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RESUMEN

Titulo:

MODELO ANALÍTICO PARA ESTIMAR EL TIEMPO DE EJECUCIÓN DE UNA

IMPLEMENTACIÓN DE LA ECUACIÓN DE ONDA ACÚSTICA 3D USANDO FDTD EN UNA

GPU [1]

Autor: Dorfell Leonardo Parra Prada [2]

Palabras Claves: GPU, modelado śısmico, modelo anaĺıtico, Micro-benchmark

Conocer la estructura de la tierra es importante en varios campos de la industria y la academia. Para

obtener una representación de la subsuperficie, datos śısmicos de las adquisiciones son procesados y

analizados usando algoritmos complejos como la Migración Reversa en Tiempo (RTM), y la Inversión

de Onda Completa (FWI). La etapa fundamental de estos algoritmos es el modelado śısmico. En el

modelado śısmico la propagación de la enerǵıa en la subsuperficie es simulada usando la ecuación de la

onda acústica en términos del método FDTD. Debido a que el método FDTD es computacionalmente

costoso, el uso de arquitecturas many-cores, (e.g. Unidades de Procesamiento Gráfico (GPU)), se

ha vuelto atractivo para problemas the gran escala. El tiempo de ejecución de una implementación

de GPU depende de las especificaciones de hardware, parámetros de la implementación, preferencias

del usuario, y en el volumen de los datos de entrada entre otros. Para encontrar la configuración de

parámetros que permita gastar el menor tiempo en la GPU, una estrategia tradicional consiste en

comenzar con una implementación inicial y ejecutar varias pruebas cambiando los parámetros para

encontrar el mejor conjunto de parámetros. Sin embargo, para implementaciones de gran escala (e.g.

modelado śısmico) esta estrategia es inviable. En este trabajo, una implementación de el modelado

śısmico en CPU y GPU es presentada. También se propone una metodoloǵıa que permite adaptar

el modelo anaĺıtico MWP-CWP para estimar el tiempo de ejecución de la implementación, aśı como

el proceso de identificación de extracción de parámetros (i.e. binarios de CUDA, Micro-benchmarks,

etc.). La validación del modelo compara el tiempo de ejecución estimado con el tiempo de ejecución

medido de la implementación del modelado śısmico en una GPU Kepler K40 de NVIDIA.

[1] Tesis de Maestŕıa

[2] Facultad de Ingenieŕıas F́ısico Mecánicas. Escuela de Ingenieŕıas Eléctrica, Electrónica y Director: PhD(c).

William A. Salamanca Becerra. Co-director: PhD. Ana Beatriz Ramı́rez Silva
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ABSTRACT

TITLE:

ANALYTICAL MODEL TO ESTIMATE THE EXECUTION TIME OF A 3D ACOUSTIC WAVE

EQUATION IMPLEMENTATION USING FDTD IN A GPU [1]

AUTHOR: Dorfell Leonardo Parra Prada [2]

KEYWORDS GPU, seismic modelling, analytical model, micro-benchmark

Knowing the earth’s subsurface structure is important for several fields in both industry and academy.

To obtain a representation of the subsurface, seismic data acquired in surveys are processed and

analyzed using complex algorithms such as the Reverse Time Migration (RTM) and the Full Wave

Inversion (FWI). The fundamental stage of those algorithms is the seismic modelling. In the seismic

modelling the energy propagation through the subsoil can be simulated using the FDTD acoustic

wave equation. Because the FDTD method is a highly computationally expensive method, the use of

many-core architectures such as Graphic Processor Units (GPU) for large scale problems has become

attractive. The execution time of GPU implementation depends on the hardware specifications, im-

plementation parameters, user preferences and input data volume. In order to find the parameters

configuration that allows to spend the less time on the GPU, a traditional strategy is to start from

a scratch implementation and run several tests varying the parameters to figure out the best set of

parameters. However, for large scale implementations (e.g. seismic modelling) this strategy is infea-

sible. In this work, an implementation of the seismic modelling in both CPU and GPU is presented.

Also, a methodology to adapt the MWP-CWP analytical model to estimate the execution time that

implementation is proposed, as well as the parameters identification and the extraction process (i.e.

CUDA binaries, micro-benchmarks, etc). The validation compares the estimated execution time with

the measured execution time of the seismic modelling implementation on a NVIDIA Kepler K40 GPU.

[1] Master Thesis

[2] Faculty of Physics Mechanics Engineering. Electrical, Electronics Engineering and Telecommunications

School. Advisor: PhD(c). William A. Salamanca Becerra. Co-advisor: PhD. Ana Beatriz Ramı́rez Silva
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Introduction

Seismic Data Processing (SDP) filters, stacks and migrates traces from the seismic survey to generate

Seismic Reflection Images (SRI) of the subsurface. The SRI represents the geological structures of the

subsurface and can be used to determine the presence of water, minerals and hydrocarbons. One of

the most relevant stages in the SDP is the migration.

In the migration process, the calculated layers are moved to their estimated real position in Earth.

There are several migration methods such as the Kirchhoff migration and the 3D Reverse-Time Mi-

gration (RTM). Kirchhoff migration offers a high contrast and a low computational cost but due to

the complex Colombian geography this migration method does not accomplish a good representation

of the subsurface structure. To sort out this problem another migration method such as the RTM

3D must be applied. The RTM 3D is based on the Seismic Modelling which simulates the energy

propagation through the subsurface. Propagation can be modeled using the acoustic wave equation

with constant density, but the implementation of these type of algorithms is computationally expensive

and make them impractical for traditional platforms such as CPUs.

The development of new parallel processing architectures such as Graphic Processing Units (GPUs)

and the increasing of memory capacity, have made feasible the implementation of such computational

expensive algorithms.

One of the most useful performance measurements of these implementations is the time spent in

their execution. The performance of an algorithm implementation on GPU architectures is affected

by several factors: bottlenecks, volume data, available resources on-chip, etc. Some techniques used

to improve the performance of an algorithm implementation are based on programming expertise,

such as the Assess, Parallelize, Optimize and Deploy(APOD) method, proposed by NVIDIA [49]. In

particular, APOD technique proposes some guidelines to be followed iteratively until an adequate per-

formance is reached. Those techniques, however, are not suitable to solve the problem of performance

improvement of Seismic Modelling implementations, because of the high computational cost of the

algorithm.
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A different approach that can be used to improve the performance of a GPU implementation is to

find an analytical model for the implementation. Commonly analytical models employ implementation

parameters (e.g. number of resources used) and hardware specifications to estimate the implementation

execution time.

Several works that attempt to estimate the execution time of an application have been proposed in

the literature. In [39] the execution time of a program that consists of several kernels is calculated

using the MAX(SUM) model. Also, the use of Control Flow Graphs (CFG) and the Instruction-

Level Parallelism (ILP) to calculate the execution time is proposed in [40]. In [44] and [45], an

analytical model known as Memory Warp Parallelism-Compute Warp Parallelism (MWP-CWP) has

been proposed and validated for the GPU implementations of tiled matrix multiplication algorithms,

and the Fast Multipole Method (FMM) algorithm. Furthermore, a different model for 2.5D stencil

implementation in a GPU was proposed in [46].

Although all this works try to estimate an implementation execution time by modelling the GPU data

transfer, and the amount of application parallelism among others factors, those models do not consider

algorithms using the acoustic wave equation with Finite Difference in Time-Domain (FDTD) 3D

essential for simulating geophysical phenomenons. According to [47] one the most accepted analytical

models in the literature is the MWP-CWP model [44],[45]. This would be the model used in the

development of these work.

The purpose of this work is to implement the solution of the 3D acoustic wave equation with constant

density using FDTD in a GPU. Then, propose a model that estimates the execution time of a GPU

implementation and finally validate the proposed model. By using this work the understanding of the

GPU can be improved, as well as the efficient use of GPU resources leading to decrease an application

execution time.

The document is organized as follows: in chapter 1 some of the fundamentals concepts related to the

seismic modelling are described. Then, in chapter 2 the architecture of a GPU, the CUDA programming

model and a brief history of the GPU is presented. After that, the characteristics of the computational

implementation and some of their results are explained in chapter 3. Finally in chapter 4, the use

of a general analytical model to evaluate the performance of the 3D stencil-based GPU kernel is

proposed. Furthermore, the process of extracting parameters from hardware specifications, source

code and CUDA binary utilities, as well as the designed micro-benchmarks and the model validation

process.
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Chapter 1

Seismic Modelling

1.1 Structural Geology

The Earth’s structure is composed by several layers formed million years ago. Examples of the earth’s

structure are shown in Figure 1.1. Figure 1.1a shows a road cut of a pressure ridge along the San

Andreas Fault at Palmdale (CA) [3], and Figure 1.1b shows normal faults created by volcanic ashes

and paleo-soils in El Salvador [1]. As can be seen, each layer has different properties due to the

characteristics of the rocks and the physical conditions like temperature and pressure that allow the

layer to be created.

(a) (b)

Figure 1.1: a) San Andreas Fault at Palmdale in California. Taken from [3]. b) Normal faults in
volcanic ashes and paleo-soils, El Salvador, photo by Chuck DeMets. Taken from [1].

In addition to the geological faults shown above, there are other structures such as intrusions, where

a body of igneous rocks get through existing formations, and fractures, which are separations of

geological formations. The study of the origin, properties and deformation of these structures is

known as Structural Geology [2].
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1.2 Seismic Reflection Images

Seismic Reflection Images (SRI), also known as Seismic Reflection Profiles, are representations of the

Earth’s subsurface structure based on physical properties such as density, velocity and anisotropy. SRI

are used to study and reproduce geophysical phenomenons by academia and industry [4]. In Fig 1.2 a

SRI of the Seattle Fault Zone is shown [4]. This image represents a slice of the zone measured in dis-

tance versus depth. The structure of different layers can be seen, as well as the layer velocities in colors.

Figure 1.2: Seattle Fault Zone seismic model. Adapted from [4].

1.3 Seismic Survey

Knowing the Earth’s subsurface structure is important to several fields such as seismology, geology,

mineral industry and oil industry. The process that allows to obtain that information is called Seismic

Survey. Seismic surveys use the reflection and refraction of energy through the subsurface in order to

infer its structures and physical properties. Figure 1.3 shows the stages involved in this process [5].

Seismic surveys start with the design and planning stage. In this stage characteristics of the energy

source (see Figure 1.4) used in the survey are selected, as well as the number of devices used to capture

the reflected energy. These devices are named receivers and they can be geophones for on land surveys

or hydrophones for marine surveys. Then the survey zone is prepared: receivers are placed in surface

in the plan-ahead position using the Global Position System (GPS). Receivers are then connected to

a recording station where information such as date, weather, equipment, position and the energy of

reflections is stored [7].
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Figure 1.3: Seismic Survey process. Taken from [7].

(a) (b)

Figure 1.4: Examples of energy sources for marine and on land surveys: a) Mini G airgun suspended
from buoys. Taken from [8]. b) HEMI 60, a 61,000 Pound Vibrator. Taken from [9].
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Figure 1.5: Seismic Trace. Taken from [12].

