2020). Pestpp-GLM uses a hybrid regularization approach joining the 

truncated singular value decomposition (TSVD) and the Tikhonov regularization (M. J. Tonkin & 

Doherty, 2005).Also, to perform model calibration, the number of parameters must be lower 

compared with those used for IES, given that Levenberg Marquardt depends on a Jacobian matrix 

whose size its proportional to the number of parameters and it is more computationally constrained 

(White, 2018).  

The pilot point automatic separation feature included in Pyemu was not used because the 

irregular cell width generated big holes without pilot points and the range of the semi variogram 

was changed to 8 times the maximum cell distance (960 m). Pilot points were manually put in the 

positions shown in Figure 18 but not equally located in every layer because each layer has different 

extension, observations, and importance due to its interaction with the forecast. Regularization 

conditions are imposed over all the parameters and set as a zero order Tikhonov regularization; 

that is, initial values are the preferred values. The Sy in the 2 deepest geological layers and the Ss 

parameter were not defined with pilot points, but as a constant parameter per geological layer to 

reduce the number of parameters and the computational burden of model calibration. This decision 

helped to decrease the parameterization because it was mandatory reducing the run time and they 

were considered less important than others, especially less important than Sy in the first two 

geological layers (most of the flow of the gallery is considered to come from its pore dewatering). 
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Figure 18. 

Pilot point locations in the calibration process. The color of the pilot points indicates if they are 

located in one (red), two (orange), three (yellow) or four geological layers (green). 

 

 

Most of the settings of the previous analyses are used to set up a Pestpp-glm run but in 

GLM it is necessary to ensure the high fidelity of the finite difference partial derivatives (Jacobian 

matrix) (White, 2018). To do so, it was necessary to take care of the solver criteria and change the 

model structure to avoid low quality sensitivities and model failures. The essential change of the 

base model was the Newton Raphson approach, but this more rigorous approach exposed the 

numerical weaknesses of the model and led to its restructuring as shown below.  

The important changes in the solver and model structure were: 

 Newton Raphson approach 
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o This method has a much better handling of dry cells and avoids big values yielded in 

observations located on dry cells. 

 Adaptative time stepping 

o This allows transient stress periods to change their time steps if the model does not 

converge. The adaptive time stepping can improve dramatically stress period convergence, but it 

usually implies longer run times. 

 Solver settings 

o Change from high complexity to a more customized approach that fits the model 

characteristics and ensures model convergence with acceptable run times. 

 Lower conductance of drains 

o Conductance of drains is a relatively unknown value. DRN BCs are designed to have 

lower permeability than its surrounding cells, and high values can cause model instabilities. 

 No thin cells (less than 5 meters in thickness) 

o Cells that change from fully saturated to dry and vice versa easily can cause 

convergence problems. 

o High slopes combined with thin cells cause adjacent cells not touching each other, thus 

violating control volume conditions. No thin cells alleviates stability problems in the solution. 

 Smoother topographic raster. 

o A smoother topographic raster avoids large changes in model top elevations causing 

adjacent cells not touching each other, thus violating control volume conditions. 

 Refinement of coarse areas: 

o A more refined surface in coarse areas avoids large jumps in zones with steep 

topography. 
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 Change in the initial heads 

o To make convergence easier, it is better to start close to the solution. Then a python 

function was included in every run to replace the starting heads with the solution of the last 

successful model. 

The changes mentioned above were defined following an empirical approach, that is, 

testing the convergence of many models and analyzing their behavior. The models were selected 

by running PEST++ with random parameters and selecting failed models (usually 10) to test 

settings to make them converge. Although some settings could help to achieve convergence in 

more models, they could lead to high running times, even in models where convergence was easily 

achieved. Therefore, the final settings were defined to succeed in around 70% of the stochastic 

models in reasonable times. 

The number of total iterations was set to 4 (NOPTMAX). To accept the FOSM-realization 

if the phi is lower than the lambda-testing phi, Glm_accept_mc_phi was defined as TRUE (White, 

Hunt, et al., 2020). This hybrid approach helps to avoid local minima and speed up the model 

inversion. 

 

4.3.3 Linear analysis [6] 

 

Once each iteration of model calibration is finished, Pestpp-glm uses the Jacobian matrix 

and the covariance to continue with an uncertainty quantification of all the observations, including 

observations to assess the gallery behavior. 

This is done using the first order second moment method called Shur’s complement (Fienen 

et al., 2010; White, Hunt, et al., 2020). Shur’s complement implemented in Pestpp-GLM assumes 
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that the standard deviation of measurement noise associated with each observation is proportional 

to the current observation residual. Then it calculates a posterior parameter covariance matrix and 

the posterior uncertainty estimates for forecasts (Equation 8). 

𝛴തఏ = 𝛴ఏ − 𝛴ఏ𝐽்[𝐽𝛴ఏ𝐽்]ିଵ𝐽𝛴ఏ  

𝑦 =
𝜕𝑠

𝜕𝜃
 

𝜎௦
ଶ = 𝑦்𝛴ఏ𝑦 

𝜎ത௦
ଶ = 𝑦்𝛴തఏ𝑦 

Equation 8. Shur's complement equations 

where, 

𝛴ఏ , 𝛴തఏ Prior and posterior covariance matrix 

𝐽 Jacobian Matrix 

𝜎௦
ଶ, 𝜎ത௦

ଶ Prior and posterior uncertainty estimates for forecast s 

𝑦 vector of forecast sensitivity to each parameter. 

 

4.3.4 Post calibration Monte Carlo analysis [7] 

 

Pestpp-GLM uses in every iteration the Null Space Monte Carlo (NSMC) method (by using 

“glm_iter_mc = true”) to identify model forecast variations strongly related with a lack of field 

data informing model parameters and forecasts. 

The process is described in detail in M. Tonkin & Doherty, (2009) and it is summarized 

below: 

 Calculate Base parameter sensitivities (Jacobian), 
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 Undertake SVD decomposition of the Jacobian matrix to identify solution and null 

space, 

 Produce multiple stochastic realizations of model parameters, 

 Project differences between the realization and the base model (Calibrated parameters 

until that iteration) onto the null space, 

 Add projected differences to the base (or calibrated) parameter field, 

 Use each parameter set to run the model and assess uncertainty. 

In case the objective function of any realization is lower than that achieved by GLM, that 

realization is taken as the new updated model instead of the one obtained with the optimization by 

the gradient of the target function. 

 

4.4 Comparisons and Analysis [8] 

 

We compared the different methods based on their ease of application, types of results, and 

computational burden. The latter is especially important because this research is carried out with 

the limited resources of a desktop personal computer. Also, we assessed the complementarity of 

methods and analyzed advantages of the implementation of recent approaches as Early Uncertainty 

Quantification and Forecast First. Furthermore we compared uncertaity results with the decision 

threshold of 30 l/s which is the lowest flow used for the hydraulic design of elements in the gallery 

(UIS & AMB, 2019). 
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5. Results  

 

 

5.1 Model repository and reproducibility of results.  

 

Several setups were tried according to the model forecast results. All the code and history 

tracking are stored in a public GitHub repository. Access to the information is possible through 

the link https://github.com/oscarfasanchez/Thesis_mf6_pest. The person interested in revising 

the repository should have basic knowledge of Python, Git, Modflow and Pest++. Running the 

code for reproducibility purposes requires that the computer has python packages installed and 

pest++ executables. The versions used for the model runs are Python 3.8.5, Pyemu 1.2.0, Flopy 

3.3.6, MODFLOW 6.3.0, Pest++ 5.1.23. Detailed results can be found in Appendix B 

The GitHub repository contains the python files in the 09_Python folder; the two main files 

are “modelo.py” which builds the base model, and “Pest_inv_unc.py” which runs history matching 

and uncertainty quantification. Binaries and other types of files necessary to run the scripts, are 

available through links in the README.md file (a git practice is only track plain text files, not 

binaries). 

 

5.2 Assessment of model structure 

 

The assessment of model structure through prior uncertainty quantification tested the 

refinement of a general coarse grid, especially, in areas close to the gallery. We used three different 

grid structures, namely, a coarse, a medium, and a fine resolution (Table 6), finding many problems 
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in the coarse resolution in terms of scarce match with field observations which led to the medium 

refinement. The medium refinement overcame most of those problems, but the overestimation of 

maximum flows led to the fine grid.  

 

Table 6. 

Grid refinement of the model structure and history matching parameterization * the fine model 

with the Newton-Raphson formulation is not used until the model calibration in the GLM 

approach 

Grid 
Refinement 

Total 
Parameters 

#pp 
lay0 

qd_qbg 

#pp 
lay2 
qbo2 

#pp 
lay3 
qbo1 

#pp 
lay4 
rock 

Outer grid 
spacing 

[m] 

Gallery 
Grid 

spacing[m] 

Run 
time in 

base 
model 

Coarse 1544 96 96 96 96 180 80 m 45 
seconds 

Medium 17160 1072 1072 1072 1072 80 10 m 8 minutes 
Fine 89416 5588 5588 5588 5588 80 3 m 40 

minutes 
Fine NR* 461 54 49 33 36 40 3 72 

minutes 
 

The prior Monte Carlo modeling with the coarse grid produced results where field 

observations fell inside the ensemble of prior realizations (Figure 19 and Figure 21 ) and outside 

of it (Figure 20 and Figure 22). The comparison between head field measurements (red) and heads 

of prior realizations (gray) in these figures helped identifying structural problems of the model.  
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Figure 19. 

Example of field observations inside prior head realization with coarse grid, using the initial 

parameter range 

 

 

Figure 20. 

Example of field observations outside prior head realizations with the coarse grid, using the 

initial parameter range 

 

 

The offset between the observed heads and the ensemble of prior realizations in Figure 20 

suggested that  we needed to update the recharge boundary conditions (  
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Table 7) and hydraulic conductivity bounds (Table 8) aiming to loosen the range of 

possible inflows and conductivities in the model. Both tables show the initial and updated 

multipliers.  
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Table 7. 

