A UNIVERSAL VERIFICATION METHODOLOGY FOR AN LPDDR3 MEMORY

WILMER DANIEL RAMIREZ VERA

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERIAS FISICO-MECANICAS
ESCUELA DE INGENIERIA ELECTRICA, ELECTRONICA Y
TELECOMUNICACIONES
BUCARAMANGA
2016

A UNIVERSAL VERIFICATION METHODOLOGY FOR AN LPDDR3 MEMORY

WILMER DANIEL RAMIREZ VERA

Trabajo de grado para optar al titulo de Ingeniero Electrénico

Director
ELKIM FELIPE ROA FUENTES

Ingeniero Electricista, Ph.D

Co-Director
HECTOR IVAN GOMEZ ORTIZ
Ingeniero Electronico, MSc.

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERIAS FISICO-MECANICAS
ESCUELA DE INGENIERIA ELECTRICA, ELECTRONICA Y
TELECOMUNICACIONES
BUCARAMANGA
2016

AGRADECIMIENTOS

A Dios, por darme la salud y sabiduria para lograr culminar mi carrera.

A mis padres, Juan y Carmen por apoyarme incondicionalmente durante mis

estudios y formarme como persona.

A mis hermanas, Lorena y Sarith, por su ayuda, motivacion y apoyo en los tiempos

dificiles.

A mis tios, Ricardo y Teresa, por su apoyo durante toda mi formacion universitaria.

A mis asesores durante el trabajo de grado, Elkim Roa y Héctor Gbmez por sus

consejos y sugerencias.

A mis amigos y compafieros, que siempre me han prestado ayuda y consejo

cuando los necesito.

A mis profesores, que con sus ensefianzas y consejos me formaron como

profesional y me han ayudado a seguir adelante.

Wilmer Daniel Ramirez Vera

CONTENTS

Page
INTRODUGCCION ...t e e e e e e e e e e et e e ean e eenas 11
1. THE UNIVERSAL VERIFICATION METHODOLOGYccvciviiiiiiiiiiieeeineeeineeenn 13
2. UVM TESTBENCH FOR AN LPDDR3 MEMORY ...t 17
B RESULT S oo e 26
4. CONCLUSIONS AND FUTURE WORKo 29
REFERENGCES ... oo e e et e e b e eaas 30
BIBLIOGRAPHY .ot e e e e e e aaas 31

LIST OF FIGURES

Figure 1 Verifications features and tools of UVM.
Figure 2 Verification components of a UVM Agent.
Figure 3 Hierarchy of classes in a UVM testbench.
Figure 4 LPDDR3 writing process

Figure 5 LPDDR3 Reading process

Figure 6 LPDDR3 virtual interface diagram blocks

Figure 7 Virtual interface state machine

Figure 8 Blocks diagram of the LPDDR3 verification system using UVM.

Figure 9 Writing operation simulation using the Interface.
Figure 10 Reading operation simulation using the Interface
Figure 11 Single sentence of the Scoreboard Information

Figure 12 Verification process result

Page.
14
15
16
19
19
20
21
25
26
26
27
28

LIST OF TABLES

Page.
Table 1 LPDDRS3 signals description 17
Table 2 LPDDR3 Operation Modes [6] 18
Table 3 Coverage Results 28

RESUMEN

Titulo Una metodologia de verificacion universal para una LPDDR3 memory’
Autores Wilmer Daniel Ramirez Vera™

