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Abstract

Title: Multi-resolution reconstruction of spectral images from compressed measurements by

single pixel optical sensing architecture

Author: Hans Yecid Garcia Arenas

Keywords: Multi-resolution, super-pixel, single pixel camera, compressive spectral imaging.

Spectral imaging is used in a wide range of applications for non-invasive detection and

classification. However, the massive amount of involved data increases its processing and

storing costs. In contrast, compressive spectral imaging (CSI) establishes that the three-

dimensional spectral data cube can be recovered from a small set of projections that are

generally captured in 2-dimensional detectors. Furthermore, the single-pixel camera (SPC)

has been also employed for spectral imaging. Specifically, SPC captures the spatial and spec-

tral information in a single measurement. CSI reconstructions are traditionally obtained by

solving a minimization problem using iterative algorithms. However, the computational load

of these algorithms is high due to the dimensionality of the involved sensing matrices. In this

work, a Multi-resolution (MR) reconstruction model is proposed such that the complexity

of the inverse problem can be reduced by grouping pixels with spectral similarities from an

initial fast-low-resolution reconstruction of the scene.

1Research work
2Escuela de ingenieŕıas eléctrica, electrónica y telecomunicaciones, Universidad Industrial de Santander.

Director, Henry Arguello Fuentes. Co-director, Claudia V. Correa Pugliese
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Introduction

Spectral imagery (SI) consists on three-dimensional data sets with two spatial dimensions

(x, y), and one dimension in the spectral domain λ. This type of images is useful in a

wide range of applications such as ground-cover classification, mineral exploration, and agri-

cultural assessment in remote sensing [6], biomedical imaging [7], identification of military

objectives [8] and others. These applications often require high-resolution images to discrim-

inate between specific details of the scene, which increases the cost of processing and storing

due to the massive amount of involved data. On the other hand, compressive sensing (CS)

principles have been recently applied to SI acquisition [9, 10], in a field called compressive

spectral imaging (CSI). Specifically, CSI establishes that it is possible to retrieve the spatial

and spectral information of a scene from a small number of projections, that are gener-

ally captured in 2-dimensional detectors. Furthermore, the single-pixel camera (SPC) has

been also employed for spectral imaging [11], which captures the three-dimensional source

in a single measurement. The use of SPC helps in reducing the general acquisition costs

related to hardware fabrication. CSI reconstructions are traditionally obtained by solving a

minimization problem using iterative algorithms and the acquired measurements. However,

the reconstruction complexity increases in proportion to the image resolution. Approaches

to alleviate the computational load in compressive spectral imaging reconstructions rely on

separable sensing operators [12], hardware implementations such as GPU and FPGA [13],

and block reconstructions [14]. All of the aforementioned reconstruction schemes recover the

three-dimensional source without exploiting specific characteristics of the scene different to

the sparsity constraint. This work proposes to take advantage of spectral similarities between

spatial pixels of the scene, such that they can be grouped into ”super-pixels”. In this way,

the dimensionality of the associated sensing matrix can be reduced and a multi-resolution

version of the scene can be recovered.

9



Chapter 1

Objectives

1.1 General

To design a reconstruction methodology for multi-resolution spectral imaging from com-

pressed measurements acquired with a single pixel optical architecture.

1.2 Specifics

• To develop a mathematical description of the compressive spectral imaging acquisition

process in a single pixel camera.

• To develop a mathematical description of the inverse problem to recover the high-

resolution spectral signals measured by single pixel architecture.

• To develop the mathematical model for the multi-resolution reconstruction process

from single pixel camera measurements.

• To simulate and analyze the performance of the multi-resolution reconstruction model

with respect to the full-resolution reconstruction approach.

• To test the performance of the proposed multi-resolution approach on real data cap-

tured from a testbed implementation of the single pixel optical architecture.

10



Chapter 2

Theoretical Background

2.1 Spectral Imaging (SI)

Spectral imagery is composed of two spatial dimensions (x, y), and one dimension in the

wavelength domain λ. Thus, the spectral bands are the intensities at each λ at which the

object is measured. Depending on the range of analyzed wavelengths, spectral images can

be classified as ultraviolet (UV) (200-380nm), visible (380-780nm) or infrared (IF) (780nm-

50000nm). These images differ from the traditional gray scale images in that each spatial

point contains a complete spectrum instead of just an intensity value [15]. In the RGB case,

three different spectral channels compose the image: red, green and blue. Furthermore, the

amount of measured bands is used to classify SI as: multi-spectral images that contain tens

of bands, or hyper-spectral images that refer to those with up to hundreds of bands. The

information contained in SI makes them applicable to several areas such as ground-cover clas-

sification, mineral exploration, and agricultural assessment in remote sensing [6]; biomedical

imaging [7] for which SI offer great potential for noninvasive disease diagnosis and surgical

guidance; identification of military objectives in surveillance and security applications [8]

among others.

There are several methods for acquiring a spectral image, and a common characteristic of

many of these methods is that they require scanning the area of interest as illustrated in

Fig. 1. For instance, an approach that captures the spectrum for a single point is called

Whisk-broom spectrometer [16]; another approach, known as filtered camera acquires all

the spatial pixels for each wavelength at a time [5]; on the other hand, the push-broom

spectrometer measures the spectrum across a spatial line and then scans the scene across

the remaining spatial dimension [17]. All of the aforementioned methods require acquiring a

massive amount of data, given that they rely on the Nyquist-Shannon theorem [18, 19]. In

addition, they experience low sensing speed and high complexity for processing and storage.

11
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Y

X

λ

Pushbroom
spectrometer

Whiskbroom
spectrometer

Filtered
camera

Figure 1: Scanning spectral imaging approaches for a spectral data cube with X and Y as
spatial coordinates and λ the wavelengths.

2.2 Compressive Sensing(CS) for SI

An alternative sampling theory called compressed sensing (CS) proposes to perform com-

pression and sampling in a single process[9, 10, 20]. Specifically, CS establishes that it is

possible to retrieve a signal from a small number of samples under some given conditions.

