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RESUMEN

TÍTULO: AMPLIFICACIÓN VISUAL DE SIGNOS ÓCULO-MOTORES PARA EL RECONOCIMIENTO

DE PATRONES PARKINSONIANOS *

AUTOR: ISAIL SALAZAR ACOSTA **

PALABRAS CLAVE: ENFERMEDAD DE PARKINSON, FIJACIÓN OCULAR, PATRONES ÓCULO-

MOTORES, MAGNIFICACIÓN DE MOVIMIENTO, CARACTERÍSTICAS CONVOLUCIONALES.

DESCRIPCIÓN:

Las alteraciones óculo-motoras constituyen un biomarcador prometedor para detectar y caracterizar

la enfermedad de Parkinson (EP), inclusive en etapas pródromas. En la actualidad, sin embargo,

solo se cuenta con el uso de dispositivos de seguimiento visual que entregan trayectorias globales

y simplificadas para aproximar la compleja cinemática de la función óculo-motora. La adquisición

de estas señales además suele requerir de protocolos intrusivos y sofisticados pasos de calibración.

Este trabajo presenta un novedoso biomarcador de imagen para evaluar la EP mediante el mode-

lamiento de los movimientos de fijación ocular, registrados con cámaras convencionales. En primer

lugar, se realiza un proceso de magnificación de video basado en aceleración, cuyo fin es mejorar

visualmente pequeños patrones relevantes de fijación en los videos capturados. Seguidamente se

procede a extraer un conjunto de cortes espacio-temporales por video, los cuales son representa-

dos como mapas de características desde las primeras capas pre-entrenadas de redes neuronales

convolucionales. A continuación, estos mapas se codifican eficientemente mediante matrices de co-

varianza para el entrenamiento de una máquina de soporte vectorial que lleva a cabo la clasificación

de la enfermedad. Utilizando un conjunto de 130 videos en un estudio con 13 pacientes PD y 13

control, el enfoque propuesto alcanzó una precisión media de 95.4% y un área bajo la curva ROC de

0.984, siguiendo un esquema de validación cruzada por paciente excluido. El descriptor introducido

captura adecuadamente en los ojos patrones de temblor conocidos en PD mostrando un desempeño

sobresaliente.

* Trabajo de investigación

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería de Sistemas e Informática.
Director: Fabio Martínez Carrillo, Ph.D. Codirector: Said David Pertuz Arroyo, Ph.D.
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ABSTRACT

TITLE: VISUAL AMPLIFICATION OF OCULOMOTOR SIGNS FOR PARKINSONIAN PATTERNS

RECOGNITION *

AUTHOR: ISAIL SALAZAR ACOSTA **

KEYWORDS: PARKINSON’S DISEASE, OCULAR FIXATION, OCULOMOTOR PATTERNS, MO-

TION MAGNIFICATION, CNN FEATURES.

DESCRIPTION:

Oculomotor alterations constitute a promising biomarker to detect and characterize Parkinson’s dis-

ease (PD), even in prodromal stages. Currently, however, only global and simplified gaze trajectories,

obtained from tracking devices, are used to approximate the complex kinematics of the oculomo-

tor function. Besides, the acquisition of such signals often requires sophisticated calibration and

intrusive settings. This work presents a novel imaging biomarker for PD assessment that models

ocular fixational movements, recorded with conventional cameras. Firstly, a video acceleration mag-

nification is performed to visually enhance small relevant fixation patterns on standard gaze video

recordings. Hence, from each video are extracted a set of spatio-temporal slices, which thereafter

are represented as convolutional feature maps, recovered as the first layer responses of pre-trained

CNN architectures. The feature maps are then efficiently encoded by means of covariance matrices

to train a support vector machine and perform the disease classification. From a set of 130 record-

ings in a study of 13 PD patients and 13 age-matched controls, the proposed approach achieved an

average accuracy of 95.4% and an area under the ROC curve of 0.984, following a leave-one-patient-

out cross-validation scheme. The introduced imaging-based descriptor is able to properly capture

known disease tremor patterns in the eyes, since PD classification performance is outstanding when

augmented motion frequencies were fixed within tremor-related pathological ranges.

* Research work

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería de Sistemas e Informática.
Advisor: Fabio Martínez Carrillo, Ph.D. Co-advisor: Said David Pertuz Arroyo, Ph.D.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder in

the world. Reported incidence indicates a typical affectation of 2–3% of the popula-

tion older than 65 years old 1, with an expectation of doubling by 2030. PD symptoms

are mainly motor, involving progressive and involuntary alterations over the mobility

of different body segments, such as tremor, bradykinesia (slow movement) and stiff-

ness. These physical impairments are the direct consequence of a gradual decline

in dopamine levels 2, a biomolecule the brain uses to conduct neurotransmission of

motor commands.

In spite of recent advances in neuroimaging and genetics, the loss of dopamine-

secreting cells remains poorly understood, resulting in diagnostic procedures that

rely on conspicuous motor alterations. In clinical practice, such procedures carry

out specific observational tests, like the Unified Parkinson’s Disease Rating Scale

(UPDRS) and the Hoehn-Yahr Scale, that coarsely correlate the patients’ motor be-

havior with different disease stages 3. This evaluation is however prone to bias and

subjectivity due to the high interpersonal variability of patients’ motion and the partic-

ular physician’s experience and perception 4. Hence, quantitative and reproducible

1 POEWE, Werner , et al. “Parkinson disease”. In: Nature reviews Disease primers 3 (2017),
p. 17013.

2 JANKOVIC, Joseph. “Parkinson’s disease: clinical features and diagnosis”. In: Journal of neurol-
ogy, neurosurgery & psychiatry 79.4 (2008), pp. 368–376.

3 VENUTO, Charles S, et al. “A review of disease progression models of Parkinson’s disease and
applications in clinical trials”. In: Movement Disorders 31.7 (2016), pp. 947–956.

4 RIZZO, Giovanni, et al. “Accuracy of clinical diagnosis of Parkinson disease A systematic review
and meta-analysis”. In: Neurology 86.6 (2016), pp. 566–576.
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models are currently in demand to objectively support PD assessment. Also, such

models should have a special emphasis in the early stages of the disease, where

the motor impairment degree is very subtle. In fact, diagnostic error rates on early

stages have been quantified above 24% even in specialized centres 1.

Machine learning (ML) and pattern recognition methods have allowed to improve

the diagnostic and monitoring paradigm of PD by modeling several kinematic symp-

toms 5. Specifically, relevant works have reported significant discrimination between

PD and healthy patterns by applying supervised ML algorithms over on-body sensor

signals 6 ,7. Other well-performing approaches have considered the use of video

information in deep learning architectures 8 ,9. These schemes have mainly worked

on classification and recognition of PD gait and tremor behaviors, focusing on upper

and lower limbs. However, limb motor symptoms generally appear in middle and

advanced disease stages, after the loss of 50% of dopamine-secreting cells 10.

5 BELIĆ, Minja, et al. “Artificial intelligence for assisting diagnostics and assessment of Parkinson’s
disease–A review”. In: Clinical neurology and neurosurgery (2019), p. 105442.

6 CARAMIA, Carlotta, et al. “IMU-Based Classification of Parkinson’s Disease From Gait: A Sen-
sitivity Analysis on Sensor Location and Feature Selection”. In: IEEE journal of biomedical and
health informatics 22.6 (2018), pp. 1765–1774.

7 ABDULHAY, Enas, et al. “Gait and tremor investigation using machine learning techniques for the
diagnosis of Parkinson disease”. In: Future Generation Computer Systems 83 (2018), pp. 366–
373.

8 HU, Kun, et al. “Vision-based freezing of gait detection with anatomic patch based representation”.
In: Asian Conference on Computer Vision. Springer. 2018, pp. 564–576.

9 AJAY, Jerry, et al. “A pervasive and sensor-free deep learning system for Parkinsonian gait anal-
ysis”. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI).
IEEE. 2018, pp. 108–111.

10 SALAT, David, et al. “Challenges of modifying disease progression in prediagnostic Parkinson’s
disease”. In: The Lancet Neurology 15.6 (2016), pp. 637–648.
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The eye movements have emerged as a potential and very promising PD biomarker

with strong diagnostic confidence at the disease onset. For instance, patients with

rapid eye movement disturbances during sleep have shown a high risk for developing

PD 11, reporting conversion rates between 15% and 40% over 2-5 years and up to

90% with longer follow-up beyond 10 years. Furthermore, several works have found

specific and subtle abnormalities on a variety of eye movements in typical visual

tasks performed by PD patients 12 ,13 ,14. The described alterations point out a dras-

tic association between the oculomotor function and the neurodegenerative process

of the brain. A relation that can be anatomically explained by studying the multiple

brain structures and neural circuits involved in the oculomotor control 15. For this

reason, it is fundamental to detect and quantify oculomotor disturbances, especially

those that have been confirmed in large cohorts of PD patients at different stages.

