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RESUMEN

TÍTULO: DISEÑO DE APERTURAS CODIFICADAS EN UN SISTEMA TRIDIMENSIONAL DE SUPER-

RESOLUCION DE TOMOGRAFÍA COMPUTARIZADA COMPRESIVA *

AUTOR: Edson Fabián Mojica Rodrı́guez **

PALABRAS CLAVE: Diseño de codigo de apertura, tomografı́a computarizada de rayos-X, Super-

resolución, Decimación, muestreo compresivo & imagen.

DESCRIPCIÓN:

La tomografı́a computarizada (TC) de rayos-X de muestreo compresión (MC) se ha convertido en una

herramienta esencial para conocer la estructura interna de un objeto a través de un procedimiento

no invasivo. Estos enfoques utilizan aperturas codificadas (AC) a lo largo de múltiples ángulos de

captura para bloquear una parte de la energı́a de rayos X que viaja hacia los detectores. Sin em-

bargo, la mayorı́a de los diseños de AC se centran en sistemas de haz en abanico (FB) de múltiples

disparos, que manejan una proporción de 1:1 entre las caracterı́sticas de AC y los elementos de-

tectores. En consecuencia, la resolución de la imagen está sujeta al tamaño de pı́xel del detector.

Como alternativa, en lugar de utilizar un arreglo de detectores más denso, este trabajo presenta un

método para diseñar los patrones de AC en un sistema de haz cónico (CBTC) compresivo bajo una

configuración de súper resolución (SR), donde el AC de alta resolución está diseñado para obtener

imágenes de alta resolución de proyecciones de menor resolución. El diseño de AC explota el teo-

rema de Gershgorin al minimizar sus radios, mejorando la condición de la matriz del sistema. Las

simulaciones muestran que el diseño obtenido logra imágenes de alta resolución a partir de detec-

tores de menor resolución en un escenario SR-CBTC de disparo único, donde se mejora el PSNR

de las imágenes reconstruidas en comparación con patrones AC no diseñados. Además, esta tesis

amplı́a su alcance principal para incluir un diseño de AC en un sistema imagenes espectrales cono-

cido como (CASSI), que permite aplicar de manera eficiente el concepto de MC para adquirir infor-

mación espacio-espectral de una escena. El diseño de AC está formulado en diferentes arreglos de

* Tesis doctoral

** Escuela de ingenierı́a de sistemas e informática. Director: Ph.D. Henry Arguello Fuentes.
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matriz para inducir una baja correlación entre filas y columnas en la matriz de Gram. La optimización

incluye una máscara litográfica de colores en movimiento como restricción, alcanzando una calidad

de reconstrucción similar en comparación con un diseño de AC de última generación.
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ABSTRACT

TITLE: CODED APERTURE DESIGN IN A THREE-DIMENSIONAL SUPER-RESOLUTION SYS-

TEM OF COMPRESSIVE COMPUTED TOMOGRAPHY *

AUTHOR: Edson Fabián Mojica Rodrı́guez **

KEYWORDS: Coded aperture design, X-ray computed tomography, Super-resolution, Decimation,

Compressive sensing & Imaging.

DESCRIPTION:

Compressive sensing (CS) X-ray computed tomography (CT) has become an essential tool to know

the inner structure of the object under observation through a non-destructive scanning procedure.

These approaches rely on coded apertures (CA) along multiple view angles to block a portion of the

x-ray energy traveling towards the detectors. Most of CA designs, however, are focused on multi-

shot fan-beam (FB) systems, handling a 1:1 ratio between CA features and detector elements. In

consequence, image resolution is subject to the detector pixel size. As an alternative, instead of

using a denser detector array, this work presents a method for designing the CA patterns in a com-

pressive CBCT system under a super-resolution configuration, i.e., high-resolution CA patterns are

designed to obtain high-resolution images from lower-resolution projections. The proposed CA de-

sign, exploits the Gershgorin theorem by minimizing its radii to improves the condition of the system

matrix. Simulations show that the optimal design obtained from the proposed approach achieves

high-resolution images from lower-resolution detectors in a single-shot SR-CBCT scenario, where

the PSNR of the reconstructed images is improved compared to non-designed CA patterns under

different super-resolution factors. Additionally, this dissertation extends its main scope to include a

CA design in a system named coded aperture snapshot spectral imaging (CASSI), which allows ef-

ficiently apply the CS concept to acquiring spatial-spectral information of a scene. The CA design is

formulated in different matrix arrangements to induce a low correlation between rows and columns in

the Gram matrix. The optimization includes a novel strategy, which can be implemented as a moving-

colored lithographic mask using a micro-piezo electric device. The CA design for a multiple snapshot

* Doctoral Thesis

** Department of Systems Engineering and Informatics. Director: Ph.D. Henry Arguello Fuentes.
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imagery system offers a similar reconstruction quality compared to a CA design of state-of-the-art,

considering implementable filters as a solution due to the physical limitations in the CA manufacturing.
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X-ray computed tomography (CT) has become an essential tool for applications

such as medical diagnosis, image-guided radiotherapy, and material characteriza-

tion, where the inner structure of the object under observation can be analyzed

through a non-destructive scanning observation. Cone-beam CT (CBCT) is a partic-

ular CT system that employs a single X-ray source and a flat detection area, such

that multiple object slices are captured at each acquisition angle. One of the main

challenges in the CBCT-based acquisition process is to obtain accurate reconstruc-

tions of the object while maintaining a relatively low radiation dose. Furthermore,

compressive sensing (CS) based approaches such as compressive X-ray CBCT rely

on coded apertures (CA) along multiple view angles to block a portion of the X-ray

energy traveling towards the detectors, leading to less correlated projections which

in turn yields to better conditioning of the system. Then, recovery algorithms are

employed to obtain the three-dimensional (3D) data cube from the acquired coded

projections. Previous works in CS-based acquisition systems have shown that the

spatial distribution of the CA patterns and the recovery method determine the result-

ing image quality, where the optimization of these CA patterns is an active area of

current research. State-of-the-art on CA designs exploits the concept of coherence

of the sensing matrix via the Gram matrix since it describes the correlation among

the columns or rows of the matrix, producing less-correlated propagation functions

that increase the variability of the captured data.
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In compressive CT acquisition systems, most CA designs, are focused on multi-shot

fan-beam (FB) architectures, getting information of the same angle multiple times,

handling a 1:1 ratio between CA features and detector elements. In consequence,

image resolution is subject to the detector pixel size. Moreover, CA optimization

for CT involves strong binarization assumptions, impractical data rearrangements,

or computationally expensive tasks such as singular value decomposition. A high-

resolution CA pattern can be placed before a low-resolution detector, producing high-

resolution coding; then, high-resolution images are recovered from the acquired low-

resolution measurements. State-of-art in CT-CA includes CA design strategies for

the fan-beam system, which corresponds to a variation of the CBCT architecture

where the detector is composed of a straight-set of elements. Due to their physi-

cal differences, CA designs for fan-beam X-ray setups cannot be directly applied to

cone-beam X-ray systems. Therefore, instead of using CA distributions into a CBCT

system with a more dense detector array, this dissertation presents a method for

designing a higher resolution CA patterns in compressive CBCT system, perform-

ing a super-resolution configuration (SR-CBCT) in order to obtain higher-resolution

3D image reconstruction by using a single low-resolution set of projections at each

angle. Hence, the CA design is formulated as a coherence minimization problem,

where the CA is the optimization parameter for ensuring implementable solutions.

The proposed approach exploits the Gershgorin theorem since its algebraic inter-

pretation relates the circle radii with the eigenvalue bounds, whose minimization im-

proves the condition of the system matrix. Simulations with medical data sets and

synthetic Monte-Carlo projections show that the optimal design obtained from the

proposed approach achieves high-resolution images from lower-resolution detectors

in a single-shot SR-CBCT scenario, where the PSNR of the reconstructed images

is improved compared to non-designed CA patterns under different super-resolution

factors. Additionally, the computational cost of the proposed approach is up to three

orders of magnitude lower than SVD-based methods.

Additionally, this dissertation extends its main scope to include a CA design in a

remarkable compresive sensing based acquisition system named coded aperture
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snapshot spectral imaging (CASSI), which allows efficiently acquiring spatial-spectral

information of a scene. In the optimization problem of the CASSI system design, the

CA is formulated in different matrix arrangements to induce a low correlation between

rows and columns in the Gram matrix. The proposed optimization includes variabil-

ity and uniformity constraints, including hardware restrictions and a novel strategy,

which can be implemented as a moving colored lithographic mask using a micro-

piezo electric device. The CA design for a multiple snapshot imagery system offers

a similar reconstruction quality compared to a CA design of state-of-the-art at a frac-

tion of the cost of a non-moving CA, considering implementable filters as a solution

due to the physical limitations in the CA manufacturing.
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1. Introduction

The invention of X-ray devices dates to 1895 as the precursor of diagnostics based

on imaging systems 1. This technique enables procedures to obtain a non-destructive

observation of the inner human body or the inner structure under analysis. The main

issue of this technique is the acquisition process, due to the elements under analysis

are exposed to ionizing radiation, increasing the possibility of damaging the object

structure or even producing death for human beings. The viability of the process is

subject to obtain more detailed information without increasing the radiation dose in

order to prevent an over-exposure. An advancement in X-ray technology is the com-

puted tomography (CT) scanning system, which can be described by a source that

emits X-ray energy at multiple angles in the direction of a sensor line array on the

opposite side 1. The interaction between the emitted energy and the objects placed

between the source and the detector array reduces the emitted energy, thus, creat-

ing a projection. Therefore, the CT system processes the multiple X-ray projections

generated on the sensor to produce a high-quality volumetric reconstruction of the

object’s internal structure.

Assuming that the setup rotates around an axis orthogonal to the propagation plane,

the object measurements used for reconstruction process can be acquired by either

rotating the object or jointly rotating the source and the detector. For this reason,

in medical applications, the X-ray source and the linear detector set jointly rotate

around the patient 2, the scheme of this setup is shown in Fig.1(a). On the other

1 Thorsten M Buzug. Computed Tomography. Springer-Verlag Berlin Heidelberg, 2008.

2 Daniel Thomas Ginat and Rajiv Gupta. “Advances in computed tomography imaging technology”.
In: Annual review of biomedical engineering 16.1 (2014), pp. 431–453.
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Figure 1. CT schematic with source, object, and linear detector set, for a fan-beam
propagation shape of X-rays. Rotation strategies applied to (a) clinical applications
and (b) industrial applications.

hand, applications in industrial quality control 3 and security 456, employ a moving

base to rotate the object 7, where its setup is shown in Fig.1(b). Fig.1 illustrates the

propagation of the registered X-ray beam from the source, describing a fan-beam

(FB) shape between the source and the linear detector set. Varying the detector to a

two-dimensional element array, the emitted X-ray energy that achieves the detector

describes a cone propagation of the beam (CB). Most of the commercial X-ray CT

systems are designed based on fan-beam and cone-beam geometries.

3 G-R Tillack, Christina Nockemann, and Carsten Bellon. “X-ray modeling for industrial applica-
tions”. In: NDT & E International 33.7 (2000), pp. 481–488.

4 H Strecker. “Automatic detection of explosives in airline baggage using elastic X-ray scatter”. In:
Medicamundi 42 (1998), pp. 30–33.

5 C Cozzini, S Olesinski, and G Harding. “Modeling scattering for security applications: a multiple
beam x-ray diffraction imaging system”. In: 2012 IEEE Nuclear Science Symposium and Medical
Imaging Conference Record (NSS/MIC). IEEE. 2012, pp. 74–77.

6 Silvia Pani et al. “Modelling an energy-dispersive x-ray diffraction system for drug detection”. In:
IEEE Transactions on Nuclear Science 56.3 (2009), pp. 1238–1241.

7 Leonardo De Chiffre et al. “Industrial applications of computed tomography”. In: CIRP annals
63.2 (2014), pp. 655–677.
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Each reconstruction of the FB system provides a slice of the object, due to each in-

teraction occurs in the two-dimensional (2D) cross-section of the object before being

recorded on the detector, which is composed of a one-dimensional array of sensors.

In this case, covering the three-dimensional (3D) object means that the source and

detector move in the normal direction of the slice plane. In contrast, cone-beam

geometry introduces a 3D reconstruction based on volumetric interactions at the ex-

pense of increased computational resources by using a 2D detector array. The mea-

surement acquisition using the cone-beam system dramatically reduces the time

consumption compared to a fan beam system since, from an equivalent radiation

dose, the cone-beam acquires multiple slices whereas the fan beam obtains a single

slice.

Consequently, there is growing interest in using X-ray cone-beam computed tomog-

raphy (CBCT) due to its advantages. Indeed, it is still subject to active research to

obtain an image with enough high quality from a minimal exposure and/or cost.

The digitally generated image representation of an object from a CT system is com-

posed of voxels (volume elements) with the attenuated information of the object un-

der observation 1. The propagation of energy through a voxel group establishes the

behavior of attenuations, where each interaction is modeled with a linear equation.

As a result, similar interactions between X-rays propagation across the object result

in correlated functions that must over-sample the object in order to get accurate re-

constructions. To reduce such correlated equations, compressive sensing (CS) has

been introduced into X-ray CT systems (so-called compressive X-ray CT systems)

via coded aperture-based encoding with the aim at partially blocking the propagation

of the energy through the object 89. In this way, a certain amount of X-ray energy

8 Yan Kaganovsky et al. “Compressed sampling strategies for tomography”. In: JOSA A 31.7
(2014), pp. 1369–1394.

9 Keijo Hamalainen et al. “Sparse tomography”. In: SIAM Journal on Scientific Computing 35.3
(2013), B644–B665.
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that impacts the object is supposed to decrease, as well as the incident radiation 910,

where the reduction of equations is compensated by assuming sparsity in the object
1011. The CS asserts the possibility of recovering signals and images from far fewer

measurements than those established in the Shannon-Nyquist theorem 1213. The re-

covery is possible based on the sparsity and incoherence principles, where sparsity

exploits that many real-world signals are sparse or compressible in a given basis,

and incoherence is related to certain randomness in the acquisition of the signal 14.

Formally, the measured data denoted as p ∈ RM are the projections of the signal

f ∈ RN through the matrix W ∈ RM×N , i.e.,

p = Wf , (1)

where W models the linear measurement process. Thus, the aim is to recover the

vector f by solving the inverse problem. Traditional sampling criteria suggest that

the amount of measured data must be at least as large as the signal length N , i.e.,

N = M . This principle has been widely used in optical imaging equipment such

10 Ingrid Reiser and Stephen Glick. Tomosynthesis imaging. Taylor & Francis, 2014.

11 David J Brady et al. “Compressive tomography”. In: Advances in Optics and Photonics 7.4 (2015),
pp. 756–813.

12 David L Donoho. “Compressed sensing”. In: IEEE Transactions on information theory 52.4
(2006), pp. 1289–1306.

13 Emmanuel J Candes, Justin K Romberg, and Terence Tao. “Stable signal recovery from incom-
plete and inaccurate measurements”. In: Communications on Pure and Applied Mathematics: A
Journal Issued by the Courant Institute of Mathematical Sciences 59.8 (2006), pp. 1207–1223.

14 Gonzalo R Arce et al. “Compressive coded aperture spectral imaging: An introduction”. In: IEEE
Signal Processing Magazine 31.1 (2013), pp. 105–115.
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as digital cameras 1516, microscopy 17, and current medical imaging technologies 18.

Now, if M < N , the system in (1) becomes under-determined, producing infinite

solutions due to its ill-conditionality 19. As a consequence, the recovery of f from p

is infeasible without any additional information of the signal. Thus, CS supposes that

the signal f in (1) has coefficients that are sparse in some basis Ψ such that f = Ψu

can be approximated by a linear combination of S vectors from Ψ, i.e., ∥u∥0 = S,

where u denotes the sparse coefficients vector 1213. Hence, (1) can be rewritten as

p = WΨu. (2)

Traditional CS inverse problem formulations exploit the sparsity principle to find a

solution of the sparse representation u by solving a ℓ2− ℓ1-norm convex optimization

problem 20 given by

argmin
u
∥p−WΨu∥22 + τ ∥u∥1 , (3)

where the ℓ2 norm is defined as ∥e∥22 =
∑

j e
2
j and the ℓ1 norm as ∥e∥1 =

∑
j|ej|.

15 Henry Arguello, Hoover F Rueda, and Gonzalo R Arce. “Spatial super-resolution in code aperture
spectral imaging”. In: Compressive Sensing. Vol. 8365. International Society for Optics and
Photonics. SPIE, 2012, pp. 43 –48.

16 Henry Arguello, Claudia V Correa, and Gonzalo R Arce. “Fast lapped block reconstructions in
compressive spectral imaging”. In: Applied Optics 52.10 (2013), pp. D32–D45.

17 Christy Fernandez Cull et al. “Identification of fluorescent beads using a coded aperture snapshot
spectral imager”. In: Applied optics 49.10 (2010), B59–B70.

18 Edson Mojica, Said Pertuz, and Henry Arguello. “High-resolution coded-aperture design for com-
pressive X-ray tomography using low resolution detectors”. In: Optics Communications 404
(2017). Super-resolution Techniques, pp. 103 –109. DOI: https://doi.org/10.1016/j.

optcom.2017.06.053.

19 Emmanuel J Candès and Michael B Wakin. “An introduction to compressive sampling”. In: IEEE
signal processing magazine 25.2 (2008), pp. 21–30.

20 Simon Foucart and Holger Rauhut. “An invitation to compressive sensing”. In: A mathematical
introduction to compressive sensing. Springer, 2013, pp. 1–39.
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In the literature, there exist several specific algorithms that iteratively solve the opti-

mization problem in (3) seeking for high image quality through the iterations 21222324.

These CS-based reconstruction methods focus on obtaining an approximate value

of the features of the scene from the set of coded projections p, where the resolution

of the reconstruction is as high as the range allowed by the physical constraints of

the acquisition system, e.g., the detector resolution. Additionally, the computational

load of the iterative approaches is directly related to the number of measurements

and elements to be reconstructed. In contrast, multi-resolution (MR) reconstruction

approaches have emerged from image processing as an alternative to alleviate the

computational load of restoring the underlying signal 2526. More specifically, a MR-

based reconstruction method establishes a procedure capable of obtaining a low-

resolution reconstruction from the projection of a set of high-resolution objects by

introducing a pair of decimation/upscaling matrices in the problem from (3). In this

way, it uses an equivalent low-resolution sensing matrix to solve the MR problem.

Generally, decimating the matrix involves creating super-pixels (which are elements

that contain pixels sharing common properties) in the target low-resolution (LR) sig-

21 Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems”. In: IEEE Journal
of selected topics in signal processing 1.4 (2007), pp. 586–597.

22 Joel A Tropp and Anna C Gilbert. “Signal recovery from random measurements via orthogonal
matching pursuit”. In: IEEE Transactions on information theory 53.12 (2007), pp. 4655–4666.

23 Sathish Ramani and Jeffrey A Fessler. “A splitting-based iterative algorithm for accelerated sta-
tistical X-ray CT reconstruction”. In: IEEE transactions on medical imaging 31.3 (2011), pp. 677–
688.

24 Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. “Sparse reconstruction by separa-
ble approximation”. In: IEEE Transactions on signal processing 57.7 (2009), pp. 2479–2493.

25 Xing Wang and Jie Liang. “Multi-resolution compressed sensing reconstruction via approximate
message passing”. In: IEEE Transactions on Computational Imaging 2.3 (2016), pp. 218–234.

26 Hans Garcia, Claudia V Correa, and Henry Arguello. “Multi-resolution compressive spectral imag-
ing reconstruction from single pixel measurements”. In: IEEE Transactions on Image Processing
27.12 (2018), pp. 6174–6184.
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nal. Super-pixels-based methods are employed to group similar pixels in the image

concerning a specific criterion, such that the resulting dimension of the signal is re-

duced as dictated by the decimation matrix, also applied to facilitate tasks such as

classification and detection 27282930. Traditional state-of-the-art super-pixel segmen-

tation techniques include the simple linear iterative clustering 31 and the entropy rate

segmentation 32. The MR-based reconstruction has been studied in CS-based re-

covery for spectral imaging 26 considering the super-pixel segmentation from a LR

version of the image. However, up to date, this approach has not been exploited in

compressive CT reconstruction, where the use of super-pixels can be directly intro-

duced in the iterative reconstruction procedure instead of computing a LR solution

as in 26, for reducing the number of unknowns in the inverse problem.

Besides, the image recovery depends on other factors such as the distribution of the

27 David R Thompson et al. “Superpixel endmember detection”. In: IEEE Transactions on Geo-
science and Remote Sensing 48.11 (2010), pp. 4023–4033.

28 Yi Chen, Nasser M Nasrabadi, and Trac D Tran. “Simultaneous joint sparsity model for target de-
tection in hyperspectral imagery”. In: IEEE Geoscience and Remote Sensing Letters 8.4 (2011),
pp. 676–680.

29 Shuzhen Zhang and Shutao Li. “Spectral-spatial classification of hyperspectral images via mul-
tiscale superpixels based sparse representation”. In: 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). IEEE. 2016, pp. 2423–2426.

