

A 32-BIT RISC-V MICROCONTROLLER IN 130 nm CMOS TECHNOLOGY

CKRISTIAN RICARDO ESTEBAN DURAN BLANCO

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD INGENIERÍAS FISICOMECANICAS

ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y

TELECOMUNICACIONES

MAESTRIA EN INGENIERIA DE TELECOMUNICACIONES

BUCARAMANGA

2017

A 32-BIT RISC-V MICROCONTROLLER IN 130 nm CMOS TECHNOLOGY

CKRISTIAN RICARDO ESTEBAN DURAN BLANCO

Proyecto de grado para optar al titulo de Magister en Ingenieria de

Telecomunicaciones

Director

ELKIM FELIPE ROA FUENTES

PhD. en Ingenieria

Co-Director

HÉCTOR IVÁN GÓMEZ ORTIZ

MSc en Electronica

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD INGENIERÍAS FISICOMECANICAS

ESCUELA DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y

TELECOMUNICACIONES

MAESTRIA EN INGENIERIA DE TELECOMUNICACIONES

BUCARAMANGA

2017

5

ACKNOWLEDGMENTS

In this section, will be mentioned all the people involved in the realization of this

microcontroller.

Hector Gomez. Mixed signal adaptation.

Giovanny Castillo and Anderson Agudelo. AXI4-Lite and APB GPIO interface.

Camilo Rojas and D. Luis Rueda. AXI4-Lite and APB ADC and DAC interface.

Juan Romero. AXI4-Lite to APB converter.

Hugo Hernandez. ADC and DAC analog modules.

Javier Ardila, Luis Rueda, Giovanny Castillo, Anderson Agudelo, Camilo Rojas,

D. Luis Rueda, Luis Chaparro, Henry Hurtado and Wilmer Ramirez. Powering,

chip sign-off and circuit verification.

Pamela Gomez, Pablo Rendon and Felipe Remolina. ALU module.

Jonathan Torres and Juan Mart´ınez. Instruction Decoder module.

Laura Galvan and Andres Prada. Multiplication module.

Giovanny Castillo and Anderson Agudelo. AXI4-Lite Memory Interface module.

Erika Cruz and Luis Bohorquez. Utility module.

Juan Romero and Oscar Diaz. Collaborated IRQ module.

Hanssel Morales, Alejandro Pulido, Andres Florez, Brayan Herrera, Alex Mantilla

and Daniel Cardenas. Online JavaScript processor simulator.

Hector Gomez. Final PCB layout for circuit testing.

6

CONTENTS

Page.

INTRODUCTION ... 12

1. RISC-V PROCESSOR ARCHITECTURE .. 15

1.1 RISC-V INSTRUCTION SET ARCHITECTURE (ISA) 16

1.2 PROGRAMMERS’ MODEL FOR BASE INTEGER SUBSET 18

1.3 BASE INTEGER INSTRUCTION SET (RV32I) .. 19

1.3.1 Arithmetic instructions ... 19

1.3.2 Logic instructions .. 20

1.3.3 Bit-shift instructions ... 20

1.3.4 Branch instructions ... 21

1.3.5 Memory instructions .. 21

1.3.6 System instructions ... 22

1.3.7 Misc instructions ... 22

1.4 EXTENSION FOR INTEGER MULTIPLICATION AND DIVI- SION (RV32M) .. 22

1. A 32-BIT RISC-V MICROCONTROLLER IN 130NM CMOS TECHNOLOGY 24

2.1 OPEN-V CORE ARCHITECTURE ... 25

2.1.1 Pipeline stages .. 26

2.1.2 Core modules .. 27

2.2 COMMUNICATION BUSES ... 30

2.2.1 AXI4-Lite ... 30

2.2.2 SPI Master .. 31

2.2.3 APB ... 33

3. PERIPHERALS .. 35

3.1 SRAM CONTROLLER ... 35

3.2 GPIO .. 36

3.3 ANALOG AND DIGITAL CONVERTERS ... 37

7

4. MEASUREMENTS AND RESULTS ... 39

4.1 VERIFICATION .. 39

4.2 TSMC 130NM SYNTHESIS ... 40

4.3 CHIP PROTOTYPE ... 42

4.4 ONLINE PROGRAMMING SERVER ... 45

5. SUMMARY ... 48

6. CONTRIBUTIONS ... 49

6.1 RELATED ARTICLES .. 49

6.2 RELATED PRESENTATIONS ... 50

6.3 APPEARANCE IN NEWS .. 51

7. FUTURE WORK .. 53

7.1 OPEN-V V.2 ... 53

7.2 LEVERAGING A RISC-V ISA IN A LOW-POWER 32- BIT

MICROCONTROLLER .. 54

7.2.1 Proposed Architecture... 55

7.2.2 Bus Architecture .. 58

BIBLIOGRAPHIC REFERENCES .. 60

BIBLIOGRAPHY .. 65

8

LIST OF FIGURES

Page.

Figure 1. RISC-V base instruction formats ... 16

Figure 2. RISC-V 32-bit user-level base integer register state. 18

Figure 3. Open-V block diagram. ... 24

Figure 4. Open-V RV32IM architecture .. 25

Figure 5. AXI4-Lite interconnect functional diagram. .. 31

Figure 6. Memory map for Open-V. ... 32

Figure 7. SPI Master timing diagram .. 33

Figure 8. AXI4-Lite to APB bridge blog diagram .. 34

Figure 9. AXI4-Lite SRAM Controller ... 36

Figure 10. GPIO block diagram .. 37

Figure 11. SAR ADC block diagram ... 38

Figure 12. Initialization and testing setup for Open-V. 40

Figure 13. Testbench signaling and verification architecture. 40

Figure 14. Final layout for AXI-APB implementation. Area:798µm×484µm 42

Figure 15. Die photograph. .. 43

Figure 16. Test Board (PCB).. 43

Figure 17. Low-Power Microcontroller performance comparison 45

Figure 18. Amount of sessions per day for demo web server (generated

using Google Analytics). .. 47

Figure 19. Open-V v.2 proposed architecture. ... 54

Figure 20. Proposed Power-Optimized Processor Architecture. 56

Figure 21. Single unit power manager. a) State machine. b) Datapath. 57

Figure 22. Flowchart of implemented task assignment. ... 58

Figure 23. Proposed Power-Optimized Bus Architecture 59

9

LIST OF TABLES

Page.

Table 1. Comparison of the Open ISA ... 16

Table 2. List of Arithmetic instructions in RV32I ... 19

Table 3. List of Logic instructions in RV32I .. 20

Table 4. List of Shift instructions in RV32I ... 20

Table 5. List of Branch instructions in RV32I ... 21

Table 6. List of Load/Store instructions in RV32I ... 21

Table 7. List of System instructions in RV32I ... 22

Table 8. List of Misc instructions in RV32I ... 22

Table 9. List of instructions in RV32M .. 23

Table 10. SPI Master command usage. ... 33

Table 11. Power, timing and area breakout of the Open-V 41

Table 12. Platform performance. .. 44

Table 13. Current consumption per clock frequency. ... 44

10

RESUMEN

TITULO: Un microcontrolador de 32 Bits RISC-V en tecnología CMOS de 130nm
*

AUTOR: Ckristian Ricardo Esteban Duran Blanco

**

PALABRAS CLAVE: Microcontrolador, Procesador, RISC-V, CMOS, arquitectura, computadores

La quinta generación de procesadores con Set de Instrucciones de Cómputo Reducido (RISC-V
por sus siglas en inglés) han presentado un numero gránde de ventajas en comparación a los
procesadores de Set de Instrucciones de Cómputo Complejo (CISC por sus siglas en inglés)
durante los últimos años. En este trabajo una completa implementación y diseño de un
microcontrolador de 32-bits en 130nm totalmente sintetizable es presentada. Este es el primer
microcontrolador ofreciendo el set de instrucciones de código abierto RISC-V montado através de
buses AXI4-Lite y APB para procesos de comunicación. El microcontrolador contiene una RAM de
4kB, una interfaz SPI esclabo AXI para verificación, y una interfaz SPI esclavo APB para
comprobar el correcto funcionamiento del puente APB. Todos los periféricos son controlados por
un procesador RISC-V y una interfaz SPI maestro AXI que es usada para programar el dispositivo
y comprobar el flujo de datos através de todos los esclavos. Una densidad total de potencia es
reportada como 167μW/MHz a 100 MHz y el area de este microcontrolador RISC-V tiene una
reducida huella de 798μm x 484μm. Además de esto, un microcontrolador de 32-bits probado y
medido, usado como una plataforma de código abierto para el Internet de las Cosas es presentado.
El Sistema en Chip (SoC por sus síglas en inglés) ocupa una area de 2.1mm x 2.1mm en una
tecnología de 130nm CMOS. El SoC ha sido probado a una máxima velocidad de 160MHz. Este es
el primer microcontrolador de 32-bit probado en silicio con un núcleo RISC-V.

