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RESUMEN 

 

 

Título  Una metodología de verificación universal para una LPDDR3 memory
*
 

 
Autores Wilmer Daniel Ramírez Vera

**
 

 
Palabras clave Microelectrónica, LPDDR3, UVM, SoC verification. 
 
DESCRIPCIÓN  
 
Este proyecto presenta un sistema de verificación digital que utiliza la Metodología Universal de 
Verificación (UVM) para una memoria síncrona y dinámica de acceso aleatorio (SDRAM) de 32 bits 
con una velocidad de reloj 800 MHz que varía en tamaños de 4, 6 u 8 Gb. Aunque la industria ha 
estado adoptando rápidamente a UVM como metodología de verificación para sistemas sobre 
chips (SoCs), la literatura académica carece de ejemplos detallados de la arquitectura de una 
verificación de propiedad intelectual (VIP) basada en UVM. El trabajo propuesto presenta 
arquitectura y operaciones no encontradas en la literatura para la verificación de una memoria 
LPDDR3. El sistema de verificación que se presenta comprueba la transferencia de datos de una 
SDRAM de alta velocidad descrita en Verilog, mediante técnicas aleatorias de generación de 
estímulos, herramientas de  cobertura guiada y análisis automático utilizando UVM-SystemVerilog. 
El sistema de verificación propuesto se describe utilizando características de programación 
orientada a objetos (OOP), el modelado de nivel de transacción (TLM) y SystemVerilog. Además, 
dentro del sistema propuesto, se presenta una interfaz de memoria adaptada para funcionar como 
una interfaz virtual que cumple el protocolo de comunicación de la LPDDR3 y permite una 
comunicación estable con la memoria. El VIP basado en UVM implementado presenta 
características de código reutilizables y modulares que se pueden adaptar para una futura 
implementación de un VIP para una memoria LPDDR4. Los resultados presentados se obtuvieron 
a partir de pruebas realizadas en una LPDDR3 de 4GB. 
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ABSTRACT 

 

 

Title    A Universal Verification Methodology for an LPDDR3 memory
*
 

 
Authors Wilmer Daniel Ramirez Vera

**
. 

 
Keywords    Microelectronics, LPDDR3, UVM, SoC verification. 
 
DESCRIPTION 
 
This project presents a digital verification system using the Universal Verification Methodology 
(UVM) for a 32- bit LPDDR3 Synchronous Dynamic Random-Access Memory (SDRAM) clocked at 
800MHz that ranges in sizes of 4, 6, or 8 Gb. Although, industry has been rapidly adopting UVM as 
a verification methodology for System-on-chip (SoC), academic literature lacks detailed examples of 
the architecture of a UVM-based Verification Intellectual Property (VIP). The proposed work 
presents architecture and operations not found in the literature for the verification of an LPDDR3 
memory. The verification system to be presented checks the data transfer of a high-speed SDRAM 
described in Verilog, by random stimulus generation techniques, coverage-driven and automate 
analysis tools written using UVM-SystemVerilog. The proposed verification system is described 
using objects oriented programming (OOP), transaction-level modeling (TLM), and SystemVerilog 
features. In addition, within the proposed system, a memory interface adapted to work as a virtual 
interface that complies the LPDDR3 handshaking and allows a stable communication with the 
memory is presented, showing its architecture and operation. The implemented UVM-based VIP 
presents reusable and modular code features that can be adapted for a future LPDDR4 VIP 
implementation. The presented results were obtained from tests performed on a 4 GB LPDDR3 
version. 
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INTRODUCCION 

 

 

The electronics industry has had a strong hit in the society because of the facilities 

and innovation that it represents in the people’s daily life. A big part of this 

technological innovation is due to the embedded systems which are present in the 

most of the devices, from a cell phone to the most advanced supercomputer. Most 

of these systems are designed using hardware description languages (HDL) [1], 

which are tools to create and verify the designs before sending to manufacture. 