30 Pegah Massoudifar, Anand Rangarajan, and Paul Gader. “Superpixel estimation for hyperspectral
imagery”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2014, pp. 287–292.

31 Xuewen Zhang et al. “SLIC superpixels for efficient graph-based dimensionality reduction of hy-
perspectral imagery”. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ul-
traspectral Imagery XXI. vol. 9472. International Society for Optics and Photonics. 2015, pp. 92
–105.

32 Ming-Yu Liu et al. “Entropy rate superpixel segmentation”. In: CVPR 2011. IEEE. 2011, pp. 2097–
2104.
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low-resolution (CA) elements 3334183536. Typically, CS-based acquisition systems rely

on CAs for encoding the input signal coming to the acquisition system, where the

CA effect in the system in (2) is modeled through the W matrix structure. These CA

are usually composed of randomly distributed block-unblock elements that block or

let the information of the object, or its projection, to pass as measurement towards

the detector 37. The design of the CA spatial pattern distribution and its structure

has been studied on fields such as compressive spectral imaging (CSI) 343338 and

compressive X-ray CT 839354018, since the CA-pattern design has shown higher re-

construction quality images than the random patterns. For instance, authors in 40 in-

troduced a uniform-sensing-based CA design for both the coded aperture snapshot

spectral imaging (CASSI) system (in the CSI field) and a compressive CT fan-beam

33 Henry Arguello and Gonzalo Arce. “Colored coded aperture design by concentration of mea-
sure in compressive spectral imaging”. In: IEEE Transactions on Image Processing 23.4 (2014),
pp. 1896–1908.

34 Claudia V Correa, Henry Arguello, and Gonzalo R Arce. “Spatiotemporal blue noise coded aper-
ture design for multi-shot compressive spectral imaging”. In: JOSA A 33.12 (2016), pp. 2312–
2322.

35 Miguel Marquez and Henry Arguello. “Coded aperture optimization for single pixel compres-
sive computed tomography”. In: Journal of Computational and Applied Mathematics 348 (2019),
pp. 58–69.

36 Andrés Jerez, Miguel Márquez, and Henry Arguello. “Adaptive coded aperture design for com-
pressive computed tomography”. In: Journal of Computational and Applied Mathematics 384
(2021), p. 113174.

37 Hoover Rueda, Henry Arguello, and Gonzalo R Arce. “DMD-based implementation of patterned
optical filter arrays for compressive spectral imaging”. In: JOSA A 32.1 (2015), pp. 80–89.

38 Henry Arguello and Gonzalo R Arce. “Rank minimization code aperture design for spectrally
selective compressive imaging”. In: IEEE transactions on image processing 22.3 (2012), pp. 941–
954.

39 Angela Cuadros et al. “Coded aperture design for compressive X-ray tomosynthesis”. In: Com-
putational Optical Sensing and Imaging. Optical Society of America. 2015, CW2F–2.

40 Yuri Mejia and Henry Arguello. “Binary codification design for compressive imaging by uniform
sensing”. In: IEEE Transactions on Image Processing 27.12 (2018), pp. 5775–5786.
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system (in the compressive X-ray CT field), where the designed CA showed supe-

rior quality image reconstructions respect to non-designed CAs. As a matter of fact,

the CASSI-based designs have motivated several research directions in areas such

as compressive spectral classification 4142, compressive fluorescence microscopy 17,

spatio-spectral compressive super-resolution 4315, and X-ray compressive imaging
4445.

State-of-the-art CA design approaches exploit the concept of coherence of the sens-

ing matrix 464748, since it describes the correlation between the columns of the mea-

surement matrix, and it enables the selection of less-correlated propagation func-

41 Qiang Zhang et al. “Joint segmentation and reconstruction of hyperspectral data with compressed
measurements”. In: Applied optics 50.22 (2011), pp. 4417–4435.

42 Ana Ramirez et al. “Spectral image classification from optimal coded-aperture compressive mea-
surements”. In: IEEE Transactions on Geoscience and Remote Sensing 52.6 (2013), pp. 3299–
3309.

43 Hoover F Rueda, Henry Arguello, and Gonzalo R Arce. “On super-resolved coded aperture spec-
tral imaging”. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral
Imagery XIX. vol. 8743. International Society for Optics and Photonics. SPIE, 2013, pp. 421
–426.

44 Kerkil Choi and David J. Brady. “Coded aperture computed tomography”. In: Adaptive Coded
Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems. Ed. by David P.
Casasent et al. Vol. 7468. International Society for Optics and Photonics. SPIE, 2009, pp. 99
–108.

45 Kenneth MacCabe et al. “Pencil beam coded aperture x-ray scatter imaging”. In: Optics Express
20.15 (2012), pp. 16310–16320.

46 Angela P Cuadros and Gonzalo R Arce. “Coded aperture optimization in compressive X-ray
tomography: a gradient descent approach”. In: Optics Express 25.20 (2017), pp. 23833–23849.

47 Bo Li et al. “Projection matrix design using prior information in compressive sensing”. In: Signal
Processing 135 (2017), pp. 36–47.

48 Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei. “Fast and incoherent dictionary learning
algorithms with application to fMRI”. in: Signal, Image and Video Processing 9.1 (2015), pp. 147–
158.

31



tions to increase the variability of the captured data 49. However, these strategies

entail designing the entire system matrix, which involves both the hardware configu-

ration and the CA effect. Therefore, strong binarization assumptions are required to

obtain implementable systems. For instance, in 40 the condition of the system is en-

hanced with a binarized and rearranged version of the sensing matrix by employing

the boundaries of the Gershgorin theorem 50. Further, most CA designs in com-

pressive X-ray CT have focused on the case in which there is a 1:1 correspondence

between the CA and detector elements, such that the physical dimensions of each

pixel of the detector array limits the CT image resolution 39408.

The recent advances in CA design for compressive X-ray CT have mainly focused on

the multi-shot fan-beam CT system 184036, having in each angular shot of the X-ray

source multiple measurements by varying the CA pattern and disregarding the cone-

beam CT system (which has advantages such as lower effective radiation doses and

faster scan for getting 3D volumes 1). However, the CA designs for fan-beam X-ray

setups cannot be directly applied on cone-beam X-ray systems due to their physical

differences.

This dissertation extends the capabilities of the compressive X-ray CBCT architec-

ture by designing the CA patterns under a super-resolution (SR) strategy, so-called

super-resolution-CBCT (SR-CBCT), such that higher resolution image reconstruc-

tions can be obtained from LR projections captured in a single shot at a given set of

angles. Specifically, the proposed CA design in the SR-CBCT system takes advan-

tage of the Gershgorin theorem since its algebraic interpretation relates the circle

radii with the eigenvalue bounds, whose minimization improves the condition of the

system matrix.

Beyond the main scope of this thesis, two related problems were tackled during the

49 Michael Elad. “Optimized projections for compressed sensing”. In: IEEE Transactions on Signal
Processing 55.12 (2007), pp. 5695–5702.

50 S. Gershgorin. “Uber die Abgrenzung der Eigenwerte einer Matrix”. In: Izvestija Akademii Nauk
SSSR, Serija Matematika 7.6 (1931), pp. 749–754.
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state-of-the-art revision; thus, two additional contributions are presented. Firstly,

for the CT measurement reconstruction obtained from a fan-beam CT architecture, a

multi-resolution reconstruction algorithm was introduced to boost the recovery speed

and improve image quality. Secondly, for the CASSI system in spectral image acqui-

sition, a CA optimization design is introduced, considering the physical restrictions of

the system. Finally, a moving colored-coded aperture is designed, which improves

the reconstruction quality of the spectral data cube and is physically implementable.

These characteristics reduce the cost of manufacturing offering high-quality images.

1.1. Research Objectives

The general objective of this dissertation embraces: To introduce, design, and simu-

late high-resolution coded apertures in an X-ray compressive cone-beam computed

tomography system, which allows obtaining high-resolution images from a tridimen-

sional object using low-resolution detectors. The specific objectives include:

• To mathematically model the compressive measurement acquisition of tridi-

mensional objects in an X-ray cone-beam computed tomography system in-

cluding high-resolution coded apertures and low-resolution detectors.

• To design an algorithm that simulates the mathematical model that describes

the compressive cone-beam computed tomography system.

• To develop a mathematical method to determine the structure of the coded

apertures used in the reconstruction of super-resolution images in the X-ray

cone-beam computed tomography system.

• To evaluate the performance of the super-resolution compressive computed

tomography system using the designed coded apertures compared with a non-

designed structure and a non-coded system.
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1.2. Dissertation Organization

The organization of the dissertation is as follows: Chapter 2 describes the princi-

pal theoretical concepts of CT, including the attenuation physical phenomenon, the

projection formation from measurements, and the image reconstruction by using the

Fourier slice theorem as well as its disadvantages with discrete measurements. Fi-

nally, the iterative algebraic reconstruction techniques to recover the underlying sig-

nal are also introduced.

Chapter 3 presents the formulation of a CBCT system and extends the concept of

sparsity defined in the compressive sensing paradigm, its application to most of the

images through a sparsifying basis, and it identifies which basis provides high ac-

ceptance in CT applications. Additionally, it provides a brief exploration of the recon-

struction optimization problem, identifying an affordable option among the algorithms

used to solve a constrained formulation in CS.

Chapter 4 introduces the so-called SR-CBCT system, to design high-resolution CAs

with a low-resolution detector array, where the super-resolved images can be recov-

ered without significantly changing the traditional architecture. Therefore, the chapter

develops a framework around the concept of the Gershgorin theorem to estimate an

approximation of the system matrix condition. Specifically, the CA design is formu-

lated as a coherence minimization problem in which the CA is the design variable.

Then, the proposed method reduces the Gershgorin radii of the SR-CBCT system

matrix, which describe the eigenvalue distribution bounds for improving the condition

of the inverse problem.

Chapter 5 presents the image improvement capabilities of the SR-CBCT system,

comparing reconstructions of random blocking-unblocking distributions of the CAs

against a set of designed CAs which promotes a radii reduction of the Gershgorin

theorem as suggested in the formulation of chapter 4.

Chapter 6 presents the adaptation of the MR concept as a framework applicable to

iterative algebraic reconstruction techniques in CT. Evaluating the image reconstruc-

tion at each iteration allows the generation of a custom decimation matrix that can be
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introduced into a linear problem to perform an analogous optimization function lim-

ited in its resolution by the corresponding upsampling transformation. Consequently,

each iteration solves the decimated coefficients, reducing the unknowns in the next

iteration. The MR-based reconstruction is applied for recovering compressed fan-

beam projections.

Chapter 7 presents an alternative CA design in a compressive spectral imaging sys-

tem, extending the main scope of this dissertation. These CA patterns are subject

to select a set of color filters while each snapshot shares a portion of the pattern to

reduce the cost of building, achieving a comparable performance against the state-

of-the-art CAs.

1.3. List of Contributions

Most of the material presented in this thesis appears in the following publications by

the author:

1.3.1. Journal papers

• Mojica, E., Correa, C. V., and Arguello, H. (2021). High-resolution coded aper-

ture optimization for super-resolved compressive x-ray cone-beam computed

tomography. Applied Optics, 60(4), 959-970.

• Galvis, L., Mojica, E., Arguello, H., and Arce, G. R. (2019). Shifting colored

coded aperture design for spectral imaging. Applied optics, 58(7), B28-B38.

1.3.2. Conference Papers:

• Mojica, E., Garcia, H., and Arguello, H. (2019, April). Impact of Multi-resolution

reconstruction on Computed Tomography. In 2019 XXII Symposium on Image,

Signal Processing and Artificial Vision (STSIVA) (pp. 1-5). IEEE.

• Galvis, L., Mojica, E., Arguello, H., and Arce, G. R. (2019, May). Optimization

of a Moving Colored Coded Aperture in Compressive Spectral Imaging. In
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ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 7685-7689). IEEE.

1.4. Research Contributions

This dissertation proposes a coded aperture design with a higher ratio between cod-

ing and detection elements for the X-ray CBCT system. The coding strategy allows

getting high-resolution reconstruction images from low-resolution projections with a

single shot. The proposed design method uses an optimization problem to reduce

the radii of the Gershgorin theorem, exhibiting a gain in quality of the recovered im-

ages over the random structures. The results of this contribution were published in

the journal in 51.

Additionally, this dissertation shows a multi-shot fan-beam CT system reconstruction

framework that transforms the signal to be reconstructed into a lower dimension set.

The adaptive process uses the iterative steps of the reconstruction fitting decimation

matrix to group similar pixels in a sub-pixel description. Results of the reconstruction

process are comparable to state-of-the-art, highly reducing the time consumption of

the total number of iterations. This contribution was published in the conference 52.

Extending the coded aperture application to spectral imagery systems embraces flat

blocking patterns for each spectral band color. Therefore, this dissertation offered a

color-coded aperture design by selecting a pattern distribution from a set of filters.

It is worth to remark that the proposed design has been based on a set of filters

that follows physical limitations, and has not been previously studied in the literature.

The proposed design achieves a performance comparable to the previous state of

51 Edson Mojica, Claudia V Correa, and Henry Arguello. “High-resolution coded aperture optimiza-
tion for super-resolved compressive x-ray cone-beam computed tomography”. In: Applied Optics
60.4 (2021), pp. 959–970.

52 Edson Mojica, Hans Garcia, and Henry Arguello. “Impact of Multi-resolution reconstruction on
Computed Tomography”. In: 2019 XXII Symposium on Image, Signal Processing and Artificial
Vision (STSIVA). IEEE. 2019, pp. 1–5.
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art distributions, where the filter distribution is not restricted. The results of this

contribution were published in the journal in 53 and the conference paper in 54.

53 Laura Galvis et al. “Optimization of a Moving Colored Coded Aperture in Compressive Spec-
tral Imaging”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE. 2019, pp. 7685–7689.

54 Laura Galvis et al. “Shifting colored coded aperture design for spectral imaging”. In: Applied
optics 58.7 (2019), B28–B38.
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2. Computed Tomography (CT)

X-rays are electromagnetic waves characterized by having a higher frequency than

ultraviolet rays but a lower frequency than gamma rays. X-rays are emitted by high-

speed electrons colliding with a target element called the anode. The radiation is

emitted in terms of photons, each of which has defined energy. X-rays with energy

exceeding 100 eV can ionize atoms and penetrate through matter. X-ray photons

interact with matter in the form of absorption or scattering. If neither happens, it

is transmitted through the object. In the phenomenon of absorption interaction, the

energy of X-ray photons is absorbed by the object and transferred to electrons in

one of the atomic shells. This phenomenon is known as photoelectric absorption.

The process of removing photons from the beam is called attenuation. In general,

the attenuation behavior of a particular material at a given energy is measured by

the linear attenuation coefficient or mass attenuation coefficient. On the other side,

two types of interactions take place in the form of scattering: Compton scattering,

and coherent scattering. Both cases are the result of the collision between photons

and electrons. As a result, the incident photons are deflected at a certain angle af-

ter a collision. In Compton scattering, this occurs due to the interaction of photons

with electrons in the outer shell of the atom. The photons transfer part of their en-

ergy to the colliding electrons, and both energy and momentum are conserved in

the colliding electrons. The incident photon is deflected by a certain angle due to

the collision and is scattered from the collision site with energy less than the energy

of the incident photon. The impacted electron gains some kinetic energy from the

incident photon and recoils. Coherent scattering occurs when low-energy photons

collide, which causes the colliding electrons to vibrate at the photon frequency. Thus,

energy in the form of X-rays is released due to the vibration of the same frequency

and energy as the incident photons. As result, the incident photons that are deviated

during the process causing coherent scattering. The process of removing photons

from the beam is called attenuation. Generally, the attenuation behavior of a spe-
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cific material at a given energy is measured by a linear attenuation coefficient or

a mass attenuation coefficient, and the Lambert’s-Beer law describes his behavior.

This chapter guides a brief introduction to the basics of X-ray CT, from the energy

projection to its recovery.

2.1. Lambert’s-Beer Law on Image Acquisition

The attenuation of X-rays depends on the type of material and the energy of the

incident particles. In this phenomenon, the radiation intensity is given by a number

of photon particles from the source, having the total emission of energy as the pro-

portion I0 that relates a group of emitted particles and the thickness of the object

dy. The interaction processes characterized with a linear attenuation coefficient of

X-rays can be described as the differential equation

dI = −fI0dy. (4)

In this model f is a constant that is known as the linear attenuation coefficient for

X-rays. The solution to the formulation introduced on eq.(4) is well-known as the

Beer-Lambert formula,

I = I0e
−fw. (5)

This equation shows the relationship between the final intensity I and the initial in-

tensity of the incident radiation I0, which has an exponential decay relationship with

the two characteristics of the attenuation medium (linear attenuation coefficient f and

object thickness w ). The attenuation coefficient fy along a single thickness section

wy is illustrated in Fig.2(a), where the input intensity Iy−1 is given by a set of arrows

and the output Iy shows the reduction of the set of arrows.

Generally, X-rays are polychromatic in nature 55, and the linear attenuation coefficient

55 Angela Cuadros, Xu Ma, and Gonzalo R Arce. “Compressive spectral x-ray tomography based
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Figure 2. Schematic representation of attenuation for a single X-ray beam through:
(a) a single section Wy with attenuation coefficient fy and (b) the initial energy I0
crossing multiple sections to produce the output I.

depends on the energy of the particles. For non-homogeneous objects revealing

different attenuation materials eq.(5) becomes

I = I0e
−f1w1e−f2w2 · · · e−fnwn = I0e

−
∑n

y=1 fywy , (6)

having n for the total sections that interact with the particles which will travel through

the object, each small volume section wy of the object is associated to an attenuation

coefficient fy as illustrated the Fig.2(b). This formulation indicates the number of

considered object portions as voxels that contain the attenuation coefficients to solve

in the propagation direction.

The reconstruction process starts from the data acquisition with the aim of obtaining

the cross-sectional coefficients fy of the CT image. Assuming attenuation by Beer-

Lambert’s law, an ideal model of the photoelectric effect can be processed from the

on spatial and spectral coded illumination”. In: Optics express 27.8 (2019), pp. 10745–10764.
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CT acquisition, which allows modeling the system CT from intensity measurements.

2.1.1. Acquisition Process The Eq.(6) from the Beer-Lambert’s formulation can

be applied to the X-ray CT scanning systems for the image acquisition by tracing

photons through a defined space. This space contains the voxels that subdivide the

object and relates each weight wy with the attenuation effect as a parallel, fan, or

cone propagation shape of the beams. Initial CT systems were based on the pencil

beam configuration to generate a X-ray shape approximation of parallel beams. This

kind of configuration requires the emission of energy from the source to the detector

and introduces a displacement of the source and the detector to cover the width

of the object; then, rotates and repeats the displacement at a different angle as

illustrated in the Fig.3.

Pixel

X-ray

Source

Object

Detector

Rotation

Displacement

Figure 3. Diagram of a pencil-beam system, jointly displaces and rotates the X-ray
source and detector unit to acquire measurements of the intensity of the attenuated
beam.
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As consequence, pencil beam system is often discarded to be used in medical imag-

ing or industrial imaging applications, due to the high radiation dose dangerous for

patients, and extensive on time-consuming related to the long exposure time. Hence,

some of the most profitable commercial X-ray CT systems are based on FB and

cone-beam computed tomography 56. FB and CB architectures are the result of vari-

ations based on the pencil beam approach. Thus, FB describes a system with a

punctual source of X-rays and a linear detector array, generating a fan of energy

shape between source and detectors, while a CB system with a matrix detector dis-

tribution develops a cone of energy shape between source and detectors. In conse-

quence, these CT systems reduce scanning speed and the radiation dose, because

the multiple shots of the source and his displacement at each angle are removed.

Systems based on parallel beams or FB provide 2D images of the object from the

cross-section of a slice. With the advent of 2D detectors and faster computers, a 3D

image reconstruction can be achieved using a CB propagation scheme 56.

In this model, the captured projection p relates the emitted energy I0 and the output

energy I, as in (6) where the logarithm of the ratio between these intensities are

expressed as

p = −ln
(
I

I0

)
=

n∑
y=1

fywy. (7)

Moreover, the source emits uniform divergent X-rays with intensity I0 through the

direction of the detection area forming a cone, as shown in Fig. 4. Instead of a single

beam there is a set of R trajectories that collides each detector element indexed by

(γ̂, ω̂) of the 2-dimensional detector array with a total of γ rows and ω columns. Thus,

considering a n×n object F with v slices whose attenuation coefficients are indexed

by fxyz, the interaction of the incoming X-ray energy with object volume sections

56 Jiang Hsieh. Computed tomography: principles, design, artifacts, and recent advances. Vol. 114.
SPIE press, 2003.
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Figure 4. Energy propagation of a single X-ray beam. Energy intensity I0 follows a
linear trajectory towards the detector. Interaction with object sections, produces the
attenuated output energy I.
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(voxels) wxyz can be written as

pγ̂,ω̂,θ̂ = −ln
(
Iγ̂,ω̂,θ̂
I0

)
≈

n∑
x=1

n∑
y=1

v∑
z=1

wxyzfxyz. (8)

Since the system elements (the X-ray source and the detector array) rotate θ angles

in a single turn during the acquisition process, θ̂ in Eq.(8) indexes the captured pro-

jections at each particular angle. Then, the acquisition process can be stated as the

linear problem

p̃ = Wf , (9)

where f ∈ RN with N = n2v represents the object elements rearranged as a vector;

the output vector p̃ ∈ RM̃ represents the attenuated intensities captured at the de-

tector for M̃ = γωθ propagation functions; the matrix W ∈ RM̃×N , whose rows are

the weight coefficients wxyz that model the interactions of the X-ray beams with the

N object voxels, represented as columns of W.