In particular, the work of Gitchel et al. 16 demonstrated the presence of unstable

fixations on 112 patients with PD and in 2 out of 60 asymptomatic control subjects.

11 IRANZO, Alex; SANTAMARIA, Joan, and TOLOSA, Eduardo. “Idiopathic rapid eye movement
sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interven-
tions”. In: The Lancet Neurology 15.4 (2016), pp. 405–419.

12 GORGES, Martin, et al. “The association between alterations of eye movement control and cere-
bral intrinsic functional connectivity in Parkinson’s disease”. In: Brain imaging and behavior 10.1
(2016), pp. 79–91.

13 EKKER, Merel S, et al. “Ocular and visual disorders in Parkinson’s disease: Common but fre-
quently overlooked”. In: Parkinsonism & related disorders 40 (2017), pp. 1–10.

14 TURCANO, Pierpaolo, et al. “Early ophthalmologic features of Parkinson’s disease: a review of
preceding clinical and diagnostic markers”. In: Journal of neurology (2018), pp. 1–9.

15 GOLDBERG, M. E and WALKER, M. F. “The control of gaze”. In: Principles of Neural Science.
Ed. by KANDEL, Eric R., et al. 5th. USA: New York: McGraw-Hill, 2013, pp. 894–916.

16 GITCHEL, George T; WETZEL, Paul A, and BARON, Mark S. “Pervasive ocular tremor in patients
with Parkinson disease”. In: Archives of neurology 69.8 (2012), pp. 1011–1017.
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Figure 1. Ocular fixation comparison of a PD-diagnosed patient and a healthy control sub-
ject. Motion-magnified slices from eye videos show a clear improvement in the visual differ-
entiation of both classes. (a) PD sequence where the magnification process enhances an
oscillatory fixational instability. (b) Control sequence where no particular oculomotor pattern
is depicted.

(a) Parkinson:          Standard        Magnified     (b) Control: Standard        Magnified 

t

x

t

x

Incidentally, both control subjects evolved to clinical PD at 3 years of follow-up 17.

Nevertheless, a main drawback of the majority of oculomotor research lies on the

utilization of video-oculography (VOG) protocols 18. VOG recordings present limita-

tions in that they only depict global and simplified trajectories of the whole eye motion

field, and are difficult to set up and calibrate. Besides, the instrumentation usually

requires contact with the entire area around the eyes, thus affecting the natural visual

gesture.

This paper introduces a novel strategy to reveal and quantify fixational eye micro-

movements from conventionally captured videos. Such description is achieved by

extracting temporal video slices that spatially project eye motion. First, small fix-

ation patterns are enhanced by means of a video acceleration magnification. As

shown in Figure 1, magnified slices can better portray the oscillatory fixational pat-

17 GITCHEL, George T, et al. “Experimental support that ocular tremor in Parkinson’s disease does
not originate from head movement”. In: Parkinsonism & related disorders 20.7 (2014), pp. 743–
747.

18 LARRAZABAL, AJ; CENA, CE García, and MARTÍNEZ, CE. “Video-oculography eye tracking
towards clinical applications: A review”. In: Computers in biology and medicine 108 (2019),
pp. 57 –66.
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terns that visually differentiate between control and PD eye motion. Subsequently,

a dense slice representation is obtained by computing early layer responses in rel-

evant deep learning architectures. These responses correspond to pre-learned and

multi-channel filter outputs that are compactly codified as a channel-wise covariance

matrix. Major information energy is captured according to an eigenvalue decomposi-

tion. Then, the resulting covariance is mapped to a previously trained support vector

machine in order to classify the disease given a certain set of eye slices.

Experiments were performed over 130 eye sequences from 13 PD-diagnosed pa-

tients and 13 age-matched control subjects, through a leave-one-patient-out cross-

validation scheme. The achieved results show high effectiveness to codify fixation

motility and to discriminate between both classes. Three main contributions are:

• A novel computational framework to characterize ocular fixation, resulting in

an imaging biomarker for the quantitative assessment of Parkinson’s disease

while avoiding complex protocols and sophisticated devices.

• A video dataset of relevant eye movements in typical visual tasks for control and

parkinsonian populations, from a simple and comfortable recording protocol

with a conventional camera.

• An extensive evaluation to demonstrate that video magnification can be a pow-

erful tool for improving performance in parkinsonian oculomotor assessment

while providing a visual enhancement of tenuous abnormalities.

The proposed approach in this research work could potentially provide support and

assistance on diagnostic procedures and follow-up of PD progression. Particularly,

this methodology constitutes a promising development for the evaluation of parkin-

sonian oculomotor patterns in practical scenarios, with prospect application on early

14



stages of the disease, where the most effective treatment therapies can be formu-

lated.
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1. PARKINSONIAN OCULOMOTOR ANALYSIS

Recently, oculomotor patterns have been evidenced as a highly relevant biomarker

to detect and characterize PD, even in prodromal disease stages 13 , 14 ,19. The

oculomotor function depends on a large part of the human brain, including several

cortical and subcortical areas (e.g., the brainstem, cerebellum, and basal ganglia)
15. Hence, neurodegenerative brain changes, involved during PD progression, can

be sensed from the acute sensitivity of eye motion. Fixational eye motion, in particu-

lar, represents a type of ocular motility that have been quantified in a relatively large

population of PD patients, including novo untreated patients and healthy controls that

eventually developed the disease 16 ,20 , 17.

Ocular fixation is defined as the faculty to stabilize the visual gaze at a given loca-

tion, e.g., on a stationary object of interest, while the head is relatively kept in fixed

position. In the study of Gitchel et al. 16, it was found the presence of a persistent

ocular micro-tremor on 112 PD patients during gaze fixations. This alteration was

characterized as an oscillatory pattern with a mean fundamental frequency of 5.7

± 1.5 Hz and average magnitudes of 0.27o and 0.33o in the horizontal and vertical

planes, respectively. This motion is very subtle and almost imperceptible. In a sec-

ond study, it was additionally evaluated the independence of this pattern with respect

to head movements 17, facing with an alternative hypothesis that explained fixational

19 LAL, Vivek and TRUONG, Daniel. “Eye movement abnormalities in movement disorders”. In:
Clinical Parkinsonism Related Disorders 1 (2019), pp. 54 –63.

20 ARCHIBALD, Neil K, et al. “Visual exploration in Parkinson’s disease and Parkinson’s disease
dementia”. In: Brain 136.3 (2013), pp. 739–750.
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oculomotor disturbances as merely vestibular-ocular reflex responses 21.

Further PD oculomotor studies have analyzed different kinematic abnormalities in

other types of eye movements. In saccades, for instance, the quick movement of

both eyes between two fixation targets, there have been reported decreasing am-

plitudes (hypometric steps) and increasing latencies 12. The antisaccadic task has

also been investigated, where the eyes move away from the second fixation tar-

get, reflecting positional errors and more severely prolonged latencies 22. Another

commonly evaluated oculomotor type corresponds to the close following of a mov-

ing object, known as smooth pursuit eye movement, which is described in PD by

saccadic interruptions and low pursuit gain (the ratio between peak eye velocity and

peak target velocity) 23. Finally, in vergence eye movements, where the eyes rotate

towards (convergence) or away (divergence) from each other according to a target

moving closer by o farther away, are reported impairments in both direction and ve-

locity that often cause blurred vision in PD patients 24.

Some works in the computer science community have then explored these findings

and have proposed statistical and learning-based approaches to quantitatively pre-

dict parkinsonian progression and diagnosis. For instance, the work presented in

21 KASKI, Diego, et al. “Ocular tremor in Parkinson’s disease is due to head oscillation”. In: Move-
ment Disorders 28.4 (2013), pp. 534–537.

22 EWENCZYK, Claire, et al. “Antisaccades in Parkinson disease: a new marker of postural control?”
In: Neurology 88.9 (2017), pp. 853–861.

23 FUKUSHIMA, Kikuro , et al. “Impaired smooth-pursuit in Parkinson’s disease: normal cue-
information memory, but dysfunction of extra-retinal mechanisms for pursuit preparation and exe-
cution”. In: Physiological reports 3.3 (2015), e12361.

