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BUCARAMANGA

2023



PROSTATE LESIONS CHARACTERIZATION IN MRI SEQUENCES USING A DEEP

CONTRASTIVE LEARNING FRAMEWORK

YESID ALFONSO GUTIERREZ GUATE

Research work in partial fulfillment of the requirements for the degree of:

Magı́ster en Ingenierı́a de Sistemas e Informática
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ABSTRACT

Title: Prostate lesion characterization in MRI sequences using a deep contrastive learning framework *

Author: Yesid Alfonso Gutiérrez Guate **

Keywords: prostate cancer, constrastive learning, MRI, multimodal learning

Description: Early prostate cancer diagnosis from bi-parametric MRI studies (T2WI and DWI sequences)

constitutes the new guidelines in PI-RADS-2 protocol. From such sequences, malignant lesions are

characterized by morphological and cellular density properties. Nonetheless, such characterization

is sensible to high variability among different MRI sequences and prostate zones, which often results

in misdiagnosis. Current deep learning representations have shown promising results to support the

diagnosis, discriminating malignant lesions from multimodal MRI radiological findings. Nevertheless,

such strategies typically require a huge amount of annotated MRI findings in multimodal MRI se-

quences, which clearly limits the implementation and application of these computational strategies

in the clinical routine. Moreover, the learned representations may be sensible to noise generated

during the data augmentation techniques. This work introduces a weakly supervised learning ap-

proach from a deep BP-MRI representation to classify malignant lesions, overcoming deep learning

approaches that use multiparametric MRI. Firstly, redundant and rich tissue patches are taken from

the prostate gland, allowing to adjust a representation to discriminate between lesions and healthy

tissue. This pretext task is performed under a contrastive learning scheme, learning an embedding

projection that groups similar patches while maximizing the distance among different classes. Then,

from such representation, it is carried out a fine-tuning process to discriminate between benign and

malignant lesions related to prostate cancer lesions. The proposed approach outperformed baseline

studies in a public dataset, achieving a ROC-AUC of 0.85 using the 80% of the available annotated

lesions. Also, using 20% of the lesions, the proposed strategy achieved a ROC-AUC of 0.80, being a

promising result to transfer models to the clinical routine.

* Research work

** Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́a de Sistemas e Informática. Advisor:
Fabio Martı́nez Carrillo, Ph.D.
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RESUMEN

Tı́tulo: Caracterización de lesiones prostáticas en secuencias MRI utilizando un marco de aprendizaje

contrastivo profundo *

Autor: Yesid Alfonso Gutiérrez Guate **

Palabras clave: cáncer de próstata, aprendizaje contrastivo, MRI, aprendizaje multimodal.

Descripción: El diagnóstico temprano del cáncer de próstata a partir de estudios de MRI biparamétricos

(secuencias T2WI y DWI) constituye las nuevas directrices del protocolo PI-RADS-2. A partir de

dichas secuencias, las lesiones malignas se caracterizan por sus propiedades morfológicas y de den-

sidad celular. Sin embargo, dicha caracterización es sensible a la alta variabilidad entre diferentes

secuencias MRI y zonas de próstata, lo que a menudo resulta en diagnósticos erróneos. Las repre-

sentaciones actuales de aprendizaje profundo han mostrado resultados prometedores para apoyar

el diagnóstico. Sin embargo, estas estrategias suelen requerir una enorme cantidad de hallazgos

anotados en secuencias MRI, lo que limita claramente la implementación y aplicación de estas es-

trategias computacionales en la rutina clı́nica. Además, las representaciones aprendidas pueden ser

sensibles al ruido generado durante las técnicas de aumento de datos. Este trabajo introduce un en-

foque de aprendizaje débilmente supervisado a partir de una representación profunda BP-MRI para

clasificar lesiones malignas. En primer lugar, se toman parches de tejido redundante de la glándula

prostática, lo que permite ajustar una representación para discriminar entre lesiones y tejido control.

Esta tarea se realiza bajo un esquema de aprendizaje contrastivo, aprendiendo una proyección de

embebidos que agrupa parches similares maximizando la distancia entre las diferentes clases. A

continuación, a partir de dicha representación, se lleva a cabo un proceso de fine-tunning para dis-

criminar entre lesiones benignas y malignas relacionadas con lesiones de cáncer de próstata. El

enfoque propuesto superó a los estudios de referencia en un conjunto de datos públicos, alcanzando

un ROC-AUC de 0,85 utilizando el 80% de las lesiones anotadas disponibles. Además, utilizando

el 20% de las lesiones, la estrategia propuesta alcanzó un ROC-AUC de 0.80, siendo un resultado

prometedor para transferir modelos a la rutina clı́nica.

* Trabajo de investigación

** Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́a de Sistemas e Informática. Director:
Fabio Martı́nez Carrillo, Ph.D.

10



INTRODUCTION

The World Health Organization reported around of five million prostate cancer cases

world-wide, and more than 375.000 deaths during the 2020, being the cancer with most

prevalence1. Typically, in clinical routine, prostate cancer screening includes a Prostatic

Specific Antigen (PSA), Digital Rectal Examination (DRE) and Trans-Rectal Ultrasound

guided Biopsy (TRUS). Nevertheless, these current screening tests usually lead to over-

diagnosis, and over-treatment, which results in a silent spread of malignant tumors2. For

instance, the PSA reports a significant low specificity (around of 25%) related to misdiagno-

sis associated with other pathologies such as Prostatis, and Benign Prostate Hyperplasia

(BPH), while some positive cancer cases report low PSA values3 4 5. To overcome such

limitations, the PSA is carried out with DRE to confirm the disease6 7. Nonetheless, the

DRE is invasive and highly subjective (only 66 % of physicians can palpate correctly the

1 R. L. Siegel et al. “Cancer statistics, 2020”. In: CA: a cancer journal for clinicians 70.1 (2013), pp. 7–30.

2 Stacy Loeb et al. “Overdiagnosis and overtreatment of prostate cancer”. In: European urology 65.6
(2014), pp. 1046–1055.

3 Michael J Barry. “Prostate-specific–antigen testing for early diagnosis of prostate cancer”. In: New
England Journal of Medicine 344.18 (2001), pp. 1373–1377.

4 Benny Holmström et al. “Prostate specific antigen for early detection of prostate cancer: longitudinal
study”. In: Bmj 339 (2009).

5 Julius Gudmundsson et al. “Genome-wide associations for benign prostatic hyperplasia reveal a genetic
correlation with serum levels of PSA”. in: Nature communications 9.1 (2018), pp. 1–8.

6 Barry, “Prostate-specific–antigen testing for early diagnosis of prostate cancer”.

7 E David Crawford et al. “Serum prostate-specific antigen and digital rectal examination for early detection
of prostate cancer in a national community-based program”. In: Urology 47.6 (1996), pp. 863–869.
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prostate gland), reporting a low agreement (kappa = 0.25)8. Besides, the TRUS guided

biopsy is performed to analyze from a microscopical perspective the presence of car-

cinoma regions, but more than 30% of clinically significant cancer regions are lost9 10.

Moreover, there are associated risks during procedure, such as rectal bleeding and sep-

sis11.

Hence, the development of a non-invasive mechanism for early diagnosis is key to de-

velop effective treatments, which may impact the mortality index12. Nowadays, the multi-

parametric MRI sequences (MP-MRI) are a promising alternative to enhance the diagno-

sis, treatment, and surveillance of prostate cancer, evidencing a detection enhancement

of cancer lesions, effective tumor’s volume characterization13 14 15, and even an in-vivo es-

timation of tumors progression16. Particularly, the T2 weighted imaing (T2WI) is used to

8 Angela Zhang, Thomas Fear, and Hammood Ahmed. “Digital rectal examination in prostate cancer
screening”. In: University of Western Ontario Medical Journal 82.1 (2013), pp. 10–11.

9 Ege Can Serefoglu et al. “How reliable is 12-core prostate biopsy procedure in the detection of prostate
cancer?” In: Canadian Urological Association Journal 7.5-6 (2013), E293.

10 Hashim Uddin Ahmed et al. The PROMIS study: A paired-cohort, blinded confirmatory study evaluating
the accuracy of multi-parametric MRI and TRUS biopsy in men with an elevated PSA.. 2016.

11 Mark R Quinlan, Damien Bolton, and Rowan G Casey. “The management of rectal bleeding following
transrectal prostate biopsy: A review of the current literature”. In: Canadian Urological Association
Journal 12.3 (2018), E146.

12 Siegel et al., “Cancer statistics, 2020”.

13 G. Murphy et. al. “The expanding role of MRI in prostate cancer”. In: American Journal of Roentgenol-
ogy 201.6 (2013), pp. 1229–1238.

14 Jelle O Barentsz et al. “ESUR prostate MR guidelines 2012”. In: European radiology 22.4 (2012),
pp. 746–757.

15 Maarten de Rooij et al. “Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis”.
In: American Journal of Roentgenology 202.2 (2014), pp. 343–351.

16 Murphy, “The expanding role of MRI in prostate cancer”.
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depict the morphological features of the prostatic gland, allowing the identification of ab-

normal masses, or potential lesions. Complementary, diffusion-weighted imaging (DWI)

allows to quantify the cellular density of the tissues as a measure of impedance in the sig-

nal, being the Apparent Diffusion Coefficient (ADC), and the Maximum B value (B-VAL),

two important maps estimated from such sequences. Besides, the Ktrans maps from

dynamic contrast-enhanced (DCE) sequences allow characterization of potentially malig-

nant lesions from micro-circulation properties, reflecting vascular patterns as a response

of gadolinium influx17 18.