The mathematical procedures of CT reconstruction can be divided into two major cat-

egories: analytical and iterative. Analytical approaches can either use a frequency

approach or linear algebra approach. Specifically, frequency approaches as an an-

alytical reconstruction mainly apply the Fourier central slice theorem or filtered back

projection (FBP) 1. Assuming a return of the measured energy to the propagation

path of voxels, it is important to notice that the matrix W performs as many horizon-

tal, vertical, and diagonal paths as measurement angles were used for each detector

element.

Thereby, a high-quality image can be obtained by using the proposed linear sys-

tem (9) when enough independent measurements are taken for each voxel, then,

a unique solution can be obtained from the system of equations that describe the

coefficient distribution of the object. Even assuming a path of two orthogonal pro-

jections, the horizontal path, and vertical path could share a single voxel coefficient;

this effect is worse between adjacent or opposite angles, showing that the equations

of the system are not linearly independent having highly correlated equations and
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turning W into an ill-conditioned system. Since the measurements may not cover

the entire object by linearly interacting with an independent voxel, to ensure that

enough independent equations can be performed, the number of measurements M̃ ,

must exceed the number of solved elements N . In case of having infinite number

of projections, it is possible to assume a continuous behavior of information around

the object, which means that M̃ ≈ ∞. As result, it brings the possibility of taking

advantage of analytical reconstructions with high accuracy. However, in the context

of real applications, to acquire infinite projections is a highly unlikely task, limiting to

have a finite number of registers. Considering that the tomographic sampling ele-

ments refer to the number of rays per projection, and the total number of projections

refers to the number of registers of the attenuated energy in the detector, projections

are limited by a discrete number of detectors and angles, even having infinite pho-

tons as sampling elements. Therefore, the reduction of the number of projections

impacts the reconstruction quality, increasing artifacts consequence of either data

undersampling or the presence of random noise in the measurements.

Current CT scanner use FBP methods for reconstruction but its quality is highly de-

pendent on the sufficient number of projections 1. In addition, the irregular geometry

of the scanner or the loss of data causes serious difficulties for the analytical re-

construction methods. However, using a matrix formalism into a linear problem can

accurately represent the acquisition process and treat further behaviors like lack of

data, asymmetric elements, or non-uniform motion. Even it is possible to simulate

a finite set of detectors, with different heights, widths, and sensitivity. On the other

hand, the matrix can take into consideration beams running through objects in di-

rections that produce inconsistencies for analytical models leading a more realistic

physical acquisition process. As consequence, this matrix system does not have a

simple structure, describing it as a sparse matrix where only N
1
2 voxels contribute to

an entry, doing it almost singular, which means that it contains very small singular

values such that the reconstruction is an ill-conditioned problem. This establishes

that measurements must be higher than the number of unknowns (M̃ > N ) to get

high-quality reconstructions, followed by an extreme requirement of time and mem-
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ory in the case of calculating a direct inverse of a matrix.

2.1.2. The Fourier Slice Theorem The most representative theory that estab-

lishes most of the reconstruction generalities is known as the Fourier slice theorem.

This, is a mathematical procedure that decomposes a function or signal into frequen-

cies. Applying the formulation for 2D slices of the object with a function f(x, y), the

Fourier transform F (u̇, v̇) is defined as,

F (u̇, v̇) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i2π(xu̇+yv̇)dxdy. (10)

Assuming the detector and source have been rotated around the origin at an orien-

tation angle θ̂, it is convenient to describe a coordinate system with a rotation such

that one axis t is parallel to the x-ray path for the projection with angle θ̂, and an

orthogonal axis s to describe the width of a path, as shown in Fig. 5.

Thus, the spatial and rotated coordinate system (s,t) can be given as,s
t

 =

 cos(θ̂) sin(θ̂)

− sin(θ̂) cos(θ̂)

x
y

 . (11)

Figure 5 shows how a projection p(s, θ) is generated by drawing a line across (x, y)

plane orthogonal to the detector and arrives at the detector location s at a particular

angle θ̂. If the projection is defined using a delta function, it could be referred to as a

Radon transformation formulated as,

p(s, θ̂) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(θ̂) + y sin(θ̂)− s)dxdy, (12)

where s = x cos(θ̂) + y sin(θ̂). Then, the projection p(s, θ̂) can be expressed in terms

of the coordinate (s, t) obtaining:

p(s, θ̂) =

∫ ∞

−∞
f(s, t)dt, (13)
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Figure 5. Illustration of the Fourier slice theorem. The 2D image at left is projected
at angle θ̂ produce a 1D projection function p(s, θ̂). The 1D Fourier transform P (ρ, θ̂)
of this projection is equal to the 2D image Fourier transform, F (u̇, v̇) along the radial
line ρ at angle θ̂ + π/2.

47



where the 1D Fourier transform of the projection p(s, θ̂) gives:

P (ρ, θ̂) =

∫ ∞

−∞
p(s, θ̂)e−i2π(ρs)ds. (14)

Replacing (13) into (14) produce

P (ρ, θ̂) =

∫ ∞

−∞

∫ ∞

−∞
f(s, t)e−i2π(ρs)dsdt. (15)

Substituting (11) into (15), the coordinate system can be transformed to the (x, y)

system as,

P (ρ, θ̂) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i2πρ(x cos(θ̂)+y sin(θ̂))dxdy. (16)

This replacement let notice an equivalence between (10) and (16), been equal in the

Fourier transform along one radial line, therefore,

P (ρ, θ̂) = F (ρ cos(θ̂), ρ sin(θ̂)). (17)

where u̇ = ρ cos(θ̂),v̇ = ρ sin(θ̂) define a straight line through the origin that forms an

angle θ̂ with respect to the u̇ axis. This is known as the Fourier slice theorem and

states that the Fourier transform of a parallel projection at an angle θ̂ represents the

2D Fourier transform of the object function along a radial line (see Fig.6 ) at angle

θ̂ in Fourier space. Notice that each obtained projection performs a line of the 2D

Fourier. Therefore, collecting a sufficient number of projections over the range from

0 to π, it is possible fill the entire Fourier space of the object being reconstructed.

This kind of reconstruction exhibits some aliasing artifacts that appear due to the

undersampling of projections or by an undersampled grid for displaying.

To avoid this issue, Shannon’s sampling theorem defines the number of projections

required for accurate reconstruction. The theorem stipulates that if the sampling

frequency of an object must be at least twice the highest frequency of the object

variation, to obtain a reconstruction without losing information quality. Thus, each

sampling point of the projected data is given from a detector element that is identified
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Figure 6. Ilustrative points of the sampling in the Fourier space.
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from a set of X-rays. Having that each radial line (e.g. P1 − P ′
1 in Fig. 7) represent a

projection in Fourier space 57.
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Df=f Dud

Du

Ô

Figure 7. Ilustrative parameters from the frequency domain to the parallel projection
data.

Therefore, assuming a set of multiple detectors γ, and that each lecture corresponds

to a single ray, there exist a distribution of rays equal to the number of detectors in a

projection. In order to complete the Shannon theorem in parallel beam tomography,

consider a number of uniform projections distributed on 180◦, the angle transition

57 Avinash C Kak, Malcolm Slaney, and Ge Wang. Principles of computerized tomographic imaging.
2002.
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between two continuous radial lines in the Fourier domain ∆θ is,

∆θ =
π

θ
. (18)

For a distance ∆γ between two adjacent rows (detector pixel spacing), the highest

spatial frequency (fδ), named, the sampling points of the outer periphery of the disc,

in a projection line that the system can handle is given according to the Nyquist-

Shannon theorem,

fmax =
1

2∆γ
. (19)

The distance between any two consecutive rays measured on a radial line P1 − P ′
1

will be

ε =
2fδ
γ

=
1

γ(∆γ)
. (20)

The distance (∆f ) between two consecutive sampling points (P ′
1P

′
2) on the periphery

of the disc is the azimuth resolution, which is given by

∆f = fδ∆θ =
π

2(∆γ)θ
. (21)

A sufficient condition to obtain a good reconstruction is to ensure that, the worst

azimuth resolution (∆f ) in the frequency domain should be approximately the same

as the radial resolution (ε) 1. Therefore, we must have ∆f ≈ ε. Thus

π

2(∆γ)θ
≈ 1

γ(∆γ)
(22)

can be reduced to

θ ≈ π

2
γ, (23)

where (23) implies that the number of projections needed for a good reconstruction

is roughly equal to the number of rays in a projection, in other words, the number

of elements in a detector. This statement is independent of the reconstruction algo-

rithm. As a general rule, a CT image system should have about as many pixels in
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each dimension as there are detectors providing data for a view.

Based on the Fourier slice theorem, a complete sampling can be achieved for a

180◦ rotation because of the symmetry of the projection (see Fig.6) of the line with

any arbitrary angular interval. The sampling theorem establishes that the detector

spacing has to be small enough to record maximum object frequency, i.e., to detect

the smallest possible feature.

2.2. Image Reconstructions Methods

To reconstruct an image based on analytical methods is a computationally high-

demanding task because it needs a number of measurements tending to infinity in

order to achieve an accurate solution. Thereby, continuous model can be solved

as a discrete representation of the system, offering an approximation of the inverse

continuous analytical model. This consideration covers two types of analytical recon-

struction algorithms often employed on reconstructions: the Fourier slice theorem

and the filtered back-projection. For the Fourier slice theorem, consider that the pro-

jection data p(s, θ̂) is measured with equal spacing for M̂ = γθ number of projections,

thus, the reconstruction strategy can be summarized as follows:

• To calculate the one-dimensional Fourier transform of the measured projection,

P (ρ, θ̂) = F{p(s, θ̂)}. (24)

• To arrange the Fourier transformed projection in 2D radial lines using,

F (ρ cos(θ̂), ρ sin(θ̂)) = P (ρ, θ̂). (25)

• To resample the data points to a rectangular grid (u̇, v̇) using interpolation, as

illustrated in Fig. 8.

• To perform the 2D inverse Fourier transform of F (u̇, v̇) to restore the objective
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image as

f(x, y) = F−1F (u̇, v̇). (26)

v

u

Figure 8. Interpolation grid of the Fourier samples.

The main disadvantage of the Fourier slice theorem is the use of a poor high-

frequency data approximation from a polar coordinate grid to a rectangular grid,

which will introduce grid errors and produce high-frequency artifacts. This comes

from the interpolation in the frequency domain that is not as straightforward as the

interpolation of Cartesian space. In a Cartesian space, interpolation error is located

around the small region where the value is located. This property does not hold, for

interpolation in the Fourier domain, since each sample in a 2D Fourier space, repre-

sents certain spatial frequencies. Therefore, an error produced on a single sample

of the fourier space affects the entire image.
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FBP is a reformulation of the Fourier slice theorem, a method that consists of project

data filtered in the frequency domain and back-projecting it onto the image domain.

For a 2D object function f(x, y), the inverse Fourier transform F (u̇, v̇) is defined as,

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u̇, v̇)e−i2π(xu̇+yv̇)du̇dv̇, (27)

where u̇ = ρ cos(θ̂), v̇ = ρ sin(θ̂) and du̇dv̇ = ρdρ̇d
˙̂
θ. This yields

f(x, y) =

∫ 2π

0

∫ ∞

0

P (ρ, θ̂)e−i2πρsρdρ̇d
˙̂
θ, (28)

where s = x cos(θ̂)+y sin(θ̂), and the integral can be split into θ̂ ∈ [0, π] and θ̂ ∈ [π, 2π],

using symmetry properties F (ρ, θ̂) = F (−ρ, θ̂ + π) , we have to

f(x, y) =

∫ π

0

∫ ∞

−∞
P (ρ, θ̂)|ρ|e−i2πρsdρ̇d

˙̂
θ. (29)

According to Fourier slice theorem, the 2D Fourier transform of F (ρ cos(θ̂), ρ sin(θ̂)) =

F (ρ, θ̂) = P (ρ, θ̂) along the radial line is defined by the Fourier transform of the pro-

jection F (ρ, θ̂) as

f(x, y) =

∫ π

0

∫ ∞

−∞
F (ρ, θ̂)|ρ|e−i2πρsdρ̇d

˙̂
θ. (30)

In (30), the inner integral is the Fourier transform of the projection data with a pro-

jection filtering operation with a filtering kernel |ρ|. This is a high pass filter which

compensates inhomogeneous sampling. To avoid the over enhancement of high-

frequency noise and aliasing artifacts, often a smoothing window function is used,

such as Hamming window. Then, to apply the FBP process are perform the following

steps:

• Calculate the one-dimentional Fourier transform of the projection data.

• Multiply Fourier transform P (ρ, θ̂) with a filter kernel |ρ|.

• Backproject the filtered projections onto image domain.
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The main disadvantage of analytical algorithms is derived from the assumption that

the rays are infinite and continuous. However, in real applications projection data is

limited. A drawback handled by the iterative reconstruction (IR) method describing

the system as a linear problem with a limited number of measured rays.

2.2.1. Iterative Image Reconstruction The use of IR algorithms is justify since it

overcomes the issues of FBP, such as reducing image artifacts and noise elements

of the reconstruction process which appears by getting a set of limited projections.

In contrast with the analytical method where the filtered projection is back-projected,

the IR method provides an iterative solution by refining and modifying the result until

satisfying certain criteria 58. To apply an IR method, it is necessary to formulate the

reconstructions carried out using an algebraic reconstruction technique (ART). Even

with the widespread use of FBP for CT image reconstructions, ART is more instruc-

tive since it represents the reconstruction problem as a linear system of equations.

This requires the discretization of the tomographic images to be reconstructed, and

determine the number of voxels N in the field of view where reconstruction takes

place. However, the discrete array of unknown variables, fj, with j = {1 . . . N} can

be modeled with a linear system of equations. It describes the behavior of the system

as a set of projections where the intensity of the X-ray beam through the object is

weakened according to the attenuation coefficients fj of the tissue.

For each X-ray beam through the object, a path of already known image pixels de-

fines a projection as explained in Section 2.1.1. Each propagation equation charac-

terizes its corresponding projection as a linear interaction (7). In contrast to analytical

methods, in which the object assumes a sampling with a line of the X-ray beam, the

use of algebraic methods proceeds to describe the interactions with the correct as-

sumption that X-ray beams have an area in the wave-front. When passing through

tissue, the characterization of equations must regard how much of the voxel to be

58 Jiang Hsieh et al. “Recent advances in CT image reconstruction”. In: Current Radiology Reports
1.1 (2013), pp. 39–51.
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reconstructed is interacting with the beam.

In this case, a weight wij of a single projection i is determined by the relation

wij =
iluminated area of voxel j by the ray i

total volume of the voxel j
(31)

and lies in the interval 0 ≤ wij ≤ 1. Considering an X-ray beam traveling between

a known position of the source and the detector, a projection geometry can be es-

tablished to get the weights wij of a matrix W by employing the ASTRA Toolbox 59.

The relationship (31) can be extended to a pixel area by assuming a width instead

of an area of the wave-front. Stating the problem as (9), the general solution can be

described as

h(f) = argmin
f
∥Wf − p̃ ∥ 2

2, (32)

and its solution is called the least squares minimum norm. ART methods promote

iterative strategies to determine a solution of (32) assuming the idea that f presents

a unique solution in a N -dimensional space. Starting with an initial image f0, it cal-

culates the following results of a sequence of images {f1, f2, . . . } until converge to a

desired tomographic reconstruction of the column vector f . In the first step, a forward

projection,

p̃(0) = Wf(0), (33)

of the zth image approximation f(z) is determined. The projection, p̂(z) resolved in

the zth forward projection can then be compared with the measured projection, of

the column vector p̂. The comparison between the determined and the measured

projection yields correction terms that are applied to the zth image approximation,

fz, resulting in the (z + 1)th image approximation. This process is repeated to get

a projection vector p̂(z+1). Usually, IR methods are structured into three categories
1 ART, simultaneous algebraic reconstruction technique (SART), and simultaneous

59 Wim van Aarle et al. “Fast and flexible X-ray tomography using the ASTRA toolbox”. In: Optics
express 24.22 (2016), pp. 25129–25147.
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iterative reconstruction technique (SIRT). Having that a single projection is given by

a row vector wi = [W]i, a math formalism of ART is given by:

f(z) = f(z−1) −
(
wif(z−1) − p̃i

)
wi (wi)

⊺ (wi)
⊺ . (34)

Thereby, (34) implies ART updates the attenuation coefficient value on a ray-by-ray

basis and estimates the voxel value based on the difference between a detected

pixel value and the calculated pixel value. The difference is back-projected along the

ray path length and contributes by correcting each voxel with a proportional value

to the path length of the ray inside the voxel. Since the simple ART is computation-

ally expensive and it takes a single ray at a time, the convergence speed is slower

compared to FBP. Therefore, the SART method considers one projection at a time

introducing as the ART method, by including a relaxation parameter β to the update

term. Including the relaxing variation, deals with the over-correction of noise and

artifacts and speeds up the convergence time. Turning (34) into :

f(z) = f(z−1) − β

(
wif(z−1) − p̃i

)
wi (wi)

⊺ (wi)
⊺ . (35)

The optimal value, β, depends on the number of iterations of z, the sampling param-

eters of the system, and the projections. However, a small shift away from the value

β = 1 can increase the convergence speed.

For the case of SIRT methods, all the projections must be processed before the

update of the image solution. Convergence speed is further increased by using sub-

sets (OS) 6061 dividing the projections as groups or subsets and update an estimate

for each group instead of updating for the complete dataset. The convergence in-

60 Ming Jiang and Ge Wang. “Convergence studies on iterative algorithms for image reconstruction”.
In: IEEE Transactions on Medical Imaging 22.5 (2003), pp. 569–579.

61 H Malcolm Hudson and Richard S Larkin. “Accelerated image reconstruction using ordered sub-
sets of projection data”. In: IEEE transactions on medical imaging 13.4 (1994), pp. 601–609.
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creases with a smaller number subset. However, the over-correction leads to higher

noise and artifacts due to the increasing number of subsets. For the case where

each subset contains a single projection, the scheme is expressed as a SART solu-

tion. Otherwise, establishing a subset with all the projections, the scheme becomes

a SIRT.

Assuming that each measurement is accurate and not influenced by statistical fluc-

tuations, the scanned object vector f linked to the matrix system description W,

establishes a relationship that maps from f to its projections p̃.

In SIRT methods, with a current image estimation, f(z), finds f(z+1), identifying a gradi-

ent descent approach of the problem (32), having a solution, with the Jacobi deriva-

tion of h(f). It allows introduce solutions as stochastic gradient descend as:

f(z) = f(z−1) − γ∇h(f(z−1)) = f(z−1) − γW⊺
(
Wf(z−1) − p̃

)
. (36)

Thus, introducing variants to reconstruction methods is an attractive field of research,

always requiring improving the computational resources or the speed of offering an

accurate response. Alternatives for algorithms combine regularization design, i.e.,

since the linear attenuation coefficient is always positive, it is possible to include a

positivity constraint for the pixel solution.
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3. Compressive Sensing for CT Image Reconstruction

Traditionally, analytical and iterative CT reconstruction algorithms are used for im-

age recovery from projected data to achieve the limits of the Shannon Nyquist the-

orem. This theorem establishes the necessity to oversample certain measurements

based on the properties of detectors and characteristics of the object discretization

to achieve high quality images. In contrast, authors in 1312 showed that if the signal

or image itself is sparse without noise, the CS based solution can accurately recover

the signal or image from a few linear measurements through optimization. This CS

theory integrates the acquisition and compression steps into a single process, hence

the name compressed sensing.

In particular, compressive X-ray CBCT approaches rely on CA along multiple view

angles to block a portion of the X-ray energy traveling towards the detectors. The

inclusion of the CA into the X-ray setups promotes a reduction of the oversampled

projections, approaching the sampling scheme to the CS theory. In this chapter, the

main concepts of the CS theory applied on CT and CBCT approaches are intro-

duced.

3.1. CBCT Acquisition for CS

A general CBCT scanner, introduced in chapter 2.1.1, incorporates an emitted en-

ergy I0 to a continuous linear trajectory towards the detection area, traversing the

object of interest and registering the output energy I, as illustrated the Fig. 4. In

addition, since it is assumed that the source uniformly emits divergent X-rays with

an intensity of I0 in direction to the detection area forming a cone of projections over

a total of γ rows and ω columns. Thus, considering an object F depicted with n × n

spatial elements and v slices, whose attenuation coefficients are indexed by fxyz, and

each element interacts with the volume sections wxyz which characterize a propaga-

tion path of the emitted energy; the equation (8) describes the attenuation procedure
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in a three-dimensional object, as illustrated in Fig. 9.