Upper and lower bound multipliers of recharge boundary conditions after and before the update 

of the coarse model 

 ghb_bound rch_bound 
initial [0.1,10] [0.3,3] 

updated [0.01,100] [0.25,4] 
 

Table 8. 

Upper and lower bound multipliers of hydraulic conductivities and mean hydraulic conductivity 

of rock (bottom layer) in the coarse model 

 hk_bound K_roc 
initial [0.1,10] 1e-09 

updated [0.005,500] 1e-7 
 

These changes were successful in removing the offset in many cases (Figure 21) but, for 

some important observations (those deemed correlated with the model forecast), the ensemble of 

models still could not represent them (Figure 22 ). The gallery effect in p-gal-s1 observation point 

can be seen in time ~1250 (Figure 21). 

 

Figure 21. 

Example of field observations inside prior head realizations for the coarse grid, using the 

updated parameter ranges 
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Figure 22. 

Example of important field observations outside prior head realizations for the coarse grid, 

using the updated parameter ranges 

 

 

Finally, using the medium refinement solved the disability to match important observations 

(Figure 23), although some non-important are still outside the ensemble of realizations ( 
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Figure 24).  

 

Figure 23. 

Example of field observations inside the prior ensemble due to parameter update and change to 

a medium grid 
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Figure 24. 

Non-important (very deep) field observations not matching ensembles in the medium grid model 

 

 

The distribution of gallery’s maximum flows with the medium grid is much narrower 

than in the coarse (updated) model (Figure 25). 

 

Figure 25. 

Frequency distribution of maximum flows for the coarse (left) and medium (right) grid 

resolution. running initially 100 realizations 

 

 

Prior realizations of gallery flow for the medium grid show unnatural strong peaks related 

to the activation of the boundary condition in every cell (Figure 26). 
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Figure 26. 

Realizations of gallery flow in the medium grid model. 

 

 

The effect of the gallery construction on the groundwater system at cross section A-A’, 

using the medium grid base model is shown in   
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Figure 27. Arrows indicate flow direction and colors show hydraulic heads. The difference 

between the upper and lower panels relates to the effect in flow and head after gallery’s activation 

where flow goes toward the gallery and drawdown occurs close the gallery.  
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Figure 27. 

Groundwater heads and flow before (top panel) and after (bottom panel) gallery activation.  
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In the bottom figures of each panel, arrows indicate flow direction and colors show 

hydraulic heads. In the upper figure of each panel color indicate BCs: recharge in purple, drains in 

cyan, GHB in aquamarine.  

Comparison of the base realization of the coarse (green) vs. fine (blue) grid, confirms that 

the medium mesh is overestimating maximum flows (Figure 28). The coarse (10 m) grid model 

has strong peaks due to lack of continuity in the activation of BC (DRN cell is activated every 3-

4 days).  

 

Figure 28. 

Comparison of flows between medium and fine base models 

 

 

However, the performance of the medium grid model (brown) gets closer to that of the fine 

grid model (blue) if we change the flow of each day for the minimum flow of the previous 4 days 

(Figure 29). 
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Figure 29. 

Comparison of flows between medium (brown) and fine (blue) base models, using the minimum 

value of the previous 4 days in the medium discretized model 

 

 

 

 

In the ensemble of flows (m3/s) for the fine grid model (Figure 30) it can be seen that all 

the flow lines concentrate in the higher values, and the maximum flows do it above 2.5 l/s in time 

around 1400 days. Also, strong peaks have been softened compared with those of the medium 

model.  

 

Figure 30. 

Prior realizations of gallery flow (m3/s) in the fine grid model, negative values denote 

groundwater outflow in the MODFLOW convention.  

 

 

As in the previous model there are some non-important observations than our model cannot 

simulate (Figure 31) and are the same observations that the previous model was not able to 

reproduce. 
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Figure 31. 

Example of non-important (very deep) field observation not matching ensembles in fine model 

 

 

The histogram distribution of maximum flow (Figure 32) consolidates as a Non-gaussian 

distribution in the fine model, with peaks in very low flows (less than 1 l/s) and around 4-5 l/s. 

 

Figure 32. 

Frequency distribution of prior maximum flows for the fine grid model, running initially 150 

realizations 

 

  

[m3/s] 
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5.3 Iterative Ensemble Smoother (IES) 

 

Prior distributions are the base for one iteration of IES; nevertheless, we generated new 

prior ensembles for the analysis of one or more iterations of IES. This was done for the medium 

and fine models. In general, although there is evidence of data assimilation in the ensemble of 

models, the forecast is mildly affected by the history matching (i.e. the calibration improve but the 

flow forecast doesn’t change), especially after the first iteration of IES. 

For the case of the medium grid model, IES helps to assimilate data, but we started to see 

symptoms of instabilities in the model. This is evidenced by the loss of more than half posterior 

realizations due to model failures [125 vs 58] in the prior and first iteration, respectively ( 
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Figure 33, left). Although a normalization could be performed to mitigate the loss of 

information, it could lead to bias. Thus, we decided to undertake a new attempt with more 

realizations to mitigate model failures. This led us to repeat the prior calculation with more 

realizations (250 instead of 150). In the new attempt we saw fewer losses in the first iteration with 

respect to the prior and a convergence trend around 6-7 l/s (  
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Figure 33, right). 
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Figure 33. 

Frequency distribution of maximum flows for the first iteration of the medium grid model, 

running initially 150 realizations(left), and 250 realizations(right). In brackets is shown the 

number of successful realizations in the prior and the first iteration 

 

 

The posterior distribution of flows (blue) falls inside the prior distribution (gray) with a 

trend of the posterior distribution of flows to be narrower than the prior and concentrated towards 

higher flow values (Figure 34). 

 

Figure 34. 

Prior (gray) and posterior (blue) realizations of gallery flow(m3/s) in the medium grid model, 

negative values denote groundwater outflow in MODFLOW convention. 
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The posterior distribution of hydraulic heads shows an improvement of fit compared with 

the prior(closeness to 1-1 diagonal in Figure 35, left), represented by lower residuals(simulated 

minus observed values)(Figure 35, right graph), also can be noticed that posterior values are 

concentrated toward higher values(blue values above dashed black lines). 

 

Figure 35. 

Example of model fit of heads in the medium grid model. Left: simulated vs measured head 

values in two observations. Right: residual vs observed. Prior and posterior (first iteration) 

realizations of the medium model are shown in gray and blue, respectively. 

 

 

The evolution of the objective function happens in the first and the second iteration, and 

after that it stalls, or even, it gets worse (Table 9). Furthermore, we could only find improvement 
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of the objective forecast in the first iteration because after this first iteration the IES stalls and lose 

realizations because of model failures (  
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Figure 36). 

 

Table 9. 

Evolution of the target objective function in the ensemble of medium models. Bolded values show 

where there is a noticeable improvement in the statistics 

iteration Mean standard_deviation min max 
0 2.57E+64 4.75E+64 4.86E+07 1.99E+65 
1 2.74E+62 1.15E+63 3.27E+07 1.42E+64 
2 1.19E+08 7.96E+07 3.27E+07 5.43E+08 
3 1.21E+08 8.28E+07 3.27E+07 5.43E+08 
4 1.22E+08 8.08E+07 4.29E+07 5.43E+08 
5 1.23E+08 8.54E+07 5.19E+07 5.43E+08 
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Figure 36. 

Evolution of maximum flows distribution in the ensemble of medium models(250 realizations) 

 

 

Results of the fine grid model are, in general, similar to those of the medium model with 

the same behavior of improvement, but lower values of flows. flow yield by the gallery is shown 

in Figure 37, the posterior realizations tend to higher values, but without the peaks of the medium 

model.  
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Figure 37. 

Prior (gray) and posterior (blue) realizations of gallery flow (m3/s) in the fine grid model, 

negative values denote groundwater outflow in MODFLOW convention. 

 

 

The fit in the fine grid model tends to degenerate in some observations (  
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Figure 38, lower graph), where the ensemble of models don’t contain the observed values, 

suggesting some problems in the upgrade of the parameters. 
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Figure 38. 

Example of model fit of heads in the fine model. Left: simulated vs measured values of two 

observations. Right: residual vs observed. Prior and posterior (first iteration) realizations of the 

fine model are shown in gray and blue, respectively 

 

 

In the same way as the medium grid model, the fine grid model does not find more 

improvement in the objective function beyond the second iteration (Table 10), and it stalls in the 

forecast after the first iteration (Figure 39). The final distribution of flows is asymmetrical with a 

peak in the right side around 4-5 l/s 
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Table 10. 

Evolution of target objective function in the ensemble of fine models. Bolded values show where 

there is a noticeable improvement in the statistics 

iteration mean standard_deviation min max 
0 2.02E+64 4.61E+64 4.06E+07 1.99E+65 
1 1.21E+62 4.62E+62 3.64E+07 1.88E+63 
2 1.10E+08 6.36E+07 3.64E+07 3.84E+08 
3 1.10E+08 6.36E+07 3.64E+07 3.84E+08 
4 1.10E+08 6.36E+07 3.64E+07 3.84E+08 

 

Figure 39. 

Evolution of maximum flow distribution in the ensemble of fine grid models (250 realizations) 
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5.4 Model calibration 

 

The GLM process in model calibration had low success updating parameters and reducing 

the uncertainty, and the NSMC had a better performance reducing the target objective function 

than GLM. Moreover, uncertainty results estimated by methods relying on the Jacobian matrix 

were dubious. 

The first parameter optimization by GLM after calculating the Jacobian matrix estimated 

the 𝜆 parameter to try different directions of the upgrade vector and explore widely the parameter 

space (Welter et al., 2015) (Table 11). All 𝜆 parameters resulted in a phi (value of the target 

objective function) bigger than the initial one. Since a phi value is generated by every NSMC 

realization, the values of phi generated by NSMC can be compared with lowest got by GLM. In 

case phi by NSMC is lower than that found by GLM, it can be used as a new starting point for the 

next iteration. In the fine-NR model NSMC yielded phi values lower than 70% of the initial phi 

which is a better performance than that of the GLM algorithm (Figure 40); this means that 𝜆 

optimizations of GLM are discarded to use the Monte Carlo realization with the lowest phi in the 

next iteration of GLM. 

