SÍNTESIS ESTEREOSELECTIVA Y ELUCIDACIÓN ESTRUCTURAL DE NUEVOS DERIVADOS DE LA SERIE *cis*-4-HIDROXI-2-(1'-NAFTIL)-TETRAHIDRO-1-BENZOAZEPINA CON POTENCIAL ACTIVIDAD ANTIPARASITARIA Y ANSIOLÍTICA

CARLOS MARIO SANABRIA SÁNCHEZ

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA LABORATORIO DE SÍNTESIS ORGÁNICA BUCARAMANGA 2010

SÍNTESIS ESTEREOSELECTIVA Y ELUCIDACIÓN ESTRUCTURAL DE NUEVOS DERIVADOS DE LA SERIE *cis*-4-HIDROXI-2-(1'-NAFTIL)-TETRAHIDRO-1-BENZOAZEPINA CON POTENCIAL ACTIVIDAD ANTIPARASITARIA Y ANSIOLÍTICA

CARLOS MARIO SANABRIA SÁNCHEZ

Trabajo de grado para optar al título de Químico

Director ALIRIO PALMA RODRÍGUEZ, *Ph.D* Co-Directora SANDRA LILIANA GÓMEZ AYALA, *MSc*.

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA LABORATORIO DE SÍNTESIS ORGÁNICA BUCARAMANGA 2010

A mis padres y mi hermano, mi FAMILIA, por ser mi apoyo constante durante todos estos años.

AGRADECIMIENTOS

El autor expresa sus agradecimientos a:

Al profesor Alirio Palma Rodríguez, por haberme brindado la oportunidad de pertenecer a su grupo de investigación, motivar mi conocimiento al interesante mundo de la Química Orgánica y sus valiosas enseñanzas tanto para mi vida profesional como personal.

A Sandra Liliana Gómez Ayala, por su permanente colaboración como Co-directora, pero también por haber sido desde el principio mi primera compañera y amiga del LSO.

A la profesora Elena Stashenko del Laboratorio de Cromatografía de la UIS, por la toma de los espectros de masas.

Al profesor Alí Bahsas de la Universidad de los Andes de Mérida-Venezuela, por la toma de los espectros de RMN.

Al profesor Justo Cobo de la Universidad de Jaén, España, por la resolución de las estructuras de rayos X por el método del monocristal.

A la doctora Patricia Escobar del CINTROP de la UIS, quien ejecuta los ensayos de actividad antiparasitaria de los compuestos sintetizados.

Al doctor Carlos Conde del Laboratorio de Neurociencias y Comportamiento de la UIS, quien ejecuta los ensayos sobre actividad ansiolítica de los compuestos sintetizados.

A mis amigos de la carrera, quienes estuvieron en muchos momentos y hacen parte de un sinnúmero de anécdotas, Karen, Manuel, Natalia, Nathaly y Tatiana, también muchos otros 2030 que compartieron e hicieron de esta etapa inolvidable. Mis compañeros y excompañeros del Laboratorio de Síntesis Orgánica, Camila, Lina, Felipe, Camilo, Elkin, Julio, Nelson y Julian, quienes contribuyeron de forma valiosa para la realización de este largo trabajo.

A mi Coral Universitaria UIS y sus integrantes, quienes han sido testigo de mi evolución en la universidad a través de todos estos años, agrupación que me ha brindado durante mi permanencia las experiencias más gratas y de la cual me siento muy orgulloso de ser parte.

TABLA DE CONTENIDO

		Pág.
INTR	RODUCCIÓN	22
1. RE	VISIÓN BIBLIOGRÁFICA	24
2. PL	ANTEAMIENTO DEL PROBLEMA	29
3. OB	BJETIVOS	31
3.1.0	BJETIVO GENERAL	31
3.2 O	BJETIVOS ESPECÍFICOS	31
4. PA	RTE EXPERIMENTAL	32
4.1.	Preparación de las <i>N</i> -alilanilinas <u>1</u>a-f	33
4.2.	Transposición amino-Claisen de las N -alilanilinas <u>1</u> a-f a las 2-alilanilinas	36
	<u>2</u> a-f	
4.3.	Preparación de las 2-alil-N-(1'-naftilmetil)-anilinas <u>3</u>a-f	38
4.4.	Preparación de las 2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-	42
	benzoazepinas <u>4</u> a-f	
4.5.	Obtención de las cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-	44
	benzoazepinas <u>5</u> a-f	
5. DIS	SCUSIÓN DE RESULTADOS	
5.1.	Preparación de las <i>N</i> -alilanilinas <u>1</u> a-f	48
5.2.	Transposición amino-Claisen de las N -alilanilinas <u>1</u> a-f a las 2-alilanilinas	51
	<u>2</u> a-f	
5.3.	Preparación de las 2-alil-N-(1'-naftilmetil)-anilinas <u>3</u> a-f	53
5.4.	Preparación de los 2- exo-(1'naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-	62
	benzoazepinas <u>4</u> a-f	
5.5.	Obtención de las cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-	74
	benzoazepinas <u>5</u> a-f	
CON	CLUSIONES Y RECOMENDACIONES	84

REFERENCIAS BIBLIOGRÁFICAS	86
ANEXOS	92

ABREVIATURAS

Å	Angströms
°C	Grados centígrados
cm	Centímetros
COSY ¹ H- ¹ H	Correlation Spectroscopy
DMF	Dimetilformamida
eV	Electronvoltios
g	Gramos
g/mol	Gramos por mol
GC-MS	Cromatografía de Gases acoplada a Espectrometría de Masas
Hz	Hertzios
H _{ax}	Hidrógeno axial
H_{eq}	Hidrógeno ecuatorial
H _{pseudoeq}	Hidrógeno pseudoecuatorial
HMBC	Heteronuclear Multiple-Bond Correlation
HSQC	Heteronuclear Single-Quantum Correlation
IR	Infrarrojo
J	Contante de acoplamiento
M *+	Ion molecular
MHz	Megahertz
mmol	Milimoles
mL	Mililitro
m/z	Relación masa sobre carga
nm	Nanómetros
NOESY	Nuclear Overhauser Effect Spectroscopy
P.f.	Punto de fusión
ppm	Partes por millón
RMN ¹ H	Resonancia Magnética Nuclear de protones
RMN ¹³ C	Resonancia Magnética Nuclear de carbono 13

UIS	Universidad Industrial de Santander
VIH	Virus de Inmunodeficiencia Humana

LISTA DE FIGURAS

		Pág.
Figura 1.	1,4-Epoxitetrahidronafto[1,2-b]azepinas con actividad ansiolítica y	
	antiparasitaria	28
Figura 2.	1,4-Epoxitetrahidro-1-benzoazepinas con promisoria actividad	
	antiparasitaria	28
Figura 3.	Estructura de las <i>N</i> -alilanilinas <u>1</u>a-f	33
Figura 4.	Estructura general de las 2-alilanilinas <u>2</u>a-f	36
Figura 5.	Estructura general de las 2-alil-N-(1'-naftilmetil)-anilinas <u>3</u>a-f	38
Figura 6.	Estructura general de las exo-1,4-epoxitetrahidro-2-(1'-naftil)-1-	
	benzoazepinas <u>4</u> a-f	42
Figura 7.	Estructura general de las cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-	
	1(1 <i>H</i>)-benzoazepinas <u>5</u> a-f	44
Figura 8.	Espectro de RMN ¹ H de la 2-Alil-3,5-dimetil- <i>N</i> -(1'-naftilmetil)-	
	anilina <u>3</u> f	58
Figura 9.	Expansión de la zona aromática del espectro de COSY ¹ H, ¹ H de la 2-	
	alil-3,5-dimetil- <i>N</i> -(1'-naftilmetil)-anilina <u>3</u> f	59
Figura 10.	Espectro de RMN ¹ H del cicloaducto $\underline{4}\mathbf{f}$	67
Figura 11.	Expansión de la región 5.50–2.00 ppm del espectro de ¹ H, ¹ H-COSY	
	de la 6,8-dimetil-2- <i>exo</i> -(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-	
	benzoazepina <u>4</u> f	68
Figura 12.	Expansión de la zona alifática del espectro bidimensional HSQC del	
	cicloaducto 6,8-dimetil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-	
	1-benzoazepina <u>4</u> f	69
Figura 13.	Espectro NOESY de la 6,8-dimetil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-	
	tetrahidro-1-benzoazepina <u>4</u> f	70
Figura 14.	Estructura tridimensional resuelta por difracción de rayos X de	
	monocristal de la 7-trifluorometoxi-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-	

tetrahidro-1-benzoazepina <u>4</u> c	71
Figura 15. Espectro de RMN ¹ H de la 6,8-dimetil- <i>cis</i> -4-hidroxi-2-(1'-naftil)-	
2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepina <u>5</u> f	79
Figura 16. Expansión de la región 5.00–2.20 ppm del espectro de ¹ H, ¹ H-COSY	
del amino-alcohol <u>5</u> f	80
Figura 17. Espectro NOESY de la 6,8-dimetil- <i>cis</i> -4-hidroxi-2-(1'-naftil)-2,3,4,5-	
tetrahidro-1(1 <i>H</i>)-benzoazepina <u>5</u> f	81