This technique is based on the assumption that the signal under analysis has a sparse rep-

resentation in a basis Ψ. In particular, a spectral image f ∈ RMNL has a dispersion level

S, if it can be represented as a linear combination of S vectors on any basis Ψ, such that

f = Ψθ with S � MNL. Thus, instead of acquiring MNL samples (voxels), CS captures

k � NML random projections of the scene. The sensing process can be represented in

matrix form as g = Hf , where H is the matrix that represents the transfer function of the

acquisition system[21]. Because the number of measurements is considerably smaller than

the number of voxels, the inverse problem given by f̂ = H−1g, is ill conditioned, and leads

to an infinite number of solutions. Therefore, reconstruction of the signal f is obtained using

compressed sensing optimization algorithms that take advantage of the sparse representation

of f in the transformation basis Ψ. Specifically, these algorithms obtain an approximation

of θ with the optimization problem given by

f̂ = Ψ{argminθ
(
||HΨθ − g||22 + τ ||θ||1

)
}, (1)

where τ is a regularization parameter.

In recent years, different optical architectures have been developed to implement the

compressive sampling theory for the acquisition of spectral images, which has been termed

as compressive spectral imaging (CSI). Figure 2 shows some of the most representative
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compressive spectral imaging architectures: SSCSI, CASSI, DCSI, PMVIS and SPC. The

Spatial-Spectral Encoded Compressive HS Imager (SSCSI) is built by combining optical spa-

tial and spectral modulation, which provides a high degree of randomness in the measured

projections, and the sparsity-constrained reconstruction algorithm[1]; the coded aperture

snapshot spectral imager (CASSI) uses a coded aperture and one or more dispersive ele-

ments to modulate the optical field from a scene while a detector captures a 2-dimensional,

multiplexed projection of the three-dimensional data cube representing the scene [2]; the

dual-coded hyper-spectral imager (DCSI) separately encodes both spatial and spectral di-

mensions within a single exposure, achieving an independent spectral code for each sensor

pixel, DCSI facilitates flexible capture modes customized for different applications[3]; the

prism-mask multispectral video imaging system (PMVIS) is composed of an occlusion mask,

a prism, and a grayscale camera, the radiance from the scene is sampled by the occlusion

mask to avoid overlap among spectra on the image plane, spatial and angular smoothness

in reflectance is assumed for each captured scene point, so that the light rays sampled by a

mask hole have the same radiance[4]; the single pixel camera (SPC) which is an optical device

comprising a digital micromirror device (DMD), two lenses, a single photon detector, and

an analog-to-digital (A/D) converter, computes random linear measurements of the scene

under view in a single measure[5]. Each of these architectures presents its own advantages

and drawbacks for different applications. However, most of them require two dimensional

sensors, while SPC uses a single pixel detector, which provides realiable spectral images

with a low cost hardware. Thus, this work focuses on the SPC, which is further described

in chapter 4.

Figure 2: Most representative CSI optical architectures (a) Coded Mask (SSCSI) [1], (b)
Coded Aperture CASSI [2], (c)Dual Coded Mask DCSI [3], (d) Prism and Mask PMVIS [4]
and (e) SPC [5]. Source:[1]
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2.3 Multi-resolution Images

A Multi-resolution image is a recent approach which assumes blocks of pixels with similar

characteristics that can be grouped into a “super-pixel”, such that the number of elements

in the full image is reduced [22]. The concept was first introduced by the recommendation

H.265: High-efficiency video coding [23], and VP9 [24] developed by Google, which uses

blocks of pixels with different size to reduce the amount of storage needed. Both approaches

can be used with high-definition video (UHD), but they were designed for post-processing

video based on the Nyquist-Shannon theorem. Later, in [25, 26] the multiresolution concept

was introduced for grayscale images using compressed sensing. More specifically, in the

reconstruction process of [25], image pixels are classifies as background or region of interest,

using prior information of the location of objects of interest. Then, the background is

recovered at a lower resolution and the region of interest at higher resolutions. On the

other hand, in [26] the image is recovered at a different resolution from that of the original,

using a compressed sensing set of projections. A first approximation of a multi-resolution

reconstruction method for spectral images using CS was presented in [27], which reconstructs

the SI for the background and the region of interest in two different minimization problems

with low and high resolution, respectively, at the expense of high computational cost. To the

best of our knowledge, a computationally efficient multi-resolution reconstruction method

for compressive spectral imaging has not yet been developed.



Chapter 3

SPC Sensing and Multi-Resolution

Reconstruction Models

Whiskbroom spectrometer

Data cube
Objective

lens

Coded 
aperture

Condenser
lens

Dispersive
element Detector

𝑇(𝑥, 𝑦) 𝑔 𝜆 = නන𝑓1 𝑥, 𝑦, 𝜆 𝑑𝑥𝑑𝑦

𝑔(𝜆)

𝒈

𝐿

𝑀

𝑁

𝑓0(𝑥, 𝑦, 𝜆)

Figure 3: Single pixel camera (SPC) sensing phenomenon for spectral imaging.

The multi-resolution reconstruction approach proposed in this work is based on the com-

pressive spectral measurements acquired with the SPC, whose sensing process is illustrated in

Fig. 3. This optical architecture is composed by an objective lens, a coded aperture T (x, y),

with x, y the spatial coordinates, a condenser lens and a single pixel detector. Specifically,

the objective lens focuses the input scene f0(x, y, λ) onto the coded aperture that spatially

modulates all the spectral components of the object. The coded aperture is a binary pattern

that either blocks the light o lets it pass through at each spatial point (x, y). In this case,

the modulation consists of a Hadamard pattern with entries 1 or −1. In practical terms,

the modulation effect caused by the −1 entries can be implemented using an all-ones coded

aperture measurement and subtract it from each captured snapshot. Mathematically, the

15
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coded aperture effect is represented as

f1(x, y, λ) = f0(x, y, λ)T (x, y). (2)

The spatially modulated scene is then concentrated in a single point by a condenser lens,

where it is captured by a single pixel sensor. Specifically, a single point Whisk-broom

spectrometer is used as a detector such that all the incoming modulated spectral source is

captured in a single measurement as a function of λ. The spatially condensed coded scene

is given by

g(λ) =

∫ ∫
f1(x, y, λ)dxdy. (3)

