

A UNIVERSAL VERIFICATION METHODOLOGY FOR AN LPDDR3 MEMORY

WILMER DANIEL RAMIREZ VERA

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERIAS FISICO-MECÁNICAS

ESCUELA DE INGENIERIA ELECTRICA, ELECTRONICA Y

TELECOMUNICACIONES

BUCARAMANGA

2016

A UNIVERSAL VERIFICATION METHODOLOGY FOR AN LPDDR3 MEMORY

WILMER DANIEL RAMIREZ VERA

Trabajo de grado para optar al título de Ingeniero Electrónico

Director

ELKIM FELIPE ROA FUENTES

Ingeniero Electricista, Ph.D

Co-Director

HECTOR IVAN GOMEZ ORTIZ

Ingeniero Electrónico, MSc.

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERIAS FISICO-MECÁNICAS

ESCUELA DE INGENIERIA ELECTRICA, ELECTRONICA Y

TELECOMUNICACIONES

BUCARAMANGA

2016

5

AGRADECIMIENTOS

A Dios, por darme la salud y sabiduría para lograr culminar mi carrera.

A mis padres, Juan y Carmen por apoyarme incondicionalmente durante mis

estudios y formarme como persona.

A mis hermanas, Lorena y Sarith, por su ayuda, motivación y apoyo en los tiempos

difíciles.

A mis tíos, Ricardo y Teresa, por su apoyo durante toda mi formación universitaria.

A mis asesores durante el trabajo de grado, Elkim Roa y Héctor Gómez por sus

consejos y sugerencias.

A mis amigos y compañeros, que siempre me han prestado ayuda y consejo

cuando los necesito.

A mis profesores, que con sus enseñanzas y consejos me formaron como

profesional y me han ayudado a seguir adelante.

Wilmer Daniel Ramírez Vera

6

CONTENTS

Page.

INTRODUCCION ... 11

1. THE UNIVERSAL VERIFICATION METHODOLOGY 13

2. UVM TESTBENCH FOR AN LPDDR3 MEMORY .. 17

3. RESULTS .. 26

4. CONCLUSIONS AND FUTURE WORK... 29

REFERENCES .. 30

BIBLIOGRAPHY .. 31

7

LIST OF FIGURES

Page.

Figure 1 Verifications features and tools of UVM. 14

Figure 2 Verification components of a UVM Agent. 15

Figure 3 Hierarchy of classes in a UVM testbench. 16

Figure 4 LPDDR3 writing process 19

Figure 5 LPDDR3 Reading process 19

Figure 6 LPDDR3 virtual interface diagram blocks 20

Figure 7 Virtual interface state machine 21

Figure 8 Blocks diagram of the LPDDR3 verification system using UVM. 25

Figure 9 Writing operation simulation using the Interface. 26

Figure 10 Reading operation simulation using the Interface 26

Figure 11 Single sentence of the Scoreboard Information 27

Figure 12 Verification process result 28

8

LIST OF TABLES

Page.

Table 1 LPDDR3 signals description 17

Table 2 LPDDR3 Operation Modes [6] 18

Table 3 Coverage Results 28

9

RESUMEN

Título Una metodología de verificación universal para una LPDDR3 memory
*

Autores Wilmer Daniel Ramírez Vera

**

Palabras clave Microelectrónica, LPDDR3, UVM, SoC verification.