In the next stage mechanical perturbations are created through an energy source. Depending on the

location, energy sources can be air cannons for marine surveys (see Figure 1.4a) or special trucks such

as the Hemi-60 vibrator for on land surveys (see Figure 1.4b) [7]. Perturbation energy is propagated

through the subsurface being reflected, transmitted and refracted when entering in contact with the

geological structures. Energy is captured by the receivers and sent to the recording station, where it

is recorded in seismic traces. A seismic trace is shown in Figure 1.5. Seismic traces from the survey

are processed in post-survey stages to create density profiles, seismic reflection images, etc, that would

later be analyzed by experts.

1.4 Synthetic Velocity Models

Synthetic Velocity Models (SVM) represent the velocities in the Earth’s subsurface. The number of

properties that the model includes, and the level of detail, can lead to really complex models and hence,

costly simulations. For this reason, simple models that only consider a few properties are rather used

in simulations where no more information is needed.

One of the most known synthetic velocity model is the Marmousi Model. Marmousi model was created

in 1988 by L’Institut Français du Pétrole (IFP), based on the geologic structure through the Cuanza

basin in the North Quenguela area in Luanda, Angola [14]. Several years later elastic properties were

added to the Marmousi Model in [13]. In Figure 1.6a, the original Marmousi model is shown. An

example of seismic modelling using the Marmousi model is shown in Figure 1.6. First, an energy

source is added to the medium in Figure 1.6b. Energy propagation is then modeled with the acoustic

wave equation (see equation 1.2) as shown in Figure 1.6c. As the simulation steps move forward, the

energy continue spreading through the Marmousi model, as shown in Figure from 1.6d.
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(a)

(b)

(c)

(d)

Figure 1.6: Seismic Modelling on the Marmousi Model [14]. a) Original Marmousi model. b) Energy
source applied to the medium. c) and d) Energy propagation step.
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1.5 Seismic Modelling

In the Seismic Modelling the energy propagation is simulated using the wave equation, a synthetic

velocity model (SVM) and an energy source. Usually the initial SVM is designed from the expertise

of previously made seismic surveys.

One of the most used mathematical expressions to simulate the energy source is the Ricker wavelet,

proposed by the United States geophysicist Norman H. Ricker (1896 - 1980) (see equation 1.1) [10]. In

that equation the wavelet is represented by f(t), fM is the peak frequency and t is the time. Figure

1.7 shows the Ricker wavelet. Energy source is simulated in the (sx, sy, sz) source position in the

SVM.

f(t) = (1 − 2π2f2
M t2)e−π2f2

M
t2 (1.1)

Figure 1.7: Ricker wavelet. Adapted from [11].

The energy propagation is then modeled with the acoustic wave equation shown in equation 1.2. Where

p represents the wave field, v the seismic reflection image, t the time and x, y, z the three-dimensional

(3D) spatial coordinates.

∇2p =
∂2p

∂x2 +
∂2p

∂y2
+

∂2p

∂z2
=

1

v2
∂2p

∂t2
(1.2)

Apart from reproducing geophysical phenomenons (e.g. subsurface energy propagation) seismic mo-

delling is also used in algorithms such as Reverse Time Migration (RTM) and Full Wave Inversion

(FWI). Moreover synthetic seismic traces can be generated by recording the energy that reaches the

SVM surface in the simulation. These traces can be compared with those from the seismic survey to

adjust the initial SVM. An example of an initial synthetic velocity model versus the final synthetic

velocity model is shown in Figure 1.8.
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(a)

(b)

Figure 1.8: Example of the initial velocity model and the final velocity model: a) Initial synthetic
velocity model from Seattle Fault Zone. Taken from [4]. b) Final synthetic velocity model from
Seattle Fault Zone. Taken from [4].
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Chapter 2

Graphics Processing Units

2.1 Definition

Graphics Processing Units (GPUs) are integrated circuits designed to be in charge of generating images

and accelerating imaging processes, such as rendering, that take place in any computational system.

For this work two NVIDIA GPUs of similar architecture generation were used: the GeForce GTX660,

and the Tesla K40.

In a graphics card the GPU chip, device RAM banks and others integrated circuits are soldered in a

printed circuit board (PCB). Connection between the GPU and the system is made via a communi-

cation port such as Peripheral Component Interconnect (PCI), Accelerated Graphics Port (AGP) or

Peripheral Component Interconnect-Express (PCI-E ) port. Figure 2.1 shows the GeForce GTX660

GPU and the main components of the graphics card.

R

A

M

B

a

n

k

s

GPU Chip

PCI-E Communication Port

(a) front. (b) back.

Figure 2.1: Graphics card with NVIDIA GPU GeForce GTX660. Adapted from [24].
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2.2 Brief History of GPUs

The high computational cost of using RAM for frame buffers led to the beginning of the GPUs history.

In the 1970s the use of Video Display Controllers (VDC) to generate color, luminance, and vertical and

horizontal synchronization signals started. Some types of VDC include video shifters, video interface

controllers, and video co-processors among others [18]. The Fujitsu’s MB14241 (shown in Figure 2.2a)

was a video shifter used in several arcade games such as Gun Fight (1975) in Figure 2.2b, Sea Wolf

(1976) and Space Invaders (1978) [17].

(a) Fujitsu’s MB14241. (b) Gun Fight (1975).

Figure 2.2: 1970s Video chips and games. Taken from [21].

In the 1980s video chips increased their capabilities, supporting resolutions of 256 × 256 with 8-bit

color data and 512 × 512 with 1-bit color (i.e. monochrome) data. Also, 2D display instructions to

generate graphics for background, title screens and scoring display were added. In 1986 ATI releases

the Original Equipment Manufacturer (OEM) Color Emulation Card starting with 16 [kB] of mem-

ory (see Figure 2.3). By 1988 ATI’s Wonder series offered 16-bit color VGA emulation, 800 × 600

resolution and 256 [kB] of memory [19].

In the 1990s resolution supported increased from 800 × 600 to 1600 × 1200 and Application Pro-

gramming Interfaces (APIs) such as OpenGL 1.0 (1992) and Direct3D (1995) were launched. Also,

the level of integration of the graphics chips varied from more than 500 [nm] to 350 [nm]. 3D features

began to be into the chip. Graphic memory reached the 16 [MB] and chip frequency operation was

around the 166 [MHz]. AGP communication port was introduced by newer boards such as the 1997

Intel i740 AGP graphics board, shown in Figure 2.4 [19].
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Figure 2.3: 1986 ATI Graphics Solution Revision 3. Taken from [22].

Figure 2.4: 1997 Intel i740 AGP Graphics Board [19].

(a) NVIDIA GeForce 256. (b) VisionTek Graphic Card.

Figure 2.5: GPU NVIDIA GeForce 256 and VisionTek graphic card. Taken from [17].

Although a number of video chip designers incorporated programmable pixels shader in prototype ver-

sion, the first graphics chip that offered hardware-based Transform and Lighting (Tn&L) to consumers

was the NVIDIA GeForce 256 (NV10) chip (see Figure 2.5), to which the term Graphics Processing

Units (GPUs) was coined.
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In the following years more capabilities were added to the GPUs. The ATI Radeon 9700 (R300) added

pixel and vertex shader. Scale integration shrinked from 250 [nm] to 130 [nm]. 1600 × 1200 resolution

was now available for two screens at the same time. Device RAM memory increased from 32 [MB]

to 512 [MB]. To 2006 three builders leaded the market Intel, NVIDIA and AMD (which had bought

ATI recently).

GPU designers started to add more floating point units, cores, and cache levels to the GPUs chips.

Also, memory in the graphics cards was increased, making the GPU a strong processing unit in fields

such as data stream processing and High Performance Computing (HPC) [17]. In Figure 2.6 two GPUs

from brands that lead the market are shown: AMD and NVIDIA.

(a) AMD GPU HD7000M. (b) NVIDIA GPU GeForce GTX 256M.

Figure 2.6: AMD and NVIDIA GPUs. Taken from [23] [24].

Nowadays, GPUs can be found in many embedded systems such as last generation televisors, games

consoles, laptops and desktop computers, HPC clusters and even smart phones. This means that

GPUs have evolved to the point that there are GPUs for the requirements of many applications

(power efficiency, number of element processed per unit of time, battery energy saving, etc.).
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2.3 GPU Architecture

The GPU architecture defines how the hardware resources are distributed inside the die and can pro-

vide an idea of the behaviour between them. GPU designers improve the capabilities for each new

GPU generation by adding, deleting or modifying those hardware resources. The number of processing

units, the operation frequency and the memory units available are examples of those changes.

L2 Cache

SM SM

Global Memory

GPU
Register File

SP

Warp Scheduler

SFU

SPSP

SP

SFU

DPU

DPU

LT/ST

LT/ST

Texture Units

64 [kB] Shared Memory / L1 Cache

48 [kB] Read-Only Data Cache

SM

Figure 2.7: NVIDIA Kepler GPU Streamming Multiprocessor (SMX). Adapted from [25].

In Figure 2.7 the architecture of the GPUs used in this work (codenamed Kepler) are shown. The

Streaming Processors (SP) or cores are represented by green squares. Tasks programmed are executed

by those cores. Registers inside the SM are grouped in the Register File and are used along the cores

to execute the programmed tasks. GPU cores are less complex than CPU cores. Additionally, Double

Point Units (DPU) can also be used for computations requiring double precision and Special Function

Units (SFU) to make special math operations such as trigonometric functions. The load and storage

memory transactions are in charge of the LT/ST units. All the tasks to be executed are programmed

in groups called warps, the warp scheduler unit manages the organized execution of these groups. All

these resources are grouped in Streaming Multiprocessors (SM). Others resources available inside the

SM include the cache L1, onstant memory, Read Only Data Cache and Texture Units.

Inside the GPU all the SMs shared a L2 Cache. All the data load from the off-chip global memory

(i.e. RAM banks installed in the graphics card) is passed through the L2 cache to the SMs.
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2.4 Memory Hierarchy

Memory resource units inside the GPU can be grouped according to their size and the number of clock

cycles spend in their access, known as Latency. Figure 2.8 shows a hierarchy organization of those

units.

Figure 2.8: Memory Hierarchy.

From top to base of the pyramid the size of the memory units is increased (i.e. from registers to global

memory), but also the number of clock cycles used to access those memory units.

A good practice to decrease the amount of clock cycles used for loading input data is to use the GPU

available cache levels (L1, L2). Also, the user can enable the Shared Memory unit or choose to use

the Constant Memory. To give an idea of the differences between sizes of the memory units, memory

specs for the GTX660 and its graphics card are given: 64 [kB] for Shared and L1 Cache memory,

48 [kB] for the Read-Only Data Cache, 1536 [kB] of L2 Cache memory and 1.5 [GB] of off-chip global

memory [25]. As can be seen, sizes in cache levels are really small in comparison with global memory,

for this reason it is necessary to apply fundamental locality concepts to improve the managing of cache

memory. Two of these concepts most widely recognized are the Principle of Spatial Locality and the

Principle of Temporal Locality.

Principle of Spatial Locality: This principle says that there is more probability of using datum

that is near to a recently used one, that datum that is far to that one.

Principle of Temporal Locality: states that data that was used before had more of probability of

being used again, that data that had been never used.
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2.5 GPU Programming

GPUs programming cannot be done using only traditional languages such as FORTRAN, C, C++. For

this reason the development of Application Programming Interfaces (APIs) for the GPUs has became

a necessity. APIs are extensions to traditional programming languages that provide a framework that

include libraries, functions and documentation for developing parallel code. Examples of the most

known GPUs APIs are CUDA and OpenCL.