*
 Proyecto de grado

**
 Facultad Ingenierías Fisicomecanicas Escuela de Ingeniería Eléctrica, Electrónica y

Telecomunicaciones Maestria en Ingenieria de Telecomunicaciones Director: Elkim Felipe Roa
Fuentes Co-Director Héctor Iván Gómez Ortiz

11

ABSTRACT

TITLE: A 32-bit RISC-V microcontroller in 130 nm CMOS technology
*

AUTHOR: Ckristian Ricardo Esteban Duran Blanco

**

KEYWORDS: Microcontroller, Processor, RISC-V, CMOS, architecture, computers

The fifth generation of Reduced Instruction Set Computer (RISC-V) processors have presented a
large number of advantages in comparison to Complex Instruction Set Computer (CISC) processors
over the last years. In this work a complete implementation and design of a fully-synthesized 32-bit
microcontroller in a 130nm CMOS technology is presented. This is the first microcontroller featuring
the open source RISC-V instruction set all mounted through AXI4-Lite and APB buses for
communication process. The microcontroller contains a 4kB-RAM, an SPI AXI slave interface for
output verification, and an SPI APB slave interface for checking the correct behavioral of the APB
bridge. All peripherals are controlled by a RISC-V and an SPI AXI master interface that is used for
programming the device and checking the data flowing through all the slaves. A total power density
is reported as 167μW/MHz at 100 MHz and the area for this RISC-V microcontroller has a reduced
footprint of 798μm x 484μm. Moreover, a tested and measured 32-bit microcontroller used as an
open-source platform for Internet of Things is presented. The implemented SoC occupies a 2.1mm
x 2.1mm area in a 130nm CMOS technology. The SoC has been tested at maximum speed of
160MHz. It is the first silicon-proven 32-bit microcontroller sporting a RISC-V core.

*
 Project of grade

**
 Faculty of Electrical and Mechanical Engineering School of Electrical, Electronics and

Telecommunications Engineering Master's Degree in Telecommunications Engineering Director:
Elkim Felipe Roa Fuentes Co-Director Héctor Iván Gómez Ortiz

12

INTRODUCTION

Nowadays commercial architecture chip vendors, such as ARM Holdings and

MIPS Technologies, charge substantial license fees to use their patents. The

architecture se- crecy in these processors interferes with the legitimate public and

educational use as well as security auditing, performance analysis, and the

development of public, inex- pensive compilers and operating systems in an open-

source free software. In order to face this dilemma, the RISC project was created1

for academic purposes.

One of the main disadvantages of today’s commercial processors relies on the fact

that the majority of programs and compilers are not aimed to use the processor’s

set of instructions entirely. These useless instructions can be avoided exploiting

the remained area to implement new functions in order to improve the processor

performance [2].

Historically, the Berkeley RISC design was commercialized as the SPARC

processor setting stones to the MIPS architecture, and inspiring the ARM

architecture which powers most mobile phones. The RISC-V architecture is the fifth

generation from RISC processor designs [3]. The configurability and efficiency of

the RISC-V, and the great impact on power consumption, shows great compatibility

with most of the IoT applications.

The Berkeley RISC processors reduce the instruction list by removing all unneces-

sary decoding and calculating circuitry. The modified instruction set also adds

speed functions and includes improvements such as the addition of registers that,

in contrast with normal memories, can be accessed at a negligible cost. In addition,

1
 Developed originally at UC Berkeley, dated back since 1980s [1]

file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark87
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark88

13

simplification of the instructions for each different operation is improved making the

RISC proces- sor a single instruction-variant architecture. Finally, this instructions

set provides the possibility to assign constants directly to operations as well as

loading data to registers using less memory for sections that have constant data.

The above improvements re- sult on lower memory interaction for common

processor operations indicating a better performance and making all instruction

executions closer to the system clock.

The RISC-V is planned to become an open-source instruction set architecture

(ISA), as an open industry standard under the governance of the RISC-V

Foundation2. By making this architecture generation as an open ISA, the goal is to

enhance collabora- tive work between organizations and improve the development

of both academic and industrial sectors. In addition, the resulting developments of

organizations such as compilers and operating systems can be shared as well as

the implementations that use the architecture.

For organizations, the open-source model brings advantages such as: 1) Access to

the last improvements (with its respective discussion); 2) The opportunity to

develop new and custom functions, such as security and advanced calculations

(directly within the core) and communicating them through a bus; 3) The possibility

to use this architecture on chip, which will reduce the chip cost dramatically as

organizations do not have to pay additional fees for licensing (RISC-V is under the

BSD Open Source license [4]).

In this research, the first 32-bit RISC-V microcontroller, using RV32I Basic and

RV32M instruction set using a 130 nm CMOS standard technology is presented

[5]. The implementation and design are equivalent to commercial microcontrollers

implemented with an ARM-M0 core. Features of this microcontroller are: AXI4-Lite

and APB buses for interfacing communication between the core and all the

2
 http://riscv.org/

14

peripherals attached to it, a 4kB-RAM, Serial Peripheral Interface (SPI) slaves for

output, a GPIO module, a SAR Analog-to-Digital converter and a Digital-to-Analog

converter. The circuit was designed using 130nm CMOS technology and tested

using RISC-V tool-chain along with an efficient test algorithm in bus. In addition, a

SPI master has been implemented in order to explore all the status of the

peripherals while the microprocessor is still executing its program.

Additional to this research, testing and measurements of this microcontroller in

transistor level were performed. The implemented SoC occupies a 2.1mm x 2.1mm

area in 130nm CMOS technology with a dynamic power of 167µW measured from

a 1.2V when the core is clocked at 100MHz. The testing proves SoC can be run at

maximum speed of 160MHz and it is the first silicon-proven 32-bit microcontroller

sporting a RISC-V core. A demonstration was performed using an online web

server capable of running small auto-generated user-defined demos running in the

microcontroller. This demo was launched at the 5th RISC-V Workshop and

reached a total of 410 users.

Giving the importance of Open Hardware, code about implementations of the

RISC- V core, buses and peripheral adapters are exposed in a public GitHub3.

Verilog code is human-readable and fully-synthesizable in any transistor-gated

process.

3
 https://github.com/onchipuis/

15

1. RISC-V PROCESSOR ARCHITECTURE

Reduced Instruction Set Computer (RISC) is a type of microprocessor architecture

that uses a small, highly-optimized, constant cycle, set of instructions, rather than a

more specialized set of instructions often found in other types of architectures.

Some of the characteristics of a RISC processor are: 1) One or constant cycle

execution time. 2) Pipelining. 3) Large number of registers. The optimization of

RISC processors are focused on register operations only, making tasks such as

storing and loading through memory totally independent. To perform an operation

that involves variables saved on memory it is needed to load these information into

registers, then the processor operates (i.e. arithmetic, bit shift and bitwise

operations) and stores the result in memory. On Complex Instruction Set Computer

(CISC) processors these operations are hardware-based, integrating

communication and operation in a single instruction.

Due to low-level instructions of the RISC architecture, more RAM is needed to

store the assembly level compared to CISC, thus leading to an increment on the

complexity of programs on RISC processors. However, the RISC strategy also

brings some very important advantages: constants are loaded into the instruction

itself, instead of using sections on the memory that carry with these information

(read-only sections). The reduced instructions require less transistor area, allowing

more general purpose registers and making pipelining possible. Due to the fact that

each instruction can be executed in a constant number of clock cycles, a program

implemented on a RISC processor can be performed nearly in the same amount of

time than using CISC.The RISC-V is the fifth generation of Berkeley RISC,

featuring all of the mentioned characteristics plus open-source hardware and

software tools.

16

1.1 RISC-V INSTRUCTION SET ARCHITECTURE (ISA)

RISC-V is a new open Instruction Set Architecture (ISA) designed by the Berkeley

Architecture Group with the aim to support architecture research and education [5].

RISC-V is fully available to public and has advantages such as a smaller footprint

size, compatibility for highly-parallel multi-core or many-core implementations [6],

variable- length instructions to support an optional dense instruction, and energy

efficiency. Moreover, RISC-V presents improvements in different characteristics

over another open ISAs as shown in the Table 2.1.

Table 1. Comparison of the Open ISA

Figure 1. RISC-V base instruction formats

The base ISA is clean and suitable for direct hardware implementation. The Fig.