Rotation axis

X-ray
Source
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voxel grid
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Detector
Coded aperture

Figure 9. CBCT scheme based on CS theory by including a coding element.

Since the system (the X-ray source, the coded aperture and the detector array) can

rotate θ angles in a single turn during the acquisition process, θ̂ in (8) indexes the

captured projections at each particular angle indexing the detector by (γ̂, ω̂). On

the other hand, including a CA between the source and the object, it is possible to

describe the system from a reduced set of projections set of projections, turning (8)

in a compressive X-ray CBCT architecture. The CA blocks or allows specific X-rays

pass through the object, such that the energy intensity reaching the target object can

be expressed as Ic = I0e
−fcwc, where fc represents the attenuation caused by the

material of the CA features. More specifically, fc = 0 corresponds to the traditional

CBCT system, where a CA is not used, i.e., Ic = I0. Similarly, large fc values

represent the blocking operation resulting in a negligible or null projection. In the

intermediate cases, a CA works as a coding element in the system. Note that the

general compressive CBCT system fixes the CA pitch such that there is a one-to-one
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correspondence with the elements on the detector array. Thus, introducing the CA

effect in (8), the projections in a compressive CBCT system are given by

pγ̂,ω̂,θ̂ = −ln
(
Iγ̂,ω̂,θ̂
Ic

)
≈

n∑
x=1

n∑
y=1

v∑
z=1

wxyzfxyz, (37)

and can be rewritten as the following linear system

p̂ = TWf , (38)

where f ∈ RN , with N = n2v, represents the object elements rearranged as a vec-

tor; the output vector p̂ ∈ RM̃ represents the attenuated intensities captured at the

detector for M̃ = γωθ propagation functions; the matrix W ∈ RM̃×N , whose rows are

the weight coefficients wxyz that model the interactions of the X-ray beams with the

N object voxels, represented as columns of W; and T ∈ {1, 0}M̃×M̃ is a diagonal

matrix whose diagonal contains the CA pattern, where the zero values represent the

blocking features and the one values represent the X-ray beam pass through the

object. The ratio between the total number passing features of the CA, and the total

amount of detection pixels defines the transmittance of the system which is given by

k =

∑M̃
i=1Tii

M̃
. (39)

Whereas the classical model of CBCT requires M̃ > N projections to reconstruct N

object voxels, compressive CBCT enables the reconstruction of the same number of

voxels from a fewer amount of projections (kM̃ < N ), determined by k. In this case,

the transmittance promotes a reduction from M̃ to kM̃ propagation functions, which

is referred to as the compression of the system. As well as multiple attenuations de-

scribe a linear system in the form of (9), it needs to accomplish that the sampling rate

is equal to or greater than the Nyquist rate stated in (19), in order to restore the signal
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or the image without presence of aliasing artifacts. On the contrary, as declared in 62,

this statement is misleading because CS and Nyquist sampling rates perform two dif-

ferent assumptions. The aforementioned Nyquist sampling theorem establishes that

a continuous signal limited by a frequency band can be reconstructed accurately. On

the other side, CS must find an exact solution with a finite or reduced set of data as

in (38), under the premise that CS reconstruction can be given only when the sig-

nal composition show to be sparse. Although the images in CT are not sparse, the

use of mathematical transforms allows to handle sparse signals, where any target

solution can be regarded as processable and reconstructed from CS theory.

These mathematical operations are better known as sparse transformations and can

be used to obtain sparse signals describing the image. Generally, the use of a dis-

crete gradient transform or a wavelet transforms 6312 look increase the image spar-

sity. With a more sparse signal, the number of unknowns to solve in the sparsified

version of the target image solution from the undersampled data needed is lower

compared with the spatial image domain of a non-sparse signal. Thereby, solving the

sparse elements and applying an inverse sparsifying transform it is possible to re-

turn the target image. Even applying the sparsifying transform, an inverse transform

is not necessary, needing it only on the reconstruction step. An iterative non-linear

optimization procedure can be performed instead of inverse sparsifying transform

during the reconstruction process 64. Therefore, the image reconstruction process in

CS is the combination of sparsifying transform and the iterative reconstruction algo-

rithm. The purpose of CS reconstruction is to recover the values of f ∈ RN , from its

62 Xiaochuan Pan, Emil Y Sidky, and Michael Vannier. “Why do commercial CT scanners still employ
traditional, filtered back-projection for image reconstruction?” In: Inverse problems 25.12 (2009),
p. 123009.

63 Emmanuel J Candès, Justin Romberg, and Terence Tao. “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information”. In: IEEE Transactions on
information theory 52.2 (2006), pp. 489–509.

64 Yuri Mejia and Henry Arguello Sr. “Filtered gradient reconstruction algorithm for compressive
spectral imaging”. In: Optical Engineering 56.4 (2016), pp. 1 –11.
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measurement vector p̂ = TWf ∈ RM̃ , where ideally kM̃ < N . The CS reconstruc-

tion problem for solving f based on the constrained l0 minimization problem can be

described as:

argmin
f
∥ Ψf ∥0 s.t p̂ = TWf , (40)

where Ψ is the sparse transformation operator, ∥ . ∥0 is the l0-norm of the non-zero

component of the vector. Considering that the minimization of l0-norm is an NP-hard

problem 65, and there is instability in the presence of noise 66. The solution to the l0-

optimization problem is divided into two categories. The first, relax the l0-optimization

through l1-optimization, which is also called basic pursuit. The second category is

defined by iterative greedy algorithms, such as (orthogonal) matching pursuit 22 and

iterative hard thresholding (IHT) 67.

In addition, basis pursuit (BP) algorithms rely on linear programming, using a tractable

quantity of computational resources and providing stable solutions. In contrast,

greedy algorithms are faster, because exploit prior knowledge of the image solu-

tion, as consequence, cannot provide the same guarantees BP solution when do not

exist any prior information. In the context of CT reconstruction, total variation mini-

mization instead of l1-optimization provides a sharper image by preserving jumps in

the reconstruction as well as the geometry of the boundaries. However, total vari-

ation (TV) minimization can only restore an image if the gradient of the underlying

target solution is sparse and follows the l1-optimization.

65 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now Publish-
ers Inc, 2005.

66 Irina Rish and Genady Grabarnik. “Sparse signal recovery with exponential-family noise”. In:
Compressed Sensing & Sparse Filtering. Springer, 2014, pp. 77–93.

67 Thomas Blumensath and Mike E Davies. “Iterative hard thresholding for compressed sensing”.
In: Applied and computational harmonic analysis 27.3 (2009), pp. 265–274.
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3.2. Solving a CT Problem with CS

The projections p̂ acquired from f through the system TW use CS image reconstruc-

tion concept based on the l0-optimization problem can be treated as a relaxation with

the l1-optimization problem:

argmin
f
∥ Ψf ∥1 s.t p̂ = TWf , (41)

where the l1-norm ∥ . ∥1 is defined as the sum of the absolute value of the coeffi-

cients that compose the vector. The drawback of (41) is the unrealistic situation of

measuring a signal f ∈ RN with infinite precision. It means that a measurement vec-

tor p̂ ∈ RM̃ is only an approximation of the vector TWf ∈ RM̃ . The corresponding

perturbation can be expressed with the l2-norm of error vector as

∥ p̂−TWf ∥2≤ η, (42)

for some η ≥ 0 parameter which controls data fidelity and a l2-norm ∥ . ∥2 denotes

the Euclidean norm of a vector. Therefore, the optimization problem is modified to

include perturbation as follows

argmin
f
∥ Ψf ∥1 s.t ∥ p̂−TWf ∥22≤ η. (43)

The constrained minimization problem can be converted into an unconstrained min-

imization problem using the Lagrangian approach as

argmin
f

λ ∥ Ψf ∥1 + ∥ p̂−TWf ∥22, (44)

where λ is a Lagrange multiplier which is also called as regularization parameter. In

the literature, the parameter ∥ p̂−TWf ∥22 can also be called data fidelity term, and

∥ Ψf ∥1 regularizer term. Data fidelity measures the deviation between measured

data and forward-projected expected data. Although the solution of (43) comes from
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solving (44), this reduces the fidelity bound η. Because of it, is possible to link the

output to the basis pursuit de-noising (BPDN) method, which consists of solving (44),

for a parameter λ ≥ 0. In addition, the solution of (44) is also related to the output of

the LASSO, which consists of solving

argmin
f
∥ p̂−TWf ∥22 s.t ∥ Ψf ∥1≤ τ (45)

for some parameter τ ≥ 0. These alternative noise reduction methods assume CS

data affected by additive white Gaussian noise, while a more realistic CT noise model

assumes a logarithm-transformed Poisson distribution for projection data obtained

from each detector. The differences in the assumption of the noise model promote

alternatives of the regularizer term, introducing a custom definition of the lq-norm

dealing with ∥ f ∥qq which approaches ∥ f ∥0 as q > 0 tending to zero. It is noticeable

the use of the TV-norm as an option particularly accepted on CT reconstructions as

an alternative of the lq-norm, transforming the unconstrained optimization problem in

(44) using the TV-norm as,

argmin
f

λ ∥ f ∥TV + ∥ p̂−TWf ∥22 . (46)

TV minimization used in image processing as denoising, deblurring, and an inpaint-

ing technique 686970 have the goal of recover the original noise-free signal from an

additive Gaussian noise signal. TV-norm regularization suppresses noise from seg-

ments of the signal that suppose to be constant and reveal steep jumps. The l1-norm

68 Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total variation based noise removal
algorithms”. In: Physica D: nonlinear phenomena 60.1-4 (1992), pp. 259–268.

69 Antonin Chambolle. “An algorithm for total variation minimization and applications”. In: Journal of
Mathematical imaging and vision 20.1 (2004), pp. 89–97.

70 Triet Le, Rick Chartrand, and Thomas J Asaki. “A variational approach to reconstructing im-
ages corrupted by Poisson noise”. In: Journal of mathematical imaging and vision 27.3 (2007),
pp. 257–263.
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of the TV term in the discrete version can be expressed as the TV-norm as

∥ f ∥TV=
∑
x

∑
y

∑
z

|∇f(x, y, z)| , (47)

where ∇f(x, y, z) corresponds to the spatial distribution of the gradient coefficients

on his respective direction (x, y, z). The discrete TV term is expressed as

|∇f(x, y, z)| =


∇xf(x, y, z)

∇yf(x, y, z)

∇zf(x, y, z)

 . (48)

Minimizing the value of the TV-norm in the regularization term will cause smooth-

ness in each gradient direction of a reconstruction process of the image processing.

However, in CT applications, the free-noise image is not a piecewise constant signal,

and pop-up or block artifacts can be introduced during the reconstruction process.

Therefore, the reconstructed image will have a lost contrast due to over-smoothing
71. This problem faced on the state of the art of CS framework by using variants

proposed for the aforementioned optimization methods.

3.3. Alternative Optimization Algorithms

The CS concept in CT reconstruction can be implemented in two forms, either with

a constrained minimization problem achieving a solution for an objective function

within a small data fidelity norm, or an unconstrained minimization problem reducing

the data fidelity error to reach a certain tolerance in the regularizer term of the min-

imization process. The numerical solution of the constrained or the unconstrained

minimization is an optimization problem. There are a large number of algorithms

71 Maurice Debatin et al. “CT reconstruction from few-views by anisotropic total variation minimiza-
tion”. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record
(NSS/MIC). IEEE. 2012, pp. 2295–2296.
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available in the literature, but not a unique optimization algorithm available for CT re-

construction. It depends on the accuracy needed in a particular application where the

reconstruction is subject to get a solution of an optimization algorithm. Optimization

algorithms include first-order methods and their variants, such as steepest-descent

or gradient method 21 and accelerated first order method proposed by Nesterov 72.

These optimization algorithms can be adjusted to take into account the regularization

term to induce smoothness.

Following the CS theory, when a sparsity prior is assumed, it is possible to recover a

high-resolution 3D object from the set of projections (38) such that f has a represen-

tation u = ΨΨΨf , and ΨΨΨ describes the sparse representation basis which is incoherent

concerning to the sensing matrix TW 13, and u is a vector that contains the sparse

coefficients of the object. Thus, the reconstruction problem of the sparse elements

expressed by a convex optimization form is

f∗ = ΨΨΨ⊺

{
argmin

u

1

2
∥ TWΨΨΨ⊺u− p̂ ∥22 +τΦΦΦ (u)

}
, (49)

where τ is a regularization parameter, and the operator ΦΦΦ involves a regularization

function over the coefficients, such as the ℓ1 norm with a given basis ΨΨΨ induces a

sparsity solution term. Alternatively, the convex problem can be expressed as

f∗ = argmin
f

1

2
∥ TWf − p̂ ∥22 +τΦΦΦ (f) , (50)

for the TV function. In general, the convex optimization problem (49) can be solved

through solutions as primal-dual methods 73, dual formulation 69, second-order cone

72 Ilya Sutskever et al. “On the importance of initialization and momentum in deep learning”. In:
International conference on machine learning. PMLR. 2013, pp. 1139–1147.

73 Antonin Chambolle and Thomas Pock. “A first-order primal-dual algorithm for convex problems
with applications to imaging”. In: Journal of mathematical imaging and vision 40.1 (2011),
pp. 120–145.
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programming 74, Bregman distance method 23 and alternating direction method of

multipliers (ADMM) 75. Identifying fast and accurate alternatives to solve (46) include:

gradient projection for sparse reconstruction (GPSR)21; fast iterative shrinkage-thresholding

algorithm (FISTA)76; two-step iterative shrinkage-thresholding (TwIST)77; sparse re-

construction through separable approximation (SpaRSA) 24. In contrast, the split

enhanced Lagrangian shrinkage algorithm (SALSA) overcomes the image recon-

struction process of GPSR, TwIST, FISTA, and SpaRSA algorithms 78. Thereby, a

constrained split enhanced Lagrangian shrinkage algorithm (C-SALSA) version of

the unconstrained SALSA algorithm can be given by applying a variable splitting op-

eration; as a variant of the ADMM algorithm an alternative that stand out in time

excecution as in performance of the solution 7980.

74 Donald Goldfarb and Wotao Yin. “Second-order cone programming methods for total variation-
based image restoration”. In: SIAM Journal on Scientific Computing 27.2 (2005), pp. 622–645.

75 Se Young Chun, Yuni K Dewaraja, and Jeffrey A Fessler. “Alternating direction method of multi-
plier for tomography with nonlocal regularizers”. In: IEEE transactions on medical imaging 33.10
(2014), pp. 1960–1968.

76 Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems”. In: SIAM journal on imaging sciences 2.1 (2009), pp. 183–202.

77 José M Bioucas-Dias and Mário AT Figueiredo. “A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restoration”. In: IEEE Transactions on Image processing
16.12 (2007), pp. 2992–3004.

78 Mario AT Figueiredo, Jose M Bioucas-Dias, and Manya V Afonso. “Fast frame-based image de-
convolution using variable splitting and constrained optimization”. In: 2009 IEEE/SP 15th Work-
shop on Statistical Signal Processing. IEEE. 2009, pp. 109–112.

79 Jonathan Eckstein and Dimitri P Bertsekas. “On the Douglas—Rachford splitting method and the
proximal point algorithm for maximal monotone operators”. In: Mathematical Programming 55.1
(1992), pp. 293–318.

80 Manya V Afonso, José M Bioucas-Dias, and Mário AT Figueiredo. “Fast image recovery using
variable splitting and constrained optimization”. In: IEEE transactions on image processing 19.9
(2010), pp. 2345–2356.
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4. CBCT Super-resolution Coded Aperture Design

Previous works have shown that designing CA patterns provides improved images.

Most designs, are focused on multi-shot FB systems, handling a 1:1 ratio between

CA features and detector elements. In consequence, image resolution is subject to

the detector pixel size. Moreover, CA optimization for CT involves strong binarization

assumptions, impractical data rearrangements, or computationally expensive tasks

such as singular value decomposition. Instead of using higher resolution CA distribu-

tions into a multi-slice system with a more dense detector array, this chapter presents

an arrangement for the CBCT system using a high-resolution CA, defining the SR-

CBCT system. To this end, the Gershgorin theorem is exploited in the CA optimiza-

tion given that its algebraic interpretation relates the circles radii with the eigenvalue

bounds, whose minimization improves the condition of the SR-CBCT system matrix.

The proposed mathematical framework for designing super-resolution CA for com-

pressive CBCT based on the Gershgorin theorem is described, as well as the cost

function to obtain the CA structure and reduce the Gershgorin bounds.

4.1. Super-Resolution Cone-Beam Computed Tomography System

X-ray CT scanners are mainly composed of a source of X-ray energy and an array

of detectors that capture information about the inner configuration of an object at

several angle views, which allows estimating its structural composition 1. To this end,

industrial applications like quality control 3 and security inspection 456, can employ

a moving base to rotate the object 7. On the other hand, in medical applications,

the X-ray source and the detector array jointly rotate around the patient 2. Describ-

ing a CS-CBCT system, in which there is one-to-one correspondence between the

detector and CA elements, the attainable image quality depends on the resolution

of the detector. Thus, low-resolution detectors cause several propagation lines to

interact with large object volume sections, resulting in a loss of detail in the captured
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Figure 10. Compressive super-resolution CBCT system that includes a
high-resolution CA and a low-resolution detector array.

projections. Better-resolved projections imply increasing the number of detector ele-

ments per unit area, that in turn, raises the cost of the system and depends on the

manufacturing size limits of sensor components. Conversely, the SR-CBCT model

proposed in this work employs CA of higher-resolution with lower-resolution detec-

tors, such that the correspondence between the detector and CA features is greater

than one, i.e. a single detector element captures projections from more than one

propagation line, describing smaller object voxels. The ratio between the CA and

detector features is denoted as d = d1d2, where d1 corresponds to the rows ratio

and d2 to the columns as shown in Fig. 10. Note that this approach allows the dis-

crimination among multiple (d) propagation lines captured at each detector element.

Mathematically, this effect can be modeled as

p = Dp̂ = DTWf , (51)
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where D ∈ RM×M̃ is a decimation operator, whose rows integrate d high resolution

projections at each detector pixel. More precisely, the
(
î, ĵ

)
−th entry of D is given

by

(D)̂i,ĵ =


1, if î = a{ĵ}+

⌈
γ
d1

⌉(
b{ĵ}+

⌈
ω
d2

⌉(⌈
ĵ
γω

⌉
− 1

))
0, otherwise

, (52)

for ĵ = 1, · · · , γωθ columns and, î{ĵ} rows, with a{ĵ} =
ĵ−γ

⌈
ĵ
γ

⌉
+γ

d1
and b{ĵ} =

⌈
ĵ
γ
−ω

⌈
ĵ
γω

⌉
+ω

⌉
d2

−
1. At this point, it is noticeable that the total amount of energy from X-rays that are

decimated and arrived at the detector is equivalent to the total amount of energy from

X-rays that pass through the CA. Independently if there exists decimated information

that arrives at the detector which comes from a total, partial, or from applying a null

blockage on the CA. For this reason, the definition of the transmittance given as (52)

is used in order to quantify the number of equations characterized in the propagation

(assumed proportional to the total energy) which passes through the CA and arrives

at the detector array.

The SR-CBCT system modeled in (51), allows redefining the solution in (50) as

f∗ = argmin
f

1

2
∥ DTWf − p ∥22 +τΦΦΦ (f) , (53)

with a TV function constraint ΦΦΦ (f), where the convex optimization problem (53) can

be solved through basis pursuit 81, basis pursuit de-noising 81, least absolute shrink-

age and selection operator 82 and least angle regression 83. Recently, the C-SALSA

81 Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic decomposition by
basis pursuit”. In: SIAM review 43.1 (2001), pp. 129–159.

82 Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288.

83 Bradley Efron et al. “Least angle regression”. In: The Annals of statistics 32.2 (2004), pp. 407–
499.
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84 has been introduced as an alternative method to solve (53) at lower computational

complexity. Disregarding the effect of different algorithms, the reconstruction qual-

ity in SR-CBCT is also associated with the amount of captured projections, which

depends on the number of multiplexed elements that pass through the CA.

4.2. State-of-the-Art of CT-CA designs

CBCT is a particular CT system configuration that employs a single X-ray source and

a flat detection area, such that multiple object slices are captured at each acquisition

angle 7. CBCT acquisition has been modeled as a linear problem, in which each

row of the acquisition matrix describes the interactions between the object and the

X-ray beams to generate the projections 1. In general, radiation damage, temper-

ature, misalignment, and changes in x-ray beam intensity are sources of error that

entail either an under-estimation or over-estimation of the pixels in the underlying

image 85. To reduce the effects of these errors, several redundant projections are

commonly acquired. Thus, the linear system becomes over-determined because of

the multiple angle views and projections 1. Despite the over-determined system en-

ables improved CT image reconstructions, the complexity of the problem increases

due to the large amount of involved data. To overcome these limitations, compres-

sive CT introduces a CA to reduce the highest row correlations by blocking similar

propagation functions 11. In particular, the interaction of the CA with the X-rays al-

lows capturing undersampled data with sparse views 89 or missing data at every

single view 8. Consequently, the amount of X-ray energy that impacts the object is

supposed to decrease as well as the incident radiation 910.