Verilog is one of the most popular HDLs which can model digital systems and 

support many modeling and verification requirements of the industry and has been 

an indispensable HDL for designers [2]. Although Verilog is very useful to create 

digital designs, it is a poor language to verify big systems in an efficient manner. To 

support the complexities of SoC designs, SystemVerilog was developed combining 

HDLs and hardware verification languages such as Vera and e, and programming 

languages such as C and C++. Hence, SystemVerilog is considered the first 

Hardware Description and Verification Language (HDVL) [3]. Although 

SystemVerilog is a strong HDVL, designers are forced to make a different 

verification system as the designs grow and become more complex owing to an 

incapacity of reusing code. To solve this problem, standard verification 

methodologies were created to design reusable verification environments and 

supply the requirements of the industry [4]. Currently, there is a methodology that 

joins SystemVerilog tools and the best features of previous verification 

methodologies such as the Verification Methodology Manual(VMM), the first 

implemented set of practices reusable verification environments in SystemVerilog, 

and the Open Verification Methodology(OVM), an objects library that provides 

many facilities for constructing testbenches, both methodologies, and other ones 

not mentioned helped to create one of the best verification tools currently: the 

Universal Verification Methodology (UVM) [4]. This report presents a study of the 
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Universal Verification Methodology to be used as a digital circuits verification tool. 

Moreover, a partial functionality verification of a Low-Power Double Data Rate 3 

(LPDDR3) memory is presented. This memory will be used in a research project 

with the University of Cambridge. 

 

  



13 

 

1. THE UNIVERSAL VERIFICATION METHODOLOGY 

 

 

SoC designs verification is a necessary process to be sure of the proper behavior 

of the design before sending to manufacture. For widespread and complex 

designs, SystemVerilog has strong tools such as constrained random techniques 

for stimulus generation that helps in finding corner case problem making the testing 

process easier, and assertion-based verifi- cation that helps to detect functional 

bugs earlier and closer to their original cause. Also, SystemVerilog has coverage-

driven verification to be sure that all possible cases of operation are performed, so 

we can be sure that the testing process is successful. Since the Universal 

Verification Methodology is a SystemVerilog library class, all the above 

SystemVerilog tools are also part of UVM. UVM solves the incapacity of reusing 

code abovementioned due to Object-oriented programming (OOP) and 

Transaction-level modeling (TLM) features were added to SystemVerilog to create 

better and reusable verification systems. The OOP adds the class creation that lets 

to pass features and methods to objects through the testbench. When an object 

associated with a particular class is created, this object inherits all data members 

and functions of the class, this is an advantage because an object can take the 

features of the class in any part of the testbench and thus multiple objects can be 

created wherever without copying code to other parts of the testbench, so we avoid 

the hardcode creation, one of the most significant problems for code reuse [5]. On 

the other hand, TLM is a high-level approach to modeling digital systems that 

separates the communication among modules from the implementation of 

functional units and the architecture. Therefore, adding TLM features to the 

testbench helps to create reusable and maintainability code due to each module 

has specific functions which are different to the other module functions, so different 

components of the system can be reused in future works. The Figure 1 shows a 

summary of the UVM features that have been mentioned. 
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Figure 1 Verifications features and tools of UVM. 

 

 

The UVM testbench structure is based on a hierarchy of modules (one within 

another) and each module has a different function. The best way to create 

reusable and maintainable code is that each module performs a single function in 

the testbench. Then, not only many parts of the code can be reused for futures 

designs but also finding an error is easier due to the designer can know what 

function is failing and consequently, what module has the error [5]. Modules, 

classes, and objects work together thus: The virtual interface, also called Bus 

Functional Model (BFM), is a module written using SystemVerilog which is 

connected to the input and output ports of the Device Under Test (DUT) working 

like a communication bridge between the DUT and the package of all UVM 

classes. Therefore, a handle of the BFM is passed through certain UVM 

components that need to establish communication with the DUT due to this 

interface controls the sent and the received data to and from the DUT. The virtual 

interface communicates with the Agents which are the verification components that 

handle the sending and receiving of data. These components are shaped by 

analysis components as coverage collectors and scoreboards (called self-checkers 

too), components that monitor the activity from/to the DUT, and finally, if the agent 

is the active type then the testbench has a stimulus maker component called 
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sequencer, and a component that is responsible for carrying the sequence item to 

the DUT, this last one is called driver. In the Figure 2 is shown the agent and its 

interconnecting subcomponents, this figure shows that only monitors and the driver 

communicates with the BFM.  