LISTA DE ESQUEMAS

		Pág.
Esquema 1.	Esquema general simplificado de las rutas de síntesis utilizadas	
	para la construcción del anillo de la tetrahidro-1-benzoazepina	24
Esquema 2.	Ruta de síntesis desarrollada en el LSO para preparar nuevas series	
	de tetrahidro-1-benzoazepinas 2,4-disustituidas a partir de N-alil-N-	
	bencilanilinas sustituidas	26
Esquema 3.	Metodología empleada para la obtención de tetrahidro-1-	
	benzoazepinas 2,4-disustituidas a partir de mono-N-alilanilinas	27
Esquema 4.	Análisis retrosintético general de la ruta alterna propuesta para	
	acceder a las nuevas 4-hidroxi-2-(1'-naftil)-tetrahidro-1-	
	benzoazepinas diseñadas	30
Esquema 5.	Ruta de síntesis empleada para acceder a las nuevas 2-exo-(1'-	
	naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepinas <u>4</u>a-f y <i>cis</i> -2-	
	(1'-naftil)-4-hidroxi-2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepinas <u>5</u> a-f	47
Esquema 6.	N-Alilación de las anilinas seleccionadas. Preparación de las N-	
	alilanilinas <u>1</u> a-f	48
Esquema 7.	Posible patrón de fragmentación de los iones moleculares de las N-	
	alilanilinas <u>1</u> a-f	50
Esquema 8.	Preparación de las 2-alilanilinas <u>2</u> a-f	51
Esquema 9.	Posible patrón de fragmentación de los iones moleculares de las 2-	
	alilanilinas <u>2</u> a-f	53
Esquema 10.	Metodología A: Amino-reducción indirecta del 1-	
	naftalencarbaldehido con las 2-alilanilinas <u>2</u> a-c, f	53
Esquema 11.	Mecanismo de la reducción de iminas con NaBH ₄	54
Esquema 12.	Metodología B: mono- <i>N</i> -naftilación de las 2-alilanilinas <u>2</u> d-e	55
Esquema 13.	Posible patrón de fragmentación de los iones moleculares de las 2-	
	alil-N-(1'-naftilmetil)anilinas <u>3</u> a-f	57

Esquema 14.	Síntesis de las 1,4-epoxi-2-(1'-naftil)-tetrahidro-1-benzoazepinas	
	<u>4</u> a-f	62
Esquema 15.	Posible patrón de fragmentación de los iones moleculares de los	
	1,4-epoxi-cicloaductos <u>4</u> a-f	65
Esquema 16.	Síntesis de las nuevas <i>cis</i> -4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-	
	1 <i>H</i> -1-benzoazepinas <u>5</u> a-f	74
Esquema 17.	Posible patrón de fragmentación de los iones moleculares de las cis-	
	4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1-benzoazepinas 5a-f	76

LISTA DE TABLAS

		Pág.
Tabla 1.	Rendimientos y bandas de absorción características en los espectros de	
	IR de las- <i>N</i> -alilanilinas <u>1</u> a-f	49
Tabla 2.	Iones característicos (m/z) y sus intensidades relativas (%) en los	
	espectros de masas de las <i>N</i> -alilanilinas <u>1</u>a-f	50
Tabla 3.	Rendimientos y bandas de absorción características en los espectros de	
	IR de las 2-alilanilinas <u>2</u>a-f	52
Tabla 4.	Iones característicos (m/z) y sus intensidades relativas (%) en los	
	espectros de masas de las 2-alilanilinas <u>2</u>a-f	52
Tabla 5.	Rendimientos y bandas de absorción características en los espectros IR	
	de los compuestos <u>3</u> a-f	56
Tabla 6.	Iones característicos (m/z) y sus intensidades relativas (%) en los	
	espectros de masas de las 2-alil-N-(1'-naftilmetil)-anilinas <u>3</u>a-f	56
Tabla 7.	Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J ,	
	Hz) de los protones en los espectros de RMN ¹ H de las 2-alil- <i>N</i> -(1'-	
	naftilmetil)anilinas <u>3</u> a-f	60
Tabla 8.	Desplazamientos químicos (δ , ppm) de los carbonos en los espectros de	
	RMN ¹³ C de las 2-alil- <i>N</i> -(1'-naftilmetil)anilinas <u>3</u>a-f	61
Tabla 9.	Rendimientos, puntos de fusión (no corregidos) y bandas de absorción	
	características en los espectros de IR de los 1,4-epoxi-cicloaductos <u>4</u> a-f	63
Tabla 10	. Iones característicos (m/z) y sus intensidades relativas (%) en los	
	espectros de masas de los 1,4-epoxi-cicloaductos <u>4</u> a-f	64
Tabla 11	. Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J ,	
	Hz) de los protones en los espectros de RMN ¹ H de los cicloaductos <u>4</u> a-f	72
Tabla 12	. Desplazamientos químicos (δ , ppm) de los carbonos en los espectros de	
	RMN ¹³ C de los cicloaductos <u>4</u> a-f	73
Tabla 13	. Puntos de fusión (no corregidos), rendimientos y bandas de absorción	

características en los espectro de IR de los amino-alcoholes <u>5</u> a-f	75
Tabla 14. Iones característicos (m/z) y sus intensidades relativas (%) en los	
espectros de masas de las cis-4-hidroxi-2-(1'-naftil)-tetrahidro-1-	
benzoazepinas <u>5</u> a-f	77
Tabla 15. Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J ,	
Hz) de los protones en los espectros de RMN ¹ H de los amino-alcoholes	
<u>5</u> a-f	82
Tabla 16. Desplazamientos químicos (δ , ppm) de los carbonos en los espectros de	
RMN ¹³ C de los amino-alcoholes <u>5</u> a-f	83

LISTA DE ANEXOS

		Pág.
Anexo 1.1.	Espectro de infrarrojo de la 3,5-dimetil- <i>N</i> -alilanilina <u>1</u> f	93
Anexo 1.2.	Espectro de masas de la 3,5-dimetil- <i>N</i> -alilanilina <u>1</u> f	93
Anexo 2.1.	Espectro de infrarrojo de la 3,5-dimetil-2-alilanilina <u>2</u> f	94
Anexo 2.2.	Espectro de masas de la 3,5-dimetil-2-alilanilina <u>2</u> f	94
Anexo 3.1.	Espectro de infrarrojo de la 3,5-dimetil-2-alil-N-(1'-naftilmetil)-	95
	anilina <u>3</u> f	
Anexo 3.2.	Espectro de masas de la 3,5-dimetil-2-alil-N-(1'-naftilmetil)-anilina	95
	<u>3</u> f	
Anexo 3.3.	Espectro de RMN ¹ H de la 6-Alil-2,3-dimetil- <i>N</i> -(1'-naftilmetil)-	96
	anilina <u>3</u> e	
Anexo 3.4.	Espectro de RMN ¹³ C de la 6-Alil-2,3-dimetil- <i>N</i> -(1'-naftilmetil)-	96
	anilina <u>3</u> e	
Anexo 3.5.	Espectro de correlación homonuclear ¹ H, ¹ H-COSY de la 6-Alil-2,3-	
	dimetil- <i>N</i> -(1'-naftilmetil)-anilina <u>3</u> e	97
Anexo 4.1.	Espectro de infrarrojo del cicloaducto 6,8-dimetil-2-exo-(1'-naftil)-	
	1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u> f	97
Anexo 4.2.	Espectro de masas del cicloaducto 6,8-dimetil-2-exo-(1'-naftil)-1,4-	
	epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u> f	98
Anexo 4.3.	Espectro de RMN ¹ H del cicloaducto 7-metil-2-exo-(1'-naftil)-1,4-	
	epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>b	98
Anexo 4.4.	Espectro de RMN ¹³ C del cicloaducto 7-metil-2- <i>exo</i> -(1'-naftil)-1,4-	
	epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>b	99
Anexo 4.5.	Espectro de correlación homonuclear ¹ H, ¹ H-COSY del cicloaducto 7-	
	metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina	
	<u>4</u> b	99
Anexo 4.6.	Espectro de correlación heteronuclear HSQC del cicloaducto 7-metil-	