Multiple strategies have been developed to design the CA projection patterns in CT

84 Manya V Afonso, José M Bioucas-Dias, and Mário AT Figueiredo. “An augmented Lagrangian
approach to the constrained optimization formulation of imaging inverse problems”. In: IEEE
Transactions on Image Processing 20.3 (2011), pp. 681–695.

85 Xiaoquan Yang et al. “Abnormal pixel detection using sum-of-projections symmetry in cone beam
computed tomography”. In: Optics express 20.10 (2012), pp. 11014–11030.
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systems 1011. Initial studies showed that in an architecture where the CA pattern

is not designed, the use of random CA for equidistant rotation angles provides cor-

rect CT reconstructions 488. To date, research on CA design has introduced better

distributions than pure random sampling to obtain improved reconstructions 8. In

general, the concept of coherence of the sensing matrix is used, since it describes

the correlation between the columns of the measurement matrix 49, and it enables

the selection of less-correlated propagation functions to increase the variability of the

captured data. For instance, the work in 86 exploits the diffraction of X-rays to analyt-

ically design a polar CA plane; in 3987 coded apertures are designed by analyzing the

coherence of the sensing matrix in a tomosynthesis system; the computational cost

of the design from 87 was improved in 88; the rotation of the source and detectors of a

fan-beam system was explored in 46, but these rotations increase the computational

requirements of the CA design strategies. A recent approach employs sparse princi-

pal component analysis (SPCA) to design the CA patterns for a fan beam system 89,

which requires sacrificing precision to alleviate the computational complexity of the

approach.

In general, state-of-the-art CA design approaches solve the coherence minimiza-

tion problem by training algorithms to use dictionaries 90, or using gradient descent

86 David J Brady et al. “Coded apertures for x-ray scatter imaging”. In: Applied optics 52.32 (2013),
pp. 7745–7754.

87 Angela P Cuadros et al. “Coded aperture optimization for compressive X-ray tomosynthesis”. In:
Optics express 23.25 (2015), pp. 32788–32802.

88 A Parada-Mayorga, A Cuadros, and GR Arce. “Coded aperture design for compressive X-ray
tomosynthesis via coherence analysis”. In: Biomedical Imaging (ISBI 2017), 2017 IEEE 14th
International Symposium on. IEEE. 2017, pp. 44–47.

89 Tianyi Mao et al. “Coded Aperture Optimization in X-Ray Tomography via Sparse Principal Com-
ponent Analysis”. In: IEEE Transactions on Computational Imaging 6 (2020), pp. 73–86. DOI:
10.1109/TCI.2019.2919228.

90 Julio Martin Duarte-Carvajalino and Guillermo Sapiro. “Learning to sense sparse signals: Simul-
taneous sensing matrix and sparsifying dictionary optimization”. In: IEEE Transactions on Image
Processing 18.7 (2009), pp. 1395–1408.
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algorithms 464748. However, these strategies entail the design of the entire system

matrix, which involves both the hardware configuration and the CA effect. Therefore,

strong binarization assumptions are required to obtain implementable systems. For

instance, in 40 the condition of the system is enhanced with a binarized and rear-

ranged version of the sensing matrix by employing the boundaries of the Gershgorin

theorem 50. Moreover, most CA designs in CT focus on the case in which there is

a 1:1 correspondence between the CA and detector elements, such that the phys-

ical dimensions of each pixel of the detector array limit the CT image resolution.

Although, the traditional solution for increasing the image resolution consists of em-

ploying detectors with smaller pixels, this approach implies higher implementation

costs. In contrast, SR methods produce better resolved images without considerably

modifying the architecture. For instance, high-resolution CA were designed in 1835

for a multi-shot fan beam system, assuming that a single detector interacts with a

group of CA elements of lower aspect ratio, enabling higher resolution acquisitions

with low-resolution detectors. However, the work in 35 explores the limits of the as-

pect ratio relationship, using a single-pixel detector and substantially increasing the

number of shots.

More recently, high-resolution modulations were studied in 91, where sparse and pe-

riodical high-resolution CA were used on a fan-beam system with non-conventional

acquisition orbits to obtain high-resolution images, at the expense of several shots

per angle required by periodic CA patterns. It is worth noting that the aforementioned

CA designs cannot be directly applied to CBCT due to the differences between sens-

ing schemes of these architectures. Further, CA designs have not been to date

developed for super-resolution compressive CBCT because of the extremely heavy

computational costs of handling its system matrix. Therefore, this work presents a

CA design approach for compressive SR-CBCT such that higher resolution image

reconstructions can be obtained from low-resolution projections captured in a single

91 O Sefi et al. “X-ray imaging of fast dynamics with single-pixel detector”. In: Optics Express 28.17
(2020), pp. 24568–24576.
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shot. To this end, the CA design is formulated as a coherence minimization problem

in which the CA is the design variable, thus, ensuring implementable solutions. More

precisely, the design includes the minimization of a function that evaluates the radii of

the Gershgorin theorem 50 on the Gram matrix, and the homogeneity distribution of

the high-resolution information that impacts the low-resolution detector. The problem

is solved through a gradient descent algorithm, subject to a non-linear thresholding

operator that controls the number of non-blocking elements as a binary response.

4.3. System Matrix Conditioning by the Gershgorin Theorem

Consider the general linear problem of the form p = Hf , where H ∈ RM×N rep-

resents an acquisition system matrix, whose rank, i.e. number of linearly indepen-

dent column vectors, is determined by the ratio between its maximum and minimum

eigenvalues.

A more concentrated eigenvalue distribution is evidence of a well-conditioned sys-

tem. This span could be directly associated with the singular value decomposition

(SVD) of H. Considering that a rank of H or a Gram matrix G = H⊺H is the same
92, instead of calculating the SVD, which is a computationally expensive task, the

Gershgorin theorem 93 can be employed to analyze its eigenvalue bounds, assum-

ing that it is a strictly diagonally dominant matrix (SDDM), mathematically defined as

|[G]ii| ≥
∑
j

|[G]ij| for i = 1, · · · , N and j ̸= i. (54)

More precisely, the Gershgorin theorem establishes that the SDDM condition can be

used to estimate the bounds that contain the eigenvalues λi, if the sum of the module

of the elements along the i−th row of G, excluding the diagonal element [G]ii is less

92 D.C. Lay, S.R. Lay, and J. McDonald. Linear Algebra and Its Applications. Always Learning.
Pearson Education Limited, 2016.

93 Howard E Bell. “Gershgorin’s theorem and the zeros of polynomials”. In: The American Mathe-
matical Monthly 72.3 (1965), pp. 292–295.
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than the diagonal entry [G]ii. Thus, every eigenvalue of the matrix G is contained on

the boundary of circles satisfying

|λi − [G]ii| ≤
∑
j

|[G]ij| for j ̸= i. (55)

The radius of the circle centered at the point [G]ii is given by [g]i =
∑

j|[G]ij| for j ̸= i,

and each eigenvalue λi satisfies

[G]ii − [g]i ≤ λi ≤ [G]ii + [g]i. (56)

Given the SDDM characteristics of G, it is possible to reduce the eigenvalue bounds

by reducing the corresponding circle radii on the Gershgorin theorem. Mathemat-

ically, the radii reduction impacts the total bound that contains the eigenvalues as

min
i
{[G]ii − [g]i}111 ⪯ λλλ ⪯ max

i
{[G]ii + [g]i}111, (57)

where λλλ represents a vector containing all the eigenvalues, the vector with lower limit

in (57) reveals the minimum possible eigenvalue, and the higher limit describes the

maximum possible eigenvalue. Note, that these bounds can still be minimized since

circles centers are not necessarily close to each other, even though their radii are

minimal. Thus, its assumed a normalized sensing matrix H that in turn yields to con-

centric Gershgorin circles with [G]ii = 1 and different radii, such that the eigenvalue

bounds in (57) can be reduced by just minimizing the radii gi. On the other hand, the

matrix Ĝ = HH⊺ holds the same SDDM characteristics as G, therefore equations

(54) to (57) hold, and rank(G) = rank(Ĝ) = rank(H) 92. Although Ĝ describes the

same eigenvalue distribution as G, their associated Gershgorin radii differ. There-

fore, the cost function developed in the following section considers both normalized

matrices G and Ĝ.
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4.4. Proposed Cost Function for Gershgorin Radii Reduction

Based on the general linear problem p = Hf , the system matrix for the CBCT case

from (51) is defined as H = DTW. Thus, the Gram matrices G and Ĝ are given

by G = W⊺T⊺D⊺DTW and Ĝ = DTWW⊺T⊺D⊺. Note that improving the condition

of G and Ĝ requires minimizing their off-diagonal entries 34. To this end, products

between D and DT , and W and WT should be identity matrices; such condition

however, is unrealistic in practical applications 46. Therefore, instead of analyzing

H = DTW, this work addresses the optimization problem from two fronts, based on

(51). The first one considers the system p = DH1f , with H1 = TW, corresponding

to the high-resolution propagation analysis, and assumes that a better usage of the

high-resolution information implies an improvement of the total system. The second

front considers the system p = H2Wf with H2 = DT, that accounts for the equiv-

alent low resolution CA related to the projections p. In this way, we assume that an

appropriate matrix T jointly improves H1 and H2, and impacts the total matrix sys-

tem H. Taking H1 ∈ RM̃×N into account, the corresponding Gram matrices are given

by G1 = H⊺
1H1 ∈ RN×N and Ĝ1 = H1H

⊺
1 ∈ RM̃×M̃ . According to the Gershgorin

theorem, radii are calculated as the row-wise sum of the off-diagonal entries of the

Gram matrices. Let us first analyze G1, whose Gershgorin radii are represented by

the vector g1, calculated as

g1 = G11̄− q, (58)

where 1̄ is an N -long one-valued vector used to calculate the row-wise sums in G1

as [G11̄]i =
∑

j|[G1]ij|. The vector q ∈ RN accounts for the diagonal entries of G1,

[q]b =
∑M̃

a=1[H1]
2
a,b, and it is computed as follows

q = (H1 ◦H1)
⊺ 1̂, (59)
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with ◦ representing the Hadamard product and 1̂ an M̃ -long one-valued vector. Re-

placing H1 = TW and q from (59) in (58) yields

g1 = W⊺T⊺TW1̄− (W⊺T⊺ ◦W⊺T⊺) 1̂

= W⊺TW1̄− (W⊺ ◦W⊺)T1̂, (60)

where the first term can be rewritten as W⊺TW1̄ due to the fact that products

T⊺T and TT⊺ in (60) are products of a binary diagonal matrix. This property can

be extended to the second term, where a single matrix T is enough to calculate

(W⊺T⊺ ◦W⊺T⊺) 1̂ = (W⊺ ◦W⊺)T1̂ that extracts the diagonal terms of H1. More-

over, the resulting product TW1̄ sets to zero some elements of the vector W1̄ ac-

cording to the diagonal entries of T. This operation can be alternatively represented

as QT1̂, where Q = diag{W1̄}, which multiplied by the diagonal matrix T results

in a diagonal matrix, and the product with the one-valued vector 1̂ provides the row

wise sum of the elements in Q. Thus, (60) can be rewritten as

g1 = W⊺QT1̂− (W⊺ ◦W⊺)T1̂. (61)

The product T1̂ in (61) extracts the diagonal entries of T resulting in a vector with the

coded aperture, t. This variable t allows us to focus on the design of the CA entries,

disregarding the off-diagonal entries of the matrix T. Then, (61) can be rewritten as

g1 = W⊺Qt− (W⊺ ◦W⊺) t. (62)

Up to this point, the normalization of the sensing matrix H1 has not been considered.

It is worth noting that this normalization aims at setting the diagonal entries of G1 to a

constant value. The normalization of the columns of H1 has effect in the second term

of (62), which becomes a one-valued vector. This effect can be obtained multiplying
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(62) with M1 = [diag ((W⊺ ◦W⊺) t)]−1, which yields to the redefinition of g1 as

g1 = M1 (W
⊺Q− (W⊺ ◦W⊺)) t. (63)

The radii distribution of G1 can be succinctly expressed as

g1 = Rt, (64)

where R = M1(W
⊺Q−(W⊺◦W⊺)). Similar to (58), the Gershgorin radii of the matrix

Ĝ1 are given by

ĝ1 = (Ĝ11̂− q̂), (65)

where q̂ = (H1 ◦H1) 1̄. Replacing H1 = TW in (65) yields

ĝ1 = TWW⊺T⊺1̂− (TW ◦TW) 1̄. (66)

Due to the Hadamard matrix product properties, the second term (TW ◦TW) 1̄ in

(66) can be expressed as T (W ◦W) 1̄. Thus, (66) can be rewritten as

ĝ1 = T
(
WW⊺T⊺1̂− (W ◦W) 1̄

)
. (67)

In an analog manner to (61), note that the first term of (67) T⊺1̂ = t. Also, the second

term (W ◦W) 1̄, is equivalent to the product Q̂1̂ with Q̂ = diag{(W ◦W) 1̄}. These

considerations allow rewriting (67) as

ĝ1 = T
(
WW⊺t− Q̂1̂

)
. (68)

To account for the normalization of H1, let M̂1 = Q̂−1 be a matrix, that multiplied by

(68) results in unitary diagonal entries of Ĝ1. Thus, the radii in (68) are now given by

ĝ1 = M̂1T
(
WW⊺t− Q̂1̂

)
. (69)
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Further, since T and M̂1 are diagonal matrices, TM̂1 = M̂1T and (69) can be

alternatively written as

ĝ1 = T
(
M̂1WW⊺t− 1̂

)
. (70)

Indeed, (70) can be succinctly expressed as the linear problem

ĝ1 = T
(
R̂t− 1̂

)
, (71)

where R̂ =
(
M̂1WW⊺

)
. Note that, the trivial solution for the radii reduction of (71)

consists in having zero Gershgorin radii by setting T = 0, which would eliminate

the codification. Alternatively, reduced non-zero radii can be obtained by minimizing

R̂t − 1̂ with a CA with low transmittance k. In this context, a CA with transmittance

k that reduces the Gershgorin radii of the high resolution system H1 = TW should

simultaneously take into account (64) and (71). Mathematically, such CA can be

obtained by solving the following cost function

U(t) =
ρ1
2
∥ Rt ∥22 +

ρ2
2
∥ 1̂− R̂t ∥22, (72)

where ρ1 and ρ2 are constants.

To ensure that the effect of the CA in the decimation process is taken into account,

let us now consider H2 = DT, which describes the codification process as if an

equivalent low-resolution CA was used. The corresponding Gram matrices in this

case are given by G2 = H⊺
2H2 ∈ RM̃×M̃ and Ĝ2 = H2H

⊺
2 ∈ RM×M . Following the

same analysis performed over G1, the Gershgorin radii vector of G2 is determined

as in (58), yielding

g2 = G21̂− (H2 ◦H2)
⊺ 1

= T⊺D⊺DT1̂− (TD ◦TD)⊺ 1

= T⊺D⊺Dt−T⊺ (D ◦D)⊺ 1, (73)
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where 1 is an M-long one-valued vector. Taking into account the structure of D from

(52), in which there is only one one-valued entry per column, D ◦D = D. Thus, (73)

can be rewritten as

g2 = T⊺ (D⊺Dt−D⊺1)

= T⊺D⊺ (Dt− 1) . (74)

In this case, following the same normalization procedure for H2 as for H1, which

would consist in multiplying (74) by a matrix M2, will not affect the minimization of

the Gershgorin radii since it can be attained by designing t such that Dt − 1 is

minimized.

On the other hand, consider the matrix Ĝ2 whose radii vector is modeled by

ĝ2 = Ĝ21− (H2 ◦H2) 1̂

= DTT⊺D⊺1− (DT ◦DT) 1̂

= DTD⊺1− (D ◦D)T1̂

= DT1̂−DT1̂ (75)

ĝ2 = 0, (76)

resulting in a zero-valued vector. Thus, the proposed cost function to evaluate the

impact of the CA in the Gershgorin radii of H2 can be written as

V(t) =
ρ3
2
∥ 1−Dt ∥22, (77)

where ρ3 is a regularization constant. Taking into account the results of (72) and

(77), the coded aperture optimization is given by the minimization problem

t∗ = argmin
t

U(t) +V(t), (78)
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which can be solved by getting the operator to find the appropriate patterns t that re-

duce the radii of (51) based on the high-resolution modulation and the low-resolution

CA effect in the CBCT sensing process.

Despite (78) can be solved by a GD method, the solutions might not be binary. There-

fore, to ensure a binary coded aperture with transmittance k, a hard thresholding

function Hk{·} is required at each iteration of the proposed method. Taking this into

account, the gradient for the z−th iteration is obtained by deriving the cost function

in (78) with respect to the desired variable t, and applying the thresholding function,

yielding

tz = Hk{tz−1 + ρ1R
⊺ (Rtz−1)

+ ρ2R̂
⊺
(
1̂− R̂tz−1

)
+ ρ3D

⊺ (1−Dtz−1)}. (79)

Alternatively, the solution can be boosted by replacing the transpose of the matrices

R⊺, R̂⊺, and D⊺, by its (Moore-Penrouse) pseudoinverse approximation R†, R̂†, and

D† respectivelly. For it, is possible to use the SVD decomposition, and use the

reciprocal of all the non-zero singular values to acquire the desired pseudoinverse.

This conception allows formulate (79) as

tz = Hk{tz−1 + ρ1R
† (Rtz−1)

+ ρ2R̂
†
(
1̂− R̂tz−1

)
+ ρ3D

† (1−Dtz−1)}. (80)

Even for the case where the algorithm 1 provides a proper solution, notice that R

depends on t and its pseudo-inverse must be estimated in each iteration, offering a

computationally expensive for the coded aperture design.
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Algorithm 1 Initial coded aperture design for super-resolved compressive CBCT
1: procedure CA-DESIGN(k, d1, d2, zmax, α, ρ1, ρ2, ρ3, t0)
2: z ← 1
3: Calculate R̂†,D† ▷ Calculate the pseudo-inverse
4: while z ̸= zmax do
5: Calculate R† ▷ Calculate the pseudo-inverse
6: tz ← Hk{tz−1 + ρ1R

⊺ (Rtz−1) + ρ2R̂
⊺
(
1̂− R̂tz−1

)
+ ρ3D

† (1−DPztz−1)}
7: z ← z + 1

8: t∗ ← tzmax

9: return t∗ ▷ Return final iteration t∗

4.5. Iterative Design of the Super-Resolution CA

It is worth noting that the decimation matrix D in the last term of (79) induces an error

replication among iterations of the gradient descent. More specifically, let ez−1 =

1−Dtz−1 be the residual vector of the sub-problem in (77). The update of this term at

iteration z is given by ∆tz−1 = DTez−1, however, the structure of DT replicates each

value of ez−1 to d pixels of ∆tz−1, as illustrated in Fig.11 (a), where black squares

represent one-valued elements, white squares represent zero-valued entries, and

colored squares represent different values, with blue being the largest and yellow the

smallest. This replication causes that applying the threshold function to ∆tz−1 + fz−1

in the update step, as illustrated in Fig. 11(b), will result in just keeping the values

coming from a few super-pixels, thus preventing uniform CA and promoting similar

solutions in all iterations.

To avoid this issue, we introduce the matrix P ∈ RM̃×M̃ , which multiplies the last term

in (79) 94. This product assigns different gradient weights to each individual pixel in

the up-sampling operation, as illustrated in Fig. 11(c). The effect of introducing P is

depicted in Fig. 11(d), where the one-valued elements of the CA are more uniformly

located across the super-pixels. More precisely, P is a diagonal matrix defined for

94 Zhaonan Qu, Yinyu Ye, and Zhengyuan Zhou. Diagonal Preconditioning: Theory and Algorithms.
2020. arXiv: 2003.07545 [cs.LG].
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Figure 11. Error replication due to decimation matrix D, for k = 0.375, and proposed
spatial homogenization solution. Black squares indicate one-valued elements, white
squares are zeros, and colored squares represent different values, with magenta
being the largest and yellow the smallest. (a) CA variation at z-th iteration; (b) CA
update; (c) Proposed spatial homogenization; (d) Effect of proposed approach.

each iteration z as

Pz = I− αΩΩΩz, (81)

where I is an identity matrix, 0 ≤ α ≤ 1 is a scalar value that controls the desired

amount of variation added to the gradient and ΩΩΩz is a diagonal matrix with Gaussian

random entries of mean 0.5. Extending the diagonal structure of a matrix to the

gradient step ρ3 it is possible to differentiate between similar options, the response of

the iterative method improves 95. This approach aims at promoting a uniform spatial

distribution in tz concerning to the super-resolution factor, such that all features of

the equivalent low resolution coded aperture has approximately the same amount of

one-valued in his modulation. Taking into account the introduction of P, the problem

95 Pablo Tarazaga and Diego Cuellar. “Preconditioners generated by minimizing norms”. In: Com-
puters & Mathematics with Applications 57.8 (2009), pp. 1305–1312.
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(78) can be reformulated as

t∗ = argmin
t

U(t) +V(Pt), (82)

and its update is given by a gradient of the form

tz = Hk{tz−1 + ρ1R
⊺ (Rtz−1)

+ ρ2R̂
⊺
(
1̂− R̂tz−1

)
+ ρ3P

⊺
zD

⊺ (1−DPztz−1)}. (83)

From (39), k is redefined as the high-resolution transmittance, the proposed method

to solve (82) is summarized in algorithm 2.