The acquired spectrum is discretized by the spectrometer according to the pixel pitch of the

detector ∆e. This process can be mathematically expressed as

gl =

∫
Λl

g(λ)rect

(
λ

∆e

− l
)
dλ, (4)

where Λl = {λ|∆e(l − 1)/2 ≤ λ ≤ ∆e(l + 1)/2} represents the set of wavelengths that

are captured within the l-th spectral band. Using the discrete measurements gl, a discrete

sensing model of the system can be developed. Let F ∈ RM×N×L be the discrete SI, where

M and N are the spatial dimensions, L is the number of spectral bands. The coded aperture

can be represented in discrete form as T ∈ RM×N which is given by

T (x, y) =
∑
i,j

T(i,j)rect

(
x

∆c

− i, y
∆c

− j
)
, (5)

for i = 1, . . . ,M and j = 1, . . . , N , where M × N is the spatial resolution of the coded

aperture, and ∆c is the pixel size of the coded aperture. Then the discrete sensing process

is given by

gl =
∑
i

∑
j

F(i,j,l)T(i,j), (6)

which can be rewritten in matrix form as

gl = hT fl, (7)

for l = 1, 2, . . . , L, where h is a vector form of T given by h = [T1,1, T2,1, · · · , TM,N ], and fl is

a vector form of the l-th spectral band of F. Furthermore, each captured snapshot employs

a different coded aperture pattern Tk. Several shots can be stacked in a single vector as
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gl = [g1
l , . . . , g

k
l ]T . Then, the multi-shot sensing model for each band is given by

gl = Hfl, (8)

where H is a K ×MN matrix, K is the number of shots, each row of H = [hT1 , . . . ,h
T
K ] is

the vector form of the coded aperture used on that particular shot. In general, the sensing

model for all bands can be written as

g = Ĥf, (9)

where Ĥ is the block diagonal sensing matrix obtained as

Ĥ =


H 0 · · · 0

0 H · · · 0
...

...
. . .

...

0 0 · · · H

 , (10)

f =
[
(f1)T , · · · , (fL)T

]T
, and g =

[
(g1)T , · · · , (gL)T

]T
. Furthermore, the compression ratio

in this model is given by γ = K
MN

, where γ ∈ [0, 1]. An example of Ĥ using a random binary

matrix T is illustrated in Fig. 4, for M = 4, N = 4, L = 4 and γ = 0.25.

Figure 4: Example of SPC sensing matrix Ĥ for N = 4, M = 4, γ = 0.25 and L = 4. White
squares represent 1, black squares represent −1 and gray zones are 0.

Reconstructions from SPC measurements can be obtained by solving Eq. 1. To date,

several optimization algorithms have been developed to find a solution for the inverse CSI

problem. In general, these algorithms work under the sparsity assumption of the underlying

signal and their computational load is high due to the high dimensionality of the sensing

matrices and the signal itself.

Therefore, this work presents a reconstruction scheme that assumes that pixels of the

same class have the same spectrum, such that they can be grouped into super-pixels, which
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reduces the amount of unknowns to recover in the inverse problem. Thus, the complexity

of the resulting reconstruction problem is drastically reduced. Specifically, this work takes

advantage of the spectral similarities of the pixels in the image. Given that, the scenes

under analysis exhibit highly correlated areas in which several pixels can be grouped into

super-pixels without losing information or inducing considerable errors, this correlation can

be measured with the MSE between the spectral response of each pixel with the mean of the

all pixels into the super-pixel. Figure 5 summarizes the proposed reconstruction scheme, in

which a fast low resolution (LR) reconstruction of the scene βββ is first obtained; then, a full

resolution version of the image f̄ is attained by interpolating the LR reconstruction which is

used to generate a multi-resolution (MR) map of super-pixels D̂, taking into account their

spectral signatures. This map of super-pixels allows the definition of a decimation matrix

that relates the full-resolution spectral image with its MR version. The associated multi-

resolution decimation matrix D̂ is used to modify the sensing matrix Ĥ, such that Eq. 1

is solved with ĤD̂
T

as the sensing matrix instead of just Ĥ, this modification consists of

grouping the spatial pixels with close spectral signature into a super-pixel with the average

of these spectral signatures. Next, each step from Fig. 5 is described in detail.

SPC Measures
Fast low 

resolution 
reconstruction

Interpolation 
to full 

resolution

Super-pixels 
design

Multi-resolution 
Reconstruction

Figure 5: Proposed multi-resolution (MR) reconstruction process.

In order to obtain the fast LR approximation of the spectral scene, let the matrix H be

designed as in [28]

H = WD + Z, (11)

where W is a γMN × γMN Hadamard matrix, D is a decimation matrix and Z is a

γMN × MN auxiliary binary matrix that improves the CS properties of H, such as the

condition number. Furthermore, this matrix should guarantee that the values of H are only

−1 or 1 for implementation purposes. The SPC sensing matrix, is then obtained as in Eq.

10. Based on Eq 11, a fast LR approximation of F can be attained by simply applying the

inverse Hadamard transform to the measurements. Mathematically, using the structure of

the sensing matrix for all spectral bands Ĥ, the LR approximation is obtained as

βββ = Ŵ
T
g, (12)
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where Ŵ is a block diagonal matrix that accounts for the inverse Hadamard transform

applied to all spectral bands and is given by

Ŵ =


W 0 · · · 0

0 W · · · 0
...

...
. . .

...

0 0 · · · W

 . (13)

Using the LR version of the scene, βββ, a fast full-resolution (FR) approximation of f can be

obtained by applying an up-sampling operator without using an iterative algorithm. This

interpolated FR approximation is later used to generate a map of image super-pixels with

respect to their spectra. Mathematically, the fast FR approximation of the scene is obtained

as f̄ = Uβββ, where U is the employed up-sampling operator, such as a bilinear interpolation

matrix. Using Eqs. 11 and 12, the interpolation of the l-th spectral band is given by

f̄l = UWT (WD + Z)fl

= UWT (WD)fl +ωωω

= fl +ωωω,

(14)

where ωωω = UWTZfl. Given that W is a Hadamard matrix, and assuming that the upsam-

pling and downsampling matrices satisfy UD ≈ I, where I is the identity matrix, ωωω can be

considered as noise induced by the Z matrix which is not taken account into for generating

the MR super-pixels. The correlation between the spectral signatures of the pixels of f̄ in

Eq. 14 determines the guidelines to group several pixels with similar spectral signatures

into a superpixel. Assuming that f = D̂
T
ξ, where D̂ is the MR downsampling matrix and

ξ contains the spectral information of each super-pixel, an estimation of D̂ can be obtained

using f̄. Specifically, D̂ is a diagonal matrix whose entries correspond to the downsampling

matrix for each spectral band (∆), and is expressed as

D̂ =


∆ 0 · · · 0

0 ∆ · · · 0
...