2.1 shows the four core instruction formats (R,I,S,U). R-type format is used for

file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark90
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark91
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark6

17

several arithmetic instructions with one or two source operands, and for the atomic

memory op- eration (AMO) instructions that perform read-modify-write operations

for multiproces- sor synchronization. In addition, R-type is used for computational

instruction register to register. I-type format is used for system instructions to

access system functionality that might require privileged access and computational

instructions register-immediate. Load and store instructions transfer a value

between the registers and memory. Loads are encoded in the I-type format and

stores are S-type. U-type format is used for JAL instructions or immediate

instructions as LUI (load upper immediate) and AUIPC (add upper immediate to

pc). All formats are fixed 32-bit in length, and keep the source (rs1 and rs2) and

destination (rd) registers at the same position to simplify decoding. There is also a

immediate codification, which MSB is always treated as the sign bit. This can be

seen as the embedded constant attached to the instructions.

The RISC-V base integer ISA must be present in any implementation, plus optional

extensions to the base ISA. Each base integer instruction set is characterized by

the width of the integer registers and the corresponding size of the user address

space. The used primary base integer variant, RV32I, provide 32-bit user-level

address space. The base integer ISA can be extended with one or more optional

instruction-set extensions, but the base integer instructions cannot be redefined.

The base integer ISA is named ―I‖ (prefixed by RV32). The standard integer

multiplication and division extension is named ―M‖. Additional info about bit

codification is in [5].

18

1.2 PROGRAMMERS’ MODEL FOR BASE INTEGER SUBSET

Figure 2. RISC-V 32-bit user-level base integer register state.

19

Figure 2.2 shows the user-visible state for the base integer subset. There are 31

general- purpose registers x1–x31, which hold integer values. Register x0 is

hardwired to the constant 0. There is one additional user-visible register: the

program counter pc holds the address of the current instruction.

1.3 BASE INTEGER INSTRUCTION SET (RV32I)

This is the 32-bit base RISC-V ISA. It is composed by 47 instructions and contains

arith- metic instructions, logic instructions, shift instructions, branch instructions,

memory instructions, integer stores, misc instructions, and system instructions.

This instruction set is mandatory for all RISC-V implementations. In the following

subsections a brief abstract of each instruction is described. Codification and more

extended implementa- tion definitions are in [5].

1.3.1 Arithmetic instructions. In table 2.2 are listed main Arithmetic instructions.

Arithmetic calculations ignores overflow bit, but overflow detection is possible using

Branches. ADDI x0, x0, 0 is im- plemented as a software NOP. There are some

other instructions like Branches and Memory which always depend of arithmetic

operations for calculating results. Func- tional module can be a simple adder with

second-operator negate controlled. LUI instruction is listed here but it implements

an ALU bypass.

Table 2. List of Arithmetic instructions in RV32I

20

1.3.2 Logic instructions Logic instructions are listed in table 2.3. Module definition

is only defined by logic gates. Doing an XORI x1, x1, -1 is the same as

implementing a NOT x1, x1. For pipeline hazard bubbles, instruction decoder

should use a hardware NOP different to the Arithmetic version using typically Logic

operations.

Table 3. List of Logic instructions in RV32I

1.3.3 Bit-shift instructions Bit shifting can be performed logically or arithmetic.

Certain implementations of this instructions in the table 2.4 can involve an

immediate shifter (which solves the operation in 1 clock cycle but frequency is

affected. Generally, an implementation always use counters and shift registers.

Arithmetic versions of this instructions only appends the 31st bit (sign) to the bit

shifting when is a right operation.

Table 4. List of Shift instructions in RV32I

21

1.3.4 Branch instructions Branch operations in table 2.5 are capable of taking

decisions or store the result accord- ing to the desired operation. JAL and JALR

are considered unconditional branches. All jumps support 4kB displacement from

the pc register, but JAL supports 1MB displacement maximum.

Table 5. List of Branch instructions in RV32I

1.3.5 Memory instructions Listed memory instructions in table 2.6 are capable of

save/load from/to a register, using absolute addresses from the desired address

register, and relative immediate to this address register. Memory operations can be

performed in 3 sizes: Byte, Half-Word and Word. For 32-bit system, the word is 4

bytes.

Table 6. List of Load/Store instructions in RV32I

22

1.3.6 System instructions Most of the System instructions listed in table 2.7

needs a multi-layer instance. In simulations or implementations, sbreak is always

used to report to an external debugger some failure. Behavioral explanation of the

other instructions are beyond this book.

Table 7. List of System instructions in RV32I

1.3.7 Misc instructions Those instructions in table 2.8 are only in charge of

returning to rd the desired Control and Status register (CSR). Typically are used to

measure performance, but can also be used to calculate execution time from reset

state.

Table 8. List of Misc instructions in RV32I

1.4 EXTENSION FOR INTEGER MULTIPLICATION AND DIVI- SION (RV32M)

This is a 32-bit extension for RISC-V ISA. It is composed by 8 instructions and

adds operations to multiply and divide values held in the integer registers.

23

Table 9. List of instructions in RV32M

24

1. A 32-BIT RISC-V MICROCONTROLLER IN 130NM CMOS TECHNOLOGY

In this microcontroller, a RISC-V core architecture, communication buses and

periph- erals are implemented. A brief architecture of this implementation can be

appreciated in figure 3.1. In this implementation, communication buses like AXI4-

Lite and APB are used, along with several peripherals described in chapter 4. This

implementation is henceforth called ‖Open-V‖.

Figure 3. Open-V block diagram.

25

2.1 OPEN-V CORE ARCHITECTURE

The Open-V implements the RV32I basic instruction set [5], composed by 43 of 47

in- structions omitting FENCE[.I] and SCALL (because these are operative

system/multi- core instructions); the instruction MUL[H[U|SU]] of the set M; and

custom instructions for handling interrupts . According to the implemented Open-V

core architecture in figure 3.2, the pipeline process is divided in 3 stages: Fetch,

Exec and Memory; whose are further explained in subsection 3.1.1. Every register

access (also named operands) can pass through the ALU, X module, Memory

interface (via address for accessing data and retrieving), and Misc modules like

Util/IRQ handling and setting. Further expla- nation of implemented modules inside

the core architecture are explained in section 3.1.2

Figure 4. Open-V RV32IM architecture

26

2.1.1 Pipeline stages All pipeline stages are controlled with an external Control

module, which is in charge of controlling execution of all pipeline stages. According

to each stage, the Control module does an specific action which are further

explained in the following subsections. For achieving the desired behavioral,

communication between core modules from datapath and the control path is

possible through control signals. In figure 3.2 all control signals are indicated with

green color.

Fetch:

Fetch is designed to get an instruction from memory, decode the obtained

instruction, then put them ready to Exec stage. Results from Fetch stage are

indicated in yellow in the figure 3.2.

The instruction fetching is a process that is executed entirely inside the Memory

Interface. This behavior was designed as described because memory operations

out-side the core are totally asynchronous. If an instruction is not ready to be

decoded, the pipeline is stopped through the Control module for avoiding executing

the past instruction.

Exec:

Exec decodes the desired instruction using and execution module such as ALU, X

or Util. This stage takes the data from Register File module and put the desired

operands in every execution module. In figure 3.2, operand signals are in red and

results are in blue. Those modules are enabled when a supported operation is

recognized through the decoded Operation code (Opcode). If there is a result, the

value is passed to the Memory pipeline stage for Write Backs.

27

For certain types of operations (such as MUL or Shift operations inside ALU) can

last longer than 1 clock cycle. Execution modules report this through a ready

signal. For preventing data hazards, the pipeline is stopped until the current

operation has finished. Calculations of the Program Counter (PC) are executed

also here. Further explanation of execution modules are in subsection 3.1.2.

Memory:

Memory stage does the Write Back to the registers and does memory operations

through the Memory Interface. A write requests are sent in the first clock cycle.

Write Back is sent in the first clock cycle to the Register file module, but if the

desired operation is to read data from Memory, memory request is sent in the first

cycle, then Write Back is enabled when the Memory Interface has valid data. The

Control module is in charge of all memory arbitration between instructions and data

(by switching between Fetch or Memory-data commands). As in Fetch stage, if

memory operations are not ready when request is sent, pipeline is stopped.

2.1.2 Core modules Core modules can be divided in two major groups: Execution

modules, whose do all execution operations; and Functional modules, whose

execution are Pipeline stage and Control specific. Most of these modules were

developed by undergraduate students through the Computer Architecture I course

or enthusiasts inside the Onchip Investi- gation Group.