Compute Unified Device Architecture (CUDA) is an API created by NVIDIA and launched

in 2006 for parallel computing programming in GPUs. This API is available for C , FORTRAN and

Python among others languages. This API integrates Software Developing Kits (SDK) such as Nsight.

Open Computing Language (OpenCL) is a development framework initially developed by Apple

inc. and passed to the non-profit technology consortium Khronos, its actual developers. Khronos

team has members from the companies Intel, Marvel, AMD, Qualcomm, NVIDIA Corporation, Texas

Instruments, Apple, Inc., MediaTek Inc., Altera Corporation, Vivante Corporation, Xilinx, Inc., ARM

Limited, Imagination Technologies, STMicroelectronics International NV, IBM Corporation, Creative

Labs, Samsung Electronics. With this framework parallel code for heterogeneous systems composed

by CPUs, GPUs, FPGAs, DSPs, and specific designed hardware, can be developed.

2.6 Programming Model

GPUs Programming models are representations of the tasks to be executed in the GPU. They allow the

programmer to manage and organize the resources used in implementations to improve the execution.

Although there are several GPU programming APIs, the concepts behind them are the same. In the

following paragraphs some basic concepts are described.

The minimum task that can be executed in a GPU is named Thread . Inside the GPU, one core

is assigned to each thread to be executed. Threads can be grouped in Thread Blocks as shown in

Figure 2.9, and blocks can be group in a Grid of Blocks.

The Kernels can be C functions that follow the Single Instruction Multiple Thread (SIMT)

execution model: “one instruction is programmed to be executed in parallel for many threads” [26].

Before launching the kernel, the programmer must specify the number of threads, blocks and grids to

be used. These parameters are limited by the GPU hardware resources.
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Threads Block

Blocks Grid

Threads Block Threads Block Threads Block

Threads Block Threads Block Threads Block

Figure 2.9: GPU Programming Model. Adapted from [26], [27].

Inside the GPU each streaming multiprocessor (SM) take the threads launched for the kernel and

creates, manages, schedules and executes them in groups of 32 threads named warps [26].

2.7 Heterogeneous Programming

Heterogeneous programming represents the execution flow of implementations in heterogeneous sys-

tems. An example of those systems could be a system composed by a host (CPU) and many devices

(GPUs). In these systems the host is in charge of the execution control; launching the kernels to

be executed in the device, allocating memory and saving data in disk. Device is used for intensive

compute task, and parallel tasks.

In Figure 2.10 the heterogeneous programming flow is shown. First the main code is executed in the

host and the memory needed is allocated in the device. Then, host copies the input data to the device

and launches a kernel specifying the number of threads per block and the number of blocks for grid.

After the kernel is executed in GPU the output data is copied back to the host. In this point the host

can launch another kernel or save the data and exit the execution flow. This flow can be applied to

heterogeneous systems composed of CPU and FPGA, CPU and GPU, CPU and Specific Hardware

and any system that uses devices for intensive compute operations.
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Figure 2.10: Heterogeneous Programming. Adapted from [26], [27].
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Chapter 3

Computational Implementation

3.1 Wave Equation Discretization

In chapter 1, the 3D acoustic wave equation with constant density was described (see equation 1.2).

This equation can be used to simulate the propagation of a wave through a medium. To implement

the solution of equation 1.2, a discretization method is needed. The discretization process consists in

representing the continuous equation with a discretized expression. Discretization can be made using

known numerical methods such as the Finite Elements Method (FEM) or the finite difference method,

among others.

FEM was introduced by Hrennikoff in 1941 [30]. Finite differences method was proposed by Yee in 1966

[28] as a staggered grid scheme, and named Finite-Difference in Time-Domain (FDTD) by Taflove in

1980 [29]. Implementing FDTD in a GPU is an excellent alternative due to the “parallel nature” of the

stencil (see section 3.5). For this reason the FDTD numerical method was chosen for the development

of this work.

3.2 Finite Difference Time-Domain (FDTD)

Let f(x) be a continuous function and suppose we are interested on finding the first derivative in

x = x0. If the values of the function f(x) are known in x0 − h, x0, and x0 + h, where h is step

size, then the f ′(x0) can be approximated using the backwards, centered, or forward FDTD methods.

Table 3.1 shows the graphic representations and the equations for each of these FDTD methods.

Universidad Industrial de Santander

31



FDTD
Method

Graphical Representation Equation

Backwards

f(x)

x0-h x0

f(x0)
f(x)

x

f ′(x0) =
f(x0)− f(x0 − h)

h
(3.1)

Centered

f(x)

x0-h x0+h

f(x0)

f(x)

x

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
(3.2)

Forward

f(x)

x0 x0+h

f(x0)

f(x)

x

f ′(x0) =
f(x0 + h)− f(x0)

h
(3.3)

Table 3.1: Backwards, Centered and Forward FDTD methods.

3.3 Taylor series

Taylor Series can be used to find the expressions of the FDTD for the derivative. According to Taylor’s

series, a function f(x) can be expanded around the point x0 with delta ±δ/2 as is shown in equations

3.4 and 3.5 [31].

f

(

x0 +
δ

2

)

= f(x0) +
δ

2
f ′(x0) +

1

2!

(

δ

2

)2

f ′′(x0) +
1

3!

(

δ

2

)3

f ′′′(x0) + ..., (3.4)
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f

(

x0 −
δ

2

)

= f(x0)−
δ

2
f ′(x0) +

1

2!

(

δ

2

)2

f ′′(x0)−
1

3!

(

δ

2

)3

f ′′′(x0) + .... (3.5)

Let’s substract equation 3.5 from equation 3.4:

f

(

x0 +
δ

2

)

− f

(

x0 −
δ

2

)

= δf ′(x0) +
2

3!

(

δ

2

)3

f ′′′(x0) + .... (3.6)

Then, divide equation 3.6 by δ:

f
(

x0 +
δ
2

)

− f
(

x0 − δ
2

)

δ
= f ′(x0) +

2

3!

(

δ

2

)2

f ′′′(x0) + .... (3.7)

Arranging equation 3.7, the representation of the centered FDTD can be obtained for the 2nd order

derivative, as shown in equation 3.8.

df(x)

dx

∣

∣

∣

∣

x=x0

=
f
(

x0 +
δ
2

)

− f
(

x0 − δ
2

)

δ
+O(δ2). (3.8)

This demonstration is also valid for the Backwards and the Forward FDTD approximations.

3.4 Acoustic Wave Equation using Centered FDTD

Discretization of the acoustic wave equation (see equation 1.2) can be made using the centered FDTD

scheme, as shown in equation 3.9. In that equation the spatial derivatives have been discretized with a

4th order approximation and the time derivative with a 2nd order approximation. Pn
(x,y,z) represents

the wave field in the position given by the (x, y, z) coordinates for the n time step. Coefficients for

each FDTD term appear as Ci, where i is the FDTD term index. ∆x, ∆y, ∆z are the spatial steps

and ∆t is the time step. At last the v term corresponds to the input Synthetic Velocity Model (SVM).
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0,0,3

∆z2
=

1

v2
P−1
0,0,0 − 2P 0

0,0,0 + P 1
0,0,0

∆t2
.

(3.9)

3.5 Stencils

The FDTD method can be represented as computing templates known as stencils. In Figure 3.1, the

4th order stencils for 1D, 2D and 3D are shown. The central sphere is the output element and the

surrounding spheres are the neighbouring input points. The order of the stencil is given by the number

of input points per dimension. Input points such as SVM data and spatial points from present data

and past outputs are used to compute a future output point. Since there is not dependency among

future output elements, stencil computations could be made at the same time, leading to the idea that

“an stencil is parallel in nature”.

x

(a)

x

y

(b)

x

y

z

(c)

Figure 3.1: 4th order stencils in 1D, 2D, 3D. a) 1D stencil. b) 2D stencil. c) 3D stencil.

3.6 Properties of the FDTD implementation

In this section some of the basic properties of FDTD implementations are described. Properties include

precision, numerical dispersion and stability.

Universidad Industrial de Santander

34



3.6.1 Numerical dispersion

Due to the wave equation discretization (see equation 3.9) several frequency components were created,

this caused waves traveling at different speeds. This undesirable effect is known as numerical dispersion

[35]. Figure 3.2a shows this effect; several waves are traveling at different velocities. In Figure 3.2b

numerical dispersion has been damp out. To decrease the numerical dispersion effect the number of

terms considered in the Taylor’s series should be increased. That is, the number of the FDTD terms,

also known as order, should be raised.

(a) (b)

Figure 3.2: Numerical dispersion effect. a) Wave front with dispersion. b) Wave front without disper-
sion. Taken from [35].

3.6.2 Stability

Numerical stability is a property of numerical schemes such as finite differences. An implementation is

said to be stable when error in one computation step doesn’t cause an increasing error in the subsequent

steps [33], [34]. According to the error’s final state, an implementation can be: Neutrally stable, errors

are constant during all computations carried out. Stable, errors decay or may disappear through all

the computations. Unstable, errors increase in each computation step [34].

Several works have analyzed the stability of FDTD-based implementations. In 1999, Lines et al. [32]

proposed a recipe to calculate the maximum temporal resolution δt, that guarantee numerical stability

according to a previously selected spatial resolution h. Equation 3.10 shows that recipe for a 2nd order

finite differences.
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vδt

h
=

1√
2

(3.10)

In Table 3.2 the stability limits
(

vδt
h

)

for 1D, 2D and 3D using 2nd and 4th order finite differences

are summarized.

Dimension 2nd Order 4th Order

1D 1

√

3
2

2D
1
√

2

√

3
8

3D
1
√

3
1
2

Table 3.2: Stability limits for 1D, 2D and 3D using 2nd and 4th order Finite Differences. Taken from
[32].

3.6.3 Precision

Precision is a property that allows to evaluate if the amount of relevant numbers used to represent the

data of a computational problem are enough to the problem scope. Two of the most used data types

are float for single precision, and double for double precision. Float data is stored in 32-bits registers:

1 bit for sign, 23 bits for mantissa and 8 bits for exponent. On the other hand, double data uses 64-bits

registers: 1 bit for sign, 52 for mantissa and 11 for exponent [31]. Generally, processing units, such as

CPUs or GPUs, have a finite number of modules for single and double precision, usually more single

modules than double. As a consequence the performance can be affected when using double precision.

Rounding data or using few terms of the Taylor’s series to keep some level of precision might lead to

local errors, for this reason, knowing the data type that best-fit the computational problem is funda-

mental to decrease errors.

3.7 Two Layers Synthetic Velocity Model

For the sake of simplicity in the CPU and GPU implementations of this work, (see sections 3.8, 3.9),

a 3D synthetic velocity model with two layers (Layer 1 = 1500 [m/s], Layer 2 = 4700 [m/s]) was

created. The SVM size is given by Nx, Ny, Nz for each coordinate x, y, z. The velocity model was

defined using C language (see listing 3.1) and the Visualization Toolkit (VTK) [15] was used to store

data as a VTK Image Data (.VTI) file.
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Visualization is made using an open-source, multi-platform data analysis application named Paraview

[16]. In Figure 3.3 the 3D synthetic seismic reflection image is shown.