Algorithm 2 Coded aperture design for super-resolved compressive CBCT
1: procedure CA-DESIGN(k, d1, d2, zmax, α, ρ1, ρ2, ρ3, t0)
2: z ← 1
3: while z ̸= zmax do
4: Pz ← I− αΩΩΩz

5: tz ← Hk{tz−1 + ρ1R
⊺ (Rtz−1) + ρ2R̂

⊺
(
1̂− R̂tz−1

)
+ ρ3P

⊺
zD⊺ (1−DPztz−1)}

6: z ← z + 1

7: t∗ ← tzmax

8: return t∗ ▷ Return final iteration t∗
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5. CBCT Experimental Procedure

Simulations with medical data sets were performed to test the proposed CA design

in the recovery process, it shows that the proposed design attains high-resolution im-

ages from lower-resolution detectors in a single-shot CBCT scenario. This Chapter

describes the configuration of the simulated CBCT architecture as well as the simu-

lation parameters to generate compressive sparse view measurements and the input

images. Afterwards, various experiments and their results are presented, including

the evaluation of the Gershgorin radii reduction, image reconstruction quality for dif-

ferent super-resolution factors for noiseless and noisy measurements, as well as a

computational complexity analysis of the proposed approach. Besides, reconstruc-

tions from Monte-Carlo simulated projections with the GATE/GEANT4 toolkit 96 are

also included. Besides, image quality is improved in up to 5 dB of PSNR compared to

random CA patterns for different super-resolution factors. Moreover, reconstructions

from Monte-Carlo simulated projections show up to 3 dB improvements. Further, for

the analyzed cases, the computational load of the proposed approach is up to three

orders of magnitude lower than that of SVD-based methods.

5.1. Simulated Compressive CBCT Architecture and Parameter Setup

The compressive CBCT architecture was simulated with the ASTRA Toolbox 59,

yielding the sensing matrix W to generate the projections p as in (51). The sys-

tem was configured such that the object’s axis of rotation is located at 290.2mm from

the X-ray source, and the detector array is located 484.6mm from the object’s axis of

rotation. The object volume is assumed to fit a 128× 128× 12 grid. Thus, the system

configuration requires a 2D array of 512× 48 detectors, each of size 0.4714× 0.4714

96 David Sarrut et al. “A review of the use and potential of the GATE Monte Carlo simulation code for
radiation therapy and dosimetry applications”. In: Medical physics 41.6Part1 (2014), p. 064301.
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mm, if high resolution projections were to be acquired. However, since this work

assumes that a low resolution detector array is available, the simulated sensor has
512
d1
× 48

d2
elements, where the decimation factors d1 and d2 vary as it will be later

described. The matrix W accounts for a total of 97 projection angles over the full

angular range [0, 2π), each one with a different coded aperture pattern. Coded aper-

tures were obtained using Algorithm 2 to construct the matrix T, and it is assumed

that each detector is affected by the projections related to d1×d2 coded aperture fea-

tures, according to the decimation matrix from (52). The parameters for Algorithm

2 were fixed as zmax = 500 iterations; constant α = 0.95; the initial solution t0 is a

binary random vector; the constants ρ1,ρ2 and ρ3 were adjusted by cross validation

until the best possible homogenization was obtained; the transmittance of the coded

apertures was varied to analyze its effects in the reconstructions. High resolution

volume reconstructions were obtained from the low-resolution projections by solving

(53) with the C-SALSA algorithm 84, for which the regularization parameter τ was

selected by cross-validation, and the regularization operator Φ was set to be the ℓ1

norm.
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(a) (b)

(c) (d)

Figure 12. Datasets used for simulations, each with 12 slices of 128× 128 pixels. (a)
Synthethic 3D-Shepp-Logan phantom; real medical datasets (b) Multiple (Head to
hips), (c) Abdomen, and (d) Thorax.
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Four object volumes F were used for simulations, whose dimensions match the sys-

tem configuration previously described, i.e., 12 slices of 128 × 128 pixels. The first

one is a synthetic data set known as the 3D-Shepp-Logan phantom, shown in Fig.

12(a).The remaining three data sets are real medical images from 35, acquired by

CATME SAS97. The second test image referred to as Multiple, illustrated in Fig.

12(b), provides 12 slices from the head to the hips. The third image called Ab-

domen, shown in Fig. 12(c), contains 12 slices of an abdomen, and the fourth image

corresponds to the thorax area, as depicted in Fig. 12(d).

5.2. Gershgorin Radii Reduction

This experiment evaluates the actual Gershgorin radii reduction for the system ma-

trix H = DTW with T obtained using the proposed CA design, and compares them

with the radii of the system matrix with a random CA T, following a Bernoulli distri-

bution with parameter k. The concentration of the eigenvalues was calculated as the

difference between the bounds from (57), and Fig. 13 illustrates the average bound

differences as a function of the transmittance, for 5 matrix realizations using d = 4×4

and d = 2×2 for both types of coded apertures. Notice that the eigenvalue bounds of

the matrices with the proposed CA design attain lower eigenvalue bound differences.

Moreover, for low transmittances (k) and d = 4 = (2× 2), both curves exhibit similar

behavior. This effect is explained by the fact that a low decimation factor tends to

induce a similar number of zeros between the high-resolution propagations and the

detector. It is taking into account that a very low transmittance value has a high num-

ber of propagation functions modulated by zero weights producing a weighted matrix

with very few rows. In this context, two systems with a different modulation but the

same low transmittance value, reveal a condition number that similarly describes the

system in terms of eigenvalues. Consequently, very low transmittance yields more

97 Images correspond to anonymous patients. Patient-related data were not provided. Authors were
not involved in the acquisition process of these data sets.
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zero-valued features in the low-resolution detector when the decimation factor tends

to d = 1, which affects the quality of the system and the sensed data.
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Figure 13. Average eigenvalue bound difference from the Gershgorin radii reduction
in (57), as a function of the transmittance k for the designed CA and random CA
using a decimation factor of d = 4× 4 = 16 and d = 2× 2 = 16.

Figure 14 compares portions of random and designed CA patterns, for three differ-

ent angle views, using decimation factors d = 4, 16, whose transmittance values are

1/d. The super-pixel grid for each case is illustrated in white. Observe that for both

decimation factors, the designed CA contains a single passing (one-valued) element

on each super-pixel, in contrast to the random CA that exhibit more than one pass-

ing feature at some super-pixels, and in other cases they completely block all the

information from one super-pixel. To illustrate how multiple elements of the CA affect

a detection into the low-resolution detector, it is possible to apply the decimation to

a CA distribution. Thereby, the outcome vector indicates the number of passing el-

ements for a decimation factor. For this sense, the histogram of the decimated CA

distribution indicates how well allocated is the CA in function to the decimation pro-

cess. Figure 15 illustrates the mean of the histogram for five decimated distributions,

with a decimation factor d = 16, handling a transmittance value equal to Fig. 15 (a)

0.015625, (b) 0.03125, (c) 0.0625, (d) 0.125, (e) 0.25 and (f) 0.5, and highlighying
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the Fig. 15(c), where the transmittance is equal to 1
d
.

Figure 14. Realizations of designed CA with decimation factors d = 4, 16 for three
different angle views, compared with non-designed CA patterns.

5.3. Computational Complexity

This section describes the computational complexity of algorithm 2. Specifically,

the cost of the gradient step in (83) is compared with respect to actually computing

the SVD of the sensing matrix at each iteration, i.e. algorithm 1. Considering the

dimensions of the matrices and vectors involved in the products calculated in (83),

each iteration of the proposed algorithm 2 exhibits a computational complexity O(M̃2)

when M̃ > N , and O(M̃N) when M̃ < N . In contrast, with the algorithm 1 where the

computational complexity of SVD is O(M2N +N2M +N3) 98. Moreover, the running

time of algorithm 2 was evaluated to verify the theoretical computational complexity

analysis. To this end, each spatial dimension of the data cube was varied from 1

98 Ievgen Redko and Younès Bennani. “Non-negative Matrix Factorization with Schatten p-norms
Reguralization”. In: International Conference on Neural Information Processing. Springer. 2014,
pp. 52–59.
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Figure 15. Histogram comparisson between random (blue) and designed (red)
distributions of a decimated CA, with a decimation factor of d = 16, for a
transmittance equal to (a) 0.015625, (b) 0.03125, (c) 0.0625, (d) 0.125, (e) 0.25 and
(f) 0.5.

to 64, while the number of slices was fixed at 12. For comparison purposes, the

same data cubes were used to measure the running time of the SVD method. All

simulations were conducted and timed on an Intel Core i7 3.6GHz CPU with 32 GB

RAM.

Figure 16 presents the average running time per iteration of 5 run trials, measured in

seconds, for both methods. Note that these results are consistent with the theoretical

complexity analysis, in which performing SVD is significantly more expensive than

estimating the eigenvalue bounds based on the Gershgorin radii reduction through

the proposed gradient method. Further, SVD computation is prohibited in the system

employed for simulations. Therefore, in Fig. 16, the SVD results for more than

196,608 voxels, i.e. a 64× 64× 12 data cube, correspond to the projected behavior.

Contrarily, the proposed method is still able to evaluate such matrix dimensions. To

compare the success of a CA distribution achieved with the algorithm 2, consider
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Figure 16. Average running time per iteration step for the proposed gradient method
and a SVD design, varying the data cube spatial dimensions.

the response of the algorithm 1 as a solution of reference. In this context, Fig. 17

show the condition number to assess the proposed SR-CBCT system through three

different scenarios, an initial random distribution of the CA elements (green bars),

using the algorithm 1 as a solution subject to an SVD process (red bars), and using

the proposed algorithm 2 (blue bars), using 27648, 836352 and 12192768 voxels in

each test.

As a consequence, a comparable result in Fig. 17 between algorithm 1 and the

algorithm 2 validates the use of the proposed algorithm 2, taking into account a

lower computational cost as reveal the Fig. 16.

5.3.1. Reconstruction Quality These experiments compare the reconstruction

quality of the proposed coded aperture design with respect to non-designed coded

apertures as a function of the transmittance k and super-resolution factor d. Two

different scenarios were analyzed, the first one considers d1 = d2 = 2 for a total

super-resolution factor of d = 4, and the second analyzes the case in which d1 =

d2 = 4, for a total factor of d = 16. The average peak signal-to-noise ratio (PSNR)

is used to evaluate the quality of the reconstructed images in decibels (dB). Figure

18 presents the average PSNR for all the test images, where each result is the

average of 5 run trials for each case. In general, these results show that the proposed
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Figure 17. Average condition number for the initial distribution, the proposed SVD
method and the proposed gradient method, varying the data cube spatial
dimensions.

coded aperture design improves the results of the non-designed patterns, for each

particular case.

Moreover, largest transmittance values result in loss of image quality. This behavior

has more impact on results from larger super-resolution factors, i.e. d = 16. Fur-

ther, note that the best PSNR on each case occurs when the transmittance is set

to 1/d. This occurs as larger transmittance values imply more multiplexed values on

each detector, which results in a more complex inverse super-resolution problem.

For comparison purposes, Fig. 18 also includes the results obtained from a high-

resolution detector, and it can be seen that for lower transmittance values, the recon-

struction behavior from the designed CA resembles that of the high-resolution recon-

structions. Further, for larger transmittance values, the designed CA with d = 2 × 2

still provides comparable results.

Figure 19 illustrates the absolute error between the ground truth and attained recon-

structions of two different slices using d = 4 × 4 = 16 for all test images. Specif-

ically, Fig.19(a) shows the 5-th and 8-th slices of the 3D-Shepp-Logan Phantom;

Figs.19(b), 19(c) and 19(d) depict the errors of the 4-th and 10-th slices of Multiple,
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(a) (b)

(c) (d)

Figure 18. Average reconstruction PSNR as a function of the transmittance k, with
decimation factors d1 = d2 = 2 and d1 = d2 = 4, using the proposed coded aperture
design and random patterns, for the test images (a) 3D-Shepp-Logan phantom, (b)
Multiple, (c) Abdomen, and (d) Thorax.

Abdomen and Thorax, respectively. Top row of each image corresponds to the errors

of the reconstructions from random coded apertures, and bottom images are the er-

rors of the reconstructions from the design patterns. It is important to highlight that

the proposed design results in lower reconstruction errors for all cases.

Besides comparison with typical random CA patterns, we performed an additional

simulation to compare the proposed approach with respect to a general non-designed

random-SR pattern, comprising a single-randomly selected passing element for each

super-pixel, which corresponds to just solving (77). Note that this pattern does not

allow to control a desired transmittance proportion. Moreover, it does not consider

pixel correlations described by the sensing matrix. Further, the probability of choos-
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(a) (b)

(c) (d)

Figure 19. Normalized absolute reconstruction error comparison with respect to
ground truth images for two different slices (columns), using random (Top rows) and
designed coded apertures (Bottom rows) for (a) 3D-Shepp-Logan phantom, (b)
Multiple, (c) Abdomen, and (d) Thorax data sets in a system with d = 16.

ing the best passing-location per super-pixel decreases with the decimation factor.

Figure 20 presents a comparison of the reconstruction normalized absolute error

of a slice, using the designed CA and the random-SR pattern, for d = 4, 16. The

transmittance of the designed CA in these cases was set to 1
d

to ensure a fair com-

parison. It can be seen that these results are consistent with those from the previous

experiments, with larger errors in the random-SR, and a gain of 2 dB of PSNR of the

designed pattern for d = 4 × 4 = 16. In contrast, the results for d = 2 × 2 = 4 are

comparable for both approaches.

The performance of the proposed CA design was also tested for a data set with a

large number of slices. In particular, a 128×128×64 version of the Multiple image was
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PSNR= 45.0568

Random-SR CA Designed CA

PSNR= 45.0586 PSNR= 45.9824 PSNR= 47.7068
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d
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d
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6

1

0

Random-SR CA

Figure 20. Normalized absolute reconstruction error comparison of a recovered
slice for d = 4 and d = 16, with a transmittance equal to 1

4
and 1

16
respectivelly, using

random-SR (a,c) and designed CA patterns (b,d).

used. This experiment was conducted in a workstation with 28 2.6 GHz processors,

and 196 GB RAM. To preserve the detector size, and the number of angles used in

the previous experiments, the detector array in this case comprises 512
d1
× 240

d1
pixels,

instead of 512
d1
× 48

d1
. Thus, this system keeps the sampling ratio between the mea-

surements and the unknowns. Obtained results for d = 4 exhibit 31.46 dB of average

PSNR for the non-designed PSNR and 35.63 dB for the designed CA, respectively.

Similarly, for d = 16, non-designed CA attained 31.65 dB and 35.37 dB, respectively.

Figure 21 illustrates the reconstructions for two slices, with improvements of 3 dB of

PSNR for a single slice.

5.4. Reconstructions from Noisy Measurements

This section evaluates the reconstruction performance of the proposed coded aper-

ture design for super-resolution in noisy scenarios. To this end, Poisson noise was
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Figure 21. Comparison of high-resolution reconstructions of two slices with random
CA and designed CA for the 128× 128 data set Multiple with 64 slices, using d = 4
and d = 16.

added to the simulated projections 99100101102 through the ASTRA Toolbox, employ-

99 Valentina Davidoiu et al. “Evaluation of noise removal algorithms for imaging and reconstruction
of vascular networks using micro-CT”. in: Biomedical Physics & Engineering Express 2.4 (2016),
p. 045015.

100 Manoj Diwakar and Manoj Kumar. “A review on CT image noise and its denoising”. In: Biomedical
Signal Processing and Control 42 (2018), pp. 73–88.

101 Alessandro Perelli et al. “Compressive Computed Tomography Reconstruction through Denoising
Approximate Message Passing”. In: SIAM Journal on Imaging Sciences 13.4 (2020), pp. 1860–
1897.

102 Jing Huang et al. “Iterative image reconstruction for sparse-view CT using normal-dose image
induced total variation prior”. In: PloS one 8.11 (2013), pp. 1–15.
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ing signal-to-noise ratio (SNR) values of 5, 10, 15, 20, 25 and 30 dB. These simulations

consider transmittance values k =
{

1
4
, 1
16

}
, which correspond to the best noiseless

results from Fig. 18, for the decimation factors d = 4, 16, respectively. Figure 22

presents the average reconstruction quality of 5 run trials for each case, in terms of

PSNR, as a function of the SNR, for all test images.

(a) (b)

(c) (d)

Figure 22. Average reconstruction PSNR from noisy (Poisson) measurements as a
function of the SNR, using designed CA and random CA for the test data sets (a)
3D-Shepp-Logan phantom, (b) Multiple, (c) Abdomen and (d) Thorax.

These results show the robustness of the proposed coded apertures to noisy scenar-

ios, since their performance consistently overcomes that of the random coded aper-

tures, even in the noisiest cases. Further, it can be also noted that reconstructions of

larger super-resolution factors (d = 16) are more affected by the noise, as each low

resolution detector takes into account the associated noise from d high resolution

projections. Moreover, Fig. 23 illustrates the comparisons of the obtained recon-
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structions from noisy projections with SNR = 15dB and d = 16 for all test images,

using designed and random coded apertures. For reference, the low-resolution and

high-resolution ground truth images for each case are also depicted. Specifically, the

low-resolution ground truth represents the image that would be recovered if a sys-

tem with a 1:1 ratio between a low-resolution coded aperture and a low-resolution

detector. Similarly, the high resolution image represents the target image that would

be recovered if a system with a 1:1 ratio between a high-resolution detector and a

high-resolution coded aperture. Thus, the results from Fig. 23 show that, in general,

the proposed coded aperture design allows to obtain super-resolved images under

noisy scenarios. Further, note that in some cases, the reconstructions from the ran-

dom coded apertures resemble the low resolution ground truth instead of the high

resolution images.

5.5. Montecarlo Simulation

Geant4 can be described as a Monte Carlo simulation toolkit to represent the pas-

sage of particles through matter, and the GATE toolkit (based on GEANT4) provides

additional high-level features to facilitate the design of GEANT4- based simulations.

In contrast with the acquisition of measurements given by the sensing matrix W

calculated with the ASTRA toolbox, GATE/GEANT4 toolkit simulate the measure-

ment process performing single and multiple scattering models. The suggested pro-

cess involves measurements of the compressive CBCT system simulated with the

GATE/Geant4 toolkit 96, and its corresponding reconstruction is performed by em-

ploying the matrix calculated with the ASTRA toolbox in Matlab. Selecting a super-

resolution factor d = 2 × 2, the system deploys a detector array of 256 × 24 pixels

of size 0.9048 × 0.9048 mm and thickness 0.9048 mm. The high-resolution CA is

placed at 96.55 mm from the object center, in the source direction, producing spatial

blockages of 0.1131× 0.1131 mm and 0.25 mm thickness.

The test object is composed of a pyramidal shape composition located at the center

of the volume; the pyramid is surrounded by nine spheres of different sizes (radii
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(a) (b)

(c) (d)

Figure 23. Reconstruction comparison from noisy measurements with SNR = 15 dB
and d = 16 for all test data sets. Reference images include low resolution and high
resolution data. PSNR values are calculated with respect to the high resolution
ground truth. (a) 3D-Shepp-Logan phantom, (b) Multiple, (c) Abdomen, and (d)
Thorax.

6mm, 3mm, and 1mm), which are diagonally arranged at the sides of the pyramid,

and repeated every 120 degrees as illustrated in Fig. 24. All the elements are com-

posed of SpineBone material. The coded projections were simulated on GATE using

the designed and random CA patterns, where parallel CPU clusters of the European
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Figure 24. Reconstruction comparison of high-resolution images from Monte Carlo
projections simulated with GATE, with random and designed CA for a SR factor
d = 2× 2.

Grid Infrastructure, reduce simulation running times from several weeks to a few days
103. The Monte Carlo simulated projections were used to recover the high-resolution

103 Sorina Camarasu-Pop et al. “Monte Carlo simulation on heterogeneous distributed systems: A
computing framework with parallel merging and checkpointing strategies”. In: Future Generation
Computer Systems 29.3 (2013), pp. 728–738.
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images. Figure 24 presents the obtained results for three object slices. These com-

parisons show the high-resolution ground truth in Figs.24 (a,e,i); the reconstruction

from low-resolution projections (LR) without a coded aperture, scaled to the high-

resolution image size in Figs.24 (b,f,j); and the high-resolution reconstructions using

random and designed CA in Figs.24 (c,g,k) and Figs.24 (d,h,l), respectively. The

improvements in the image quality from the designed patterns with respect to the

random CA are easily noticeable, as sharper structures are obtained with the de-

signed patterns. Numerically, the scaled LR reconstruction resulted in 16.4dB aver-

age PSNR across all slices, while the random and designed SR-CA attained 17.7

and 19.9dB, respectively. This implies a gain of up to 2.2 dB PSNR of the designed

CA with respect to the random SR-CA, and 3.5 dB of PSNR when compared to the

scaled LR reconstruction.
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5.6. Discussion

The proposed coded aperture design method was tested under different scenarios,

in which it demonstrated its advantages over purely random patterns. Notwithstand-

ing, we have identified some aspects in which there is still place for improvement. In

the proposed method, the regularization parameter tuning is a time-consuming pro-

cess, since it requires three parameters ρ1, ρ2, and ρ3, whose values depend on the

CA transmittance proportion and configuration of the acquisition system. Parameter

tuning was conducted by fixing two parameters at a time and looking for convergence

in the solution. Therefore, further work should be conducted towards more efficient

parameter tuning methods. In the same direction, modern techniques involving deep

learning could be exploited not only to develop parameter tuning strategies for this

problem but also for designing the coded aperture patterns.