Execution modules

 Arithmetic-Logic Unit (ALU): The ALU module have all the Arithmetic, Logic and

Bit Shift operations performed by the RISC-V ISA. Auxiliary operations for non-

related instructions are implemented in other execution modules (like

immediate sum to relative addresses for memory operations). Arithmetic

according to the second operand. For Shift operations, first the value is

28

displaced by 4 every clock cycle if second operand is grater than 4. After this

sub-operation or if second operand is less than 4, the value is displaced by 1.

Additional clock cy- cles are issued for detecting overload or null-shifting by an

internal state machine. A Bit-Shifting operation can last between 1 and 15 clock

cycles. Implementation of this module was done by undergraduate students.

 Multiplication (X): Multiplication module is a separate digital process which

solves a multiplication using Karatsuba Algorithm [7] [8] [9] and Booth Algorithm

[10]. For a 32-bit implementation, the combination of this two algorithms calcu-

lates the result for any M instruction in 18 clock cycles. Implementation of the

algorithm and compatibility with the RISC-V M ISA was done by undergraduate

students.

 Utility (UTIL): The Utility module manages all PC register interactions and some

additional features such as mandatory RV32I Control and Status Regis- ters

(CSR) management for the rd[cycle,instr,time[h]] instructions [5] [11]. The PC

calculation is based on the instruction and control bits from other Execution

modules such as ALU (for branches) and IRQ (for external interrupts). Addi-

tional register which Utility module manages are: clock cycle counter,

instruction counter and a basic 1 kHz time counter. Implementation of this

module was done by undergraduate students.

 Interrupt request (IRQ): Interrupt request module makes requests to the Con-

trol module for external interrupts. Manages special instructions not contained

in the RISC-V ISA specification for obtaining current state of the request,

interrupt vector and PC restore. This module is capable of returning an End of

interrupt (EOI) for returning external modules when interrupt execution is done.

All in- terrupt management and responses is software-programmable.

Implementation of this module was done in association with undergraduate

students and enthusiasts from Onchip investigation group.

29

Functional modules

 Register File (REG FILE): Register file module is an implementation wrapper of

a multi-port 1-Write 2-Read single-clock RAM memory. Because RISC-V ISA

specification, wrapper reads zero and ignores writes if address is zero. This

RAM was implemented using Flip-Flops, but can be easily replaced by a true

dual-port RAM. Addresses for writing and reading comes directly from the

instruction fetch, but write enable is only activated if an execution module

request a result Write Back, and this action occurs when recognized opcode for

an intended module also recognizes saving to register destination (rd).

 Instruction Decoder (INST DECO): Instruction decoder module retrieves the

Fetch result from Memory Interface and decodes the Opcode, register read

addresses, register destination address, and immediate constants according to

the RISC-V ISA. It detects 43 of 47 RV32I instructions omitting operative

system/multi- core/cache, 4 RV32M instructions and 7 custom interrupt

instructions not in- cluded in the RISC-V ISA. If there is a bit combination that is

not inside listed instructions of current implementation, an Illegal Instruction is

triggered to the Control module. Implementation of this module was done by

undergraduate stu- dents.

 Memory Interface: Memory interface is in charge of do the AXI4-Lite master

protocol signaling for requests from Fetch or Memory pipeline stages. If

memory requests lasts one clock cycle, this interface is capable of retrieving

results from the bus in one clock cycle too, but protocol in general, and this

module, are asynchronous. This module holds the value of the last Fetch

requested, as well as perform execution-like requests for read/write data.

Implementation of this module was done by undergraduate students.

30

2.2 COMMUNICATION BUSES

Implementation of an efficient microcontroller requires a reliable and fast

communica- tion between masters and slaves blocks. Nowadays, many bus-based

communication architecture standards are found. In this work, the AMBA and APB

protocols are used such that we can compare with microcontrollers based on ARM-

M0 cores. The block diagram that follows this connections of the Open-V is shown

in Fig. 3.1. The Open-V core in section 3.1 and the SPI master in sub-section 3.2.2

are attached to the AXI4-Lite bus described in subsection 3.2.1, which controls all

peripherals. There is also an APB bridge in order to lowering the power

consumption in communication, which is explained in subsection3.2.3.

2.2.1 AXI4-Lite The AMBA AXI4 is an ultra-high performance protocol bus

standard [12] developed by ARM for easy application in small scale SoCs. AXI4

has different forms to be implemented and this work uses the AXI4-Lite protocol,

which has two data channels of 32-bit and control signals for communication

between Masters (SPI M, RISC-V) and slaves (RAM, SPI S, APB) [13].

Communication between the masters and the slaves is done through an

Interconnect module. This module is in charge of arbitrating all AXI4-Lite

transactions between masters and provide full communication between a selected

master and a decoded slave. The hierarchy functional description is shown in

figure 3.3. In this hierarchy is visible that the crossbar is divided in two: read

requests and write requests. This architecture can be separated by this requests

because the AXI4 channel structure, allowing to do two independent arbitrations. If

certain request is blocked, the other one remains active, featuring asynchronous

read / writes from different master / slaves.

31

Figure 5. AXI4-Lite interconnect functional diagram.

An arbiter basically is composed by a series of enables for controlling High-Z

buffers which will be connected to the crossbar, a counter which chooses the

desired master, and an address decoder which chooses the desired slave.

Preserving by default idle signals for all masters and slaves, a logic detects when

is a request for transaction is pending for the selected master through the counter.

When a request is detected, a flag is triggered (IS TRANS) and the counter stops

counting. The master is connected to the High-Z crossbar and the address decoder

uses the requested address and connects the slave to the same crossbar, allowing

the selected master and slave continue their transaction.

For addressing decoding per each slave, an address range is given. Figure 3.4

shows the current memory address space implemented inside the decoders. The

number of multi-layered interconnected masters / slaves and all the address space

are configurable.

2.2.2 SPI Master A SPI is used as a master AXI4-Lite interface for controlling all

slaves attached to the core. This interface has a 66-bit data instruction: 32-bit for

data, 32-bit for address and 2-bit to define an action such as write, read; to put the

core reset; and check the last request. According to the time diagram in fig. 3.5,

command is composed by two bits, whose meaning is exposed in table 3.1. A write

32

or read request is not issued until all the handshake is completed, meaning that the

command can be interrupted any time for checking status and reading data after a

read request without issuing any write-like commands.

Figure 6. Memory map for Open-V.

33

Figure 7. SPI Master timing diagram

Table 10. SPI Master command usage.

2.2.3 APB The Advanced Peripheral Bus (APB) is part of AMBA specification,

being a low- cost interface that is optimized for minimal power consumption and

reduced interface complexity. The APB protocol is not pipelined and connects low-

bandwidth peripherals that do not require the high performance of high-speed

buses. Every transfer takes at least two clocks cycles[14]. APB bridge was

implemented as a the secondary bus on chip responsible for managing low power

peripherals. The proposed APB bridge has a low complexity protocol and less

speed clock than the principal bus (AXI4-lite), allowing easier interfaces between

protocols, reducing power consumption and area.

Usually, the core is assigned as the controller chip (master) and the peripheral is

assigned as slaves. In the typical configuration, the AMBA bus handles one or

more masters controlling the entire chip and the APB module which is seen as a

slave in the AXI4 protocol. This last module acts as a master within the APB

protocol, that controls the peripherals connected to it.

34

In Fig. 3.6 is shown a block diagram of an AXI4-lite to APB bridge used in a simple

configuration with two masters and eight APB slaves. The bridge provides an

interface between the high-speed AXI4-lite domain and the low-power domain.

Read and write transfers on AXI4-lite are converted into the corresponding

transfers on the APB and vice versa. The implementation of the bridge was

developed by undergraduate students and is explained in [15].

Figure 8. AXI4-Lite to APB bridge blog diagram

35

3. PERIPHERALS

Several peripherals are integrated in the microcontroller for giving extended

function- ality. This work includes several of them, featuring: SRAM controller for

allocating code & data, GPIO controller, and ADC & DAC controllers. Every module

have its respective AXI4-Lite or APB interface, mostly developed by

undergraduate students.

3.1 SRAM CONTROLLER

The RAM is used to store the program code and the output data or generated data

that Open-V loads or stores, which makes one of the most important peripheral in

the implementation. The desired memory block to instantiate manages 32-bit wide

data and 1024 address (4kB). Figure 4.1 shows the digital module behavioral. One

of the difficulties to make this conversion is to manage the byte-wide write strobes

(WSTRB) inside the AXI4 specification. The intended memory block is not

compatible of managing strobes and there is no way to instance 4 byte-wide

memory blocks. A little state-machine is enabled to do the write transactions in

order to read first the entire word, then muxes the write word with the desired bytes

according to the strobes.