	2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u> b	100
Anexo 5.1.	Espectro de infrarrojo de la 6,8-dimetil-cis-4-hidroxi-2-(1'-naftil)-	
	2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepina <u>5</u> f	100
Anexo 5.2.	Espectro de masas de la 6,8-dimetil-cis-4-hidroxi-2-(1'-naftil)-	
	2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepina <u>5</u> f	101
Anexo 5.3.	Espectro de RMN ¹ H de la 7-metil- <i>cis</i> -4-hidroxi-2-(1'-naftil)-2,3,4,5-	
	tetrahidro-1(1 <i>H</i>)-benzoazepina 5 b	101
Anexo 5.4.	Espectro de RMN ¹³ C de la 7-metil- <i>cis</i> -4-hidroxi-2-(1'-naftil)-	
	2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepina 5 b	102
Anexo 5.5.	Espectro de correlación homonuclear ¹ H, ¹ H-COSY de la 7-metil- <i>cis</i> -	
	4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1 <i>H</i>)-benzoazepina 5 b	102
Anexo 5.6.	Espectro de correlación heteronuclear HSQC de la 7-metil-cis-4-	
	hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-benzoazepina 5b	103

TITULO: SÍNTESIS ESTEREOSELECTIVA Y ELUCIDACIÓN ESTRUCTURAL DE NUEVOS DERIVADOS DE LA SERIE *cis*-4-HIDROXI-2-(1'-NAFTIL)-TETRAHIDRO-1-BENZOAZEPINA CON POTENCIAL ACTIVIDAD ANTIPARASITARIA Y ANSIOLÍTICA^{*}

Autor: Carlos Mario Sanabria Sánchez**

Palabras Claves: Tetrahidro-1-benzoazepinas, 2-alilanilinas, transposición amino-Claisen, *N*-alquilación, cicloadición intramolecular 1,3-dipolar

Se realizó la síntesis estereoselectiva de 6 nuevas 1,4-epoxi-2-(1'-naftil)tetrahidro-1benzoazepinas y 6 nuevas *cis*-4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepinas cuyas propiedades físico-quimicas y espectroscópicas se reportan por primera vez, mediante la implementación de una ruta de síntesis diseñada en el Laboratorio de Síntesis Orgánica (LSO), la cual se basa en el uso de reacciones clásicas como la transposición amino-Claisen de *N*-alilanilinas, la cicloadicion intramolecular 1,3-dipolar de ortoalilanilinas *N*-(1'naftilmetil)sustituidas y la escisión reductiva del enlace cabeza de puente N-O de cicloaductos isoxazolidinicos.

Se partió de anilinas polifuncionalizadas con el objetivo ver la influencia de esta funcionalización en los procesos de cicloadición intramolecular 1,3-dipolar y apertura reductiva, así como su influencia en la actividad antiparasitaria y sobre el sistema nervioso central.

El criterio de selección de la metodología que se implementó en este trabajo se basó en ensayos anteriormente realizados en el laboratorio, en los que se evidenció la dificultad de reducir las iminas provenientes de la condensación de anilinas *orto*-sustituidas con diferentes aldehídos. Se planteó entonces, la conveniencia de preparar los precursores estratégicos a partir de 2-alilanilinas polisustituidas, mediante la implementación de dos metodologías distintas, una consistente en la amino-reducción indirecta del 1-naftalencarbaldehido con *orto*-alilanilinas y la otra, mediante una simple *N*-alquilación de *orto*-alilanilinas con el agente alquilante 1-clorometilnaftaleno.

^{*} Trabajo de grado para optar al título de Químico

^{**}Director Alirio Palma Rodriguez, Ph.D. Laboratorio de Síntesis Orgánica. Escuela de Química. Facultad de Ciencias.

TITLE: STEREOSELECTIVE SYNTHESIS AND STRUCTURAL ELUCIDATION OF NEW SERIES OF *cis*-4-HYDROXY-2-(1'-NAPHTHYL)-TETRAHYDRO-1-BENZAZEPINES WITH POTENTIAL ANTIPARASITIC AND ANXYOLITYC ACTIVITY*

Author: Carlos Mario Sanabria Sánchez**

Keywords: Tetrahydro-1-benzazepines, 2-allylanilines, amino-Claisen rearrangement, *N*-alkylation, intramolecular 1,3-dipolar cycloaddition.

In this work was carried out the stereoselective synthesis of six new 1,4-epoxy-2-(1'-naphthyl)tetrahydro-1-benzazepines and six *cis*-4-hydroxy-2-(1'-naphthyl)tetrahydro-1-benzazepines, whose physicochemical and spectroscopic properties were reported by the first time. For the synthesis, there was implemented a synthetic route designed in the Laboratory of Organic Synthesis (LSO) which is based on classic reactions such as amino-Claisen rearrangement of *N*-allylanilines, intramolecular 1,3-dipolar cycloaddition of nitrones derived from *N*-(1'-naphthylmethyl)substituted *ortho*-allylanilines and the reductive cleavage of the N-O bond of the isoxazolidine cycloadducts.

Polyfunctionalized anilines were used as the starting materials with the aim of observe the influence of the functionalization not only on the intramolecular 1,3-dipolar cycloadition and reductive opening processes, but also on antiparasitic activity and its effect over central nervous system.

The selection criteria of the methodology followed in this work were based on previous experiments carried out in the laboratory, where was observed the difficulty in the reduction of imines derived from ortho-substituted anilines with different aldehydes. From this, was proposed the preparation of strategic precursors from polysubstitued 2-allylanilines by two different methodologies, the first one based on indirect reductive amination of 1-naphthylcarbaldehyde with ortho-allylanilines, and the other one by using a simple *N*-alkylation of *ortho*-allylanilines with 1-cloromethylnaphthalene.

* Paperwork required to obtain Chemist tittle

** Director Alirio Palma Rodríguez, Ph. D. Laboratory of Organic Synthesis. Chemistry Deparment. Science Faculty.

INTRODUCCIÓN

Dentro de la gran familia de sustancias orgánicas sobresalen los heterociclos, compuestos que contienen al menos un átomo distinto del carbono, como por ejemplo, nitrógeno, azufre u oxígeno en una estructura cíclica. Gracias a estas características estructurales se hallan ampliamente difundidos en la naturaleza y desempeñan un papel fundamental en procesos vitales, tales como: los mecanismos que rigen las leyes de la herencia, la respiración y el sistema nervioso central. Muchos compuestos heterocíclicos que se han creado como resultado de la imaginación y talento de los químicos orgánicos han encontrado grandes aplicaciones en la medicina, la agroindustria, la electrónica, etc.

Entre la amplia gama de compuestos heterocíclicos que han sido estudiados sistemáticamente, se encuentran los derivados de la 1-benzoazepina. Este sistema heterocíclico nitrogenado ha logrado llamar la atención de los químicos sintéticos orgánicos y de los farmacólogos debido principalmente a la rica variedad de propiedades biológicas que posee. No es casual y sorprendente que muchos derivados de la 1-benzoazepina y en particular de la tetrahidro-1-benzoazepina, se hayan desarrollado para ser usados como diuréticos, antipsicóticos, antihipertensivos, antidepresivos y como agentes activos en el tratamiento del VIH, entre otras aplicaciones.

Es por lo anterior que el diseño e implementación de rutas sintéticas que faciliten la obtención de nuevos derivados de este sistema heterocíclico, es considerada como una tarea actual y muy pertinente para quienes trabajan con este tipo de moléculas bioactivas. En este contexto se encuentra enmarcado el trabajo que se desarrolla en el Laboratorio de Síntesis Orgánica (LSO) de la UIS, cuyo propósito principal es el estudio de la química de compuestos heterocíclicos nitrogenados de seis y siete miembros, pero de manera especial de la tetrahidro-1-benzoazepina, con miras a la generación de nuevos compuestos biológicamente activos. Como resultado del diseño e implementación de una ruta de síntesis propia, en el LSO se ha logrado obtener y caracterizar con éxito más de un centenar de nuevos derivados de la tetrahidro-1-benzoazepina y la tetrahidronafto[1,2-*b*]azepina,

muchos de los cuales han sido sometidos a estudio biológico para visualizar su potencial actividad antiparasitaria y su acción sobre el sistema nervioso central.