Listing 3.1: Two layers synthetic velocity model C

code.

1 for(ix=0; ix<Nx; ix++) {

2 for(iy=0; iy<Ny; iy++){

3 for(iz=0; iz<Nz; iz++){

4 if (iz > (Nz/2 - 1) ){

5 c(ix,iy,iz) = 4700;}

5 else{

6 c(ix,iy,iz) = 1500;}

7 }

8 }

9 }

Figure 3.3: 3D two layers SVM. Visualization in

Paraview.

3.8 CPU Implementation

Figure 3.4 shows the diagram flow for the CPU implementation. First a SVM and Seismic Modelling

parameters are read. Specified parameters cover the number of terms of the FDTD approximation

(FDTD order) Ord; the x, y, z sizes of the modelling process Nx, Ny, Nz respectively; the x, y, z

spatial resolutions dx, dy, dz; the Ricker source position, sx, sy, sz; Ricker source frequency fq, and

the number of time steps itmax. Then, the stability analysis is carried out to check if the parameters

accomplish with the stability conditions described in section 3.6.2 [32]. If the conditions do not meet

the stability criterion, spatial resolution dx, dy, dz is adjusted. Next, the Ricker source data is com-

puted, using the equation 1.1 described in section 1.5, for the number of time steps specified in itmax

and the fq frequency. Following a time step is executed itmax times. The time step is composed

mainly of spatial propagation, energy source addition and the updating of the computed field.

In Algorithm 1, the pseudo-code of a time iteration is shown. The spatial loops sweep through the Nz,

Ny, Nx modelling space evaluating the FDTD wave equation for the approximation order selected

(e.g. equation 3.9 for a 4th order approximation).
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Start

Synthetic Veloc-
ity Model (SVM)

Ord, Nx, Ny, Nz,
dx, dy, dz, sx,

sy, sz, fq, itmax

Stability Analysis

Computing
Ricker Source

t = 0; t < itmax; t++

Propagating through
Nx, Ny, Nz space

Adding Ricker
Source to the Field

Update present field
with future values

end

Algorithm 1

Variables
Ord : FDTD Order.
Nx : x SVM size.
Ny : y SVM size.
Nz : z SVM size.
dx : x modelling resolution.
dy : y modelling resolution.
dz : z modelling resolution.
sx : x source position.
sy : y source position.
sz : z source position.
fq : Ricker source frequency.
itmax: Total number of time steps.

Figure 3.4: CPU implementation flow diagram.
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Algorithm 1 Time Step CPU

1: procedure time loop

2: Spatial loops :

3: for (k = 1; k < Nz − 1; k ++) do

4: for (j = 1; j < Ny − 1; j ++) do

5: for (i = 1; i < Nx− 1; i++) do

6: FDTD wave equation;

7: end for

8: end for

9: end for

10: Adding Ricker Source:

11: present field + = sourcedata;

12: Updating field :

13: present field = future field;

14: Saving data:

15: writting vtk data field.

16: end procedure

Hence, energy from the Ricker source for each step is added and the present field is updated. Finally,

the computed field is stored.

In Figure 3.5 an example of the seismic modelling implementation in CPU is shown. The computed

field is stored in vtk format and it is visualized using the Paraview application [16]. Some of the

measurements used are presented in Table 3.3.

Parameter Description

Synthetic Velocity Model Two layers SVM (Layer 1 = 1500 [m/s], Layer 2 = 4700 [m/s]).

SVM size Nx = 50, Ny = 50, Nz = 50.

Spatial resolution dx = 10 [m], dy = 10 [m], dz = 10 [m].

Energy source position sx = 250 [m], sy = 250 [m], sz = 100 [m].

Energy source frequency fq = 20 [Hz].

FDTD approximation order 16th-order (17 FDTD terms).

Table 3.3: Seismic Modelling Parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Seismic modelling implemented on CPU. All the wave propagation data is stored in “.vtk”
format and visualized in Paraview. In a) and b) an Ricker energy source had been applied. c) Energy
has reached the top boundary of the field. d) Energy is transmitted and reflected after entering in
contact with the 2nd layer of the SVM. e) to f) Energy continue spreading through the medium.

3.9 GPU Implementation

Figure 3.6 shows the diagram flow for the GPU implementation, similar in some stages to the CPU

implementation diagram flow. First a SVM and seismic modelling parameters are read. Specified

parameters are:
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Start

Synthetic Veloc-
ity Model (SVM)

Ord, Nx, Ny, Nz,
dx, dy, dz, sx, sy, sz,
fq, itmax, n th, n blk

Stability Analysis

Allocate device
memory, copy SVM to
device and compute

Ricker Source

t = 0; t < itmax; t++

Propagating through
Nx, Ny, Nz space

Adding Ricker
Source to the Field

Copy computed field
back to the host and
Update present field
with future values

end

Variables
Ord : FDTD Order.
Nx : x SVI size.
Ny : y SVI size.
Nz : z SVI size.
dx : x modelling resolution.
dy : y modelling resolution.
dz : z modelling resolution.
sx : x source position.
sy : y source position.
sz : z source position.
fq : Ricker source frequency.
itmax: Total number of time steps.
n th : Number of threads launched.
n blk : Number of thread blocks launched.

Figure 3.6: GPU implementation flow diagram.
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the number of terms of the FDTD approximation (FDTD order) Ord; x, y, z sizes of the modelling

process Nx, Ny,Nz respectively; x, y, z spatial resolutions dx, dy, dz; the Ricker source position, sx,

sy, sz; Ricker source frequency fq, and the number of time steps itmax and two parameters related

to the number and distribution of parallel computing elements used; the number of threads launched

(n th), and the number of thread blocks used (n blk).

After the stability analysis stage is performed, allocation of memory for the propagation fields and the

SVM is made in the device. Following the SVM is copied from host memory to device memory. Then,

the Ricker source is computed in device using the kernel shown in Listing 3.2.

Listing 3.2: Ricker Source Kernel.

1 __global__ void ricker_knl(float fq, float dt, int itmax,

2 struct wavelet source){

3

4 /* Thread index */

5 int it = threadIdx.x + blockIdx.x*blockDim.x;

6

7 /* Constraining threads */

8 if(it < itmax){

9

10 /* Filling source data*/

11 t = ((float)it - 1.0f)*dt - (1.0f/fq);

12 arg = ((float)M_PI)*((float)M_PI)*fq*fq*t*t;

13 source.data[it]= (1.0f - 2.0f*arg)*(exp(-arg));}}

A time step is executed itmax times. The time step is composed mainly of spatial propagation, energy

source addition and the updating of the computed field. In Listing 3.3, the kernel for the spatial prop-

agation is shown. In the GPU, each spatial output point is computed by a thread, using the FDTD

wave equation (see equation 3.9). This means that, according to the number of available threads and

field points the spatial output field can be computed at once.
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Listing 3.3: Stencil Kernel.

1 __global__ void stencil_eval_gpu(int Nx, int Ny, int Nz,/* Model size */\

2 float* p, /* Past field */\

3 float* q, /* Present field */\

4 float* r, /* Future field */\

5 float* c, /* Velocity field */\

6 float dt, /* Time step */\

7 float dx, /* Model resolution */\

8 float dy, /* (dx,dy,dz) */\

9 float dz, /* */\

10 int Ord, /* FD aprox. order */\

11 float* coef, /* 2 deriv. FD coef */\){

12

13 /* 3D Thread index */

14 int idx = threadIdx.x + blockIdx.x*blockDim.x;

15 int idy = threadIdx.y + blockIdx.y*blockDim.y;

16 int idz = threadIdx.z + blockIdx.z*blockDim.z;

17

18 /* Constraining threads */

19 if(idx < Nx && idy < Ny && idz < Nz){

20

21 FDTD wave equation (stencil)

22

23 }

24 }

After that, the energy from the Ricker source for that step is added using the kernel shown in Listing

3.4. Finally, the data is copied back to the host to be stored, and the present field is updated.

Although GPU implementation looks similar to the CPU implementation there is a little difference

between data. In the scope of this work that amount of error is not relevant as far as the results are

similar.
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Listing 3.4: Addition Kernel.

1 __global__ void add_source_gpu(int addsubflag, int Nx, int Ny, int Nz, int its,

2 float *r, struct wavelet source){

3

4 /* Declaring variables*/

5 int i = threadIdx.x + blockIdx.x*blockDim.x;

6

7 /* Constraining threads */

8 if (i < source.ntr){

9 if(addsubflag==1)

10 r(source.x[i], source.y[i], source.z[i]) += source.data[i*source.ns+its];

11 else

12 r(source.x[i], source.y[i], source.z[i]) -= source.data[i*source.ns+its];

13 }

14 }
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Chapter 4

Modelling of the Implementation

This chapter presents the methodology used in this work, some of the analytical models studied, the

selected model and the process of adapting the model. Also, the identification and extraction of the

parameters needed to validate the model. Finally, the discussion and conclusions of this work are

presented at the end of the chapter.

4.1 Methodology

State of the art
models study

Model Adaptation

Parameters Identifi-
cation and Extraction

Hardware
Specification

CUDA binary tools Micro-benchmarks Source Code

Model Validation

Figure 4.1: Methodology.
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The methodology utilized in this work is shown in Figure 4.1. First, several analytical models from

the literature are studied to determine the characteristics of the GPUs analytical models. Secondly,

analytical models with similar characteristics to those found in the seismic modelling implementation,

presented in chapter 3, are selected. Then, the best-fit model is adapted to consider the implementation

features (see sections 4.3 and 4.4). Hence, the identification and extraction of the parameters needed by

the model is performed. In this stage, hardware specifications, micro-benchmarks and CUDA binary

tools are taken into account to obtain those parameters (see section 4.5). Once all the data had been

gathered, the validation process is made as it is shown in section 4.6.

4.2 Related Work

A GPU Analytical Model is a set of equations that involve parameters to estimate performance mea-

sures, such as the execution time, of a GPU implementation. According to the number of different

GPU implementations that the analytical model can estimate, they are considered as General An-

alytical Models or Specific Analytical Models. Usually, specific models have less error than general

models due to their inner detail. However, these models are only suitable for few implementations.

There are some examples of specific models in the literature: in [43] the authors proposed a tool

named CuMAPz that models memory effects as data reuse; global memory access coalescing; shared

memory bank conflict; etc. Another example is the performance model of a sparse matrix-vector mul-

tiply (SpMV) operation presented in [41]. Unfortunately, there aren’t specific analytical models for

applications with similar characteristics to those of the seismic modelling implementation presented in

chapter 3.

On the other hand, general models have a greater percentage error than the specific models be-

cause they cover common characteristics of many implementations. Among the general models, the

MAX(SUM) model that merges classical models such as the Bulk Synchronous Parallel (BSP) model,

the PRAM model and Queue-Read-Queue-Write (QRQW) PRAM model is proposed in [39]. This

model calculates the execution time of a program that consists of several kernels by summing the time

spent by each kernel. This model is tested with Matrix multiplication, List Ranking, and histogram

generation, although the model was proposed in 2009 for past GPU architectures, it gives some ideas

about computational models. In [40] a model that is based on Control Flow Graphs (CFG), Work Flow

Graphs (WFG) and the Instruction-Level Parallelism (ILP) of GPU kernels to estimate their execution

time is presented. This model was tested in matrix multiplication, prefix sum scan, FFT, and sparse

matrix-vector benchmarks. After studying a set of state of the art models and according to [47] one

the most accepted analytical models in the literature is the MWP-CWP model proposed in [44] and

adjusted to be used in a Performance Analysis Framework in [45]. This model has been validated for

the GPU implementations of tiled matrix multiplication algorithms, and the Fast Multipole Method

(FMM) algorithm and will be adapted in this work to the seismic modelling implementation.
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Furthermore, a different model for a 2.5D stencil implementation in a GPU was proposed in [46], but

due to the large difference between the seismic modelling implementation this model was not used.