Palabras clave Microelectrénica, LPDDR3, UVM, SoC verification.
DESCRIPCION

Este proyecto presenta un sistema de verificacion digital que utiliza la Metodologia Universal de
Verificacion (UVM) para una memoria sincrona y dinamica de acceso aleatorio (SDRAM) de 32 bits
con una velocidad de reloj 800 MHz que varia en tamafios de 4, 6 u 8 Gb. Aunque la industria ha
estado adoptando rapidamente a UVM como metodologia de verificacion para sistemas sobre
chips (SoCs), la literatura académica carece de ejemplos detallados de la arquitectura de una
verificacion de propiedad intelectual (VIP) basada en UVM. El trabajo propuesto presenta
arquitectura y operaciones no encontradas en la literatura para la verificacion de una memoria
LPDDRS. El sistema de verificacion que se presenta comprueba la transferencia de datos de una
SDRAM de alta velocidad descrita en Verilog, mediante técnicas aleatorias de generacién de
estimulos, herramientas de cobertura guiada y andlisis automatico utilizando UVM-SystemVerilog.
El sistema de verificacion propuesto se describe utilizando caracteristicas de programacion
orientada a objetos (OOP), el modelado de nivel de transaccién (TLM) y SystemVerilog. Ademas,
dentro del sistema propuesto, se presenta una interfaz de memoria adaptada para funcionar como
una interfaz virtual que cumple el protocolo de comunicacion de la LPDDR3 y permite una
comunicacién estable con la memoria. EI VIP basado en UVM implementado presenta
caracteristicas de cddigo reutilizables y modulares que se pueden adaptar para una futura
implementacion de un VIP para una memoria LPDDRA4. Los resultados presentados se obtuvieron
a partir de pruebas realizadas en una LPDDR3 de 4GB.

:*Trabajo de grado
Facultad de ingenierias Fisico-mecéanicas. Escuela de Ingenieria Electrica, Electronica y
Telecomunicaciones. Director: Elkim Felipe Roa Fuentes. Co-Director: Hector Ilvan Gomez Ortiz

ABSTRACT

Title A Universal Verification Methodology for an LPDDR3 memory’
Authors Wilmer Daniel Ramirez Vera”.

Keywords Microelectronics, LPDDR3, UVM, SoC verification.
DESCRIPTION

This project presents a digital verification system using the Universal Verification Methodology
(UVM) for a 32- bit LPDDR3 Synchronous Dynamic Random-Access Memory (SDRAM) clocked at
800MHz that ranges in sizes of 4, 6, or 8 Gb. Although, industry has been rapidly adopting UVM as
a verification methodology for System-on-chip (SoC), academic literature lacks detailed examples of
the architecture of a UVM-based Verification Intellectual Property (VIP). The proposed work
presents architecture and operations not found in the literature for the verification of an LPDDR3
memory. The verification system to be presented checks the data transfer of a high-speed SDRAM
described in Verilog, by random stimulus generation techniques, coverage-driven and automate
analysis tools written using UVM-SystemVerilog. The proposed verification system is described
using objects oriented programming (OOP), transaction-level modeling (TLM), and SystemVerilog
features. In addition, within the proposed system, a memory interface adapted to work as a virtual
interface that complies the LPDDR3 handshaking and allows a stable communication with the
memory is presented, showing its architecture and operation. The implemented UVM-based VIP
presents reusable and modular code features that can be adapted for a future LPDDR4 VIP
implementation. The presented results were obtained from tests performed on a 4 GB LPDDR3
version.

:*Bachelor degree
Faculty of Physico-Mechanical Engineering. School of Electronics and Electrical engineering and
telecommunications. Advisor: Elkim Felipe Roa Fuentes. Co-Advisor: Hector lvan Gomez Ortiz

10

INTRODUCCION

The electronics industry has had a strong hit in the society because of the facilities
and innovation that it represents in the people’s daily life. A big part of this
technological innovation is due to the embedded systems which are present in the
most of the devices, from a cell phone to the most advanced supercomputer. Most
of these systems are designed using hardware description languages (HDL) [1],
which are tools to create and verify the designs before sending to manufacture.
Verilog is one of the most popular HDLs which can model digital systems and
support many modeling and verification requirements of the industry and has been
an indispensable HDL for designers [2]. Although Verilog is very useful to create
digital designs, it is a poor language to verify big systems in an efficient manner. To
support the complexities of SoC designs, SystemVerilog was developed combining
HDLs and hardware verification languages such as Vera and e, and programming
languages such as C and C++. Hence, SystemVerilog is considered the first
Hardware Description and Verification Language (HDVL) [3]. Although
SystemVerilog is a strong HDVL, designers are forced to make a different
verification system as the designs grow and become more complex owing to an
incapacity of reusing code. To solve this problem, standard verification
methodologies were created to design reusable verification environments and
supply the requirements of the industry [4]. Currently, there is a methodology that
joins SystemVerilog tools and the best features of previous verification
methodologies such as the Verification Methodology Manual(VMM), the first
implemented set of practices reusable verification environments in SystemVerilog,
and the Open Verification Methodology(OVM), an objects library that provides
many facilities for constructing testbenches, both methodologies, and other ones
not mentioned helped to create one of the best verification tools currently: the

