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RESUMEN

TITULO: ENCAPSULATION OF ANTIOXIDANTS FROM THEOBROMA
CACAO L. FOR FOOD APPLICATIONS: IN VITRO
BIOACCESSIBILITY AND KINETIC RELEASE PROFILE*

AUTOR: SAID TORO URIBE**

PALABRAS CLAVES: PROCIANIDINAS DE CACAQO, PURIFICACION,
CARACTERIZACION, ENCAPSULACION, DIGESTION IN VITRO.

DESCRIPCION:

El objetivo de este estudio es la encapsulacion en liposomas de los metabolitos secundarios del
cacao para mejorar su bioaccesibilidad in-vitro. Asi, las condiciones mas favorables para inhibir
la accion de las enzimas fueron 70 mM de solucion inhibitoria a 96 °C durante 6.4min, alcanzando
93.3% de reduccion. Las condiciones optimizadas de extraccion permitieron una alta recuperacion
de flavonoides totales (88.9 + 0.8 mg ECEg™), asi como establecer una nueva estrategia para evitar
el desengrasado (tamarfio de particula < 0.2 mm y ultrasonicacion por 20 min). La caracterizacion
del extracto de cacao por medio de las fases HILIC, RP-LC, asi como total online-modulacion
HILICxRP acoplado a masas confirmo que el extracto es conformado hasta tetradecameros, siendo
teobromina, (-)-epicatequina, y trimeros los més abundantes. Adicionalmente, purificacién del
extracto de cacao se logr6 usando una columna Diol. Formulacion efectiva de nano-liposomas fue
obtenida por sonicacion a 75% amplitud por 7 min. Los resultados muestran que la actividad
antioxidante en los liposomas es dependiente de la concentracién y del pH, y la habilidad de inhibir
la oxidacion lipidica incrementa con el grado de polimerizacion. La estabilidad bajo la digestion
in-vitro de los compuestos del cacao demostré una liberacion controlada, dependencia de la
estructura del polifenol, alta bioaccesibilidad y actividad antioxidante para los polifenoles
encapsulados que no encapsulados. Analisis por UHPLC-DAD-QTOF-MS confirmé que el
mecanismo de digestion de las procianidinas consistio principalmente de depolimerizacion y
transformacion. Iméagenes por TEM muestra cambios significativos en la bicapa lipidica durante
la fase géstrica y duodenal, efectos como hinchamiento, reduccion de lamelaridad, complejos con
proteinas, cambios en la permeabilidad, tamafio de particula, y ruptura de la bicapa lipidica.

Esté tesis doctoral contribuye a un mejor conocimiento del potencial uso de procianidinas como
aditivo alimentario, asi como las aplicaciones de implementar liposomas como transportador de
los polifenoles del cacao.

*Tes1s Doctoral
** Facultad de Ingenieria Fisico-Quimica, Escuela de Ingenieria Quimica, Director: Luis
Javier Lopez Giraldo, Bioquimica, Quimica en Tecnologia de Alimentos.
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ABSTRACT

TITLE: ENCAPSULATION OF ANTIOXIDANTS FROM THEOBROMA
CACAO L. FOR FOOD APPLICATIONS: IN VITRO

BIOACCESSIBILITY AND KINETIC RELEASE PROFILE*
AUTHOR: SAID TORO URIBE**

KEYWORDS: COCOA PROCYANIDINS, ISOLATION, CHARACTERIZATION,

ENCAPSULATION, IN VITRO DIGESTION.
DESCRIPTION:

The purpose of this study was to encapsulate cocoa secondary metabolites into liposomes to
enhance in-vitro bioaccessibility. Therefore, the most favorable conditions to inhibit the action of
oxidase enzyme on total polyphenols were 70 mM inhibitory solution at 96 °C for 6.4 min, which
allowed to reduce by 93.3% PPO activity. The optimized extraction conditions allowed not only
to recovery high content of flavonoids (88.9 + 0.8 mg ECEg™), but also to establish a new strategy
to avoid the degreasing process (cocoa particle size < 0.2 mm, ultrasonicated for 30 min).
Characterization of cocoa extract was performed by using HILIC- and RP-LC-phases coupled to
tandem mass spectrometry detectors. On-line-modulated comprehensive HILICxXRP was also
developed and confirmed that cocoa extract consisted up to tetradecamers, being theobromine, (-
)-epicatechin, and trimers the most abundant. Moreover, effective fractionation of cocoa-
procyanidins by increasing degree of polymerization were achieved using a diol-column.

An effective nano-liposome formulation for cocoa-procyanidins was obtained by sonication at
75% amplitude for 7 min. Results showed that the antioxidant activity of liposomes is dose- and
pH-dependent, and the ability to inhibit the lipid oxidation increased with increasing molecular
size. The stability under in-vitro digestion of cocoa-components showed in-vitro sustained release
profile, burst effect, polyphenol structure-dependent, higher bioaccessibility and greater
antioxidant activity for those polyphenols loaded-liposomes than those in non-encapsulated form.
UHPLC-DAD-QTOF-MS analysis confirmed that the digestion mechanism of procyanidins
consisted mainly on depolymerization process and transformation during digestion. TEM images
demonstrated significant changes of lipid bilayer mainly during gastric and duodenal stages,
effects such as swelling, lamellarity reduction, protein-complex interaction, permeability, particle
size, and rupture of lipid bilayer were observed.

This Ph.D. dissertation contribute to increasing the knowledge on the potential use of procyanidins
as a food additive as well as the promising applications of liposomes as carrier system for cocoa
polyphenols.

*Doctoral Dissertation Thesis
** Faculty of Physical-Chemical Engineering. Chemical Engineering School. Advisor: Luis
Javier Lopez Giraldo, Biochemical and Chemical in Food Technology.
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1. INTRODUCTION

1.1. Food and health challenges

Some of the most important challenges in the world are related to climate changes, growing
world population, economic growth inclusive, food and water access, energy solutions, health,
nutrition crisis, environmental pollutants, growing disease pandemics, among other (Khoo &
Knorr, 2014). In particular for health and nutrition scenario, World Health Organization (WHO,
2018) and Food and Administration Organization (P. Liu, 2017) attempt to a) improve the access
of clean water and food, b) increase the knowledge of healthy behaviors, thus improving the
longevity and quality of life, c) ensure food hygiene, d) development of new vaccine to protect
people from several viruses and infectious diseases (e.g., HIV/AIDS, malaria, tuberculosis), €)
eradicate extreme poverty and hunger, thus reducing the malnutrition, f) reduce of risk of death,
in particular for children, and so on. All these scenarios impact the agriculture and food chain

directly or indirectly.

Indeed, the world’s population is expected to grow to almost 10 billion by 2050, boosting
agricultural demand (likely 50 percent compared to 2013) (UN FAO, 2017). Income growth will
drive to structural change in the economy. Therefore, a significant increase in the consumption of
meat, fruits, and vegetables (Rosegrant & Cline, 2003) is expected. These phenomena will be
responsible for important challenges across regions, in particular for the major agroindustrial
countries. To satisfy the increasing demand, new strategies have to be considered since more
intense agriculture practices will raise greenhouse gas emissions, deforestation, overused land,
which will contribute to global warming and land degradation (Oertel, Matschullat, Zurba,
Zimmermann, & Erasmi, 2016). To ensure food availability for everyone, sustainable agricultural

development, and collective responsibility to reduce the food- and agroindustrial waste and
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overconsumption self-consciousness needs to be addressed (Lim, 2017). Sustainable development,
not only in environmental aspects but also in social and economic point of view are in line with
the recent Colombian National Plan of Science, Technology, and Innovation (Libro Verde 2030)

(COLCIENCIAS, 2018).

To address the emerging health issues, countries have delivered national food, nutrition, and
health guidelines and regulations (Khoo & Knorr, 2014), such as to reduce the consumption of
sodium, cholesterol, saturated fats, sugar, and increase the intake of vegetables, fruits, and whole
grains as well as maintaining healthy lifestyle habits (German & Dillard, 2004; Havas, Dickinson,
& Wilson, 2007; Pronk et al., 2004). In fact, integrated role between food and nutrition has been
observed, for instance, inadequate or excessive consumption of dietary ingredients leading to the
development of many diseases and their associated risk factors, such as obesity and low immune
system (Kau, Ahern, Griffin, Goodman, & Gordon, 2011; Ohlhorst et al., 2013). In this
perspective, evidence of the nutritional value of foods and its interaction with gut microbiota, gut
microbiome, and relationship with the host status and immune system, together with the
transmission across generations, is currently a hot topic (Flint, Scott, Louis, & Duncan, 2012; Kau
etal., 2011; Laparra & Sanz, 2010). A clear example of this latter point is the presence of microbial
B-porphyranase (a microorganism that can process porphyran derived from marine red algae) in

Japanese population instead of U.S. population (Kau et al., 2011).

Plant and animal foods are the primary vehicles providing both macronutrients (proteins, fat,
and carbohydrates) and micronutrients to human beings. Macronutrients are used for the body as
the primary source of energy; nevertheless, large fat and carbohydrate (dietary fibers, sugar, and
starches) intake have an adverse effect on our health in terms of increasing lipogenesis, satiety

response, obesity-related conditions, and cardiovascular issues (Bellissimo & Akhavan, 2015;
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Hirsch, 1995). On the other hand, micronutrients (e.g., Mg, Cu, Fe, Zn, vitamins, and other derived
antioxidants) also play an essential role in the prevention of human diseases (Evans & Halliwell,
2001); in this sense, the positive impact of micronutrients in human health is well known, for
example: (a) vitamin E to protect against lipid peroxidation (Huang et al., 2002), (b) vitamin C to
scavenge radicals species (Frei, 1994) and for prevention of common cold (Hemild & Chalker,
2013), (c) Cu for regulating mitochondrial functions and Zn for protein synthesis, energy
production and maintenance of structural integrity of biomembranes (Hansch & Mendel, 2009),
and (d) Fe in the hemoglobin synthesis, oxygen transport and DNA synthesis (Abbaspour, Hurrell,
& Kelishadi, 2014). In addition, secondary metabolites from plants such as phenolic compounds
(e.g., catechins and carotenoids) are widely consumed on our diet, might greatly contribute to the
antioxidant activity by reducing peroxyl (ROOe¢), hydroxyl (*OH), and superoxide (O2") radicals,
thus exerting a positive action on health status to prevent cellular oxidative stress, cellular
apoptosis and proliferation, enzyme activities regulation, and so on (Birben, Sahiner, Sackesen,

Erzurum, & Kalayci, 2012; Martin et al., 2010; Watson, Preedy, & Zibadi, 2012).

In general, insufficient intake of both macronutrients and/or micronutrients gives rise to altered
metabolism and increased oxidative stress which is implicated in the pathogenesis of human
infections such as VIH, hepatitis, influenza, among others (Semba & Tang, 1999). The complexity
of these issues will require both public and private efforts and multidisciplinary experts across all
sectors and areas involved (e.g., nutrition, medicine, lifestyle behavior, and food science and

technology) to come up with scientific solutions and industrial implementations.
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1.2. Cocoa as a functional food

Today foods are not only intended to satisfy hunger and provide humans with necessary
nutrients but also to prevent nutrition-related diseases and increase the physical and mental well-
being of consumers .(Menrad, 2003; Sird, Kapolna, Kapolna, & Lugasi, 2008; Vergari, Tibuzzi,
& Basile, 2010). Thereby, foods and vegetables (e.g., whole, fortified, or enriched foods) have
now assumed the role of “functional foods”(Gul, Singh, & Jabeen, 2016), which are defined as
food that provides a health benefit beyond that of the traditional nutrient it contains (Frewer,
Scholderer, & Lambert, 2003). This new trend represented values at US$ of 168 billion in a global

market (R. S. Khan, Grigor, Winger, & Win, 2013).

Over the last two decades, food and pharmaceutical industries have been developed and
launched new food products that offer bioactive compounds with potential benefits for the
prevention of certain diseases (Kris-Etherton et al., 2002; Sir6 et al., 2008). Indeed, phenolic
compounds are naturally occurring compounds found largely in the plant kingdom (El Gharras,
2009). These compounds are secondary metabolites that play an essential role on plants and fruits,
e.g., defense against ultraviolet radiation or aggression by pathogens and contribute to the
bitterness, astringency, color, flavor, odor and oxidative stability of foods (Beckman, 2000; Pandey
& Rizvi, 2009). Among polyphenol-rich food, apples, garlic, onions, tomatoes, carrots, grape seed,
cocoa, tea and their derivate products are included (Hounsome, Hounsome, Tomos, & Edwards-
Jones, 2008; J. Pérez-Jiménez, Neveu, Vos, & Scalbert, 2010; Won Leen, Kim, Jun, Jun Lee, &
Yong Lee, 2003). It has been described that cocoa contained much higher levels of total phenolics
and total flavonoids than black and green tea, and red wine (Lee, Kim, Lee, & Lee, 2003). These
findings are in line with Phenol-Explorer database, where cocoa is the fourth most abundant dietary

source of polyphenols with only cloves (1%), peppermint (2"%) and star anise (3') having higher
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polyphenol contents (J. Pérez-Jiménez et al., 2010). Thereby, the scope of this work will be related

to cocoa polyphenols and its future applications.