 

Table 11. 

Summary of GLM lambda upgrade runs in the first iteration. Type indicates if the vector upgrade 

is being scaled, Length is the length of the upgrade vector, and Phi-lambda is the value of the 

target objective function achieved with that vector 

Iteration Lambda (𝝀) Type Length Phi-lambda % of starting phi 
1 0.1 normal 9.00E+00 2.89E+07 100.24 
1 0.1 scale(0.75) 4.62E+00 2.89E+07 100.17 
1 1 normal 9.00E+00 2.89E+07 100.24 
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Iteration Lambda (𝝀) Type Length Phi-lambda % of starting phi 
1 1 scale(0.75) 4.62E+00 2.89E+07 100.18 
1 10 normal 9.17E+00 2.95E+07 102.15 
1 10 scale(0.75) 4.77E+00 2.93E+07 101.58 
1 100 normal 9.24E+00 3.41E+07 118.07 
1 100 scale(0.75) 4.84E+00 3.24E+07 112.3 
1 1000 normal 1.10E+01 3.66E+07 126.81 
1 1000 scale(0.75) 5.99E+00 3.35E+07 116.25 

 

Figure 40. 

Monte Carlo phi summary of the first iteration.  

 

 

The model presented more instability in the second iteration of GLM, having several model 

failures computing Jacobian sensibilities. The number of failed models were 28 of 461 parameters, 

approximately 6% of the total sensitivity values in Jacobian. In this second iteration, 𝜆 upgrade 

runs had a very poor performance and one of the trials of 𝜆 failed showing that the model is 

suffering of an important stability problem that could affect the capacity of GLM to update 

parameters (Table 12). 
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Table 12. 

Summary of GLM lambda upgrade runs in the second iteration. Type indicates if the vector 

upgrade is being scaled, Length is the length of the upgrade vector, and Phi-lambda is the value 

of the target objective function achieved with that vector 

Iteration Lambda(𝝀) Type Length 
Phi-

lambda 
% of starting 

phi 
2 0.1 normal 5.83E+00 1.91E+07 100.04 
2 0.1 scale(0.75) 3.00E+00 1.92E+07 100.26 
2 1 normal 5.83E+00 1.91E+07 100.06 
2 1 scale(0.75) NA run failed run failed 
2 10 normal 5.83E+00 1.91E+07 100.04 
2 10 scale(0.75) 3.00E+00 1.92E+07 100.26 
2 100 normal 5.83E+00 1.91E+07 100.01 
2 100 scale(0.75) 3.00E+00 1.91E+07 100.21 
2 1000 normal 5.84E+00 1.90E+07 99.58 
2 1000 scale(0.75) 3.00E+00 1.91E+07 99.93 

 

The phi estimated by NSMC was again lower than that found by GLM (Figure 41), thus 

the next step would be again determined by the stochastic method (NSMC). But at this point the 

optimization was stopped because every GLM iteration is an expensive process, and not significant 

improvement was achieved by it, instead the NSMC was updating the parameters. Although 

resulting in a poor fit of the measured values (Figure 42) the computational burden of more 

iterations would imply a waste of computational resources and time. 
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Figure 41. 

Monte Carlo phi summary of the second iteration 

 

 

Figure 42. 

Model fit after the first iteration of GLM. observed vs measured values at left and residual vs 

measured a right. The values are hydraulic head in meters. 
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5.4.1 Shur’s complement for linear uncertainty analysis 

 

The first calculation of linear uncertainty after computing the Jacobian matrix shows flows 

within a range of 2 standard deviations (close to 95% of confidence intervals). Prior flows have 

values up to 5 l/s in day 1300, in a different day where the maximum flow of the mean is located 

(day 1380 approximately) (Figure 43). The linear uncertainty method yields symmetric results 

around the mean, showing positive flow values inside the uncertainty limits. This should be 

ignored because positive flow values are not possible (the gallery injecting water to the 

groundwater system). 

 

Figure 43. 

Prior and posterior linear uncertainty of flow (m3/s) in the initial model. The prior mean and the 

post mean are superimposed; negative values denote groundwater outflow in the MODFLOW 

convention. 
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The linear uncertainty computed after the first iteration shows extremely high values for 

the prior and an erratic behavior with high changes in uncertainty along time (Figure 44). Although 

the posterior values are much lower than the prior, they still are big values that should be taken 

with caution. 

 

Figure 44. 

Prior and posterior linear uncertainty of flow (m3/s) after the first iteration using NSMC.  

Negative values denote groundwater outflow in the MODFLOW convention. 

 

 

The results of prior and posterior NSMC (Figure 45) show values up to 2.5 l/s in the prior 

and up to 4.5 l/s in the posterior, with posterior realizations showing a significant shift towards 

higher values (Figure 46). 
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Figure 45. 

Prior (gray) and posterior (blue) realizations by NSMC 

 

 

Figure 46. 

Frequency distribution of maximum flows generated by NSMC 

 

 

5.5 Time and computational burden 

 

The run time spent in every model is similar in IES and GLM despite changes made to the 

fine model to use the Newton Raphson (NR) solver and different parameterization of the history 

matching. The important difference between the processes in computational burden is related to 

the number of runs, which for GLM is linked to the number of parameters. A summary of the 

average times used for the different processes used to estimate the uncertainty is shown in (Table 
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13). The table does not show total time because different number of threads (The computer used 

have 6 cores and 12 threads) were used for each process (8 in the fine vs 11 in the Fine-NR). It is 

important to notice that average run time is different to the run time of the base model (shown in 

Table 6) (i.e., base run time of the Fine-NR model is 72 minutes). Also, all these times should be 

seen in a relative way and will be different in every computer. 

 

Table 13. 

Number of model runs and average time in every iteration for the fine models used in GLM and 

IES. Note: the linear uncertainty analysis has a long run time because the uncertainty of all the 

observations was assessed; the time required to only assess the uncertainty of gallery flow would 

be around 6 hours.   

Model Process 
Avg time 

1 it 
#Runs 

1it 
Avg time 

2 it 
#Runs 

2 it 
Avg time 

3 it 
#Runs 

3 it 
Avg time 

4 it 
#Runs 

4 it 

fine 
IES- 

Jacobian 
/uncertainty 

128 min 149 135 min 139 147 min 136 138 min 136 

fine 
IES- 

Lambda 
108 min 20 129 min 29 122 min 36 114 min 32 

Fine-
NR 

GLM- 
Jacobian 

138 min 461 169 min 433 - - - - 

Fine-
NR 

GLM- 
Lambda 

138 min 10 158 min 9 - - - - 

Fine-
NR 

GLM- 
Linear 

uncertainty 
32 h* 1 31 h* 1 - - - - 

Fine-
NR 

GLM- 
NSMC 

132 min 93 151 min 99 - - - - 

 

  



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 105 

6. Discussion 

 

 

The main goal of this work was to perform the best flow forecast uncertainty analysis for 

the drainage gallery using a few data in a highly parameterized numerical model. To find the best 

way to assess the uncertainty of the flow yielded by the gallery, we applied three types of analyses: 

IES (White, 2018), Shur’s complement (Fienen et al., 2010; White et al., 2016) and NSMC (M. 

Tonkin & Doherty, 2009; White et al., 2016). The last two are commonly used and are done after 

model calibration, a time expensive process. Therefore, we included in our analysis an ensemble 

method like the Iterative Ensemble Smoother. IES was successfully used here to address 

uncertainty despite its low success in history matching. Furthermore, to be time-efficient 

(computationally), we used elements from the Early Uncertainty Quantification proposed by 

Hemmings et al., 2020. Although not all the results are conclusive, the overall result is that a lighter 

method like IES could be more appropriate to assess uncertainty with less risk of wasting time and 

computational effort, at least if the uncertainty of a forecast is the main goal instead of history 

matching. 

 

6.1 Assessment of model structure 

 

The early quantification of the uncertainty in the coarse grid model showed a structural 

problem because the model produced very low hydraulic heads (Figure 20). A higher inflow in 

recharge added to wider parameter bounds was implemented to help the ensemble match field 

measurements. Also, the rock layer was set with a higher hydraulic conductivity because it is 
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highly fractured in some places. While some hydraulic head model observations, showed low 

values, others, especially deep observations, presented higher values than expected. This was, 

clearly, a prior data conflict as stated by Hemmings et al., 2020 because the lack of refinement and 

a narrow biased prior distribution of conductivity was not able to reproduce some processes 

(Knowling et al., 2019; White, Knowling, et al., 2020). This could be confirmed when most of the 

observations were fitted after refining the mesh (Figure 23) and updating the prior distributions ( 
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Table 7 and Table 8). 

Regarding the non-important observations that were not matched (  
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Figure 24), those are either horizontally or vertically away from the gallery or observations 

of low (i.e. isolated measurements of old studies building issues in piezometers).  Improving the 

model to match the deep observations would require more vertical discretization, but it would 

generate a more complex model without clearly helping our forecast which is about dewatering 

close to the topographic surface. 

Regarding model refinement, it is clear that mesh size is critical (Knowling et al., 2019). 

The histograms of prior flows indicate a reduction of modeled flows with refinement, with values 

up to 80 l/s in the coarse model (Figure 25) down to maximum flows of 5 l/s in the fine one (Figure 

32). Also, the histogram distributions show a non-Gaussian trend, suggesting that this prediction 

is not suitable for linear methods.  

There are two main reasons to explain changes in flow with model discretization. The first 

one is that theoretically, the smaller the cell, the more accurate the solution, and, in the same way, 

a nodal spacing similar to the dimension of the well is needed to accurately represent heads 

(Anderson et al., 2015); here, a cell spacing similar to the dimensions of the gallery is necessary 

to represent flows accurately. Nevertheless, numerical experiments carried out in finite-difference 

grids showed that when the cell size is similar to the gallery dimensions, the steady flow is 

underestimated by around 15%, and this numerical error is minimized either in very fine grids or 

in cell sizes three times larger than the size of tunnel/gallery (Zaidel et al., 2010). 