4.3 Memory Warp Parallelism-Compute Warp Parallelism model

The Memory Warp Parallelism-Compute Warp Parallelism (MWP-CWP) model [44] [45] uses the

number of instructions, level of parallelism, and GPU architecture parameters to estimate the execu-

tion time of a given kernel. Its two main concepts are described below.

Memory Warp Parallelism (MWP):

The MWP measures the memory parallelism warp level per SM (i.e., how many warps can access to

the memory simultaneously).

Compute Warp Parallelism (CWP):

The CWP represents the warps that can executed a computing period while during a memory waiting

period plus one.

According to [44] and [45], an implementation can be characterized in terms of memory and compu-

tation, resulting in 3 cases: when MWP < CWP , or MWP >= CWP , or Not enough warps.

1. MWP < CWP : The cost of computation is less that the cost of accessing memory, therefore

the execution time is given by the memory operations.

2. MWP >= CWP : The cost of memory operations is less or equal than the cost of computing

operations, thus, the execution time is given by the compute operations.

3. Not enough warps: The number of warps is not enough to guarantee parallelism, so the memory

and compute cost fully affect the execution time.

The first equation of the MWP-CWP analytical model establishes the execution time (Texec) as the

sum of the compute operations time (Tcomp) and the memory operations time (Tmem), minus the

overlap time (Toverlap) between (Tcomp) and (Tmem) as it is shown in equation 4.1.

Texec = Tcomp + Tmem − Toverlap. (4.1)
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Hence, Tcomp considers the parallel computation cost (Wparallel) and the serial computation cost

(Wserial) (see equation 4.2).

Tcomp = Wparallel + Wserial. (4.2)

The Wparallel equation (eq. 4.3) includes several parameters such as: the number of kernel compute

instructions (#inst), the number of total warps launched (#total warps), the number of SMs running

the kernel (#active SMs), the average floating point instruction latency (avg inst lat) and the amount

of parallelism among threads represented by the inter-thread instruction-level parallelism (IT ILP ).

Wparallel =
#inst × #total warps

#active SMs
× avg inst lat

IT ILP
(4.3)

Equations 4.4 to 4.6 are used to calculate the IT ILP , where the ILP represents the instruction level

parallelism among warps (see equation 4.5). To compute the ILP , the instructions are grouped in

blocks known as Basic Blocks (BBs).

IT ILP = min(ILP ×N, IT ILPmax) (4.4)

ILP (MLP )AVG =

#BBs
∑

K=1

ILP (MLP )K ×#accesses to BBk

#basic blocks
(4.5)

IT ILPmax =
avg inst lat

warp size/SIMD width
(4.6)

On the other hand, the Wserial equation (eq. 4.7) considers the computational cost due to: synchro-

nization Osync, use of special function units (OSFU ), execution of additional instruction in divergent

branches OCFdiv and the cost due to the shared memory bank conflicts (Obank).

Wserial = Osync +OSFU +OCFdiv +Obank (4.7)
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The memory operations time (Tmem) is calculated as shown in equation 4.8. As can be seen, the

#total warps, #active SMs parameters are the same for Tcomp and Tmem. Other parameters include

the number of memory instructions (#mem inst), the average memory access time AMAT , and the

inter-thread memory-level parallelism (ITMLP ).

Tmem =
#mem inst × #total warps

#active SMs × ITMLP
× AMAT (4.8)

The AMAT equation considers the cache hit latency hit lat, the cache miss ratio miss ratio and the

average DRAM access latencyDRAM latency. DRAM latency is calculated as it is shown in equation

4.10, by using the minimum departure distance between two consecutive memory warps (Departure

Delay (∆)) and the average number of transactions per memory request in a warp (avg trans warp).

AMAT = avg DRAM lat × miss ratio + hit lat (4.9)

avg DRAM lat = DRAM lat + (avg trans warp − 1) × ∆ (4.10)

The ITMLP is given by equation 4.11, where the MLP represents the a intra-warp memory-level

parallelism.

ITMLP = min (MLP × MWPcp,MWP peak bw) (4.11)

Then, equations from 4.12 to 4.19 are used to calculate the ITMLP .

MWPcp = min (max (1, CWP − 1) ,MWP ) (4.12)

CWP = min (CWP full,N) (4.13)

CWP full =
mem cycles + comp cycles

comp cycles
(4.14)

comp cycles =
#insts × avg inst lat

IT ILP
(4.15)
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mem cycles =
#mem inst × AMAT

MLP
(4.16)

MWP = min

(

avg DRAM lat

∆
,MWP peak bw,N

)

(4.17)

MWPpeak bw =
mem peak bandwidth

BW per warp × #active SMs
(4.18)

BW per warp =
freq × transaction size

avg DRAM lat
(4.19)

transaction size = Data size × #threads per warp (4.20)

The Toverlap corresponds to the time overlap between the computational and the memory operations.

Toverlap is calculated using equation 4.21. The overlap function (see equation 4.22) depends on the

MWP , and CWP values, as well as the number of concurrently running warps N .

Toverlap = min (Tcomp × Foverlap, Tmem) (4.21)

Foverlap =
N − ζ

N
, ζ =







1 if ( CWP ≤ MWP )

0 if ( CWP > MWP )
(4.22)

4.4 Adapted Analytical Model and Parameter Identification for the

3D-Stencil Case

In this section, the adaptation of the MWP-CWP general model to a 3D stencil-based kernel imple-

mentation is presented. Note that due to the parallel nature of the GPU implementation exposed in

chapter 3, knowing the execution time of one stencil would be enough to estimate the execution time

of a 3D spatial volume. The adaptation consists of modifications to the MWP-CWP model equations

considering serial factors (e.g. synchronization, divergent branches, etc), GPU cache levels, instruction

level parallelism, memory level parallelism and departure delay.

Universidad Industrial de Santander

50



4.4.1 Wserial equation

TheWserial equation (eq. 4.7) take into consideration the costs of using synchronization barriersOsync,

bank conflicts in shared memory (Obank), employing special function units (OSFU ) and the cost of

divergent branches OCFdiv. As shown in chapter 3, the implementation does not have synchronization

barriers meaning that the Osync is zero. Also, it does not use shared memory neither SFU, for these

reason the cost associated to that memory (Obank) and those special units (OSFU ) can be neglected.

Besides, the Control Flow Graph (CFG) of stencil-based application (see section 4.5) was analyzed,

observing that they were not significant branches created annulling the OCFdiv term. Therefore the

Wserial term is equal to zero, making the computational cost equal to the parallel work Wparallel, this

is shown in equation 4.23.

Tcomp = Wparallel. (4.23)

4.4.2 AMAT equation

According to [44], [45], AMAT equation (eq. 4.9) can be modified to involve other cache levels. Kepler’

GPUs have 2 cache levels: the L1 cache level inside the SM and the L2 cache level outside the SM.

Hence, the AMAT equation was modified as it is expressed in equation 4.24.

AMAT = avg DRAM lat × miss ratio l2 + hit lat l2 × miss ratio l1 + hit lat l1. (4.24)

4.4.3 Departure Delay (∆)

By using the definition presented in [44], equation 4.25 is proposed to compute the departure delay.

The input data are the global memory latencies using 1 warp, 2 warps, and so on, until 32 warps.

Latencies are obtained through the micro-benchmarks presented in section 4.5.

∆ =

#warps−1
∑

i=1

(δi)

#warps − 1
=

#warps−1
∑

i=1

(warpsi+1 − warpsi)

#warps − 1
(4.25)
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4.4.4 ILP

The description provided in [44] to calculate the ILP lacks of detail in the process for extracting

the basic blocks. For this reason, according to the CFG of the stencil-based implementation the

equation 4.5 was replaced for an expression that follows the ILP definition involving the number of

total instructions and the number of basic blocks (see equation 4.26). From here, each basic block

corresponds to the execution independent instructions that can be grouped.

ILP =
#total instructions

#basic blocks
(4.26)

4.5 Parameters Identification and Extraction

The list of the parameters needed by the adapted model to estimate the execution time of a 3D-stencil

and a brief description of them is given in Table 4.1.

Table 4.1: Parameters used for the adapted model. Adapted from [45].

Model Parameter Definition

#inst # of total instructions per warp.
#mem inst # of memory instructions per warp.
#FP inst # of floating point instructions per warp.
#total warps Total number warps in kernel.
#active SMs # of active SMs.
N # of concurrently running warps on one SM.
AMAT Average memory access latency.
avg trans warp Average memory transactions per memory request.
avg inst lat Average instruction latency.
miss ratio Cache miss ratio.
size of data The size of input data.
ILP Instructions-level parallelism in one warp.
MLP Memory-level parallelism in one warp.
MWP (per SM) Max #warps that can concurrently access memory.
CWP (per SM) # of warps executed during one memory period plus one.
MWPpeak bw (per SM) MWP under peak memory band width.
warp size # of threads per warp.
∆ Transaction departure delay.
DRAM lat Baseline DRAM access latency.
FP lat FP instruction latency.
hit lat Cache hit latency.
SIMD width # of scalar processors (SPs) per SM.
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The process of extracting the parameters listed in Table 4.1 is described here. The set of parameters

required to estimate the execution time of the 3D-stencil, are extracted from four different sources:

1. The GPU hardware specifications [54].

2. The source code of the stencil based implementation.

3. CUDA binaries tools [48], [55], [57], [53].

4. Specific pseudo assembly routines known as micro-benchmarks (ubmk).

The correct extraction of the parameters is of major importance since the validation of the analytical

model with the measured execution times relies on it.

4.5.1 Hardware Specifications

The GPU hardware specifications include the number of cores per SM, the number of SMs, cores clock

frequency, among others. These specifications allow knowing in advantage the available resources in the

GPU and the physical chip limitations. Some of these specifications are parameters of the analytical

model. In Table 4.2, the hardware characteristic and its correspondent value for the NVIDIA K40

Kepler GPU, are shown.

In addition, the last column of Table 4.2 shows the name of the parameter that is directly computed

with the hardware characteristic. Also, those hardware characteristics represented by −− mean that

the characteristic is indirectly used in the computation of one or many parameters. The specifications

given in the table are extracted via the execution of the CUDA samples, which is a set of NVIDIA

CUDA applications samples.

Table 4.2: Hardware specifications used directly or indirectly to compute the set of parameters.