The PI-RADS (Prostate Imaging Reporting and Data System) is today the standard sys-

tem to quantify, stratify and diagnose cancer lesions, involving MP-MRI sequences, al-

lowing to standardize the interpretation, reporting, and scoring about particular suspi-

cious lesions19 20. Typically, the classical PI-RADS involves the integrated analysis of T2-

Weighted Imaging (T2WI), Diffusion Weighted Imaging (DWI) and Dynamic Contrast En-

hanced (DCE) sequences. Nevertheless, in the current system PI-RADS-v2 is only taken

into account a bi-parametric perspective that includes T2WI and DWI sequences, avoiding

the use of contrast agents, minimizing time of acquisition, associated costs and achieving

17 Murphy, “The expanding role of MRI in prostate cancer”.

18 CA Cuenod and D. Balvay. “Perfusion and vascular permeability: basic concepts and measurement in
DCE-CT and DCE-MRI”. in: Diagnostic and interventional imaging 94.12 (2013), pp. 1187–1204.

19 Barentsz et al., “ESUR prostate MR guidelines 2012”.

20 HA Vargas et al. “Updated prostate imaging reporting and data system (PIRADS v2) recommendations
for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation
using whole-mount pathology as standard of reference”. In: European radiology 26.6 (2016), pp. 1606–
1612.
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a relative similar diagnosis21 22. Despite of the reported advances from MRI characteriza-

tion, the analysis of these sequences is still fully dependent from the radiologists’ experi-

ence, introducing an inter-reader variability. In fact some studies report a very moderate

agreement to characterize lesion malignancy levels over the prostatic gland (k = 0.419),

and a low agreement among radiologists to perform such interpretation over the transi-

tional zone (TZ) (k = 0.250)23.

Deep learning strategies have recently emerged as a support diagnosis tool to char-

acterize malignant lesions, observed from MRI sequences24 25. These strategies typi-

cally involve convolutional architectures, integrate different sequences, and also include

other clinical variables to classify localized lesions in the assessment of prostate can-

cer26. Nonetheless, these approaches are trained from supervised schemes using the

cross entropy loss function and require a huge amount of labeled and stratified data to

21 Kristin K Porter et al. “Financial implications of biparametric prostate MRI”. in: Prostate cancer and
prostatic diseases 23.1 (2020), pp. 88–93.

22 Vargas et al., “Updated prostate imaging reporting and data system (PIRADS v2) recommendations for
the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using
whole-mount pathology as standard of reference”.

23 Matthew D Greer et al. “Interreader variability of prostate imaging reporting and data system version
2 in detecting and assessing prostate cancer lesions at prostate MRI”. in: AJR. American journal of
roentgenology (2019), p. 1.

24 Alireza Mehrtash et al. “Classification of clinical significance of MRI prostate findings using 3D convolu-
tional neural networks”. In: Medical Imaging 2017: Computer-Aided Diagnosis. Vol. 10134. International
Society for Optics and Photonics. 2017, 101342A.

25 Quan Chen et al. “A transfer learning approach for classification of clinical significant prostate cancers
from mpMRI scans”. In: Medical Imaging 2017: Computer-Aided Diagnosis. Vol. 10134. Interna-
tional Society for Optics and Photonics. 2017, 101344F; Jeroen Bleker et al. “Multiparametric MRI and
auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate
cancer”. In: European radiology 30.3 (2020), pp. 1313–1324.

26 Bleker et al., “Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clini-
cally significant peripheral zone prostate cancer”.
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properly adjust the deep representations. Additionally, training schemes based on the

cross-entropy loss function follow an inter-class minimization without considering the high

variability among samples of the same class. Besides, such annotations are biased from

radiologist annotations or may be labeled from biopsy output results, which results expen-

sive, limiting the collection of representative samples to adjust deep representations.

This work we introduce a Weakly Supervised Contrastive Learning (WSCL) strategy that

takes advantage of non-labeled MRI prostate regions, to achieve a significant set of

training observations. The prostate gland is divided into control and lesion-affected re-

gions, with the main purpose to adjust a deep representation that could properly dis-

criminate lesion-affected regions from a set of weakly labeled MRI observations. Then

an easy-positive mining strategy was herein implemented to find tuples of training sam-

ple configurations that better update the deep representation. Hence, from a contrastive

learning scheme, a lesion affected and a batch of control regions are projected into low-

dimensional embedding vectors to measure the textural similarities among control pro-

static tissues, while estimating the textural differences among potentially affected zones

in MRI sequences. This contrastive representation fully exploits positive and negative vi-

sual samples, by including an energy-based learning scheme that models the inter and

intra-variability of prostate lesions represented as textural similarities among CSR. The

proposed learning strategy was validated in three sub-sampling schemes to emulate dif-

ferent challenging clinical scenarios. Also, validation with supervised contrastive learning

was herein included. The achieved results show that the proposed SCL strategy obtained

a better performance even in smaller sub-datasets. Hence, the proposed representation

is able to learn inter and intra-class variability, exploiting textural similarities among the

annotated data.

15



1. FUNDAMENTALS

1.1. Prostate cancer diagnosis and MP-MRI sequences

During the clinical routine, the diagnosis of prostate cancer usually begins with a specific

blood test namely Prostatic Specific Antigen (PSA). This diagnostic test measures the

level of a glycoprotein that is present in the men’s blood27. Nevertheless, PSA has a

low specificity (approximately 25%) producing several amounts of false positives in the

diagnosis of prostate cancer and requiring additional tests to obtain an accurate diagnosis.

A second diagnosis test is the Digital Rectal Examination (DRE), which consists of a glove

finger insertion to feel the prostate for lumpy, hard, or abnormal areas that could be related

to the disease. However, the characterization of malignant lesions in DRE is limited to the

physician’s experience, introducing an inherent expert variability. In advanced stages,

the trans-rectal ultrasound-guided biopsy is used to analyze disease from the extraction of

portions of the tissue, to analyze such samples on a laboratory28. Nevertheless, the Trans-

rectal ultrasound-guided biopsy has reported about 30% of false negatives and also, there

are some studies that support the presence of secondary effects such as rectal and trans-

urethral bleeding, bacteriuria and sepsis29 30.

Multiparametric Magnetic Resonance Imaging (MP-MRI) is a fundamental tool to support

27 Barry, “Prostate-specific–antigen testing for early diagnosis of prostate cancer”.

28 D Greene, A Ali, N Kinsella, et al. Transrectal Ultrasound and Prostatic Biopsy: Guidelines & Recom-
mendations for Training. 2015.

29 Ahmed et al., The PROMIS study: A paired-cohort, blinded confirmatory study evaluating the accuracy
of multi-parametric MRI and TRUS biopsy in men with an elevated PSA..

30 Mohammed Shahait et al. “Incidence of sepsis following transrectal ultrasound guided prostate biopsy
at a tertiary-care medical center in Lebanon”. In: International braz j urol 42.1 (2016), pp. 60–68.
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the diagnosis of cancer disease, where different sequences capture textural parameters

related to the anatomy, micro-circulation, and cellular density features of the prostatic

gland.31 32. Some clinical studies have demonstrated the importance of such diagnostic

sequences to detect and localize tumors at different prostate zones33 34 35. These se-

quences have been used effectively to conclude in non-specific cases that result nega-

tively in biopsy and highly positive in the PSA blood test36. Likewise, these sequences help

to diagnose and characterize prostate lesions far from the rectal wall, which could not be

studied through a digital rectal examination (DRE) or trans-rectal ultrasound guided biopsy.

Specifically, from MP-MRI sequences it is possible to obtain modalities (sequences) avail-

able from different capture settings, which spatially allow the identification of different fea-

tures of the prostatic tissue. In fact, some clinical protocols, such as PI-RADS (Prostate

Imagining Reporting and Data System), recommend using a multi-parametric observa-

tional approach, integrating almost three modalities to localize and diagnose prostate can-

cer37. The most common MP-MRI sequences used in clinical routines are briefly explained

31 Murphy, “The expanding role of MRI in prostate cancer”.

32 Cuenod and Balvay, “Perfusion and vascular permeability: basic concepts and measurement in DCE-CT
and DCE-MRI”.

33 Nicholas J van As et al. “A study of diffusion-weighted magnetic resonance imaging in men with un-
treated localised prostate cancer on active surveillance”. In: European urology 56.6 (2009), pp. 981–
988.

34 Huadong Miao, Hiroshi Fukatsu, and Takeo Ishigaki. “Prostate cancer detection with 3-T MRI: compar-
ison of diffusion-weighted and T2-weighted imaging”. In: European journal of radiology 61.2 (2007),
pp. 297–302.

35 Nicolas Girouin et al. “Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is
it reasonable?” In: European radiology 17.6 (2007), pp. 1498–1509.

36 Murphy, “The expanding role of MRI in prostate cancer”.

37 Esther HJ Hamoen et al. “Use of the prostate imaging reporting and data system (PI-RADS) for prostate
cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis”. In:
European urology 67.6 (2015), pp. 1112–1121.

17



in the next subsections.

PZ 

TZ 

AS 

T2WI 
Transaxial Ktrans ADC 

T2WI 
Sagittal 

Figure 1. Clinical annotations made by radiologists over different prostate zones. These delimited
regions were identified as clinically significant prostatic lesions confirmed by biopsy. Each of the
columns corresponds to a different sequence, from left to right the figure illustrates: T2WI-MRI
trans-axial plane, Ktrans, ADC, and T2WI-MRI sagittal plane respectively. From top to bottom, the
figure shows the peripheral (PZ), transition (TZ), and antro-fibromuscular stroma zones (AS).