The second reason that explains changes in maximum flows with model refinement is due 

to large cells suddenly activating a boundary condition generating great peaks in flow that stabilize 

quickly to a lower value (Figure 26 and Figure 28) and imprinting this effect in the histogram of 

maximum flow. This is supported when comparing the fine model with the medium using the 

minimum value of the previous 4 days (a gallery BC is activated every 4-5 days accordingly to 
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digging rate times); in both cases (Figure 29), the flow is very similar, and peaks are eliminated. 

On the other hand, we see that flow in the long term does not converge to the same value with both 

models, probably because of the effect of accuracy mentioned above. 

Finally, all the workflow approaches used to keep the model as simple as possible (John 

Doherty & Moore, 2020) detected prior data conflicts (Hemmings et al., 2020) and watched the 

parameterization effect in the model forecast (Knowling et al., 2019; White, 2017; White, 

Knowling, et al., 2020). These two actions led us to select the fine model and their ensemble of 

forecasts, which predicted a maximum flow of 5 l/s in a bimodal distribution.  

In the detailed design proposed in UIS & AMB, (2019), the lower design flow 

corresponded to the external drain channel which was designed to support 30 l/s. If we were to 

follow the recommendations proposed by Hemmings et al., (2020) strictly, we could stop the 

modeling process at this point because the probability of exceeding the threshold of this forecast 

is practically null; but, we kept working on the assessment of the uncertainty by different methods 

for the sake of making a complete analysis. 

 

6.2 Iterative Ensemble Smoother (IES) 

 

IES showed a good performance reducing the uncertainty of the forecast in the first 

iteration but null improvement in the following iterations, indicating that hydraulic head 

observations have little data about the forecast. However, in the updating process, we found 

symptoms of model instability that affected the results. 

We had to estimate the prior uncertainty twice in the medium model because even with the 

medium refinement the model was a little unstable and many realizations failed (  
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Figure 33) (many stable realizations were automatically killed if they presented long-run 

times). Also, we can observe the posterior distribution of maximum flows that seems to take a 

gaussian shape. Furthermore, we can see in   
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Figure 33 and Figure 34 that one iteration of data assimilation circumscribed the forecast 

to a lower extent, meaning that there is some information in the field observations that informs the 

prediction.  

We can see that differences between simulated and observed values got lower in the 

medium model (Figure 35) but even though there is an improvement in the fitting until the second 

iteration (Table 9), the improvement was not significant in the forecast after the first iteration ( 
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Figure 36). The aforementioned happens probably because we only have head observations 

which only help us to discard very unlikely scenarios generated by the big uncertainties in the 

prior, but it is incapable of further improvement because there is very little information of the 

forecast inside the observations (John Doherty & Moore, 2020; Hemmings et al., 2020). 

The calculation of the fine model´s prior and posterior uncertainty found that the reduction 

of the flow forecast uncertainty in the fine model was stagnant after the first iteration (Figure 39), 

however showing an improvement in the ensemble of target objective functions until the second 

iteration (Table 10); this is the same behavior as with the medium model. These results support 

the point that there is not much information in the field observations of the flow forecast. The 

reason why IES is incapable of optimizing more the target objective function is probably that the 

number of realizations is much less than the number of parameters and it usually generates errors 

in the estimated cross-covariance between parameters and observations clouding the 

optimization(White, Hunt, et al., 2020). 

Running the IES for the fine grid resulted in the failure of more models; this is ~200 in the 

medium (  
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Figure 36) vs ~150 in the fine grid model (Figure 39) (both cases started with 250 

realizations). The worsening of stability conditions can explain why the posterior simulated 

observation cannot fit as well as the medium model (  
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Figure 38).  

Finally, the distribution of maximum flows with the fine grid model is still bimodal in the 

prior but evolves toward an asymmetric distribution with a maximum value slightly lower than in 

the medium model (5 l/s), but still suggesting a non-gaussian behavior (Figure 39). 

 

6.3 Model calibration 

 

The GLM process showed to be insufficient (or at least inefficient) to reduce the 

uncertainty of the model despite its high computational burden, providing support to the hypothesis 

of the system´s highly nonlinear behavior. Because of this, the process of updating parameters was 

carried out by the NSMC instead of GLM (we stopped the optimization after two iterations of 

GLM).  

The first iteration of the GLM optimization found bad results, yielding in every case a 

target objective function worse than in the base model (Table 11); this could indicate that the 

“multidimensional surface” to optimize has a highly nonlinear behavior. On the other hand, when 

we use the NSMC, which is a method that moves over the null space of the Jacobian matrix to 

avoid affecting the target objective function by changing insensitive parameters, we could 

appreciate two important things. The first one is that NSMC has a much better performance finding 

a lower phi than the GLM method (64% of starting phi), and the second, is that 70% of realizations 

have a higher phi than the base model (Figure 40). The NSMC behavior supports the hypothesis 

of high nonlinearity in the observation and suggests that the model could be in a local minimum 

of the objective function. 
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The lower phi in NSMC realizations was used to follow the next iteration of GLM which 

behaved better than in the first iteration but still performed poorly, finding values between 99.5% 

and 100.26 % of the previous phi (Table 12). Additionally, one lambda iteration and 6% of the 

runs in the Jacobian failed. This suggests instability in the models and their derivatives, which can 

cast doubt on the uncertainty analysis that relies on the Jacobian. 

In the NSMC realizations of the second iteration, we got 65% of models with a higher phi 

than the base model, with a minimum value of 76% (Figure 41). This is, again, a better 

improvement of the objective function than with GLM, and it is, again, a warning of the 

nonlinearity of the phi surface. 

The model was going to keep estimating derivatives starting from the best set of parameters 

found by NSMC, nevertheless, the GLM process was not helping to update parameters due to the 

“shape” of the objective function, and it was very expensive in terms of the computational burden. 

Because of this, we decided to stop the model because it made no sense to keep calculating 

derivatives that were useless for the model calibration. 

If the purpose of history matching is calibrating a model by the stochastic sounding of the 

model space, then, other algorithms such as particle swarm optimization (Eberhart & Kennedy, 

1995) or even IES are more efficient to do this. However, IES is not necessarily better than GLM 

to update parameters as can be seen in Table 11 and Table 12, where every phi of GLM is lower 

than the minimum phi in IES (Table 9 and Table 10) (although adjustable parameterization of both 

models is different). 

When we analyze the spread of observed vs. simulated values, we can easily find that the 

model is far from being fitted, where lower values of the hydraulic head are overestimated by the 
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model and the higher values are underestimated (Figure 42). This is probably because the hydraulic 

conductivity is too low. 

 

6.4 Comparison of uncertainties 

 

The IES algorithm has the best performance among the methods used here because Shur’s 

complement and the NSMC inherit the problems of the GLM method related to the computational 

burden, and non-linearity of the solution (especially for Shur’s complement).  Nevertheless, the 

NSMC showed acceptable behavior and made important contributions to the history-matching 

process. 

Results after calculating the uncertainty by Shur’s complement (Figure 43) show a similar 

maximum value than in the IES, a bit more than 4 l/s. The main difference between the two 

methods is in time; the maximum value in the linear estimation (using two standard deviations) 

would be 5 l/s on day 1300 while for IES it happens after day 1400 (Figure 37). The posterior 

estimation of uncertainty by Shur’s complement, however, predicts a smaller value of about 2.5 

L/s in a time similar to the IES realizations (Figure 43). This could suggest that the linear method 

could be as useful as IES to estimate uncertainty, obviously dismissing the upper values of the 

graph (positive values) which would imply a gallery injecting flow to the ground. 

Nevertheless, these results should be taken carefully, because the behavior of GLM and 

IES analyzed before indicates a non-gaussian distribution and a very nonlinear objective function 

that would invalidate the results of a method that relies on the linearity of the Jacobian to estimate 

uncertainty and the Gaussianity of the uncertainty. Furthermore, when we used Shur’s complement 

in the next iteration, we obtained very erratic results with extremely high values in the “prior” and 
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“posterior” (Figure 44). Values Greater than 1000 l/s cannot be considered and are the result of a 

corrupted Jacobian matrix which leads to unreliable results.  

On the other hand, NSMC does not rely completely on the linearity of the Jacobian and 

shows a more consistent behavior in both iterations (Figure 45 and Figure 46). It shows a trend in 

flows toward higher values, similar to those obtained through IES, with the peak moving from 

smaller to values bigger than 2 l/s. However, it needs to be noted that NSMC is a method designed 

to use when the model has achieved the minimum error variance (by minimizing phi) (John 

Doherty & Moore, 2020) and the posterior uncertainty relies on the fact that the major source of 

uncertainty is those values which cannot be calibrated. Since the model is not fitted (Figure 42) 

(but it's in a local minimum), and the actual values are not “close” to the real values, this may be 

an underestimated or biased uncertainty. 

Given that data assimilation by GLM was not successful and uncertainty always must be 

overestimated to avoid model failure (Knowling et al., 2019), NSMC is not a reliable method for 

the uncertainty of flow. Furthermore, the linear method which relies strongly on the consistency 

and linearity of the Jacobian matrix added to the Gaussianity of the uncertainty is not suitable for 

the model built in this study. Based on this, we conclude that the best option to assess the 

uncertainty of the present (or coming models) is the IES method (Figure 39) given that it explores 

larger portions of the parameter space hence, it is better prepared to overcome local minima and 

highly nonlinear models (Hunt et al., 2021). 