36

Figure 9. AXI4-Lite SRAM Controller

3.2 GPIO

General-purpose inputs/outputs (GPIOs) are crucial for a variety of microcontroller

applications used as digital inputs or outputs. Figure 4.2 shows the block diagram

of communication between the core and the pad containing the GPIO, which

perform the connection with the APB bridge protocol. This block is controlled by a

digital control system designed for speed and low power consumption according to

the APB Bridge protocol. The implemented GPIO have slew-rate control capability

for out- put and Schmit-Trigger windows for input. The 8-port GPIO is able to drive

up to 25mA per output pin. This project was leaded by undergraduate students,

and the full implementation details can be found in [16].

37

Figure 10. GPIO block diagram

3.3 ANALOG AND DIGITAL CONVERTERS

In order to provide an interface between analog and digital signals in the microcon-

troller, Open-V incorporates an analog-to-digital converter (ADC) and a digital-to-

38

analog converter (DAC) which communicate with the coret through APB bridge.

The implemented ADC is a successive approximation register (SAR) ADC and its

block diagram is shown in Figure 4.3. The SAR ADC implemented is a 10-bit

resolution converter, and operates at a maximum sampling frequency of 10MHz,

with a maximum peak-to-peak input differential voltage of 1.9Vref. On the other

hand, the DAC imple- mented is based in a R2R structure with 12-bit resolution,

rail to rail output voltage and a typical settling time of 100ns. ADC and DAC analog

modules were donated by Ph.D Hugo Hernandez while working at Universidad

Industrial de Santander. ADC and DAC AXI4-Lite/APB interfaces were developed

by undergraduate students.

Figure 11. SAR ADC block diagram

39

4. MEASUREMENTS AND RESULTS

4.1 VERIFICATION

Using the RISC-V core and the SPI master, verification of peripherals has been

per- formed. The SPI master is used to program the memory and read or write any

pe- ripherals attached to the AXI-4 bus and the APB bridge. Figure 5.1 shows the

used initialization and verification tasks. This initialization consists of programming

an ini- tial program, which typically is a RISC-V ISA tester, then executes it until

program reach a high-level stop signal. After program execution, program is

reseted and executed again, while external peripherals are tested at time.

Signal generation and communications transactions are shown in Figure 5.2. The

RISC-V core generates AXI4-Lite 1 transactions, while SPI master sends AXI4-Lite

master 2 transactions. A verilog methodology is described in order to perform

automatic verification for random handshake generation in the AXI master 1 and

AXI master 2. As the first step, the AXI master choose a slave, then the transaction

type is selected (read or write) depending on the transaction type supported by the

slave. Then the data is sent to the bus and the AXI scoreboard registers the

incoming information flow between the master and the slave. The data is kept and

compared to verify that the transaction is correct. In case of protocol violation, the

verification process is paused and the error is reported to the prompt.

40

Figure 12. Initialization and testing setup for Open-V.

Figure 13. Testbench signaling and verification architecture.

4.2 TSMC 130NM SYNTHESIS

The microcontroller was fully synthesized in 130nm CMOS technology. Synthesis

results in Table 5.1 for each peripherals and for whole system with the AXI-APB

implemen- tation. The 4 kB RAM module occupies almost the same area as core

41

and peripheral controllers both together. The highest power consumption density

comes from the RISV-V processor. In synthesis production, maximum operation

frequency is deter- mined by the RAM which operates at 100MHz despite the core

been able to operate at higher frequency. Some cores, especially the AXI-4

interconnect, uses Hi-Z addressing instead of multiplexer to optimize area.

Table 11. Power, timing and area breakout of the Open-V

The final layout is exposed in the Fig. 5.3. Each instance is highlighted to expose

the area breakout. As expected, the RAM block occupies a significant area with a

footprint close to 50% of the full chip. A final area of 798µm×484µm and an energy

consumption of about 167µW/Hz shows the feasibility of using the proposed Open-

V-with additional sensor circuitry- for low-cost and low-power applications.

42

Figure 14. Final layout for AXI-APB implementation. Area:798µm×484µm

4.3 CHIP PROTOTYPE

The microcontroller, fabricated in the previously synthesized general purpose

130nm TSMC process, has a total chip area of approximately 2.1mm x 2.1mm and

its die is observed in Figure5.4 where the peripherals and core are highlighted.

Changes on the supply voltages due to high frequency digital signals need to be

avoid. To do this, full control of the supplies inductance loops (<2nH) is mandatory.

To reach that, the die is directly bonded to the testing board for physical

verification. The Figure 5.5 shows the first functional prototype of the platform

described in this work.

43

Figure 15. Die photograph.

Figure 16. Test Board (PCB).

A summary of the microcontroller performance is presented in Table 5.2. Table

5.3 shows the measured current for different frequencies. The core voltage and the

I/O voltage supplies are 1.2V and 2.5V, respectively. The maximum operation fre-

quency tested is 160MHz (by correct algorithm functionality), while the core

dynamic power is 167µW/MHz at 100MHz. The dynamic power measurement was

performed by running three while loops executed from SRAM, accessing all

registers and with all clocks peripheral disabled. Compared to low-power 32-bit

44

ARM-M0-based microcon- trollers, aside with other commercial ones, the proposed

microcontroller presented one of the lowest power consumption considering that

the measurement is conditioned to a 100MHz clock, as indicated in Fig. 5.6.

Table 12. Platform performance.

Table 13. Current consumption per clock frequency.

45

Although the GPIO pin count is reduced compared to popular microcontroller fami-

lies, data converter peripheral performs compared to complete commercial SoCs.

Com- paring the dynamic power and maximum clock frequency operation product

(Fig. 5.6), the microcontroller out-stands over commercial ARM-M0+ -based

microcontrollers, in- dicating the potential of having an available complete open-

source platform for IoT applications with similar or better performance than the

ones currently available off- the-shelves.

Figure 17. Low-Power Microcontroller performance comparison

4.4 ONLINE PROGRAMMING SERVER

An easy-to-program web interface demo generator with its respective programming

server was developed4. This web features a dynamic way to create different demo

programs in RISC-V assembly code, C native code, Arduino C++ code5, or Google

Blockly functional blocks6. The web interface integrates 3 demo levels. The first

level demo creates a program that blinks a LED in a desired position at chosen

time between ON/OFF transitions. The second level demo runs a user-defined

LED sequence with variable length and frame time transition. The final level demo

4
 http://onchip.uis.edu.co

5
 https://github.com/onchipuis/arduinoReady

6
 https://developers.google.com/blockly/

46

is similar to the second one, but creates two sequences which can be switched

using buttons included in the PCB.

For programming the board, the back-end server accepts requests from the front-

end site. Basically the user generates some code in the editor7, then the server

receives the text and stores it in a temporal folder, for later compilation. Binary text

file is later converted in plain text hexadecimal format and sent back to the user

interface. If the user decides to program the compiled program, the same

hexadecimal plain text is sent again to the server. This back-end is designed to

program by one user at time. Using Google Firebase Library8, an specific user can

link a Google account to the site and try programming the board a maximum of 5

times per day. The server has an scheduled ticket list for all users requesting to

program. The duration of any user ticket is 60 seconds, but can be server-

configurable. In this time, front-end web is allowed to send hexadecimal programs

to the board via Open-V programmer9. Interactions between the front-end web and

back-end server are possible via POST requests. Server back-end was written in

NodeJS, mostly for running system commands easily.

The Online programming server also has a JavaScript RISC-V simulator. It

emulates the same implemented instruction set (RV32IM) with debug support and

live response after compiling a program. It is only capable of running hexadecimal

plain text from the server. The development of this simulator was done by

undergraduate students.

This site is intended for any enthusiast to program and control this microcontroller

live. The demo was launched in the 5th RISC-V Workshop at Google10. Figure 5.7

shows stats of the site since this launchment. The Open-V online programmer

7
 https://codemirror.net/, with highlights for RISC-V assembly

8
 https://firebase.google.com/

9
 https://github.com/onchipuis/mriscvprog

10
 https://youtu.be/XW5SL1JAuYM?t=11m15s

47

popularized very well in the first days, and once per site feature update (such as

adding Blockly programming, Arduino compatibility and Online simulator).

Figure 18. Amount of sessions per day for demo web server (generated

using Google Analytics).