 

Figure 2 Verification components of a UVM Agent. 

 

 

 

The analysis ports and FIFOs are tools of UVM that let pass transactions among 

components. In the next level of the hierarchy, we find the environment which not 

only creates and encapsulates one or multiple agents but also is responsible for 

configuring each one of them as an active or passive agent and other possible 

configurations. This configuration process is performed passing to the agent, the 

configuration objects which contains the agent features that are used to create it, 

the environment also can have analysis components such as scoreboards. The 

environment is encapsulated in the test that configures the number of virtual 

sequences to know how many agents will be created. The test special function is to 

select the sequences of stimulus and the order to be sent to the DUT passing this 

selection to the sequencer which is in the agent. Finally, the top-level module 
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encapsulates the DUT, the virtual interface, and connects them, also the top-level 

selects the test to be executed. In this module, the package that contains all the 

UVM libraries to run the testbench and the UVM class package are called. The top 

level is shown in Figure 3. 

 

Figure 3 Hierarchy of classes in a UVM testbench. 
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2. UVM TESTBENCH FOR AN LPDDR3 MEMORY 

 

 

LPDDR3 Memories are dynamic RAMs that work at twice the clock frequency due 

to this type of memory uses both clock edges to transfer data. The verified memory 

in this project is a 32-bit mobile low-power DDR3 in 4 Gb, 6 Gb, and 8 Gb 

synchronous dynamic random-access memory versions and internally configured 

as an 8-bank DRAM. The LPDDR3 to be verified has an 800MHz frequency clock, 

so the memory can transfer data at 1.6GHz. The LPDDR3 operates according to 

behavior of the signals shown in the Table 1[6]. 

 

Table 1 LPDDR3 signals description 

Symbol Type Description 

CA [9:0] Input 
Provide the memory’s command and 

address 

ck, ck n Input 
Differential clock. Both clock edges sampled 

the command/address inputs. 

CKE Input 
The clock enable actives and deactivates the 

input clock signals and buffers. 

cs n Input Chip select, part of the command code. 

DM[3:0] Input 
4-bit Data mask for each of the four data 

bytes respectively in a writing process. 

ODT Input 
On-die termination enables and disables 

termination on the DQ bus. 

DQ I/O Bidirectional data bus 

DQS, DQS n I/O 

The Data strobe is a bidirectional and 

complementary clock used for read and write 

data. 4-bit data strobe for each of the four 

data bytes, respectively. 

 

The above signals must be sent to the LPDDR3 in the correct state, order and in 

different intervals of time, to perform a particular operation mode. The Table 2 

shows some of the most significant LPDDR3 operation modes. 



18 

Table 2 LPDDR3 Operation Modes [6] 

Operation 

Mode 
Characteristics 

Active 
This mode actives a selected memory bank in order to 

perform an operation on this bank. 

Writing & 

Reading 

The burst write and burst read operations are performed in 

the respective operation mode. To access to any of these 

modes, first the LPDDR3 must pass by the Active mode. 

Precharge 
The clock enable actives and deactivates the input clock 

signals and buffers. 

MR Writing & 

MR Reading 

These modes are used to write and read respectively 

configurations data in the mode register 

Power Down 

This mode deactivates input and output buffers. Maximum 

duration in this mode is only limited by the refresh 

requirements. The LPDDR3 can pass to this mode from 

any other operation mode 

Deep Power 

Down 

This mode presents a low power function of this mobile 

SDRAM, allowing reducing the power consumption by 

shutting down the internal power supply and suspending 

refresh operations when the device is not accessed for a 

long period. 