...
. . .

...

0 0 · · · ∆

 . (15)

Notice that several downsampling matrices can be employed. The procedure to generate the

MR matrix ∆∆∆ is based on the analysis of the spectral signatures in the fast-full resolution

reconstruction of the scene f̄. The main goal is to decompose the interpolated scene F̄

which is the 3D form of f̄ into subsets called super-pixels. Several methods for generating
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image super-pixels are available in the state of art, including graph-based, gradient accent,

TurboPixels [29], quick super-pixels[30], and SLIC [31]. In particular, this work focuses on

three main possibilities for ∆, based on SLIC algorithm[31], and two developed methods

based on regular and irregular super-pixels. The procedure to generate the MR matrix

D̂ is described in detail in Section 4.1 for the rectangular approach, in section 4.2 for the

irregular approach and for the SLIC based super-pixels in section 4.3. Using D̂, Ĥ and the

measurements g, super-pixels designed in the SI can be reconstructed by solving

ξ = Ψ{argminθ||ĤD̂TΨθ − g||22 + τ ||θ||1}, (16)

where τ is a regularization parameter, Ψ is the sparse representation basis and D̂ is the

down-sampling matrix that indicates the spatial positions in which the elements of ξ should

be placed based on the associated map of super-pixels. It is worth noting that Eq. 16 is

solved for the sensing matrix ĤD̂T which is the equivalent MR sensing matrix. Therefore,

given the fact that the number of columns of ĤD̂T is less than or equal to those of Ĥ,

the computational complexity of the MR problem in Eq. 16 is reduced with respect to

the original problem in Eq. 1. Specifically, the complexity of the problem in Eq. 1 is

O(KNML), while the MR problem in Eq. 16 has complexity O(KCL), where K is the

number of measurements and C ≤ MN is the number of unknowns to recover i.e. super-

pixels. The number of super-pixels C, depends on the method employed to design the MR

decimation matrix, as it will be describe in the following sections. Using the solution of Eq.

16, the reconstructed data cube f̂ can then be obtained as

f̂ = D̂Tξ. (17)

Algorithm 1 presents a summary of the proposed reconstruction methodology, whose process

is illustrated in Fig. 6.

Algorithm 1 Algorithm for recovering a multi-resolution spectral image

1: Input: Compressive measurements g
2: Output: MR SI f̂
3: Reconstruct fast LR image β = ŴTg
4: Interpolate fast full resolution image f̄ = Uβ
5: Build D̂ using ∆ that is designed using Algorithm 2 or 3
6: Recover super-pixels ξ = Ψ{argminθ||ĤD̂TΨθ − g||22 + τ ||θ||1}
7: Rearrange the MR SI as f̂ = D̂Tξ
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Figure 6: Proposed multi-resolution (MR) reconstruction process, notice that ξξξ is calculated
solving the minimization problem in Eq. 16.

3.1 Design of Multi-resolution decimation matrix (∆)

for rectangular super-pixels

The construction of the MR matrix ∆∆∆ is based on the analysis of the spectral signatures in

f̄ from Eq. 14 as presented in Algorithm 2. The main goal is to decompose each spectral

band of the interpolated scene F̄, which is the 3D form of f̄, into subsets of rectangular

super-pixels of size 2η×2η, based on the inputs of the algorithm which are: the set of spatial

coordinates of the image ΩΩΩ; the error tolerance σ; the parameter for the super-pixels size η

and the interpolated scene F̄. The super-pixel size varies within the set S = [2η, 2η−1, . . . , 1]

which is indexed by the variable z, starting at z = 0 as in line 3. The proposed method, as

shown in line 7, chooses a random point (̂i, ĵ) and creates the set B that contains the spatial

coordinates of a 2η × 2η super-pixel whose top-left corner is the point (̂i, ĵ). Therefore, the

actual super-pixel is denoted as F̄B. Then, in line 9, Algorithm 2 calculates the average

normalized spectrum of F̄B as p = E{F̄B}, in order to determine the spectral similarity

between each point from the super-pixel F̄B and p. In this work, the selected criterion to

measure the spectral similarity is the Mean Squared Error (MSE). In line 10, if the maximum

MSE is smaller than the fixed threshold σ then, the spatial points in B are grouped into

a single superpixel as in lines 11 to 16. Otherwise,the super-pixel F̄B cannot be created.

Consider the case in which the threshold criterion in line 10 is satisfied, then the algorithm,

in lines 11 and 12, creates Γ ∈ RM×N which is an indicator matrix that accounts for the
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spatial coordinates of the pixels in the super-pixels and is given by

Γ(i,j) =

1 if max(MSE(p, F̄B)) < σ and (i, j) ∈ B

0 otherwise
. (18)

In this case, the vector form of ΓΓΓ is added as a new row of the MR decimation matrix ∆∆∆, as

in line 13. Notice that all points in B can only belong to one super-pixel, then, the set of

available points is updated by removing B from ΩΩΩ as in line 15.

On the other hand, when the threshold criterion is not satisfied and the super-pixel

cannot be constructed, the point (̂i, ĵ) cannot be the top-left corner of any other super-pixel

of the same size, however it can be included on another super-pixel of any size. Indeed, the

point (̂i, ĵ) can be the top-left corner of a smaller super-pixel. Therefore, this results in two

different types of points: the ones available to be assigned to future super-pixels which are

referred to as ΩΩΩ, and the ones eligible to be analyzed as top-left corner of a super-pixel for a

given size, which are referred to as the set Ω̂ΩΩ. The set Ω̂ΩΩ is updated either by removing the

point (̂i, ĵ) as in line 18 when the super-pixel is not constructed, or by removing the set B

as in line 16 when the super-pixel is constructed.