Hardware Specification K40 Parameters

Number of multiprocessors (SMs) 15 −−
Number of cores 2880 −−
Number of cores/SM 192 SIMD width
GPU clock rate 745 [MHz] freq
Memory bus width 384-bit −−

L2 Cache Size
1572864
bytes

−−

Warp size 32 warp size

Bandwidth
183644.7
[MB/s]

mem peak bw

1
−− indirectly used.
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4.5.2 Parameters from CUDA Binary Tools

There are many tools to obtain the information of the resources used by the GPU. Some of those tools

allow extracting information while executing the kernel (metrics and events [53]). As for the rest of

tools, they analyze the binary files created in the source code compilation process (e.g. CUDA binary

file (CUBIN)) [48], [55], [57]. The parameters obtained using this set of tools are:

a. Number of instructions per warp (#inst):

This parameter can be found by counting the number of instructions in the Control Flow Graph (CFG)

generated from the cubin file. Reading the metric “inst per warp” while running the executable can

give an idea of the number of instructions. As the executable file could differ from the cubin, differ-

ences can be found between the two measures.

In Figure 4.2 the CFG of a kernel that sums an input data element with a constant is shown. The

CFG represents the GPU instructions using a pseudo assembly language known as Parallel Thread

Execution (PTX) [57]. Some of the instructions include; load from global memory (LD.E), float

addition (FADD) and storage to global memory (ST.E).

Figure 4.2: Control Flow Graph.
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b. Instruction level parallelism (ILP):

To calculate the ILP parameter, the kernel instructions are counted using the CFG generated. Then,

instructions with not execution dependences are grouped into basic blocks. Knowing the number of

instructions and the number of blocks, the ILP is computed using the equation 4.26.

c. Average memory transactions per memory request (avg trans warp):

This parameter represents the average memory transactions generated per warp memory request. It

can be obtained from the metric “gld transactions per request”.

d. Memory level parallelism (MLP):

Represents the number of memory requests between a load request and the first instruction that sources

the memory request [44]. MLP is equal to the number of instructions counted before the first load

instruction.

e. Miss ratio:

The miss ratio between L1 cache and global memory is a metric that depends on the implementation.

It can be obtained subtracting the CUDA metric l1 cache global hit rate from the total number of

cache requests, represented here by 100%. A description of the metrics and events supported for pro-

filing can be found in [53].

f. Miss ratio l1 l2 :

The miss ratio between L2 and L1 cache memory can be computed by subtracting the CUDA metric

l2 l1 read hit rate from the total number of cache requests (100%). Similar to the l1 cache global hit rate

metric, the value of this metric depends on the implementation.

4.5.3 Parameters from Micro-benchmarks

The parameters presented in this section can not be obtained by using the previously described tools,

they are obtained via micro-benchmarks that employ the GPU special registers. A GPU counts of

several registers inside each SM. One of these registers, is the special register %clock in charge of

counting the number of clock cycles passed inside the SM. The micro-benchmarks presented here were

designed to read the %clock register at the beginning and the end of an assembly instruction. The

difference between the recorded time values is calculated and the cost of reading the %clock register

is subtracted obtaining the number of clock cycles taken to execute the instruction. Each micro-

benchmark was executed 50 times launching from 1 warp (32 threads) to 32 warps (1024 threads).
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The output latency was calculated taking the average among threads and iterations. The micro-

benchmark results show in this section were implemented in an NVIDIA K40 Kepler GPU.

a. Latency of the special register %clock :

The code used for this micro-benchmark is shown in Listing 4.1. It consists of reading the %clock

register twice. The difference between the (start) and the (stop) time values is the cost of using the

%clock register.

Listing 4.1: %clock register micro-benchmark assembly.

1 __asm__("mov.u32 %00, %%clock; \n\t"// Start cycle

2 "mov.u32 %01, %%clock; "// Stop cycle

3 : "=r" (start), "=r"(stop));

4

5 d_start[idx] = start; d_stop[idx] = stop;

6 clk_cycles[idx] = (int)(stop-start);// Difference

Figure 4.3 shows the number of clock cycles spent on accessing the %clock register. From 1 warp to

15 warps a it is had a constant latency of 16 [clock cycles]. At 16 warps the SM is saturated and the

latency start to increase exponentially until ≈ 20 [clock cycles] for 32 warps.
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Clock Special Register Latency Micro-benchmark

Figure 4.3: Clock special register latency micro-benchmark.
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b. Function clock() micro-benchmark:

Similar to the assembly instruction to read the %clock register, the clock() function, provided by the

CUDA API, can also be used to measure the number of clock cycles taken to execute an instruction.

In Listing 4.2 the function clock() is used twice without any line between them to get the cost of

applying that function to the kernel.

Listing 4.2: Function clock() micro-benchmark assembly.

1 /*Initializing variables*/

2 clock_t start;

3 clock_t stop;

4

5 /* Timing*/

6 start = clock();

7

8 stop = clock();

9

10 /* Clock cycles difference */

11 d_start[idx] = start; d_stop[idx] = stop;

12 clk_cycles[idx] = (int)(stop-start);

Figure 4.4 shows the number of clock cycles employed in using the function clock(). As expected, the

behaviour is similar to the one displayed figure 4.4 since both micro-benchmarks read the same special

register.
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Figure 4.4: Clock function latency micro-benchmark.
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c. Register latency micro-benchmark:

To obtain the number of clock cycles spent on using a register the micro-benchmark in Listing 4.3 was

designed. First, two registers are declared. Then, the data is loaded from global memory and copied

to one register. After that, the data is moved from one register to the other. At the end, the data is

copied back to global memory.

Listing 4.3: Register latency micro-benchmark assembly.

1 /* Extended assembly inline: 1 thread, 1 data*/

2 __asm__(".reg .f32 reg_c0, reg_c1; \n\t"// f32 registers

3 "ld.global.f32 reg_c0, [%03]; \n\t"// reg_c0 = d_a[0]

4 "mov.u32 %00, %%clock; \n\t"// Writing start cycle

5 "mov.f32 reg_c1, reg_c0; \n\t"// reg_c0=reg_c1

6 "mov.u32 %01, %%clock; \n\t"// Writing stop cycle

7 "mov.f32 %02, reg_c1; "// c0 = reg_c0

8 : "=r"(start), "=r"(stop), "=f"(c0)

9 : "l"(&d_a[0]));

10

11 /* Clock cycles difference */

12 d_start[idx] = start; d_stop[idx] = stop;

13 clk_cycles[idx] = (int)(stop-start);

Observation to the control flow graph generated for the register latency benchmark kernels (see Figure

4.5) showed that the use of the %clock register always creates an additional mov instruction.

Figure 4.5: Control flow graph detail of the register latency micro-benchmark kernel.

Figure 4.6 displays the clock cycles captured for the register latency micro-benchmark. 41 [clock cycles]

for 1 warp and ≈ 46 [clock cycles] for 32 warps.
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These results include the cost of using the function clock() or %clock register to measure the latency

and the extra mov instruction created. For this reason, subtractions between the cycles show in Fig-

ure 4.6 and the cycles show in Figure 4.3 per each warp must be made to know the cost of two mov

instructions. Then, this result can be divided by 2 to obtain the actual latency for one mov operation.
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Figure 4.6: Register benchmark.

d. Float point operations latency micro-benchmark:

The float point (FP) operations latency depends on the operation being executed. The benchmarked

operations were 3D stencil operations (e.g. addition, subtraction, multiplication, division). Then la-

tency of the stencil operation with the larger value was chosen as the ”avg inst lat“ parameter.

d.1 Addition floating point operation latency micro-benchmark: In Listing 4.4 the code used in the

addition floating point operation is shown. Previously, two elements have been loaded from global

memory. The assembly addition instruction for float data of 32-bits is add.f32. This instruction adds

the values of two registers and stores the result in a third register. The addition operation is put

between two %clock registers instructions to capture the addition instruction latency.

Figure 4.7 displays the clock cycles captured for the addition operation latency micro-benchmark.

41 [clock cycles] for 1 warp and ≈ 43 [clock cycles] for 32 warps. As well as the register latency

micro-benchmark, these results include the cost of using the function clock() or the %clock register to

measure the latency and the extra mov instruction created.
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Listing 4.4: FP addition operation latency micro-benchmark assembly.

1 /* Extended assembly inline for add operation*/

2 __asm__("mov.u32 %0, %%clock;\n\t" // Start cycle

3 "add.f32 %2, %3, %4; \n\t" // c = a + b

4 "mov.u32 %1, %%clock;" // Stop cycle

5 : "=r" (start), "=r"(stop), "=f"(c0)

6 : "f"(a0), "f"(b0))

7

8 /* Clock cycles difference */

9 d_start[idx] = start; d_stop[idx] = stop;

10 clk_cycles[idx] = (int)(stop-start);// Difference
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Figure 4.7: Addition floating point operation latency micro-benchmark.

d.2 Subtraction floating point operation latency micro-benchmark: Listing 4.5 presents the code used

in the subtraction floating point operation. Previously, two elements have been loaded from global

memory. The assembly subtraction instruction for floats of 32-bits is sub.f32. This instruction sub-

tracts the values of two registers and stores the result in a third register. The subtraction operation

is put between two %clock register instructions to capture the instruction latency.
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Listing 4.5: FP subtraction latency operation micro-benchmark assembly.

1 /* Extended assembly inline for sub operation*/

2 __asm__("mov.u32 %0, %%clock;\n\t" // Start cycle

3 "sub.f32 %2, %3, %4; \n\t" // c = a - b

4 "mov.u32 %1, %%clock;" // Stop cycle

5 : "=r" (start), "=r"(stop), "=f"(c0)

6 : "f"(a0), "f"(b0));

7

8 /* Clock cycles difference */

9 d_start[idx] = start; d_stop[idx] = stop;

10 clk_cycles[idx] = (int)(stop-start);// Difference

Figure 4.8 displays the clock cycles captured for the addition operation latency micro-benchmark.

41 [clock cycles] for 1 warp and ≈ 44 [clock cycles] for 32 warps. As well as the register latency

micro-benchmark, these results include the cost of using the function clock() or the %clock register to

measure the latency and the extra mov instruction created.
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Figure 4.8: Subtraction floating point operation latency micro-benchmark.

d.3 Multiplication floating point operation latency micro-benchmark: Listing 4.6 presents the code used

in the multiplication floating point operation. Previously, two elements have been loaded from global

memory. The assembly multiplication instruction for floats of 32-bits is mul.f32.
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This instruction multiplies the values of two registers and stores the result in a third register. The

multiplication operation is put between two %clock registers to capture the instruction latency.

Listing 4.6: FP multiplication latency operation micro-benchmark assembly.

1 /* Extended assembly inline for mul operation*/

2 __asm__("mov.u32 %0, %%clock;\n\t" // Start cycle

3 "mul.f32 %2, %3, %4; \n\t" // c = a * b

4 "mov.u32 %1, %%clock;" // Stop cycle

5 : "=r" (start), "=r"(stop), "=f"(c0)

6 : "f"(a0), "f"(b0));

7

8 /* Clock cycles difference */

9 d_start[idx] = start; d_stop[idx] = stop;

10 clk_cycles[idx] = (int)(stop-start);// Difference

Figure 4.9 displays the clock cycles captured for the multiplication operation latency micro-benchmark.

41 [clock cycles] for 1 warp and ≈ 44 [clock cycles] for 32 warps. As well as the register latency micro-

benchmark, these results include the cost of using the function clock() or %clock register to measure

the latency and the extra mov instruction created.
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Figure 4.9: Multiplication floating point operation latency micro-benchmark.
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d.4 Division floating point operation latency micro-benchmark: Listing 4.7 presents the code used in

the division floating point operation. Previously, two elements have been loaded from global memory.