1.1.1. Dynamic Contrast Enhanced (DCE) and Ktrans images measure and localize the

accumulation of contrast agents such as gadolinium in the prostatic tissue38. From these

sequences, the measure of capillary permeability for each voxel is arranged on special

Ktrans images, which have recently evolved as an alternative to characterize and track the

aggressiveness of malignant tumors. These sequences, according to ESUR (European

Society of Urogenital Radiology ), allow to observe of vascular and micro-circulation prop-

38 Marco Essig et al. “Perfusion MRI: the five most frequently asked technical questions”. In: American
Journal of Roentgenology 200.1 (2013), pp. 24–34.
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erties of the tissue, such as the plasma blood flow, vascular permeability, and the capillary

surface area by a unit of mass39.

These properties fully correlate with the non-controlled formation of blood vessels (angio-

genesis), which is an essential process in the propagation of tumors in tissues40. Interest-

ingly enough, some studies have reported a correlation between Ktrans images and the

histopathologic grade of gliomas. This correlation is fundamental in determining cancer

degree from microscopical observations41 42. Nevertheless, the sensibility of DCE-MRI is

affected by some observational evidence of Angiogenesis, which could be associated with

a natural process of wound healing, limiting the support of these sequences in the diag-

nosis43. In such a sense, in clinical routine is recommended to complement an integrated

observational study and evaluation of prostate lesions from different MP-MRI sequences.

1.1.2. Diffusion Weighted imaging (DWI) and ADC maps come from a contrast genera-

tion method, based on the differences in the Brownian movement of diffusion input signals.

Usually, this sequence allows the evaluation of the molecular function of the human body,

quantified through the Apparent Diffusion Coefficient (ADC) maps. These coefficients

represent the cellular density of the tissues as a magnitude of diffusion of water particles.

Also, these coefficient maps commonly support the discrimination between cancerous tis-

39 Cuenod and Balvay, “Perfusion and vascular permeability: basic concepts and measurement in DCE-CT
and DCE-MRI”.

40 Sadhna Verma et al. “Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and
management”. In: American Journal of Roentgenology 198.6 (2012), pp. 1277–1288.

41 Michael A Blake and Mannudeep K Kalra. Imaging in oncology. Vol. 143. Springer Science & Business
Media, 2008.

42 Na Zhang et al. “Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas”.
In: Journal of Magnetic Resonance Imaging 36.2 (2012), pp. 355–363.

43 Barentsz et al., “ESUR prostate MR guidelines 2012”.
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Figure 2. Ktrans samples: from left to right it is represented the transition (TZ), antro
fibromuscular stroma (AS) and peripheral zone (PZ) respectively. The row at the top represents
benign prostate lesions and the bottom row illustrates positive cases of prostate cancer.

sues and regular tissues. The high cellular density is expressed as a low reflected intensity

signal, and a non-uniform gradient change around typical uniform regions, due to the high

cellular density presence in cancerous tissue. Also, some studies have supported that

this MRI sequence has a negative correlation w.r.t the Gleason Grade score measured

over corresponding histopathological examples44. Nevertheless, a main limitation of this

sequence is the poor resolution that difficult the proper localization of prostate lesions in

clinical routine.

1.1.3. T2WI Sequences result from the relaxation time response of several tissues, taking

advantage of the water differential content. This sequence allows anatomical description

allowing to detect and identify the stage of prostate lesions from multiple planes (transax-

44 Thomas Hambrock et al. “Relationship between apparent diffusion coefficients at 3.0-T MR imaging and
Gleason grade in peripheral zone prostate cancer”. In: Radiology 259.2 (2011), pp. 453–461.
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Figure 3. ADC samples: from left to right it is represented the transition (TZ), antro fibromuscular
stroma (AS) and peripheral zones (PZ) respectively. The row at the top shows benign prostatic
lesions and the row at the bottom illustrates positive cases of prostate cancer.

ial, coronal, and sagittal planes)45. Particularly, for prostatic observations, the periph-

eral zone usually presents high signal intensities due to the water levels in such zone,

while cancerous tissues show low-intensity levels. However, these intensity levels at T2WI

sequences could present a high variability depending on the zone and the properties

of lesions. Therefore, some clinical analyses could be easily misdiagnosed with other

pathologies such as prostatitis, benign prostate hyperplasia (BPH), and hemorrhage post-

biopsy46.

45 Murphy, “The expanding role of MRI in prostate cancer”.

46 James Thompson et al. “The role of magnetic resonance imaging in the diagnosis and management of
prostate cancer”. In: BJU international 112 (2013), pp. 6–20.
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Figure 4. T2WI samples of trans-axial plane: From left to right it is reflected the transition (TZ),
antro fibromuscular stroma (AS) and peripheral zone (PZ) respectively, The row at the top
represents benign prostate lesions and the bottom row illustrates positive cases of prostate
cancer.

1.2. Contrastive Learning

Many of the strategies to classify prostate lesions underlie on CNN representations fθ,

learning convolutional kernels to exploit visual features. This discrimination learning is

achieved through a cross-entropy optimization rule that adjusts the visual representa-

tions during several training batch iterations and follows a supervised learning framework.

Specifically, this learning scheme takes a set of MRI prostate lesions x = {x1, x2, . . . , xn},

and a set of clinical significance labels y = {y1, y2, . . . , yn}, to update the learnable param-

eters θ = [θ1, θ2, . . . , θm] of a visual representation fθ. For doing so, the set of training MRI

lesions is forward propagated through the model to obtain malignant probabilities of each

lesion ŷ = fθ(x). Then, the cross entropy loss function is computed to measure the error

between the diagnosis predictions ŷ and the ground truth biopsy labels y as follows:

22



L(ŷ, y) = −1

n

n∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi) (1)

The binary cross-entropy loss is optimized to minimize the error between the diagnosis

and the biopsy labels with respect to the set of learnable parameters θ, and it’s back-

propagated through the model fθ to obtain the best visual representation of malignant

prostate lesions. This learning rule only focuses the attention on discriminative patterns

that minimize error among trained classes. Nonetheless, there exist some reported limi-

tations such as the sensibility to noisy labels that can affect the proper boundary among

classes. Besides, there exist limitations related to few label data for training and statistical

bias on unbalanced datasets47 48. Unfortunately, in clinical scenarios, it is common to face

unbalanced datasets, and in general, these datasets have relatively few data w.r.t the high

variability of sample observations. Even worst, in real scenarios, the updating of the model

with new samples may be corrupted by noisy labels that result from the reported experts’

bias.

Contrastive learning has emerged as an alternative scheme to learn visual representa-

tions from pattern similarities among samples, with main advantages over scenarios with

47 Sainbayar Sukhbaatar et al. “Training convolutional networks with noisy labels”. In: arXiv preprint
arXiv:1406.2080 (2014).

48 Zhilu Zhang and Mert R Sabuncu. “Generalized cross entropy loss for training deep neural networks
with noisy labels”. In: arXiv preprint arXiv:1805.07836 (2018).
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scarce of labeled data49 50 51 52. Firstly, a pretext task is selected to obtain a deep visual

representation related to the downstream (target) task. Then, the obtained deep rep-

resentation is transferred to the target domain, under the hypothesis that a sufficiently

general visual representation may share representation for multiple tasks. Moreover, this

general representation can deal with high intra-variability and inter-visual samples. For in-

stance, Oord et al53 learned representations from a contrastive predictive coding scheme

that allowed to estimate “future” windowed neighboring regions xt+k from a context im-

age representation ct, and the current window image xt. For doing so, Oord proposed to

measure a dense ratio f(xt+k, ct) that preserves the mutual information (MI) among the

future windowed neighboring regions and the context image representation as follows:

f(xt+k, ct) = exp(zTt+kWkct), where zt+k = genc(xt+k) are the neighboring regions xt+k pro-

jected on a latent space through an encoder network genc, ct = garr({zi});∀i<t. This latent

context representation uses an auto-regressive decoder network garr, and Wk which is a

transformation for the prediction (a linear transformation on the author’s experiments).

Then, using these features from the original image, Oord proposes (InfoNCE) a loss ob-

jective function based on the noise contrast estimation (NCE) as follows:

L = −EX

[
log

f(xt+k, ct)∑N
i,i ̸=t f(xi, ct)

]

49 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive predictive
coding”. In: arXiv preprint arXiv:1807.03748 (2018).

50 Ting Chen et al. “A simple framework for contrastive learning of visual representations”. In: International
conference on machine learning. PMLR. 2020, pp. 1597–1607.

51 Kaiming He et al. “Momentum contrast for unsupervised visual representation learning”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 9729–9738.

52 Prannay Khosla et al. “Supervised contrastive learning”. In: arXiv preprint arXiv:2004.11362 (2020).

53 Oord, Li, and Vinyals, “Representation learning with contrastive predictive coding”.
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, where X = {xk} is the set of all the windowed samples, xt is the positive sample, and

xi; i ̸= t are N − 1 negative samples. The expectation EX over whole X samples define

the optimization rule. In this sense, the InfoNCE loss maximizes the mutual information

among signal samples that are close with respect to the time t, while minimizing the mutual

information of samples that are far from time t.

Figure 5. Oord’s work: Firstly, window patches xi are encoded to a latent vector space zi. All of
these latent vectors are mapped to a context representation ct using all the latent vectors that
belong to previously observed patches (i < t). Then, Oord’s approach maximizes the mutual
information among neighboring window patches, while minimizing the mutual information of other
window patches. Finally, this method is able to estimate neighboring window patches xk+t

projected on the latent space zk+t given a context window ct.