Another interesting further work is the extension of the proposed method to con-

sider higher decimation factors than those considered in simulations presented in

this Chapter, i.e., d = 8 × 8, 16 × 16, because one of the main constraints for these

cases lies on manufacturing size limits for coded aperture fabrication. This is cru-

cial to fit more CA features per unit area, thus yielding 1:8 or higher matching with

respect to detector pixels.

5.7. Conclusions

This Chapter presented a method to design high-resolution coded apertures to be

used in a compressive CBCT system with a low-resolution detector array such that,

super-resolved images can be recovered without significantly changing the tradi-

tional architecture. The proposed method reduces the Gershgorin radii of the sys-

tem matrix, as they describe the bounds of the eigenvalue distribution, to improve

the condition of the inverse problem. Simulation results obtained with five different

test data sets consistently validate the performance of the proposed CA for different

transmittance values and super-resolution factors, obtaining improvements of up to 4

dB of PSNR with respect to non-designed coded apertures in the noiseless case. On
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the other hand, reconstructions from projections contaminated with Poisson noise for

different SNR values demonstrated the robustness of the proposed coded apertures

in noisy scenarios, where the designed CA improve random patterns in up to 4 dB of

PSNR. These results were validated by Montecarlo simulations with the GATE tool-

box. Further, it was shown that the computational load of the proposed approach is

up to three orders of magnitude lower than the SVD-based CA design methods.
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6. A Fan Beam Multi-Resolution Regularization

The reconstruction time in CT applications is a key factor for providing on-time diag-

noses or conclusions from the CT images. However, in CT-based architectures such

as the X-ray FB system, there still some drawbacks to provide fast and accurate

reconstructions given the high computational load and high correlated linear prob-

lem. In this Chapter, a computed tomography reconstruction strategy is adopted to

overcome this issue for recovering CT images acquired with a FB system.

6.1. Introduction

The FB is a CT system mainly composed of a source that emits fan-shaped en-

ergy. The interaction of this energy with 2D slices of a 3D object under observation

allows to obtain the internal structure information of the object through energy alter-

nations. The mathematical modeling of the FB system to acquire a single slice (CT

image) relies on the characterization of the energy propagation through the discrete

object using an over-determined matrix. Thus, the acquired image is the result of

back-propagating the registered information from the detector to the pixel distribu-

tion. In this sense, the linear problem formulation offers the advantage of having a

back-propagation solution, which is obtained by multiplying the acquired projections

with the transpose of the acquisition system matrix 1. However, even with these

oversampling conditions, the back-propagation solution provides inaccurate images.

Therefore, iterative solutions that correct the result at each step have been adopted.

Precisely, this over-sampling particularity of the system entails high computational

resources and elevated reconstruction times in the iterative reconstruction algorithm,

where the complexity of these methods increases in proportion to the dimensionality

and resolution of the data.

In contrast to traditional reconstruction methods, works in spectral imaging such as
26, have considered segmentation algorithms that group a set of similar pixels in ir-
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regular neighborhoods of the image domain (so-called super-pixels) such that the

total number of unknowns in the inverse problem is drastically reduced. This recov-

ery approach based on super-pixels has been named MR reconstruction since the

spatial representation of an image is summarized in a set of super-pixel elements,

yielding to lower resolution representation of the image 104105106107108.

This Chapter introduces the MR reconstruction concept into the CT recovery prob-

lem by considering sets of similar pixel attenuation into square neighborhoods of the

CT image to reduce the number of unknowns in the inverse problem, and provide

faster reconstructions. To this end, a decimation matrix that accounts for squared

pixel grouping is introduced into the traditional iterative problem, yielding a reduced

number of variables in the formulation. Numerical experiments show an improve-

ment by the proposed approach of up to 16 dB in terms of PSNR and a speedup

up to 3.5 times compared with the traditional method that does not consider the MR

concepts.

6.2. FB CT Image Acquisition and Reconstruction

Let X ∈ R
√
N×

√
N be a 2D slice (image) of the 3D object under observation, and

x ∈ RN its column-vector representation. Then, the forward projection operation of

104 Radhakrishna Achanta et al. “SLIC Superpixels”. In: (2010), p. 15.

105 Jiansheng Chen, Zhengqin Li, and Bo Huang. “Linear spectral clustering superpixel”. In: IEEE
Transactions on image processing 26.7 (2017), pp. 3317–3330.

106 Amir Said and William A Pearlman. “An image multiresolution representation for lossless and
lossy compression”. In: IEEE Transactions on image processing 5.9 (1996), pp. 1303–1310.

107 Adriana Gonzalez et al. “Multi-resolution compressive sensing reconstruction”. In: arXiv preprint
arXiv:1602.05941 (2016).

108 Xing Wang and Jie Liang. “Multi-resolution compressed sensing reconstruction via approximate
message passing”. In: IEEE Transactions on Computational Imaging 2.3 (2016), pp. 218–234.
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the FB acquisition system can be considered as a linear problem of the form

p̃ = Wx, (84)

where p̃ ∈ RM̃ is the projections vector of x and W ∈ RM̃×N denotes the acquisi-

tion system, whose rows models the energy interaction for each pixel. In an ideal

model, the propagation described by the matrix W must be invertible, with dimen-

sions N = M̃ . However, in practice, there exists correlated rows in the matrix given

that the coefficients characterizing the propagation reveal similarities between them.

Thus, the direct inversion of the square system introduces inaccurate or noisy solu-

tions of x. To avoid this, the object under observation is over-sampled yielding an

overdetermined system matrix W with M̃ > N , which obtains redundant information

and reduces issues of image underestimation. Nonetheless, the inversion of this

overdetermined system demands high computational load and computer time.

Alternatively, a minimum norm least-squares formulation is used to find an approxi-

mation of x from the projections p̃, and is expressed as

x̂ = argmin
x
∥ p̃−Wx ∥ 2

2. (85)

As a solution, the back-projection process turns back the measurements to the pro-

jection path, and can be written as

x∗ = W⊺p̃, (86)

where Eq. (86) can be associated with the unfiltered back-projection process. An-

other solution to (85) can be found using the pseudo-inverse of the system as

x̂ = W†p̃, (87)

where a Moore-Penrose inverse W† can be calculated as (W⊺W)−1W⊺, or equiv-

alently expressed as W⊺(WW⊺)−1. Note that, the matrix W† is related with the
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term (WW⊺)−1, which plays the role of a high-pass filter, introducing a solution re-

lated with a filtered back projection 1. The iterative reconstruction strategies, on the

other hand, can be used to solve (85) such as the stochastic gradient descent (SGD)

method. This method establishes that an initial image x0 can iteratively converge to a

desired quality of reconstruction by sequentially improving solutions (x1,x2, · · · ,xz).

Thus, with a current image estimation xz, the method finds xz+1. Specifically, the

updating step of the SGD approach for solving (85) is given by

xz+1 = xz − γ∇f(xz) = xz − γW⊺ (Wxz − p̃) , (88)

where γ is the step size to regularize the changes on each estimation of xz, and

∆f(x) is the Jacobi derivation of f(x) =∥ p̃ −Wx ∥ 2
2. Observe that, compared to

the back-projection solution, the computational resources in the IR process is still a

drawback since the requirements (e.g. the use of W⊺) are extended in time during

z iterations. Thus, algorithms such as the stochastic gradient descent with Nesterov

(SGDN) 109 modify the gradient step on the SGD strategy for a faster convergence.

One strategy to reduce the computational load and the number of elements on the

IR-based methods entails introducing an MR decimation matrix in the linear problem
26. To extend the MR insights to the CT recovery problem, Eq. (84) is modified by

introducing the matrix D that models the MR decimation as

p̃ = WD⊺x̄, (89)

where D⊺ is the transpose of D. Note that, having D into the problem, the approach

in (85) need to be updated to find the new MR scene. Hence, the cost function to be

109 Atilim Gunes Baydin et al. “Online learning rate adaptation with hypergradient descent”. In: arXiv
preprint arXiv:1703.04782 (2017).
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minimized is rewritten as

x̂ = D⊺{argmin
x̄
∥ p̃−WD⊺x̄ ∥2}, (90)

where x̂ is the response on the image domain and x̄ = Dx is the MR solution. Then,

the updating step of the MR-based SGD approach, which includes D, can be written

as

x̄z+1 = x̄z − γ∇f(xz) = x̄z − γDW⊺ (WD⊺x̄z − p̃) . (91)

Note that by assuming that any CT image can be summarized in a set of c super-

pixels instead of N =
√
N
√
N pixels, the number of unknowns using the MR-based

update step in (91) can be reduced from N to c (c≪ N ).

6.3. MR Decimation Matrix Design

The construction of the MR decimation matrix D is based on the analysis of the

homogeneous zones of the image under observation, as presented in Algorithm 3.

The main objective is to decompose the input image X ∈ R
√
N×

√
N into subsets of

square super-pixels and build D considering the inputs of the Algorithm which are:

the image, a tolerance level σ and a set of coordinate points ΩΩΩ. The first step in the

Algorithm is to define the possible sizes S of the squared super-pixels (Line 2). Later,

to build each super-pixel, a random point (̂i, ĵ) from the set ΩΩΩ is selected. Then, a

hypothetical super-pixel B is generated (Line 7), where in this set is important to

ensure that all points are available in Ω, performing a set of coordinates that have

not been assigned to any super-pixel before (this is required to assign each spatial

pixel to only one super-pixel). After building B, the expected value of X on this zone

B, denoted as E{X̄B}, is computed as in Line 10. The spatial positions with error

values lower than the tolerance σ (line 11) are labeled with 1 in a new matrix Υ as in

Lines 12 to 13. Then, the matrix Υ is column-vectorized and added to the MR matrix

D as a new row (Line 14). As a result, at each iteration, elements are assigned to

the c-th super-pixel and removed from the sets Ω̂ (set of points coordinates available
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for being chosen as the random corner point) and Ω. After building all the possible

super-pixel elements under the tolerance condition over the entire image, the current

index z is updated, and the procedure is repeated for a new super-pixel size of the

non-grouped zones. The output of the Algorithm is the matrix D.
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Algorithm 3 MR Matrix D Construction for Rectangular Super-Pixels

1: procedure DECIMATION MATRIX DESIGN(Image X ∈ R
√
N×

√
N , set of coordinate

points ΩΩΩ, tolerance σ.)

2: S = [⌈
√
N
2
⌉, ⌈

√
N
22
⌉, . . . , 1], z = 0, c = 0 ▷ Initialize super-pixel sizes

3: while |Ω| > 0 do

4: Ω̂ = Ω ▷ Generate a new set of available points

5: while |Ω̂| > 0 do

6: (̂i, ĵ) ∈ Ω̂ΩΩ ▷ Choose an eligible top-left point

7: B = {(i, j)|i = [̂i, . . . ,min
(
î+ S(z),

√
N
)
], j =

[ĵ, . . . ,min
(
ĵ + S(z),

√
N
)
]}

8: ▷ Generate the hypothetical super-pixel B

9: if B ∈ Ω then

10: p̃ = E{X̄B} ▷ Calculate the expected value of X in spatial

coordinates in set B

11: if max(MSE(p, X̄B)) < σ then

12: Υ = 0√
N×

√
N

13: Υ(i,j) = 1 for (i, j) ∈ B ▷ Create an indicator matrix for the c-th

super-pixel

14: (D)c = vec(Υ) ▷ Vector form of ΥΥΥ is assigned as a new row of

MR matrix

15: c = c+ 1 ▷ Update MR super-pixels counter

16: Ω = Ω−B ▷ Update available points

17: Ω̂ = Ω̂−B ▷ Update eligible top-left points

18: else

19: Ω̂ = Ω̂− (̂i, ĵ) ▷ Remove the corner point

20: else

21: Ω̂ = Ω̂− (̂i, ĵ)

22: z = z + 1 ▷ Change super-pixel size index
return MR decimation matrix D
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6.4. Simulations and Results

Numerical simulations were conducted on a synthetic data set to test the perfor-

mance of the proposed MR-based CT reconstruction. The spatial resolution of the

data is 128× 128 pixels, where different noise level values on the measurements and

data ratio Γ = M/N are tested. For comparison purposes, reconstructions using the

proposed MR approach in (90) are compared with approaches that solve the inverse

problem shown in (85) using SGD and SGDN from 109 as reconstruction algorithm.

For all cases, the number of iterations for the reconstruction process was fixed to

5000 and each result is the average of 10 runs110, where on each simulation, the CT

measurements are obtained using the model in (84). It is important to remark that a

CT image is taken as a known distribution to build the MR matrix. The reconstruction

quality is expressed in terms of PSNR.

6.4.1. MR Reconstruction Quality In order to qualitatively analyze the per-

formance with the proposed MR assumption, this section compares the SGD and

SGDN reconstruction methods using the proposed MR framework, named as SGDMR

and SGDNMR, respectively; and the methods without including the MR matrix in the

problem formulation, i.e., the SGD and SGDN methods 109. The experiment solves

the CT images preserving the same number of projections, the same solver of the

minimization problem based on l2, and keeping 5000 iterations as an initial distribu-

tion of the image in all cases. Figure 25 shows the relationship between the average

PSNR result and the data ratio Γ. As can be noticed, the MR-based approaches

improve the quality of the reconstructed images in up to 15 dB of PSNR; this quality

improvement is caused by reducing the number of variables to reconstruct induced

by the MR decimation matrix.

In Figure 26 is shown the reconstructed images using all the recovery approaches

110 All simulations were conducted and timed using an Intel Core i7-6700 @3.40GHz processor and
32GB RAM.
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Figure 25. Quality reconstruction comparison for the phantom data-set

when Γ = 2, where the methods using the MR approach show better results. In

particular, observe that the SGD and SGDN reconstructions exhibit circular artifacts

that are vanished with the SGDMR and SGDNMR methods.

  

Without noise – k=6 – Gamma=2 

SGD – 26,23 dB SGDN-26,42dB 
SGDMR- 40,54dB SGDNMR – 42,47dB 

SGD SGDN 

SGDMR SGDNMR 
26,2dB 26,4dB 

42,4dB 40,5dB 

 Ground-truth

Figure 26. Comparison of the reconstructed images for Γ = 2.

6.4.2. Computation Time Analysis of the MR Reconstructions For a fair com-

parison, the number of iterations of each recovery methods is the same, i.e., 5000
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iterations, to compare the required computation time on each reconstruction process,

including the MR approaches. The reconstructing time in seconds of each simulated

scenario at different data ratios is shown in Fig. 27, where the MR approach is up

to 3.5x faster than the non-MR approaches. This reduction in the required recon-

  

SNR = 20 

Without noise

SNR = 10 

Phantom

Figure 27. Comparison of the time required in the reconstruction process by each
approach for different data ratios.

struction time is attributed to the lower number of variables to reconstruct respect to

the traditional non-MR approach, where the proposed approach requires lower size

matrix products.

6.4.3. Reconstruction Quality Analysis in Presence of Noise Several simula-

tions were performed to evaluate the robustness of the MR-based methods in noisy

scenarios, including 10 and 20 dB of SNR of additive white Gaussian noise (AWGN)

in the measurements. The quality of the reconstruction images in terms of the PSNR

for different values of data ratio Γ are shown in Fig. 28. As expected, the PSNR is

lower in high noise levels, but it is essential to remark that the proposed approach

improves the traditional approaches in up to 12dB even for 10 dB of SNR. Also, the

SGDMR and SGDNMR approach results in the same quality of the reconstructed

image in opposite to the results in Fig.25.
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Figure 28. Quality reconstruction comparison for different noise levels. Left image
with 10dB of SNR and right image with 20dB of SNR.

6.5. Conclusions

A multi-resolution iterative reconstruction scheme for CT image recovery has been

proposed. This approach exploits the neighborhood similarities, representing each

uniform square zone with a single value, allowing to reduce the number of elements

in the reconstruction and the complexity of the inverse problem. Moreover, the pro-

posed approach improves the relation measurements/variables of the sensing ma-

trix. Simulation results show that the proposed method improves the reconstruction

PSNR by up to 16 dB and is 3.5x faster than the traditional reconstruction method,

even in the presence of noise. It is important to remark that this work exploits the

fact that exists a previous knowledge of the image. Taking this into account for future

work is possible to use a reduced set of the iterations to obtain a particular quality im-

age and apply the proposed strategy to the rest of the iterations to generate relevant

results.
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7. Extension to Compressive Spectral Imaging

In spectral imaging, the spatial information varies as a function of a range of wave-

lengths, yielding a three-dimensional representation of the scene under observa-

tion. Traditional spectral image acquisition techniques integrate imaging and spec-

troscopic technologies into one system to perform a scanning of the scene across

the spatial (line-wise or point-wise) or the spectral (wavelength-wise) dimensions.

In contrast, compressive snapshot-based acquisition systems allow to acquire the

spatio-spectral information in one shot, providing a faster image acquisition. A com-

pressive spectral imaging (CSI) snapshot system captures the 3D spatio-spectral

data using a 2D encoded projection of the spectrally dispersed scene. For the en-

coding of the incoming information, CA such as random block-unblock and colored

coded aperture (CCA) have been used in the literature. In particular, the CCA pat-

terns are composed of optical filters that provide a improved modulation of spatial

and spectral information respect to the random block-unblock patterns, however, the

fabrication cost and complexity of the CCA are higher as well. To be precise, the

cost of the real implementation of a CCA directly depends on the number of filters

to be used and the number of snapshots to be captured. This is because each el-

ement in the CCA is free of revealing a different and unique physical property to be

implemented.

This Chapter extends the results of this thesis to explore an alternative CA opti-

mization design considering the restrictions of the pattern of a moving CCA in a

CSI system. Simulations show that the designed pattern improves the quality of the

reconstruction of the spectral data cube through a physically realizable pattern.

7.1. Compressive Spectral Imaging

Spectral images can be described as images with spatial information across dif-

ferent wavelengths, where the resulting three-dimensional data set is known as
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spatio-spectral data cube. The spatio-spectral information is valuable in applica-

tions such as quality control in food and industrial agriculture 111112113, medical imag-

ing 114115116, remote sensing 117, art conservation 118119120, gas identification 121122,

111 P.S. Thenkabail and J.G. Lyon. Hyperspectral Remote Sensing of Vegetation. CRC Press, 2016.

112 Di Wu and Da-Wen Sun. “Advanced applications of hyperspectral imaging technology for food
quality and safety analysis and assessment: A review—Part I: Fundamentals”. In: Innovative
Food Science & Emerging Technologies 19.6 (2013), pp. 1–14.

113 Karen Sánchez et al. “Classification of Cocoa Beans Based on their Level of Fermentation using
Spectral Information”. In: TecnoLógicas 24.50 (2021), pp. 172–188.

114 Matthew E Martin et al. “Development of an advanced hyperspectral imaging (HSI) system with
applications for cancer detection”. In: Annals of biomedical engineering 34.6 (2006), pp. 1061–
1068.

115 Guolan Lu et al. “Spectral-spatial classification for noninvasive cancer detection using hyperspec-
tral imaging”. In: Journal of biomedical optics 19.10 (2014), pp. 106004–106004.

116 Qingli Li et al. “Review of spectral imaging technology in biomedical engineering: achievements
and challenges”. In: Journal of biomedical optics 18.10 (2013), pp. 100901–100901.

117 Kareth M León-López et al. “Anomaly Detection and Classification in Multispectral Time Series
Based on Hidden Markov Models”. In: IEEE Transactions on Geoscience and Remote Sensing
60 (2022), pp. 1–11.

118 Haida Liang. “Advances in multispectral and hyperspectral imaging for archaeology and art con-
servation”. In: Applied Physics A 106.2 (2012), pp. 309–323.

119 Kirk Martinez et al. “Ten years of art imaging research”. In: Proceedings of the IEEE 90.1 (2002),
pp. 28–41.

120 John K Delaney et al. “Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician:
mapping and identification of artist materials in situ”. In: Applied spectroscopy 64.6 (2010),
pp. 584–594.

121 Dimitris Manolakis and Gary Shaw. “Detection algorithms for hyperspectral imaging applications”.
In: IEEE signal processing magazine 19.1 (2002), pp. 29–43.