Cocoa is a larger crop cultivated worldwide which constitute a major global commodity, in
particular for the countries that lie on the earth’s equator. In 2016, world production of cocoa beans
was 4.46 million and the major producing countries were lvory Coast (32.9%), Ghana (19.2%),
Indonesia (14.7%), Cameroon (6.5%), Nigeria (5.3%), Brazil (4.8%), Ecuador (3.9%), Peru
(2.4%), Dominic Republic (1.8), and Colombia (1.3%) (FAOSTAT, 2018). Interestingly,
Colombia has increased the cocoa bean production substantially in the last five years; for instance,
49420 to 60535 tons from 2012 to 2017 (FEDECACAO, 2018). There is also a governmental
initiative (Law 896-2017) to switch from cocaine to cocoa and to join forces with the private sector
to enhance Colombia’s competitiveness at international level (Decreto/Ley 896, 2017; Presidencia

de la Republica de Colombia, 2017).

Cocoa beans belong to the genus Theobroma cacao, where four different varieties are known
as Criollo, Forastero, Trinitary (a hybrid of Criollo and Forastero), and Nacional (Afoakwa,
Paterson, Fowler, & Ryan, 2008). Criollo beans are characterized by their fine flavor and aroma
and are typically grown in South America and Central America. Nacional is known as fine flavor
cocoa and is produced mainly in the West Indies and Ecuador’s regions (Afoakwa, 2012;
Aprotosoaie, Luca, & Miron, 2016). Forastero beans had a stronger flavor than Criollo beans and
are grown primarily in Africa and Brazil (Adomako, 1983). Trinitarian (hybrid of Criollo and
Forastero) has the advantages of Forastero in terms of lower vulnerability to diseases and higher
yields as well as the advantages of Criollo variety with better organoleptic acceptance (Adomako,

1983).
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It is well known that cocoa-derived products are extensively used in food and pharmaceutical
industries. The main uses of cocoa is the production of chocolate, confectionery products, flavored
drinks and desserts, cocoa butter, among others (Wollgast & Anklam, 2000). In fact, the chocolate
industry is estimated at nearly US$22.4 billion only in the US, where the leading companies are
Hershey and Mars constituting 44 and 29%, respectively (The statista-portal, 2017). Nevertheless,
during the chocolate process the beans are subjected to several steps (e.g., fermentation, drying,
alkalization and roasting), which negatively impact the concentration of cocoa polyphenols; for
instance, more than 85 % of initial monomers are reduced during the fermentation, drying and
alkalization, therefore, their antiradical activity is also reduced by 57 % (Di Mattia et al., 2013;

Miller et al., 2008).

It has been published that cocoa is composed mainly by flavanol monomers, procyanidins
oligomers (B-type, -(epi)catechin as base unit- and to less extent A-type) from dimers to
tridecamers, which constitute about the 60% of total polyphenol content (Jalil & Ismail, 2008;
Pedan, Weber, et al., 2017; Toro-Uribe, Montero, Lopez-Giraldo, Ibafiez, & Herrero, 2018). Other
minor polyphenol constituents such as quercetin, naringenin, apigenin, luteolin, kaempferol,
clovamide, and some anthocyanins have also been reported in the literature (Rodriguez-Carrasco,
Gaspari, Graziani, Sandini, & Ritieni, 2018; Sanchez-Rabaneda et al., 2003), which give the raw
cocoa bean its purple color (Dreosti, 2000). Furthermore, cocoa beans contain a high amount of
alkaloids, mainly theobromine and caffeine with concentrations ranging from 7.1-9.7 mg/g and
0.7-1.8, mg/g, respectively (Carrillo, Londofio-Londofio, & Gil, 2014; Caudle & Bell, 2000;

Senanayake & Wijesekera, 1971).
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1.3. Flavonoids

Phenolic compounds constitute the most numerous secondary metabolites occurring on plant

kingdom (Rasouli, Farzaei, & Khodarahmi, 2017). It is estimated that 100,000 to 200,000
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Figure 6. Chemical structure of main sub-groups of flavonoids.

secondary metabolites exist (Belscak-Cvitanovi¢, Durgo, Hudek, Bacun-Druzina, & Komes,
2018; Pereira, Valentdo, Pereira, & Andrade, 2009), which more than 8,000 are identified as
flavonoids (Duthie, Gardner, & Kyle, 2003; Harborne & Williams, 2000). Although phenolic

compounds are chemically characterized by containing phenolic structural features, they are
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classified in sub-groups as a function of sources of origin, natural distribution, biological function,
and chemical structure as follows: phenolic acids, flavonoids, stilbenes, lignans, and others
(Belscak-Cvitanovi¢ et al., 2018; Bravo, 2009). Flavonoids consist of two aromatic rings (A and
B) connected by an oxygen-containing pyrene ring (C) (Figure 6) and constitute the most plentiful
group of polyphenols (Wollgast & Anklam, 2000). The position of the chroman-aromatic linkage
determines benzopyran class, for it, these compounds are divided into several subgroup classes
such as dihydrochalcones, aurones, flavones, flavonols, flavanones, flavanols, anthocyanidins,
isoflavonoids, and proanthocyanidins (Harborne, 1991; Wollgast & Anklam, 2000) (Figure 6).
Although these compounds belong to the same family, their biological and chemical properties are
quite different (Erlund, 2004). In the present work, only proanthocyanidins sub-group has been
studied.

1.3.1 Proanthocyanidins. The flavonoid skeletal of proanthocyanidins (PAs) is subdivided into
individual families depending upon the degree of hydroxylation, for example, proguibourtinidin,
promelacacidin, prorobinetinidin (resorcinol family); propelargonidins, procyanidins, and
prodelphinidins (phloroglucinol family) (Harborne, 1991; Wollgast & Anklam, 2000). The latter
two are the most commonly found in nature (Monagas, Quintanilla-Lépez, Gémez-Cordoves,

Bartolomé, & Lebrén-Aguilar, 2010).

Procyanidins (PCs) consist of flavan-3-ols units such as (+)-catechin and/or (-)-epicatechin
linked through Cs—Cs interflavanoid linkage but also extent through a C4—Ce bonds, both are
referred to B-type PCs (Dominguez-Rodriguez, Marina, & Plaza, 2017; F. He, Pan, Shi, &
Duan, 2008; Kimura, Ogawa, Akihiro, & Yokota, 2011; H. J. Li & Deinzer, 2008). Additionally,
proanthocyanidins have two linkages C4—Cg bond plus a Co—~»0—C7 or C,—~0—Cs ether bond,

which is denoted as A-type (Neilson & Ferruzzi, 2011). These flavan-3-ols compounds can also



ENCAPSULATION OF ANTIOXIDANTS FROM THEOBROMA CACAO L. 41

be esterified with gallic acid and glucose moieties (Glavnik, Vovk, & Albreht, 2017), therefore
increasing the structural diversity of PCs. Examples of B-type include procyanidin linked by two
C4—Cg such as B1 to B4, and dimers B5 to B8 with C4—Cs, trimer C1 (bound by two C4—Cs),
and tetramer Cinnamtannin A2. A-type contains, e.g., procyanidin Al, A2, Cinnamtannin B1,
and Aescultannin C (Figure 2). The nature of proanthocyanidins is more complicated than we
thought; indeed, the condensation of catechin and epicatechins into PAs can form stereoisomers
because of different patterns can link the Ce and Cg positions (e.g., Ce-Cs, Cs-Cg, and Ce-Cs
together with R and S linkages). Thus the polymers have a complex structure (F. He et al., 2008).
Considering only molecules with catechin and epicatechin, the number of asymmetric carbon
atoms, and the possible forms of rotation around the interflavan bonds (Cs—Cg or Cs—Ce),
theoretically the potential number of stereoisomers and rotational isomers is 2(5*PP=3)(S, Zhang
etal., 2017). For example, 128, 4096 and 131072 combinations for dimers, trimers and tetramers

could be found, respectively.
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1.3.2. Cocoa polyphenols: a brief overview. Cocoa has been identified as a polyphenol-rich
food since the 1960s (Robinson, Ranalli, & Phillips, 1961). Several authors have characterized the
main polyphenols contained in cocoa and cocoa-based products, together with quality and
chemical differences between cocoa varieties. For example, Carrillo et al., (2014) and Perea (2013)
studied the concentration of alkaloids, monomers ((+)-catechin, (-)-epicatechin), as well as the
primary macronutrients from more than 18 clones cultivated in Colombia. These studies confirmed
that cocoa-genotypic type influences the chemical composition (e.g., concentration of catechins,
procyanidins, and alkaloids). Theobromine constitutes the principal alkaloid in cocoa sample;
however, there is not a universal ratio between theobromine/caffeine because of genetic variety-
dependence. Thereby, the relationship between these compounds is tentatively classified in 15-10,
10-5, and 2-1 for Forastero, Trinitary, and Criollo, respectively (Hasing, 2004). Furthermore, the
content of epicatechin from unfermented cacao is about 20 times higher than catechin. Therefore,
catechin and epicatechin content range from 2.8-9.4% and 9.1-21.8 % in total polyphenol,

respectively (Loureiro et al., 2017).
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Figure 7. Structure of (A) catechins, (B) alkaloids, (C), B-type procyanidins, and (D) A-type

procyanidins from cocoa beans.

Owing the number of scientific works and reviews found in the literature for cocoa polyphenols,

the most remarkable works regarding flavonoid composition and methods of analysis (e.g., HPLC,
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MS, NMR), together with the extraction method for cocoa-based products are summarized in
Table 7 and Table 2. In general, quantification of total polyphenols, total flavonoids, and total
flavan-3-ols is commonly based on spectrophotometric assays such as Folin-Ciocalteu method
(Singleton, Orthofer, & Lamuela-Raventds, 1998a), flavonoid-aluminum chloride reaction
(Zhishen, Mengcheng, & Jianming, 1999), and vanillin assay (Sun, Ricardo-da-Silva, & Spranger,
1998), respectively. Quantification of both degree of polymerization and individual compounds is
carried out using HPLC by either normal phase (NP) (Gu, House, Wu, Ou, & Prior, 2006; Miller
et al., 2006) and reversed phase (RP) (Tomas-Barberan et al., 2007; Toro-Uribe, Montero, et al.,
2018) coupled, in most cases, to fluorescence detector (230/321 nm, excitation/emission) (Robbins
et al., 2009) and UV detection at 280 nm (Adamson et al., 1999; Wollgast & Anklam, 2000).
Recently, new strategies have been employed to enhance further characterization of main isomers
on cocoa samples. To do so, comprehensive LC (LCxLC) have been previously assayed by Kalili
& De Villiers (2013a,b) and Toro-Uribe et al., (2018) who reported simultaneous separation of
catechins by increasing the degree of polymerization, and good resolution of isomeric compounds.
Further information of this method can be found in Chapter 3; moreover, further insight on
LCxLC separation mechanisms can be found in Frangois, Sandra, & Sandra (2009), Dugo et al.,

(2008) and Jandera (2012).

LC analysis using non-polar Cis-bonded silica enables the separation of alkaloids, catechins and
few oligomers with high resolution and sensitivity, where the retention of non-polar compounds
is stronger than that of polar compounds (Kostiainen & Kauppila, 2009). However, there are some
limitations, for instance, reverse-phase methodologies are quite ineffective in separating higher
oligomers (> trimer) and their main isomers, with these compounds eluting as a large unresolved

hump (Adamson et al., 1999).
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Table 7. Overview of phenolic acids, alkaloids, and flavonoids from cocoa beans.