In Figure 5 is shown the pipeline of Oord’s work to estimate neighboring window patches

zk+t, from a set of encoded vectors that compound the context (ct). The final obtained vi-

sual representation was evaluated on the open ImageNet dataset with promising results,

considering the fact that there were no labeled data during the training process. In fact,

a self-learning task was carried out from the context of image information taking advan-

tage of dense visual information, and enriching the training dataset. Then, Chen et al54,

proposed a framework for Contrastive Learning of visual representations, whose pretext

54 Chen et al., “A simple framework for contrastive learning of visual representations”.
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tasks consist of identifying if two given patch images x̃i, x̃j belong to the same image.
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Figure 6. Adaptation of Chen’s pipeline for characterization of clinically significant regions (CSR)
and benign tissues (non-CSR) on Ktrans images: The input image x is transformed to produce
two versions x̃i, x̃j . Then each of these images is encoded with a CNN f(.) to a high-dimensional
representation hi, hj . Afterward, these representations are projected on a latent space using a
multi-layer perceptron g(.) to produce two latent vectors zi, zj . Finally, Chen’s framework
measures the similarities among these latent vectors with the purpose to maximize their
agreement.

As shown in Figure 6, Chen first uses two transformation functions τ, τ ′ (online data aug-

mentation) to obtain two versions x̃i = τ(x), x̃j = τ ′(x) of a same image x. Afterward,

using a visual representation f(.) (ResNet50), Chen encodes both images to a high-

dimensional representation hi = f(x̃i), hj = f(x̃j). After that, Chen uses a Multi-Layer

Perceptron (MLP) to project the representations on latent vector spaces zi, zj. Where

zk = g(hk) = W (2)σ(W (1)hk), W (l) represents the weights of the layer l, and σ(.) is the

ReLu activation function. This process is made on all the available images to produce a

set of images x̃k. Each particular image has positive pairs x̃i, x̃j, and the other images

(̃xk; k ̸= i work as negatives. Finally, Chen’s contrastive learning framework measures the
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similarities among latent samples with the following expression:

Li,j = log
exp(sim(zi, zj)/t)∑2N

i=1 1[k ̸=i]exp(sim(zi, zk)/t)

Where sim(.) is the cosine similarity function, and t is a temperature hyper-parameter.

Therefore, Chen’s framework aims to learn good representations f(.) that could encode

these images in a latent space. The proposed approach measures the similarities among

images, with respect to their directions on the latent space. Finally, Chen used the pre-

trained ResNet50 f(.) with a linear top classifier to transfer the learned features to the

open ImageNet dataset, obtaining an accuracy of 76.5%, matching the performance of a

ResNet50 under a supervised scheme. Also, He et al55 proposed a contrastive learning

strategy that models the problem of self-learning from the available data, as a dictionary

lookup strategy, where given an image value xi, the idea is to find its corresponding key

ki. In this method, He first proposed to create a dictionary D = {(ki, xi)}, where each

key ki = fk(xi) is an embedding vector, which is generated from a momentum encoder

network fk(.).

As observed in figure 7, He’s approach considers two encoders, a query encoder fq(.) and

a moment slow progressive momentum encoder fk(.). These encoders produce a set of

unique identifiers tokens for the input images {q, k0, k1, . . . , kn−1}. Here, the pretext task

identifies which is the corresponding key ∈ K that matches or is more similar to the query

q. To estimate such a similarity among these keys and queries, He used a contrastive loss

function inspired by the InfoNCE as follows:

55 He et al., “Momentum contrast for unsupervised visual representation learning”.
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Figure 7. He’s et al56 pipeline for momentum contrastive representation learning: given an input
query image xq, and a set of key images K = {x0k, x1k, x2k, . . . , x

N−1
k }

.

Lq = log
exp(q.k+/t)∑N
i=0 exp(q.ki/t)

where q = fq(xq) is the query key, kk ∈ K; kk = fk(xk) is a key, k+ is the positive or target

key, and t is a temperature scalar. Additionally, He’s approach considers an update step

to the dictionary D, where a new batch of data X, will be stacked inside of the dictionary,

while the oldest batch will be deleted from the dictionary to keep updating the available

keys and values of the data representation. To make a slow and progressive update of

the weights of the momentum encoder fk(.), it was considered an optimization rule based

on the momentum θk ← mθk + (1 − m)θq, where m is the momentum coefficient. This

learning scheme based on a dictionary lookup was evaluated on multiple downstream

tasks including image classification, segmentation, and object detection. He’s approach

not only obtained interesting results on the ImageNet, COCO, and VOC datasets but also

overcame its own supervised learning scheme version, showing that contrastive learning

could be a promising strategy to pre-train deep learning models without labeled data.
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Afterward, Khosla et al57 proposed a supervised contrastive learning scheme to learn

pattern similarities among samples that belong to the same class. Similarly to Oord’s work,

Khosla used a data augmentation module to produce two versions x̂i = Aug(xi) from the

same input image xi. Then, each patch image x̂i is encoded using an encoder network

ri = fθ(xi) (ResNet50), to represent these patch images on high d = 2048-dimensional

space of features ri ∈ Rd. After that, each of these embedding vectors ri is projected on

a latent space zi = proj(ri), where proj(.) is an encoding network (an MLP in this case)

to map each of the high dimensional vectors to a lower latent space zi ∈ Rp; p = 128.

"CSR"

Softmax
1000-D
2048-D

Stage 2

Contrastive

Stage 1

2048-D
128-D

Figure 8. Adaptation of Khosla’s framework for supervised contrastive learning: In this approach,
the biopsy labels are used to identify if the provided T2WI sequences belong to clinically
significant regions (CSR) or benign regions (non-CSR). The main idea of this framework is to
learn pattern similarities among sequences of the same labeled class at stage one and to
fine-tune the learned representation with a top classifier at stage two.

57 Khosla et al., “Supervised contrastive learning”.
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The similarity among samples of the same class is performed with the supervised con-

trastive loss function developed by Khosla, which is expressed as:

L =
2N∑
i=1

−1
|P (i)|

log{
∑

p∈P (i)

exp(zizp/t)∑
a∈A(i) exp(ziza/t)

}

Where A(i) = {i} is the set of anchor indexes, P (i) = {p ∈ A(i) : yp = yi} is the set of

positive indexes p ̸= i, |P (i)| is the cardinality of positives samples, and t is a tempera-

ture hyper-parameter scalar on the training scheme. This supervised contrastive learning

scheme not only allowed to self-learn similarities among images that belong to the same

class but also achieved outstanding results transferring learning to the ImageNet dataset,

especially for the ResNet50V1 and ResNet200V1 architectures. Contrastive learning may

properly learn deep representations, taking advantage of batches from positive and nega-

tive samples. This training framework may be adapted in supervised and self-supervised

schemes, exploring pretext task that forces to learn, and considering more challenging

scenarios. These approaches have been successfully evaluated in natural domain scenar-

ios for multiple applications such as classification, semantic segmentation, and identifica-

tion. Also, in the medical domain has been reported preliminary but potential alternatives

to classification58 59 60 61.

58 Khosla et al., “Supervised contrastive learning”.

59 Ting Chen et al. “Big self-supervised models are strong semi-supervised learners”. In: arXiv preprint
arXiv:2006.10029 (2020).

60 Alberto Rossi, Monica Bianchini, and Franco Scarselli. “Robust prostate cancer classification with
siamese neural networks”. In: International Symposium on Visual Computing. Springer. 2020, pp. 180–
189.

61 Ozan Ciga, Anne L Martel, and Tony Xu. “Self supervised contrastive learning for digital histopathology”.
In: arXiv preprint arXiv:2011.13971 (2020).
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2. COMPUTATIONAL STRATEGIES TO SUPPORT PROSTATE CANCER DIAGNOSIS

Computational strategies have allowed approximate class boundary limits to discriminate

malignant prostate lesions. For instance, Chan et. al.62 proposed a multimodal approach

that integrated ADC maps, and proton density (PD) images to support the diagnosis of

malign cancer regions. In this approach, a set of segmented regions, from different MRI

sequences, were concatenated and mapped to a Support Vector Machine (SVM) to ob-

tain an automatic classification. However, This work was carried out only in the peripheral

zone, ignoring an important portion of the prostatic gland. Likewise, Langer et. al63 inte-

grated ADC and T2-Weighted maps into a logistic regression classifier to predict potential

regions associated with cancer. Nevertheless, The strategy works under linear combina-

tion criteria, which could be a strong constraint in this problem. Bleker et. al64 extracted a

set of 92 radiomic features that were classified with a Random Forest (RF) algorithm, and

an Extreme Gradient Boosting (XGB), but evaluated only on the peripheral zone of the

prostatic gland. Also, the radiomic feature extraction approach may lose some important

spatial properties of the prostate tissues, which limits the diagnosis of neighboring local

regions, where tumors could grow and spread.

Currently, some end-to-end deep convolutional strategies have been proposed to inte-

62 Ian Chan et al. “Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-
weighted magnetic resonance imaging; a multichannel statistical classifier”. In: Medical physics 30.9
(2003), pp. 2390–2398.

63 Deanna L Langer et al. “Prostate cancer detection with multi-parametric MRI: Logistic regression analy-
sis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI”. in: Journal of
Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance
in Medicine 30.2 (2009), pp. 327–334.