Teniendo como marco de referencia estos resultados preliminares, motivados por la posibilidad real de ampliar los alcances sintéticos de una metodología ya probada en el LSO y con el objetivo de desarrollar nuevos derivados con potencial actividad biológica, se decidió realizar este trabajo de grado, en el que se reporta la síntesis y caracterización estructural de una nueva serie de *cis*-4-hidroxi-2-(1'-naftil)-tetrahidro-1-benzoazepinas.

Esta investigación está plenamente justificada, en primer lugar, por el hecho de que análogos estrechamente relacionados presentaron una promisoria actividad antiparasitaria en ensayos específicos *in vitro*, y en segundo lugar, por el deseo de propiciar el estudio de su potencial efecto sobre el sistema nervioso central (actividad ansiolítica).

1. REVISIÓN BIBLIOGRÁFICA

De la exhaustiva revisión sobre métodos de preparación de derivados de la tetrahidro-1benzoazepina (**1**) se constata que, en general, la construcción de dicho anillo se puede realizar de una manera esquemática simplificada, por las rutas sintéticas que se representan en el esquema 1. Como se puede observar en dicho esquema, las rutas 2, 3, 4 y 6 involucran la generación de un nuevo acople C-C en sustratos apropiados (anilinas *N*-sustituidas y anilinas *N*,2-disustituidas).¹⁻¹⁸ Para tal propósito se han utilizado metodologías basadas en reacciones clásicas como la ciclación intramolecular de Friedel-Crafts,¹⁵ la condensación aldólica en su versión intramolecular⁵ y la condensación de Dieckmann,^{7,8} y en reacciones más modernas como la reacción de Heck^{4,6} y la fusión anular por metátesis.¹⁶⁻¹⁸ Las rutas 1 y 5 involucran como etapa clave la generación de un nuevo enlace C-N.¹⁹⁻³⁰ La ruta 7 comprende la expansión de cetonas cíclicas de seis miembros benzofusionadas con inserción simultánea de un átomo de nitrógeno, mediante reordenamientos moleculares como las transposiciones de Beckmann y de Schmidt.³¹⁻³⁷

Esquema 1. Esquema general simplificado de las rutas de síntesis utilizadas para la construcción del anillo de la tetrahidro-1-benzoazepina

Todos estos métodos de construcción del anillo de la tetrahidro-1-benzoazepina están bien descritos en la literatura especializada y también han sido recopilados en trabajos de grado y de investigación realizados previamente en el LSO.³⁸⁻⁴³ Por esta razón, en esta breve reseña sólo se hará referencia a la ruta de síntesis que fue desarrollada en el Laboratorio de Síntesis Orgánica.

Un ejemplo que ilustra la construcción del núcleo de la tetrahidro-1-benzoazepina como resultado de la formación de un enlace C-C en la etapa clave de la síntesis, es el reportado por Palma y colaboradores quienes ya describieron la síntesis de siete nuevas series de tetrahidro-1-benzoazepinas 2,4-disustituidas, utilizando *N*-alilanilinas sustituidas como los productos de partida.

Tal como se aprecia en el esquema 2, usando la reacción de transposición amino-Claisen de *N*-alilanilinas *N*-bencilo sustituidas catalizada por un ácido de Lewis, se logra la conversión a sus regioisómeros 2-alilanilinas *N*-bencilo sustituidas, consideradas como los precursores estratégicos en la ruta de síntesis diseñada, ya que poseen las características estructurales apropiadas para ser sometidas a una oxidación selectiva de arilaminas secundarias y la subsiguiente cicloadición intramolecular 1,3-dipolar nitrona-olefina. Dicho de otra manera, la presencia simultánea del fragmento alilo en la posición *orto* respecto del grupo amino de una anilina, así como de un grupo amino secundario fácilmente oxidable, que en este caso se encuentra conectado a un fragmento bencilo, constituye el bloque estructural que le confiere gran versatilidad a estos intermediarios clave y que permite abordar con éxito la construcción del anillo tetrahidroazepínico requerido.

En este orden de ideas, las 2-alilanilinas *N*-bencilo sustituidas (**3**) son oxidadas a las respectivas nitronas, que por su carácter de 1,3-dipolo pueden ser inducidas a una cicloadición intramolecular 1,3-dipolar con el fragmento alilo, que en este caso actúa como un dipolarófilo, para generar el nuevo acople C-C que da origen a los respectivos 1,4-epoxicicloaductos (**4**), los cuales posteriormente, mediante una apertura reductiva del

enlace N-O, son transformados en los tetrahidro-1-benzoazepin-4-oles 2-arilsustituidos finales (**5**) (Esquema 2).^{44,45}

Esquema 2. Ruta de síntesis desarrollada en el LSO para preparar nuevas series de tetrahidro-1benzoazepinas 2,4-disustituidas a partir de *N*-alil-*N*-bencilanilinas sustituidas

La flexibilidad de esta ruta de síntesis se comprobó cuando se realizó la síntesis estereoselectiva de tetrahidronafto[1,2-*b*]azepinas 2-aril sustituidas, partiendo esta vez de N-alil-N-bencil- α -naftilaminas.^{46,47}

Con el objetivo de extender aún más los alcances de la ruta de síntesis original, se le hizo una sutil modificación a la misma, que consistió en realizar primero la transposición amino-Claisen pero de anilinas *N*-monoaliladas del tipo (6). Esta opción de realizar primero la transposición amino-Claisen de anilinas *N*-monoaliladas es bastante llamativa, ya que una vez se ha introducido el fragmento alilo en la posición *orto*, se dispone de un grupo amino primario libre que eventualmente puede ser condensado con cualquier tipo de aldehído, o *N*-monoalquilado con un agente de alquilación apropiado. Con este enfoque alterno se espera preparar una gama de precursores estratégicos (8) más variada que la que se obtiene con el enfoque original, lo que, en principio, debe conducir a una mayor funcionalización de la posición C-2 del anillo de la tetrahidro-1-benzoazepina que se desea construir. La validez de esta táctica se pudo constatar al realizar con éxito la síntesis estereoselectiva de algunos derivados representativos de cinco nuevas series de la tetrahidro-1-benzoazepina no descritos en la literatura, identificados como: *cis*-4-hidroxi-2-(2'-tienil)-tetrahidro-1-benzoazepinas (**10a**),⁴¹ *cis*-4-hidroxi-2-(1'-naftil; 2'-furil)-tetrahidro-1-benzoazepinas (**10b,c**)⁴² y *cis*-4-hidroxi-2-vinil(isopropenil)-tetrahidro-1-benzoazepinas (**10d,e**)⁴³ (Esquema 3).

Esquema 3. Metodología empleada para la obtención de tetrahidro-1-benzoazepinas 2,4-disustituidas a partir de mono-*N*-alilanilinas

La información que actualmente existe en la literatura relacionada con los derivados de la tetrahidro-1-benzoazepina es muy abundante, y mucha de esa información es debida al amplio espectro de actividad biológica que presentan, razón por la cual son frecuentemente utilizados en estudios farmacológicos comparativos y de medicina.

Teniendo en cuenta el potencial farmacológico de este sistema heterocíclico y los antecedentes sobre su uso en el tratamiento de algunas patologías especificas, el LSO ha centrado su accionar en la síntesis de nuevos derivados de la tetrahidro-1-benzoazepina 2,4-disustituida para estudiar su potencial efecto sobre el sistema nervioso central y su actividad contra parásitos de *Trypanosoma cruzi* y *Leishmania chagasi*. Hasta la fecha, se ha logrado establecer que derivados de la c*is*-2-aril-4-hidroxi-2,3,4,5-tetrahidronafto[1,2-*b*]azepina, pero en especial las 2-*exo*-aril-1,4-epoxitetrahidronafto[1,2-*b*]azepinas (**11**), en

ensayos *in vivo* sobre ratones de experimentación, revelaron interesantes propiedades como ansiolíticos, sedantes y antipiréticos.^{48,49} Llama también la atención que estas dos clases de compuestos, en ensayos *in vitro*, mostraron una significativa actividad antiparasitaria contra *T. cruzi* y *L. chagasi*.^{46,50}

Figura 1. 1,4-Epoxitetrahidronafto[1,2-b]azepinas con actividad ansiolítica y antiparasitaria

Para conocer la potencial actividad antiparasitaria de otros análogos de (11), se evaluaron las 2-*exo*-aril-1,4-epoxitetrahidro-1-benzoazepinas (4)^{44,45,51-53} y las 1,4-epoxi-2-*exo*-(1'-naftil)tetrahidro-1-benzoazepinas (12), las cuales resultaron muy activas contra epimastigotes de *T. cruzi* y promastigotes de *L. chagasi* y contra la forma intracelular de *T. cruzi*, sin presentar toxicidad sobre células Vero y THP-1.