Notice that, before analyzing the MSE, the algorithm verifies whether the 2η × 2η super-

pixel can be constructed with the available pixels in ΩΩΩ. Mathematically, the new super-pixel

should satisfy B = {(i, j)|(i, j) ∈ ΩΩΩ}. Algorithm 2 repeats the operations in lines 6 to 20

until all points in Ω̂ΩΩ have been analyzed for super-pixels of size 2η × 2η, i.e. | Ω̂̂Ω̂Ω |= 0. Then,

the size is decreased as indicated in S by changing the index z = z+ 1, and the procedure in

lines 4 to 22 is performed until all pixels have been assigned to a super-pixel, i.e. | ΩΩΩ |= 0.

The size of the resulting matrix ∆∆∆ varies according to the data under analysis, however its

number of rows is less than the original amount of unknowns to recover as shown in Eq. 16.

3.2 Design of Multi-resolution matrix (∆) for irregular

super-pixels

In applications where reconstruction speed is critical, irregular super-pixels can be used

instead of the rectangular. The main goal is to group pixels with similar spectral normalized

signatures into a super-pixel. The difference with the rectangular approach is that in this

case, pixels from any location within the image can be grouped into a single super-pixel as

indicated in Algorithm 3.

Thus, faster reconstructions can be attained because the amount of resulting super-pixels

is less than that of the rectangular case. In other words, the irregular super-pixel approach
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Algorithm 2 Algorithm to determine MR matrix ∆ for rectangular super-pixels

1: Input: FR fast reconstruction F̄, set of coordinate points ΩΩΩ, tolerance σ, super-pixel
size parameter η, data cube dimensions M,N

2: Output: MR decimation matrix ∆∆∆
3: Initialize super-pixel sizes S = [2η, 2η−1, . . . , 1], z = 0, c = 0
4: while |Ω| > 0 do
5: Ω̂ = Ω Generate a new set of available points
6: while |Ω̂| > 0 do

7: (̂i, ĵ) ∈ Ω̂ΩΩ Choose a random point
8: B = {(i, j)|i = [̂i, î + 1, . . . , î + S(z)], j = [ĵ, ĵ + 1, . . . , ĵ + S(z)]} Generate the

super-pixel B of size S(z) and a new top-left corner point (̂i, ĵ) ∈ Ω̂ΩΩ
9: p = E{F̄B} Calculate the average spectrum in B

10: if max(MSE(p, F̄B)) < σ then
11: Γ = 0M×N
12: Γ(i,j) = 1 for (i, j) ∈ B Create indicator matrix
13: (∆)c = vec(Γ) Vector form of ΓΓΓ is assigned as a new row of MR matrix
14: c = c+ 1 Update MR super-pixels counter
15: Ω = Ω−B Update available points
16: Ω̂ = Ω̂−B Update eligible points for analysis
17: else
18: Ω̂ = Ω̂− (̂i, ĵ) Remove the corner point from the set of eligible points
19: end if
20: end while
21: z = z + 1 Change super-pixel size index
22: end while
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can be seen as a fast clustering approach, where each cluster is a super-pixel.

The inputs for the algorithm are the set of spatial coordinates of the image ΩΩΩ, the

interpolated scene F̄ and the error tolerance σ, in this kind of super-pixels the parameter

for the super-pixel size is not necessary since it is determined by the spectral similarity of

the pixels in the image and the threshold σ.

The main idea in this approach is to compare the spectral signature of a spatial point

with respect to all other points in the image such that those with similar spectral responses,

according to the threshold σ, are grouped into a super-pixel. For this purpose, algorithm

3 randomly chooses a spatial point (̂i, ĵ) from ΩΩΩ, and calculates the MSE between the

normalized signature of this point p = F̄(̂i,ĵ) and all other points (i, j) in ΩΩΩ. The super-

pixel is then defined by those points satisfying B = {(i, j) ∈ ΩΩΩ|(MSE(p, F̄(i,j)) < σ} as

in line 7 from Algorithm 3. As in the rectangular case, an indicator matrix represents the

pixels assigned to B, and is defined as

Γ(i,j) =

1 for (i, j) ∈ B

0 otherwise
, (19)

Then, the vectorized form of Γ(i,j) is added as a new row of ∆, as shown in line 9 of Algorithm

3. To guarantee that each pixel is assigned to only one super-pixel, the set of pixels in B

is removed from ΩΩΩ as ΩΩΩ = ΩΩΩ − B. The process is then repeated until all pixels have been

assigned to a super-pixel. i.e. |ΩΩΩ| = 0.

Algorithm 3 Algorithm to determine MR decimation matrix ∆ for irregular super-pixels

1: Input: FR fast reconstruction F̄, set of coordinate points ΩΩΩ, tolerance σ
2: Output: MR decimation matrix ∆∆∆
3: c = 0 Initialize super-pixel count
4: while |Ω| > 0 do
5: (̂i, ĵ) ∈ ΩΩΩ Select a point
6: p = F̄(̂i,ĵ) Extract spectral signature

7: B = {(i, j) ∈ ΩΩΩ|(MSE(p, F̄(i,j)) < σ} Select set of points with similar spectrum to p
8: Γ(i,j) = 1 for (i, j) ∈ B
9: (∆)c = vec(Γ) Vector form of ΓΓΓ is assigned as a new row of MR matrix

10: Ω = Ω−B Delete selected points from the set
11: c = c+ 1 Update the super-pixel index
12: end while
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3.3 Design of Multi-resolution decimation matrix (∆)

using Simple Linear Iterative Clustering (SLIC)

super-pixels

The SLIC algorithm is an approach developed for design the super-pixels for compression

in post-processing of RGB images[32], for build the super-pixel on the SLIC algorithm, first

define centers Ci = [l1i , l2i , l3i , xi, yi]
T , where l1i , l2i , l3i are the values in each spectral band

of the RGB image, and xi, yi the spatial location, these centers are sampled on a regular grid

spaced S =
√
N/n, where n is the number of desired super-pixels. Next, the centers are

moved to seed locations corresponding to the lowest gradient position in a 3×3 neighborhood,

later, for each point in a 2S × 2S region around each Ci the distance d̄ is calculated, and if

d̄ to the center Ci is the lowest then this pixel is assigned to the super-pixel that correspond

to the center Ci, where the distance is calculated as

d̄ =

√
d2
c +

(
ds
S

)2

p2

dc =
√

(l1 − l′1)2 + (l2 − l′2)2 + (l3 − l′3)2

ds =
√

(x− x′)2 + (y − y′)2

(20)

where p allows us to weigh the relative importance between color similarity and spatial

proximity

In this work the SLIC super-pixel method is employed because of its low complexity Θ(N),

and high segmentation accuracy, it is important to note that SLIC super-pixels have been

designed for being used in RGB images i.e. 3-band images, and if the number of bands

is greater than 3, the measure of the distance should be modified and this modification

augments the computational load. For this reason, we first calculate an equivalent 3-band

version of the SI F̄, which can be obtained as

F̃(i,j,r) =
1

δL

rδL∑
l=1+(r−1)δL

F̄(i,j,l), (21)

where δL = round(L/3) and r = 1, 2, 3, this step is illustrated in fig. 7.