24 HANUŠKA, Jaromír, et al. “Fast vergence eye movements are disrupted in Parkinson’s disease:
A video-oculography study”. In: Parkinsonism & related disorders 21.7 (2015), pp. 797–799.
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25 evaluated saccadic recordings of 94 PD patients, by applying random forest

classifiers in order to predict the individual UPDRS scores and Levadopa dosages

(most common treatment drug of PD) of the patients. Another approach 26 imple-

ments a binary logistic regression model over a combination of saccadic, smooth

pursuit and fixation parameters, in a case-control evaluation of 37 PD patients and

39 controls. And very recently, in a compact study with 11 PD patients 27, decision

tree algorithms were trained on antisaccadic metrics to obtain predictions of the UP-

DRS patient scores. A previous version of such study also evaluated saccades and

smooth pursuit movements by using rough set theory 28.

All of the previously mentioned studies rely on video-oculography (VOG) monitoring

schemes 29. These VOG setups generally employ specialized infrared cameras of

high spatial and temporal resolutions, and offer reliable and noise-free recordings of

eye movement. Nonetheless, the registered signals are limited to global eye-tracking

relationships and the quantification of primary orders for the description of eye kine-

matic parameters. Additionally, the required equipment can become intrusive by

25 SZYMAŃSKI, Artur, et al. “Building Intelligent Classifiers for Doctor-Independent Parkinson’s Dis-
ease Treatments”. In: Conference of Information Technologies in Biomedicine. Springer. 2016,
pp. 267–276.

26 ZHANG, Yu, et al. “Oculomotor Performances Are Associated With Motor and Non-motor Symp-
toms in Parkinson’s Disease”. In: Frontiers in neurology 9 (2018), p. 960.

27 SLEDZIANOWSKI, Albert, et al. “Measurements of Antisaccades Parameters Can Improve the
Prediction of Parkinson’s Disease Progression”. In: Asian Conference on Intelligent Information
and Database Systems. Springer. 2019, pp. 602–614.

28 KUBIS, Anna; SZYMAŃSKI, Artur, and PRZYBYSZEWSKI, Andrzej W. “Fuzzy Rough sets the-
ory applied to parameters of eye movements can help to predict effects of different treatments in
Parkinson’s patients”. In: International Conference on Pattern Recognition and Machine Intelli-
gence. Springer. 2015, pp. 325–334.

29 KHOSLA, Ajit and KIM, Dongsoo. Optical Imaging Devices: New Technologies and Applications.
CRC Press, 2015.

18



covering the entire eye region, is expensive, and require calibration and configura-

tion procedures. In order to tackle these issues, alternatives for oculomotor exam-

ination that only use common video sequences have been recently introduced 30

,31 ,32. Such strategies model spatio-temporal pixel relationships based on diverse

computer vision algorithms, under semi-controlled conditions and without complex

requirements regarding the devices used.

Despite the advances in developing video descriptors for oculomotor quantification,

existing methods are restricted to capture saccadic eye movements, described as

large iris displacements in different visual exploration tasks. These approaches re-

quire greater efforts to describe the tiny and subtle oculomotor behaviors in other

varieties of eye movements. Additionally, it should be considered that these move-

ments can be masked by unavoidable comparatively larger movements of the pa-

tient’s head. In this way, oculomotor patterns potentially descriptive for PD detection

and prognosis, could be better assessed.

30 TRUJILLO, David, et al. “A characterization of Parkinson’s disease by describing the visual field
motion during gait”. In: 11th International Symposium on Medical Information Processing and
Analysis. Vol. 9681. SPIE (2015).

31 ADHIKARI, Sam and STARK, David E. “Video-based eye tracking for neuropsychiatric assess-
ment”. In: Annals of the New York Academy of Sciences 1387.1 (2017), pp. 145–152.

32 LAI, Hsin-Yu, et al. “Enabling Saccade Latency Measurements with Consumer-Grade Cameras”.
In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE. 2018, pp. 3169–
3173.
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2. RESEARCH PROBLEM

Current acquisition systems for quantitative oculomotor examination do not repre-

sent the whole eye motion field and its intrinsic deformations. In addition, since the

equipment is expensive, difficult to set up and calibrate, it is necessarily limited to

laboratory research and restrictive protocols. Other alternatives perform the oculo-

motor evaluation on video by using consumer-grade cameras. However, they do not

consider subtle oculomotor alterations that prove to be of great importance for as-

sisting early PD diagnosis and tracking disease progression.

Research Question: How to describe subtle oculomotor patterns registered on

video that may be associated with the Parkinson’s disease?

General Objective

To propose a quantitative description of ocular micro-motion in video for diagnostic

support of Parkinson’s disease.

Specific Objectives

• To build a video dataset of relevant oculomotor patterns in parkinsonian and

control populations.

• To visually amplify eye motion through video magnification techniques.

• To quantitatively describe oculomotor behavior on standard and magnified videos.

• To evaluate the performance of the proposed approach in the recorded video

dataset.

20



3. PROPOSED APPROACH

The proposed pipeline is illustrated in Figure 2. Three fundamental steps are con-

sidered and will be detailed in the following sections.

3.1. VIDEO ACCELERATION MAGNIFICATION

A remarkable fact of PD fixations is their abnormal and subtle oscillatory behavior

which has been strongly correlated with Parkinson’s disease 16 , 17. Nevertheless,

the quantification of these involuntary eye micro-movements constitutes a major lim-

itation for fixational PD motion analysis. An additional challenge underlies on decod-

ing the tiny eye displacement when masked on comparatively larger head motion.

This work hence starts by performing an optical spatio-temporal amplification over

fixation sequences. A set of specific motion-related frequencies were amplified by

using a video acceleration magnification approach 33, which allows to amplify subtle

33 ZHANG, Yichao; PINTEA, Silvia L., and VAN GEMERT, Jan C. “Video Acceleration Magnifica-
tion”. In: Computer Vision and Pattern Recognition. 2017.

Figure 2. Pipeline of the proposed approach. (a) Video acceleration magnification (section
3.1). (b) A convolutional fixation representation (section 3.2). (c) Recognizing PD from a
compact fixational descriptor (section 3.3).
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motion (eye fixations) even in the presence of large motion (head). The acceleration

magnification works by analyzing local motion of video pixels, a derivation that can

be computed from spatially localized phase information 34:

I(x, t) ∗ Ωw,θ = Aw,θ(x, t) e
iΦw,θ(x,t) , (1)

where I(x, t) represents a pixel signal at coordinate x = [x, y] and Ωw,θ is a complex-

valued steerable pyramid 35, with w spatial frequency bands and θ orientations.

The local phase is then extracted and decomposed into a second-order Taylor series

around t:

Φw,θ(x, t+ 1) ≈ Φw,θ(x, t) +
∂Φw,θ(x,t)

∂t
+ 1

2

∂2Φw,θ(x,t)

∂t2
(2)

The first-order term in Eq. 2 represents linear magnitude changes on velocity, while

the second-order term measures the deviation of motion change, i.e., acceleration.

Previous magnification methods focused on amplifying velocity 36 ,37. In this case,

considering that velocity quantifies all motion changes without discriminating be-

tween large or small ones, then, for amplifying small motion in the presence of large

motion, the acceleration can be used. This fact assumes, from the acceleration point

of view, that large motions are approximately linear at the temporal scale of small mo-

tion. Therefore, all linear motion is disregarded from the analysis. For doing so, only

34 FLEET, David J and JEPSON, Allan D. “Computation of component image velocity from local
phase information”. In: International journal of computer vision 5.1 (1990), pp. 77–104.

35 PORTILLA, Javier and SIMONCELLI, Eero P. “A parametric texture model based on joint statis-
tics of complex wavelet coefficients”. In: International journal of computer vision 40.1 (2000),
pp. 49–70.

36 WU, Hao-Yu, et al. “Eulerian Video Magnification for Revealing Subtle Changes in the World”. In:
ACM Transactions on Graphics (Proc. SIGGRAPH 2012) 31.4 (2012).

37 WADHWA, Neal, et al. “Phase-based video motion processing”. In: ACM Transactions on Graph-
ics (TOG) 32.4 (2013), p. 80.
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the second-order phase derivative is taken into account, which is obtained through

the Laplacian of Gaussian operator:

Φ′′w,θ(x, t) =
∂2Φw,θ(x,t)

∂t2
= Φw,θ(x, t) ∗ ∂

2Gσ(x,t)
∂t2

, (3)

where σ is the Gaussian filter standard deviation.

Then, phases are amplified as follows:

Φ̂w,θ(x, t) = Φw,θ(x, t) + α Φ′′w,θ(x, t) , (4)

where α is the magnification factor, which amplifies second-order changes at a tem-

poral frequency f = fr
8π
√

2σ
, with fr = video frame rate.