Figura 2. 1,4-Epoxitetrahidro-1-benzoazepinas con promisoria actividad antiparasitaria

En la actualidad se continúa con el estudio sistemático de la actividad antiparasitaria de la mayoría de los nuevos derivados de la tetrahidro-1-benzoazepina que se han desarrollado con ayuda de la ruta de síntesis diseñada en el LSO.

2. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN DE LA INVESTIGACIÓN

En el LSO se ha validado el alcance de una ruta de síntesis propia, diseñada especialmente para la preparación de derivados no descritos en la literatura de tetrahidro-1-benzoazepinas 2,4-disustituidas biológicamente activas.

Basados en los excelentes resultados que se han obtenido con la implementación de esta ruta sintética, en el presente trabajo de grado se propuso la creación de nuevos derivados de la serie *cis*-4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepina con el fin de evaluar la influencia de la funcionalización de las anilinas de partida en la actividad antiparasitaria y sobre el sistema nervioso central, con miras a la creación de una quimioteca de este tipo de compuestos que, a su vez, sirva de punto de partida para un futuro estudio detallado de la relación estructura-actividad.

El criterio de selección de la metodología que se implementó en este trabajo se basó en ensayos anteriormente realizados en el laboratorio, en los que se evidenció la dificultad de reducir las iminas provenientes de la condensación de anilinas *orto*-sustituidas con diferentes aldehídos.^{41,54} Se planteó entonces, la conveniencia de preparar los precursores estratégicos a partir de 2-alilanilinas polisustituidas (incluidas aquellas con sustituyente en la posición C-6), mediante la implementación de dos metodologías distintas, pero convergentes; una consistente en la amino-reducción indirecta del 1-naftalencarbaldehido con *orto*-alilanilinas y la otra, mediante una simple *N*-alquilación de *orto*-alilanilinas con el agente alquilante 1-clorometilnaftaleno.

Este fue, por tanto, el problema a estudiar, ya que una vez establecida la manera más expedita de acceder a los precursores clave, queda "libre" el camino para proseguir la síntesis de los productos finales de interés, tal como se muestra en el esquema 4.

Esquema 4. Análisis retrosintético general de la ruta alterna propuesta para acceder a las nuevas 4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepinas diseñadas

La justificación del trabajo está plenamente respaldada por los resultados previos obtenidos, tanto en el aspecto sintético como en el biológico.

3. OBJETIVOS

3.1 OBJETIVO GENERAL

Realizar la síntesis estereoselectiva de una nueva serie de derivados de la *cis*-4-hidroxi-2-(1'-naftil) tetrahidro-1-benzoazepina para ser evaluados como potenciales agentes ansiolíticos y antiparasitarios.

3.2 OBJETIVOS ESPECÍFICOS

- 3.2.1 Preparar las mono-*N*-alilanilinas de partida <u>1</u>a-f.
- **3.2.2** Transponer las *N*-alilanilinas <u>1</u>a-f a sus correspondientes regioisómeros las 2-alilanilinas <u>2</u>a-f.
- **3.3.3** Convertir las 2-alilanilinas <u>2</u>**a**-**f** en los precursores estratégicos 2-alil-*N*-(1'- naftilmetil)anilinas <u>3</u>**a**-**f**.
- 3.3.4 Realizar la conversión de las aminas secundarias <u>3</u>a-f en las nuevas 1,4-epoxi-2-*exo*-(1'-naftil)tetrahidro-1-benzoazepinas <u>4</u>a-f.
- 3.3.5 Transformar los 1,4-epoxicicloaductos <u>4</u>a-f en las correspondientes *cis*-4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepinas <u>5</u>a-f.
- **3.3.6** Realizar la caracterización estructural de todos los compuestos sintetizados.
- 3.3.7 Preparar muestras representativas rigurosamente purificadas de las series <u>4</u> y <u>5</u> con el fin de propiciar el estudio de sus potenciales actividades antiparasitaria (anti-*Trypanosoma cruzi* y anti-*Leishmania chagasi*) y ansiolítica.

4. PARTE EXPERIMENTAL

Los reactivos empleados en las diferentes reacciones fueron de grado para síntesis de las marcas Merck y Aldrich. Los solventes utilizados en las reacciones y en las purificaciones de los productos sintetizados por cromatografía de columna fueron de las marcas Merck, Mallinckrodt y J.T. Baker. El metanol, la *N*,*N*-dimetilformamida, y el tolueno se secaron previamente a su uso.

El metanol se calentó sobre magnesio en polvo por cuatro horas a reflujo y se destiló, recogiéndose sobre tamiz molecular de 4 Å; la *N*,*N*-dimetilformamida antes de su uso se colocó sobre lentejas de hidróxido de potasio por veinticuatro horas; el tolueno se calentó a reflujo sobre lentejas de hidróxido de potasio por seis horas y luego se destiló, recolectándose sobre láminas de sodio metálico.

El avance de las reacciones fue controlado mediante cromatografía de capa fina sobre cromatofolios AL TLC de gel de sílice 60 F254 (Merck), los cuales fueron revelados en una cámara SPECTROLINE MODEL ENF-260C a las longitudes de onda 366 y 254 nm, o en una cámara de yodo. La separación y purificación de todos los productos sintetizados fueron realizadas mediante cromatografía en columna, empleando gel de sílice (70-230 Mesh) como soporte y eluyendo con mezclas de heptano (hexano)-acetato de etilo, con aumento gradual del gradiente de la polaridad. Para concentrar las fracciones recolectadas de los productos aislados, se usó un rotaevaporador marca BÜCHI R-200.

Los puntos de fusión (no corregidos) de las sustancias sólidas obtenidas se determinaron en un fusiómetro marca MEL TEMP; el valor reportado corresponde al promedio de tres mediciones consecutivas. Los espectros de infrarrojo se tomaron en el espectrofotómetro NICOLET AVATAR 360 FTIR, en pastillas de bromuro de potasio para sustancias sólidas y ventanas de bromuro de potasio para sustancias líquidas. Los cromatogramas y los espectros de masas se registraron en un cromatógrafo de gases HP 5890 A Serie II acoplado a un detector selectivo de masas HP 5972 (70 eV), en el Laboratorio de Cromatografía de la UIS. Los espectros de resonancia magnética nuclear unidimensional RMN ¹H y ¹³C, así como los espectros bidimensionales de correlación homonuclear (¹H,¹H-COSY) y heteronuclear (HSQC, HMBC), se registraron en los espectrómetros BRUKER AM-400 y BRUKER ULTRASHIELD 400 MHz/54 mm., en los Laboratorios de RMN de las universidades de los Andes (Mérida-Venezuela) y de la UIS, respectivamente. Se utilizó cloroformo deuterado (CDCl₃) como solvente. Las estructuras moleculares tridimensionales obtenidas mediante el uso de la técnica de difracción de rayos X, se registraron en el difractómetro Bruker-Nonius KappaCCD área detector en el Departamento de Química Inorgánica y Orgánica de la Universidad de Jaén, España.

4.1. Preparación de las *N*-alilanilinas <u>1</u>a-f

Figura 3. Estructura de las N-alilanilinas <u>1</u>a-f

Metodología general

En un balón de fondo redondo de 100 mL de capacidad sumergido en un baño de aceite, se disolvió la anilina seleccionada en 25 mL de dimetilformamida (DMF), luego se adicionó carbonato de sodio y pequeñas cantidades de yoduro de potasio (KI). A esta mezcla de reacción en agitación constante, se goteó lentamente el cloruro de alilo disuelto en 5 mL de dimetilformamida (relación molar utilizada 1:1:3, anilina, cloruro de alilo, carbonato de sodio). La mezcla de reacción se calentó en un baño de aceite entre 40–50 °C durante 20–50 horas con agitación constante. Transcurrido el tiempo indicado, la masa de reacción se depositó en un vaso con suficiente agua (200-250 mL) y se extrajo con cloroformo (3 x 50 mL); la fase orgánica se lavó 6 veces con abundante agua y se secó sobre sulfato de sodio

anhidro. El solvente se destiló y el residuo orgánico que quedó se purificó por cromatografía en columna, utilizando como eluente mezclas de heptano: acetato de etilo con aumento gradual de polaridad (80:1, 40:1, 20:1). Las *N*-alilanilinas <u>1</u>a-f se aislaron como aceites amarillos de baja viscosidad.