Phenolic Acids

Procyanidins

Gallic acid
Chlorogenic acid
Ferulic acid
Caffeic acid
Coumaric acid
Protocatechuic acid

Procyanidin B1
Procyanidin B2
Procyanidin B3
Procyanidin B4
Procyanidin B5
Procyanidin C1
Procyanidin D

Alkaloids
Caffeine Anthocyanins
Theobromine Cyanidin-3-o-L-arabinoside
Cyanidin-3-p-D-galactoside
Flavanols Cyanidin-3- B -D-arabinoside

(+)-Catechin
(-)-Catechin
(-)-Epicatechin
(+)-Epigallocatechin
(+)-Gallocatechin

Flavanones

Flavonols

Quercetin

Quercetin-3-O-rutinoside (rutin)
3"-Methylquercetin

Quercetin 3-O-galactoside
(hyperoside)
Quercetin-3-O-rhamnoside
(quercitrin)
Quercetin-3-0O-4-D-glucopuranoside
Quercetin-3-0O-p-D-arabinopyranoside
Quercetin-3-a-L-arabinoside
Quercetin-3-0O-glucoside
(isoquercitrin)
Quercetin-3-0O-arabinoside
Kaempherol

Kaempherol 3-O-Rutinoside
Kaempherol 7- O-Neohesperoside
Kaempherol 3-O-Glucoside
Isorhamnetin

Naringenin-7-rhamnosidoglucoside
Naringenin

Naringenin 7-O-Glucoside
Naringenin-7-O-neohesperidoside
(naringin)
Kaempferol-7-O-neohesperidoside

Flavonoids

Apigenin
Luteolin

Luteolin 7-O-Glucoside

Apigenin 8-C-Glucoside (vitexin)
Amentoflavone

Apigenin 6-C-Glucoside (isovitexin)
Apigenin 7-O-Glucoside

Luteolin 6-C-Glucoside (isoorientin)
Apigenin 7-rutinoside (isorhoifolin)
Luteolin 8-C-Glucoside (Orientin)
Biapeginin

On the other hand, normal-phase methodologies allow the separation of procyanidin according
to their degree of polymerization but require the use of toxic solvents such as dichloromethane-

methanol-formic acid-water mixtures (Rigaud, Escribano-Bailon, Prieur, Souquet, & Cheynier,
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1993) and hexane-acetone mixtures (Yanagida et al., 2000). HILIC stationary phase has proven to
be a useful alternative in the analysis of procyanidins; in fact, the compounds (higher affinity for
polar than non-polar) are eluted in order of increasing polarity with water-organic solvent mixtures
as eluent and a gradient with decreasing organic solvent content (Kostiainen & Kauppila, 2009).
Thereby, high sensitivity and resolution up to dodecamers employing acetonitrile-acetic acid and
methanol-water-acetic acid mixtures through HILIC column have been reported (Robbins et al.,

2009).

Acidification of mobile phase also play an essential role on the retention, peak shape, resolution
and separation of procyanidins depending on the occurrence of protonation or dissociation
(Wollgast & Anklam, 2000). Therefore, formic acid, trifluoroacetic acid, acetic acid, and
ammonium acetate and formate are the most used (Cuyckens & Claeys, 2004). Overall, a lower
concentration of formic acid (< 0.1 %) seems to be preferable because is not a strong ion-pair agent

and it does not suppress MS ionization (Annesley, 2003; Kostiainen & Kauppila, 2009).

As it can be seen in Table 2, mass spectrometry is highly used because of its high sensitivity,
possibilities of coupling with liquid chromatography and the availability of powerful tandem mass
spectrometric techniques (Cuyckens & Claeys, 2004). Electrospray ionization (ESI), and
atmospheric pressure chemical ionization (APCI), coupled to LC have been previously tested
(Rauha, Vuorela, & Kostiainen, 2001). These can be carried out in positive and negative ion mode,
where the last one provides the highest sensitivity (Fabre, Rustan, De Hoffmann, & Quetin-
Leclercq, 2001). Other works also employed matrix-assisted-laser-desorption/ionization (MALDI)
and time-of-flight (TOF) for proanthocyanidins analysis (Guaratini et al., 2014; Perret, Pezet, &
Tabacchi, 2003). Additionally, direct coupling of an NMR instrument to an LC-UV-MS is used in

less extent and offers a unique and very powerful tool (but also very expensive), for the
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identification of complex unknown polyphenolic compounds of plant origin (Cuyckens & Claeys,

2004; Hansen et al., 1999).

Table 2 shows several differences among total polyphenol content, concentration of
procyanidins, lipid fat removal process, methodologies and solvents for polyphenols’ recovery
from cocoa beans and related products. Overall, chemical profile from cocoa is vulnerable to
several conditions, for instance, plant variety and genotype, geographical and climate growing
conditions (N. Khan et al., 2014). Cocoa process for chocolate manufacture also impacts total
concentration of flavonoids, thus its antioxidant activity (Di Mattia et al., 2013; Miller et al., 2008).
Moreover, sample preparation (e.g., classical isolation and solid-phase extraction), extraction
procedure (e.g., solid-liquid extraction, sonication, Soxhlet, high-pressure fluids, and type and
concentration of solvent), and analytical techniques (e.g., spectrophotometry, liquid
chromatography, nuclear magnetic resonance, and mass spectrometry) influence the magnitude of
the analysis. Further information related to characterization and quantification of main
polyphenols from cocoa and cocoa-based products as well as antioxidant activities in different

model systems are described in Chapters 1 - 7.



ENCAPSULATION OF ANTIOXIDANTS FROM THEOBROMA CACAO L.

Table 8. Overview of methods of analysis, identification, and quantification of procyanidins

from cocoa beans and related compounds.
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1.3.3. Polyphenol oxidase in cocoa and its effect on polyphenols content. Prior to the extraction,
separation, and characterization, it is essential to evaluate the enzymatic action on total polyphenol
content. Indeed, the role of enzymatic and non-enzymatic reactions in the physicochemical
changes (e.g., color, texture, flavor, and taste) from cocoa beans during the cocoa processing is
widely known (Camu et al., 2008; Lopez-Nicolas & Garcia-Carmona, 2009). Polyphenol oxidase
(PPO), invertase, and protease are the most important enzymes (Macedo, Rocha, Ribeiro, Soares,
& Bispo, 2016), while the most common type of non-enzymatic browning is the Maillard reaction
(Sacchetti et al., 2016). In particular, PPO is a copper-associated enzyme with two binding sites
for phenolic substrates (Steffens, Harel, & Hunt, 1994), that accelerates oxidation and degradation
of polyphenols and their derivates (F. Li, Chen, Zhang, & Fu, 2017). Overall, PPO catalyzes the
hydroxylation of o-monophenols forming o-diphenols (monophenolase activity), and then the o-
dihydroxyphenols to o-quinones (diphenolase activity) (De la Rosa, Alvarez-Parrilla, & Gonzalez-
Aguilar, 2009; Q. He, Luo, & Chen, 2008) (Figure 8). Maximum PPO activity is well-described
in the literature, with optimum pH and temperature are between 6.5 — 7.5 and 25 — 35 °C,
respectively (Ayaz, Demir, Torun, Kolcuoglu, & Colak, 2008; Cheema & Sommerhalter, 2015; de
Oliveira Carvalho & Orlanda, 2017).

The action of PPO is activated when plant tissues undergo physical damage such as cutting or
blending (C. Fang, 2007), which reduces the shelf life of many processed foods, but is desired in
tea, and cocoa process (e.g., to reduce the bitterness and astringency) (Misnawi, Selamat, Bakar,
& Saari, 2002). Substrates for this reaction include simple phenols, such as catechol, caffeic acid,
chlorogenic acid, gallic acid, and catechins (J. Zhang, Wang, & Mi, 2011). Moreover, quinones
formed during PPO-oxidation reactions may undergo redox recycling, which generates free

radicals, and can damage DNA, proteins, amino acids or lipids (Yoruk & Marshall, 2003).
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Figure 8. Enzymatic oxidation of phenols compounds catalyzed by polyphenol oxidase

enzyme.

It is widely reported in the literature that epicatechin, catechin and their polymeric structures
are also substrates of PPO (Ho, 1999; Kiewning, Wollseifen, & Schmitz-Eiberger, 2013; Lopez-
Serrano & Ros Barcel6, 2002; Wuyts, De Waele, & Swennen, 2006). Main selected works
concerning enzymatic inhibition are summarized in Table 9. Conventional techniques consisted
of heat treatment (also known as blanching process). These methods are straightforward and cheap;
they consist on dipping the sample into a solution containing the inhibitor solution at high
temperature (70 — 125 °C) (Bradbury et al., 2011; Pons-Andreu et al., 2008; EI-Shimi, 1993;
Lépez-Malo, Palou, Barbosa-Canovas, Welti-Chanes, & Swanson, 1998; Schweiggert, Schieber,
& Carle, 2005) for several minutes (0 — 180 min) (Bradbury et al., 2011; Pons-Andreu et al., 2008;
Chutintrasri & Noomhorm, 2006; EI-Shimi, 1993; Lopez-Malo et al., 1998). Thermal inactivation
profiles of PPO follow first-order reaction Kkinetics (Chutintrasri & Noomhorm, 2006).
Subsequently, the enzyme activity is measured by either melanosis index scale or preferentially by

total specific content (Pons-Andreu et al., 2008; Yuan, Lv, Tang, Zhang, & Sun, 2016). In addition,
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several chemical inhibitors of browning are carboxylic acids such as oxalic and oxalacetic acids,
ascorbic acid derivatives or thiol-containing compounds such as cysteine, glutathione, and N-
acetylcysteine. However, many of these reagents have been restricted (e.g., sulfites) because of
their adverse effect on human health (Ali, EI-Gizawy, El-Bassiouny, & Saleh, 2015). In general,
at higher inhibitor concentration, lower polyphenol oxidase, and phenolase activity (EI-Shimi,
1993). Up to date, ascorbic acid (food additive E-300) and L-cysteine (food additive E-920) are
approved in foods by commission regulation EU No. 1129/2011. On the other hand, emerging
technologies include high hydrostatic pressure treatment (Lopez-Malo et al., 1998; Rastogi,
Eshtiaghi, & Knorr, 2009) and ultraviolet light (UV) radiation (Lante, Tinello, & Nicoletto, 2016),
which are gaining interest as non-thermal technologies. Indeed, several studies have confirmed its
effectiveness as PPO inhibitors, but they are beyond the scope of this work. Overall, conventional
and non-thermal techniques have some drawbacks, for example, UV-C radiation (100 -280 nm)
application is limited because of possible adverse effects in food including alteration of sensory
quality attributes such as colour (Lante et al., 2016); and the inhibitory effect of chemicals (e.g.,
ascorbic acid) is temporary; however, combination of ascorbic acid with other reagents (e.g., citric
acid, L-cysteine) has shown synergic and prolonged inhibitory effect (Dudley & Hotchkiss, 1989;

Siddig & Dolan, 2017; Yoruk & Marshall, 2003).

As state in Table 9, higher denaturation of enzymes (>70 %) is achieved at high temperatures.
However, little is known about the heat effect on the stability of polyphenols. In this context,
optimal conditions to enhance enzyme inhibition together with a correlation between the total
polyphenol content during PPO denaturation have not been studied yet and has been one of the

goals of the present work (Chapter 1).
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Table 9. Summary of main studies focusing on enzyme inhibition from several plant sources.

Apples
Pears

Strawberry
purées

Cocoa
beans

Cocoa
beans

Pineapple
puree

Paprika
Chili
Powder

Red
grapes

UV-
radiation
treatment
0-60min
25°C

Dipping in
inhibitor
solution

Time and
temperature
not available

Thermal
Treatment
20 -45 min
70-125°C

Thermal
Treatment
3-15min
85 -100 °C

Thermal
Treatment
5-30 min
40 -90°C

Thermal
Treatment
1-10 min

80 —-100°C
High
hydrostatic
pressure
treatment

10 - 600

MPa

Polyphenoloxidase

Polyphenoloxidase

Polyphenoloxidase

Melanosis scale

Polyphenoloxidase

Peroxidase
Protein
determination
Polyphenoloxidase
Lipoxygenase

Polyphenoloxidase
Peroxidase

UV-A light
(390nm)

0.08 % L-
cysteine,
0.3% L-
cysteine-HCI
2.5 % Citric
acid,
0.1%
Papain,
0.1 % Pepsin
0.1%
Bromelain

Water

Water

Water

Water

Water

Color
measurement
PPO
<98.2%

PPO
>99 %
>95 %
>70 %

Ineffective
<20 %
Ineffective

PPO
70 - 95 %

Color index
scale:
No browning
to slight
browning

PPO
> 98 %

POD
<98.2 %

POD
55.8 %
PPO
41.9 %

(Lante et al.,
2016)

(Holzwarth,
Wittig,
Carle, &
Kammerer,
2013)

(US Patent
8048469B2,
Nov 1, 2011,

n.d.)

(US Patent
0193629 Al,
Aug 14,
2008, n.d.)

(Chutintrasri
&
Noomhorm,
2006)

(Schweiggert
et al., 2005)

(Rastogi,
Eshtiaghi, &
Knorr, 1999)
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0-60°C
Dipping in
Inhibitor 10 - 100 (Jiang, Fu,
solution b
Litchi fruit Polyphenoloxidase mmoI_L FEO ZELIgeiEy,
Ti Glutathione+ 80-85 % & Fuchs,
ime and e
Citric acid 1999)
temperature
not available
High
hydrostatic
pressure
Avocado treatment . PPO (Lbépez-Malo
puree 0 — 30 min Polyphenoloxidase Water <45 % et al., 1998)
5-25°C
345 - 689
MPa
0-3h 0.5-1.5% -
'g‘l?&lse pH1-7 | Polyphenoloxidase | Ascorbic FS;ZOOA) (Ell'ggé;n"
30-80°C acid

PPO, polyphenol oxidase enzyme.

1.3.4. Recovery and isolation of polyphenols

As seen in Table 2, no single universal extraction process and solvent mixture can be employed
for the extraction of polyphenols from cocoa beans and related products, in general, for plant
sources (Chew et al., 2011). Many factors are involved in the solid-liquid extraction process that
affect the final content of polyphenols recovered, such as the type of solvent and concentration,
contact time, temperature, solid to solvent ratio, structure of the solid matrix and pH (Pinelo,

Sineiro, & Nufez, 2006). Indeed, the extraction of polyphenols is a difficult task because:

- They occur in plant tissues bound with sugars, proteins, and different interactions

with the food components are found (Gadkari & Balaraman, 2015).