3.2. A CONVOLUTIONAL FIXATION REPRESENTATION

The resulting amplified video Î(x, t) is split-up into a set of spatio-temporal slices

Sθ = {sθ1 , sθ2 , . . . , sθN} at N orientations. In this way, each slice records temporal

tremor signals together with natural eye motion signals. To compute these slices,

different radial directions on the spatial xy-plane were used as a reference along

time. A typical radial configuration is illustrated in Figure 3. Eye slices then capture

small eye iris displacements and herein constitute an ideal source of information to

analyze small ocular movements.

Figure 3. Spatio-temporal video slices. At different slice directions, relevant cues in fixation
recordings can be captured.
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A slice feature decomposition is applied to analyze hidden parkinsonian tremor pat-

terns involved in ocular fixation signals. Each slice sθi is represented as a bank of

separated band responses of multiple spatial frequency filters. To this end, slices

Sθ are mapped onto the first layers of known and pre-trained deep convolutional

frameworks, which have been implemented for a general natural image classification

problem. In brief, such architectures progressively compute linear transformations,

followed by contractive nonlinearities, projecting information on a set of C learned

filters Ψj = {ψj
1,ψ

j
2, . . . ,ψ

j
C} at a given layer j. Hence, each eye slice sθi is filtered

by a particular Ψj set, obtaining a convolutional feature representation:

Xj =

C∣∣∣ ∣∣∣
c= 1

sθi ∗ψj
c =

C∣∣∣ ∣∣∣
c= 1

χjc , (5)

with || representing concatenation and χjc as each independent feature channel.

The discovery of an efficient representation that captures key visual concepts on

particular domains has been an open problem on computer vision. Classical repre-

sentations such as the wavelets have been effective on several domains, but requir-

ing specific analysis about the nature of signals and an exhaustive tuning to repre-

sent objects of interest. In contrast, representations based on learned convolutional

schemes, which are originally optimized for object classification, have turned out

successful for other generic tasks 38 ,39. These representations namely use the last

38 SHARIF RAZAVIAN, Ali, et al. “CNN features off-the-shelf: an astounding baseline for recogni-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recognition work-
shops. 2014, pp. 806–813.

39 DONAHUE, Jeff, et al. “Decaf: A deep convolutional activation feature for generic visual recogni-
tion”. In: International conference on machine learning. 2014, pp. 647–655.
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fully connected vectors as input on conventional non-linear classifiers. Such vectors

capture salient semantic concepts of complex visual objects. In this work, the salient

parkinsonian fixation patterns are represented as primitive signals spatially embed-

ded in the background. Therefore, the use of first layers that decompose primitive

and low-level features of slice signals is an optimal and sufficient representation.

3.3. RECOGNIZING PD FROM A COMPACT FIXATIONAL DESCRIPTOR

The feature representation X ∈ RH×W×C for each slice sθ is composed by C filter

responses χc with dimensions H ×W . This information is nevertheless redundant

on spatial background, since parkinsonian fixation patterns present alterations of

oscillatory and periodic nature. For this reason, a channel-wise covariance is herein

computed from feature maps, providing a compact measure of relationship between

the different feature channels. For doing so, each χc is first vectorized, reshaping X

to HW ×C, i.e., X is now a matrix of C-dimensional feature vectors. From here, the

feature covariance calculation can be expressed as:

Σ = 1
HW

[X− µ(X)][X− µ(X)]T , (6)

with µ(X) as the mean 1× C feature vector repeated HW times vertically.

The covariance Σ ∈ RC×C then describes a second statistical moment on the whole

feature space, that compactly summarizes the fixational motion representation from

each particular eye slice. From a spectral matrix analysis, Σ = VΛVT, Λ eigen-

values and V eigenvectors, only information related to the k major eigenvalues is

preserved, where the energy of Σ is fully concentrated. In this way, a new reduced

covariance Σr that captures the most variability of the C feature channels is com-

puted as:

Σr
k×k

= WTΣ W , (7)
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where W ∈ RC×k is the reduced eigenvector matrix of Σ with k < C.

Due to the semi-definite and positive properties of covariance matrices, they exist

on a semi-spherical Riemannian space. This fact limits the application of classic

machine learning approaches that assume Euclidean structured data. Thus, Σr is

projected onto the Euclidean space by taking the matrix logarithm of Σr. That is,

log(Σr) = Vr log(Λr)V
T
r , (8)

where Vr are the eigenvectors of Σr and log(Λr) the corresponding logarithmic

eigenvalues.

The reduced covariance in Eq. (8) represents the fixational motion descriptor to be

fed into a machine learning algorithm in order to obtain a prediction of Parkinson’s

disease, under a supervised learning scheme. In this work, a support vector machine

(SVM) is selected as supervised model due to its demonstrated capability at defining

non-linear boundaries between classes. Also, SMVs have widely reported proper

performance on high dimensional data with low computational complexity. In gen-

eral, an SVM models an optimization problem by using Lagrangian multipliers to find

the best hyperplanes that separate training data, i.e., maximizing margin distance

between classes. Since covariance descriptors could face non-linear boundaries,

a mapping function (kernel) is applied to map the original descriptor into a higher

dimensional space, and therefore finding best boundaries that separate parkinso-

nian from control covariances. In that way, the classical yet powerful Radial Basis
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Function (RBF) kernel is utilized 40:

K = exp
(
−γ || log(Σr)i − log(Σr)j||2

)
, (9)

where γ > 0 is a kernel parameter to be tuned.

40 CHANG, Chih-Chung and LIN, Chih-Jen. “LIBSVM: A library for support vector machines”. In:
ACM Transactions on Intelligent Systems and Technology 2 (3 2011), 27:1–27:27.
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4. EXPERIMENTAL SETUP

4.1. PROPOSED DATASET

In this work was proposed and implemented a protocol to record fixational eye move-

ments on PD-diagnosed and control patients. Participants were invited to observe

and follow a white circular stimulus projected on a 32-inch screen with a black back-

ground, as shown in Figure 4 (a). A conventional camera, Nikon D3200, with a

spatial resolution of 1280 × 720 pixels and a temporal resolution of 60 fps was fixed

in front of the subjects to capture their upper face region. Individual eyes were man-

ually cropped (210 × 140 pixels) to obtain the sequences of interest. A total of 13

PD patients (average age of 72.3 ± 7.4) and 13 control subjects (average age of

72.2 ± 6.1) were captured and analyzed for validation of the proposed approach.

Gender distribution for the PD group was {F=3, M=10}, and for the control group was

{F=8, M=5}. Confounding effects are considered in section 5.1. PD patients were

taking their usual prescribed medication (Levadopa mainly), and were evaluated in

second (5 patients), third (6 patients) and fourth (2 patients) stage of the disease by

a physician using standard protocols of the Hoehn-Yahr scale 41.

The recorded sequences contain three principal types of eye movements: fixations,

saccades and smooth pursuit movements. Fixations were analyzed between smooth

pursuit and random saccades. A sample stimuli sequence is illustrated in Figure 4

(b). From this set of visual tasks is obtained a single eye fixation sample. In the

same way, another 4 samples were obtained for a total of 5 fixation samples per

41 GOETZ, Christopher G, et al. “Movement Disorder Society Task Force report on the Hoehn and
Yahr staging scale: status and recommendations the Movement Disorder Society Task Force on
rating scales for Parkinson’s disease”. In: Movement disorders 19.9 (2004), pp. 1020–1028.
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Figure 4. Recording protocol of eye movements. (a) Scenario configuration. (b) Sample
stimuli sequence for one eye-recording round. The dot stimulus induces ocular fixations in
the middle of other relevant visual tasks (smooth pursuit and random saccades). For the
evaluation step in this work, only the central 5 seconds of the total fixation period were taken
into account.

person, with duration of 5 seconds each. Over the 26 participants, this gives a total

dataset of 130 eye fixation sequences. Details about the other stimuli sequences

and recordings are presented in Anexo B.

This study was approved by the Ethics Committee of the Universidad Industrial

de Santander in Bucaramanga – Colombia, in accordance with international ethi-

cal standards such as the Helsinki Declaration and the Belmont Report. Participants

were recruited from the local Parkinson foundation FAMPAS (Fundación del Adulto

Mayor y Parkinson Santander) and the local elderly institution Asilo San Rafael. Writ-

ten informed consent was obtained for every participant (see Anexo C for a scanned

copy with the assent of the ethics committee).
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Figure 5. Visual effect by using different magnification factors. As observed, the magni-
fication stand out micro-tremor patterns that could be crucial to characterize Parkinson’s
disease.