DESCRIPCIÓN

Este proyecto presenta un sistema de verificación digital que utiliza la Metodología Universal de
Verificación (UVM) para una memoria síncrona y dinámica de acceso aleatorio (SDRAM) de 32 bits
con una velocidad de reloj 800 MHz que varía en tamaños de 4, 6 u 8 Gb. Aunque la industria ha
estado adoptando rápidamente a UVM como metodología de verificación para sistemas sobre
chips (SoCs), la literatura académica carece de ejemplos detallados de la arquitectura de una
verificación de propiedad intelectual (VIP) basada en UVM. El trabajo propuesto presenta
arquitectura y operaciones no encontradas en la literatura para la verificación de una memoria
LPDDR3. El sistema de verificación que se presenta comprueba la transferencia de datos de una
SDRAM de alta velocidad descrita en Verilog, mediante técnicas aleatorias de generación de
estímulos, herramientas de cobertura guiada y análisis automático utilizando UVM-SystemVerilog.
El sistema de verificación propuesto se describe utilizando características de programación
orientada a objetos (OOP), el modelado de nivel de transacción (TLM) y SystemVerilog. Además,
dentro del sistema propuesto, se presenta una interfaz de memoria adaptada para funcionar como
una interfaz virtual que cumple el protocolo de comunicación de la LPDDR3 y permite una
comunicación estable con la memoria. El VIP basado en UVM implementado presenta
características de código reutilizables y modulares que se pueden adaptar para una futura
implementación de un VIP para una memoria LPDDR4. Los resultados presentados se obtuvieron
a partir de pruebas realizadas en una LPDDR3 de 4GB.

*
 Trabajo de grado

**
 Facultad de ingenierías Físico-mecánicas. Escuela de Ingeniería Electrica, Electronica y

Telecomunicaciones. Director: Elkim Felipe Roa Fuentes. Co-Director: Hector Ivan Gomez Ortiz

10

ABSTRACT

Title A Universal Verification Methodology for an LPDDR3 memory
*

Authors Wilmer Daniel Ramirez Vera

**
.

Keywords Microelectronics, LPDDR3, UVM, SoC verification.

DESCRIPTION

This project presents a digital verification system using the Universal Verification Methodology
(UVM) for a 32- bit LPDDR3 Synchronous Dynamic Random-Access Memory (SDRAM) clocked at
800MHz that ranges in sizes of 4, 6, or 8 Gb. Although, industry has been rapidly adopting UVM as
a verification methodology for System-on-chip (SoC), academic literature lacks detailed examples of
the architecture of a UVM-based Verification Intellectual Property (VIP). The proposed work
presents architecture and operations not found in the literature for the verification of an LPDDR3
memory. The verification system to be presented checks the data transfer of a high-speed SDRAM
described in Verilog, by random stimulus generation techniques, coverage-driven and automate
analysis tools written using UVM-SystemVerilog. The proposed verification system is described
using objects oriented programming (OOP), transaction-level modeling (TLM), and SystemVerilog
features. In addition, within the proposed system, a memory interface adapted to work as a virtual
interface that complies the LPDDR3 handshaking and allows a stable communication with the
memory is presented, showing its architecture and operation. The implemented UVM-based VIP
presents reusable and modular code features that can be adapted for a future LPDDR4 VIP
implementation. The presented results were obtained from tests performed on a 4 GB LPDDR3
version.

*
 Bachelor degree

**
 Faculty of Physico-Mechanical Engineering. School of Electronics and Electrical engineering and

telecommunications. Advisor: Elkim Felipe Roa Fuentes. Co-Advisor: Hector Ivan Gomez Ortiz

11

INTRODUCCION

The electronics industry has had a strong hit in the society because of the facilities

and innovation that it represents in the people’s daily life. A big part of this

technological innovation is due to the embedded systems which are present in the

most of the devices, from a cell phone to the most advanced supercomputer. Most

of these systems are designed using hardware description languages (HDL) [1],

which are tools to create and verify the designs before sending to manufacture.

Verilog is one of the most popular HDLs which can model digital systems and

support many modeling and verification requirements of the industry and has been

an indispensable HDL for designers [2]. Although Verilog is very useful to create

digital designs, it is a poor language to verify big systems in an efficient manner. To

support the complexities of SoC designs, SystemVerilog was developed combining

HDLs and hardware verification languages such as Vera and e, and programming

languages such as C and C++. Hence, SystemVerilog is considered the first

Hardware Description and Verification Language (HDVL) [3]. Although

SystemVerilog is a strong HDVL, designers are forced to make a different

verification system as the designs grow and become more complex owing to an

incapacity of reusing code. To solve this problem, standard verification

methodologies were created to design reusable verification environments and

supply the requirements of the industry [4]. Currently, there is a methodology that

joins SystemVerilog tools and the best features of previous verification

methodologies such as the Verification Methodology Manual(VMM), the first

implemented set of practices reusable verification environments in SystemVerilog,

and the Open Verification Methodology(OVM), an objects library that provides

many facilities for constructing testbenches, both methodologies, and other ones

not mentioned helped to create one of the best verification tools currently: the

Universal Verification Methodology (UVM) [4]. This report presents a study of the

12

Universal Verification Methodology to be used as a digital circuits verification tool.