Self-Refresh 

This mode is used to retain data in the LPDDR3 overriding 

this data in the memory banks. This operation is performed 

even if the rest of the system is powered down 

CA-Training 
This mode is used to improve timing margins of the 

Command/Address bus. 

 

This project is focused on the data transfer verification in the active mode of the 

LPDDR3 memory. Therefore, the operation modes used are Active, Writing, 

Reading and Precharge. The Figure 4 and Figure 5 show the writing and reading 

process, respectively. The first step to request any operation is to active a memory 

bank and indicate a row number through the signal CA sampled in both clock 

edges. Then, Nop commands must be issued during an interval of time that varies 

depending on the operation required, when the minimum time is met, write or read 

commands can be issued indicating the column number. Finally, the writing or 
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reading process starts an interval of time later, 8 words are transferred in both 

cases (writing or reading). The data strobe samples the data in a writing process 

and is in line with the data in a reading operation; in both cases, the clock signal 

samples the data strobe, only Nop commands are allowed in this process. Also, 

the DM signal controls the data writing, masking the data to be not written. 

 

Figure 4 LPDDR3 writing process 

 

 

Figure 5 LPDDR3 Reading process 

 

 

To check the correct behavior of the memory, a verification system using UVM is 

implemented. Next, the process to create the digital verification system is 

described. 

 

A. Virtual Interface Description 

 

The first step toward creating a verification system for the LPDDR3 is to describe 

the virtual interface or bus functional model to convert our stimulus to the memory 
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language. Hence, the BFM is a translator between the operations that we want the 

memory performs and the signals sequence that the LPDDR3 needs to perform a 

writing or reading process. The Figure 6 shows a scheme of the virtual interface 

implemented in this project. There are three input signals that indicate to the BFM 

that a writing or reading operation is required, these signals are cen, oen and wen 

which pass through a logic process to recognize the operation type, just two 

combinations are valid; First, cen and oen has to be in high mode while wen stays 

in low mode to indicate to the BFM that a reading process is required, the contrary 

combination indicates a writing operation. In the logic process, feedback signals 

from a banks-process-control intervene too. LPDDR3 memories are configured in 

eight banks and each one has to be active before performing any writing or reading 

process. If a process is required in an already active bank, this bank has to be 

precharged. Furthermore, depending on the above process (write or read), the 

bank activation time varies.  

 

Figure 6 LPDDR3 virtual interface diagram blocks 
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Therefore, a banks-control system is implemented into the virtual interface. For 

writing and reading process, in Figure 6 two data burst are shown, each one is a 

32-bit and 8-positions array for the LPDDR3 data burst. All stimulus are sent from 

the UVM testbench by task functions. After the operation is recognized, several 

signals sequences start to run to comply the LPDDR3 operations protocol, then 

certain changes in the state signals are needed as enabling and disabling output 

buffers. The Figure 7 presents the state machine implemented in the virtual 

interface to send all needed transactions to the LPDDR3 and perform continuous 

writing and reading operations. Concluding the description of the virtual interface, 

this interface is synchronized using two shifted clock signals, one signal clock is 

the same of the LPDDR3, and the other one is a clock signal shifted 312ps with the 

same frequency, this signal is used to change the command/address, data strobe 

and DQ buffers state in the correct time in such a way that setup and hold times of 

the LPDDR3 are complied with. Now that the system has a translator for the 

LPDDR3, the next step is to create the stimulus and check components. 

 

Figure 7 Virtual interface state machine 
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B. Transactions, Sequences, and Generation of Stimulus 

 

In this section, the UVM testbench elaboration starts, and the first step is the 

transaction creation. The term ”transaction” refers to classes and objects that store 

data and operations, and the proposed system uses two transactions. The first 

transaction is called lpddr3_sequence_item which contains all signals to be sent 

to the virtual interface; this transaction extends from a UVM library called 

uvm_sequence_item that is made for working especially with a sequencer. The 

second transaction is called read_transaction which contains only a 32-bit and 8-

positions array to store the read data burst by the virtual interface in a reading 

process, this transaction also contains a basic operation called do compare whose 

function is to compare two objects of the same class, in this case, the read 

transaction class.  