4.2. MAGNIFICATION PARAMETERS

In this work, two different configurations were considered: standard raw videos and

magnified videos. Figure 1 illustrates standard and magnified ocular fixational motion

for sample PD and control subjects. Magnified PD slices show well-defined ampli-

tudes of slight oscillatory motility at frequencies around 6 Hz, the selected motion-

magnified frequency. A quantitative analysis of the effect of different magnification

frequencies is presented in chapter 5. Regarding the magnification factor, a visually

reasonable value to emphasize this subtle oscillatory pattern was found to be α = 15,

as illustrated in the spatio-temporal comparison of Figure 5.

4.3. CNN FEATURE MAPS

Five different pre-trained CNN architectures were studied and independently used

for eye slice dense representation. Each of the selected architectures was previ-

ously trained by their authors on the ImageNet dataset (a total training set of around

1.2 million samples) 42. The summarized description of the studied deep architec-

tures, focused on a specific first layer herein used for representation, is described as

follows:

42 DENG, Jia, et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE confer-
ence on computer vision and pattern recognition. IEEE. 2009, pp. 248–255.
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• VGG-19 43 is a classical CNN architecture with a total of 19 layers. For low-

level representation purposes, this work considered the first block pooling layer

with a total of C = 64 filter channels, and responses of size W = 112×H = 112.

• ResNet-101 44 is a deep net that includes identity residual mappings as recur-

sive inputs on superior layers throughout shortcut connections, to address the

vanishing gradient problem of training iterations. A feature representation was

herein obtained from the first block pooling layer (C = 64, W = 112×H = 112).

• Inception-ResNet-v2 45 is one of the most recent approaches that combines

the inception blocks, i.e., multiple sub-networks that learn independently with

residual connections. In such way, this net allows optimal learning rates and

thus higher training speeds. The third block ReLu layer responses of C = 64

and W = 147×H = 147 were used as feature representation.

• Xception 46 is a CNN that presents an alternative inception block formulation,

using depth-wise separable convolutions, and achieving performance gains.

Feature maps of C = 64 and W = 147 × H = 147 were obtained from the

second ReLu layer of the first CNN block.

43 SIMONYAN, Karen and ZISSERMAN, Andrew. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

44 HE, Kaiming, et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

45 SZEGEDY, Christian, et al. “Inception-v4, inception-resnet and the impact of residual connections
on learning”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.

46 CHOLLET, François. “Xception: Deep learning with depthwise separable convolutions”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 1251–
1258.
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Figure 6. Sample filter responses from each CNN architecture. In general, selected layers
exhibit a high response rate to the small local slice patterns, such as lines, edges, and
corners, that are markedly accentuated by the magnification process. This representation
can thus provide a suitable feature map for the depicted fixational cues.

• DenseNet-201 47 is a densely interconnected architecture that introduces

direct connections between layers in a feed-forward fashion, strengthening fea-

ture reuse and propagation, and reducing number of parameters. Convolu-

tional features for this net were obtained from the first block ReLu layer (C = 64,

W = 112×H = 112).

For illustration, Figure 6 shows sample responses of the utilized deep architectures

for a given input eye slice, which in this case corresponds to a magnified parkinso-

nian slice.

After the slices (raw or magnified) were mapped to the CNN architectures, a very

compact covariance descriptor was computed by using the minimal number of eigen-

values that explain about 95% of the total channel-wise feature variability in each

feature representation (as described in section 3.3). Figure 7 illustrates the cut-off k

eigenvalue components at which each network is able to explain 95% of all feature

variance for one eye slice of a randomly selected PD patient. For every participant

47 HUANG, Gao, et al. “Densely connected convolutional networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 4700–4708.
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Figure 7. Cumulative explained variance at each eigenvalue component for a randomly
selected PD patient. Vertical lines indicate the cut-off k eigenvalues at which each CNN
feature representation is able to explain 95% of the total channel-wise feature variability.
Note that by using magnified representations, the required number of eigenvalues is slightly
lower in all architectures.

subject, the value of k was found to be approximately similar when evaluating fea-

tures from a particular layer of the same CNN. This is valid for all of the considered

architectures. Hence, k was automatically fixed for each CNN layer as the average

cut-off eigenvalue of the population.

Hello, here is some text without a meaning. This text should show what a printed text

will look like at this place. If you read this text, you will get no information. Really?

Is there no information? Is there a difference between this text and some nonsense

like “Huardest gefburn”? Kjift – not at all! A blind text like this gives you information

about the selected font, how the letters are written and an impression of the look.

This text should contain all letters of the alphabet and it should be written in of the

original language. There is no need for special content, but the length of words

should match the language.
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5. EVALUATION AND RESULTS

An extensive evaluation of the proposed approach was carried out on the symmetric

case-control dataset detailed in section 4.1, that is, 130 video sequences involving

26 subjects. This evaluation was performed through a leave-one-patient-out cross-

validation, i.e., sequences from one patient are left out at each iteration for testing

and the remaining ones are used for training the model. Both independent and

paired (concatenated) eye-fixation covariance descriptors are considered by using

slice features from individual right- and left-eye sequences.

Table 1 summarizes the average performance of the studied deep architectures, over

the specified first layer features (section 4.3) of eye slices from both standard and

magnified sequences. Performance is measured in terms of accuracy and AUC

(Area Under the ROC Curve, where ROC stands for Receiver Operating Charac-

teristic). A total of 4 slices were used in these experiments (see Figure 3). Part (a)

presents percentages of accuracy. Best results were consistently obtained for magni-

fied sequences, with the majority of accuracy values above 90%. On the other hand,

for standard sequences, the accuracy interval is mostly limited to 75–87%. Paired

Table 1. Performance evaluation over different pre-trained CNN architectures. (a) Average
accuracy results by using standard and magnified videos in three descriptor configurations:
right-eye covariances (R), left-eye covariances (L), and paired covariances from both eyes
(R-L). (b) Area under the ROC curve in the same setting.

(a) Accuracy (%) (b) AUC ROC
R L R-L R L R-L

std mag std mag std mag std mag std mag std mag

VGG-19 86.9 86.2 77.7 90.0 87.7 87.7 0.916 0.937 0.884 0.940 0.911 0.950
ResNet-101 81.5 92.3 78.5 93.1 80.8 95.4 0.890 0.975 0.853 0.964 0.880 0.984
Inception-ResNet-v2 87.7 92.3 78.5 90.8 82.3 93.1 0.948 0.981 0.844 0.967 0.894 0.976
Xception 78.5 88.5 70.8 93.8 75.4 93.1 0.871 0.925 0.786 0.974 0.844 0.968
DenseNet-201 85.4 87.7 69.2 69.2 79.2 76.9 0.929 0.954 0.809 0.760 0.808 0.831
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Figure 8. Best ROC curves for each of the selected CNN architectures. In all cases, the best
ROC is obtained from magnified data. The corresponding non-magnified (standard) versions
are also plotted for comparison.

(R-L) eye-fixation covariances compared to individual (R and L) covariances only

show contribution from residual networks, i.e., ResNet-101 and Inception-ResNet-

v2.

ROC curves were also computed for the considered configurations. Figure 8 illus-

trates the best ROC per network. These plots allow to assess diagnostic perfor-

mance as the ratio between True Positive Rate (TPR) and False Positive Rate (FPR)

at various threshold intervals. Part (b) of Table 1 reports AUC values. Magnified

AUCs present the best trade-off between TPRs and FPRs with outstanding results at

distinguishing between PD patients and control subjects. For standard sequences,

the obtained AUCs are still good in some configurations, e.g., 0.948 for Inception-

ResNet-v2 (R descriptor). As with accuracies, the joint consideration of R and L

covariances in an R-L descriptor show an improvement for the ResNet-101 architec-

ture.

The convolutional representation of ResNet-101 architecture was the best overall

setting achieving an accuracy of 95.4% and an AUC of 0.984, when using magni-

fied sequences and R-L descriptors. The Inception-ResNet-v2 was very close to this

35



performance with an AUC of 0.981 (magnified sequences, R descriptor). These re-

sults imply the residual networks as best extractors of low-level slice features for the

representation of fixational cues. Such assertion could be associated to the optimal

gradient flow from later layers to initial filters in the residual training of ResNets, which

reinforces the generalization of low-level primitives in the feature space of first rep-

resentation layers. Regarding independent right- and left-eye descriptors, obtained

accuracies for ResNet-101 are lower but still > 90%, suggesting the capability to en-

rich the representation of fixational patterns by combining both eye descriptors. For

the remaining networks, although there was no contribution from considering joint R-

L descriptors, such combination could be done in a more elaborated way to be able

to consistently exploit oculomotor patterns on both eyes. For instance, an automatic

selection or weighting of relevant patterns in either right or left eye. This is of special

importance in Parkinson’s disease, since asymmetry on right and left sides of the

body persists throughout the initial motor symptoms, and could vary differently for

each patient 1.