- They are highly susceptible to many factors, including oxygen concentration, pH

changes, and high temperature (Z. Fang & Bhandari, 2010).
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- They readily undergo oxidation and epimerization reactions (Dube, Ng, Nicolazzo,

& Larson, 2010).

These factors negatively impact the use of polyphenols as a natural food additive; moreover,

reducing its antioxidant activity and in vivo bioavailability.

Before polyphenols’ extraction, it is necessary to prepare the sample. It is very common to
reduce the water content using oven-drying (Hii, Law, Cloke, & Suzannah, 2009; Santhanam
Menon, Hii, Law, Shariff, & Djaeni, 2017; Tomas-Barberan et al., 2007) at mild temperature until
uniform moisture is reached or preferably employing vacuum freeze-drying (Larrauri, Rupérez, &
Saura-Calixto, 1997; Ratti, 2001; Santhanam Menon et al., 2017). Although freeze-drying
preserves polyphenols and avoids their degradation, it is the most expensive process for
manufacturing a dehydrated product (Ratti, 2001). The reduction of particle size from millimetric
to micrometric size is often carried out by milling processes with either knife and balls mills (Pons-
Andreu et al., 2008). To preserves the desired properties, cooling strategies such as cryogenic mills
(Pons-Andreu et al., 2008) are suggested. Then, the obtained powder sample follows a degreasing
process, which can be carried out by a) Soxhlet extraction using dichloromethane (Marco Arlorio
et al., 2008) or petroleum ether (Noor-Soffalina, Jinap, Nazamid, & Nazimah, 2009), b) ultrasonic
bath using n-hexane (Fayeulle et al., 2018), and c) supercritical fluids using CO2 (Asep et al.,

2008).

A number of recovery methods and analytical assays that describe the extraction and
characterization of polyphenols from plant samples are summarized in Table 10 and Table 2.
Extraction methodologies can be divided into conventional and non-conventional methods.
Conventional devices of extraction include Soxhlet (Cienfuegos-Jovellanos et al., 2009), solid-

liquid extraction (S-L) (Pedan, Fischer, et al., 2017; Rodriguez-Carrasco et al., 2018; Toro-Uribe,
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L6pez-Giraldo, et al., 2018; Toro-Uribe, Montero, et al., 2018; Zyzelewicz et al., 2018), and liquid-
liquid (L-L) extraction (Cuji¢ et al., 2016; Da Porto, Porretto, & Decorti, 2013; Mustafa & Turner,
2011). Non-conventional techniques consist of microwave extraction (Nsor-Atindana et al., 2012;
Routray & Orsat, 2012), ultrasonic extraction (loannone, F. Mattia, C. D. di Gregorio, M. de Sergi,
M. Serafini, M. Sacchetti, 2015; Todorovic et al., 2015; Vilkhu, Mawson, Simons, & Bates, 2008),
and pressurized liquid extraction (PLE) (Hawthorne, Grabanski, Martin, & Miller, 2000; Herrero,
Mendiola, Cifuentes, & ez, 2010; Kothe et al., 2013). In general, each methodology has advantages
and disadvantages. For example, conventional methods are cheaper but time-consuming; and most
of the case use toxic solvents (e.g., petroleum ether, n-hexane, acetone, among others) (Devgun,
Nanda, & Ansari, 2012). The new extraction techniques have enabled automation, shortened
extraction time, reduced organic solvent consumption, and use of green solvents (e.g., carbon

dioxide, water), but are more expensive (Devgun et al., 2012; Pons-Andreu et al., 2008).

Based on a literature survey for cocoa polyphenols (Table 2 and Table 10), the extraction of
polar compounds employing solid-liquid extraction at temperature ranging from 30 — 100 °C
during several minutes is often used (Batista, de Andrade, Ramos, Dias, & Schwan, 2016;
Cienfuegos-Jovellanos et al., 2007; Pons-Andreu et al., 2008; Pedan, Fischer, et al., 2017;
Rodriguez-Carrasco et al., 2018; Tomas-Barberan et al., 2007; Toro-Uribe, Lopez-Giraldo, et al.,
2018; Zyzelewicz et al., 2018) as well as sonication bath (Bels¢ak et al., 2009; Carrillo et al., 2014;
loannone, F. Mattia, C. D. di Gregorio, M. de Sergi, M. Serafini, M. Sacchetti, 2015; Todorovic
et al., 2015; Tomas-Barberan et al., 2007); although, supercritical CO + ethanol (co-solvent) is
preferred to extract a mixture of polar and mostly nonpolar compounds (M. Arlorio et al., 2005;
Asep et al., 2008; Da Porto, Decorti, & Natolino, 2014; Da Porto, Natolino, & Decorti, 2014;

Saldafia, Zetzl, Mohamed, & Brunner, 2002; Sarmento et al., 2008; VValadez-Carmonaet al., 2018).
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To the best of our knowledge even if there is extensive information regarding the extraction yield
and comparing several plant extracts in terms of antioxidant activity and individual content of
flavonoids, but not clear information can be found regarding the optimal solid-liquid extraction
conditions for cocoa procyanidins.

In general, methanol and acetone allow higher extraction yields (Adamson et al., 1999; Pedan
et al., 2016), but they have some limitations; for instance, Food and Drug Administration
associates both methanol and acetone with toxic potential (Food and Drug Administration, 2017).
To overcome this limitation, polar solvents such as water, ethanol or mixture of both are currently
accepted. Additionally, new strategies for the recovery of flavonoids from plants include the
combination of conventional and non-conventional techniques, for example, ultrasound-assisted
extraction (Da Porto et al., 2013), microwave-assisted extraction (Liazid, Palma, Brigui, &
Barroso, 2007), ultrasound-assisted soxhlet extraction (Luque-Garcia & Luque De Castro, 2004),
ultrasound assisted supercritical fluid extraction (A. jun Hu, Zhao, Liang, Qiu, & Chen, 2007), and
ultrasound-assisted pressurized solvent extraction (Richter, Jiménez, Salazar, & Marican, 2006).
Thus, the application of ultrasound-assisted solid-liquid extraction is investigated in Chapter 2.
This strategy was selected for allowing the recovery of hydrophilic compounds with different
polarities and include some advantages for food applications since it is suitable, cheap, and

reliable.

Once polyphenols are recovered from the plant sample, several analyses can be performed. In
first stages, colorimetric assays are chosen for being easier and cheaper; thereby, total polyphenol
(Singleton, Orthofer, & Lamuela-Raventds, 1998b), total flavonoid (Zhishen et al., 1999), total
proanthocyanidins (Sun et al., 1998), and total antioxidant activity (Bels¢ak et al., 2009; Thaipong,

Boonprakob, Crosby, Cisneros-Zevallos, & Hawkins Byrne, 2006) are the most common assays
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used for phenolic compounds (Table 10). Once again, normal and mostly reversed-phase-HPLC

coupled to a diode array detector (DAD) and/or mass spectrometers (Table 2 and Table 10) are

the most widely used analytical tool for quantification and fine characterization of polyphenols

(Tsao, 2010). Other methods include gas chromatography (GC) for the separation of isoflavones

previously derivatized to methyl esters; and normal phase LC coupled to a fluorescence detector

for the separation of procyanidins (Robbins et al., 2009).

Table 10. Summary of extraction, purification and analytic methodologies employed in the

recovery of flavonoids.

Drying Conventional | No-Preparative Total HPLC...
eDrying Oven | e Maceratio | scale polyphenols . uv
e Freeze Dryer n SPE e Folin-ciocalteu |e FL
e SLE oLLE Assay
Grinding e LLE oTLC GC...
e Knife e Soxhlet Total Flavonoids |e FID
e Hammer Preparative scale e AICl3 Assay
No- e Column MS...

Milling Conventional | chromatography | Total . QqQ
o Ball mll e UAE e Prep. LC Proanthocyanidin |e TOF
o Hammermill | ¢« MAE e CCC e Butanol-HCl |, MALDI
e Knife mill e PLE assay
« Cryogenic e Combinatio e Vanillin assay

mill n e DMAC assay
Hydrolysis Antioxidant
e Acidic Activity...

medium * DPPH

e ORAC

Degreasing e ABTS
e Hexane
e Petroleum

ether

SLE, solid-liquid extraction; LLE, liquid-liquid extraction; UAE, ultrasound-assisted

extraction; MAE, microwave-assisted extraction; PLE, pressurized liquid extraction; SPE, solid-
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phase extraction; TLC, thin-layer chromatography; CCC, countercurrent chromatography;
DMAC, dimethylaminocinnamaldehyde; DPPH, 2,2-diphenyl-1-picrylhydrazyl; ABTS, 2,2'-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); ORAC, oxygen radical absorbance capacity;
HPLC, high performance liquid chromatography; FL, fluorescence detector; FID, flame ionization
detector; GC, gas chromatography; MS, mass spectrometry, QqQ, triple quadrupole; TOF, time of

flight; MALDI, matrix-assisted laser desorption/ionization.

Sometimes, the extract is submitted to a cleanup process and/or isolation process. Techniques
for the cleanup process include solid-phase extraction (SPE) and liquid-liquid extraction (LLE).
LLE using hexane or petroleum ether is employed to remove lipids and methanol-ethyl acetate
mixtures or chloroform to recovery methylxanthines (X. Hu, Wan, Bal, & Yang, 2003; Hulbert,
Biswal, Mehr, Walker, & Collins, 1998; Rao, 1975), but its selectivity is limited (Plaza,
Dominguez-Rodriguez, Castro-Puyana, & Marina, 2018). SPE cartridge is widely used to remove
interference compounds from extract, pre-concentration of the sample, and fractionation of the
sample into different compounds (Berrueta, Gallo, & Vicente, 1995). Depending on the
application, different stationary phases are loaded in the cartridge. Therefore, different solvents
are employed. In this sense, Toyopearl HW-40/50 (J. He, Santos-Buelga, Mateus, & de Freitas,
2006; Sun, Leandro, de Freitas, & Spranger, 2006), Sephadex LH-20 (Kimura et al., 2011;
Svedstrém, Vuorela, Kostiainen, Laakso, & Hiltunen, 2006), and Superdex 75 HR (McMurrough,
Madigan, & Smyth, 1996) gel filtration eluting with aqueous acetone, aqueous alcohol, urea and

their combinations have been commonly used for separation of proanthocyanidins.

Most selective techniques for separation and purification of polyphenols include preparative
HPLC and recently high-speed countercurrent chromatography technique (HSCCC) (Esatbeyoglu

et al., 2015; S. Zhang et al., 2015, 2017). The choice of these techniques will depend on the
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equipment availability, nature of the analyte, and final application. In general, HSCCC allows high
sample input, high recoveries, and is based on the partitioning of the solutes through the mixing
of two immiscible phases (S. Zhang et al., 2015). Preparative column chromatography can be
carried out employing either normal or reversed phase columns. For instance, apple and cocoa
procyanidins were separated and isolated by normal phase fractionation using hexane-acetone
(Yanagida et al., 2000) or acetonitrile with agueous-methanol-acetic acid mixtures (Kelm et al.,
2006) as mobile phases. Fractionation on preparative Cig column allowed the separation of dimers
and trimers from grape extract (Sun, Belchior, Ricardo-Da-Silva, & Spranger, 1999). Nevertheless,
up to date, the separation of procyanidins is limited by the degree of polymerization and deserve

further study.

1.4 Encapsulation of flavonoids

Considering the physical and chemical instability of polyphenols, different strategies to protect
the bioactive compound from adverse conditions, thus increase their shelf life and promote a
controlled liberation of the encapsulated compounds have been developed (Shahidi & Han, 1993)
The encapsulation is the process of incorporating the bioactive compound within some kind of
carrier or matrix (McClements, 2014). The controlled delivery of bioactive compounds will
maintain the active molecular form until the time of consumption and deliver this form to the
physiological target within the organism (Lingyun Chen, Remondetto, & Subirade, 2006).
Depending on the nature of the carrier (composed of single or multiple components) may have
heterogeneous or homogeneous structure (Z. Fang & Bhandari, 2010). In particular, colloidal
delivery systems can be constructed from food-grade ingredients such as proteins, lipid,
surfactants, and polysaccharides (Acosta, 2009). According to McClements (2014) the choice of

delivery system depends on a number of factors, for example:
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- Nature of bioactive compound to be encapsulated

- The challenges that need to be overcome, e.g., for bioactive compounds, increase
their bioactivity and bioavailability, their solubility characteristics and chemical instability,
and protect them from acidic or alkaline environment.