Universal Verification Methodology (UVM) [4]. This report presents a study of the

11

Universal Verification Methodology to be used as a digital circuits verification tool.
Moreover, a partial functionality verification of a Low-Power Double Data Rate 3
(LPDDR3) memory is presented. This memory will be used in a research project

with the University of Cambridge.

12

1. THE UNIVERSAL VERIFICATION METHODOLOGY

SoC designs verification is a necessary process to be sure of the proper behavior
of the design before sending to manufacture. For widespread and complex
designs, SystemVerilog has strong tools such as constrained random techniques
for stimulus generation that helps in finding corner case problem making the testing
process easier, and assertion-based verifi- cation that helps to detect functional
bugs earlier and closer to their original cause. Also, SystemVerilog has coverage-
driven verification to be sure that all possible cases of operation are performed, so
we can be sure that the testing process is successful. Since the Universal
Verification Methodology is a SystemVerilog library class, all the above
SystemVerilog tools are also part of UVM. UVM solves the incapacity of reusing
code abovementioned due to Object-oriented programming (OOP) and
Transaction-level modeling (TLM) features were added to SystemVerilog to create
better and reusable verification systems. The OOP adds the class creation that lets
to pass features and methods to objects through the testbench. When an object
associated with a particular class is created, this object inherits all data members
and functions of the class, this is an advantage because an object can take the
features of the class in any part of the testbench and thus multiple objects can be
created wherever without copying code to other parts of the testbench, so we avoid
the hardcode creation, one of the most significant problems for code reuse [5]. On
the other hand, TLM is a high-level approach to modeling digital systems that
separates the communication among modules from the implementation of
functional units and the architecture. Therefore, adding TLM features to the
testbench helps to create reusable and maintainability code due to each module
has specific functions which are different to the other module functions, so different
components of the system can be reused in future works. The Figure 1 shows a

summary of the UVM features that have been mentioned.

13

Figure 1 Verifications features and tools of UVM.

Tb for (System)Verilog,
VHDL and SystemC
Designs

OOP G Constrained
Features Q @ Random

— Coverage-
Verification driven
IP Reuse @ g verification

Transaction-
level
communication

Assertion-based
Verification

The UVM testbench structure is based on a hierarchy of modules (one within
another) and each module has a different function. The best way to create
reusable and maintainable code is that each module performs a single function in
the testbench. Then, not only many parts of the code can be reused for futures
designs but also finding an error is easier due to the designer can know what
function is failing and consequently, what module has the error [5]. Modules,
classes, and objects work together thus: The virtual interface, also called Bus
Functional Model (BFM), is a module written using SystemVerilog which is
connected to the input and output ports of the Device Under Test (DUT) working
like a communication bridge between the DUT and the package of all UVM
classes. Therefore, a handle of the BFM is passed through certain UVM
components that need to establish communication with the DUT due to this
interface controls the sent and the received data to and from the DUT. The virtual
interface communicates with the Agents which are the verification components that
handle the sending and receiving of data. These components are shaped by
analysis components as coverage collectors and scoreboards (called self-checkers
too), components that monitor the activity from/to the DUT, and finally, if the agent

is the active type then the testbench has a stimulus maker component called

14

sequencer, and a component that is responsible for carrying the sequence item to
the DUT, this last one is called driver. In the Figure 2 is shown the agent and its
interconnecting subcomponents, this figure shows that only monitors and the driver

communicates with the BFM.

Figure 2 Verification components of a UVM Agent.