64 Bleker et al., “Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clini-
cally significant peripheral zone prostate cancer”.
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grate multiple MRI sequences, allowing to support biopsy correlation from macroscopic

findings. For instance, Giannini et al.65 proposed a fully convolutional strategy, that from

DCE, T2WI, and DWI sequences is able to select and identify malignant pixels on the

prostate gland. Despite that the author aligned different MRI sequences to avoid variabil-

ity in the spatial features of the tissues, the study was conducted only on the peripheral

zone. This is a main drop-back because of the signal intensity variability according to the

prostate zone66. Recently, Some approaches have proposed 3D architecture that inte-

grated different regions of ADC, B-VAL, and Ktrans images with zonal information of the

prostatic gland6768. Sunoqrot et. all69 characterized clinically significant regions using a

logistic regression over T2WI sequences. Despite this study developing an interesting

method to normalize T2WI images autonomously from the prostate muscle and fat tis-

sues, this study does not analyze other MP-MRI sequences that may complement the

diagnosis. Similarly, Liu et al.70 proposed the XmasNet to integrate T2WI, Ktrans images,

ADC maps, and DWI sequences. Liu’s also proposed a new image data augmentation

65 Valentina Giannini et al. “A fully automatic computer aided diagnosis system for peripheral zone prostate
cancer detection using multi-parametric magnetic resonance imaging”. In: Computerized Medical Imag-
ing and Graphics 46 (2015), pp. 219–226.

66 Murphy, “The expanding role of MRI in prostate cancer”.

67 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.

68 Nader Aldoj et al. “Semi-automatic classification of prostate cancer on multi-parametric MR imaging
using a multi-channel 3D convolutional neural network”. In: European radiology 30.2 (2020), pp. 1243–
1253.

69 Mohammed RS Sunoqrot et al. “Automated reference tissue normalization of T2-weighted MR images
of the prostate using object recognition”. In: Magnetic Resonance Materials in Physics, Biology and
Medicine (2020), pp. 1–13.

70 Saifeng Liu et al. “Prostate cancer diagnosis using deep learning with 3D multiparametric MRI”. in:
Medical imaging 2017: computer-aided diagnosis. Vol. 10134. International Society for Optics and
Photonics. 2017, p. 1013428.
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strategy rotating and slicing through the available 3D MRI sequences. Nevertheless, such

architecture integrated only one slice per available MRI sequence, losing local neighboring

tissues, where aggressive tumors could spread. Afterward, Chen et. al.71 proposed a mul-

timodal VGG-16 that integrated sequences of T2WI, ADC, and feature maps coded from

Ktrans images on a multimodal transfer learning scheme. Despite this strategy dealing

with the scarcity of labeled prostate lesions, the textural differences between the natural

and medical domains limit a deep representation.

Deep learning representations to characterize lesions from MP-MRI prostate sequences

usually involve convolutional architectures with early or late fusions, or also include clinical

variables72 73. Such deep learning approaches deal with large observational variability

by adjusting multi-level node representations in hierarchical configurations. Nonetheless,

adjusting these node parameters requires a huge amount of observations to discover non-

linear boundaries among classes. In fact, such labeled data should follow other conditions

such as a well-balanced distribution among class samples, and confidence with respect

to a proper ground truth that avoids biasing the model to wrong label samples. This last

issue is a critical point in medical applications with labels that have a strong dependency

on radiologist annotations with variability in the observations.

From a discriminative point of view, such models are typically trained using the cross-

entropy loss function to adjust deep representations, that guide training from an inter-

71 Chen et al., “A transfer learning approach for classification of clinical significant prostate cancers from
mpMRI scans”.

72 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.

73 Bleker et al., “Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clini-
cally significant peripheral zone prostate cancer”.
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class minimization but without additional considerations. For instance, Mehrtash et. al74

proposed a 3D convolutional architecture that integrated different regions of ADC, B-VAL,

and Ktrans images together with zonal information of the prostate gland. However, the pro-

posed strategy deals with the lack of labeled lesions by using an artificial data augmenta-

tion strategy, that includes translations and flippings. Nevertheless, such transformations

could introduce noise in the final representation related to textural information of neighbor-

ing organs such as the bladder or the rectum. Afterward, Liu et. al proposed XMASNET,

a 3D deep convolutional model inspired by the classical VGG1675. In this approach, Liu

early integrated DWI, ADC, and Ktrans sequences through the stacking of the sequences

very similar to RGB color codification. Although the author performed an ablation study

among the available sequences, the best architecture lost morphological patterns avail-

able in T2WI sequences. In addition, the proposed architecture does not discriminate

lesions across prostate regions, which could introduce variability and sensitivity lost on

the prediction outputs to support the diagnosis.

Subsequently, Chen et. al76 proposed a transfer-based computational strategy from a

pre-trained deep learning model to integrate T2WI sequences, ADC, and Ktrans images.

Although this strategy avoided training a relatively deep architecture, textural differences

between medical and natural images limit the deep representation. Then Hung Le et.

al77 integrated T2WI and ADC sequences using two deep-learning models responsible for

representing prostate lesions in a low-dimensional space. As a result, a vector encod-

74 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.

75 Liu et al., “Prostate cancer diagnosis using deep learning with 3D multiparametric MRI”.

76 Chen et al., “A transfer learning approach for classification of clinical significant prostate cancers from
mpMRI scans”.

77 Minh Hung Le et al. “Automated diagnosis of prostate cancer in multi-parametric MRI based on multi-
modal convolutional neural networks”. In: Physics in Medicine & Biology 62.16 (2017), p. 6497.
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ing was obtained to represent the textural similarity between morphological and cellular

density patterns for the same tissue. Then, Tsehay et. al78 proposed a three-channel

convolution scheme to integrate T2WI, ADC, and B-Value=2000 images, that follows deep

supervision to characterize prostate lesions at different scales. On the other hand, Yang

et al79 proposed a strategy that first identify regions from T2WI images, and then used

a co-trained deep learning model from patterns related to cellular density (ADC), and

morphology (T2WI). This approach estimated a probability map allowing to localize tumor

malignancy but from a co-learning perspective, the representation may be sensitive to

false-positive tumors.

More recently, Wang et al80 proposed a weakly supervised strategy to localize prostate

lesions from an end-to-end learning scheme of two staked nets: 1) one dedicated to the

detection and multimodal co-registration and the other 2) dedicated to the detection of

prostate lesions. Both nets are mutually trained from a weakly supervised scheme with

the pretext task to identify slices with potential lesions, guiding the extraction of relevant

features. The model included overlapping, consistency, and classification loss functions to

find potential prostate lesion localization. This approach nonetheless may have strong de-

pendencies on co-registration tasks with may propagate error localization to the lesioned

network. Also, this model is limited to include intensity variability that represents prostate

tissues at different zones. Subsequently, Bleker et. al81 extracted radiomic features, which

78 Yohannes K Tsehay et al. “Convolutional neural network based deep-learning architecture for prostate
cancer detection on multiparametric magnetic resonance images”. In: Medical imaging 2017:
Computer-aided diagnosis. Vol. 10134. SPIE. 2017, pp. 20–30.

79 Xin Yang et al. “Co-trained convolutional neural networks for automated detection of prostate cancer in
multi-parametric MRI”. in: Medical image analysis 42 (2017), pp. 212–227.

80 Zhiwei Wang et al. “Automated detection of clinically significant prostate cancer in mp-MRI images
based on an end-to-end deep neural network”. In: IEEE transactions on medical imaging 37.5 (2018),
pp. 1127–1139.

81 Bleker et al., “Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clini-
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were classified with a Random Forest (RF) algorithm and the Extreme Gradient Boosting

(XGB) algorithm. However, this work was performed only in the peripheral zone of the

prostate gland. Additionally, Aldoj et al82, proposed a multimodal 3D convolutional archi-

tecture using different combinations of T2WI, DWI, ADC sequences, and Ktrans images.

Moreover in a previous work83, we proposed a 3D multimodal late fusion learning strategy

using a LeNet-based architecture that integrated Ktrans images and T2WI MRI sequences

to characterize malignant lesions. Nevertheless, our late fusion strategy lacks deep end-

to-end learning, since the late fusion depends on a voting scheme with fixed α values.

Finally, we also proposed an Inception-based 3D architecture84 that integrated ADC and

Ktrans maps through 1x1 convolutional modules cross-correlating the textural patterns of

these MRI maps. However, our proposed scheme does not include any rigid registration

modules to deal with the alignment of the MRI sequences. Moreover, the difference in res-

olution and coordinates among sequences may affect the proposed architecture, including

surrounding lesion regions that could introduce noise in the final representation.

cally significant peripheral zone prostate cancer”.

82 Aldoj et al., “Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a
multi-channel 3D convolutional neural network”.

83 Yesid Gutiérrez, John Arevalo, and Fabio Martıénez. “A Ktrans deep characterization to measure clinical
significance regions on prostate cancer”. In: 15th International Symposium on Medical Information
Processing and Analysis. Vol. 11330. SPIE. 2020, pp. 80–88.

84 Yesid Gutiérrez, John Arevalo, and Fabio Martıénez. “An inception-based deep multiparametric net to
classify clinical significance MRI regions of prostate cancer”. In: Physics in Medicine & Biology 67.22
(2022), p. 225004.
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3. RESEARCH PROBLEM

The American Cancer Society has reported more than 190.000 new prostate cancer cases

during 2020, being the major incidence cancer in men85. The prostate screening methods

used in the clinical routine are generally invasive, report a high number of false positives,

and have reported the presence of some side effects86 87 88. Recently, Multi-parametric

magnetic resonance imaging (MP-MRI) has emerged as a non-invasive alternative to di-

agnose the disease, allowing the characterization of morphological and vascular prostate

features89. This analysis is a complex task that depends on the experience of seasoned

radiologists, who must locate prostate lesions regions and also determine their clinical

relevance, being a costly procedure with highly variable results regarding the biopsy90.