48

5. SUMMARY

A synthesized microncontroller with collaborative analog circuits based on RISC-V

architecture on 130nm CMOS technology has been presented. Many verified

peripherals are included. The proposed methodology to verify the correct operation

is to perform random handshake operations in AXI masters. The proposed

architecture shows the interconnection between the RISC-V, the SPI AXI master,

and all the peripherals attached to the AXI4-Lite and APB buses, explaining details

of the implementation.

The proposed Open-V is the first RISC-V microcontroller designed with enough

peripheral to perform common microcontroller tasks. Power and area results show

that a reduced RISC-V architecture can be used to replace ARM-M0 based

microcontrollers with similar peformance. Considering the advantage of the

growing RISC-V community and the existing tool-chain and software around this

new instruction set, the Open-V paves the way of future implementations for

specific and general applications in the world of IoT, and with open source devices.

A platform for IoT is presented and explained, where the protagonist is a fully-

synthesized 32-bit microcontroller in a 130nm CMOS technology. High level

modules of the microcontroller architecture are presented including the buses

protocols. The maximum frequency tested of the system was 160MHz, spending a

total current of 24mA, and demonstrating full functionality. The complete die,

including pads, presents an area of 2.1mmx2.1mm.

49

6. CONTRIBUTIONS

Publishing is an important measure in academia and an imperative way to

contribute to the public knowledge. In this chapter, published works related to this

microcontroller are shown. Published articles will be listed in section 7.1,

presentations in section 7.2, and appearances in influent news media in section

7.3.

6.1 RELATED ARTICLES

C. Duran et al. A 32-bit 100MHz RISC-V Microcontroller with 10-bit SAR ADC in

130nm CMOS (LASCAS 2016) [17]

In this paper a complete implementation and design of a fully-synthesized 32-bit

microcontroller in a 130nm CMOS technology was presented. This paper was

published as the first microcontroller featuring the open source RISC-V instruction

set all mounted through AXI4-Lite and APB buses for communication process. The

presented work contains all specifications described in previous sections; and

reports for area, layout and power consumption. This paper was presented and

published by 2016 IEEE 7th Latin American Symposium on Circuits & Systems

(LASCAS).

C. Duran et al. A System-on-Chip Platform for the Internet of Things fea- turing a

32-bit RISC-V based Microcontroller (LASCAS 2017) [18]

A tested and measured 32-bit microcontroller used as an open-source platform for

Internet of Things was presented in this paper. This paper was published as the

file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark72
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark73
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark74
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark102
file:///D:/Usuario/Desktop/CRISTIAN%20DURAN/final-work-32.docx%23_bookmark103

50

first silicon-proven 32-bit microcontroller sporting a RISC-V core. A brief description

about the implemented system was shown, along with reports of the implemented

SoC such as area, real measurements of power consumption and maximum

frequency. It is shown that the use of AXI-4 lite bus for communication considers

the possible implementation of accelerators for specialized applications. This paper

was presented and published by 2017 IEEE 8th Latin American Symposium on

Circuits & Systems (LASCAS).

6.2 RELATED PRESENTATIONS

E. Roa A 32-bit 100MHz RISC-V Microcontroller with 10-bit SAR ADC in 130nm

GP CMOS (3rd RISC-V Workshop) [19]

The goals of the RISC-V workshops are to bring the community together to share

information about recent activity in the various RISC-V projects underway around

the globe, and build consensus on the future evolution of the instruction set. In one

of those workshops the first RISC-V microcontroller was presented. A brief

description of the project, all reports, comparison with other implementations and

fabrication process were exposed. Presentation was leaded by Prof. Elkim Roa at

2016 3rd RISC-V Workshop.

E. Roa YoPuzzle: A mRISC-V development platform for next generations (5th

RISC-V Workshop) [20]

In this presentation an idea for full PCB implementation and platforming of the

mRISC-V (or Open-V) microcontroller (named YoPuzzle) was proposed. YoPuzzle

is a way to do dynamic and fun ways to do programming aimed to young people.

The purpose of the Puzzle is encouraging young people to use Open platforming to

do projects, allowing to understand all functionality from the minimum detail. Also,

51

the fabricated silicon and test PCB was presented, along with a live demo featuring

different kind of tests with LEDs. Presentation was leaded by Prof. Elkim Roa and

Ckristian Duran (demo only) at 2016 5th RISC-V Workshop.

E. Roa RISC-V Community needs Peripheral Cores (5th RISC-V Workshop) [21]

This presentation shows ideas of solution about the disadvantages about Intellec-

tual Property (IP) peripheral silicon implementation inside RISC-V platforms. It was

exposed that Open-Hardware is the main way to avoid different non-standardized

prob- lems. These problems are such as quality Open Linux driver coding, solving

bottlenecks about information throughput, and standardize analog devices such as

GPIO. As exam- ples of developing work-in-process circuitry were presented the

Open-V microcontroller, Analog-to-Digital converter, Clock Data Recovery (CDR),

Phase-Locked Loop oscilla- tor (PLL), USB 3.1 Gen 2 and its different analog

modules, Pseudo-Random Bit Shift (PRBS) generation and checking, lpDDR3

interface controller using VIP and UVM to strong verification, Trusted Platform

Module (TPM) as key handshaker, True-Random Noise Generator (TRNG), and

Non-Volatile RAM (NVRAM). Presentation was leaded by Prof. Elkim Roa at 2016

5rd RISC-V Workshop.

6.3 APPEARANCE IN NEWS

A university group in Colombia developing a RISC-V-based microcontroller is a

sign of the country’s intention to make its mark in technology (EETIMES) [22]

EE Times connects the global electronics community through news, analysis, edu-

cation, and peer-to-peer discussion around technology, business, products and

design. In this magazine an article talking about this microcontroller and its

features was pub- lished.

52

The Open-V, World’s First RISC-V-based Open Source Microcontroller (MAKE:)

[23]

‖MAKE:‖ is an American bimonthly magazine which focuses on do it yourself (DIY)

and/or DIWO (Do It With Others) projects involving electronics. Make magazine is

considered a central organ of the maker movement. In this magazine an article

about the Open-V microcontroller and future features based on this work was

published.

53

7. FUTURE WORK

We are currently extending the current architecture to achieve low power consump-

tion and good processing and communication performance, and preliminary results

are encouraging. Based on this work, improvements will be implemented for

achieving a commercial-competent microcontroller. In this chapter, works in

development and future planned works are presented.

7.1 OPEN-V V.2

A second version of Open-V is being developed. In asociation with SiFive Inc.11,

this mi- crocontroller will improve features compared to the presented in this

research. Some of the new features will be: AHB-Lite & AHB Buses, RISC-V core

with RV32IM instruc- tions and implementation of privileged instruction set

(RV32S) [11], separate scratch pad memory and SRAM for instructions and data,

Direct Memory Access (DMA) con- troller, low-end USB controller, additional I2C

Master (in contrast with SPI Master) for send requests to all slaves attached to

AHB-Lite crossbar, JTAG debugger capable of control the RISC-V core and do

memory operations according to RISC-V External Debug Support (draft) [24],

Platform-Level Interrupt Controller (PLIC) in charge of bring hardware interrupts

information, configuration and triggering, NVRAM storing a bootloader and

permanent configurations for analog circuitry inside the microcon- troller, Always-

ON (AON) module in charge to control chip powering startup, clock-/timer

manipulation and Analog-to-Digital (ADC) conversion, Serial Communications

(SERCOM) controller capable of send/receive through SPI, UART and I2C

protocols, General-Purpose Input Output (GPIO) multiplexer controller with Pulse

11

 https://www.sifive.com/

54

Width Mod- ule (PWM) generator, Pseudo-Random Bit Shifter (PRBS) and True

Random Noise Generator (TRNG, based in work [25]) providing randomized

numbers, and a Digital- to-Analog Converter (DAC). A brief proposal of the

architecture for this microcontroller is shown in Figure 8.1.

Figure 19. Open-V v.2 proposed architecture.

7.2 LEVERAGING A RISC-V ISA IN A LOW-POWER 32- BIT

MICROCONTROLLER

The energy optimization in high-level synthesis for low-power embedded

processing applications of the RISC-V ISA for integer and multiplication extensions

is still far away when compared with energy consumption of current embedded

low-power pro- cessors. We propose a scheme to reduce excessive power by

allocating special paths of constrained instructions between high-speed

55

customized cells and low power cells. In addition, we propose a programmable

arbitration logic for the AXI-4 and APB buses by configuring their latencies. These

approaches make it possible to tolerate latency penal- ties incurred during

transition between low power and high performance paths. The proposed schemes

were implemented in the first RISC-V based open microcontroller implemented in

130nm CMOS technology (described previously in this work).