Then, using the SLIC approach the super-pixels in this three-band version of the scene F̃

are determined. SLIC algorithm requires an input parameter υ, which indicates the number

of equally-sized super-pixels of the resulting image. This parameter is used to determine the

approximate size of the super-pixels as S =
√
NM/υ. The main idea of the SLIC algorithm

is to use the similarities of the pixels in a neighborhood of 2S× 2S around of a center pixel,
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Figure 7: Proposed multi-resolution (MR) reconstruction process using SLIC super-pixels,
notice that ξξξ is calculated solving the minimization problem in Eq. 16.

but the actual super-pixel size is only S×S. The center pixel is updated for each super-pixel

until all pixels in the image have been assigned. This algorithm is described with more detail

in [31]. Fig. 8 illustrates the super-pixel map for different number of super-pixels υ, which

show that for a lower value of υ the super-pixels built are bigger than for a higher value of

υ, but in both cases, the super-pixels have a good distribution in the spectral image keeping

the edges.

Data cube 1 Data cube 2 Data cube 3

Figure 8: Visual comparison of the super-pixels map, using three different number of super-
pixels υ for the three test data cubes with original spatial resolution 128× 128 pixels

The super-pixel map is binarized in ΥΥΥs, where s is the super-pixel index, such that

the pixels belonging to the same super-pixel take value one and the others zero, for each

generated super-pixel. Each binarized super-pixel map is vectorized and added as a new row

of the decimation matrix ∆∆∆, whose total number of rows is υ . An example of this process

is illustrated in Fig. 9
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Figure 9: Example of the decimation matrix (∆∆∆) generation. White squares represent 1, and
gray zones are 0. Three super-pixels are obtained from the 4× 4 image.

3.4 Computational Complexity

As it was previously mentioned, the problem in Eq. 16 has computational complexity

O(KCL), where K and L do not depend on the method to design the MR decimation ma-

trix. Contrarily, the number of super-pixels, C, is indeed directly related with the method

employed to generate the MR matrix. Specifically, when rectangular super-pixels are used,

and the MR matrix ∆∆∆ is generated as in Algorithm 2, the resulting number of super-pixels,

C, depends on the parameter η, which determines the super-pixels sizes. Moreover, C also

depends on the error tolerance threshold (σ), which determines the spectral similarity be-

tween pixels. Note that in general, C also depends on the characteristics of the scene to

reconstruct. Specifically, Smooth scenes will result in a smaller number of possibly large

super-pixels, while more detailed scenes yield a larger value for C, i.e. smaller super-pixels.

On the other hand, when the MR matrix is generated using the irregular super-pixel

approach summarized in Algorithm 3, the value of C depends on the threshold σ, which

determines the spectral similarity between pixels and the scene to reconstruct, because in

this method all super-pixel sizes are allowed. Finally, the SLIC-based MR decimation matrix

requires the amount of desired super-pixels (υ) as an input parameter. Therefore, in this

case the computational complexity of solving the problem in Eq. 16 only depends on υ,

which is close to C, i.e. C ≈ υ. Table 1 summarizes the parameters that determine the

computational complexity for each discussed case.

27
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Table 1: Summary of the parameters that determine the computational complexity for each
MR decimation approach

Method Parametric dependence of C

Rectangular super-pixels Scene to reconstruct, σ and η
Irregular super-pixels Scene to reconstruct and σ

SLIC Amount of desired super-pixels υ

Chapter 4

Simulations and results

Several simulations were realized to test the performance of the proposed methods. Two

different data cubes F with 128 × 128 pixels of spatial resolution were used, changing the

number of bands L from 3 to 30. Two data cubes are test spectral images from [33]. For

each data base, SPC compressive measurements are obtained as in Eq. 9 with a compression

ratio γ = 0.25. The proposed MR reconstruction scheme using SLIC, rectangular and

irregular super-pixels was employed with the simulated measurements, and reconstructions

were obtained using the gradient projection for sparse reconstruction (GPSR) algorithm [34],

which solves the inverse problem from Eq. 16. Attained reconstructions are compared with

respect to the traditional full-resolution reconstruction approach in Eq. 1, using the same

number of iterations for both cases. The comparisons are expressed in terms of peak signal

to noise ratio (PSNR), structural similarity (SSIM), and complexity/time of reconstructions

(seconds). The regularization parameter for the GPSR algorithm was selected such that

each simulation uses the value that results in the best reconstruction. A 3D representation

basis Ψ = ΨC ⊗ Ψ2D was used, where ΨC is the 1D discrete cosine transform and Ψ2D

is a 2D Wavelet Symmlet 8 basis. It is worth noting that the number of super-pixels for

both approaches is a dyadic value, such that the wavelet representation of the signal can be

computed. All simulations were conducted and timed using an Intel Core i7-6700 @3.40GHz
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processor, and 32 GB RAM memory.

4.1 Fast low resolution reconstructions

To illustrate the results of the LR approximations used as starting point of the proposed

scheme, this experiment presents the fast LR reconstructions β obtained with Eq. 12, each

with a spatial resolution of 64×64. Figure 10 shows RGB versions of the LR reconstructions

compared with the corresponding decimated versions of the ground truth for L = 6. To

illustrate the spectral similarity between both LR images, Figs. 11 and 12 shows the spectral

bands for the first data cube. In addition, the spectral responses of two points of each scene

are shown in Fig. 13. Notice that the normalized spectral response in all cases is close to

that of the ground truth.