Moreover, a partial functionality verification of a Low-Power Double Data Rate 3

(LPDDR3) memory is presented. This memory will be used in a research project

with the University of Cambridge.

13

1. THE UNIVERSAL VERIFICATION METHODOLOGY

SoC designs verification is a necessary process to be sure of the proper behavior

of the design before sending to manufacture. For widespread and complex

designs, SystemVerilog has strong tools such as constrained random techniques

for stimulus generation that helps in finding corner case problem making the testing

process easier, and assertion-based verifi- cation that helps to detect functional

bugs earlier and closer to their original cause. Also, SystemVerilog has coverage-

driven verification to be sure that all possible cases of operation are performed, so

we can be sure that the testing process is successful. Since the Universal

Verification Methodology is a SystemVerilog library class, all the above

SystemVerilog tools are also part of UVM. UVM solves the incapacity of reusing

code abovementioned due to Object-oriented programming (OOP) and

Transaction-level modeling (TLM) features were added to SystemVerilog to create

better and reusable verification systems. The OOP adds the class creation that lets

to pass features and methods to objects through the testbench. When an object

associated with a particular class is created, this object inherits all data members

and functions of the class, this is an advantage because an object can take the

features of the class in any part of the testbench and thus multiple objects can be

created wherever without copying code to other parts of the testbench, so we avoid

the hardcode creation, one of the most significant problems for code reuse [5]. On

the other hand, TLM is a high-level approach to modeling digital systems that

separates the communication among modules from the implementation of

functional units and the architecture. Therefore, adding TLM features to the

testbench helps to create reusable and maintainability code due to each module

has specific functions which are different to the other module functions, so different

components of the system can be reused in future works. The Figure 1 shows a

summary of the UVM features that have been mentioned.

14

Figure 1 Verifications features and tools of UVM.

The UVM testbench structure is based on a hierarchy of modules (one within

another) and each module has a different function. The best way to create

reusable and maintainable code is that each module performs a single function in

the testbench. Then, not only many parts of the code can be reused for futures

designs but also finding an error is easier due to the designer can know what

function is failing and consequently, what module has the error [5]. Modules,

classes, and objects work together thus: The virtual interface, also called Bus

Functional Model (BFM), is a module written using SystemVerilog which is

connected to the input and output ports of the Device Under Test (DUT) working

like a communication bridge between the DUT and the package of all UVM

classes. Therefore, a handle of the BFM is passed through certain UVM

components that need to establish communication with the DUT due to this

interface controls the sent and the received data to and from the DUT. The virtual

interface communicates with the Agents which are the verification components that

handle the sending and receiving of data. These components are shaped by

analysis components as coverage collectors and scoreboards (called self-checkers

too), components that monitor the activity from/to the DUT, and finally, if the agent

is the active type then the testbench has a stimulus maker component called

15

sequencer, and a component that is responsible for carrying the sequence item to

the DUT, this last one is called driver. In the Figure 2 is shown the agent and its

interconnecting subcomponents, this figure shows that only monitors and the driver

communicates with the BFM.

Figure 2 Verification components of a UVM Agent.