- Nature of carrier system

- Field of application

In food applications, the encapsulation constitutes a major challenge because the carrier system
should be recognized as safe, relatively inexpensive, easy to use, not impact the quality of the food
product (e.g., appearance, texture, and flavor), preserve the bioactive compound during the
different phases of food transformation and storage, and ensure high bioavailability upon ingestion.
Moreover, the fabrication method should be economical, reproducible, and suitable for large-scale
production (McClements, 2014; Munin & Edwards-Lévy, 2011; Sessa, Tsao, Liu, Ferrari, &

Donsi, 2011; Shahidi & Han, 1993).

Table 5 summarizes the different systems assayed for incorporation of catechins or plant
extracts into several delivery systems. As can been seen, there are several methodologies to
generate nanoparticle systems and the major mechanical devices for fabrication can be further
divided in homogenization, atomization, milling, extrusion, coating, and supercritical fluids
(McClements, 2014). In addition, several physical and chemical characterization needs to be
further researched, for instance, stability of bioactive into the carrier (e.g., particle size and
distribution, (-potential, antioxidant or prooxidant activity), morphology, efficiency of
encapsulation, measurement of their bioaccessibility (in vitro or in vivo) and absorption employing

cell lines models or human studies.
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Depending on the application to be addressed, each technique has advantages and
disadvantages. For instance, spray drying encapsulation is widely used in the food industry but has
limited available number of shell materials and produce particles with a mean size range of 10 —
100 pum (Z. Fang & Bhandari, 2010). On the other hand, particles with a diameter ranging from 1
to 1000 nm are reported for emulsions and liposomes employing homogenization methods (e.g.,
microfluidization and sonication) (Aditya, Aditya, Yang, Kim, Park, Lee, et al., 2015; Toro-Uribe,
Lopez-Giraldo, et al., 2018). In general, several parameters need to be optimized to achieve
efficient formulations. These parameters depend on the type of delivery system. For emulsion and
liposomes, concentration and type of lipids and/or surfactant type, pH of the system, concentration
of the bioactive compound, ratio lipid/water, and method of homogenization should be studied

(McClements, 2015).

In general, literature survey shows that only a small proportion of the polyphenols remains
available after oral intake, due to insufficient gastric residence time, low permeability and
solubility within the gut (Z. Fang & Bhandari, 2010; Mancini et al., 2018). For example, total
polyphenols decreased by 77 %, and 97 % in gastric and intestinal phases, respectively (Ovando-
Martinez, Gamez-Meza, Molina-Dominguez, Hayano-Kanashiro, & Medina-Juarez, 2018).
Thereby, the encapsulation systems have gained greater attention to improve the bioaccessibility
of polyphenols. This has been proved in several matrix systems such as curcumin from carrots (R.
Zhang et al., 2015), tea catechins (Bhushani, Karthik, & Anandharamakrishnan, 2016; Bhushani,
Kurrey, & Anandharamakrishnan, 2017), grape seed extract (Berendsen, Guell, & Ferrando,
2015), lycopene-enriched tomato extract (Ha et al., 2015), B-carotene (GOmez-Mascaraque, Perez-
Masia, Gonzalez-Barrio, Periago, & Lopez-Rubio, 2017; Salvia-Trujillo, Qian, Martin-Belloso, &

McClements, 2013), resveratrol (Davidov-Pardo & McClements, 2014; Sessa et al., 2014),
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catechins (Aditya, Aditya, Yang, Kim, Park, & Ko, 2015; Paximada, Echegoyen, Koutinas,
Mandala, & Lagaron, 2017), quercetin (Pool, Mendoza, Xiao, & McClements, 2013),

epigallocatechin gallate (Gomez-Mascaraque, Soler, & Lopez-Rubio, 2016), among others.

Studies on resveratrol showed that the ingredient is active only when encapsulated in a delivery
system, which is capable of stabilizing and protecting it from degradation while preserving its
biological activities and enhancing its bioavailability (Davidov-Pardo & McClements, 2014; Sessa
et al., 2011). Also, Fang and co-workers (J. Y. Fang, Hung, Liao, & Chien, 2007) reinforced that
nanometric size improved resveratrol cell uptake and was efficiently transported into the
cardiovascular system when it was incorporated in liposphere. An improvement of curcumin and
carotenoids bioaccessibility was appreciably higher with increasing lipid nanoparticle
concentration, which was attributed to an increase in the solubilization capacity of the mixed
micelle phase (Z. Zhang, Zhang, & McClements, 2016; L. Zou et al., 2016). In line with this trend,
Ortega et al., (2009) compared the digestion of two formulations of cocoa with different fat content
and proved that higher fat content favored the formation of fat-forming micellar structures and the
incorporation of the cocoa phenols into the lipid phase, achieving a protective effect during

duodenal digestion.

In the specific case of hydrophilic compounds, different delivery systems can be used (Table
5), for instance, single emulsions (Joyce, Gustafsson, & Prestidge, 2018; W. Liu, Wang,
McClements, & Zou, 2018; R. Zhang et al., 2015) double-emulsions (Berendsen et al., 2015),
polymers (Z. Li & Gu, 2014; Smith et al., 2010; Wisuitiprot, Somsiri, Ingkaninan, & Waranuch,
2011; T. Zou et al., 2012), liposomes (J.-Y. Fang, Lee, Shen, & Huang, 2006; Gibis, Thellmann,
Thongkaew, & Weiss, 2014; Gibis, Vogt, & Weiss, 2012a; Toro-Uribe, Lopez-Giraldo, et al.,

2018), supercritical fluids (Sosa, Rodriguez-Rojo, Mattea, Cismondi, & Cocero, 2011),
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carbohydrates (Ferreira, Rocha, & Coelho, 2007), and so forth. However, polyphenols create
complex with polymers, thus reducing their bioaccessibility and antioxidant capacity (Ferruzzi &
Green, 2006; Ozdal, Capanoglu, & Altay, 2013). Moreover, electrospray (Ferreira et al., 2007),
supercritical fluids (Sosa et al., 2011), and polymer-based (B. Hu et al., 2012; B. Hu, Ting, Zeng,
& Huang, 2013; Liyan Zhang & Kosaraju, 2007) technologies are promising encapsulation
systems, but are expensive (high investment costs compared to conventional equipment), produce
particles with large particle sizes (Berendsen et al., 2015; Ferreira et al., 2007; Sosa et al., 2011;
Liyan Zhang & Kosaraju, 2007) and sometimes require food grade biopolymers (accepted by food
safety agencies such as FDA and EFSA) which limit their use (Wandrey, Bartkowiak, & Harding,

2010).

On the other hand, by reducing the particle size below 500 nm, higher nanoparticles uptake and
higher absorption of the encapsulated active compounds can be achieved (Acosta, 2009). In fact,
Ha et al., (2015) reported high in vitro bioaccessibility and antioxidant activity for encapsulated
lycopene at particle sizes between 100 — 200 nm. This phenomenon is explained for the larger
surface area for the interaction with the biological substrates than the corresponding micrometric

size carrier surface.

Among the different carrier systems, liposomes were selected for procyanidins’ encapsulation;
since these molecules possess a high number of hydroxyl groups and different distribution
coefficients as a function of their molecular weight and chemical configuration (Toro-Uribe etal.,

2018). More details of liposome delivery system can be found in Chapter 5 and 6.
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Table 11. Summary of different systems evaluated for encapsulation of catechin and related

compounds.

C,EC
PCs (2-7)
Cocoa
extract

[-carotene

Cocoa
Hull

Curcumin

Fish Oil

Liposom
e

Emulsio
n

Liposom
e

Micelles

Emulsio
n

Lecithin
Ultrasound

Caseinate/alg
inate/
Microfluidiza
tion

Lecithin
Microfluidiza
tion

Sophorolipid
pH driven
method

Silica
solution and
Phospholipid

emulsifier
Homogenizat
ion

<90 nm

<50 um

252 nm

61 nm

31321
nm

In vitro

In vitro

In vitro and In
vivo

In vitro

%Efficiency
Encapsulation
Lipid Oxidation
study
Antioxidant
activity
Particle size
Charge
Measurement
Microstructure
analysis
Physicochemic
al stability
Particle size
Charge
Measurement
Microstructure
analysis
%Efficiency
Encapsulation
Morphology
analysis
Particle size
Charge
Measurement
X-ray analysis
%Efficiency
Encapsulation
Physicochemic
al stability
Particle size
Charge
Measurement
Microstructure
analysis
%L oading drug

(Toro-Uribe,
Lopez-Giraldo,
etal., 2018)

(W. Liuetal.,
2018)

(Altin,
Gultekin-
Ozgiiven, &
Ozcelik, 2018)

(Peng et al.,
2018)

(Joyce et al.,
2018)
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EGCG

EC,C

Grape
seed
extract

Protein

Protein

Emulsio
ns

Ovalbumin-
Dextran:
Self-
Assembled

BSA
Desolvation

W1/O/\W>
emulsions:
Membrane
emulsificatio
n

173 - 347
nm

C: 4515 nm
EP: 4815
nm

10 pm

In vitro: Caco-
2 cells

In vitro

Release
Kinetics at pH
3.5and 7

Morphology
Charge
Measurement
%Efficiency
Encapsulation

%Efficiency
Encapsulation
Morphology

Particle Size
Thickness and
density
Charge
Measurement
Creaming
stability
Morphology
Total
Polyphenols

69

(Z. Li & Gu,
2014)

(R. Yadav,
Kumar,
Kumari, &
Yadav, 2014)

(Berendsen et
al., 2015)
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EGCG

EGCG

Cocoa
procyanidi
ns

Tea
extract

Catechins

Procyanidi
ns from
grape seed
extract

Catechin

Polyme

Polyme

Protein,
Polyme
r

SFE-

CO2

Carboh
ydrates

Polyme

Polyme

Peptide/Chitosa
n

Sonication and
ionic gelation
mechanism

Chitosan
Stirring and
formed
spontaneously

Gelatin B,
Chitosan
Stirring and
formed
spontaneously

Polycaprolacton
Supercritical
Antisolvent

Spray Drying

Gum arabic,
Maltodextrin
Homogenization

Chitosan
Gelling and
coacervation-
phase inversion

143 + 7 nm

4 to 150 nm

307 nm and
721 nm

3-5um

0.08+0.02

um

5-30 pum

2—7pum

In vitro: HepG2
cells

In vitro: Caco-2
cell

In vitro: THP-1
cell line

In vitro:
SIF and SGF
conditions

Morphology
Charge
Measurement
%Efficiency
Encapsulation
Size Particle and
Distribution
Morphology
%Efficiency
Encapsulation
Charge
Measurement
Particle size
%Efficiency
Encapsulation
Charge
Measurement
Morphology
FTIR

DSC

Size Particle and
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1.4.1. Liposomes Liposomes are colloidal particles consisting of a membranous system formed
by phospholipid bilayers encapsulating aqueous space(s) (Z. Fang & Bhandari, 2010).
Phospholipids are major components of cell membranes of plants and animals and have essential
functions in the growth and functioning of cells (Klang & Valenta, 2011). The phospholipid
structure consists of two hydrophobic fatty acid “tails” (consisting of 2 long fatty acid chains) and
a hydrophilic phosphate “head” (containing the negatively charged phosphate group), joined
together by an alcohol or glycerol molecule (Singh, Gangadharappa, & Mruthunjaya, 2017)
(Figure 9). Depending upon the chemical group on the phosphate, phospholipids can be classified
into different classes: phosphatidylcholine  (PC), phosphatidylethanolamine (PE),
phosphatidylserine (PS), phosphatidic acid (PA), and phosphatidylinositol (P1) (Szuhaj, 1983).
Soybean and egg lecithin are an important source of phospholipids with a commercial production
of 200,000 tons/year and 300 tons/year, respectively (Burling & Graverholt, 2008). The
phospholipid-based functional ingredients used as emulsifiers in commercial products are usually
called lecithins (Klang & Valenta, 2011). Lecithin acts as an emulsifier (Afoakwa, Paterson, &
Fowler, 2007) and can be classified as a mixture of phospholipids obtained from plant or animal
sources (Szuhaj, 1983), therefore, it is composed 18% PC, 14% PE, 9% PI, 5% PA, 2% minor
phospholipids, 11% glycolipids, 5% complex sugars, and 37% neutral oil (Y. Wu & Wang, 2003).
Thereby, phospholipids have different susceptibility to oxidation because of the polar head groups
and also the degree of unsaturation (Cui & Decker, 2016). For example, soybean lecithin contains
high amounts of Cig:» and Cas:3, therefore, it is susceptible to hydrolysis of the ester bonds to
peroxidation of unsaturated acyl chains (A. V. Yadav, Murthy, Shete, & Sakhare, 2011), producing
off-flavors and oxidization of the bioactive encapsulated within the liposomes (Toro-Uribe et al.,

2018).
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As shown in Figure 9 , the water-soluble compound is entrapped in the water core and lipid-
polar compounds in the lipid section. Liposomes formed single- or multiple-layer vesicles,
separated by water compartments with size ranging from nanometers up to several micrometers
(Panyaetal., 2010; A. V. Yadav et al., 2011).They are often distinguished according to the number
of lamellae and size: small unilamellar vesicles (SUV, 20 -100 nm), large unilamellar vesicles
(LUV, > 100 nm), and large multilamellar vesicles (MLV, > 0.5 um), oligolamellar vesicle (0.1 —
1.0 um) or multivesicular vesicles (> 1 um) are the main classes (Munin & Edwards-Lévy, 2011).
When a phospholipid, such as lecithin, is dispersed in an aqueous phase, the liposomes form
spontaneously through hydrophilic-hydrophobic interactions between phospholipids and water

molecules (Gadkari & Balaraman, 2015).
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Figure 9. Schematic structure of a phospholipid and liposome (by the author).
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Due to their chemical composition, liposomes are versatile carrier systems for both hydrophilic
and hydrophobic bioactive materials (Kosaraju, Tran, & Lawrence, 2006). Thereby,
pharmaceutical, cosmetic and food industry have utilized the liposomal system for wider

applications. A significant advantage of their use is the target delivery and the ability to control
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the release rate, thus increasing the bioavailability of the incorporated materials (Gadkari &
Balaraman, 2015). In food industry, liposomes have gained increasing attention since they have
the unique distinction of being natural, biodegradable, and nontoxic (Kosaraju et al., 2006)
Liposomes can be produced by different methods such as a) hydration film (Bangham, Standish,
& Watkins, 1965), b) ether injection/vaporization (Deamer, 1978) c) membrane extrusion (Olson,
Hunt, Szoka, Vail, & Papahadjopoulos, 1979), d) micro-emulsification (Mayhew, Lazo, Vail,
King, & Green, 1984), e) double emulsion vesicle (Zheng, Zheng, Beissinger, & Fresco, 1994), f)
reverse-phase evaporation (Cortesi et al., 1999), g) homogenization (J.-Y. Fang et al., 2006), h)

supercritical fluids (Trucillo, Campardelli, & Reverchon, 2018), and so on.