Recently, deep learning representations have demonstrated remarked capabilities to deal

with image variability in supervised tasks. Nonetheless, the effective implementation of

this framework requires a considerable amount of training data, a main limitation on clin-

ical scenarios. Specifically, these strategies require MRI sequences labeled with spatial

location and annotated with Gleason correspondence, which results in a tedious and ex-

pensive task to be carried out in large studies. The typical cross-entropy rule has the main

85 Siegel et al., “Cancer statistics, 2020”.

86 Barry, “Prostate-specific–antigen testing for early diagnosis of prostate cancer”.

87 Ahmed et al., The PROMIS study: A paired-cohort, blinded confirmatory study evaluating the accuracy
of multi-parametric MRI and TRUS biopsy in men with an elevated PSA..

88 Shahait et al., “Incidence of sepsis following transrectal ultrasound guided prostate biopsy at a tertiary-
care medical center in Lebanon”.

89 Barentsz et al., “ESUR prostate MR guidelines 2012”.

90 Murphy, “The expanding role of MRI in prostate cancer”.
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responsibility of these requirements to minimize inter-class samples but losing information

of intra-class variability. Also, forcing into a rigid supervised scheme may induce learning

expert bias, which could be considered in the task of characterizing malignant lesions with

respect to the biopsy gold standard. Currently, the implementation of these computational

tools may be limited by missing the opportunity of learning from unbalanced datasets, and

the use of alternative schemes that uses non-annotated visual information.

Research Question

How to design a contrastive learning strategy to characterize clinically significant prostate

lesions over MP-MRI sequences under clinical scenarios with few labeled lesions?
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4. OBJECTIVES

General Objective

• To develop a computational strategy to support the clinical significance characterization

of prostate lesions using a contrastive deep learning framework.

Specific Objectives

• To select a dataset that includes two or more MRI sequences of the prostatic gland.

• To formulate a contrastive learning scheme to exploit similarities among malignant prostate

tissues.

• To develop a visual representation strategy for malignant prostate lesions characteriza-

tion.

• To perform a systematic evaluation of the proposed deep contrastive learning strategy

simulating different clinical scenarios.
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5. PROPOSED APPROACH

This work introduces a contrastive learning strategy that adjusts a deep net from a weakly

labeled task that discriminates non-specific lesions from the rest of prostate volumetric

tissues. Thereafter, a fine-specific adjusting was performed with a limited set of labeled

samples to discriminate between benign and malignant lesions, related to prostate cancer

disease. The learned embedding representation allows to automatically separate lesions

diagnosed with cancer disease, from a linear class hypothesis. The complete content of

this section was accepted in the Annual International Conference of the IEEE Engineering

in Medicine and Biology Society - EMBC 202291. Also, an extended version is under

review in the Journal of Computer Methods and Programs in Biomedicine

5.1. Selection of candidate BP-MRI regions

To supply lesion label scarcity, a pretext task is firstly defined as the discrimination be-

tween lesion and control (non-lesion) prostate tissue, allowing to recover of redundant

textural information, along prostate tissue, to adjust the deep convolutional scheme fθ(.).

Figure 9 summarizes the workflow to select challenging control patches that close textural

information with respect to a lesion reference.

The proposed strategy extracts k multimodal MRI regions from radiological findings in the

prostate gland at the lesion-affected and control regions. Here as observed in Figure

9, control samples are extracted from T2WI prostate tissue (xk
T2WI ,), bounded from a

91 Yesid Gutiérrez, John Arevalo, and Fabio Martı́nez. “Multimodal Contrastive Supervised Learning to
Classify Clinical Significance MRI Regions on Prostate Cancer”. In: 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. 2022, pp. 1682–
1685.
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A) Findings generation

B) Multimodal Findings projection

  

  

  

C) Multimodal region extraction

Control region Lesion region

Figure 9. Extraction of candidate regions from MRI sequences. First in A), using a
state-of-the-art architecture Uθ the prostate gland is delineated and divided into anatomical
zones. Then, using random 2D Gaussian maps, the prostate gland is divided into control and
lesion-affected regions. Afterward, in section B) these findings are projected to ADC, BVAL, and
T2WI sequences in order to obtain a multimodal representation of the same regions. Finally, in
section C) multimodal volumetric patches are extracted from the projected findings.

segmentation mask, Uθ(x
k
T2WI)

92.

92 Anneke Meyer et al. “Towards patient-individual PI-Rads v2 sector map: CNN for automatic segmenta-
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The lesion location samples {ri, rj, . . . rk} are taken from annotations but without consid-

ering associations to cancer disease. Afterward, over each lesion location, rk is projected

a 2D Gaussian lesion mask G(xk
T2WI) that simulates the boundaries of the lesion-affected

region. Then, from the control region H(xk) = Uθ(x
k
T2WI) − G(xk

T2WI), M MRI candi-

date regions are randomly selected preserving a minimum euclidean distance d among

all the selected regions. Figure 9-A illustrates the selection of prostate patches. These

selected points {ri, rj, . . . rk} are then projected to each MRI sequence to carry out a

bi-parametric extraction of candidate regions. In figure 9-C is shown a set of volumetric

regions xj, xk that was extracted from the weakly labeled findings rj, rk for each of the BP-

MRI sequences, obtaining, as a result, a set of weakly selected MRI observations related

to control and lesion tissue samples.

5.2. Prostate lesions from a deep visual representation

The proposed approach is flexible to adopt any multimodal deep architecture adjusting

the deep representation from a weakly supervised strategy. In this work, we implemented

a state-of-the-art multimodal convolutional architecture that encodes suspicious prostate

lesions into embedded vectors, integrating zonal information, and MRI sequences from

independent branches93. In the literature, such representation was originally evaluated

with input branches related to ADC, B-VAL, and Ktrans maps, also incorporating one-hot

encoding vectors with anatomical zone information. Also, the deep representation was

adjusted to receive BP-MRI inputs (ADC, BVAL, T2WI), as suggested in the last PI-RADS

tion of prostatic zones from T2-weighted MRI”. in: 2019 IEEE 16th International Symposium on Biomed-
ical Imaging (ISBI 2019). IEEE. 2019, pp. 696–700.

93 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.
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v2 protocol94. Additionally, the representation was adjusted following a typical supervised

learning scheme using the cross-entropy loss function.

Contrary, we adapted the architecture to encode multimodal MRI sequences as an embed-

ding vector following a contrastive learning scheme. Consequently, each BP-MRI region

xi is represented as a set of bi-parametric parameters xi : {xi
ADC , x

i
BV AL, x

i
T2WI}, where

xi ∈ Rw×h×s×p is a volumetric region of w× h pixels with s slices. In such case, p is a spe-

cific MRI sequence from xi. Afterward, each of these volumetric parameters is mapped

to independent convolutional branches fθ,p(x
i
p) → zip that represents each sequence as

a low dimensional embedding vector ( zip ∈ Rn). So, we encoded each lesion xi with

three independent convolutional branches {f i
θ,p1

, f i
θ,p2

, f i
θ,p3
}, obtaining as a response a set

of embedding vectors {zi1, zi2, zi3}. On the other hand, zonal information zizone is also in-

tegrated as one hot encoding vector that represents the prostate region anatomy. Finally,

the overall representation can be expressed as zθ(x
i) =

[
f i
θ,ADC ; f

i
θ,BV AL; f

i
θ,T2WI ; zzone

]
,

obtaining concatenated embedding branches ziθ, where ziθ :
[
ziθ,ADC ; z

i
θ,BV AL, z

i
θ,T2WI ; z

i
zone

]
is an embedding projection that encodes and represents BP-MRI

5.3. Contrastive Learning for Weakly-Supervised regions

Lesion characterization is here performed through a contrastive learning strategy to dis-

criminate samples but from a geometrical embedding space. For contrastive learning,

an initial step consists of the selection of batches constituted by query, positive (xi,xj)

regions and a set of adversarial samples {xk}. The selection of these batches is key

to maximizing the intra-class mutual textural information among query-positive MRI re-

gions while maximizing the inter-class variability between query-negative regions. Hence,

in this work, we adopted a lesion mining strategy that selected query-positive (xi,xj)

94 Murphy, “The expanding role of MRI in prostate cancer”; Barentsz et al., “ESUR prostate MR guidelines
2012”.
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Figure 10. Weakly contrastive learning of regions. As shown in A), a set of pseudo-labeled
prostate regions are projected into an embedding representation using the adjusted deep network
fθ(.). Then in B), the contrastive embedding space preserves the geometrical space, maintaining
a small distance among MRI regions of the same class. Additionally, such embedding space
linearly separates the classes of the MRI regions.

and query-negative (xi,xk) region pairs. For this purpose, we used the easy-positive

mining strategy, which selects the closest positive sample xj with respect to an anchor

MRI region xi, that belongs to the same class C(xi) = C(xj). This selection is formally

defined as xj = argminxj:C(xj)=C(xi) d(f(x
i, f(xj)), where d(, ) is the euclidean distance

among the encoded representation of two MRI regions. Additionally, we also included the

semi-hard negative mining strategy to find the most relevant negative region xk, where

xk = argminxk:C(xk )̸=C(xi) d(f(x
i), f(xk)), constrained by d(f(xi, f(xk)) > d(f(xi), f(xj)).
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This mining strategy allowed us to filter the available labeled MRI data during the learning

stage to obtain optimal triplets that maximize the similarity among positive regions, also

preserving some textural variability with respect to negative regions95.

Afterward, these region batches are used to train a deep architecture fθ̂ that projects MRI

regions as embedding vectors ( fθ̂(x
i ∈ Rn), maximizing the distance among classes.