122 Dimitris Manolakis, David Marden, Gary A Shaw, et al. “Hyperspectral image processing for au-
tomatic target detection applications”. In: Lincoln laboratory journal 14.1 (2003), pp. 79–116.
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security 121122123, among others 124. In spite of the high range of applications of

these images, the implementation of spectral sensing systems, and the acquisition

and processing of these data pose significant challenges. Traditional spectral imag-

ing (SI) systems generally are based on a full sampling scheme, which effectively

senses the whole spatio-spectral data cube getting the spectral information pixel-by-

pixel or line-by-line at the expense of a time-consuming acquisition. Thereby, full

sampling scheme can only be applied to static scenes or scenes with slow move-

ment 125. As an alternative, CS concepts has been introduced into SI to reduce the

number of measurements and time consumption in the spectral images acquisition.

CS handles a large amount of data with fewer measurements than those required

by the well-known Shannon-Nyquist sampling theorem 124. Hence, applying the CS

concept to the SI systems has generated the development of compressive spectral

imaging (CSI) systems 125126, including the CASSI, the multi-aperture filtered camera

(MAFC), and the snapshot hyperspectral imaging Fourier transform (SHIFT) system.

CSI measures spatio-spectral information in such a way that the data cube is sensed

and compressed at the same time. Specifically, the CSI spatio-spectral information

is acquired in 2D coded projections or measurements of the underlying scene using

a CA, where the number of measurements in the detector is far less than when using

123 Chein-I Chang. “Hyperspectral Target Detection: Hypothesis Testing, Signal-to-Noise Ratio, and
Spectral Angle Theories”. In: IEEE Transactions on Geoscience and Remote Sensing 60 (2021),
pp. 1–23.

124 Adrian Stern. Optical compressive imaging. CRC Press, 2016.

125 Xun Cao et al. “Computational snapshot multispectral cameras: Toward dynamic capture of the
spectral world”. In: IEEE Signal Processing Magazine 33.5 (2016), pp. 95–108.

126 Nathan A Hagen and Michael W Kudenov. “Review of snapshot spectral imaging technologies”.
In: Optical Engineering 52.9 (2013), pp. 090901–090901.
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a full sampling scheme 12712834129.

The pattern distribution of the CA is a key element in the system to sample and,

then, recovering high quality reconstructions 333454. Different works have been pro-

posed to design the pattern of the CA, where state-of-the-art CA designs include

approaches based on singular value decomposition 130131, genetic algorithms 33,

adaptive schemes 132133, shrinkage methods 130, computational-based 13490, among

127 Gonzalo R Arce et al. “Snapshot compressive multispectral cameras”. In: Wiley Encyclopedia
of Electrical and Electronics Engineering (1999), pp. 1–22. DOI: https://doi.org/10.1002/

047134608X.W8345.

128 Yuehao Wu et al. “Development of a digital-micromirror-device-based multishot snapshot spectral
imaging system”. In: Optics letters 36.14 (2011), pp. 2692–2694.

129 Xin Yuan, David J Brady, and Aggelos K Katsaggelos. “Snapshot compressive imaging: Theory,
algorithms, and applications”. In: IEEE Signal Processing Magazine 38.2 (2021), pp. 65–88.

130 Michael Elad. “Optimized projections for compressed sensing”. In: IEEE Transactions on Signal
Processing 55.12 (2007), pp. 5695–5702.

131 M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: An algorithm for designing overcomplete dic-
tionaries for sparse representation”. In: IEEE Transactions on Signal Processing 54.11 (2006),
pp. 4311–4322. DOI: 10.1109/TSP.2006.881199.

132 Zhongmin Wang, Gonzalo R Arce, and Jose L Paredes. “Colored random projections for com-
pressed sensing”. In: 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07. Vol. 3. IEEE. 2007, pp. III–873–III–876.

133 Alejandro Parada-Mayorga and Gonzalo R. Arce. “Colored Coded Aperture Design in Compres-
sive Spectral Imaging via Minimum Coherence”. In: IEEE Transactions on Computational Imaging
3.2 (2017), pp. 202–216. DOI: 10.1109/TCI.2017.2692649.

134 Vahid Abolghasemi, Saideh Ferdowsi, and Saeid Sanei. “A gradient-based alternating minimiza-
tion approach for optimization of the measurement matrix in compressive sensing”. In: Signal
Processing 92.4 (2012), pp. 999–1009.
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others approaches 135136137. On the other hand, works such as 18, rearranged the

CA in order to design its structure for CT imaging. This strategy has shown that the

optimization based on a gradient descent strategy allows to design the CA elements

across the different CA dimensions, including the number of snapshots or angles to

be acquired. However, up to our knowledge, this methodology has not been exploited

in CSI systems to design the CA.

This Chapter develops a CCA optimization that design the CA structure considering

the physical restrictions of the imaging system by adding variability and uniformity

constraints to the formulation. To this end, the CCA is rearranged and its distribution

is updated via the gradient descent method and subjected to the given constraints,

which allows to handle physical restrictions such as the number of filters in the CCA.

Additionally, a novel moving strategy is considered in the design, which can be imple-

mented as a moving colored lithographic mask using a micro-piezo electric device.

Figure 29 depicts the physical sensing phenomenon in the CASSI system, where the

CCA can be moved vertically to acquire two different snapshots.

7.1.1. The CASSI system The CASSI system modulates the light reaching the

focal plane array (FPA) by using coded apertures and dispersive elements. Figure

29 introduces the effect of this modulation in data propagation and describes each

blockage with color filters in each coded aperture. The CCA patterns are created

through a micro-lithography process to improve the manufacturing accuracy of color

using different filters, so that not only spatial modulation can be performed, but spec-

135 Michael Lustig, David Donoho, and John M Pauly. “Sparse MRI: The application of compressed
sensing for rapid MR imaging”. In: Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine 58.6 (2007), pp. 1182–1195.

136 Zhongmin Wang and Gonzalo R Arce. “Variable density compressed image sampling”. In: IEEE
Transactions on image processing 19.1 (2009), pp. 264–270.

137 W. Chen, M. R. D. Rodrigues, and I. J. Wassell. “Projection Design for Statistical Compressive
Sensing: A Tight Frame Based Approach”. In: IEEE Transactions on Signal Processing 61.8
(2013), pp. 2016–2029.
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Figure 29. Physical description of the sensing phenomenon in the color CASSI
system. The L spectral band of the data cube F is spatially and spectrally encoded
by a moving color-coded aperture, and dispersed by a prism. The detector captures
the intensity g by integrating the coded dispersed light.

tral modulation as well. Therefore, a CCA Tℓ
mnk can be defined as an arrangement

of binary elements Tmn for each of the L bands, as it is presented in fig. 30, it mod-

ulates spatio-spectral image data Fmnk, where m and n index space coordinates, k

determines kth spectral bands, and ℓ index the number of snapshots captured using

different CCA distributions.

The FPA measurement value represented by this symbol is defined as:

Yℓ
mn =

L−1∑
k=0

Tℓ
m(n−k)kFm(n−k)k + ωmn, (92)

where m,n = 0, 1, . . . , N − 1, k = 0, 1, . . . , L − 1, and ω represents the noise of the

sensing system. Notice that F ∈ RN2L, Tℓ ∈ RN2L, and Yℓ ∈ RN2.

The multispectral signal F ∈ RN×N×L, or its vector representation f ∈ RN ·N ·L is S-

sparse on some basis Ψ. Therefore, the signal can be approximated by the linear

combination of the S vector from Ψ and S ≪ (N · N · L), such as f = Ψθ. Then,

a projection in a CASSI system is given by y = HΨθ = Aθ, where H is the matrix

structure, determined by the coded aperture entry and the dispersion effect, thereby,
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Figure 30. CCA with low, band and high pass filters and its equivalent set of binary
coded apertures.

the matrix A = HΨ works as the sensing matrix of the sparse coefficients of the

image. An estimate of spatio-spectral data cube from the measurements Y can be

attained by solving the optimization problem,

f̂ = Ψ

{
argmin

θ
∥y −HΨθ∥2 + τ∥θ∥1

}
, (93)

where τ is a regularization constant. In this contest, the basis Ψ is set with a Kro-

necker product between a 2D-Wavelet Symmlet 8 basis and a 1D-Discrete Cosine

Transform. The solution of the problem in (93) is obtained with the GPSR algorithm,

due to the quality of the reconstructed dataset rises or drops subject to the structure

of the CCA, the reconstruction quality could be assessed by any other algorithm as

well.
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Figure 31. Proposed matrix X arrangement of a random CCA in binary
representation to modulate a spatio-spectral data cube of dimensions 10× 10× 3,
and for 2 snapshots.

7.2. Colored Coded Aperture Optimization

The optimization proposed for the CCA structure is based on the promotion of the

variability and uniformity. In this context, a bidimensional arrangement of the binary

CCA representation can be used instead the provided in T, with the aim of reducing

the complexity of a CCA design proposed in this work. The matrix arrangement

is defined as the horizontal concatenation of the L binary CA, and the subsequent

vertical concatenation of the codes for the K shots. Then, a rearranged form of

the CCA binary matrix is defined as X =
[
(X1)⊺, . . . , (Xi)⊺, . . . (XK)⊺

]⊺, such that

X ∈ RKN×NL, and Xi ∈ RN×N ·L. A brief representation of the resulting array is

displayed in fig. 31, it show a CCA witch modulates a spatio spectral data cube of

dimensions 10× 10× 3, and for 2 shots.

The variability takes into account the reduction of the correlation between the rows

and columns of the X matrix. Uniformity refers to the regularity of the sensing pro-
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cess through spatial dimensions, spectral bands, and the number of snapshots. In

addition, two other considerations are used to guide the CA mask design process,

considering cost and manufacturing complexity.

7.2.1. Variability Constraint The sampling process is directly affected by the

CCA from Eq.(92), therefore X. The Gram matrix of X is used as a constraint in

the optimization problem, and its design results in a low correlation between rows

and columns of X. The row-wise and column-wise correlation defines the variability

constraint as:

argmin
X
∥I1 −XX⊺∥2F , (94)

argmin
X
∥I2 −X⊺X∥2F , (95)

where I1 and I2 are identity matrices of size KN ×KN , and LN ×LN , respectively,

and X is the optimization variable

7.2.2. Uniformity Constraint The uniformity constraint promotes the reduction of

the spatial, spectral and snapshot correlation of the voxels in the acquisition process.

In the case of the snapshots, when multiple snapshots are acquired, the number of

times a voxel is sensed across snapshots given a CCA arrangement X, can be

calculated as the product RX, where R = [I1, · · · , Ik]⊺, and Ii is an identity matrix of

size N ×N . Then, the snapshots uniformity can be minimized by solving,

argmin
X
∥U−RX∥2F , (96)

where U is a matrix with constant values.

Regarding the spectral sensing, the uniformity is guaranteed if the number of times

a spectral voxel is sensed is as uniform as possible, and it is calculated as XD, with

D = [0⊺
N×L−L, I

⊺
N ,0

⊺
N×L−1, . . . ,0

⊺
N×L−1, I

⊺
N ,0

⊺
N×L−L]

⊺, where 0N×L−1 is a 0− valued

N ×L− 1 matrix, and IN is an identity N ×N matrix. The uniformity is then given by
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the constraint,

argmin
X
∥V −XD∥2F , (97)

where V is a matrix with constant values, keeping the sensing proportions.

The purpose of the spatial uniformity is to avoid the clusters of one-valued entries

both in the columns, and in the rows of the CA pattern. These constraints are defined

as,

argmin
X
∥B−XW∥2F , (98)

argmin
X
∥C− ZX∥2F , (99)

where B and C are matrices with constant values, W and Z are positive definite

Toeplitz matrices of size LN × LN and KN × KN respectively. The selection of

the number of 1-value diagonals in the Toeplitz matrices determine the number of

neighbor pixels to analyze of a row/column. The expected behavior of the matrices

as in the previous constraints is to be as constant as possible and therefore promote

a more uniform sensing.

Considering the variability constraints in Eqs. (94) and (95), and the uniformity con-

straints in Eqs. (96), (97), (98), and (99), the cost function to solve is defined as,

argmin
X

c(X) = ϕ1∥I1 −XX⊺∥2F + ϕ2∥I2 −X⊺X∥2F

+ϕ3∥U−RX∥2F + ϕ4∥V−XD∥2F

+ ϕ5∥B−XW∥2F + ϕ6∥C−ZX∥2F ,

(100)

where ϕ1,ϕ2,ϕ3,ϕ4,ϕ5, and ϕ6 are step control variables. The minimization problem

is solved with a gradient descent algorithm, which iteratively minimizes (100), starting

with a realization of a random CA, and with the aim to find an optimized coded

aperture arrangement X∗.
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7.2.3. Cost and Fabrication Complexity Constraint The cost limitations are

given by the type and number of filters used in the manufacturing, and the number

of masks required for multi shot systems. The capabilities CCA depends on the

number of filters developed to provide a response with the linear combination of

different length waves. Thereby, a huge set of filters with different response in his

band pass, provides almost any combination to discriminate an specific length wave

response. The cost limitations is subject to the type (low, band, or high pass) and

the number of filters used in the manufacturing process, and fluctuate growing with

the number of masks required for multi shot systems. A selected reduction in the

set of filters impacts the cost and fabrication complexity reduction. The spectral

response of the filters in the CCA is limited to be either low or high pass filters, and

the cut-off wavelengths of the filters are assumed to be selected from the subset

λ0, . . . , λL−1. Thus, only 2λL colored filters can be selected for each coded aperture

pixel. A gradient descend strategy explore as solution of (100) a non-binary solution.

Thereby, a thresholding operator is applied at each iteration of the gradient descent

algorithm, bounding the results to the set of filters established as solution of the

CCA. Applying a gradient descend strategy to yield a non-binary solution of Eq.

(100) generates the necessity of a thresholding operator at each iteration of the

gradient descent algorithm. This bounds the results to the set of filters established

as solution of the CCA and belonging to the set Λ ∈
{
ΛLow ∪ΛHigh

}
, where the

set of low pass filters is ΛLow =
{
λLow
0 , . . . , λLow

L

}
, and the set of high pass filters is

ΛHigh =
{
λHigh
0 , . . . , λHigh

L

}
.

On the other hand, the design of the CCA patterns for a multishot system is proposed

such that only one moving mask is required. The strategy consists in the concate-

nation of vertical complementary colored coded aperture patches of size S × N ,

defining to S as the number of pixels of the CCA that should be vertically moved

between shots. This assumption impacts the final spatial dimension of the moving

CCA, giving as result a pattern with N +(S ∗ (K− 1)) instead N +(N ∗ (K− 1)) rows

of the classical multishot mask.
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7.3. Simulations and Results

Using three sets of compressive measurements acquired with the model in Eq. (92),

each of them with a different CCA modulation pattern, it is assessed the quality of

reconstructions for the proposed pattern.

The first set is modulated by a random CCA of the LH filters, the second set is

modulated by a genetic algorithm (GA) optimal CCA of the LH filters in literature
33, and the third set is modulated by the proposed moving colored CA pattern. In

order to make a fair comparison, the three CCA patterns are designed to be moving

patterns. For test, a data cube F with 256× 256 pixels of spatial resolution and L = 8

spectral bands is used. To construct these measurements, the spectral data cube

F was acquired with a monochromator in the spectral range between 450nm and

650nm. A CCD camera AVT Marlin F0033B, with spatial resolution 656 × 492 pixels

and a pixel pitch size of 9.9µm is used. The resolution of all the three CAs is 256 ×
256 pixels, and its distribution comes from the same set of 16 filters, corresponding

to the design of L = 8 spectral bands for low pass filters and high pass filters as

well. The transmittance, is defined as the amount of light passing through the coded

aperture, it depends on the number of shots acquired with the relation T = 1/K. The

simulations were performed for K = 2, 4 snapshots.

The GPSR algorithm is used to get the reconstruction of the data cube 138. Figure

32 illustrates the image in each band of the spectral data cube and Figure 33 shows

four images of reference selected from the spectral bands of the original data cube

to be used for these simulations in order to refer to the results. Figures 34 and 35

show the reconstruction of two and four measurement snapshots and the pixel offset

value of S = 8, respectively. For each spectral band, the reconstruction results of the

measurement obtained using random, GA optimized and designed mobile CCA are

shown. It shows the improvement in spatial quality when using the designed CCA,

138 M. Figueiredo, R. D. Nowak, and S. J. Wright. “Gradient Projection for Sparse Reconstruction:
Application to Compressed Sensing and Other Inverse Problems”. In: Selected Topics in Signal
Processing, IEEE Journal of 1.4 (2007), pp. 586–597.
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Figure 32. Spectral bands of the ground-truth data cube used in simulations.

Figure 33. Four of eight spectral bands of the ground-truth data cube used in
simulations.
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Figure 34. Four spectral bands reconstruction for the CASSI system with CCA. For
each spectral band, three reconstructions from 2 measurements using the random,
the genetic algorithm optimization, and the designed coded apertures are shown.

as shown in the zoomed part of Figure 2. 34, and you can also notice it by the PSNR

value of 2 and 4 snapshots.

In order to analyze the influence of the shifting parameter S, a set of simulations

were performed for K = 2 and K = 4 snapshots, and for the three colored CAs.

The overall performance achieved by the designed colored CA is superior for 2 and

4 snapshots. Figures 36 and 37 report these results for 2 and 4 snapshots, respec-

tively. The results correspond with results in literature 33, where random colored CAs

are shown to behave closely as the optimized designs for K = 2. For greater number

of snapshots K = 4, the designed colored CA from literature and the ones proposed

get better reconstruction performance than random codes for all the shifting values.

7.4. Conclusions

The optimization of the moving color-coded aperture in compressed spectral imag-

ing is proposed to establish some physical limits for the design. The optimization

promotes the variability and uniformity of the pattern, as well as the consideration

of hardware limitations, thereby reducing the manufacturing cost of the mask. The

mobile color CA design is simulated. Compared with the randomly optimized LH-
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Random GA Optimized Designed

Figure 35. Reconstruction of four spectral bands using the CASSI with color coded
apertures. For each spectral band, three reconstructions from 4 measurements
using the random, the genetic algorithm optimization, and the designed coded
apertures are displayed.
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Figure 36. Mean PSNR achieved with K = 2 measurements snapshots for different
vertical shifting value S from 1 to 32 pixels.

Figure 37. Mean PSNR achieved with K = 4 measurements snapshots for different
vertical shifting value S from 1 to 32 pixels.
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colored CA in the literature, the reconstructed PSNR achieves an improvement of up

to 3 dB. However, this kind of design does not take into account the sensing structure

of the matrix systems in CT.
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Conclusions

The main contribution of this thesis embraces that any projection in an X-ray sys-

tem can be as a high-resolution distribution of a decimated array of information.

Thus, introducing a decimation strategy for high-resolution information, a cone beam

X-ray system produces low-resolution measurements onto the detector. In this con-

text, a high-resolution coded aperture is introduced between source and object, to

disambiguate the underlying information, allowing high-resolution information from

low-resolution measurements. The quality of reconstructions significantly improves

by designing the coded aperture distribution while the proposed method enhances

the system’s condition. The proposed method reduces the Gershgorin radii of the

system matrix by improving the inverse system condition describing the bounds of

the eigenvalue distribution. In the big picture, the proposed distribution to design

high-resolution coded apertures to be used in a compressive CBCT system with

a low-resolution detector array, such that super-resolved images can be recovered

without significantly changing the traditional architecture. This advance offers a bare

modification with tremendous advantages. Simulation results obtained with five dif-

ferent test data sets consistently validate the performance of the proposed CA for

different transmittance values and super-resolution factors, obtaining improvements

of up to 4 dB of PSNR concerning random distributions of coded apertures in the

noiseless case. On the other hand, reconstructions from projections contaminated

with Poisson noise for different SNR values demonstrated the robustness of the pro-

posed coded apertures in noisy scenarios, where the designed CA improves random

patterns in up to 4 dB of PSNR. Montecarlo simulations validated these results with

the GATE toolbox. Further, it was shown that the computational load of the proposed

approach is up to three orders of magnitude lower than the SVD-based CA design

methods.

Additionally, this work proposes for a multi-resolution iterative reconstruction scheme

for a fan-beam CT image recovery. Under the premise that the image is known, a
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decimation scheme is introduced. This approach exploits the neighborhood similar-

ities, representing each uniform square zone with a single value, which reduces the

number of elements to reconstruct, decreases the complexity of the inverse problem,

and improves the relation measurements/variables of the sensing matrix. Simulation

results concerning the proposed method show on its PSNR reconstruction by up to

16 dB and 3.5x faster than a traditional reconstruction method, even in the pres-

ence of noise. Reconstruction applications that address a reduced set of iterations

to obtain a particular quality image can apply the proposed strategy to the remaining

iterations, generating results to fulfill the requirements of the decimation strategy.

Finally, the optimization of the moving color-coded aperture in compressed spectral

imaging is proposed to establish some physical limits for the design. The optimization

promotes the variability and uniformity of the pattern, as well as the consideration of

hardware limitations, thereby reducing the manufacturing cost of the mask. The

mobile color CA design is simulated. Compared with the randomly optimized LH-

colored CA in the literature, the reconstructed PSNR achieves an improvement of up

to 3 dB. However, this kind of design does not take into account the sensing structure

of the matrix systems in CT.
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