Mon_cmd Mon_res Agent
<> <|>_ Coverage
Collector
BFM
Commands ! ﬁfoo ermd
Monitor
Scoreboard
BFM
Result
Monitor | Analisys_port Selfcheck
— 7 T Agent is Active T -
| C_BFM |
I Sequencer O D — |
| Sequence items river ||
e _ _ _ _ _ ——— — |

The analysis ports and FIFOs are tools of UVM that let pass transactions among
components. In the next level of the hierarchy, we find the environment which not
only creates and encapsulates one or multiple agents but also is responsible for
configuring each one of them as an active or passive agent and other possible
configurations. This configuration process is performed passing to the agent, the
configuration objects which contains the agent features that are used to create it,
the environment also can have analysis components such as scoreboards. The
environment is encapsulated in the test that configures the number of virtual
seguences to know how many agents will be created. The test special function is to
select the sequences of stimulus and the order to be sent to the DUT passing this

selection to the sequencer which is in the agent. Finally, the top-level module

15

encapsulates the DUT, the virtual interface, and connects them, also the top-level
selects the test to be executed. In this module, the package that contains all the

UVM libraries to run the testbench and the UVM class package are called. The top
level is shown in Figure 3.

Figure 3 Hierarchy of classes in a UVM testbench.

Test (Virtual Sequence)
Env
° N\ 5 N
o 1= o v E
S 283 N335
sPOs2 e ag<
3 < 182
N N
y N 7 N
Virtual
Top Interface
Cuvmiib) DUT

16

2. UVYM TESTBENCH FOR AN LPDDR3 MEMORY

LPDDR3 Memories are dynamic RAMs that work at twice the clock frequency due
to this type of memory uses both clock edges to transfer data. The verified memory
in this project is a 32-bit mobile low-power DDR3 in 4 Gb, 6 Gb, and 8 Gb
synchronous dynamic random-access memory versions and internally configured
as an 8-bank DRAM. The LPDDR3 to be verified has an 800MHz frequency clock,
so the memory can transfer data at 1.6GHz. The LPDDR3 operates according to

behavior of the signals shown in the Table 1[6].

Table 1 LPDDR3 signals description

Symbol Type Description

Provide the memory’s command and
address

Differential clock. Both clock edges sampled
the command/address inputs.

The clock enable actives and deactivates the
input clock signals and buffers.

csn Input Chip select, part of the command code.

4-bit Data mask for each of the four data
bytes respectively in a writing process.
On-die termination enables and disables
termination on the DQ bus.

DQ I/0 Bidirectional data bus

The Data strobe is a bidirectional and
complementary clock used for read and write
data. 4-bit data strobe for each of the four
data bytes, respectively.

CA [9:0] Input

ck, ck n Input

CKE Input

DM[3:0] Input

oDT Input

DQS, DQS n /0

The above signals must be sent to the LPDDRS3 in the correct state, order and in
different intervals of time, to perform a particular operation mode. The Table 2

shows some of the most significant LPDDR3 operation modes.

17

Table 2 LPDDR3 Operation Modes [6]

Operation Characteristics
Mode
Active This mode actives a selected memory bank in order to
perform an operation on this bank.
Writing & The burst write and byrst read operations are performed in
Reading the respgctlve operation mode. To access to gny of these
modes, first the LPDDR3 must pass by the Active mode.
The clock enable actives and deactivates the input clock
Precharge

signals and buffers.

MR Writing & | These modes are used to write and read respectively
MR Reading | configurations data in the mode register

This mode deactivates input and output buffers. Maximum
duration in this mode is only limited by the refresh

Power Down . :
requirements. The LPDDR3 can pass to this mode from
any other operation mode
This mode presents a low power function of this mobile

Deep Power SDRAM, allowing .reducmg the power consumption .by

Down shutting down the internal power supply and suspending

refresh operations when the device is not accessed for a
long period.

This mode is used to retain data in the LPDDR3 overriding
Self-Refresh | this data in the memory banks. This operation is performed
even if the rest of the system is powered down

This mode is used to improve timing margins of the
Command/Address bus.