The assembly division instruction for floats of 32-bits is div.f32. This instruction divides the values

of two registers and stores the result in a third register. The division operation is put between two

%clock register instructions to capture the instruction latency.

Listing 4.7: FP division latency operation micro-benchmark assembly.

1 /* Extended assembly inline for div operation*/

2 __asm__("mov.u32 %0, %%clock; \n\t"// Start cycle

3 "div.full.f32 %2, %3, %4;\n\t"// c = a / b

4 "mov.u32 %1, %%clock;" // Stop cycle

5 : "=r" (start), "=r"(stop), "=f"(c0)

6 : "f"(a0), "f"(b0));

7

8 /* Clock cycles difference */

9 d_start[idx] = start; d_stop[idx] = stop;

10 clk_cycles[idx] = (int)(stop-start);// Difference

Figure 4.10 displays the clock cycles captured for the division operation latency micro-benchmark.

235 [clock cycles] for 1 warp and ≈ 255 [clock cycles] for 32 warps. As well as the register latency

micro-benchmark, these results include the cost of using the function clock() or %clock register to

measure the latency and the extra mov instruction created.
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Figure 4.10: Division floating point operation latency micro-benchmark.
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e. Global memory access latency micro-benchmark:

The DRAM lat parameter is obtained via benchmarking the latency of accessing the global memory.

It consist in several threads loading and storing data from/in that memory. In Listing 4.8 the micro-

benchmark code for 1 input element is shown. First data is loaded from the d a array and copied to the

register reg c0. The instruction to load from global memory 32-bit float point data is ld.global.f32.

This instruction is put between two %clock register instruction to capture the instruction latency.

Then, data in the reg c0 register is copied to the c0 variable. Instruction st.global.f32 can be used

to store the floating point data in global memory, however when using this instruction the control

flow graph show undesired instructions. For this reason, the storage instruction was implemented as

d c[0] = c0 and the control flow graph was checked to verify that the desired st.global.f32 instruction

had been generated.

Listing 4.8: Global memory access latency micro-benchmark assembly

1 /* Extended assembly inline for load: 1 thread, 1 data*/

2 __asm__(".reg .f32 reg_c0; \n\t" // f32 register

3 "mov.u32 %00, %%clock;\n\t" // Start reading

4 "ld.global.f32 reg_c0, [%03];\n\t" // reg_c0 = d_a[0]

5 "mov.u32 %01, %%clock;\n\t" // Stop reading

6 "mov.f32 %02, reg_c0; " // c0 = reg_c0

7 : "=r" (start_r), "=r"(stop_r), "=f"(c0)

8 : "l"(&d_a[0]));

9

10 /* Copying data from registers to global memory */

11 __asm__("mov.u32 %0, %%clock;":"=r"(start_w));// Start writing

12 d_c[0] = c0;

13 __asm__("mov.u32 %0, %%clock;":"=r"(stop_w)); // Stop writing

14

15 /* Clock cycles difference */

16 d_start_r[idx] = start_r; d_stop_r[idx] = stop_r;

17 d_start_w[idx] = start_w; d_stop_w[idx] = stop_w;

18 clk_cycles_r[idx] = (int)(stop_r-start_r);

19 clk_cycles_w[idx] = (int)(stop_w-start_w);

Figure 4.11 displays the latency obtained through the micro-benchmark for reading and writing the

global memory. Approximatively 431 [clock cycles] with 1 warp, and ≈ 428 [clock cycles] with 32
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warps for the reading instruction. For the writing instruction; 50 [clock cycles] with 1 warp, and

≈ 53 [clock cycles] with 32 warps. It is important to observe that the storage cost is less than the

load cost because of the searching that has to be made when loading an input data. As well as the

register latency micro-benchmark, these results include the cost of using the function clock() or %clock

register to measure the latency and the extra mov instruction created.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
warps

414

416

418

420

422

424

426

428

430

432

Cl
oc

k 
cy

cle
s

Reading Global Memory Latency Microbenchmark

(a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
warps

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

Cl
oc

k 
cy

cle
s

Writting Global Memory Latency Microbenchmark

(b)

Figure 4.11: a) Reading global memory latency. b) Writing global memory latency. Global memory
access latency micro-benchmark.

f. Shared memory latency micro-benchmark:

To benchmark the latency of accessing to shared memory several threads loading and storing data

from/in that memory were executed. In Listing 4.9 the micro-benchmark code for 1 input element is

shown. First data is loaded from the d a array and copied to the register reg c0. Then, data in the

register is stored in shared memory. Instruction to store 32-bit floating point data in shared memory

is st.shared.f32. The lt.shared.f32 instruction is put between two %clock register instructions to

capture the instruction latency. Then, data in the reg c0 register is copied to the c0 variable. After

storing data in shared memory, the load operation was made using the instruction ld.shared.f32. This

instruction is also put between two %clock register instructions.

Figure 4.12 displays the latency obtained through the micro-benchmark for reading and writing the

shared memory. Approximatively 74 [clock cycles] with 1 warp, and ≈ 78 [clock cycles] with 32

warps for the reading instruction. For the writing instruction; 41 [clock cycles] with 1 warp, and

≈ 47 [clock cycles] with 32 warps. Note that similar to the global memory, the storage cost is less

than the load cost because of the searching that has to be made when loading an input data. As well

as the register latency micro-benchmark, these results include the cost of using the function clock() or

the %clock register to measure the latency and the extra mov instruction created.
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Listing 4.9: Shared memory latency micro-benchmark assembly.

1 /* Extended assembly inline: 1 thread, 1 data*/

2 __asm__(".reg .f32 reg_c0; \n\t"// f32 registers

3 ".shared .f32 shd_c0; \n\t"// Shared memory variable

4 "ld.global.f32 reg_c0, [%05]; \n\t"// reg_c0 = d_a[0]

5 "mov.u32 %00, %%clock; \n\t"// Writing start cycle

6 "st.shared.f32 [shd_c0], reg_c0;\n\t"// sh_c0=reg_c0

7 "mov.u32 %01, %%clock; \n\t"// Writing stop cycle

8 "mov.u32 %02, %%clock; \n\t"// Reading start cycle

9 "ld.shared.f32 %04, [shd_c0]; \n\t"// c0=sh_c0

10 "mov.u32 %03, %%clock; "// Reading stop cycle

11 : "=r" (start_w), "=r"(stop_w), "=r" (start_r), "=r"(stop_r), "=f"(c0)

12 : "l"(&d_a[0]));

13

14 /* Clock cycles difference */

15 d_start_r[idx] = start_r; d_stop_r[idx] = stop_r;

16 d_start_w[idx] = start_w; d_stop_w[idx] = stop_w;

17 clk_cycles_r[idx] = (int)(stop_r-start_r);

18 clk_cycles_w[idx] = (int)(stop_w-start_w);
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Figure 4.12: a) Reading shared memory latency. b) Writing shared memory latency. Shared memory
access latency micro-benchmark.

Universidad Industrial de Santander

66



g. hit lat l1, hit lat l2 parameters:

These parameters represent the latency of finding data in cache levels L1 and L2. Due to the lack of

information about the cache memory found in the documentation provided by the builder, the latency

of the cache memory is computed base on the benchmarks presented above.

g.1 L1 cache memory latency (hit lat l1): L1 cache memory is placed between the registers bank and

the shared memory level in the GPU memory hierarchy. Furthermore, taking into account that each

level in the memory hierarchy aims to reduce by half the latency of accessing to the next level, the

latency of L1 cache can be computed using equation 4.27. As can be seen, this equation involves the

latencies of the GPU registers and the shared memory.

hit lat l1 =
shared memory latency + register latency

2
. (4.27)

Figure 4.13 shows the latencies obtained for L1 cache memory by using equation 4.27. These results

were calculated using the latencies for reading these memory units leading to ≈ 57 [clock cycles] with

1 warp, and ≈ 62 [clock cycles] with 32 warps for reading L1 cache memory. As the input latencies

for equation 4.27 include the cost of using the %clock register and the extra mov instruction, these

results also include them.
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Figure 4.13: Reading L1 Memory Latency.

Universidad Industrial de Santander

67



g.2 L2 cache memory latency (hit lat l2): L2 cache memory is placed between the global memory and

the L1/shared memory. Equation 4.28 relates the latencies of global memory and L1 cache memory

to compute the latency of L2 cache memory.

hit lat l2 =
global memory latency + hit lat l1

2
. (4.28)

In Figure 4.14 the latencies obtained for L2 cache memory are shown. These results were calculated

using the latencies for reading these memory units leading to ≈ 244 [clock cycles] with 1 warp, and

≈ 245 [clock cycles] with 32 warps for reading L2 cache memory. As the input latencies for equation

4.28 include the cost of using the %clock register and the extra mov instruction, these results also

include them.
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Figure 4.14: Reading L2 Memory Latency.

h. Departure delay (∆) micro-benchmark:

To obtain this parameter, equation 4.25 was evaluated using data from the global memory micro-

benchmark. First the difference between the clock cycles spent by 2 warps and 1 warp was calculated,

then between 3 and 2 warps, and so on for 32 warps (#warps). At last, results for each difference were

summed and divided by the number of operations made (#warps/2). The value for this parameter

was ∆ = 3 [clock cycles].

Universidad Industrial de Santander

68



In Table 4.3 the results of the micro-benchmarks implemented in a NVIDIA K40 Kepler GPU are

shown. To these results the cost of using the clock register and the extra mov instruction has been

subtracted.

Table 4.3: Micro-benchmarks results.

1 warp 32 warps

Micro-benchmark [clock cycles] [clock cycles]

Special register %clock 16 20
Function clock() 16 20

Register 13 13

Addition FP operation 12 10
Subtraction FP operation 12 11
Multiplication FP operation 12 11
Division FP operation 206 222

Global memory Read 402 395
Global memory Write 21 20

Shared memory Read 45 45
Shared memory Write 12 14

L1 cache memory 29 29
L2 cache memory 215.5 212

Departure delay ∆ 3 3

To calculate the micro-benchmarks uncertainty guidelines in [60] were employed. Some of these results

are shown in Table 4.4. Hence, it is important to note that the uncertainty depends on the scale and

dispersion of the measured data.

Table 4.4: Micro-benchmarks uncertainty.

1 warp 32 warps

Micro-benchmark [clock cycles] [clock cycles]

Special register %clock 16± 0.57 20± 0.57
Function clock() 16± 0.57 20± 0.57
Register 13± 0.57 13± 0.63
FP operation 12± 0.57 10± 0.61
Global memory Read 402± 5.88 395± 6.17
Shared memory Read 45± 0.57 45± 0.60

Universidad Industrial de Santander

69



4.5.4 Parameters from the source code

The user has the task of selecting the number of threads and blocks to be launched in a GPU program.

This selection depends on the input data, the strategy for reading the data, and the hardware resources

to be used. The parameters of the model that are computed via static analysis of the code are: the

total number of warps (#total warps), the number of active SMs (#active SMs) and active warps

on one SM (N).

a. Total number of warps (#total warps):

A warp is a group of 32 threads, this parameter is calculated dividing the total number of launched

threads over 32.