The analysis ports and FIFOs are tools of UVM that let pass transactions among

components. In the next level of the hierarchy, we find the environment which not

only creates and encapsulates one or multiple agents but also is responsible for

configuring each one of them as an active or passive agent and other possible

configurations. This configuration process is performed passing to the agent, the

configuration objects which contains the agent features that are used to create it,

the environment also can have analysis components such as scoreboards. The

environment is encapsulated in the test that configures the number of virtual

sequences to know how many agents will be created. The test special function is to

select the sequences of stimulus and the order to be sent to the DUT passing this

selection to the sequencer which is in the agent. Finally, the top-level module

16

encapsulates the DUT, the virtual interface, and connects them, also the top-level

selects the test to be executed. In this module, the package that contains all the

UVM libraries to run the testbench and the UVM class package are called. The top

level is shown in Figure 3.

Figure 3 Hierarchy of classes in a UVM testbench.

17

2. UVM TESTBENCH FOR AN LPDDR3 MEMORY

LPDDR3 Memories are dynamic RAMs that work at twice the clock frequency due

to this type of memory uses both clock edges to transfer data. The verified memory

in this project is a 32-bit mobile low-power DDR3 in 4 Gb, 6 Gb, and 8 Gb

synchronous dynamic random-access memory versions and internally configured

as an 8-bank DRAM. The LPDDR3 to be verified has an 800MHz frequency clock,

so the memory can transfer data at 1.6GHz. The LPDDR3 operates according to

behavior of the signals shown in the Table 1[6].

Table 1 LPDDR3 signals description

Symbol Type Description

CA [9:0] Input
Provide the memory’s command and

address

ck, ck n Input
Differential clock. Both clock edges sampled

the command/address inputs.

CKE Input
The clock enable actives and deactivates the

input clock signals and buffers.

cs n Input Chip select, part of the command code.

DM[3:0] Input
4-bit Data mask for each of the four data

bytes respectively in a writing process.

ODT Input
On-die termination enables and disables

termination on the DQ bus.

DQ I/O Bidirectional data bus

DQS, DQS n I/O

The Data strobe is a bidirectional and

complementary clock used for read and write

data. 4-bit data strobe for each of the four

data bytes, respectively.

The above signals must be sent to the LPDDR3 in the correct state, order and in

different intervals of time, to perform a particular operation mode. The Table 2

shows some of the most significant LPDDR3 operation modes.

18

Table 2 LPDDR3 Operation Modes [6]

Operation

Mode
Characteristics

Active
This mode actives a selected memory bank in order to

perform an operation on this bank.

Writing &

Reading

The burst write and burst read operations are performed in

the respective operation mode. To access to any of these

modes, first the LPDDR3 must pass by the Active mode.

Precharge
The clock enable actives and deactivates the input clock

signals and buffers.

MR Writing &

MR Reading

These modes are used to write and read respectively

configurations data in the mode register

Power Down

This mode deactivates input and output buffers. Maximum

duration in this mode is only limited by the refresh

requirements. The LPDDR3 can pass to this mode from

any other operation mode

Deep Power

Down

This mode presents a low power function of this mobile

SDRAM, allowing reducing the power consumption by

shutting down the internal power supply and suspending

refresh operations when the device is not accessed for a

long period.

Self-Refresh

This mode is used to retain data in the LPDDR3 overriding

this data in the memory banks. This operation is performed

even if the rest of the system is powered down

CA-Training
This mode is used to improve timing margins of the

Command/Address bus.

This project is focused on the data transfer verification in the active mode of the

LPDDR3 memory. Therefore, the operation modes used are Active, Writing,

Reading and Precharge. The Figure 4 and Figure 5 show the writing and reading

process, respectively. The first step to request any operation is to active a memory

bank and indicate a row number through the signal CA sampled in both clock

edges. Then, Nop commands must be issued during an interval of time that varies

depending on the operation required, when the minimum time is met, write or read

commands can be issued indicating the column number. Finally, the writing or

19

reading process starts an interval of time later, 8 words are transferred in both

cases (writing or reading). The data strobe samples the data in a writing process

and is in line with the data in a reading operation; in both cases, the clock signal

samples the data strobe, only Nop commands are allowed in this process. Also,

the DM signal controls the data writing, masking the data to be not written.