CA-Training

This project is focused on the data transfer verification in the active mode of the
LPDDR3 memory. Therefore, the operation modes used are Active, Writing,
Reading and Precharge. The Figure 4 and Figure 5 show the writing and reading
process, respectively. The first step to request any operation is to active a memory
bank and indicate a row number through the signal CA sampled in both clock
edges. Then, Nop commands must be issued during an interval of time that varies
depending on the operation required, when the minimum time is met, write or read

commands can be issued indicating the column number. Finally, the writing or

18

reading process starts an interval of time later, 8 words are transferred in both
cases (writing or reading). The data strobe samples the data in a writing process
and is in line with the data in a reading operation; in both cases, the clock signal
samples the data strobe, only Nop commands are allowed in this process. Also,

the DM signal controls the data writing, masking the data to be not written.

Figure 4 LPDDRS3 writing process

ST I S T B N B
CMD Active {_Nogi ¥ Wit] Nop |/ X
ADDR ROW 77l CoL X7 7
s n ﬁﬂ / j

on f j e

DQS jjf

DQ va J-{oo3{o1]

Figure 5 LPDDR3 Reading process

cK 4 1]]] }

CMD Actve) Nog|) Read J___J| Nop J/ Y
ADDR W rRow VT coL Y W

s n /ﬁf \ _/]]

DQs | | jff j[_\ [/__L/_ NS -
Q. ———— f ——{oyor oz o] (os Yo7 —

To check the correct behavior of the memory, a verification system using UVM is
implemented. Next, the process to create the digital verification system is
described.

A. Virtual Interface Description

The first step toward creating a verification system for the LPDDR3 is to describe

the virtual interface or bus functional model to convert our stimulus to the memory

19

language. Hence, the BFM is a translator between the operations that we want the
memory performs and the signals sequence that the LPDDR3 needs to perform a
writing or reading process. The Figure 6 shows a scheme of the virtual interface
implemented in this project. There are three input signals that indicate to the BFM
that a writing or reading operation is required, these signals are cen, oen and wen
which pass through a logic process to recognize the operation type, just two
combinations are valid; First, cen and oen has to be in high mode while wen stays
in low mode to indicate to the BFM that a reading process is required, the contrary
combination indicates a writing operation. In the logic process, feedback signals
from a banks-process-control intervene too. LPDDR3 memories are configured in
eight banks and each one has to be active before performing any writing or reading
process. If a process is required in an already active bank, this bank has to be
precharged. Furthermore, depending on the above process (write or read), the

bank activation time varies.

Figure 6 LPDDR3 virtual interface diagram blocks

CONNECTION TO THE UVM-BASED VIP BY TASK FUNCTIONS)

32
Cen| Oen | Wen Addr

<—[7:0]

Syncronizer [7:0]_:>

32-bit Burst_write
32-bit Burst_read

Logic Parameter
Operation Extractor | |
A 4 I

Bank_addr

Actived Bank
Register

WoR

New_bank
-
Lr‘
col_addr B
gg
a9 o

Operation

<
<
<

row_addr

Get
Signal Sequence Control Data
10 4
3-state
0 ory 0 0| 0 |/0 4
v v v vV V v
CA C_n DM ODT CKE DQs DQ

20

Therefore, a banks-control system is implemented into the virtual interface. For
writing and reading process, in Figure 6 two data burst are shown, each one is a
32-bit and 8-positions array for the LPDDR3 data burst. All stimulus are sent from
the UVM testbench by task functions. After the operation is recognized, several
signals sequences start to run to comply the LPDDR3 operations protocol, then
certain changes in the state signals are needed as enabling and disabling output
buffers. The Figure 7 presents the state machine implemented in the virtual
interface to send all needed transactions to the LPDDR3 and perform continuous
writing and reading operations. Concluding the description of the virtual interface,
this interface is synchronized using two shifted clock signals, one signal clock is
the same of the LPDDRS3, and the other one is a clock signal shifted 312ps with the
same frequency, this signal is used to change the command/address, data strobe
and DQ buffers state in the correct time in such a way that setup and hold times of
the LPDDR3 are complied with. Now that the system has a translator for the

LPDDR3, the next step is to create the stimulus and check components.