Since the spontaneous formation of MLVs is easily attained, techniques such as sonication,
homogenization and membrane extrusion are often used for conversion of MLVs into LUVs and
SUVs (Patil & Jadhav, 2014). In particular, sonication is perhaps the most extensively used method
for the preparation of SUV from MLVs (Akbarzadeh et al., 2013). In general, sonicator tip is
directly submerged into the liposome suspension and subjected to intense high pulse. As a
consequence of high energy input, the sample is overheated, therefore, possible degradation of
phospholipids and encapsulated compounds can arise. To avoid this phenomenon, control
temperature of the vessel with icy water is needed (Akbarzadeh et al., 2013; Dua, Rana, &

Bhandari, 2012).

To be effective, liposomal drug delivery system is dependent on several parameters, such as
lipid composition, size and distribution, charge, bioactive ingredient and lipid ratio, and method
of fabrication (Samad, Sultana, & Aqil, 2007). Exemplification of encapsulation of polyphenols
employing liposome system is highlighted by Mancini et al., (2018) who demonstrated that

phospholipid nanoformulations are interesting candidates to deliver antioxidants and monoamine
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oxidase A inhibitors into the brain. Moreover, extended shelf life together with improved
antioxidant activity against lipid oxidation was observed with the inclusion of procyanidins from
grape seed and cocoa extract (Gibis, Vogt, & Weiss, 2012b; Toro-Uribe, Lépez-Giraldo, et al.,
2018). However, up to date, few studies have addressed the stability of encapsulated procyanidins-
loaded liposomes under in vitro gastrointestinal conditions, which is the subject of the present

Ph.D. thesis (Chapter 6 and 7).

1.5. Bioavailability of flavonoids

As mentioned previously, recent advancements have allowed the incorporation of bioactive
products into several delivery systems to design new pharmaceutical and food products with new
functionalities and applications. Optimization of new products and knowledge of its
bioaccessibility is of great interest to ascertain the nutritional quality of a nutrient or bioactive
compound not only in terms of quantities required to achieve dietary requirements but also to fine-

tune the development of functional foods (Cilla, Bosch, Barbera, & Alegria, 2018).

In vivo and in vitro methodologies can be used to measure the bioavailability of the bioactive
compound. In vivo methods are considered the “gold standard” but have some restrictions, like
limitations in experimental design, the high cost of equipment and labor and ethical constraints
(Cilla et al., 2018; Minekus et al., 2014a). On the contrary, in vitro models are faster, cheaper,
safer, do not have ethical restrictions and can be used to study the bioaccessibility of different food

sources (José Jara-Palacios, Gongalves, Hernanz, Heredia, & Romano, 2018).

Depending on the focus of the research, two types of in vitro models can be used: static and
dynamic. Static in vitro models are feasible and inexpensive to assess multiple samples in parallel,

considering several experimental conditions (Alminger et al., 2014). Overall, this model allows
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simulating the oral, gastric and small intestine phases. Although several models can be found in
the literature to carry out static in vitro digestion, international consensus can be found in (Minekus
et al., 2014a)(Minekus et al., 2014a)Minekus et al., (2014b) Dynamic models have the advantages
to simulate the series of events during the gastrointestinal tract (e.g., food and water intake, release
of digestive enzymes and variation of pH) together with the peristaltic contractions and transit
through the stomach and intestines (Alminger et al., 2014). This methodology is more accurate
due to closer resemblance to in vivo conditions and is used to confirm results obtained employing
static models (Alminger et al., 2014). Up to date, humans gastrointestinal simulators (e.g., TNO

and HGS) can be used for this purpose, but are expensive and not always available.

Concerning static in vitro digestion process, this comprises various steps (Figure 10): the food
in solid or liquid state is partially digested in the oral phase through mastication and salivation.
This process is a result of salivary secretion among other factors, which results in a food bolus
(Minekus et al., 2014a). The bolus follows a dissolution process and placed under gastric
conditions during a period that ranges from 1 — 3 h (Acosta, 2009). Gastric conditions are
characterized by acidic pH (pH ca. 1 to 3), to favor the proteolytic activity of some enzymes (e.qg.,
pepsin) (Rick & Fritsch, 1974). This process is required to optimize the intestinal digestion from
food matrices: break down proteins, carbohydrates, lipids, delivery of the meal to the intestine
phase, and help to increase emulsification in the stomach (Alminger et al., 2014; Minekus et al.,
2014a). Once the food finishes the gastric phase, it is in the form of suspension and mixed with
the intestinal fluid at pH ca. 7 containing bile salts and other enzymes such as pancreatin (mixture
of amylases, lipases, and other digestive enzymes) (McClements & Li, 2010). During this stage (2
h or more), lipolysis takes place as well as the formation of micelles, vesicles, solubilization, and

transport of the available compounds (R. Zhang et al., 2015). Thereby, the terms bioavailability
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and bioaccessibility refer to the fraction that is available at the site of action in the body (Acosta,

2009), and the fraction that is released from the food matrix during the digestion process and then
becomes accessible for intestinal absorption (McClements, 2014), respectively. Moreover, the
bioactivity includes events linked to how the bioactive compound reached systemic circulation,
are transported and reached the target tissue, and all the cascade of physiological effects it

generates (Cilla et al., 2018).
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Figure 10. Overview of simulated digestion of flavonoids (by the author).

The bioavailability of polyphenols is a complex issue including multistep processes: exposition
of wide pH variations, digestive release of the bioactive compound from the food product,
solubilization of the stable compound in the gut lumen, uptake and transport through the gut, and
metabolization (Alminger et al., 2014; Neilson & Ferruzzi, 2011). Furthermore, the bioavailability

of polyphenols in the cell culture medium is much worse than in organic solvents or water (Lel
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Chen, Cao, & Xiao, 2018), which leads to poor lipid solubility and limited ability to modulate pro-
oxidant and pro-inflammatory pathways, thus reducing their biological activity (Lei Chen et al.,

2018; Rosillo, Alarcén-De-La-Lastra, & Sanchez-Hidalgo, 2016).

In general, absorption of flavan-3-ols highly depends on the chemical structure (e.g., degree of
glycosylation, conjugation, polymerization, and stereochemistry configuration) (Depeint, Gee,
Williamson, & Johnson, 2002; Motilva et al., 2016; Watson et al., 2012), and physical and
biological properties, which determine the rate of passive diffusion across cell membranes (Shoji,
Masumoto, Moriichi, Akiyama, et al., 2006). Moreover, the results need to be examined with care
since the magnitude of the analysis is a function of the loading dose, sample treatment, nature, and
concentration of polyphenols. Table 6 summarizes some recent studies focusing on the

bioaccessibility and absorption of procyanidins using different food matrices or model systems.

Literature clearly shows that plasma concentration of phenolic compounds, monomeric
flavonoids, quercetin and derivates, and procyanidins rarely exceeds 1 uM (Bouayed, DeuRer,
Hoffmann, & Bohn, 2012; Castello et al., 2018; Mendoza-Wilson et al., 2016; Motilva et al., 2016;
Pereira-Caro et al., 2018; Rein et al., 2000; Richelle, Tavazzi, Enslen, & Offord, 1999; Wang et
al., 2000). Competitive absorptions of epicatechin and catechin has been reported, being the
epicatechin absorbed more efficiently (Baba et al., 2001; Fogliano et al., 2011; Motilvaetal., 2016;
Serra et al., 2009). Furthermore, aglycan flavonoids can be easily absorbed (Kumar & Pandey,
2013; Pereira-Caro et al., 2018) whereas conjugated flavonoids need to be hydrolyzed to reach the
colon, thus undergoing an intense phase Il metabolism (Fogliano et al., 2011; Motilva et al., 2016;
Watson et al., 2012) (formation of sulphate and glucuronide conjugates), then sulfate conjugates

and methyl derivatives in the liver (Sasot et al., 2017) are formed. For example, during the intake
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of chocolate and cocoa samples, free (epi)catechin together with its metabolites (Baba et al., 2001)

were detected, which reached significantly content in plasma concentration.

A series of experiments examining the stability of epicatechin and catechin under in vitro or in
vivo digestion demonstrated that they are highly stable in gastric phase, and are completely lost
during the intestinal phase (Zhu et al., 2002), that is, a pH-dependence was observed (Bermudez-
Soto, Toméas-Barberan, & Garcia-Conesa, 2007; Bouayed et al., 2012; Neilson & Ferruzzi, 2011;
Zhu et al., 2002). Indeed, the stability of the monomers and dimers at a pH between 5.0 and 9.0
can be ranked in the following order: (+)-catechin > (-)- epicatechin > Dimer B2 > Dimer B5 (Zhu
et al., 2002). The vulnerability of catechin in alkaline conditions, specifically in the duodenum,
can be due to auto-oxidation of 3°, 4’ and 5’ hydroxyl groups (Aditya, Aditya, Yang, Kim, Park,
Lee, et al., 2015). Interestingly, the degradation of catechins under digestive conditions appears to
be most directly correlated to pH rather than to digestive enzyme activity (Bouayed et al.,
2012). Besides, some authors have reported that (-)-epicatechin and (+)-catechin undergo

epimerization to yield (-)-catechin and (+)-epicatechin (Zhu et al., 2002).

In the light of above mentioned, it is expected that after the intake and digestion of procyanidins,
they would be hydrolyzed into minor compounds (Kumar & Pandey, 2013), metabolized by
microbiota and absorbed in the form of small molecules exerting an antioxidant action (Watson et
al., 2012). However, the literature is not completely clear in this case. For instance, Shoji, et al.,
(2006) reported that monomers and procyanidins dimer to pentamer were detected in the plasma
ranging from 14.1 — 3.1 % of initial concentration, together with degradation of trimers and
tetramer into catechin and dimer (José Jara-Palacios et al., 2018), and transformation of glycosides

to aglycone forms under acidic conditions (Ortega et al., 2009). But other studies reported that the
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efficiency of absorption of glycosides polyphenols in the small intestine was higher than that of

the aglycone itself (Lei Chen et al., 2018; Petersen et al., 2016).
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Table 12. Summary of in vivo and in vitro bioavailability and bioaccessibility of catechins and

procyanidins.
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Moreover, procyanidins were no hydrolyzed into bioavailable monomers (Donovan et al., 2007)
and conjugated or methylated forms of procyanidins were not evident (Appeldoorn, Vincken,
Aura, Hollman, & Gruppen, 2009). Indeed, proanthocyanidins per se had very limited
bioavailability as only trace amounts of dimers could be accumulated in plasma due to low apical
and basolateral permeation values of procyanidins (DP 2 to 6), which are between 0.6 — 6x107
cm/s, confirming their low absorption (Serra et al., 2009; Zumdick, Deters, & Hensel, 2012). In
summary, better understanding of bioaccessibility, bioavailability, and absorption is indispensable
for investigating the biological health effect of polyphenols, whatever the approach used (Lei Chen
etal., 2018). In this regard, evaluation of in vitro bioaccessibility of procyanidins and cocoa extract

can be found in Chapter 6 and 7.