#total warps =
#total thread launched

32
(4.29)

b. Number of active SMs (#active SMs):

The threads blocks are uniformly distributed between all the available SMs in the GPU. According

to [57] each SM can run as many as eight blocks. For a GPU with 5 SMs and with 10 blocks being

launched there would be 2 blocks for each SM.

c. Active warps per SM (N ):

The number of warps per SM is calculated as follows

N =
#blocks per SM ∗#threads per block

32
(4.30)

d. Transactions size (transaction size):

Is the number of bytes for each warp. The transaction size can be calculated as:

transaction size = Data size ∗#threads per warp, (4.31)

where the data size is 4 [B] per float data and the number of threads per warp is 32.
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4.6 Validating the Adapted Model

In this section the adapted model is used to estimate the execution time of the implementation pre-

sented in chapter 3. The validation process uses parameters extracted in 4.5 to compute the model

equations described in 4.4. Recall that the implementation was made for the propagation of the acous-

tic wave equation over a 3D synthetic velocity model of two layers, with size of Nx = 50 [points],

Ny = 50 [points], Nz = 50 [points]. In the following, the implementation is modeled for a 2nd

order stencil, and launching (8× 8× 4) thread blocks in a (8× 8× 8) blocks grid.

To calculate Tcomp, first ITLPmax is computed as it is shown in equation 4.32. The avg inst lat pa-

rameter represents the average instruction latency and its value is taken from the cost of the floating

operation (i.e. division). The warp size is 32 threads and the SIMD width is the number of cores per

SM.

IT ILPmax =
avg inst lat

warp size/SIMD width
=

201

32/192
= 1206 [clock cycles]. (4.32)

Then, to obtain the instruction level parallelism ILP the control flow graph of the kernel is analyzed.

The compute instructions and the memory instructions are counted and then grouped into basic

execution blocks. Hence, the total number of instruction is divided by the number of basic blocks as

shown in equation 4.33.

ILP =
#total instructions

#basic blocks
=

86

18
≈ 5. (4.33)

So, IT ILP can be calculated with equation 4.34, where N represents the number of active warps per

SM.

IT ILP = min (ILP ×N, ITLPmax) = min (5× 8, 192) = 40. (4.34)

Next, Tcomp (see equation 4.23) is calculated as follows:

Tcomp = Wparallel =
75 × 4096

15
× 201

40
= 102912 [clock cycles]. (4.35)
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To calculate Tmem several terms must be computed before. First, the avg DRAM lat (see equa-

tion 4.10) is calculated using equation 4.36. The avg trans warp can be obtained from the metric

gld transactions per request = 21.

avg DRAM lat = 399 + (21 − 1) × 3 = 459 [clock cycles]. (4.36)

Then, CUDA metrics l1 cache global miss rate and l2 l1 read hit rate can be used to calculate the

miss ratio l2 and miss ratio l1. Hence, the AMAT term is now given by equation 4.24

AMAT = 459 × 100% + 214 × 5% + 29 = 498.7 [clock cycles]. (4.37)

With the clock frequency from hardware specifications freq = 1, 1 [GHz] and the transactions size

from equation 4.38

transaction size = Data size × #threads per warp = 4 [B] × 32 = 128 [B] (4.38)

the BW per warp is

BW per warp =
1, 11 [GHz] × 128 [B]

459 [clock cycles]
= 0, 207 [GB/s]. (4.39)

Having themem peak bandwidth from the CUDA propertiesmemoryClockRate andmemoryBusWidth,

the MWPpeak bw computed is

MWPpeak bw =
mem peak bandwidth

BW per warp × #active SMs
=

288.384 [GB/s]

0.207 × 15
= 94.243 [GB/s]. (4.40)

from here the MWP can be calculated as

MWP = min

(

avg DRAM lat

∆
,MWP peak bw,N

)

= min

(

459

3
, 94.243, 8

)

= 8. (4.41)
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The number of compute clock cycles comp cycles depends on the number of instructions #inst, the

instructions average latency and the IT ILP as shown in equation 4.42

comp cycles =
#insts × avg inst lat

IT ILP
=

75 × 201

40
= 376.875 [clock cycles]. (4.42)

In a similar fashion mem cycles is calculated from equation 4.43, where according to the control flow

the MLP = 17.

mem cycles =
#mem inst × AMAT

MLP
=

11 × 498.7

17
= 322.68 [clock cycles]. (4.43)

With the number of comp cycles and mem cycles the CWP full is

CWP full =
mem cycles + comp cycles

comp cycles
=

376.875 + 414.375

414.375
= 1.909 [clock cycles]. (4.44)

Following, the CWP is

CWP = min (CWP full,N) = min (1.909, 8) = 1.909 (4.45)

Thereby, the MWPcp is

MWPcp = min (max (1, CWP − 1) ,MWP ) = = min (max (1, 1.909− 1) , 8) = 1. (4.46)

Then, the ITMLP

ITMLP = min (MLP × MWPcp,MWP peak bw) = min (17 × 1, 94.243) = 17. (4.47)
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and Tmem is computed using the terms obtained above as

Tmem =
#mem insts × #total warps

#active SMs × ITMLP
× AMAT =

11 × 4096

15 × 17
× 498.7 = 88115.40 [clock cycles].

(4.48)

The last term of equation 4.1 corresponds to the overlap time between compute and memory operations,

as mentioned above. Overlap function must be first calculated as shown in 4.22. As CWP ≤ MWP

then ζ = 1 and Foverlap is

Foverlap =
N − ζ

N
=

8− 1

8
= 0.875 (4.49)

Using Foverlap T overlap is computed as

Toverlap = min (Tcomp × Foverlap, Tmem) = (102912 × 0.875, 88115.4) = 88115.40 [clock cycles]

(4.50)

Finally, the execution time Texec is

Texec = Tcomp + Tmem − Toverlap = 102912 + 88115.40 − 88115.40 = 102912 [clock cycles] (4.51)

The validation process showed above was repeated for different stencil orders (i.e. 2nd, 4th and 8th)

using 8, 16, 24 and 32 warps. These estimations are summarized in the Table 4.5. Also, experimental

latencies were obtained using a NVIDIA K40 Kepler GPU. These result are shown in Table 4.6.

8 warps 16 warps 24 warps 32 warps

Stencil order [clock cycles] [clock cycles] [clock cycles] [clock cycles]
2 102912 75877.38 113706.33 29331.58
4 119280.13 97053.7 61939.463 46942.44
8 165837.10 108656.87 69355.692 43488.105

Table 4.5: Theoretical latencies of the implementation of the wave equation propagation for different
stencil orders and different number of warps per SM.
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8 warps 16 warps 24 warps 32 warps

Stencil order [clock cycles] [clock cycles] [clock cycles] [clock cycles]
2 34520.3 35065.2 26689.2 44319.4
4 61090.7 61002.9 52243.3 65586
8 101598 95727.9 71233 104026

Table 4.6: Experimental latencies of the implementation of the wave equation propagation for different
stencil orders and different number of warps per SM.

The experimental results from Table 4.6 and the theoretical results of Table 4.5 are shown in Figure

4.15. According to the figure the adapted model doesn’t follow the behaviour of the GPU, one of the

reasons is that the MWP-CWP model was designed for a previous GPU architecture known as Fermi.

Hence, is important to remind that the aim of the adaptation was to adapt the general model to a

specific application, not to a GPU architecture. Also, the #total warps parameter considers the total

number of warps launched. However, the number of warps launched is different from the number of

warps actually working in the SM.
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Figure 4.15: Theoretical latencies versus experimental latencies.

After adjusting the adjusting the #total warps parameter the results shown in Table 4.7 were obtained.

Figure 4.16 presents the experimental results from 4.6 and the theoretical results of Table 4.7. Observe

that despite adjusting the #total warps the model maintains its behaviour.
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8 warps 16 warps 24 warps 32 warps

Stencil order [clock cycles] [clock cycles] [clock cycles] [clock cycles]
2 98138.25 54004.57 85674.57 28642.29
4 129447.0 69120.94 47041.26 38853.37
8 158144.46 77880.28 52658.0 42804.16

Table 4.7: Theoretical latencies for different stencil orders and different number of warps per SM
considering the #total warps.
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Figure 4.16: Theoretical latencies versus experimental latencies.

4.7 Discussion

One of the work drawbacks, is that the model adaptation was only aim to stencil-based kernels.

However, it doesn’t mean that it can’t be used for other applications.

Figures 4.15 and 4.16 show the implementation execution time versus the execution time estimated by

the adapted model. When the number of GPU resources used (i.e. number of warps being executed)

is increased, the number of clock cycles spent is also increased. Note that there is some drop in

the execution time for 24 warps, this drop can be a consequence of task scheduling. However, the

experimental behaviour is not followed for the analytical model spite of the adaptations proposed to

represent the architecture. Hence, any minor changes to the GPU architecture will affect the model.
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For that reason, a deep understanding of the GPU is needed to fit the model. In addition, the parame-

ters extraction employs tools provided by the GPU builder, but those tools lack of detailed descriptions

of the metrics, and how they are measured. As future work, other parameters should be studied to

guarantee that the analytical model follows the behaviour of the implementation.

4.8 Conclusions

The conclusions obtained from the development of this work are presented below:

Implementations of the acoustic wave equation solution in both CPU and GPU were made, allowing

to analyze the instructions created for a stencil-based kernel. Stencil-based kernels are the basis for

complex algorithms, such as the Reverse-Time Migration (RTM) and the Full-Wave Inversion (FWI)

among others. For this reason, knowing the execution time of an stencil is fundamental to estimate

the execution time of those complex algorithms.

GPU analytical models can be used to estimate the execution time of GPU implementations. In the

literature, several models have been proposed, nevertheless, there is not an standard approach to that

problem. Furthermore, as the model represents the behaviour of the GPU, any minor change in the

GPU architecture can lead to misrepresentations. Those matters could be sort out in the best-case

scenario, by fitting the model to the architecture changes.

The MWP-CWP model calculates the execution time taking into account the compute operations cost,

the memory operations cost and the overlap between compute and memory operations. An adaptation

of the MWP-CWP model directed towards stencil-based implementations is presented. This adapta-

tion includes changes in the model equations to consider cache levels, compute the ILP and to neglect

effects of bank conflicts, branch divergences, use of special function units among others.

Parameters needed by the model were identified, these parameters could be extracted from hardware

specifications, source code, CUDA binaries tools and the use of micro-benchmarks. For this work sev-

eral micro-benchmarks were designed to obtain the latency of using resources, such as global memory,

floating point operations, etc. In addition, the uncertainty associated to the micro-benchmarks was

calculated. Unfortunately, the uncertainty of the hardware specifications and the parameters obtained

via CUDA binary tools is unknown, and it can not be computed using the information provided by

the builder.

The adapted model has been validated comparing the execution time of the GPU implementation

with the estimated execution time given by the adapted model. As can be seen for the results, the

theoretical time is greater than the experimental time, which might be a consequence of using a model

that was originally designed for a former GPU architecture. On the other hand, the #total warps

parameter was adjusted to consider the real number of warps being used for the GPU architecture,
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and although the difference between the theoretical and experimental results was decreased, deeper

model adjustments must to be made to consider the newer GPU architectures.

Finally, this document had presented detailed descriptions of all the stages involved in the development

process (e.g. background information, study of the model, adaptation process, parameters extraction,

model validation, etc.) of this work. This work can be used as a tool for anyone interested in the GPU

architecture modelling field.
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