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

Decimated ground truth Fast LR reconstruction

D
a
ta

 c
u
b
e
 1

D
a
ta

 c
u
b
e
 2

D
at

a 
cu

b
e 

3

Figure 10: RGB version of the low resolution versions of the two data cubes with 64 × 64
pixels

4.2 Map of super-pixels

The interpolated versions of the results from the previous section, calculated using Eq. 14,

were used as an input to build the super-pixels based on rectangular, irregular and SLIC
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Figure 11: Six spectral bands from data cube 1, each spectral slice has a spatial resolution
of 64× 64 pixels, (a)Decimated ground truth. (b) Fast LR reconstruction
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Figure 12: Six spectral bands from data cube 2, each spectral slice has a spatial resolution
of 64× 64 pixels, (a)Decimated ground truth. (b) Fast LR reconstruction

approaches, in order to generate the maps of super-pixels that are associated to the MR

decimation matrix ∆, for each case. Figure 14 illustrates the obtained super-pixel maps for

each case and the two data cubes. Each color represents a different super-pixel size denoted

as η, and the grid illustrates the super-pixel map for the rectangular cases. Notice that in

zones with more spectral variations the super-pixels are smaller than those from smooth
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zones. The largest rectangular super-pixel designed for these scenes was 4 × 4. On the

other hand, for the irregular case, each color represents a single super-pixel. In other words,

pixels belonging to the same super-pixel are shown with the same color. And for the SLIC

super-pixels the grid indicates the super-pixel map.

4.3 Multi-resolution reconstructions

The MR reconstructions for the two data cubes were obtained using the decimation matrices

∆ associated to the maps of super-pixels from Chapter 4 and Eq. 17. Figure 15 shows the

average reconstruction PSNR, SSIM, and the computation time for the two data cubes using

the traditional full-resolution reconstruction from Eq. 1, and the MR reconstruction with

rectangular, irregular and SLIC super-pixels. The results are presented as a function of the

recovered number of spectral bands L.

These figures show that the proposed MR reconstruction approach improves the tradi-

tional full-resolution reconstruction. Specifically, for the first data cube (Color balls), the

irregular super-pixels provide the best reconstruction with up to 6dB of PSNR and 0.38 in
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SSIM improvements over the traditional approach. However, for the second data cube, the

best results are obtained with the SLIC super-pixel MR reconstruction, with improvements

of up to 6dB of PSNR and 0.3 SSIM over the traditional approach. In addition, in relation

to the computation time required for each approach, it can be noticed that the MR recon-

structions with irregular, rectangular and SLIC super-pixels are up to 96%, 82%, 93% faster

than the full-resolution reconstructions for the first data cube, and up to 93%, 59%, 93%

faster for the second data cube, respectively.

Furthermore, Figs. 16 and 18 illustrate an RGB mapping of the attained reconstructions

for the two data cubes, respectively. Specifically, the MR reconstructions with rectangular,

irregular and SLIC super-pixels are compared with the traditional full-resolution reconstruc-

tion from Eq. 1, and also with the ground truth. In addition, Fig. 17 and 19 presents a

comparison of the recovered spectral bands for both data cubes, where the improvements of

the irregular and SLIC super-pixels approaches are clearly noticeable for the first data cube

and the second data cube, respectively.
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Figure 14: Map of super-pixels for rectangular,irregular and SLIC approaches for two data
cubes.
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Figure 15: Comparison of the MR and traditional approaches in terms of the PSNR, SSIM
and computation time for the two data cube varying the number of spectral bands, with
spatial resolution 128× 128.
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Figure 16: RGB Comparison between the ground truth with the different reconstruction
approaches for data cube 1 with spatial dimensions 128× 128 and L = 6. (a)ground truth;
(b)reconstruction using traditional approach; and multi-resolution reconstruction using (c)
rectangular super-pixels, (d) irregular super-pixels and (e) SLIC super-pixels.
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Figure 17: Comparison of spectral bands between the ground truth with the different recon-
struction approaches for data cube 1, with M = N = 128, L = 6.
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Figure 18: RGB Comparison between the ground truth with the different reconstruction
approaches for data cube 2 with spatial dimensions 128× 128 and L = 6. (a)ground truth;
(b)reconstruction using traditional approach; and multi-resolution reconstruction using (c)
rectangular super-pixels, (d) irregular super-pixels and (e) SLIC super-pixels.
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Figure 19: Comparison of spectral bands between the ground truth with the different recon-
struction approaches for data cube 2, with M = N = 128, L = 6.



Chapter 5

Experimental setup and results

An optical test bed implementation of the SPC was constructed in the laboratory to ex-

perimentally verify the proposed reconstruction methodology. This prototype is shown in

Fig. 20, and is composed by a 50mm objective lens; a digital micromirror device (DMD) as

encoding element; a 100mm relay lens; and a F220SMA-A condenser connected through a

fiber with an Ocean Optics Flame S-VIS-NIR-ES spectrometer used as detector. Specifically,

the DMD is placed at the image plane of the imaging lens. For this reason, the selection

of the objective lens depends on the desired image resolution, which is determined by the

active area of the DMD. In this way, a focused image is obtained at the DMD and, a correct

spatial coding is performed as described in Chapter 4.

Afterwards, a relay lens directs the encoded rays, reflected by the DMD, to the condenser

lens, which draws them to a single point where the optical fiber transmits them to the

spectrometer. To guarantee that the whole scene is concentrated within the field of view of

the condenser lens, it is placed at the image plane of the relay lens.

It is important to remark that the Flame spectrometer provides 2048 equispaced spectral

bands of the concentrated coded scene, in the range from 339nm to 1023nm. In this work

this range was reduced to 400nm to 750nm, because a good signal to noise ratio is attained

when using the lamp for the visible spectrum available at the HDSP electronic optical lab.

In this range, the spectrometer measure 1000 bands. The desired number of spectral bands

is obtained by averaging the acquired visible spectrum in similar width bins. For instance,

to obtain L = 200 bands, the spectral range is divided into sets of 5 bins, and each resulting

spectral band is the average of the bins on each set.