- 4.1.1. *N*-Alil-anilina <u>1</u>a. De 3.50 g (37.6 mmoles) de anilina, 3.06 mL (37.6 mmoles) de cloruro de alilo y 11.95 g (112.8 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 40 horas de agitación a 40 °C, se obtuvieron 2.0 g (15.03 mmoles, 53%) de <u>1</u>a, C₉H₁₁N (133.1 g/mol). ¹H RMN (CDCl₃) δ: 7.22 (2H, t, *J* = 8.6 Hz, 3-H, 5-H), 6.76 (1H, td, *J* = 7.4, 1.0 Hz, 4-H), 6.68 (2H, dd, *J* = 8.0, 1.0 Hz, 2-H, 6-H), 6.05-5.95 (1H, m, =CH-), 5.35-5.19 (1H, m, =CH₂), 3.81 (2H, dt, *J* = 5.4, 1.6 Hz, -CH₂-). ¹³C RMN (CDCl₃) δ: 147.9 (1-C), 135.4 (=CH-), 129.2 (3-C, 5-C), 117.5 (4-C), 116.2 (=CH₂), 113.0 (2-C, 6-C), 46.5 (-CH₂-).
- 4.1.2. *N*-Alil-4-metilanilina <u>1</u>b. De 2.00 g (18.7 mmoles) de 4-metilanilina, 1.52 mL (18.7 mmoles) de cloruro de alilo y 5.93g (55.9 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 30 horas de agitación a 42 °C, se obtuvieron 1.2 g (8.2 mmoles, 52%) de <u>1</u>b, C₁₀H₁₃N (147,1 g/mol). ¹H NMR (CDCl₃) δ: 7.02 (2H, dd, *J* = 8.6, 0.6 Hz, 3-H, 5-H), 6.58 (2H, d, *J* = 8.4 Hz, 2-H, 6-H), 5.98 (1H, ddt, *J* = 17.2, 10.4, 5.4 Hz, =CH-), 5.30 (1H, dq, *J* = 17.2, 1.7 Hz, =CH_{2cis}), 5.18 (1H, dq, *J* = 10.3, 1.5 Hz, =CH_{2trans}), 3.78 (2H, dt, *J* = 5.4, 1.6 Hz, -CH₂-), 2.27 (3H, s, -CH₃). ¹³C NMR (CDCl₃) δ: 145.8 (1-C), 135.7 (=CH-), 129.7 (3-C, 5-C), 126.8 (4-C), 116.12 (=CH₂), 113.2 (2-C, 6-C), 47.0 (-CH₂-), 20.4 (-CH₃).
- 4.1.3. *N*-Alil-4-trifluorometoxianilina <u>1</u>c. De 2.00 g (11.3 mmoles) de 2-metil-4-trifluorometoxianilina, 0.92 mL (11.3 mmoles) de cloruro de alilo y 3.57 g (33.9 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 32 horas de agitación a 40 °C, se obtuvieron 1.86 g (8.58 mmoles, 76%) de <u>1</u>c, C₁₀H₁₀F₃NO

(217,2 g/mol). ¹H RMN (CDCl₃) δ : 7.04 (2H, d, J = 9.2 Hz, 3-H, 5-H), 6.59 (2H, d, J = 9.2 Hz, 2-H, 6-H), 5.99-5.89 (1H, m, =CH-), 5.32-5.17 (1H, m, =CH₂), 3.77 (2H, dt, J = 5.2, 1.6 Hz, -CH₂-). ¹³C RMN (CDCl₃) δ : 146.8 (1-C), 140.8 (4-C), 135.0 (=CH-), 122.3 (3-C, 5-C), 120.9 (1C, d, J = 250 Hz, OCF₃), 116.9 (=CH₂), 113.5 (2-C, 6-C), 46.9 (-CH₂-).

- 4.1.4. *N*-Alil-2-metil-3-cloroanilina <u>1</u>d. De 2.00 g (14.1 mmoles) de 2-metil-3-cloroanilina, 1.15 mL (14.1 mmoles) de cloruro de alilo y 4.47 g (42.3 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 50 horas de agitación a 40 °C, se obtuvieron 1.55 g (8.56 mmoles, 59%) de <u>1</u>d, C₁₀H₁₂NCl (181,1 g/mol). ¹H RMN (CDCl₃) δ: 7.04 (1H, t, *J* = 8.0 Hz, 5-H), 6.80 (1H, d, *J* = 8.0 Hz, 6-H), 6.53 (1H, d, *J* = 8.0 Hz, 4-H), 6.04-5.96 (1H, m, =CH-), 5.34-5.21 (1H, m, =CH₂), 3.83 (2H, d, *J* = 5.2 Hz, -CH₂-), 2.25 (3H, s, -CH₃). ¹³C RMN (CDCl₃) δ: 147.3 (1-C), 135.2 (3-C), 134.7 (=CH-), 127.3 (5-C), 119.7 (2-C), 118.2 (6-C), 116.6 (=CH₂), 108.6 (4-C), 46.8 (-CH₂-), 13.6 (-CH₃).
- 4.1.5. *N*-Alil-2,3-dimetilanilina <u>1</u>e. De 1.50 g (12.4 mmoles) de 2,3-dimetilanilina, 1.01 mL (12.4 mmoles) de cloruro de alilo y 3.93 g (37.2 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 50 horas de agitación a temperatura ambiente, se obtuvieron 1.52 g (9.41 mmoles, 76%) de <u>1</u>e, C₁₁H₁₅N (161,2 g/mol). ¹H RMN (CDCl₃) δ: 7.09 (1H, t, *J* = 7.8 Hz, 5-H), 6.67 (1H, d, *J* = 7.5 Hz, 4-H), 6.58 (1H, d, *J* = 8.1 Hz, 6-H), 6.07 (1H, ddt, *J* = 17.1, 10.5, 5.4 Hz, =CH-), 5.36 (1H, dq, *J* = 17.2, 1.6 Hz, =CH_{2trans}), 5.25 (1H, dq, *J* = 10.3, 1.4 Hz, =CH_{2cis}), 3.87 (2H, dt, *J* = 5.4, 1.4 Hz, -CH₂-), 2.36 (3H, s, -CH₃, R²), 2.15 (3H, s, -CH₃, R¹). ¹³C RMN (CDCl₃) δ: 146.1 (1-C), 136.9 (3-C), 136.2 (=CH-), 126.6 (5-C), 120.8 (2-C), 119.9 (4-C), 116.6 (=CH₂), 108.8 (6-C), 47.3 (-CH₂-), 20,2 (-CH₃, R²), 11.5 (-CH₃, R¹).

4.1.6. *N*-Alil-3,5-dimetilanilina <u>1</u>f. De 1.5 g (12.4 mmoles) de 3,5-dimetilanilina, 1.01 mL (12.4 mmoles) de cloruro de alilo y 3.93g (37.2 mmoles) de carbonato de sodio en 25 mL de DMF, y después de 48 horas de agitación a temperatura ambiente, se obtuvieron 1.00 g (6.23 mmoles, 50%) de <u>1</u>f, C₁₁H₁₅N (161,2 g/mol).

4.2. Transposición amino-Claisen de las *N*-alilanilinas <u>1</u>a-f a las 2-alilanilinas <u>2</u>a-f

Figura 4. Estructura general de las 2-alilanilinas 2a-f

Metodología general

En un balón de fondo redondo de 10 mL de volumen, conectado a un condensador provisto con una trampa de humedad, se mezclaron la correspondiente *N*-alilanilina **<u>1</u>a-f** y el ácido de Lewis trifluoruro de boro dietil-éter (BF₃·OEt₂). Por cada mol de *N*-alilanilina se utilizaron 1.2-1.5 moles de BF₃·OEt₂. La mezcla se calentó en un baño de aceite entre 132– 140 °C durante 6-12 horas, después de las cuales se trató con una solución saturada de Na₂CO₃ hasta un pH ligeramente básico (pH \approx 9) y se extrajo con cloroformo (2 x 50 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se filtró y el cloroformo se destiló a presión reducida. El residuo orgánico que quedó se purificó por cromatografía en columna, utilizando como eluente mezclas de heptano:acetato de etilo con aumento gradual del gradiente de la polaridad (70:1, 50:1; 20:1, 10:1). Los productos transpuestos **<u>2</u>a-f** se aislaron como aceites amarillos de baja viscosidad.