7.2.1 Proposed Architecture Related works such as [26] and [27] present

functional modules which power is measured to control their activation an

deactivation. A microarchitecture control constructs exe- cution pipelines from a

distributed poll of execution resources, which activation can be controlled for

managing energy consumption. Moreover, ReDEEM uses a scheduling system

where every module remains active until the power manager decides to deac-

tivate it due to inactivity in a period of time, always executing 16 instructions [26].

Viper instead executes a group of instructions with certain limit criteria, activating

the necessary modules to execute all the instruction group at once [27].

The proposed microcontroller based on RISC-V ISA addressed the optimization by

implementing a modularization of the ALU considering the four groups of inte- ger

operations: Arithmetic, Bitwise Logic, Shift Logic and Branches [5]. A dynamic

modularization of the ALU is implemented for achieving optimal execution and

power management for a limited subsequent instructions. In this paper, those

modules are named as such: AU (Arithmetic Unit), LU (Logic Unit), SHU (Shift

Unit) and BU (Branch Unit). Dividing these operations is an advantage because

there is no need to implement any additional decode process because RISC-V

codification process can be resumed using simple muxers to any operation. Figure

8.2 shows the accurate modu- larization of the previous microcontroller

architecture.

56

Figure 20. Proposed Power-Optimized Processor Architecture.

The power management includes different units controlling the power on/off of

each module. Figure 8.3 shows this Simple unit power manager. Intended

operation is to turn on the device when a request is issued, then turn it off when

certain elapsed time has passed if the module remains inactive. Using this power

manager is transparent to the protocol. The only remaining part is to manage tasks

in the architecture.

57

Figure 21. Single unit power manager. a) State machine. b) Datapath.

An implemented Simple task management can be appreciated in Figure 8.4.

Accord- ing to current state of the power-managed Units about the classified

decoded instruc- tion, a priority is given for each one, and stacked to a sorted list.

The first priority is given to the active units without being busy, second priority for

the inactive units, then the last priority for the active & busy units. Choosing the

highest order in the priority list, the busy state is again evaluated (this is the case

when all units are busy). If the selected unit is not busy, the data is committed, then

58

the respective power management unit is in charge of doing the respective task

transaction for the intended instruction.

Figure 22. Flowchart of implemented task assignment.

7.2.2 Bus Architecture The power reduction in buses operation is focused in

Read and Write operations using the same concept as in the processor for the

power management of the modules. For each master in the AXI4-Lite specification

certain communication module can be assigned for each task (WU for write unit,

and RU for read unit) [13]. A bus crossbar allows the intercommunication between

all the slaves and masters with all implemented read/write units. Figure 8.5 shows

the proposed bus architecture. The design must ensure that the number of

modules connected to the crossbar is less than the number of masters.

The control arbiter is in charge of selecting an available communication unit with its

respective master and slave. For either transaction, the communication unit is

59

activated (or remains active) and an internal transaction control inside the unit

ensures communication is complete for the intended requested task. At the end of

the task, the communication unit deactivates itself if power-off time has elapsed.

Dynamics about this architecture are expected to remove operation into not active

persistent operations in a single master.

Figure 23. Proposed Power-Optimized Bus Architecture

60

BIBLIOGRAPHIC REFERENCES

[1] C. H. S´equin and D. A. Patterson, ―Design and implementation of RISC I,‖

University of California at Berkeley, Tech. Rep. CSD-82-106, July 1982. [Online].

Available: http://digitalassets.lib.berkeley.edu/techreports/ucb/text/ CSD-82-106.pdf

[2] D. Bhandarkar and D. W. Clark, ―erformance from architecture: Comparing a

RISC and a CISC with similar hardware organization,‖ September 1991, pp. 310–

319.

[3] T. Chen and D. Patterson, ―RISC-V geneology,‖ University of California at

Berkeley, Tech. Rep. UCB/EECS-2016-6, Jan 2016. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.html

[4] ―BSD open source license agreement,‖ University of California, Berkeley.

[Online]. Available: https://opensource.org/licenses/BSD-3-Clause

[5] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi´c, ―The risc-v instruction

set manual, volume i: User-level isa, version 2.0,‖ EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014. [Online].

Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.

html

[6] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic, and

K. Asanovic, ―A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V pro-

cessor with vector accelerators,‖ in European Solid State Circuits Conference (ES-

SCIRC), ESSCIRC 2014 - 40th, Sept 2014, pp. 199–202.

61

[7] A. Karatsuba and Y. Ofman, ―Multiplication of Many-Digital Numbers by Au-

tomatic Computers,‖ Proceedings of the USSR Academy of Sciences, p. 293–294,

Aug 1962.

[8] A. A. Karatsuba, ―The Complexity of Computations,‖ Proceedings of the Steklov

Institute of Mathematics, pp. 169–183, Jan 1995. [Online]. Available:

http://www.ccas.ru/personal/karatsuba/divcen.pdf

[9] K. D.E., ―The Art of Computer Programming. v.2,‖ Addison-Wesley Publ.Co., p.

724, Jan 1969.

[10] A. D. Booth, ―A Signed Binary Multiplication Technique,‖ Quarterly Journal

of Mechanics and Applied Mathematics 4, Aug 1950. [Online]. Available:

http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241s00/PAPERS/archive/booth

51.pdf

[11] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovi´c, ―The

risc-v instruction set manual volume ii: Privileged architecture version 1.7,‖ EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-49,

May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/

2015/EECS-2015-49.html

[12] S. Pradeep and C. Laxmi, ―Design and verification environment for AMBA AXI

protocol for SOC integration,‖ NCRIET-2014, vol. 3, no. 3, pp. 338–343, may 2014.

[13] ARM, ―AMBA AXI and ACE protocol specification,‖ 2011, pp. 1–121. [14] —

—, ―AMBA APB protocol version: 2.0,‖ 2010, pp. 1–27.

62

[15] J. Romero, R. Torres, and E. Roa, ―An AXI4-Lite to APB Bridge based on Ad-

vanced Microcontroller Bus Architecture,‖ Integrated Systems Research Group

Onchip, Universidad Industrial de Santander, Bucaramanga, Colombia, August

2016.

[16] G. Castillo, A. Agudelo, and E. Roa, ―An 8-bit General Purpose IO for a 32-bit

mi- crocontroller,‖ Integrated Systems Research Group Onchip, Universidad

Industrial de Santander, Bucaramanga, Colombia, August 2016.

[17] C. Duran, D. L. Rueda, G. Castillo, A. Agudelo, C. Rojas, L. Chaparro, H. Hur-

tado, J. Romero, W. Ramirez, H. Gomez, J. Ardila, L. Rueda, H. Hernandez, J.

Amaya, and E. Roa, ―A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-

bit SAR ADC,‖ in 2016 IEEE 7th Latin American Symposium on Circuits Systems

(LASCAS), Feb 2016, pp. 315–318.

[18] C. Duran, L. Rueda, J. Ardila, D. L. Rueda, G. Castillo, A. Agudelo, C. Ro- jas,

L. Chaparro, H. Hurtado, J. Romero, W. Ramirez, H. Gomez, H. Hernandez, J.

Amaya, and E. Roa, ―A System-on-Chip Platform for the Internet of Things fea-

turing a 32-bit RISC-V based Microcontroller,‖ in 2017 IEEE 8th Latin American

Symposium on Circuits Systems (LASCAS), Feb 2017, pp. 298–301.

[19] E. Roa, ―A 32-bit 100MHz RISC-V Microcontroller with 10-bit SAR ADC in

130nm GP CMOS,‖ in 3rd RISC-V Workshop, Jan 2016, pp. 1–11. [Online].

Available: https://riscv.org/wp-content/uploads/2016/01/Wed0945-mriscv.pdf

[20] E. Roa, ―YoPuzzle: A mRISC-V development platform for next generations,‖ in

5th RISC-V Workshop, Nov 2016, pp. 1– 34. [Online]. Available:

https://riscv.org/wp-content/uploads/2016/12/Wed1430-Yopuzzle-Roa-Universidad-

Industrial-de-Santander.pdf

63

[21] E. Roa, ―RISC-V Community needs Peripheral Cores,‖ In 5th RISC-V

Workshop, Nov 2016, pp. 1– 24. [Online]. Available: https://riscv.org/wp-

content/uploads/2016/12/ Wed1445-RISC-V-Peripherals-Roa-Universidad-

Industrial-de-Santander.pdf

[22] A. Sampayo, ―A university group in Colombia developing a RISC-V-

based microcontroller is a sign of the country’s intention to make its mark

in technology,‖ EETimes, Sep 2016. [Online]. Available: http:

//www.eetimes.com/author.asp?section id=36&doc id=1330445

[23] G. Branwyn, ―The Open-V, World’s First RISC-V-based Open Source

Microcontroller,‖ MAKE:, Nov 2016. [Online]. Available: http://makezine.com/

2016/11/30/open-v-worlds-first-risc-v-based-open-source-microcontroller/

[24] T. Newsome, ―RISC-V External Debug Support,‖ SiFive Inc., Apr 2017, This

draft specification will change before being accepted as standard, so

implementations made to this draft specification will likely not conform to the future

standard. [Online]. Available: https://dev.sifive.com/documentation/ risc-v-external-

debug-support/

[25] J. Cartagena, H. Gomez, and E. Roa, ―A fully-synthesized TRNG with

lightweight cellular-automata based post-processing stage in 130nm CMOS,‖ in

2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Nov 2016, pp. 1–

5.