In UIS & AMB, 2019, three models were tested and calibrated (in steady state), the second 

model having more observations to calibrate than the first one, and the third one more than the 

second one. Only the second model was used for the predictions despite the third one having better 

statistics of calibration than the second one. This was mainly (among other reasons) because the 
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calibrated model with all the observations (the third one) presented a lower hydraulic conductivity; 

therefore, a forecast of flow with the third model would yield a lower flow, having more risk of 

underestimating the prediction. then, to avoid the underestimation of the forecast of the previous 

study, it was overestimated the flow yielded by the gallery, and also shows why the uncertainty 

always must be estimated. In our study site, maximum flows are likely to be between 3 and 5 l/s 

which is a safe flow for the design proposed in UIS & AMB, 2019 (much less than 30 l/s). If we 

compare with the maximum prediction used in UIS & AMB, 2019, they forecast a maximum flow 

of about 90 l/s. 

 

6.5 Limitations and future work 

 

Our analyses suggest that EUQ with IES is the best strategy to address the uncertainty of 

our model and coming models, or even of similar models where the main objective is the 

uncertainty quantification and not the model parameters. Nonetheless, we acknowledge that there 

are other possible methods, not used here, to assess uncertainty such as the Ensemble Kalman filter 

which is a relatively light method in terms of computational burden (Li et al., 2018) that has 

benefits in terms of handling model error (Alzraiee et al., 2022; Markovich et al., 2022), among 

other advantages. 

Although the IES uncertainty was done with the fine model before using the newton 

Raphson formulation and some underestimation of the flow could exist due to the less rigorous 

approach of the solution, it is very unlikely that it could significantly affect our results for three 

reasons. The first one is that IES does not ask for a rigorous approach to succeed. After all, it uses 

a coarse Jacobian where the errors of some models are diluted among hundreds of models (White, 
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2018). The second one is because, in the standard formulation (where cells get dry), observations 

in dry cells yield a huge value, and therefore a big value in the objective function (Table 10), then 

the IES algorithm pushes the models toward high values of hydraulic heads to avoid dry cells and 

it did not affect the forecast as it can be seen in the change between the first and the second iteration 

(Table 10 and Figure 39). The third reason that makes the absence of the Newton Raphson 

formulation a despicable matter is that the forecast is far away from the decision threshold of 30 

l/s. 

The computer threads used in the fine model vs the fine-NR are different, then the run 

times in both models are not directly comparable, rather, both times are very similar despite the 

differences in model settings, therefore the importance of focusing on the number of runs instead 

of run time. Given that the models used in IES and GLM have different discretization (80m vs 

40m), different solver settings (standard vs Newton Raphson), and different history matching 

parameterization (density of pilot points or constant layer parameters), there is not a real 

comparison about the results of both mathematical methods. Therefore, the utility of this work is 

not the pure contrasts in times and results but the empirical comparison in the implementation and 

convenience of such methods using a computer with limited capabilities. 

We are aware that there are different ways to build a model, and some of them could lead 

to better data assimilation and are worthy of being tested in future work. The first one could be a 

less rigorous way to represent the geological layers and faults giving more responsibility to the 

data assimilation to represent geological features (John Doherty & Moore, 2020) but as it was 

mentioned before, our observations do not have much information of the forecast to implement 

this approach (John Doherty & Moore, 2020). Another option could be not adapting the model 

layers to the geological layers but instead maintaining (or almost) horizontal model layers where 
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the geology is only represented by hydraulic properties, but this approach would need more vertical 

discretization that was worthy to avoid given our computational limitations. Another aspect that 

could be improved in the parameterization involves greater rigor in the geostatistical variation of 

parameters because in this work wasn’t available such data and may have an impact on the results. 

Despite our computational limitations, we acknowledge that more vertical discretization 

could be desirable to represent better vertical flow and fit deep observations. Moreover, a more 

complex mesh could avoid the ill effects caused by calibrating a model with not enough flexibility 

(White, Knowling, et al., 2020); this could have caused the unfitting of some observations after 

one iteration of IES (  
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Figure 38). Nevertheless, the loss of some realizations could also explain why there is no 

more match between the posterior and some observations, and repeating the exercise as was done 

before with the medium model (  
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Figure 33) could be the solution, though it does not seem that the distribution of maximum 

flows could change much. Another possible approach could be dropping those observations to 

avoid the possibility of corrupting the model. moreover could be important to check the effect of 

those observations considered “ non-important” to confirm its dispensability. In the same way, it 

may be important to test the relevance of full heterogeneity of the water storage parameters for the 

flow forecast because is known that oversimplification can lead to the underestimation of the 

uncertainty (Knowling et al., 2019), which is a frequent problem in GLM(White, 2018). 

Another change in the base model could be how the gallery BC is implemented; for 

instance, smoothing the activation of the boundary condition to eliminate the peaks of the medium 

model (Figure 28) could be useful to try with a less refined model and decrease the computational 

burden, although as it was mentioned before, this would not delete all the side effects of the 

medium mesh nor significantly change the results. 

Approaches that can be implemented in further studies to help with the computational 

burden are related to software and hardware. Using a more powerful computer, a network of 

computers or even cloud computing could overcome most of the computing limitations. On the 

other hand, using unstructured grids (i.e., DISU Package), could help to refine only the zones of 

interest of the model and avoid unnecessary calculations. Here it was not used because 

unstructured grids have very limited support in Pyemu and would need the implementation of other 

not foreseen software different to the PEST++ suite and Pyemu to handle it (i.e., executables of 

PEST utilities). 

Finally, our study was only focused on the flow forecast. It might be important to include 

the drawdown forecast as well or pay more attention to the final distribution of parameters in 
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further studies. In fact, the inclusion of drawdown uncertainty would enable the assessment of the 

effectiveness of the gallery to increase the safety factor in the zone, which is, its final purpose. 
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7. Conclusions 

 

 

We developed a workflow to assess the forecast uncertainty of a drainage gallery flow 

(extensible to other types of infrastructure) where we used a non-linear, highly parameterized 

model, having relatively few monitoring data for the history matching relevant to the forecast. We 

found in the process that the forecast first philosophy (White, 2017) combined with Early 

uncertainty quantification (EUQ) is highly valuable for model design and almost essential to get 

competent uncertainty forecasts. 

Although the EUQ methodology is essentially agnostic concerning the methodologies 

adopted for the uncertainty quantification (Hemmings et al., 2020), we found IES desirable over 

other alternatives that rely on a rigorous Jacobian as NSMC which can sub-estimate the uncertainty 

in a non-completely calibrated model stuck in local minima or linear methods not always reliable 

in complex models (usually non-linear because they model the water table). 

Even though two iterations of GLM were not successful in our case, probably after more 

iterations the algorithm would improve, nevertheless, it is still a waste of resources. Instead, IES 

after one iteration using an overestimation of uncertainty seems to limit the breadth of the forecast 

even where there is very little information of the forecast in the observations. 

Our findings suggest when parameter calibration is an important objective of the modeling 

(i.e., to know more of the subsurface structure); other approaches could be useful to address non-

linearity, like undertaking IES at the beginning of the process (or other non-linear optimization 

algorithms as PSO (Eberhart & Kennedy, 1995) and finish with the implementation with a rigorous 

gradient method (Serrano et al., 2017). 
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Finally, in future work we recommend doing the data assimilation of the new information 

using IES, furthermore, IES could be used to assess the uncertainty of the gallery's effectiveness 

(in terms of factor of safety), This is due to its flexibility to couple the geotechnical calculations 

of safety factors to the groundwater model and instantly get the factor of safety uncertainty. 

 

  



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 126 

Bibliographic References  

 

 

Alzraiee, A. H., White, J. T., Knowling, M. J., Hunt, R. J., & Fienen, M. N. (2022). A scalable 

model-independent iterative data assimilation tool for sequential and batch estimation of 

high dimensional model parameters and states. Environmental Modelling and Software, 

150(December 2021), 105284. https://doi.org/10.1016/j.envsoft.2021.105284 

Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied Groundwater Modeling. In 

Applied Groundwater Modeling (2nd ed.). https://doi.org/10.1016/c2009-0-21562-5 

Antolínez Quijano, W. L. (2014). Modelo numérico del flujo de agua subterranea en las 

formaciones acuíferas de bucaramanga. Universidad Industrial de Santander. 

Aster, R. C., Borchers, B., & Thurber, C. H. (2019a). Rank Deficiency and Ill-Conditioning. In 

Parameter Estimation and Inverse Problems. https://doi.org/10.1016/b978-0-12-804651-

7.00008-0 

Aster, R. C., Borchers, B., & Thurber, C. H. (2019b). Review of Probability and Statistics. 

Parameter Estimation and Inverse Problems, 341–362. https://doi.org/10.1016/b978-0-12-

804651-7.00019-5 

Aster, R. C., Borchers, B., & Thurber, C. H. (2019c). Tikhonov Regularization. In Parameter 

Estimation and Inverse Problems. https://doi.org/10.1016/b978-0-12-804651-7.00009-2 

Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., & Fienen, M. N. 

(2016). Scripting MODFLOW Model Development Using Python and FloPy. 

Groundwater, 54(5), 733–739. https://doi.org/10.1111/gwat.12413 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 127 

Benedek, K., & Dankó, G. (2009). Stochastic hydrogeological modelling of fractured rocks: A 

generic case study in the Mórágy Granite Formation (South Hungary). Geologica 

Carpathica, 60(4), 271–281. https://doi.org/10.2478/v10096-009-0019-y 

Caballero Caceres, S. A., & Gomez Navas, E. (2011). Pruebas De Bombeo En Pozo Profundo Y 

Pozos De Observacion En La Ciudad De Bucaramanga. Sergio. 

Doherty, J. E., Fienen, M. N., & Hunt, R. J. (2010). Approaches to Highly Parameterized 

Inversion : Pilot-Point Theory , Guidelines , and Research Directions. In U.S. Geological 

Survey. https://doi.org/10.3133/sir20105168 

Doherty, J.e., & Hunt, R. j. (2010). Approaches to highly parameterized inversion: a guide to using 

PEST for groundwater-model calibration. U. S. Geological Survey Scientific Investigations 

Report 2010-5169, 70. https://doi.org/2010-5211 

Doherty, John, & Moore, C. (2020). Decision Support Modeling: Data Assimilation, Uncertainty 

Quantification, and Strategic Abstraction. Groundwater, 58(3), 327–337. 

https://doi.org/10.1111/gwat.12969 

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS’95. 

Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 

39–43. 

Enemark, T., Peeters, L. J. M., Mallants, D., & Batelaan, O. (2019). Hydrogeological conceptual 

model building and testing: A review. Journal of Hydrology, 569(December 2018), 310–

329. https://doi.org/10.1016/j.jhydrol.2018.12.007 

Fienen, M. N., Doherty, J. E., Hunt, R. J., & Reeves, H. W. (2010). Using Prediction Uncertainty 

Analysis to Design Hydrologic Monitoring Networks: Example Applications from the 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 128 

Great Lakes Water Availability Pilot Project. U.S. Geological Survey, Scientific 

Investigations Report 2010 – 5159, 44. 

Franco, M., & Ramírez, A. (2018). Reconstrucción paleoambiental de la fm. bucaramanga 

[Universidad Industrial De Santander]. 

http://tangara.uis.edu.co/biblioweb/tesis/2018/171985.pdf 

Gil, Y., David, C. H., Demir, I., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., Karlstrom, L., 

Lee, H., Mills, H. J., Oh, J., & Pierce, S. A. (2016). Toward the Geoscience Paper of the 

Future: Best practices for documenting and sharing research from data to software to 

provenance. Earth and Space Science, 3(10), 388–415. 

https://doi.org/10.1002/2015EA000136 

Gokdemir, C., Li, Y., Rubin, Y., & Li, X. (2022). Stochastic modeling of groundwater drawdown 

response induced by tunnel drainage. Engineering Geology, 297(September 2021), 

106529. https://doi.org/10.1016/j.enggeo.2022.106529 

Gómez-Arroyo, M. A., & Sánchez-Ortíz, O. F. (2020). Geometric modeling of hydrofacies applied 

to the northern sector of Bucaramanga, Santander, Colombia. Tecnologia y Ciencias Del 

Agua, 11(4). https://doi.org/10.24850/j-tyca-2020-04-04 

Gómez Arroyo, M. A., & Gómez Palencia, M. F. (2021). Aproximacion al modelo de hidrofacies 

del sistema acuifero del sector norte de Bucaramanga, Colombia [Universidad Industrial 

de Santander]. http://tangara.uis.edu.co/biblioweb/tesis/2021/180839.pdf 

Gomez, S., Taupin, J. D., & Rueda, A. (2015). Estudio hidrodinámico, geoquímico e isotópico de 

las formaciones acuíferas de la región de Bucaramanga (Colombia) Hydrodynamic, 

geochemical and isotopic study of formations aquifers in the region of Bucaramanga 

(Colombia). Revista Peruana Geo-Atmosferica RPGA, 61(4), 44–61. 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 129 

Hemmings, B., Knowling, M. J., & Moore, C. R. (2020). Early Uncertainty Quantification for an 

Improved Decision Support Modeling Workflow: A Streamflow Reliability and Water 

Quality Example. Frontiers in Earth Science, 8(November), 1–22. 

https://doi.org/10.3389/feart.2020.565613 

Hill, M. C., & Tiedeman, C. R. (2007). Effective Groundwater Model Calibration. In Effective 

Groundwater Model Calibration (1st ed.). John Wiley & Sons, 2006. 

https://doi.org/10.1002/0470041080 

Hunt, R. J., White, J. T., Duncan, L. L., Haugh, C. J., & Doherty, J. (2021). Evaluating Lower 

Computational Burden Approaches for Calibration of Large Environmental Models. 

Groundwater, 59(6), 788–798. https://doi.org/10.1111/gwat.13106 

Knowling, M. J., White, J. T., & Moore, C. R. (2019). Role of model parameterization in risk-

based decision support: An empirical exploration. Advances in Water Resources, 

128(February), 59–73. https://doi.org/10.1016/j.advwatres.2019.04.010 

Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., & Provost, A. M. 

(2017). Documentation for the MODFLOW 6 Groundwater Flow Model: U.S. Geological 

Survey Techniques and Methods. USGS: Techniques and Methods 6-A55, 197. 

https://doi.org/https://doi.org/10.3133/tm6A55 

Li, L., Puzel, R., & Davis, A. (2018). Data assimilation in groundwater modelling: ensemble 

Kalman filter versus ensemble smoothers. Hydrological Processes, 32(13), 2020–2029. 

https://doi.org/10.1002/hyp.13127 

Lima, M., & Medina, J. (2015). Evolución climática y estratigrafía del miembro Órganos de la 

formación Bucaramanga [UNIVERSIDAD INDUSTRIAL DE SANTANDER]. 

http://tangara.uis.edu.co/biblioweb/tesis/2015/160331.pdf 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 130 

Linde, N., Ginsbourger, D., Irving, J., Nobile, F., & Doucet, A. (2017). On uncertainty 

quantification in hydrogeology and hydrogeophysics. Advances in Water Resources, 

110(October), 166–181. https://doi.org/10.1016/j.advwatres.2017.10.014 

Markovich, K. H., White, J. T., & Knowling, M. J. (2022). Sequential and batch data assimilation 

approaches to cope with groundwater model error: An empirical evaluation. Environmental 

Modelling & Software, 156(August), 105498. 

https://doi.org/10.1016/j.envsoft.2022.105498 

Medina Baez, M. P. (2021). Caracterización hidrogeoquímica de la contaminación del recurso 

hídrico subterráneo en la zona norte de Bucaramanga. Universidad Industrial de 

Santander. 

Moore, C., & Doherty, J. (2005). Role of the calibration process in reducing model predictive 

error. Water Resources Research, 41(5), 1–14. https://doi.org/10.1029/2004WR003501 

Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. 

(2012). Review of strategies for handling geological uncertainty in groundwater flow and 

transport modeling. Advances in Water Resources, 36, 36–50. 

https://doi.org/10.1016/j.advwatres.2011.04.006 

Serrano, J. O., Abreo, S. A., Ramirez, A. B., & Pestana, R. C. (2017). A cycle-skipping analysis 

in transformed domains for full waveform inversion using particle swarm optimization 

(PSO). 15th International Congress of the Brazilian Geophysical Society \& EXPOGEF, 

Rio de Janeiro, Brazil, 31 July-3 August 2017, 1787–1792. 

Servicio de Evaluación Ambiental, S. (2012). Guía para el Uso de Modelos de Aguas Subterráneas 

en el SEIA. 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 131 

https://www.sea.gob.cl/sites/default/files/migration_files/guias/Guia_uso_modelo_aguas_

subterraneas_seia.pdf 

Suarez, J. (2008). DESLIZAMIENTOS: TECNICAS DE REMEDIACION. Obras de drenaje y 

subdrenaje. In Deslizamientos Tecnicas de Remediación (Vol. 2, pp. 47–106). 

Suescún, L. C. (2016). Modelación analítica y numérica para predicción y calibración de caudales 

de infiltración en obras subterráneas: Colombia, Francia/Italia y España. Universidad 

Nacional de Colombia, 200. 

http://www.bdigital.unal.edu.co/55471/1/1014200617.2016.pdf 

Sundell, J., Norberg, T., Haaf, E., & Rosén, L. (2019). Economic valuation of hydrogeological 

information when managing groundwater drawdown. Hydrogeology Journal, 27(4), 1111–

1130. https://doi.org/10.1007/s10040-018-1906-z 

Tonkin, M., & Doherty, J. (2009). Calibration-constrained Monte Carlo analysis of highly 

parameterized models using subspace techniques. Water Resources Research, 45(12). 

https://doi.org/10.1029/2007WR006678 

Tonkin, M. J., & Doherty, J. (2005). A hybrid regularized inversion methodology for highly 

parameterized environmental models. Water Resources Research, 41(10), 1–16. 

https://doi.org/10.1029/2005WR003995 

UIS, G. de I. G., & AMB. (2018). ESTUDIO DE AMENAZA, VULNERABILIDAD Y RIESGO 

POR MOVIMIENTOS EN MASA DEL SECTOR NORTE DE BUCARAMANGA (BARRIOS 

LIZCANO, ESPERANZA III, MIRADOR, JOSÉ MARÍA CÓRDOBA, VILLA HELENA, 

VILLA ROSA, VILLA MARÍA); INFORME DE DISEÑOS A NIVEL DE PRE 

FACTIBILIDAD DE LAS. 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 132 

UIS, G. de I. G., & AMB. (2019). ESTUDIO DE FACTIBILIDAD Y LOS DISEÑOS DE 

INGENIERÍA DE DETALLE, PARA LA CONSTRUCCIÓN DE UNA GALERÍA DE 

DRENAJE EN EL BARRIO LA ESPERANZA II DEL MUNICIPIO DE BUCARAMANGA, 

COMO MEDIDA PARA LA REDUCCIÓN DEL RIESGO POR MOVIMIENTO EN MASA 

PROFUNDOS (Vol. 1, Issue 1). 

Velandia, F., & Bermúdez, M. A. (2018). The transpressive southern termination of the 

Bucaramanga fault (Colombia): Insights from geological mapping, stress tensors, and 

fractal analysis. Journal of Structural Geology, 115(July), 190–207. 

https://doi.org/10.1016/j.jsg.2018.07.020 

Ward, D., Goldsmith, R., Andres, J., Cruz, J., Hernán, R., & Eduardo, G. (2013). Geología de la 

plancha 109 y 120. 1977. 

http://srvags.sgc.gov.co/Flexviewer/Estado_Cartografia_Geologica/ 

Welter, D. E., White, J. T., Hunt, R. J., & Doherty, J. E. (2015). Approaches in Highly 

Parameterized Inversion : PEST ++ Version 3, A Parameter ESTimation and Uncertainty 

Analysis Software Suite Optimized for Large Environmental Models. U.S. Geological 

Survey Techniques and Methods 7-C12, Techniques and Methods 7-C12, 54. 

http://dx.doi.org/10.3133/tm7C12.%0Ahttp://dx.doi.org/10.3133/tm7C12 

White, J. T. (2017). Forecast First: An Argument for Groundwater Modeling in Reverse. 