1.5.1. Antioxidant activity of the bioaccessible compound Substances able to inhibit or retard
oxidation are referred to as antioxidants (Wasowicz et al., 2004). For plant extracts, due to the high
diversity of polyphenol sub-groups, it is suggested to evaluate the antioxidant activity as well as
antiradical activity employing different assays such as 2,2-diphenylpicrylhydrazyl (DPPH), ABTS
(2,2-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid), ferric reducing antioxidant power (FRAP),
and oxygen radical absorbance capacity (ORAC), which are inexpensive, fast and straightforward
(Alam, Bristi, & Rafiquzzaman, 2013; Z. Wu, Teng, Huang, Xia, & Wei, 2015).

As state above, recent applications of delivery systems for polyphenols improve
bioaccessibility, bioavailability and biological activity of those compounds. Therefore, knowledge
concerning the antioxidant activity of digested compound or transformed products is of high
interest. However, studies focusing on the antioxidant activity of phenolic compounds before and
during the gastrointestinal tract are scared and need further research. Indeed, data should be treated

carefully due to the possible effect of many factors: nature of sample, food matrix effect,
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interaction protein-polyphenols, antioxidant method tested, among others. For instance, José Jara-
Palacios et al., (2018) showed that after the intake of seed pomace extract, the DPPH" scavenging
activity was significantly reduced during the transit time, while by using ORAC the opposite was
observed. Variability for ABTS was also confirmed by Z. Wu et al., (2015) who investigated
different tea products and found higher scavenging activity at the end of digestion for Liubao tea
and black tea than for green tea. Comparison between gallic acid and quercetin after digestion
indicated that gallic acid maintained their DPPH and FRAP values after digestion whereas

quercetin was 3.4- and 15.5-fold lower for DPPH and FRAP (Neto et al., 2017).

Differences among antioxidant magnitude could be produced as a consequence of the formation
of unknown compounds that impact the plasma antioxidant or the activity within the intestine in
different levels (Donovan et al., 2007). Other studies show that when plasma is subjected to an in
vitro oxidation, epicatechin and related catechins can prevent a-tocopherol depletion, acting as
antioxidants of intermediate reactivity between ascorbate and a-tocopherol (Rein et al., 2000).
Indeed, consumption of procyanidin-rich chocolate increased TBARS in plasma in a dose-
dependent manner (Wang et al., 2000). Overall, polyphenols have demonstrated in in vitro and in
vivo models antioxidant defense of the body (Bels¢ak-Cvitanovi¢ et al., 2018), which is supported
by epidemiological evidence such as the protective effect of polyphenols on cardiovascular
diseases (Kim, Sung, & Kim, 2003; Jara Pérez-Jiménez et al., 2008; Tangney & Rasmussen, 2013;
Zern et al., 2005) and remarkable increase in the resistance of blood plasma against oxidative stress

markers (Birben et al., 2012; Koga et al., 1999; Zern et al., 2005).
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CHAPTER 1

INSIGHT OF POLYPHENOL OXIDASE ENZYME INHIBITION AND TOTAL

POLYPHENOL RECOVERY FROM COCOA BEANS

ABSTRACT

A full factorial design (ascorbic acid/ L-cysteine inhibitors, temperature, and time as factors) has
been studied to enhance inhibition of polyphenol oxidase (PPO) activity without decreasing
cocoa polyphenols concentration. Data obtained have been modelled through a new equation,
represented by I', which correlates both high polyphenol content with reduced specific PPO
activity. At optimized values (70 mM inhibitory solution at 96 °C for 6.4 min, ['=11.6), 93.3%
PPO inhibition and total polyphenol of 94.9 mgGAE/g were obtained. In addition, microscopy
images confirmed the changes in cell morphology measured as the fractal dimension and
explained the possible cell lysis and denaturation as a result of heat treatment and chemical
inhibitors. Results also showed that PPO enzyme was most suitable (higher vmax/Km ratio) for
catechol with a reduction of its affinity of 13.7—fold after the inhibition heat treatment. Overall,
this work proposed a suitable and food-safe procedure for obtaining enriched polyphenol extract

with low enzyme activity.

Keywords: Polyphenol oxidase; cocoa; polyphenols; heat treatment; enzyme inactivation.
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2. INSIGHT OF POLYPHENOL OXIDASE ENZYME INHIBITION AND TOTAL

POLYPHENOL RECOVERY FROM COCOA BEANS

2.1. INTRODUCTION

Precursors of chocolate flavor are usually obtained through enzymatic and non-enzymatic
reactions, in which polyphenol oxidase, invertase, and protease are the most important enzymes
(Macedo, Rocha, Ribeiro, Soares, & Bispo, 2016). Polyphenol oxidase (PPO) is a major copper
enzyme (Dogru & Erat, 2012), also known as catechol oxidase, tyrosinase, and so forth (de
Oliveira Carvalho & Orlanda, 2017), and is the most important deteriorative enzyme that
accelerate oxidation and degradation of polyphenols and their derivatives (Li, Chen, Zhang, &
Fu, 2017). PPO is located in the chloroplasts (Araji et al., 2014; Osuga, Van Der Schaaf, &
Whitaker, 1994) and its activation takes places during cell-damaging treatment (e.g. slicing,
cutting or pulping) (Misnawi, Selamat, Bakar, & Saari, 2002) where oxygen is available, and the
local pH is not too acidic (Cheema & Sommerhalter, 2015), thus causing the formation of brown
pigments (Dogru & Erat, 2012; Jesus, Leite, & Cristianini, 2018). In fact, the oxygen catalyzes
the enzyme reaction where the monophenols forming o-diphenols (monophenolase activity), and
then the oxidized substrate, reacts producing o-quinones (diphenolase activity) (De la Rosa,

Alvarez-Parrilla, & Gonzalez-Aguilar, 2009; He, Luo, & Chen, 2008).

The rate of enzymatic browning on food is governed by PPO action, which depends of its
concentration, pH, temperature, amount of phenolic compounds, and oxygen availability (de
Oliveira Carvalho & Orlanda, 2017; Mishra, Gautam, & Sharma, 2013), so having a different
level of influence in the development of flavors, color and softening, which in turn is reflected in
the loss of nutritional and quality value (De Leonardis, Angelico, Macciola, & Ceglie, 2013). For

instance, Misnawi et al., (2002) reported that PPO of dried unfermented beans increases the
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polyphenol oxidation rate of (—)-epicatechin, total polyphenols, and total anthocyanidins. PPO is
also susceptible during fermentation stage, therefore, total and specific activities remaining in
unfermented beans are reduced up to 1% and 9% of the original, respectively (Misnhawi et al.,
2002). Despite the strong inactivation of PPO during fermentation, it can be regenerated during
the drying process —pH increase and uptake of O>—, and the remaining PPO activity is sufficient
to catalyze oxidation of phenolic compounds (Brito, Garcia, & Amancio, 2002; Mishra et al.,
2013). Thereby, phenolic compounds content in cocoa is affected by several factors, not only by
the genetic origin, geographical and environmental conditions but also by enzyme attack and

processing conditions for chocolate production.

Polyphenolic compounds have been widely studied since they possess an array of
nutraceutical properties for human health related to cardiovascular effects (Kruger, Davies,
Myburgh, & Lecour, 2014), antioxidant activity (Schinella et al., 2010), anti-inflammatory
response (Nakajima et al., 2017), antibactericidal effect (Karar, Pletzer, Jaiswal, Weingart, &
Kuhnert, 2014), and biological applications (Marchese et al., 2014). As a result of all these
functional bioactivities, enriched polyphenol extracts have gained greater attention. For instance,
new products such as exGrape®SEED, Vitaflavan from grape seeds, enriched capsules with high
amount of cocoa procyanidins (PCs), enriched dark chocolates bars (e.g. CocoaVia from Mars,
and FlavaBars® by Flavanaturals), and Fulyzaq™ for antiretroviral-induced diarrhea (PCs
consisting of polymers up to 30 from Croton lechleri; FDA-approval) are used as a food
supplement. In this sense, research focusing on inactivation of enzymes without affecting the

total polyphenol content deserves further investigation.

Furthermore, cocoa flavonoids are characterized to include OHs groups in ortho position

which makes an excellent substrate for PPO. Indeed, secondary metabolites from cocoa beans
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are alkaloids (e.g. caffeine, theobromine, and theophylline) and flavan-3-ols, which comprises
between 0.05- 1.7 wt% (Alafion, Castle, Siswanto, Cifuentes-Gomez, & Spencer, 2016), and 12-
18 wt.% (Lamuela-Ravent6s, Romero-Pérez, Andrés-Lacueva, & Tornero, 2005), respectively.
The (-)-epicatechin constitutes the major monomeric flavanol, which also forms oligomeric and
polymeric procyanidins of (epi)catechin units up to tridecamers (Pedan, Fischer, Bernath, Hihn,

& Rohn, 2017).

Regarding inactivation of PPO and its relationship with polyphenols, it has been studied on
apricots, apples, grapes, tea leaves, potatoes, lettuce, coffee, black raisins, anthocyanidins from
strawberries, catechins, quercetin, shrimps, and others (De la Rosa et al., 2009; He et al., 2008).
Several inactivation strategies such as reacting enzymes (Guerrero-Beltran, Swanson, &
Barbosa-Canovas, 2005), reducing agents (e.g. removal of oxygen using chemical agents)
(Dogru & Erat, 2012), changes on pH (Pizzocaro, Torreggiani, & Gilardi, 1993), and increasing
temperature (Menon, Hii, Law, Suzannah, & Djaeni, 2015) have been tested. Reducing agents
such as sulfites have been widely employed, but currently, their use have been restricted because
of their adverse effects on human health (Ali, EI-Gizawy, El-Bassiouny, & Saleh, 2015) Other
antibrowning agents can be used, but only a limited number are considered acceptable in terms
of safety and costs to control the enzymatic browning in foods or food products (C. Y. Lee &

Whitaker, 1995).

L-cysteine and ascorbic acid are the most widely used inhibitor agents; ascorbic acid acts as
an antioxidant reducing o-quinone back to the original phenol compound (Pizzocaro et al., 1993)
while L-cysteine acts forming complexes with o-quinones, thereby, inhibiting secondary

oxidation and polymerization reactions (Dogru & Erat, 2012). In addition, commission
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regulation EU No. 1129/2011 approves the use of ascorbic acid (food additive E-300) and L-

cysteine (food additive E-920) in foods.

Regarding the inhibition of PPO in cocoa beans, heat inactivation at temperatures ranging
from 60 — 98 °C, for a period ranging from 3 — 45 min have been previously assayed (Menon et
al., 2015; Pons-Andreu, 2008). For instance, Pons-Andreu (2008) proposed an enzymatic
treatment for cocoa nibs using a blanching process. However, heating is not a valid treatment to
enhance long-term PPO inhibition, since the enzyme is high thermostable (Manzocco, Anese, &
Nicoli, 2008). In addition, several works evaluate the change of enzyme activity by qualitative
color assays (melanosis index scale) instead to measure the specific enzymatic activity (Pons-

Andreu, 2008; Yuan, Lv, Tang, Zhang, & Sun, 2016).

Furthermore, many questions remain unsolved concerning the inactivation process. None of
the above-mentioned studies investigated the optimal temperature, time of heat treatment, type
and concentration of chemical inhibitors to enhance lower enzyme activity in cocoa beans. To
our knowledge, the relationship between the total polyphenol content during the PPO
denaturation and how this affects the antioxidant capacity and the bioactive properties of cocoa

beans has not been studied yet.

Therefore, the aims of this work were to: (a) determine the conditions to inhibit the PPO in
cocoa beans while maintaining a high level of polyphenols; to do so, concentration of inhibitor
(ascorbic acid and L-cysteine), temperature, and time were evaluated; (b) develop an equation
showing the relationship between PPO inactivation and polyphenols content, and (c) investigate
the enzyme kinetic parameters and their affinity to PPO using catechol, (+)-catechin, and (-)-

epicatechin as substrates.
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2.2. MATERIALS AND METHODS

2.2.1. Reagents All the chemicals used were analytical reagent grade and were not purified
further. Folin-Ciocalteu reagent, gallic acid, sodium carbonate, catechol, bovine serum albumin,
ascorbic acid, L-cysteine, sodium phosphate dibasic, citric acid, poly(vinylpyrrolidone) (PVP),
and Coomassie brilliant blue G-250 dye were obtained from Sigma Aldrich (St. Louis, MO, USA).
(+)-Catechin (> 99%), and (-)-epicatechin (> 99%) were purchased from ChromaDex Inc. (Irvine,
CA, USA). Acetonitrile (HPLC-grade), ethanol (analytical-grade), and formic acid were acquired
from Merck (Merck, Germany). Deionized water (18 MQcm™) from Aqua Solution system (Aqua
solution, Inc. Jasper, Georgia, USA) was used for the preparation of all solutions.

2.2.2. Recovery of cocoa polyphenol extract Fresh cocoa pods (Trinitary, clone ICS 39) were
collected at Villa Santa Monica (San Vicente de Chucuri, Santander, Colombia) and immediately
protected from light and transported on ice to CICTA Lab for processing. Cocoa pods are mainly
composed of cocoa husk, cocoa beans, and mucilage. Thus, the cocoa beans were removed
manually using a knife and immediately the beans surrounded by mucilage were removed using a
mucilage remover (homemade). After that, the beans were immediately inactivated and used for
further analysis.