4.2.1. 2-Alilanilina <u>2</u>a. De 1.00 g (7.51 mmoles) de la *N*-alilanilina <u>1</u>a en 1.14 mL (9.01 mmoles) de trifluoruro de boro dietil éter y 11 horas de calentamiento a

136 °C, se obtuvieron 0.60 g (4.50 mmoles, 60%) del producto transpuesto **<u>2</u>a**, C₉H₁₁N (133.1 g/mol). ¹H RMN (CDCl₃) δ : 7.11 (1H, td, J = 7.4, 1.4 Hz, 5-H), 7.09 (1H, dd, J = 7.4, 1.4 Hz, 3-H), 6.80 (1H, td, J = 7.4, 1.0 Hz, 4-H), 6.72 (1H, dd, J = 8.0, 0.5 Hz, 6-H), 6.04-5.94 (1H, m, =CH-), 5.18-5.10 (2H, m, =CH₂), 3.68 (2H, s.a., -NH₂), 3.34 (2H, d, J = 6.2 Hz, -CH₂-). ¹³C RMN (CDCl₃) δ : 144.4 (1-C), 135.9 (=CH-), 130.1 (3-C), 127.5 (5-C), 124.1 (2-C), 119.0 (4-C), 116.0 (=CH₂), 115.0 (6-C), 36.4 (-CH₂-).

- 4.2.2. 2-Alil-4-metilanilina <u>2</u>b. De 1.22 g (8.29 mmoles) de la *N*-alil-4-metilanilina <u>1</u>b en 1.26 mL (9.95 mmoles) de trifluoruro de boro dietil éter y 10 horas de calentamiento a 136 °C, se obtuvieron 0.85 g (5.75 mmoles, 79%) del producto transpuesto <u>2</u>b, C₁₀H₁₃N (147,1 g/mol).
- **4.2.3. 2-Alil-4-trifluorometoxianilina** <u>2</u>**c.** De 1.0 g (4.60 mmoles) de la *N*-alil-4-trifluorometoxianilina <u>1</u>**c** en 0.87 mL (6.90 mmoles) de trifluoruro de boro dietil éter y 11 horas de calentamiento a 140 °C, se obtuvieron 0.83 g (3.82 mmoles, 83%) del producto transpuesto <u>2</u>**c**, $C_{10}H_{10}F_3NO$ (217,2 g/mol). ¹H RMN (CDCl₃) δ : 6.94 (1H, d, *J* = 6.0 Hz, 5-H), 6.93 (1H, s, 3-H), 6.65 (1H, d, *J* = 6.0 Hz, 6-H), 5.98-5.88 (1H, m, =CH-), 5.20-5.09 (2H, m, =CH₂), 3.66 (2H, s.a., -NH₂), 3.28 (2H, d, *J* = 6.0 Hz, -CH₂-). ¹³C RMN (CDCl₃) δ : 143.5 (4-C), 141.7 (1-C) 135.0 (=CH-), 125.3 (2-C), 123.1 (3-C), 120.9 (1C, q, *J* = 250, -OCF₃), 120.5 (5-C), 117.0 (=CH₂), 116.3 (6-C), 36.2 (-CH₂-).
- 4.2.4. 6-Alil-2-metil-3-cloroanilina 2d. De 0.97 g (5.39 mmoles) de la *N*-alil-2-metil-3-cloroanilina 1d en 0.81 mL (6.42 mmoles) de trifluoruro de boro dietil éter y 6.5 horas de calentamiento a 132 °C, se obtuvieron 0.68 g (3.77 mmoles, 72%) del producto transpuesto 2d, C₁₀H₁₂NCl (181,1 g/mol). ¹H RMN (CDCl₃) δ: 6.86 (1H, d, *J* = 8.0 Hz, 5-H), 6.80 (1H, d, *J* = 8.0 Hz, 4-H), 5.97-5.89 (1H, m, =CH-), 5.18-5.10 (2H, m, =CH₂), 3.78 (2H, s.a., -NH₂), 3.29 (2H, d, *J* = 6.0

Hz, -CH₂-), 2.27 (3H, s, -CH₃). ¹³C RMN (CDCl₃) δ: 144.3 (1-C), 135.6 (=CH-), 133.1 (3-C), 128.2 (5-C), 121.9 (6-C), 120.0 (2-C), 118.9 (4-C), 116.5 (=CH₂), 36.6 (-CH₂-), 14.0 (-CH₃).

- 4.2.5. 6-Alil-2,3-dimetilanilina <u>2</u>e. De 1.2 g (7.44 mmoles) de la *N*-alil-2,3-dimetilanilina <u>1</u>e en 1.41 mL (11.16 mmoles) de trifluoruro de boro dietil éter y 6.5 horas de calentamiento a 132 °C, se obtuvieron 0.68 g (4.24 mmoles, 57%) del producto transpuesto <u>2</u>e, C₁₁H₁₅N (161,24 g/mol).
- 4.2.6. 2-Alil-3,5-dimetilanilina <u>2f</u>. De 1.2 g (7.44 mmoles) de la *N*-alil-3,5-dimetilanilina <u>1f</u> en 1.41 mL (11.16 mmoles) de trifluoruro de boro dietil éter y 6.5 horas de calentamiento a 132 °C, se obtuvieron 0.99 g (6.13 mmoles, 82%) del producto transpuesto <u>2f</u>, C₁₁H₁₅N (161,24 g/mol). ¹H RMN (CDCl₃) 8: 6.51 (1H, s, 4-H), 6.42 (1H, s, 6-H), 5.92 (1H, ddt, *J* = 17.0, 10.2, 5.6 Hz, =CH-), 5.06 (1H, dq, *J* = 10.4, 1.6 Hz, =CH₂ *cis*), 5.02 (1H, dq, *J* = 17.2, 2.0 Hz, =CH₂ *trans*), 3.59 (2H, s.a., -NH₂), 3.32 (2H, dt, *J* = 5.5, 1.4 Hz, -CH₂-), 2.25 (3H, s, -CH₃, R⁴), 2.24 (3H, s, -CH₃, R²). ¹³C RMN (CDCl₃) 8: 144.9 (1-C), 137.2 (5-C), 136.5 (3-C), 135.1 (-CH=), 121.9 (4-C), 119.5 (6-C), 115.1 (=CH₂), 114.6 (2-C), 31.5 (-CH₂-), 21.0 (-CH₃, R²) 19.7 (-CH₃, R⁴).

4.3. Preparación de las 2-alil-N-(1'-naftilmetil)-anilinas 3a-f

Figura 5. Estructura general de las 2-alil-N-(1'-naftilmetil)-anilinas 3a-f
Metodología general

A) Amino-reducción indirecta de las 2-alilanilinas <u>2</u> a, b, c, f

En un balón de fondo redondo de 250 mL de capacidad, se mezclaron la correspondiente 2-alilanilina $\underline{2}$ a-c, f con el 1-naftalencarbaldehido en ausencia de solvente (relación molar de 1:1, 2-alilanilina:aldehído). La mezcla de reacción se dejó en agitación durante 2-4 horas a temperatura ambiente, obteniéndose un aceite amarillo que corresponde a la base de Schiff, producto de la condensación, el cual sin previa purificación fue inmediatamente reducido.

Cada imina recién preparada, se disolvió en 50 mL de metanol anhidro, con agitación constante y en baño de hielo lentamente se adicionó en pequeñas porciones, el agente reductor borohidruro de sodio (relación molar 1:3, imina:borohidruro de sodio). Terminada la adición del agente reductor, la mezcla de reacción se llevó a temperatura ambiente y se agitó durante 10 horas adicionales. Después de este tiempo, se adicionaron 80 mL de agua y la mezcla se calentó entre 50-60°C durante 6 horas, al cabo de las cuales se extrajo con cloroformo (3 x 50 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se filtró y el solvente fue destilado a presión reducida. El residuo orgánico se purificó por cromatografía en columna, empleando como eluente una mezcla de heptano:acetato de etilo, con aumento gradual de la polaridad (90:1, 80:1, 70:1). Las 2-alil-N-(1'-naftilmetil)-anilinas **3 a-c, f** se aislaron como aceites viscosos de color amarillo.