Moreover, this learning scheme also constrains the embedding vector representations to

remain as close as possible when they represent the same class, preserving the geometri-

cal space with a separation between the classes (see Figure 10). To measure the textural

variability and similarity of regions, we used the Normalized Temperature (NT-Xent) con-

trastive loss function over the embedding representation of the regions fθ̂(x
i), as follows:

Li,j = −log
exp(

[
fθ̂(x

i)⊤ · fθ̂(xj)
]
/τ)∑2N

k=1 1[k ̸=i]exp([fθ̂(x
i)⊤ · fθ̂(xk)] /τ)

Where τ is a temperature hyper-parameter that weights the scale of the similarity mea-

surements. Moreover, the proposed contrastive learning strategy allows to adjust and

optimize the resultant embedding representation not only from the radiologists’ annota-

tions but also from the similarity measurements Li,j among MRI regions, which is a main

advantage with respect to traditional supervised learning schemes based on the Cross-

entropy loss function.

To adjust our deep representation and obtain an optimal embedding space that separates

malignant and benign regions, two progressive contrastive learning stages were imple-

mented to obtain a general representation of control and lesion-affected regions. Then,

such representation is transferred and adjusted to discriminate potential malignant lesions.

95 H Xuan et. al. “Improved embeddings with easy positive triplet mining”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2020, pp. 2474–2482.
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In this sense during the first stage, the deep representation is updated from control and le-

sion regions extracted from the MRI sequences under a weekly supervised scheme. From

these regions, the deep network fθ̂(.) is adjusted to discriminate the MRI regions from an

embedding projection. Consequently, in the second stage, the deep representation is

transferred from the previous stage and refined from fθ̂(.) → fθ using the radiologists

and biopsy annotations. During this stage, the deep model is also updated following the

same contrastive learning strategy preserving the textural similarity among lesions, and

the variability with respect to malignant regions related to prostate cancer disease. Thus,

the proposed approach learns an optimal projection of prostate lesions into a geometri-

cal representation achieving an optimal contrastive embedding space linearly separable.

To discriminate malignant lesions a logistic regression classifier was trained to obtain a

hyperplane that defines the boundary among both classes.

5.4. Experimental setup

5.4.1. Dataset This work was trained and validated with data provided by the public SPIE-

AAPM-NCI Prostate MR Classification (PROSTATEx) Challenge. This dataset includes a

retrospective study of 204 patients for the training cohort, that correspond to MP-MRi stud-

ies with a total of 320 labeled lesions. For the testing cohort, the dataset is compounded

by 120 studies that correspond to 210 lesions. For each of these lesions, the dataset

provides radiological label findings related to the localization of the lesions and the clinical

significance of the lesions supported by the biopsy test.

Each study counts with four sets of MRI sequences: two sets of T2-weighted images,

ADC and B-VAL images computed from DWI, and Ktrans images (computed from dynamic

contrast-enhanced (DCE) images)96. In clinical routine such modalities complement radi-

96 Geert Litjens et al. “Computer-aided detection of prostate cancer in MRI”. in: IEEE transactions on
medical imaging 33.5 (2014), pp. 1083–1092.
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ologist analysis and observations, integrating information related to morphology patterns,

zonal information, and abnormal activation related to malignant tumors. For instance, the

T2WI sequences offer anatomical lesion information. Then, the information available from

DWI sequences (ADC and B-value) related to the restriction of water diffusion, may com-

plement lesion discrimination with respect to high cellular density regions. In fact, some

state-of-the-art studies97 have reported a correlation between the quantitative ADC maps

and, the Gleason Score (a measure of prostate cancer aggressiveness used mainly in

biopsies). For such a reason, the DWI is considered a complement for T2WI to discrim-

inate potential carcinoma lesions in the prostate gland and contribute to the assessment

of the disease. in Figure 11, it can be observed a multi-parametric analysis of a malignant

lesion.

Figure 11. A malignant prostate lesion located in the peripheral zone observed from the
multi-parametric perspective of MRI sequences. From left to right: ADC, Maximum B Value, T2WI,
and Ktrans sequences.

These MRI sequences were acquired using two 3T magnetic resonance scanners, the

Siemens MAGNETOM Trio and Skyra under the following configurations: T2WI images

were acquired using a turbo spin echo sequence configuration with a resolution around

97 Li Zhang et al. “The utility of diffusion MRI with quantitative ADC measurements for differentiating high-
grade from low-grade cerebral gliomas: evidence from a meta-analysis”. In: Journal of the neurological
sciences 373 (2017), pp. 9–15; Yu-Chuan Hu et al. “Comparison between ultra-high and conventional
mono b-value DWI for preoperative glioma grading”. In: Oncotarget 8.23 (2017), p. 37884; SD Chen
et al. “The correlation between MR diffusion-weighted imaging and pathological grades on glioma”. In:
Eur Rev Med Pharmacol Sci 18.13 (2014), pp. 1904–1909.
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0.5 mm in-plane, and a slice thickness of 3.6 mm. The DWI sequences were obtained with

a single-shot echo-planar imaging configuration with a resolution of 2 mm in-plane and 3.6

mm slice thickness and with diffusion-encoding gradients in three directions using three

b-values intensities (50, 400, and 800). Subsequently, the ADC maps were automatically

estimated by the scanners software98.

5.4.2. Contrastive learning framework setup A crucial point in a weakly supervised

scheme is to define input tuples to carry out contrastive learning. In this work, we center

a 2D Gaussian (µ = 0) around each radiologist annotation with variance σ = [0.0625, 0.25)

and over T2WI-MRI sequences. Patches centers in each distribution were taken as ma-

lignant samples. The control patches were then taken outside of this Gaussian region but

inside of prostate gland segmentation. These samples were randomly collected with the

rule that among patches should have a minimum euclidean distance d = 40 pixels. Each

patch was cropped as volumetric information of (12× 32× 32).

Regarding the deep architecture, we designed a 3D convolutional neural network fθ in-

spired on the Mehrtash’s architecture99. This deep model characterizes MRI regions as

three independent convolutional branches, compounded by nine 3D convolutional layers

using the LeakyReLu (a = 0.3) activation function. The architecture integrated the zonal

information using a one-hot encoded embedding vector, fused at the end of the convolu-

tional branches.

During the training, each volumetric MRI region was represented with a fused embedding

feature vector fθ(xi) ∈ R128. The optimization follows an RMSprop algorithm using the

momentum of 0.6 and a learning rate of 1× 10−6.

98 Litjens et al., “Computer-aided detection of prostate cancer in MRI”.

99 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.
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Additionally, to measure the textural similarities among MRI regions, the proposed ap-

proach underlies on a contrastive learning scheme that was validated using the Triplet

Loss (TL), and the NT-Xent loss function Li,j. From a validation cohort (sub-set of data

extracted from the training cohort) the τ parameter was fixed in τ = 0.07. Also, to increase

the amount of MRI regions, we artificially augmented the samples through image trans-

formations such as random rotations, flipping with respect to the horizontal plane, and

horizontal and vertical translations.

A main limitation to transfer support technologies is the scarce availability of redundant,

and balanced data in clinical centers. For such a reason in this work, we validated the

proposed approach with different challenging scenarios that only take a reduced amount of

training data. In this case, we sub-sampled the original dataset from 20−100%, keeping the

same proportion of lesions per class as the original dataset. Additionally, all the reported

experiments were obtained from the test set defined and evaluated by the authors of the

PROSTATEx challenge. The metric performance selected by the challenge is the Area

Under the Receiver Operating Characteristic Curve (ROC-AUC).
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6. EVALUATION AND RESULTS

An exhaustive validation of the proposed approach was here carried out with respect to

the capability to discriminate prostate cancer lesions from control lesions. The whole

experiments report test scores provided by the public PROSTATEx challenge. A first ex-

periment was carried out to evaluate the performance of the proposed contrastive learning

scheme, with respect to different strategies to select candidate patches. In such a case,

four different strategies were considered to select relevant MRI patches during the weakly

supervised stage.
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Figure 12. ROC-AUC performance achieved by different selection strategies to extract relevant
candidate MRI regions.

The first strategy corresponds to the selection of eight candidate regions from neighbor-

ing regions that surround the image-level radiologist annotations (neighboring grid). The

second strategy (Control tissue-A) consists of the selection of key control tissue patches

H(xk) estimated from the prostate segmentation tissue Uθ(x
k
T2WI), but excluding the le-

sion affected region maps G(xk
T2WI) centered in the radiologist annotations. Additionally,
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for strategies three (Control tissue-M) and four (Control tissue-B), we performed a similar

strategy but included only the benignant (B) and malignant (M) confirmed lesions respec-

tively. These configurations were run following the NT-Xent loss function and the triplet

loss.

Loss function Neighboring Control tissue
grid All Malign Benign

NT Xent 0.82 0.81 0.84 0.83
Triplet loss 0.81 0.81 0.82 0.79

Table 1. Comparison of different candidate selection strategies using the NT-Xent and the Triplet
Loss objective functions over all the labeled MRI data.

Table 1 summarizes the achieved results for the different strategies to select candidate

patches regarding two contrastive loss functions. The patches selected from malignant

lesions as reference achieved the best performance (0.84 from NT Xent, and 0.82 from

triple loss). Such selection has a gain of about 2% with respect to the neighboring grid,

being interesting to have a reference with respect to some lesions to recover the other

control patches. It should be noted, that a careful delineation of lesion regions allows to

better characterization and discrimination of patches, which in consequence determines

a proper deep representation of lesions. Also, the NT-Xent was superior in whole experi-

ments regarding the triplet loss. This could be attributed to the nature of the NT-Xent loss,

which globally estimates the textural variability among an anchor region and N negative

regions.