Figure 7 Virtual interface state machine

Initialization

Valid_cmd
& inactive_bank

Valid_cmd
& active_hank

Valid_cmd & active_hank
& pre-write

21

B. Transactions, Sequences, and Generation of Stimulus

In this section, the UVM testbench elaboration starts, and the first step is the
transaction creation. The term "transaction” refers to classes and objects that store
data and operations, and the proposed system uses two transactions. The first
transaction is called Ipddr3_sequence_item which contains all signals to be sent
to the virtual interface; this transaction extends from a UVM library called
uvm_sequence_item that is made for working especially with a sequencer. The
second transaction is called read_transaction which contains only a 32-bit and 8-
positions array to store the read data burst by the virtual interface in a reading
process, this transaction also contains a basic operation called do compare whose
function is to compare two objects of the same class, in this case, the read

transaction class.

Next step, the building of stimulus is created in a special class which has been
called write_& read_sequence, this class generates constrained random data
that will be sent to the LPDDR3. The sequence described in this class is a
configurable number of writing operations followed by reading operations with
random address and data. The write & read sequence is only responsible for
creating the sequences, so after creating the sequence to be used, the testbench
needs a component that selects the sequence and puts this in another component
that carries it. The first component is the Ipddr3 test which selects the
write_& read_sequence, and a lower component of Ipddr3_test receives the
sequence. The |pddr3_sequencer which is specially created to work with
uvm_sequence_items, a UVM class library which is the parent class of the
Ipddr3_sequence_item that have been already created. The lpddr3_sequencer
extends from the uvm_sequencer. This class library has a special communication
port to carry data to the Ipddr3 driver which is responsible for sending data to the
virtual interface through a handle of this interface that is got calling the UVM

function uvm_config_db. This function makes available the BFM through all the

22

testbench and got the handle of the interface for the component that calls the

function.

Finally, the Ipddr3_driver sends data using the task functions described in the
virtual interface, this task functions handle all input and output data connections.
So far, the verification system described only sends random stimulus but this still
does not have any component that checks that the writing process was completed
successfully. In other words, the testbench needs to check that the sent data to a
certain address in a writing operation can be read subsequently in a reading
operation for that same address.

C. Monitoring, Analysis, and Results

The verification system needs to add components that checks that all writing
operations done can be verified by reading operations, the verification system
implemented has two monitoring components, the first one is called
I[pddr3_command_monitor which observes the sent commands to the LPDDR3
such as the type of operation, the address and the data to be written. The second
monitor is called Ipddr3_data_monitor which observes the input data burst in a
reading operation; both monitors are responsible for observing data and pass them
into a transaction (a different transaction for each) to another component that
handles all analysis process to print a result later, this last component in this
system verification is called l|pddr3_scoreboard.

The connection between the scoreboard and the monitors is made through
uvm_analysis_port and uvm_tim_analysis_fifo that are TLM tools made especially
to pass transactions to other components, the monitors put the transactions in
these ports and the scoreboard extracts them to do its respective analysis. Finally,
the Ipddr3_scoreboard makes a comparison between the read burst data in an

actual reading operation and the written burst data in a previous writing operation

23

for the same addresses. To do this comparison, the read burst data and the written
burst data are saved in two different objects of read_transaction type which contain
a 32-bit and 8-positions array, the verification system uses the do compare
operation of the read transaction class to do the comparison between each of the
eight pairs of 32-bit data and get a result. Then, the scoreboard prints the result of

all comparisons.

In addition, the analysis process of the verification system has a component which
must check the functional coverage in terms of stimulus. The Ipddr3 coverage also
receives an lpddr3_sequence_item using an Analysis port and uses covergroups to
sample rows, columns, and banks that are used in all verification process. Hence,
the system shows the percentage of all possible memory addresses that were

verified.

To finish the verification system construction, all above components are created
into an lpddr3_agent. The proposed system presents eight agents that are
created automatically to verify in parallel each one of the eight memory banks, and
another agent more to verify operations (read and write) using all banks. Each
agent is instanced in the Ipddr3_env and configured through a configuration object
that indicates which bank the agent has to verify. Finally, the top level module is
built, the virtual interface described in SystemVerilog and the LPDDR3 described in
Verilog are instanced in a SystemVerilog module called top, in this module the
LPDDR3 and its interface are connected and the clock signals are defined for both.
The package of classes that were created for the testbench is also imported in this

module. The Figure 8 shows the final verification system using UVM.

24

Figure 8 Blocks diagram of the LPDDR3 verification system using UVM.