Figure 4 LPDDR3 writing process

Figure 5 LPDDR3 Reading process

To check the correct behavior of the memory, a verification system using UVM is

implemented. Next, the process to create the digital verification system is

described.

A. Virtual Interface Description

The first step toward creating a verification system for the LPDDR3 is to describe

the virtual interface or bus functional model to convert our stimulus to the memory

20

language. Hence, the BFM is a translator between the operations that we want the

memory performs and the signals sequence that the LPDDR3 needs to perform a

writing or reading process. The Figure 6 shows a scheme of the virtual interface

implemented in this project. There are three input signals that indicate to the BFM

that a writing or reading operation is required, these signals are cen, oen and wen

which pass through a logic process to recognize the operation type, just two

combinations are valid; First, cen and oen has to be in high mode while wen stays

in low mode to indicate to the BFM that a reading process is required, the contrary

combination indicates a writing operation. In the logic process, feedback signals

from a banks-process-control intervene too. LPDDR3 memories are configured in

eight banks and each one has to be active before performing any writing or reading

process. If a process is required in an already active bank, this bank has to be

precharged. Furthermore, depending on the above process (write or read), the

bank activation time varies.

Figure 6 LPDDR3 virtual interface diagram blocks

21

Therefore, a banks-control system is implemented into the virtual interface. For

writing and reading process, in Figure 6 two data burst are shown, each one is a

32-bit and 8-positions array for the LPDDR3 data burst. All stimulus are sent from

the UVM testbench by task functions. After the operation is recognized, several

signals sequences start to run to comply the LPDDR3 operations protocol, then

certain changes in the state signals are needed as enabling and disabling output

buffers. The Figure 7 presents the state machine implemented in the virtual

interface to send all needed transactions to the LPDDR3 and perform continuous

writing and reading operations. Concluding the description of the virtual interface,

this interface is synchronized using two shifted clock signals, one signal clock is

the same of the LPDDR3, and the other one is a clock signal shifted 312ps with the

same frequency, this signal is used to change the command/address, data strobe

and DQ buffers state in the correct time in such a way that setup and hold times of

the LPDDR3 are complied with. Now that the system has a translator for the

LPDDR3, the next step is to create the stimulus and check components.

Figure 7 Virtual interface state machine

22

B. Transactions, Sequences, and Generation of Stimulus

In this section, the UVM testbench elaboration starts, and the first step is the

transaction creation. The term ”transaction” refers to classes and objects that store

data and operations, and the proposed system uses two transactions. The first

transaction is called lpddr3_sequence_item which contains all signals to be sent

to the virtual interface; this transaction extends from a UVM library called

uvm_sequence_item that is made for working especially with a sequencer. The

second transaction is called read_transaction which contains only a 32-bit and 8-

positions array to store the read data burst by the virtual interface in a reading

process, this transaction also contains a basic operation called do compare whose

function is to compare two objects of the same class, in this case, the read

transaction class.

Next step, the building of stimulus is created in a special class which has been

called write_&_read_sequence, this class generates constrained random data

that will be sent to the LPDDR3. The sequence described in this class is a

configurable number of writing operations followed by reading operations with

random address and data. The write & read sequence is only responsible for

creating the sequences, so after creating the sequence to be used, the testbench

needs a component that selects the sequence and puts this in another component

that carries it. The first component is the lpddr3_test which selects the

write_&_read_sequence, and a lower component of lpddr3_test receives the

sequence. The lpddr3_sequencer which is specially created to work with

uvm_sequence_items, a UVM class library which is the parent class of the

lpddr3_sequence_item that have been already created. The lpddr3_sequencer

extends from the uvm_sequencer. This class library has a special communication

port to carry data to the lpddr3 driver which is responsible for sending data to the

virtual interface through a handle of this interface that is got calling the UVM

function uvm_config_db. This function makes available the BFM through all the

23

testbench and got the handle of the interface for the component that calls the

function.

Finally, the lpddr3_driver sends data using the task functions described in the

virtual interface, this task functions handle all input and output data connections.