5.1. CONFOUNDING EFFECTS

Confounding effects for gender and age variables were evaluated by computing

crude and adjusted odds ratios from a logistic regression step. In such model, pre-

dictor variables xi are linearly related with the log-odds of the outcome event y. In

the case of 3 predictors, that is:

log

(
p

1− p

)
= β0 + β1x1 + β2x2 + β3x3 , p = P (y = 1) (10)

For estimating crude and adjusted odds ratios, variables are configured as follows:

y as the predicted probability of PD by the proposed methodology in this work, x1

as the binary true label of PD diagnosis for each participant, x2 as the gender of
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Table 2. Crude odds ratios (cOR) and adjusted odds ratios (aOR) for gender and age vari-
ables. Odds ratios were computed from logistic regression coefficients, with the same clas-
sification data used for Figure 8 ROC curves.

std mag
cOR aOR p-value cOR aOR p-value

VGG-19 6.20 6.05 0.003 7.61 7.96 0.003
ResNet-101 3.60 3.85 0.014 20.23 24.61 0.007
Inception-ResNet-v2 5.78 7.44 0.006 14.16 13.51 0.003
Xception 2.13 2.46 0.071 14.39 24.57 0.021
DenseNet-201 5.42 5.25 0.005 7.11 6.98 0.003

each participant, and x3 as ages. For crude odds ratios (cOR), the regression co-

efficient β1 is calculated without considering the effect of the other coefficients, that

is β2 = β3 = 0. For adjusted odds ratios (aOR), β1 is now calculated together with

the other coefficients. The odds ratio estimation is then defined as the exponential

function of β1: eβ1 48.

Table 2 presents the obtained cOR and aOR for each of the considered CNN archi-

tectures. In general, odds ratios reflect a significantly positive association between

the disease diagnosis and the predicted probabilities by the proposed approach.

Such association is not confounded by gender or age, indicating that these variables

are not playing any part on the reported evaluation results. Also, obtained ratios

from magnified data tend to be higher and more statistically significant, being the

ResNet-101 architecture the best performing network.

5.2. RESNET FEATURE REPRESENTATION

Due to its good performance, the ResNet-101 architecture was selected for a more

detailed analysis, exploring additional convolutional layers, measuring the impact of

48 SZUMILAS, Magdalena. “Explaining odds ratios”. In: Journal of the Canadian academy of child
and adolescent psychiatry 19.3 (2010), p. 227.
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Table 3. Obtained accuracies for different convolutional layers of the ResNet-101 architec-
ture.

Layer 1 Layer 2 Layer 3
std mag std mag std mag

R 81.5 92.3 77.7 84.6 70.0 83.1
L 78.5 93.1 76.2 89.2 77.7 82.3

R-L 80.8 95.4 79.9 90.0 76.9 80.8

the number of slices, and exploring the frequency magnification parameter to better

highlight differences on fixational motion patterns. Firstly, layers at different levels

of the architecture were evaluated to measure their representation capability. As re-

ported in Table 3, the first layer remains as the best way to capture and represent

ocular tremor patterns, as response of several primary kernels that decompose in-

formation on main frequency image bands. High-level layers nevertheless capture

proper relationships of slices that eventually could be useful for additional support in

complex cases, such as preliminary disease stages or under strong variations and

totally-non controlled video capture. In these experiments, it also noted the rele-

vance of the magnification stage, which yields the best results in all layers used for

the proposed representation.

The impact on performance was also analyzed when using several slices in the

descriptor by aggregating slices at different angles. This analysis was also imple-

mented separately for left, right and joint eye descriptors. For reference purposes,

the horizontal slice (0o) of the video sequences was used. For experiments involving

two slices, these were taken each at 90o (horizontal and vertical planes). For four

slices, a split of 45o was considered. Six and eight slices were taken 30o and 22.5o

apart, respectively. Figure 9 shows accuracy results over the different slice num-

bers, being four slices the best configuration to represent parkinsonian oculomotor

patterns. Regardless of the slice number, the best performance is always obtained

38



Figure 9. Accuracy performance of the proposed approach by using the ResNet-101 feature
representation over different slice configurations.

from magnified sequences. The difference in performance between standard and

magnified sequences is higher when only one or two slices are utilized. The gain is

almost 20% in terms of accuracy with only one slice. The use of six or eight slices

slightly decreases accuracy, suggesting an overly redundant representation of ana-

lyzed patterns and favoring a more compact configuration.

Finally, an exploration of magnification frequency was carried out to evaluate its con-

tribution w.r.t. fixation parkinsonian patterns. In this case, the temporal frequency

of magnification was changed from 1 to 15 Hz. As observed in Figure 10, the pro-

posed approach achieves equally outstanding accuracy on the specific range be-

tween 4–7 Hz. It is especially noteworthy that such frequency interval corresponds

to the characteristic parkinsonian tremor frequencies observed in previous studies
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Figure 10. Influence of the magnification frequency choice in the disease classification per-
formance.

49. A decrease in performance is obtained on frequencies lower than 2 Hz, arguably

because at this interval the signal could be related with typical head movement fre-

quencies 17. In such case, video magnification more likely amplifies noisy head

motions. Also, for frequencies greater than 10 Hz, accuracy tends to converge to

the standard behavior. This is probably explained by the absence of movements to

magnify in such frequency range.

49 BHATIA, Kailash P, et al. “Consensus Statement on the classification of tremors, from the task
force on tremor of the International Parkinson and Movement Disorder Society”. In: Movement
Disorders 33.1 (2018), pp. 75–87.
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6. DISCUSSION

This work presented a computerized oculomotor descriptor from eye video sequences

captured during a fixation experiment. Cross-sectional slices of video-magnified se-

quences were used to characterize fixational micro-patterns as a parkinsonian sig-

nature signal. This characterization was done by taking advantage of the powerful

generalized feature space of CNNs. In such networks, features are extracted through

non-linear banks of pre-learned filters that decompose different patterns of the input

images. In the problem of eye-fixation slices, convolutional features maps are an

optimal representation that can better capture the fixation patterns related with the

disease, since they are basically depicted as a composition of lines and edges in

a spatial projection of eye motion. Feature maps are then compactly encoded as a

covariance matrix descriptor that represents a summary statistic on feature space,

enhancing main correlated and salient signals while removing noisy spatial informa-

tion. A similar representation has been being used in texture synthesis approaches
50, by taking the correlation matrix instead of the covariance. This is because they

analyze features over different network layers, resulting in different feature spaces

that need to be normalized. In this work, it is addressed the extraction of a single

feature space of an early CNN layer, which maintains consistent scales and there-

fore can benefit from the unbounded range of covariance descriptors. This feature

covariance representation, when utilized for the SVM classification of PD-diagnosed

and healthy subjects, yielded remarkably good performance to support the diagnos-

tic decision.

50 GATYS, Leon; ECKER, Alexander S, and BETHGE, Matthias. “Texture synthesis using convolu-
tional neural networks”. In: Advances in neural information processing systems. 2015, pp. 262–
270.
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Video magnification, as a pre-processing step for the enhancement of fixational pat-

terns, proves to contribute significantly in the proposed approach. Values reported

in Table 1 consistently demonstrate that magnified videos lead to improved perfor-

mances for the classification of PD patients. Both accuracies and AUC when using

magnified videos were superior in almost all cases of different CNN architectures,

different lateralities, and different number of video slices (see Figure 9). For the best

configuration (ResNet-101, R-L descriptor), the utilization of magnified eye slices

yielded an improvement of 18% in the classification accuracy w.r.t. standard videos

(no magnification). In achieving these results, a fundamental parameter of video

magnification was the estimated temporal frequency of the motion to be amplified.

Best outcomes were found best in the frequency range of 4–7 Hz, which is indeed

in coherence with parkinsonian ocular tremor frequencies, previously reported in the

literature 16 , 17. Interestingly enough, such values also correspond to characteristic

limb tremor frequencies of PD 49. This suggests a successfully leveraging of one of

the most relevant features of PD motion when classifying PD patients based solely

on conventionally captured video.

A major concern when evaluating oculomotor patterns has been their correlation with

head movements. For instance, Kaski et al. 21 studied the possibility that parkin-

sonian eye alterations during fixation could be related to vestibulo-ocular reflex re-

sponses, that is, a compensatory movement of the eyes due to head oscillations.

In contrast, the herein obtained results support the findings reported by Gitchel et

al. 17, who suggested that the effects of head motion are only relevant at lower

frequency bands (below 1.8 Hz) w.r.t. eye motion frequencies (above 4 Hz). This is

explained by Figure 10, where frequencies below 2 Hz yielded lower performances in

the classification task by using magnified videos regarding standard videos. Based
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on the reported results, oculomotor-related frequencies are concluded to effectively

lead to performance improvements, contrary to head-related motion frequencies that

in this work do not contribute to parkinsonian characterization.