Interestingly, a second experiment evaluated the capability of the weakly contrastive ap-

proach to capture complex textural lesion patterns from a reduced set of samples. For

doing so, we run several experiments using random subsets taking incremental parts of

training data (each 20% of available data). Figure 12 summarizes the achieved results in

this experiment, finding consistent results from the Control tissue-M strategy that achieved

the best results in all training subsets. It should be noted that the proposed approach

achieves a competitive ROC-AUC of 0.84 using only 40% of the total training set, which
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suggests a potential use on real scenarios with scarce label sets. Also, the best result was

achieved with 80% of total data in training, achieving a remarkable ROC-AUC of 0.85. It

should be noted that strategy shows a robust characterization of malignant lesions, with

the capability to deal with complex textural observations of the lesions. This fact may be

associated with the weakly strategy that approaches other regions of the images to adjust

deep representations.
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Figure 13. Results obtained by our proposed WSCL of prostate regions in MRI, and baseline
supervised learning schemes under different data configurations. In red, we have the work
proposed by Mehrtash using a BCE loss100, in green, we have our multimodal supervised
contrastive learning approach101, and finally in purple, we have our WSCL scheme.

As a baseline, we implemented a standard architecture validated in this challenge102.

Hence, we trained and adjusted this representation following a classical binary cross-

102 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.
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entropy (BCE) loss function103, following a supervised contrastive learning (SCL) scheme104

and also with the here introduced weakly supervised strategy (WSCL). To evidence the

performance of the learning approaches with scarce training scenarios, we run several

experiments with incremental subsets of labeled MRI lesions to measure the capability

of these approaches under clinical scenarios with the scarcity of labeled MRI data. As

observed in figure 13, the proposed WSCL scheme (Control tissue-M + XT-Xent) obtained

the labeled lesions, and our WSCL achieved the best ROC-AUC results for all of the avail-

able data configurations. Remarkably, using only 20% of the labeled lesions achieved a

ROC-AUC of 0.80, obtaining an improvement of 10 and 24% with respect to the reported

baseline strategies. It should be also noted, that contrastive schemes were the best alter-

native to train schemes in scenarios with scarce data, while classical cross-entropy rules

remain limited to learn lesion variability.

A qualitative analysis was here carried out by recovering salience maps that stand out

regions, at each MRI parameter, that major contributes to the final prediction. To recover

such attention maps, we run the GradCAM strategy over the selected backbone after the

trained representation. This strategy back propagated the output prediction into convo-

lutional branches, allowing to evidence localized regions with major association with the

estimations. Figure 14 shows the retrieved maps for BVAL and ADC maps at different la-

beled data configurations. As expected, there is a general major activation of these maps

in malignant regions. Interestingly enough, this is coherent with respect to previous studies

that support a negative correlation between the Gleason Grade of Gliomas and the DWI

sequence. On the other hand, as observed in figure 14 the T2WI sequence complements

103 Mehrtash et al., “Classification of clinical significance of MRI prostate findings using 3D convolutional
neural networks”.

104 Gutiérrez, Arevalo, and Martı́nez, “Multimodal Contrastive Supervised Learning to Classify Clinical Sig-
nificance MRI Regions on Prostate Cancer”.
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T2WI

ADC

BVAL

Dataset %

Figure 14. GradCAM attention maps obtained by the deep visual representation over a malignant
lesion; from top to bottom we have ADC, BVAL, and T2WI sequences. From left to right we have
the progression over the attention maps for the weakly pre-trained representation fine-tuned over
0, 20, 40, 60, 80, and 100% of the labeled dataset respectively.

the characterization depicting textural properties related to the anatomy of the prostatic

tissue of study. Additionally, in the second column of the figure, it can be observed how

most of the attention maps are already learned from the pre-trained representation that

discriminates lesion and control regions. Then from left to right, it is possible to evidence

how for each of the MRI sequences, the attention maps are fine-tuned by progressively

including more data to adjust and learn the resultant deep representation.
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7. DISCUSSION

This work presented a BP-MRI Weakly Supervised Contrastive Learning (WSCL) strategy

that discriminates malignant lesions related to prostate cancer disease from suspicious

image-level annotations. The proposed strategy was adjusted, measuring the mutual in-

formation among MRI samples of prostate tissue, and dealing with the scarcity of labels,

as typically reported in clinical scenarios. The proposed approach outperforms standard

learning approaches, achieving a ROC-AUC of 85%, and using only 80% of total data.

Remarkably, the proposed approach uses only 20% of available training data and reports

a ROC-AUC of 80%.

The proposed approach significantly increases the amount of training data by following

the weakly supervised strategy, allowing a first coarse classification between benign and

malignant tissue. As supported in Figure 14, this first training stage is sufficient to recover

abnormal tissue patterns, from BP-MRI studies. Then, in the second training stage, the

fine-tuning allows more sensible discrimination among abnormal tissues related to can-

cer, regarding other prostate affectations. As expected, the maps encoded from DWI such

as BVAL and the ADC seem to be the most important MRI sequences to characterize

malignant lesions, this is an interesting fact that has also been reported in the literature

since DWI maps have shown a correlation with the Gleason grade of gliomas105 106 107.

Consequently, we decided to principally adjust the representation to encode patterns from

105 Zhang et al., “The utility of diffusion MRI with quantitative ADC measurements for differentiating high-
grade from low-grade cerebral gliomas: evidence from a meta-analysis”.

106 Hu et al., “Comparison between ultra-high and conventional mono b-value DWI for preoperative glioma
grading”.

107 Chen et al., “The correlation between MR diffusion-weighted imaging and pathological grades on
glioma”.
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a bi-parametric (BP-MRI) perspective (integrating only T2WI and DWI), according to re-

cently suggested in PI-RADS v2 protocol, avoiding the contrast agent dependency108 109.

In the literature, exist different solutions to support malignant lesion classification from

MP-MRI studies.

For instance, Mehrtash’s work proposed a 3D convolutional backbone that learns inde-

pendent paths for each parameter, which is further integrated into an embedding repre-

sentation. Also, early fusion strategies from inception modules have been implemented to

classify prostate cancer lesions. These approaches nonetheless lie on the classical cross-

entropy rule with strictly supervised schemes, that may collapse representation, overfitting

specific patterns and limiting deep representation to support classification. Contrary, the

proposed approach using a restricted set of parameters (bi-parametric representation)

overcame the ROC-AUC diagnosis of these strategies by 10 and 20% respectively using

only the 20% of the labeled MRI data (see in Figure 13). Since these three strategies

share a similar pipeline in terms of deep architecture, image pre-processing, and cropping

of MRI regions, we hypothesize that the obtained results are due to our proposed WSCL

scheme that not only takes into account the regions labeled by expert radiologists but also

the pseudo-labeled control MRI regions that were estimated from the prostate gland.

To support class imbalance, Chen et al110 proposed a Transfer Learning scheme from

the open ImageNet dataset to adjust the deep representation into the clinical domain.

As a result, the author obtained a ROC-AUC of 0.82 using 100% of the annotated data.

108 Murphy, “The expanding role of MRI in prostate cancer”.

109 Barentsz et al., “ESUR prostate MR guidelines 2012”.

110 Chen et al., “A transfer learning approach for classification of clinical significant prostate cancers from
mpMRI scans”.
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Additionally, other studies in the state-of-the-art such as Liu et al111, and Aldoj et al112

were also proposed to characterize malignant regions in the prostate gland using MRI

sequences, achieving a ROC-AUC of 0.84 and 0.89 respectively. Nevertheless, these au-

thors included different data architectures, image pre-processing pipelines, and cropping

region schemes, which difficult a proper comparison against our proposed strategy. More-

over, these authors didn’t report more data configurations to evaluate their performance in

clinical scenarios with a scarcity of data.

The proposed strategy achieves competitive results, reaching remarkable results to face

challenging scenarios with scarce labeled data for training. We hypothesize that weakly

supervised learning strategies could empower deep learning applications in clinical sce-

narios by adjusting deep architectures directly with clinical data, and therefore facilitate

the technological transfer of these strategies to the clinical routine. Despite important ad-

vances in such representations, it is expected to evolve the proposed model to totally avoid

dependency on labeled annotations, as well as, to conduct experiments over larger test

datasets to validate the generalization capabilities of the proposed approach.

111 Liu et al., “Prostate cancer diagnosis using deep learning with 3D multiparametric MRI”.

112 Aldoj et al., “Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a
multi-channel 3D convolutional neural network”.
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8. CONCLUSIONS AND FUTURE WORK

This work introduced a weakly supervised contrastive learning strategy to characterize

malignant MRI regions related to prostate cancer disease. The proposed strategy en-

codes multimodal morphological and cellular density patterns available in T2WI and DWI

(specifically from ADC and B-VAL maps) to represent control and lesion regions in a con-

trastive embedded space. A fine-tuning stage allowed cancer lesion discrimination from

a linear hyperplane. The achieved results suggest that contrasting prostate lesions with

control regions, under a weakly supervised learning scheme improved the characteriza-

tion and discrimination of malignant lesions, especially in clinical scenarios with a limited

amount of labeled lesions. Moreover, our experimental setup shows that the deep repre-

sentation obtained a decent ROC-AUC performance of 0.8 in the diagnosis using only the

20% of annotated lesions. As a result, the deep representation better differentiates be-

tween healthy and lesion regions in a projected contrastive embedded space. This WSCL

strategy could be potentially used in clinical scenarios with scarce of annotated MRI data

to empower deep learning applications in the clinical stages and support the diagnosis

of the disease. Future works include the evaluation over extensive datasets, from differ-

ent scanners, allowing the establishment of a generalization level of the weakly supervised

strategy. Also, there will be carried out different efforts to avoid human labeled annotations

during training, through the development of self-supervised mechanisms.
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