[26] B. Mammo, R. Parikh, and V. Bertacco, ―ReDEEM: A heterogeneous

distributed microarchitecture for energy-efficient reliability,‖ in 2015 IEEE/ACM

Interna- tional Symposium on Low Power Electronics and Design (ISLPED), July

2015, pp. 297–302.

64

[27] A. Pellegrini, J. L. Greathouse, and V. Bertacco, ―Viper: Virtual pipelines for

enhanced reliability,‖ in 2012 39th Annual International Symposium on Computer

Architecture (ISCA), June 2012, pp. 344–355.

65

BIBLIOGRAPHY

ARM, ―AMBA AXI and ACE protocol specification,‖ 2011, pp. 1–121

AMBA APB protocol version: 2.0,‖ 2010, pp. 1–27.

BHANDARKAR D. and CLARK D. W., ―erformance from architecture: Comparing a

RISC and a CISC with similar hardware organization,‖ September 1991, pp. 310–

319.

BOOTH A. D., ―A Signed Binary Multiplication Technique,‖ Quarterly Journal of

Mechanics and Applied Mathematics 4, Aug 1950. [Online]. Available:

http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241s00/PAPERS/archive/booth

51.pdf

BRANWYN G., ―The Open-V, World’s First RISC-V-based Open Source

Microcontroller,‖ MAKE:, Nov 2016. [Online]. Available: http://makezine.com/

2016/11/30/open-v-worlds-first-risc-v-based-open-source-microcontroller/

CARTAGENA J., GOMEZ H., and ROA E., ―A fully-synthesized TRNG with

lightweight cellular-automata based post-processing stage in 130nm CMOS,‖ in

2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Nov 2016, pp. 1–

5.

CASTILLO G., AGUDELO A., and ROA E., ―An 8-bit General Purpose IO for a 32-

bit mi- crocontroller,‖ Integrated Systems Research Group Onchip, Universidad

Industrial de Santander, Bucaramanga, Colombia, August 2016.

66

CHEN T. and PATTERSON D. , ―RISC-V geneology,‖ University of California

at Berkeley, Tech. Rep. UCB/EECS-2016-6, Jan 2016. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-6.html

DURAN C., RUEDA D. L., CASTILLO G., AGUDELO A., ROJAS C., CHAPARRO

L., HURTADO H., ROMERO J., RAMIREZ W., GOMEZ H., ARDILA J., RUEDA L.,

HERNANDEZ H., AMAYA J., and ROA E., ―A 32-bit RISC-V AXI4-lite bus-based

microcontroller with 10-bit SAR ADC,‖ in 2016 IEEE 7th Latin American

Symposium on Circuits Systems (LASCAS), Feb 2016, pp. 315–318.

DURAN C., RUEDA L., ARDILA J., RUEDA D. L., CASTILLO G., AGUDELO A.,

ROJAS C., CHAPARRO L., HURTADO H., ROMERO J., RAMIREZ W., GOMEZ

H., HERNANDEZ H., AMAYA J., and ROA E., ―A System-on-Chip Platform for the

Internet of Things fea- turing a 32-bit RISC-V based Microcontroller,‖ in 2017 IEEE

8th Latin American Symposium on Circuits Systems (LASCAS), Feb 2017, pp.

298–301.

K. D.E., ―The Art of Computer Programming. v.2,‖ Addison-Wesley Publ.Co., p.

724, Jan 1969.

KARATSUBA A. A., ―The Complexity of Computations,‖ Proceedings of the Steklov

Institute of Mathematics, pp. 169–183, Jan 1995. [Online]. Available:

http://www.ccas.ru/personal/karatsuba/divcen.pdf

KARATSUBA A. and OFMAN Y., ―Multiplication of Many-Digital Numbers by Au-

tomatic Computers,‖ Proceedings of the USSR Academy of Sciences, p. 293–294,

Aug 1962.

LEE Y. , WATERMAN A. , AVIZIENIS R. , COOK H. , SUN C. ,

STOJANOVIC V. , and ASANOVIC K., ―A 45nm 1.3GHz 16.7 double-precision

67

GFLOPS/W RISC-V pro- cessor with vector accelerators,‖ in European Solid State

Circuits Conference (ES- SCIRC), ESSCIRC 2014 - 40th, Sept 2014, pp. 199–202.

MAMMO B., PARIKH R., and BERTACCO V., ―ReDEEM: A heterogeneous

distributed microarchitecture for energy-efficient reliability,‖ in 2015 IEEE/ACM

Interna- tional Symposium on Low Power Electronics and Design (ISLPED), July

2015, pp. 297–302.

NEWSOME T., ―RISC-V External Debug Support,‖ SiFive Inc., Apr 2017, This draft

specification will change before being accepted as standard, so implementations

made to this draft specification will likely not conform to the future standard.

[Online]. Available: https://dev.sifive.com/documentation/ risc-v-external-debug-

support/

PELLEGRINI A., GREATHOUSE J. L., and BERTACCO V., ―Viper: Virtual

pipelines for enhanced reliability,‖ in 2012 39th Annual International Symposium on

Computer Architecture (ISCA), June 2012, pp. 344–355.

PRADEEP S. and LAXMI C., ―Design and verification environment for AMBA AXI

protocol for SOC integration,‖ NCRIET-2014, vol. 3, no. 3, pp. 338–343, may 2014.

ROA E., ―A 32-bit 100MHz RISC-V Microcontroller with 10-bit SAR ADC in 130nm

GP CMOS,‖ in 3rd RISC-V Workshop, Jan 2016, pp. 1–11. [Online]. Available:

https://riscv.org/wp-content/uploads/2016/01/Wed0945-mriscv.pdf

ROA E., ―RISC-V Community needs Peripheral Cores,‖ In 5th RISC-V Workshop,

Nov 2016, pp. 1– 24. [Online]. Available: https://riscv.org/wp-

content/uploads/2016/12/ Wed1445-RISC-V-Peripherals-Roa-Universidad-

Industrial-de-Santander.pdf

68

ROA E., ―YoPuzzle: A mRISC-V development platform for next generations,‖ in 5th

RISC-V Workshop, Nov 2016, pp. 1– 34. [Online]. Available: https://riscv.org/wp-

content/uploads/2016/12/Wed1430-Yopuzzle-Roa-Universidad-Industrial-de-

Santander.pdf

ROMERO J., TORRES R., and ROA E., ―An AXI4-Lite to APB Bridge based on Ad-

vanced Microcontroller Bus Architecture,‖ Integrated Systems Research Group

Onchip, Universidad Industrial de Santander, Bucaramanga, Colombia, August

2016.

SAMPAYO A. , ―A university group in Colombia developing a RISC-V- based

microcontroller is a sign of the country’s intention to make its mark in

technology,‖ EETimes, Sep 2016. [Online]. Available: http:

//www.eetimes.com/author.asp?section id=36&doc id=1330445

SEQUIN C. H. and PATTERSON D. A. , ―Design and implementation of RISC

I,‖ University of California at Berkeley, Tech. Rep. CSD-82-106, July 1982.

[Online]. Available: http://digitalassets.lib.berkeley.edu/techreports/ucb/text/ CSD-

82-106.pdf

UNIVERSITY OF CALIFORNIA, BERKELEY ―BSD open source license

agreement,‖. [Online]. Available: https://opensource.org/licenses/BSD-3-Clause

WATERMAN A., LEE Y., AVIZIENIS R., PATTERSON D. A., and ASANOVIC K.,

―The risc-v instruction set manual volume ii: Privileged architecture version 1.7,‖

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2015-49, May 2015. [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/ 2015/EECS-2015-49.html

69

WATERMAN A., LEE Y., PATTERSON D. A., and ASANOVIC K., ―The risc-v

instruction set manual, volume i: User-level isa, version 2.0,‖ EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014.

[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-

2014-54. Html