Groundwater, 55(5), 660–664. https://doi.org/10.1111/gwat.12558 

White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-

matching and uncertainty quantification in very high dimensions. Environmental 

Modelling and Software, 109(June), 191–201. 

https://doi.org/10.1016/j.envsoft.2018.06.009 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 133 

White, J. T., Doherty, J. E., & Hughes, J. D. (2014). Quantifying the predictive consequences of 

model error with linear subspace analysis. Water Resources Research, 50(2), 1152–1173. 

https://doi.org/10.1002/2013WR014767 

White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model 

uncertainty analysis. Environmental Modelling and Software, 85, 217–228. 

https://doi.org/10.1016/j.envsoft.2016.08.017 

White, J. T., Foster, L. K., Fienen, M. N., Knowling, M. J., Hemmings, B., & Winterle, J. R. 

(2020). Toward Reproducible Environmental Modeling for Decision Support: A Worked 

Example. Frontiers in Earth Science, 8(February). 

https://doi.org/10.3389/feart.2020.00050 

White, J. T., Hemmings, B., Fienen, M. N., & Knowling, M. J. (2021). Towards improved 

environmental modeling outcomes: Enabling low-cost access to high-dimensional, 

geostatistical-based decision-support analyses. Environmental Modelling and Software, 

139(February), 105022. https://doi.org/10.1016/j.envsoft.2021.105022 

White, J. T., Hunt, R. J., Fienen, M. N., Doherty, J. E., & Survey, U. S. G. (2020). Approaches to 

highly parameterized inversion: PEST++ Version 5, a software suite for parameter 

estimation, uncertainty analysis, management optimization and sensitivity analysis. 

Techniques and Methods, 64. http://pubs.er.usgs.gov/publication/tm7C26 

White, J. T., Knowling, M. J., & Moore, C. R. (2020). Consequences of Groundwater-Model 

Vertical Discretization in Risk-Based Decision-Making. Groundwater, 58(5), 695–709. 

https://doi.org/10.1111/gwat.12957 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 134 

Zaidel, J., Markham, B., & Bleiker, D. (2010). Simulating seepage into mine shafts and tunnels 

with MODFLOW. Ground Water, 48(3), 390–400. https://doi.org/10.1111/j.1745-

6584.2009.00659.x 

Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution 

and recent trends. Advances in Water Resources, 63, 22–37. 

https://doi.org/10.1016/j.advwatres.2013.10.014 

 

 

 

  



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 135 

Appendices 

 

 

Appendix A. Conceptual Model complement 

 

Limits of the area and geology 

 

The Area of study is in the Bucaramanga Formation (Qtf) which is a geological unit at the 

southwest of the mountainous region (Figure 47) composed of weathered and fractured igneous 

rocks(Gomez et al., 2015).The Bucaramanga formation has 2 main hydrogeological units, Qbg 

and Qbo members(Antolínez Quijano, 2014; Gomez et al., 2015), but only the last one is present 

in the area of the gallery. A first choice for the study area would be the complete geological unit 

as done by Antolínez Quijano, (2014), but is too big for the purpose of the gallery analysis, the a 

smaller area chosen by UIS & AMB, (2019) is used . The limits of the study zone are defined at 

the north by the two most important rivers of the CSRL (Oro and Surata). UIS and Picha creeks at 

the east and west are deemed to be hydraulic features that separate the hydrogeological system of 

the area from other parts of the same hydrogeological unit (Bucaramanga formation).To the south 

our study area is fully connected to rest of the aquifer of the Organos member of the Bucaramanga 

formation as is shown by the isopotentials of the system (Figure 46). Then to define a limit without 

a physical or hydraulic boundary close to the area of interest an arbitrary limit is selected where 

the geomorphology change. In this limit, a GHB condition can be used later to simulate the lateral 

inflow, either extracting local BC from a bigger model or simulating a distant boundary condition. 
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Figure 47. 

Geological map of Bucaramanga 1:100.000 (Ward et al., 2013) 
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Figure 48. 

hydraulic behavior of the Qbo member, at left directions of Flow in a numerical model, at right 

isopotentials measured from wells.(Antolínez Quijano, 2014) 

 

 

Hydrostratigraphy 

 

There are 5 hydrogeological units: Rock, Qbo1, Qbo2, Qbg, Qd. the first one is composed 

of all the sedimentary consolidated geological units. Qbo1, Qbo2 and Qbg are members of the 

Bucaramanga formation. Qd is a colluvial deposit formed of landslides of the Bucaramanga 

formation. The geometric distribution of the layers in the study area is showed in Error! 

Reference source not found. to Error! Reference source not found.. The profiles shown were 

used to build the 3D geological model (Figure 57) that will be used for the groundwater numerical 

model. 
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Figure 49. 

Plan view of the geological profiles, Adapted by the Author from Gómez Arroyo & Gómez 

Palencia, 2021 
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Figure 50. 

Geologic profile for the A-A' section (UIS & AMB, 2019) 

 

 

Figure 51. 

Geologic profile for the B-B' section (UIS & AMB, 2019) 

 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 140 

Figure 52. 

Geologic profile for the C-C' section (UIS & AMB, 2019) 

 

 

Figure 53. 

Geologic profile for the D-D' section (UIS & AMB, 2019) 
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Figure 54. 

Geologic profile for the E-E' section (UIS & AMB, 2019) 

 

 

Figure 55. 

Geologic profile for the F-F' section (UIS & AMB, 2019) 
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Figure 56. 

Geologic profile for the G-G' section (UIS & AMB, 2019) 

 

 

Figure 57. 

3D Geological Model (UIS & AMB, 2019) 
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Hydrogeological Properties 

 

The hydrogeological units of the Organos member can be divided in hydrofacies to 

understand better their hydraulic properties (Table 14). In general Qboq, Qbo2 and Qd has the 

same hydrofacies but in different proportions(Gómez-Arroyo & Sánchez-Ortíz, 2020; Gómez 

Arroyo & Gómez Palencia, 2021). The hydrofacies proportion shows that the Qbo1 member has 

more open framework (GSM) hydrofacies, but more low potential hydrofacies(LAGr, La) than 

Qbo2. Also, can be seen that Qd has similar characteristics to Qbo1 but more muddy sands. 

 

Table 14. 

Hydrofacies of the Organos member(Gómez Arroyo & Gómez Palencia, 2021) 

Hydrofacie Description 
Qbo1 

proportion 
[%] 

Qbo2 
proportion 

[%] 

Qd 
proportion 

[%] 

Massive gravel 
(GM) 

granular gravels, Pebbly 
gravels, blocky gravels, 
clastsupported 
(framework > 30%) 
with muddy sandy 
matrix. 

40.48 55.44 45.98 

Open-framework 
gravel (Gsm) 

pebbly and granular 
gravels, locally very 
coarse-grained sands, 
with totally or partially 
washed matrix (little 
presence of matrix, 
mainly located on the 
surface of the clasts or 
allowing floating 
contact between them). 

31.11 10.32 11.38 

Gravelly sands 
(AGr) 

Medium to very coarse-
grained sands, granular 

11.4 17.39 9.74 
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Hydrofacie Description 
Qbo1 

proportion 
[%] 

Qbo2 
proportion 

[%] 

Qd 
proportion 

[%] 
and pebbly gravels, with 
a percentage of gravel 
between 10% and 30%, 
occasional presence of 
clays and silts. 

Muddy sands 
(AL) 

Very fine to fine grained 
sands, locally medium 
grained, muddy, slightly 
granular, with little or 
no occurrence of gravel 
(<10%). Sandy silt with 
a proportion of sand > 
10%. 

3.95 9.47 21.95 

Gravelly Muds 
and clays (LAGr) 

Silt gravelly, pebbly, 
gravelly sandy; pebbly 
and sandy clay, with a 
plastic matrix, with a 
percentage of gravel 
between 10% and 30%. 

8.28 4.49 7.45 

Muds and clays 
(LA) 

Silts, clayey silts, silty 
clays, and slightly sandy 
silts, with plastic 
consistency, restricted 
granulometric variation, 
with null or atypical 
occurrence of non-
representative larger 
clasts. 

4.78 2.89 3.5 

 

Most of the geological data comes from drilling cores and given that most of the area is 

urbanized and there is the high presence of colluvial material (without any clear organization) there 

is a scarcity of outcrops, then the horizontal continuity of the hydro facies is not known in the area. 

The vertical continuity is outlined in Error! Reference source not found. 
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Figure 58. 

Distribution of the thicknesses of each hydrofacie in the area of study 

 

 

The typical range of hydraulic properties in every kind of material is shown in Figure 58. 

The only pumping test in the area were carried out in a closed well (in the Qbo2) between 

piezometers P-MS-1(depth of 20 m) and P-MS-2(Figure 17). The well had 2 filters of 6 meters at 

depths of 20 m and 32 m and a deeper one of 3m to 50m. The pumping flow yielded by the well 

was 0.3 liters per second and the results are shown in Table 16. The Pumping test in the area 

showed a barrier effect, that is associated to impermeable faults. Other measurements of the 

hydraulic conductivity and porosity were developed in the area like permeability test and others 

(Table 17). The laboratory measurements of the hydraulic conductivity tend to be biased to lower 

values because the drilling cores selected to test were intact due to its high cohesion. Although the 

Average 
Thickness: 

T
hi

ck
ne

ss
 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 146 

porosity is not directly a hydraulic parameter it is a proxy of the maximum value of the specific 

yield. 

 

Table 15. 