Write_& read_Sequence LPDDR3_TEST
LPDDR3_ENY
— LPDDR3_AGENT Ipddr3_ Coverage T
LLl N A ©
> hd Q
w Ipddr3_ Sequencer g §
1 o
a
(@] Sequence Itemz lpdd r3__Cmd J’,‘
- Monitor o
E=}
lpddr3_Driver lpddr3_Data 2
4 Menitor /
il 7
N || L
LPDDR3 Virtual Interface
|
800 MHZ y h A A A h A A A
@ 32-bit Low-Power DDR3 SDRAM

25

The first ste

3. RESULTS

p in the verification system creation process is to verify the virtual

interface which was first designed as a communication interface for the LPDDR3

and later was adjusted to be a virtual interface in the verification system. To check

that the communication interface was designed successfully, certain simulations

were performed to get the results shown in Figure 9 and Figure 10.

Figure 9 Writing operation simulation using the Interface.

| 172,000ps | 174,000ps | 176,000ps
ck I | I | | | I | L[
ck_com - =y | I | | | |
domeni3l:0] (7734 [5743 §7899 K927 ps172 6298 Y2232 X364
des[3:0] ={F Jo JF ., Xo o, X o AF Ao AF ko
ca[9:0] 3FF i .
dni 3:0] 0 F)Zo
col _addr[10:0] 0 -
row addr[14:0] 4036
bank_addr[2:0] 2
Figure 10 Reading operation simulation using the Interface
| 514,000ps | 516,000ps | 518,000ps
ck i | | \ | | | | | | [
ck_com] | == | | | | |
dqrenf31:0] —————{7731 JIx fl7eo9 {9227 Y5172 Yeoos X 2232 Y3614
dqs[3:0] +{0 XF i}(0 X!F Yo {F Yo G Yo Y
ca[9:0] 3FF | I —
dnf3:0] 0

HEHMNEBEMNKMLE

col _addr[10:0] o

row addr([14:0] 4036
bank_addr[2:0] 2

The simulations show successfully writing and reading operations respectively,

showing initially that the virtual interface design is correct. Also, both simulations

show that the data mask signal fulfills its function because the memory does not

write the second data masked by the data mask signal in the writing process.

26

Therefore, the designed interface complies with the requirements for
communication with the LPDDR3. The next step is to run the designed UVM
testbench and check the LPDDR3. First, the sending of stimulus must be checked
to know whether there is a connection or not from the UVM testbench to the
LPDDRS.

The checking process made by the scoreboard is shown in the Figure 11, sent
data and captured data are compared in order to the scoreboard shows a result, in
this case, the result is the word CORRECT. Also, the scoreboard prints the written
and the read data in a UVM INFO. In a different case, if the compared data are not
the same, the scoreboard shows the word FAIL and prints a UVM ERROR.

Figure 11 Single sentence of the Scoreboard Information

UVM_INFO testbench.sv(341) @ 12599.375000[ns]: uvm_test
_top.env_h.agent_b1l.scoreboard_h [SELF CHECKER] [CORRECT]:
Address[Bank: 2 Row: 7724 Col: 917] **Current Read Data:
Data_0: 37372635 Data_1: 72808459 Data_2: 45368420
Data_3: 47087597 Data_4: 92293077 Data_5: 19062527
Data_6: 19062527 Data_7: 97286636/*Written data in previous
operation:Data_0: 37372635 Data_1: 72808459 Data_2: 45368
420 Data_3: 47087597 Data_4: 92293077 Data_5: 19062527
Data_6: 19062527 Data_7: 97286636

The verification process was performed defining in the object
write_& read_sequence a number of writing operations followed by reading
operations. For a 4Gb LPDDR3, the defined number was selected large enough to
cover the total number of addresses for each memory bank (16.777.216
addresses). Ideally, the 2.097.152 writing-reading operations would be enough due
to the burst data length (eight data), but the selected number also must cover
possible repeated memory addresses. Performed tests using the random function
showed about 14% of repeated numbers. Based on these tests, the UVM test was
run configuring 2.450.000 writing operations, followed by reading operations. When

the test is finished, the verification process result is shown in the command

27

terminal. In the Figure 12 is shown the UVM report summary of the test which
presents the total number of writing and reading operations, scoreboard reports
(self-checker), printed information by components, warnings, errors, fatal errors,

and the simulation time are shown.