So far, the verification system described only sends random stimulus but this still

does not have any component that checks that the writing process was completed

successfully. In other words, the testbench needs to check that the sent data to a

certain address in a writing operation can be read subsequently in a reading

operation for that same address.

C. Monitoring, Analysis, and Results

The verification system needs to add components that checks that all writing

operations done can be verified by reading operations, the verification system

implemented has two monitoring components, the first one is called

lpddr3_command_monitor which observes the sent commands to the LPDDR3

such as the type of operation, the address and the data to be written. The second

monitor is called lpddr3_data_monitor which observes the input data burst in a

reading operation; both monitors are responsible for observing data and pass them

into a transaction (a different transaction for each) to another component that

handles all analysis process to print a result later, this last component in this

system verification is called lpddr3_scoreboard.

The connection between the scoreboard and the monitors is made through

uvm_analysis_port and uvm_tlm_analysis_fifo that are TLM tools made especially

to pass transactions to other components, the monitors put the transactions in

these ports and the scoreboard extracts them to do its respective analysis. Finally,

the lpddr3_scoreboard makes a comparison between the read burst data in an

actual reading operation and the written burst data in a previous writing operation

24

for the same addresses. To do this comparison, the read burst data and the written

burst data are saved in two different objects of read_transaction type which contain

a 32-bit and 8-positions array, the verification system uses the do compare

operation of the read transaction class to do the comparison between each of the

eight pairs of 32-bit data and get a result. Then, the scoreboard prints the result of

all comparisons.

In addition, the analysis process of the verification system has a component which

must check the functional coverage in terms of stimulus. The lpddr3 coverage also

receives an lpddr3_sequence_item using an Analysis port and uses covergroups to

sample rows, columns, and banks that are used in all verification process. Hence,

the system shows the percentage of all possible memory addresses that were

verified.

To finish the verification system construction, all above components are created

into an lpddr3_agent. The proposed system presents eight agents that are

created automatically to verify in parallel each one of the eight memory banks, and

another agent more to verify operations (read and write) using all banks. Each

agent is instanced in the lpddr3_env and configured through a configuration object

that indicates which bank the agent has to verify. Finally, the top level module is

built, the virtual interface described in SystemVerilog and the LPDDR3 described in

Verilog are instanced in a SystemVerilog module called top, in this module the

LPDDR3 and its interface are connected and the clock signals are defined for both.

The package of classes that were created for the testbench is also imported in this

module. The Figure 8 shows the final verification system using UVM.

25

Figure 8 Blocks diagram of the LPDDR3 verification system using UVM.

26

3. RESULTS

The first step in the verification system creation process is to verify the virtual

interface which was first designed as a communication interface for the LPDDR3

and later was adjusted to be a virtual interface in the verification system. To check

that the communication interface was designed successfully, certain simulations

were performed to get the results shown in Figure 9 and Figure 10.

Figure 9 Writing operation simulation using the Interface.

Figure 10 Reading operation simulation using the Interface

The simulations show successfully writing and reading operations respectively,

showing initially that the virtual interface design is correct. Also, both simulations

show that the data mask signal fulfills its function because the memory does not

write the second data masked by the data mask signal in the writing process.

27

Therefore, the designed interface complies with the requirements for

communication with the LPDDR3. The next step is to run the designed UVM

testbench and check the LPDDR3. First, the sending of stimulus must be checked

to know whether there is a connection or not from the UVM testbench to the

LPDDR3.

The checking process made by the scoreboard is shown in the Figure 11, sent

data and captured data are compared in order to the scoreboard shows a result, in

this case, the result is the word CORRECT. Also, the scoreboard prints the written

and the read data in a UVM INFO. In a different case, if the compared data are not

the same, the scoreboard shows the word FAIL and prints a UVM ERROR.