 

Next step, the building of stimulus is created in a special class which has been 

called write_&_read_sequence, this class generates constrained random data 

that will be sent to the LPDDR3. The sequence described in this class is a 

configurable number of writing operations followed by reading operations with 

random address and data. The write & read sequence is only responsible for 

creating the sequences, so after creating the sequence to be used, the testbench 

needs a component that selects the sequence and puts this in another component 

that carries it. The first component is the lpddr3_test which selects the 

write_&_read_sequence, and a lower component of lpddr3_test receives the 

sequence. The lpddr3_sequencer which is specially created to work with 

uvm_sequence_items, a UVM class library which is the parent class of the 

lpddr3_sequence_item that have been already created. The lpddr3_sequencer 

extends from the uvm_sequencer. This class library has a special communication 

port to carry data to the lpddr3 driver which is responsible for sending data to the 

virtual interface through a handle of this interface that is got calling the UVM 

function uvm_config_db. This function makes available the BFM through all the 
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testbench and got the handle of the interface for the component that calls the 

function.  

 

Finally, the lpddr3_driver sends data using the task functions described in the 

virtual interface, this task functions handle all input and output data connections. 

So far, the verification system described only sends random stimulus but this still 

does not have any component that checks that the writing process was completed 

successfully. In other words, the testbench needs to check that the sent data to a 

certain address in a writing operation can be read subsequently in a reading 

operation for that same address. 

 

C. Monitoring, Analysis, and Results 

 

The verification system needs to add components that checks that all writing 

operations done can be verified by reading operations, the verification system 

implemented has two monitoring components, the first one is called 

lpddr3_command_monitor which observes the sent commands to the LPDDR3 

such as the type of operation, the address and the data to be written. The second 

monitor is called lpddr3_data_monitor which observes the input data burst in a 

reading operation; both monitors are responsible for observing data and pass them 

into a transaction (a different transaction for each) to another component that 

handles all analysis process to print a result later, this last component in this 

system verification is called lpddr3_scoreboard. 

 

The connection between the scoreboard and the monitors is made through 

uvm_analysis_port and uvm_tlm_analysis_fifo that are TLM tools made especially 

to pass transactions to other components, the monitors put the transactions in 

these ports and the scoreboard extracts them to do its respective analysis. Finally, 

the lpddr3_scoreboard makes a comparison between the read burst data in an 

actual reading operation and the written burst data in a previous writing operation 
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for the same addresses. To do this comparison, the read burst data and the written 

burst data are saved in two different objects of read_transaction type which contain 

a 32-bit and 8-positions array, the verification system uses the do compare 

operation of the read transaction class to do the comparison between each of the 

eight pairs of 32-bit data and get a result. Then, the scoreboard prints the result of 

all comparisons. 

 

In addition, the analysis process of the verification system has a component which 

must check the functional coverage in terms of stimulus. The lpddr3 coverage also 

receives an lpddr3_sequence_item using an Analysis port and uses covergroups to 

sample rows, columns, and banks that are used in all verification process. Hence, 

the system shows the percentage of all possible memory addresses that were 

verified. 

 

To finish the verification system construction, all above components are created 

into an lpddr3_agent. The proposed system presents eight agents that are 

created automatically to verify in parallel each one of the eight memory banks, and 

another agent more to verify operations (read and write) using all banks. Each 

agent is instanced in the lpddr3_env and configured through a configuration object 

that indicates which bank the agent has to verify. Finally, the top level module is 

built, the virtual interface described in SystemVerilog and the LPDDR3 described in 

Verilog are instanced in a SystemVerilog module called top, in this module the 

LPDDR3 and its interface are connected and the clock signals are defined for both. 