Figure 12 Verification process result

-— UVM Report Summary ---
** Report counts by severity
UVM_INFO : 66150003 UVM_WARNING : 0 UVM_ERROR : 0 UVM_FATAL : 0
** Report counts by id
[READING OPERATION] 22050001 [WRITING OPERATION] 22050001
[RNTST] 1 [SELF CHECKER] 22050001 ([TEST_DONE] 1
Simulation complete via $finish(1) at time 318499991250 PS + 50

Finally, when the verification process has ended, the last step is to check the total
coverage that it had. Table 3 shows the obtained coverage results in the performed
verification process. This results show 100% coverage for rows and columns in all
banks but not for their intersections. Due to software limitations, the intersection of
the total number of rows and columns in each memory bank can not be shown in
the coverage results, since the total number of crossings is 16.777.216 per bank,

and the software supports a maximum of 1 million.

Table 3 Coverage Results

Item Coverage (%)
Parameter Description
Use of all Banks used in | 8 used banks 100
a
sequence
BankO to Bank7 Columns 100
Rows 100

28

4. CONCLUSIONS AND FUTURE WORK

This report presented a research work about the Universal Verification
Methodology as a tool for digital circuits verification. The implemented verification
system has a virtual interface complying the LPDDR3 handshaking, achieving a
stable communication with the memory, and allowing to performing the data
transfer between the designed UVM test and the LPDDR3 memory. Thereby, the
proposed system using UVM verifies successfully LPDDR3 memories described in
Verilog that range in sizes 4, 6 or 8Gb easily setting a number of sequences for the
verification process and the rows and columns number depending on the memory
size. Due to the capacity of reusing code of the Universal verification methodology,
a big part of this verification system can be reused in future works with the
LPDDR3 operation modes not worked in this project which are indispensable for
the operation, and good memory performance. Also, the done code has
characteristics of adaptability, whence parts of this code can be used in futures
works with LPDDR4 and different type of designs.

29

REFERENCES

[1] R. J. Duckworth, “Embedded System Design with FPGA Using HDL (lessons
learned and Pitfalls to be Avoided),” in 2005 IEEE International Conference on
Microelectronic Systems Education (MSE’05), June 2005, pp. 35-36.

[2] S. Palnitkar, Verilog HDL - A Guide to Digital Design and Synthesis. Sun
Microsystems Inc, 2003.

[3] “SystemVerilog Unified Hardware Design, Specification, and Verification
Language,” IEC 62530 Edition 2.0 2011-05 IEEE Std 1800, 2011.

[4] J. Bromley, “If SystemVerilog is so Good, Why Do We Need the UVM? Sharing
responsibilities between libraries and the core language,” in Specification Design
Languages (FDL), 2013 Forum on, Sept 2013.

[5] R. Salemi, The UVM Primer. Boston Light Press, 2013.

[6] JEDEC, Low Power Double Data Rate 3. JEDEC Solid State Technology
Association, 2015.

30

BIBLIOGRAPHY

J. Bromley, “If SystemVerilog is so Good, Why Do We Need the UVM? Sharing
responsibilities between libraries and the core language,” in Specification Design
Languages (FDL), 2013 Forum on, Sept 2013.

JEDEC, Low Power Double Data Rate 3. JEDEC Solid State Technology
Association, 2015.

R. J. Duckworth, “Embedded System Design with FPGA Using HDL (lessons
learned and Pitfalls to be Avoided),” in 2005 IEEE International Conference on
Microelectronic Systems Education (MSE’05), June 2005, pp. 35-36.

R. Salemi, The UVM Primer. Boston Light Press, 2013.

S. Palnitkar, Verilog HDL - A Guide to Digital Design and Synthesis. Sun
Microsystems Inc, 2003.

SystemVerilog Unified Hardware Design, Specification, and Verification
Language,” IEC 62530 Edition 2.0 2011-05 IEEE Std 1800, 2011.

31