2.2.3. Enzyme inhibition The inhibition of PPO enzyme in cocoa beans was enhanced by heat
treatment. The samples were dipped in an aqueous inhibitory solution consisting of ascorbic acid
and L-cysteine (1:1 v/v ratio) at same equimolar concentration. The assays were carried out as
follow: 10 beans (ca. 25 g wet weight at ca. 4 °C ) were immersed into 200 mL of inhibitory
solution at different concentrations (0 — 50 mM), time (1 —5 min) and temperature (70 — 90 °C)
in accordance with the combinations of surface design 22 that includes four replicates central point

and start points (Table 1). Immediately after that, the samples were cooled in ice water for 30 min,
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and then rinsed (x3) again with deionized water (4°C) to remove traces of ascorbic acid, and L-
cysteine. Non-treated sample (fresh unfermented cocoa bean) was kept as control.

2.2.4. PPO enzyme extraction The treated and non-treated beans were chopped in small pieces
and homogenized. The enzyme extraction was according to Babu et al., (2008) with few
modifications. Briefly, the chopped pieces were homogenized in cold extraction buffer (ratio 1:1.5
w/v, 0.01 M Mcllvaine citric phosphate, pH 6.5, containing 1% PVP) during 2 min at max speed
(Vortex reax control, Heidolph, Germany) and filtered by Whatman N°1 filter paper (Whatman,
Inc., New Jersey, USA). Homogenates were centrifuged (Heraeus, Megafuge 16R, Thermo
Scientific, Waltham, MA, USA) at 10000 g, 4 °C for 20 min. Resulting supernatant, called crude
enzyme extract, was filtered again and used for further experiments.

2.2.5. PPO enzyme activity measurement The enzyme activity (Uppo) was determined
spectrophotometrically according to Pizzocaro et al., (1993) The reaction mixture containing 1.0
mL of catechol solution (0.175 M) and 2.0 mL of Mcllvaine buffer pH 6.5 were added to 0.5 mL
crude enzyme extract. The increase in absorbance at 420 nm (Genesys 20; Thermo Scientific-
Fisher, Waltham, MA, USA) was recorded at intervals of 15 s up to 5 min at room temperature.
The PPO activity was calculated by the slope of the linear portion of the curve absorbance vs. time.
The enzyme activity corresponding to one unit of PPO activity was defined as the 0.001 unit

change in absorbance per minute at 420 nm per mL of enzyme assay solution mixture.

The protein content of specific activity was measured according to the method described by
Bradford (1976) Bovine serum albumin (BSA) was used as a standard (0 — 0.125 mg/mL) (r?=
0.999). The specific activity was expressed as one unit of enzyme activity per one-unit mg™ of

BSA protein (Uppo/mg).

The percent of total inhibition was calculated as follow (Eg. 1):
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Control-Test; .

Inhibition (%) = 100 (1)

Control

where i is the number of the treatment according to the design. Control and test; were

expressed as the amount of enzyme specific activity (Uppo/mg).

2.2.6. Substrate kinetic constants of PPO The evaluation of inhibition constant was assayed
using catechol, (+)-catechin and (-)-epicatechin (main catechins in cocoa) as substrate (5 — 200
mM) at optimal temperature for PPO activity, that is, 35°C as previously reported in the literature
(de Oliveira Carvalho & Orlanda, 2017; Siddiq & Dolan, 2017). The reaction was modeled using
the Michaelis-Menten equation (Eqg. 2). The Km value and maximum velocity Vmax Were determined
using a nonlinear regression by GraphPad Prism v. 6.0 (GraphPad Soft. Inc., La Jolla, California,

us).

Vmax* [S]

T Rnt 5] P

2.2.7. Recovery of total phenol content Recovery of phenolic compounds from non-treated
cocoa beans (control sample) and beans remaining after the PPO inhibition treatment was
determined as follows: beans were freeze-dried (Labconco Corp., Kansas City, MO, USA) for a
final humidity < 4 % (AOAC method 931.04, 1990), milled and homogenized (Grindomix GM
200, Retsch GmbH & Co., Germany). The extraction was carried out as follows: 1 g of sample
was added to 60 mL of a mixture of 50 % ethanol/water (w/w) at 50 °C, 300 rpm for 30 min using
a magnetic stirrer hotplate (IKA C-MAG HS7. Germany) and thermocouple (IKA ETS-D5,
Germany). The resulting extract was centrifuged (5000 g, 4 °C, 20 min); then the supernatant was
filtered through 0.45 um hydrophilic PTFE filter (Millipore, Milford, MA, USA), and immediately

analyzed.
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2.2.8. Determination of total polyphenol content The total polyphenol content of the sample
was assayed using Folin-Ciocalteu reagent according to Singleton et al., (1998) with modifications
as follows: the reaction was initiated by the addition of 50 pL of the sample with 1.5 mL of 10-
fold diluted Folin-Ciocalteu reagent. After 5 min, 1.5 mL of 7.5% (w/v) sodium carbonate was
added and vortexed for 10 s. The reaction medium was stored in the dark for 1 h at 25 °C.
Absorbance was measured at 765 nm (Genesys 20; Thermo Scientific-Fisher, Waltham, MA,
USA) against a blank sample. A gallic acid calibration curve was prepared with 0.05-1.0 mg/mL
(r’= 0.999). Results of total polyphenols amount were expressed as mg gallic acid equivalents by
gram of dried cocoa beans (mg GAE/qg).

2.2.9. Chromatographic analysis by HPLC-DAD The reverse phase conditions and stationary
phase were optimized to detect both catechins and procyanidins into the cocoa extract. Briefly, LC
was assayed on a Shimadzu (LC-2030 LT Series-i, USA) and the separation was achieved using a
C1g-phenyl column (4.6 x 50 mm, 2.5um) (Xbridge, Waters, US) protected with a security guard
from Phenomenex (AJ0-8788, Phenomenex, Torrance, CA). The procedure consisted of
water/formic acid (99.99/0.01 v/v) (solvent A), and acetonitrile/formic acid (99.99/0.01 v/v)
(solvent B). The linear gradient was as follows: 0-8 min, 2% B; 8 - 37 min, 10% B; 37- 40 min,
0% B and re-equilibrium for 10 min. The flow rate, column temperature, and diode array were 0.8

mL/min, 60 °C, and 280 nm respectively.

Identification of both catechins and procyanidins were carried out by lon Trap LC/MS (model
6320, Agilent Technologies, Waldbronn, Germany) equipped with an ESI source and ion trap
mass analyzer, which was controlled by the 6300 series trap control software (Bruker Daltonik
GmbH, V. 6.2). The mass spectrometer was operated under negative ESI mode with the

following conditions: mass spectra recorded from 90 - 2200 m/z, nebulizer 40 psi, dry gas 12
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L/min and dry temperature 350 °C. Target compounds consisted of [M-H] ions at m/z 289, 577,
865, 1153, 1442, and 1730 that correspond to monomers, dimers, trimers, tetramers, pentamers,

and hexamers procyanidins structures, respectively.

2.2.10. Scanning electron microscopy and image analysis Scanning electron microscopy
(SEM) was additionally used to evaluate the microstructure of a) non-treated cocoa beans, and b)
cocoa beans with reduced PPO activity. Beans were cut into longitudinal and transversal sections
with the objective to observe their microstructure. Sections were mounted on aluminum stubs with
double-sided carbon adhesive tape and observed using the XL-30 Environmental Scanning
Electron Microscope (Philips, USA) at 25 kV accelerating voltage with the BSE (backscattered
electron) detector. The images were acquired in grayscale and stored in TIFF format at 712 x 484

pixels with brightness values between 0 and 255 for each pixel constituting the image.

A generalization of the box-counting method to evaluate the fractal dimension of the images
(FDt) for four different images at the same magnification (1000x) was used. Therefore, the
shifting differential box-counting method (SDBC) (Hernandez-Carrion, Hernando, Sotelo-Diaz,
Quintanilla-Carvajal, & Quiles, 2015) to evaluate the fractal dimension of texture of SEM

images using the ImageJ 1.34 software, was carried out.

2.2.11. Statistical Analysis All measurements were repeated at least three times. Statistical
analysis was done using Statistica v. 7.1 (Stat-Soft Inc., USA). The analysis of variance (ANOVA)
and p-test were used to evaluate the influence of the factors and their interactions on the
experimental design. ANOVA one-way and Tukey's multiple range test at a 5% level of
significance was also evaluated. The response surface methodology consisting of full factorial

central composite rotatable design with four replicates at the central point was conducted according
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to a completely randomized model. A second-order polynomial equation was used to fit the

experimental data, as follow (Eg.3):

k k k-1 k
Y=Bo+ ) BXi+ Y B+ ) D B (3)
i=1 i=1 =1 j=2

where Y is the predicted factor, Bo is the value of the fitted response to the design, Bi, Bii, and

Bij are the coefficients of linear, quadratic, and cross product terms, respectively.

2.2.12. Verification of the model R-squared coefficient of full factorial central composite design
was measured. In addition, experimental runs were randomized to evaluate the concordance of

experimental data and predicted values, therefore, the root mean squared error (RMSE, Eq. 4)

2[yN (v )2
RMSE = /—‘“(Z‘ 7 4)

where y; and ¥, is the measured value and predicted value by the model, respectively. And n is

was used, as follows:

the number of the set data.

2.3. RESULTS

2.3.1. Preliminary inhibition assays Prior to optimizing the inhibition of PPO enzyme from
cocoa beans, the following parameters were evaluated: (a) the nature of inhibitor, and (b) the size
of the cocoa beans. Thus, the PPO activity as a function of different inhibitory agents was
determined with a solution containing 1% (w/w) ascorbic acid, 1% (w/w) L-cysteine, and mixture
of ascorbic acid/L-cysteine (1:1 ratio, 1% w/w,) using heat treatment at 90 °C for 5 min as

previously reported by Menon et al., (2015). At concentration >1% inhibitors behave as quinone
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reducer similar to sulfides (Ali et al., 2015). The results showed that highest denaturation of the
enzyme was enhanced by a mixture of ascorbic acid/L-cysteine (79.3 %) followed by ascorbic acid

(72.8 %) and L-cysteine (67.5 %).

In addition, two sizes of cocoa beans consisting of (S1) chopped cocoa bean (cross section of
1 x 0.5 cm?), and (Sz) whole cocoa beans, were also evaluated. Results showed that S treatment
inhibited the PPO in 1.2 —fold higher than S». Interestingly, inhibition solution color after heat
treatment (control system) was translucid-yellow, which was quite similar to S, treatment.
However, a violet color in the waste solution of S; treatment was observed and could be as a
consequence to the greater surface contact, thus facilitating the release of polyphenols to the
waste solution. Indeed, analysis by HPLC-DAD-ESI-MS/MS showed that loss of catechins and
procyanidins (up to hexamers) on Sy and S treatments were 0.5 and 1.2 wt.%, and 8 and 22

wt.%, respectively.

Hence, the maximization of the inactivation of PPO was carried out using whole cocoa beans,

together with combination of ascorbic acid/L-cysteine at same equimolar concentration.

2.3.2. Influence of inhibition parameters on PPO activity The extent of PPO inhibition as a
function of treatment time, temperature and inhibitor concentration is summarized in Table 1. In
addition, the recovery of total polyphenol content for each assay was evaluated. As can be seen in
Fig. S1, a non-linear relationship could be observed between values of enzyme inactivation and
concentration of polyphenols (r? = 0.60). To better understand the relationship between the two
response variables, several models such as quadratic (r?> = 0.61), exponential (r> = 0.56), and
logarithmic (r? = 0.59) equations were evaluated; however, none of them was able to describe the

data adequately. Furthermore, a new equation (Eg. 5) which correlates high polyphenol content
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with reduced PPO activity —expressed in percentage— in an inverse relationship, was established

as follows:

. Total Polyphenol; (%)
1™ 100-PPO Inhibition; (%)

(5)

where I' —represented by the Greek uppercase letter— means the high polyphenol content with
low enzyme activity as a function of % Total polyphenol recovered and % PPO inhibition; i is

the number of the treatment according to the design.

Figure 1. 3D scheme for the correlation I" as a function of PPO inhibition (%) and total

polyphenol content (%) from cocoa beans. See equation 5.

Figure 1 shows the experimental data adjusted according to our proposed model (Eq. 5).
Plotting of I as a function of total polyphenol (%) or inactivation (%) had a good adjustment of
r? equal to 0.91, and 0.92, respectively (Figure S2). Based on the new response variable, T,

typical exponential profile was observed, in other words, I" increased by increasing the enzyme



ENCAPSULATION OF ANTIOXIDANTS FROM THEOBROMA CACAO L. 147

inhibition and polyphenol content until saturation value was reached. We hypothesized that heat
treatment not only allowed to break down the enzyme-substrate complex but also to cause

softening of the cell, thereby, increased the extraction yi