To acquire SPC measurements, the integration time of the Flame spectrometer was se-

lected such that it uses the total dynamic range without saturating the sensor. The process

to select this parameter consists on illuminating a white target, because it is the brightest

possible scene, and select the higher integration time value for which the sensor is not satu-

rated (65536 counts). With this configuration, the compressive measurements are acquired
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using a Matlab script that controls the synchronization between the coded aperture pattern

refresh rates and the integration time of the spectrometer, such that each measurement is

captured for the correspondent coded aperture pattern.

Figure 20: Test bed implementation of the SPC architecture.

It is important to remark that because the designed coded aperture is composed of 1 and

−1 entries, and the DMD only can represent 1 and 0, the coded aperture is implemented as

shown in Eq. 22. Specifically, an additional snapshot is captured using an all-ones coded

aperture pattern. Notice that this shot does not affect the compression ratio. Denote T̄
k

as the coded aperture implemented by the DMD with entries 0 or 1. Similarly, denote an

all-ones coded aperture pattern as 1. Then, the resulting coded aperture with entries −1 or

1 is given by

Tk = 2T̄
k − 1 (22)

Using Eq. 22, the measurements from Eq. 6 are rewritten as

gkl =
∑
i

∑
j

F(i,j,l)T
k
(i,j) =

∑
i

∑
j

F(i,j,l)

(
2T̄

k
(i,j) − 1(i,j)

)
gkl = 2

∑
i

∑
j

F(i,j,l)T̄
k
(i,j) −

∑
i

∑
j

F(i,j,l)

(23)

Measurements of two different target scenes were captured with this system with a compres-

sion ratio γ = 0.25. Figures 21 and 22 show the RGB mappings of two reconstructed spectral

scenes with 128 × 128 pixels of spatial resolution and L = 30, 90, 200, using the traditional

full resolution reconstruction and the proposed MR reconstructions for rectangular, irregular

and SLIC super-pixels. These results verify the simulation results and demonstrate that the

proposed approach overcomes the traditional reconstruction from real measurements.
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Figure 21: RGB comparison of the reconstructions, using the traditional approach and the
proposed MR reconstruction with rectangular, irregular and SLIC super-pixels for N = 128,
M = 128 and (a)L = 30 (b) L = 90 and (c)L = 200.

Furthermore, to verify the accuracy of the experimental results, the spectral signature of

the recovered scenes is compared with the spectral signatures of the ground truth acquired

directly with the spectrometer at two selected points P1 and P2 highlighted in Fig. 23. It

can be seen that the proposed methods provide more accurate spectral approximations. In

addition, Figs. 24 and 25 present a comparison of the recovered spectral bands for both real

scenes.
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Figure 22: RGB comparison of the reconstructions, using the traditional approach and the
proposed MR reconstruction with rectangular, irregular and SLIC super-pixels for N = 128,
M = 128 and (a)L = 30 (b) L = 90 and (c)L = 200.
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Figure 23: Comparison of the spectral signatures of the two recovered scenes, with L = 30
using the traditional reconstruction approach and different types of super-pixels proposed in
this paper.
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Figure 24: Comparison of 6 spectral bands between the reconstruction approaches for fist
real scene, with M = N = 128, L = 30.
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Figure 25: Comparison of 6 spectral bands between the reconstruction approaches for second
real scene, with M = N = 128, L = 30.



Chapter 6

Conclusions

• A mathematical model for the compressive spectral imaging acquisition process with

a single pixel camera has been developed.

• A mathematical model to recover full-resolution spectral signals measured by the single

pixel architecture has been developed.

• A mathematical model for the multi-resolution reconstruction of spectral images from

single pixel measurements has been proposed.

• The proposed MR reconstruction approach includes three different types of super-

pixels: rectangular, irregular, and based on SLIC.

• Simulation and experimental results show that the proposed methods provide accurate

and faster spatial and spectral reconstructions when compared to the traditional full

resolution reconstruction approach, with improvements of up to 6dB, 5dB and 6dB of

PSNR for the irregular, rectangular, and SLIC super-pixels, respectively.

• Using the irregular super-pixels results in an improvement of up to 0.38 of SSIM, for the

rectangular super-pixels an improvement of up to 0.24, and for the SLIC super-pixels

an improvement of up to 0.30 is attained.

• Results show that the proposed MR approach is faster than the traditional approach,

independently of the employed super-pixel type (rectangular, irregular, SLIC).
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Hyperspectral images analysis,” Revista Ingenieria & Desarrollo, vol. 35, pp. 14–17,

2014.

[16] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J.

Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and

O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS),” Remote Sensing of Environment, vol. 65, no. 3, pp. 227–248, 1998.

[17] P. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectro-

scopic data fidelity: experimental demonstration,” Optical Engineering, vol. 39, no. 3,

pp. 808–816, 2000.

[18] A. Jerri, “The Shannon Sampling Theorem - its various extensions and application:

ATutorial Review,” 1977.

[19] H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” Proceedings of the

IEEE, vol. 55, no. 10, pp. 1701–1706, 1967.

[20] R. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Processing Magazine,

vol. 24, no. July, pp. 118–121, 2007.

[21] H. Arguello, Y. Wu, H. Rueda, W. Prather, and G. Arce, “Higher-order computational

model for coded aperture spectral imaging,” Appl. Opt, vol. 52, no. 10, pp. D12–D21,

2013.



References 49

[22] A. Said and W. A. Pearlman, “An image multiresolution representation for lossless

and lossy compression,” IEEE Transactions on Image Processing, vol. 5, no. 9, pp.

1303–1310, 1996.

[23] Itu-t, “ITU-T Rec. H.265 (10/2014) High efficiency video coding,” vol. 265, 2014.

[24] A. Grange and H. Alvestrand, “A VP9 Bitstream Overview,” pp. 1–14, 2013.

[25] A. Gonzalez, H. Jiang, G. Huang, and L. Jacques, “Multi-resolution Compressive

Sensing Reconstruction,” in 2016 IEEE International Conference on Image Process-

ing (ICIP), 2016, pp. 1–5.

[26] X. Wang and J. Liang, “Multi-Resolution Compressed Sensing via Approximate Mes-

sage Passing,” IEEE Transactions on computational imaging, vol. 2, no. 3, pp. 1–31,

2015.
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