Regarding other approaches in the literature that also exploit oculomotor patterns in

PD classification and recognition (chapter 1), some representative works have re-

cently evaluated other types of eye motion 25 , 26 , 27. Firstly, Szymanski et al. 25 ob-

tained accuracies above 80% in the prediction of individual UPDRS scores and Lev-

adopa dosages when evaluating saccadic movements of PD patients. On the other

hand, Zhang et al. 26 reported an AUC of 0.921 in the binary classification of PD

against controls, by considering different oculomotor variables in saccadic, smooth

pursuit and fixational movements. They also show the independent performance of

the different eye movements, e.g., when only using fixation stability they obtained an

AUC of 0.648. Finally in 27, they consider anti-saccadic kinematics and predict the

UPDRS patient scores with an accuracy of 91%. All these approaches make use

of VOG configurations, implying sophisticated and restrictive head-mounted appara-

tuses, controlled scenarios and calibration requirements. In contrast, this work was

interested in evaluating oculomotor information from simpler, yet robust protocols,

with direct application on clinical routine. In that sense, the obtained performance

above 90% in the proposed methodology proves a promising strategy for leveraging

oculomotor information that only requires conventional video cameras.

Other works have also been devoted to the development of more flexible systems

with consumer-grade video devices 30 , 31 , 32. These methods extract motion de-

scriptors for a limited range of large and exploratory eye movements. In this work,

the proposed pipeline for video-based oculomotor analysis uses a learned decom-

position of sectional video slices, that can properly represent small local patterns
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over the fixed gaze of PD patients. Such patterns include, for instance, gradients of

first and second orders in oculomotor profiles that are strongly correlated with fixa-

tional micro-tremor of PD 16 , 17. As a result, this approach is able to obtain a dense

kinematic representation of small fixational eye movements, which are considerably

enhanced on magnified videos w.r.t. standard videos. In that way, the video magni-

fication step represent a very useful consideration for enhancing or revealing hidden

parkinsonian patterns on video.
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7. CONCLUSIONS AND FUTURE WORK

In this work, a quantitative strategy to characterize ocular fixational motion was pro-

posed as an imaging biomarker for Parkinson’s disease. This approach achieved a

robust eye motion modeling on conventional video sequences. For so doing, ocu-

lomotor activity of test subjects was captured, following eye fixation experiments.

Acquired videos were then magnified using an optical acceleration-based frame-

work that allowed to enhance small motility patterns. Video slice features based on

primary CNN layer responses were used to classify control and PD-diagnosed pa-

tients under a supervised machine learning framework. Preliminary experiments on

a study of 26 subjects yielded promising results in terms of high classification ac-

curacy (95%) and area under the ROC curve (AUC = 0.984). The obtained results

demonstrated a feasible alternative for PD assessment using ordinary and magnified

videos, thus avoiding complex and sophisticated acquisition setups such as video-

oculography. The proposed strategy represents a potential approach to understand

and quantify the association between PD and eye motility, aiming to support diagno-

sis and follow-up of the disease. Future work includes a deeper sensitivity analysis

of computed patterns to differentiate among different stages of the disease. Further

evaluation with a larger population sample is warranted, focusing efforts to recruit

early-diagnosed PD patients to determine the reliability of the considered biomarker

in early stages of the disease. Evaluation of other types of eye movements is also of

great concern for future approaches, with aims for longitudinal studies of the patients

that provide disease progression monitoring and follow-up of treatment efficacy
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Anexo B. Video Stimuli for Oculomotor Recording

This anexo summarizes in Figure 11 the utilized stimuli sequences for the video

dataset of eye movements proposed in this research work. Three relevant visual

tasks were considered in three eye-recording rounds. A brief sound signal is emitted

between each task to indicate the beginning of a new oculomotor type in the recorded

eye videos. A description of the visual tasks is presented below:

• Fixation: For the three recordings, each participant stares at the fixed dot

stimulus for 10 seconds, preceded or followed by another type of oculomotor

task.

• Smooth Pursuit: For the first recording, each participant follows the moving

dot stimulus in a circular trajectory with duration of 10 seconds. For the second

recording, the dot now moves from right (1) to left (2), and then from up (3)

to down (4). Total trajectory duration is 15 seconds. For the third recording,

a similar trajectory is followed but in a diagonal pattern, also of 15 seconds

length.

• Random Saccades: For the three recordings, each participant executes a sac-

cade every 2 seconds to change the fixation target. The dot stimulus suddenly

changes position 10 times, following a random pattern on the screen. Thus, 10

saccades are expected in a period of 20 seconds.

The developed approach was delimited to the evaluation of ocular fixation. Therefore,

fixation periods were trimmed on the temporal axis. A spatial crop was also manually

carried out to obtain concise and compact eye sequences. Figure 12 shows some

of the ready-to-process eye sequences of PD-diagnosed patients. The dataset is

currently in process to be released with the three oculomotor categories for further
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Figure 11. Stimuli sequences that were generated for the recording of eye movements.
There were generated 3 different sequences for 3 eye-recording rounds per person, with
a total of 5 fixation periods. These fixation samples were individually cropped and thus
considered for the evaluation of the proposed methodology in this work.

12

3

4

1

2

3

4

(a) Stimuli sequence for the first recording (50 seconds).

(b) Stimuli sequence for the second recording (45 seconds).

(c) Stimuli sequence for the third recording (55 seconds).

Fixation Smooth Pursuit Fixation Random Saccades
(10 sec) (10 sec) (10 sec) (20 sec)

Smooth Pursuit Fixation Random Saccades Fixation
(15 sec) (10 sec) (20 sec) (10 sec)

Smooth Pursuit Fixation Random Saccades
(15 sec) (10 sec) (20 sec)

academic research, and it will be available at 51.

51 http://bivl2ab.uis.edu.co/
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Figure 12. Pre-processed dataset samples.
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CONSENTIMIENTO INFORMADO

ESCUELA DE INGENIERÍA DE SISTEMAS 

UNIVERSIDAD INDUSTRIAL DE SANTANDER 

Proyecto: Amplificación visual de signos óculo-motores para el reconocimiento de patrones 
parkinsonianos. 

Responsable(s):  Isail Salazar Acosta
Estudiante de Maestría en Ingeniería de Sistemas e Informática
Universidad Industrial de Santander

 Fabio Martínez Carrillo
Docente Planta, Escuela de Ingeniería de Sistemas e Informática
Universidad Industrial de Santander

Con base en los reglamentos establecidos en la Resolución Nº 8430 del 4 de octubre de 1993 por la 

cual se establecen las normas para la investigación en salud en Colombia, específicamente en el 

Artículo 15, mediante este documento de consentimiento informado usted deberá conocer acerca de 

esta investigación y aceptar participar en ella si lo considera conveniente. De esta manera, se le invita 

formalmente a participar teniendo en cuenta los siguientes criterios de inclusión: 

 Ser mayor de edad.

 Tener la capacidad para sentarse en una postura cómoda y relajada que le permita visualizar

un punto proyectado en pantalla.

 No presentar ninguna enfermedad que afecte los movimientos de sus ojos, a excepción de la

enfermedad de Parkinson.

En vista del cumplimiento de los criterios anteriores, por favor seleccione una de las siguientes 

opciones según su diagnóstico actual : 

___ Persona control: Es aquella persona que no presenta ninguna dificultad motora, 

implicando que no ha sido diagnosticada de ninguna enfermedad que afecte su movimiento 

natural. 

___ Paciente parkinsoniano: Es aquella persona que ha sido diagnosticada con la 

enfermedad de Parkinson. 

Tenga en cuenta que su participación en este proyecto es absolutamente voluntaria. Por favor lea 

con cuidado el documento y realice todas las preguntas que desee hasta su total comprensión. 

JUSTIFICACIÓN 

Usted está invitado a participar en este estudio sobre movimientos oculares en distintas actividades 

de fijación y seguimiento visual de objetivos en pantalla. Los movimientos se esperan analizar en 

video, registrados de manera natural mediante una cámara convencional. La finalidad principal es 

desarrollar una herramienta tecnológica que facilite la detección y el monitoreo de anormalidades en 

los movimientos de los ojos, con la premisa de que estas anormalidades representan un potencial 
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indicador en el diagnóstico en la enfermedad de Parkinson. Con los resultados a obtener, se espera 

entonces contribuir en el soporte diagnóstico de la enfermedad, así como también estudiar su 

evolución en tratamiento particulares. El análisis de los movimientos registrados se realizará teniendo 

en cuenta el diagnóstico previo desarrollado por un experto clínico, por lo tanto, en este estudio no 

se esperan obtener diagnósticos diferentes a los previamente establecidos. 