Literature hydraulic values of the geologic material associated to the hydrofacies (Anderson et 

al., 2015) 

Hydrofacie Geologic material K (m/s) Sy (%) Ss (%) 

Massive gravel 
(GM) 

Silty sand/clay 
(muddy sandy 

matrix) 
1E-11 - 5E-5 1 – 46 4.9E-5 – 1E-4 

Open-
framework 

gravel (Gsm) 
Gravel 1E-3 – 5E-2 13 - 40 - 

Gravelly sands 
(AGr) 

Silty-Clean sand 5E-7 – 5E-3 18 - 43 4.9E-5 – 1E-4 

Muddy sands 
(AL) 

Silty sand/clay 1E-11 - 5E-5 1 - 46 9.2E-4 – 2E-2 

Gravelly muds 
and clays 
(LAGr) 

Silt/Clay 5e-13 - 1e-7 1 - 39 9.2E-4 – 2E-2 

Muds and 
clays (LA) 

Silt/Clay 5e-13 - 1e-7 1 - 39 9.2E-4 – 2E-2 

Rock 

Shale, Carbonate 
rocks, Sandstones; 

occasionally 
fractured 

1E-5 – 10E-
13 

1 - 36 3.3E-6 – 6.9E-5 

 

Table 16. 

Results of the pumping test in the area (Caballero Caceres & Gomez Navas, 2011) 

Puntos de Agua Tipo de prueba Transmisivity(m2/d) Storage 
Well Pumping 0.6588 0.16013 
Well Recovering 0.63248  

P-MS-1 Pumping 8.1782 0.007011 
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Puntos de Agua Tipo de prueba Transmisivity(m2/d) Storage 
P-MS-1 Recovering 11.5692  

 

Table 17. 

Other hydraulic properties the study area. *Every consolidation test measures the porosity with 

little pressure (min value) and with a high-pressure equivalent to approximately 80 m of depth. 

** to get porosity from the specific weight test, it was necessary to assume some parameters 

from the literature. 

Parameter Geology Min Max # Samples type Source 

Kz[m/s] Qd 6.13E-10 3.82E-09 2 Variable head 
(UIS & AMB, 

2018) 

Kz[m/s] Qbo2 2.89E-09 4.75E-07 6 Variable head 
(UIS & AMB, 

2018) 

Kz[m/s] Qbo1 1.30E-09 1.30E-09 1 Variable head 
(UIS & AMB, 

2018) 

Kz[m/s] Qbo2 3.34E-10 8.83E-10 5 Variable head 
(UIS & AMB, 

2019) 

Kz[m/s] Qbo1 4.11E-10 4.11E-10 1 Variable head 
(UIS & AMB, 

2019) 

K[m/s] Qbo2 4.03E-10 6.51E-08 19 Lefranc 
(UIS & AMB, 

2019) 

n Qbo2 0.179386 0.316426 6 Consolidation* 
(UIS & AMB, 

2019) 

n Qbo2 0.160863 0.223663 2 Consolidation* 
(UIS & AMB, 

2019) 

n Qd 0.097683 0.187777 4 
Specific 
weight** 

(UIS & AMB, 
2018) 

n Qbo2 0.136318 0.382338 31 
Specific 
weight** 

(UIS & AMB, 
2018) 

n Qbo1 0.290951 0.338994 5 
Specific 
weight** 

(UIS & AMB, 
2018) 

 

In previous studies the hydraulic conductivity of members of the Bucaramanga formation 

was estimated, by manual model calibration (Table 18), and by GLM calibration using FePest 
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(Table 19), both calibrated in steady state using zonation (regions of equal conductivity associated 

to geology). Given all this data the range of possible values of the hydraulic properties are broad, 

and the uncertainty of those values is high. Possibly the flow travel mainly through preferential 

paths of high hydraulic conductivity because the matrix shows a very low hydraulic conductivity 

in the laboratory test.  

 

Table 18. 

Calibrated values in steady state of a groundwater model of the Bucaramanga 

Formation(Antolínez Quijano, 2014), Qbo only had the 6% of the observations used in the model 

calibration (2 observations). 

Unit 
Kx-Ky 

min [m/s] 
Kx-Ky 

max [m/s] 
Kz min 
[m/s] 

Kz max 
[m/s] 

Qbo 4.2E-5 4.2E-5 1.7E-6 1.7E-6 
Qbg 2.54E-5 1.12E-4 1e-5 2.12E-5 

 

Table 19. 

Calibrated values of a previous model in the study area (UIS & AMB, 2019) 

Unit 
Kx-Ky 

min[m/s] 
Kx-Ky 

max[m/s] 
Kz 

min[m/s] 
Kz 

max[m/s] 
Qd 1.62E-7 1.88E-6 9.54E-9 2.01E-8 

Qbo2 9.32E-7 2.17E-5 1.4E-7 2.63E-6 
Qbo1 9.93E-9 3.83E-8 4.29E-11 1.06E-9 
Rock 1E-13 1.96E-8 1.01E-11 1.05E-11 
Faults 2.85E-7 1.99E-4 5.11E-9 1.16E-4 

 

  



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 149 

Flow Direction, sources, and sinks 

 

The first sketch of the directions of the flow in the Organos Member study area shows 

roughly a direction of flow from south to north (piezometry in   
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Figure 48), a more detailed potentiometry levels (  
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Figure 60) are seen through the inventory of groundwater points(  
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Figure 59). In the Area of study, the flow comes from the Bucaramanga plateau (main 

source) and goes towards(sinks) the rivers and the main creek of the area 
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Figure 59. 

Inventory of Groundwater points in the study area 

 

 

  

 

Spring 
Subdrain 
Cistern 
Piezometer 
Vibrating 
wire 

Inventory of 
groundwater points 



UNCERTAINTY ANALYSIS OF A HYDROGEOLOGICAL MODEL 154 

Figure 60. 

Average isopotential levels of the groundwater system (Medina Baez, 2021), All the borders 

except the western border are the same than the borders used in the groundwater model. 

Coordinate system is in 3116, Magna Sirgas Bogotá zone 

 

 

The historic behavior of the piezometric measurements is shown in Table 20. 

Punctual piezometric depths measured in the study area (Medina Baez, 2021) to Figure 66. Some 

erratic behavior of levels (Figure 63) is later clipped in the numerical modelling to avoid noise and 

overfitting. 
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Table 20. 

Punctual piezometric depths measured in the study area (Medina Baez, 2021) 

date 
P-Gal-

S1 
P-Gal-

S2 
P-Gal-

S4 
P-Gal-

S5 
P-Gal-

S6A 
P-LZ-

4 
P-M-

6 
P-MS-

1 
P-MS-

2 
P-VR-

1 
12/18/2018      1.90 4.20 3.92 1.20 2.70 
1/28/2019        4.27 3.00  

3/2/2019      1.98 4.65 4.13 1.91 2.62 
4/5/2019      2.00 2.50 1.64  2.30 

5/10/2019 11.10          

11/22/2019 13.30 20.60 7.80 5.40       

2/27/2020 13.50  7.50  18.50  4.90   3.35 
 

Figure 61. 

Piezometric depths of vibrating wire RN-S7(UIS & AMB, 2019). Sensor depths are 1:121.5m, 

2:91.5m, 3:40.5m, 4:10.5m 
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Figure 62. 

Piezometric depths of vibrating wire P-E3-S6(UIS & AMB, 2019). Sensor depths are 1:141.5m, 

2:50.1m, 3:35.5m, 4:23.5m, 5:9m 

 

 

Figure 63. 

Piezometric depths of vibrating wire P-VR-S(UIS & AMB, 2019). Sensor depths are 1:77.5m, 

2:40.5m, 3:26.5m 
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Figure 64. 

Depth measurement in piezometer P-Gal-S3(Medina Baez, 2021) 

 

 

Figure 65. 

Depth measurement in piezometer P-Gal-S1(Medina Baez, 2021) 

 

 

Figure 66. 

Depth measurement in piezometer P-Gal-S5(Medina Baez, 2021) 
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To complement the analysis of groundwater sources and recharge the water chemistry is 

used. The isotopic sampling of rain in the CSRL allowed to identify an orographic effect of the 

isotopic compositions which allows to estimate the recharge height of groundwater 

samples(Gomez et al., 2015). Using the orographic gradient of the stable isotopes in samples taken 

in the study area (Figure 67) shows that the recharge comes from higher altitudes than the study 

area (Figure 52) or at least part of the recharge. It is the same behavior of water samples of the 

entire Bucaramanga formation where the recharge comes from the medium and upper zones of the 

CSRL(Gomez et al., 2015). 

 

Figure 67. 

Estimated infiltration height of groundwater samples by the isotopic orographic effect (UIS & 

AMB, 2019) 
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The electrical conductivity shows values between 170 y 450 mS/cm which are not values 

of very young groundwater, the Ph is between 5.4 and 8.5 (Figure 69, down). both the conductivity 

and Ph shows an anomaly at the east, probably caused by pollutants in the urban area as can be 

confirmed by e. coli measurements (  
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Figure 68). The ionic distribution is shown in Figure 70 where is worthy to mention that 

the chloride is a conservative ion which shows a trend of dilution in the direction of flow, that can 

be attributable to rain recharge(Medina Baez, 2021). The aforementioned is compatible with the 

fact that most samples showed reducing and transitional environments(Medina Baez, 2021), given 

that the Aquifer in the Organos member is partially isolated from the atmosphere in the 

Bucaramanga plateau but is exposed in the area of study to rain recharge. 
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Figure 68. 

Microbiological measurements in the study area (Medina Baez, 2021) 
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Figure 69. 

Electrical conductivity [mS/cm] (up) and Ph (down) of the study area(Medina Baez, 2021) 
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Figure 70. 

Ionic concentration(mg/l) in the study area(Medina Baez, 2021),  
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The rain in the study area is around 1200 mm/yr (Figure 71) with monthly variations where 

December, and august are usually the driest months (Figure 72). The average temperature is 23 

celcius degrees, where the estimated real Evapotranspiration is close to de potential 

evapotranspiration because there is usually an excess of water and is about 1070 mm/yr(UIS & 

AMB, 2019). Then the Evapotranspiration is approximated the 89% percent of the total 

precipitation, and recharge will be around 10% or less.  

 

Figure 71. 

Precipitation variations from 1982 to 2002 in UIS gauge (A gauge located right next to the south 

of the study area)(UIS & AMB, 2019) 
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Figure 72. 

Multi-year monthly mean rainfall(UIS & AMB, 2019) 
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Appendix B Graphs of results 

 

 

See Folder attached 

 