The package of classes that were created for the testbench is also imported in this 

module. The Figure 8 shows the final verification system using UVM. 
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Figure 8 Blocks diagram of the LPDDR3 verification system using UVM. 
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3. RESULTS 

 

 

The first step in the verification system creation process is to verify the virtual 

interface which was first designed as a communication interface for the LPDDR3 

and later was adjusted to be a virtual interface in the verification system. To check 

that the communication interface was designed successfully, certain simulations 

were performed to get the results shown in Figure 9 and Figure 10. 

 

Figure 9 Writing operation simulation using the Interface. 

 

 

Figure 10 Reading operation simulation using the Interface 

 

 

The simulations show successfully writing and reading operations respectively, 

showing initially that the virtual interface design is correct. Also, both simulations 

show that the data mask signal fulfills its function because the memory does not 

write the second data masked by the data mask signal in the writing process. 
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Therefore, the designed interface complies with the requirements for 

communication with the LPDDR3. The next step is to run the designed UVM 

testbench and check the LPDDR3. First, the sending of stimulus must be checked 

to know whether there is a connection or not from the UVM testbench to the 

LPDDR3.  

 

The checking process made by the scoreboard is shown in the Figure 11, sent 

data and captured data are compared in order to the scoreboard shows a result, in 

this case, the result is the word CORRECT. Also, the scoreboard prints the written 

and the read data in a UVM INFO. In a different case, if the compared data are not 

the same, the scoreboard shows the word FAIL and prints a UVM ERROR. 

 

Figure 11 Single sentence of the Scoreboard Information 

 

 

The verification process was performed defining in the object 

write_&_read_sequence a number of writing operations followed by reading 

operations. For a 4Gb LPDDR3, the defined number was selected large enough to 

cover the total number of addresses for each memory bank (16.777.216 

addresses). Ideally, the 2.097.152 writing-reading operations would be enough due 

to the burst data length (eight data), but the selected number also must cover 

possible repeated memory addresses. Performed tests using the random function 

showed about 14% of repeated numbers. Based on these tests, the UVM test was 

run configuring 2.450.000 writing operations, followed by reading operations. When 

the test is finished, the verification process result is shown in the command 
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terminal. In the Figure 12 is shown the UVM report summary of the test which 

presents the total number of writing and reading operations, scoreboard reports 

(self-checker), printed information by components, warnings, errors, fatal errors, 

and the simulation time are shown. 

 

Figure 12 Verification process result 

 

 

Finally, when the verification process has ended, the last step is to check the total 

coverage that it had. Table 3 shows the obtained coverage results in the performed 

verification process. This results show 100% coverage for rows and columns in all 

banks but not for their intersections. Due to software limitations, the intersection of 

the total number of rows and columns in each memory bank can not be shown in 

the coverage results, since the total number of crossings is 16.777.216 per bank, 

and the software supports a maximum of 1 million. 

 

Table 3 Coverage Results 

Item Coverage (%) 

Parameter Description 

Use of all Banks used in 

a 

sequence 

8 used banks 100 

Bank0 to Bank7 Columns 100 

Rows 100 
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4. CONCLUSIONS AND FUTURE WORK 

 

 

This report presented a research work about the Universal Verification 

Methodology as a tool for digital circuits verification. The implemented verification 

system has a virtual interface complying the LPDDR3 handshaking, achieving a 

stable communication with the memory, and allowing to performing the data 

transfer between the designed UVM test and the LPDDR3 memory. Thereby, the 

proposed system using UVM verifies successfully LPDDR3 memories described in 

Verilog that range in sizes 4, 6 or 8Gb easily setting a number of sequences for the 

verification process and the rows and columns number depending on the memory 

size. Due to the capacity of reusing code of the Universal verification methodology, 

a big part of this verification system can be reused in future works with the 

LPDDR3 operation modes not worked in this project which are indispensable for 

the operation, and good memory performance. Also, the done code has 

characteristics of adaptability, whence parts of this code can be used in futures 

works with LPDDR4 and different type of designs. 
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