OBJETIVO

Diseñar una herramienta tecnológica que permita apoyar procedimientos clínicos en cuanto a la 

identificación y análisis de los movimientos de los ojos que puedan estar asociados a la enfermedad de 

Parkinson, mediante el procesamiento de los videos registrados gracias a su participación. 

DESCRIPCIÓN 

La siguiente descripción del procedimiento aplica, indistintamente, tanto para las personas control como 

para los pacientes diagnosticados con enfermedad de Parkinson. Esto debido a que el estudio considera 

que los datos han sido capturados bajo las mismas condiciones en ambas poblaciones, en miras de una 

adecuada evaluación estadística. Esta convocatoria se limita a la población residente en la ciudad de 

Bucaramanga, tratada como etapa preliminar de futuras investigaciones más amplias. 

Para la realización del estudio, se dispone de los espacios de dos instituciones locales: el Centro Vida

Años Maravillosos, ubicado en la Diagonal 14 #56-02 Barrio Real de Minas, y la Fundación Adulto

Mayor y Parkinson Santander (FAMPAS), ubicada en la Calle 54 #23-14 Barrio Sotomayor. 

Estas instituciones cuentan con profesionales de la salud que laboran y dirigen distintas actividades en 

el ejercer habitual de las mismas. Usted será citado a la institución más cercana, o a la que frecuente 

comúnmente.  

A cada participante, en presencia de su acompañante, familiar o representante legal, se le entregará 

este documento para su lectura. Si decide participar, podrá proceder a firmarlo. Seguidamente se 

registrarán sus datos personales. La filmación de videos tomará un tiempo aproximado de 10 

minutos. En caso de usar gafas, se le pedirá removerlas momentáneamente durante la prueba, 

asegurando primero que usted pueda visualizar sin esfuerzo o agotamiento visual el objetivo 

proyectado en pantalla. De no ser así, se podrá igualmente realizar la captura utilizando sus gafas. 

Ante la cámara, usted expondrá sus ojos mirando hacia un televisor que le presentará un estímulo 

visual, como se muestra en la Figura 1. 
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Figura 1. Escenario de captura. El participante se sentará de la manera que considera más cómoda para 

visualizar y seguir un punto de alto contraste proyectado en un televisor.    

Al participar en este estudio, usted no recibirá ningún tipo de subvención económica o material, ni 

deberá aportar herramienta alguna para la intervención. Al finalizar la investigación, usted podrá 

recibir los resultados obtenidos en forma de un reporte que describirá diferentes aspectos sobre los 

movimientos de sus ojos. Este material será presentado a usted por el investigador principal en la 

respectiva institución donde se le realizó la grabación, junto con la explicación de las interpretaciones 

técnicas y clínicas, soportadas por los profesionales de salud que allí laboran.  

Las inquietudes adicionales que puedan surgir en relación con el desarrollo e implicaciones de la 

investigación podrán ser aclaradas por el investigador Fabio Martínez Carrillo, profesor de la Escuela 

de Ingeniería de Sistemas e Informática, a quien puede contactar mediante el teléfono celular 

3103054041, o a través del correo electrónico famarcar@saber.uis.edu.co; o directamente en su 

oficina en la Universidad Industrial de Santander (sede principal), ubicada en la Cra. 27 # 9, Edificio 

de Laboratorios Pesados, oficina 231, con número de teléfono 6344000 extensión 2110. 

RIESGOS 

De acuerdo con el Artículo 11 de la Resolución No. 8430 del 4 de octubre de 1993, esta 

investigación se considera de riesgo mínimo dado que el estudio únicamente emplea el registro de 

datos a través de un procedimiento común de captura de videos por medio de cámaras ordinarias. 

De tal forma, ninguno de los métodos utilizados es invasivo o penetra la piel. Si durante la captura 

usted experimenta cualquier tipo de malestar, esta se suspenderá de inmediato y se le ubicará en 

estado de reposo. De requerirse una valoración médica inmediata, se le remitirá al servicio de 

urgencias del Hospital Universitario de Santander o al servicio de la entidad en el que se encuentre 

afiliado al sistema de seguridad social. Durante este proceso, usted será acompañado por el 

investigador principal.  

59



Código: 

Versión: 03
31/07/2019 

Página: 4 de 5 

4 

CONSENTIMIENTO INFORMADO

DERECHO A RETIRARSE 

Su participación en este estudio es autónoma y voluntaria, en donde podrá actuar acorde a sus 

principios personales. Si usted decide no participar, no implicará sanción alguna. Además, usted 

cuenta con el derecho a negarse a responder a preguntas concretas si así lo desea. También puede 

optar por retirarse en cualquier momento y toda su información será descartada y eliminada. 

CONFIDENCIALIDAD

La información de cada participante es de carácter absolutamente confidencial, de manera que 

solamente usted y el investigador principal tendrán acceso a ellos. Su uso será exclusivamente 

académico. Los registros con su información serán archivados por el investigador principal y a cada 

uno se le asignará un número con el cual se identificará y se codificará para su ingreso a la base de 

datos. Su nombre o datos personales no serán expuestos de ningún modo. Los resultados obtenidos 

de la investigación podrán ser divulgados en revistas o eventos científicos asegurando que toda su 

información sea debidamente anonimizada.  

A no ser que usted otorgue una autorización específica según la ley, sus resultados personales no 

estarán disponibles para terceros como empleadores, organizaciones gubernamentales, compañías 

de seguros u otras instituciones educativas. Esto también será aplicado a los miembros de su familia. 

No obstante, con el objetivo de garantizar una gestión adecuada de los datos, un miembro del 

Comité de Ética de la Universidad Industrial de Santander podrá consultarlos y verificar su registro. 

AUTORIZACIÓN PARA EL USO DE LA INFORMACIÓN EN ESTUDIOS FUTUROS 

Dentro del equipo de investigación al que pertenecen los investigadores responsables (Grupo de 

Investigación BIVL2ab - Biomedical Imaging, Vision, and Learning Laboratory) de la Universidad 

Industrial de Santander, se espera seguir utilizando la información registrada en este estudio para el 

desarrollo de estudios futuros y derivados. Por lo tanto, al firmar este consentimiento usted puede 

autorizar al investigador principal a ceder su información a otros investigadores de su equipo de 

investigación, con previa aprobación del Comité de Ética de la Universidad Industrial de Santander 

para realizar los estudios mencionados. Por favor marcar con una X si autoriza o no autoriza, y firmar 

en caso de si autorizar. 

Si autorizo    _____          ______________________________________ 

        Firma de la autorización 

No autorizo  _____  

        Huella digital  

        (en los casos que se amerite) 

60



Código: 

Versión: 03
31/07/2019 

Página: 5 de 5 

5 

CONSENTIMIENTO INFORMADO

Yo____________________________________________________, identificado con _________ 

N°_______________________ de _____________________, al firmar este consentimiento el día 

_____________________, acepto participar de manera voluntaria en el presente estudio y autorizo 

la grabación de mis videos y el uso de mis datos individuales para los análisis requeridos. He leído y 

entendido la información registrada en este documento y mis dudas fueron aclaradas. Por otro lado, 

se me ha garantizado la confidencialidad en el manejo de toda la información recolectada, teniendo 

en cuenta que los resultados del procesamiento de dicha información podrán ser divulgados con fines 

científicos, mediante presentaciones en congresos o publicaciones en revistas científicas, con la 

debida protección de mi identidad.  

_____________________________________    ___________________________________ 
Nombre del Participante       Firma   
Edad: _______________ 

Huella digital (en los casos que se amerite) : 

_____________________________________     ___________________________________ 
Nombre del Profesional de Salud (Testigo 1)              Firma 
Cargo: _______________________________ 
Teléfono:  ____________________________ 

_____________________________________            ___________________________________ 
Nombre del Testigo 2                                                  Firma 
Relación que guarda con el participante:  _____________________________________________ 
Teléfono:  ____________________________ 

____________________________________    ___________________________________ 
Nombre del Investigador Principal         Firma  
C.C.: _______________________________ 
Teléfono:  ___________________________ 
E-mail: ______________________________ 

Contacto Comité de Ética: Para preguntas o aclaraciones acerca de los aspectos éticos de esta 

investigación pueden comunicarse con cualquiera de los miembros del Comité de Ética para la 

Investigación Científica de la Universidad Industrial de Santander (CEINCI-UIS), mediante el teléfono 

6344000 Extensión 3808 ó al correo electrónico comitedetica@uis.edu.co.  
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