Figure 11 Single sentence of the Scoreboard Information

The verification process was performed defining in the object

write_&_read_sequence a number of writing operations followed by reading

operations. For a 4Gb LPDDR3, the defined number was selected large enough to

cover the total number of addresses for each memory bank (16.777.216

addresses). Ideally, the 2.097.152 writing-reading operations would be enough due

to the burst data length (eight data), but the selected number also must cover

possible repeated memory addresses. Performed tests using the random function

showed about 14% of repeated numbers. Based on these tests, the UVM test was

run configuring 2.450.000 writing operations, followed by reading operations. When

the test is finished, the verification process result is shown in the command

28

terminal. In the Figure 12 is shown the UVM report summary of the test which

presents the total number of writing and reading operations, scoreboard reports

(self-checker), printed information by components, warnings, errors, fatal errors,

and the simulation time are shown.

Figure 12 Verification process result

Finally, when the verification process has ended, the last step is to check the total

coverage that it had. Table 3 shows the obtained coverage results in the performed

verification process. This results show 100% coverage for rows and columns in all

banks but not for their intersections. Due to software limitations, the intersection of

the total number of rows and columns in each memory bank can not be shown in

the coverage results, since the total number of crossings is 16.777.216 per bank,

and the software supports a maximum of 1 million.

Table 3 Coverage Results

Item Coverage (%)

Parameter Description

Use of all Banks used in

a

sequence

8 used banks 100

Bank0 to Bank7 Columns 100

Rows 100

29

4. CONCLUSIONS AND FUTURE WORK

This report presented a research work about the Universal Verification

Methodology as a tool for digital circuits verification. The implemented verification

system has a virtual interface complying the LPDDR3 handshaking, achieving a

stable communication with the memory, and allowing to performing the data

transfer between the designed UVM test and the LPDDR3 memory. Thereby, the

proposed system using UVM verifies successfully LPDDR3 memories described in

Verilog that range in sizes 4, 6 or 8Gb easily setting a number of sequences for the

verification process and the rows and columns number depending on the memory

size. Due to the capacity of reusing code of the Universal verification methodology,

a big part of this verification system can be reused in future works with the

LPDDR3 operation modes not worked in this project which are indispensable for

the operation, and good memory performance. Also, the done code has

characteristics of adaptability, whence parts of this code can be used in futures

works with LPDDR4 and different type of designs.

30

REFERENCES

[1] R. J. Duckworth, “Embedded System Design with FPGA Using HDL (lessons

learned and Pitfalls to be Avoided),” in 2005 IEEE International Conference on

Microelectronic Systems Education (MSE’05), June 2005, pp. 35–36.

 [2] S. Palnitkar, Verilog HDL - A Guide to Digital Design and Synthesis. Sun

Microsystems Inc, 2003.

[3] “SystemVerilog Unified Hardware Design, Specification, and Verification

Language,” IEC 62530 Edition 2.0 2011-05 IEEE Std 1800, 2011.

[4] J. Bromley, “If SystemVerilog is so Good, Why Do We Need the UVM? Sharing

responsibilities between libraries and the core language,” in Specification Design

Languages (FDL), 2013 Forum on, Sept 2013.

[5] R. Salemi, The UVM Primer. Boston Light Press, 2013.

[6] JEDEC, Low Power Double Data Rate 3. JEDEC Solid State Technology

Association, 2015.

31

BIBLIOGRAPHY

J. Bromley, “If SystemVerilog is so Good, Why Do We Need the UVM? Sharing

responsibilities between libraries and the core language,” in Specification Design

Languages (FDL), 2013 Forum on, Sept 2013.

JEDEC, Low Power Double Data Rate 3. JEDEC Solid State Technology

Association, 2015.

R. J. Duckworth, “Embedded System Design with FPGA Using HDL (lessons

learned and Pitfalls to be Avoided),” in 2005 IEEE International Conference on

Microelectronic Systems Education (MSE’05), June 2005, pp. 35–36.

R. Salemi, The UVM Primer. Boston Light Press, 2013.

S. Palnitkar, Verilog HDL - A Guide to Digital Design and Synthesis. Sun

Microsystems Inc, 2003.

SystemVerilog Unified Hardware Design, Specification, and Verification

Language,” IEC 62530 Edition 2.0 2011-05 IEEE Std 1800, 2011.