B) N-Alquilación de las 2-alilanilinas 2 a, b, d, e

En un balón de fondo redondo de 100 mL de capacidad sumergido en un baño de aceite se depositó la respectiva 2-alilanilina disuelta en 25 mL de dimetilformamida (DMF). Luego se adicionó carbonato de sodio, una cantidad apreciable de yoduro de potasio (KI), y en agitación constante se goteó lentamente el 1-clorometilnaftaleno disuelto en 5 mL de dimetilformamida (relación molar 1:1:2, 2-alilanilina:1-clorometilnaftaleno:carbonato de sodio). La mezcla de reacción se calentó entre 30–50°C durante 8-24 horas. Transcurrido

este tiempo, la masa de reacción se vertió en un vaso con suficiente agua (300 mL) y se extrajo con cloroformo (4 x 50 mL). La fase orgánica se lavó 6 veces con suficiente agua, se secó sobre sulfato de sodio anhidro, se filtró y el solvente se destiló a presión reducida. El residuo orgánico remanente se purificó por cromatografía en columna, utilizando como eluente mezclas de heptano:acetato de etilo con aumento gradual de polaridad (90:1, 80:1, 70:1). Las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>3</u> a,b,d,e se aislaron como aceites viscosos de color amarillo.

4.3.1 2-Alil-N-(1'-naftilmetil)-anilina <u>3</u>a. A) De 1.10 g (8.26 mmoles) de la 2-alilanilina <u>2</u>a y 1.13 mL (1.29 g, 8.26 mmoles) de 1-naftalencarbaldehido en agitación constante durante 4 horas y la posterior adición de 0,47 g (12.3 mmoles) de borohidruro de sodio (relación molar utilizada 1:1.5, imina:NaBH₄) en 80 mL de metanol, se obtuvieron 1.64 g (6.0 mmoles, 72%) de <u>3</u>a, C₂₀H₁₉N (273.15 g/mol).

B) De 0.91 g (6.84 mmoles) de la 2-alilanilina <u>2</u>**a**, 1.20 g (6.84 mmoles) de 1-clorometilnaftaleno y 1.45 g (13.68 mmoles) de carbonato de sodio en 25 mL de DMF, después de 6 horas de agitación a 30 °C, se obtuvieron 0.84 g (3.07 mmoles, 45%) de **3a**.

4.3.1. 2-Alil-4-metil-N-(1'-naftilmetil)-anilina <u>3</u>b. A) De 0.99 g (6.72 mmoles) de la 2-Alil-4-metilanilina <u>2</u>b y 0.92 mL (1.05 g, 6.72 mmoles) de 1-naftalencarbaldehido en agitación constante durante 2.5 horas y la posterior adición de 0,19 g (5.19 mmoles) de borohidruro de sodio (relación molar utilizada 1:1.25, imina:NaBH₄) en 80 mL de metanol, se obtuvieron 1.71 g (5.96 mmoles, 89%) de <u>3</u>b, C₂₁H₂₁N (287.17 g/mol).

B) De 1.23 g (8.36 mmoles) de la 2-alil-4-metilanilina **<u>2</u>b**, 1.47 g (8.36 mmoles) de 1-clorometilnaftaleno y 1.77 g (16.72 mmoles) de carbonato de sodio en 25 mL de DMF, después de 4 horas de agitación a 30 °C, se obtuvieron 1.0 g (3.48 mmoles, 41.7%) de **<u>3</u>b**.

- 4.3.2. 2-Alil-4-trifluorometoxi-N-(1-naftilmetil)-anilina <u>3</u>c. De 0.78 g (3.63 mmoles) de la 2-Alil-4-trifluorometoxianilina <u>2</u>c y 0.50 mL (0.56 g, 3.63 mmoles) de 1-naftalencarbaldehido en agitación constante durante 8 horas y la posterior adición de 0,41 g (10.89 mmoles) de borohidruro de sodio (relación molar utilizada 1:3, imina:NaBH₄) en 80 mL de metanol, se obtuvieron 1.93 g (5.40 mmoles, 82%) de <u>3</u>c, C₂₁H₁₈F₃NO (357.13 g/mol).
- 4.3.3. 6-Alil-2-metil-3-cloro-N-(1-naftilmetil)-anilina <u>3</u>d. De 1.19 g (6.62 mmoles) de la 6-alil-2-metil-3-cloroanilina <u>2</u>d, 1.17 g (6.62 mmoles) de 1-clorometilnaftaleno y 1.4 g (13.23 mmoles) de carbonato de sodio en 25 mL de DMF, después de 8 horas de agitación a 50 °C, se obtuvieron 1.00 g (3.13 mmoles, 47%) de <u>3</u>d, C₂₁H₂₀ClN (321.13 g/mol).
- 4.3.4. 6-Alil-2,3-dimetil-N-(1-naftilmetil)-anilina <u>3</u>e. De 0.95 g (5.86 mmoles) de la 6-alil-2,3-dimetilanilina <u>2</u>e, 1.04 g (5.86 mmoles) de 1-clorometilnaftaleno y 0.62 g (5.86 mmoles) de carbonato de sodio en 25 mL de DMF, después de 20 horas de agitación a 70 °C, se obtuvieron 1.18 g (3.91 mmoles, 67%) de <u>3</u>e, C₂₁H₂₀ClN (321.13 g/mol).
- 4.3.5. 2-Alil-3,5-dimetil-*N*-(1-naftilmetil)-anilina <u>3</u>f. De 0.70 g (4.37 mmoles) de la 2-Alil-3,5-dimetilanilina <u>2</u>f y 0.60 mL (0.68 g, 4.37 mmoles) de 1-naftalencarbaldehido en agitación constante durante 3 horas y la posterior adición de 0,50 g (13.11 mmoles) de borohidruro de sodio (relación molar utilizada 1:3, imina:NaBH₄) en 80 mL de metanol, se obtuvieron 0.99 g (3.28 mmoles, 75%) de <u>3</u>f, C₂₂H₂₃N (301.42 g/mol).

4.4. Preparación de los 2-*exo*-(1'naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepinas 4a-f

Figura 6. Estructura general de las exo-1,4-epoxitetrahidro-2-(1'-naftil)-1-benzoazepinas 4a-f

Metodología general

En un balón de fondo redondo de 50 mL de capacidad, se disolvieron las respectivas 2-alil-*N*-(1'-naftilmetil)-anilina **<u>3</u>a-f** en 20 mL de metanol. Luego, en agitación constante y con enfriamiento en baño de hielo, se agregaron cantidades catalíticas (7% molar) de tungstanato de sodio dihidratado y, gota a gota, solución de peróxido de hidrógeno al 30% (relación molar 1:3, amina:peróxido). Cada mezcla se dejó en agitación constante a temperatura ambiente durante 3 días, al cabo de los cuales, la masa de reacción se extrajo con acetato de etilo (3 x 50 mL). El extracto orgánico se lavó con suficiente agua para eliminar el catalizador y luego se secó sobre sulfato de sodio anhidro. El solvente se destiló a presión reducida y el crudo de la reacción se disolvió en 25 mL de tolueno anhidro. Cada solución se calentó a temperaturas entre 40-60 °C durante 6-24 horas. Terminado este tiempo, el tolueno se destiló a presión reducida y el residuo orgánico se purificó por cromatografía en columna, empleando como eluente una mezcla de heptano:acetato de etilo, con aumento gradual de la polaridad (50:1, 30:1, 10:1).

4.4.1. 2-exo-(1'-naftil)-1,4-epóxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>a. De 1.48 g (5.39 mmoles) de la amina <u>3</u>a disueltos en 20 mL de metanol, 124.66 mg (0,37mmoles) de Na₂WO₄·2H₂O y 1.83 mL (16.17 mmoles) de peróxido de hidrógeno al 30% se obtuvieron 1.04 g (3.62 mmoles, 67%) del cicloaducto isoxazolidínico <u>4</u>a, C₂₀H₁₇NO (287.13 g/mol), cristales blancos, P.f. (no corregido) 129-130 °C.

- 4.4.2. 7-metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>b. De 1.77 g (5.74 mmoles) de la amina <u>3</u>b disueltos en 20 mL de metanol, 132.62 mg (0,40 mmoles) de Na₂WO₄·2H₂O y 1.95mL (17.23 mmoles) de peróxido de hidrógeno al 30% se obtuvieron 0.89 g (2.89 mmoles, 52%) del cicloaducto isoxazolidínico <u>4</u>b, C₂₁H₁₉NO (301.15 g/mol), cristales blancos, P.f. (no corregido) 190-191 °C.
- 4.4.3. 7-Trifluorometoxi-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina
 <u>4</u>c. De 1.4 g (3.92 mmoles) de la amina <u>3</u>c disueltos en 20 mL de metanol, 90.5 mg (0,27 mmoles) de Na₂WO₄·2H₂O y 1.77 mL (15.7 mmoles) de peróxido de hidrógeno al 30%, se obtuvieron 1.01 g (2.72 mmoles, 69%) del cicloaducto <u>4</u>c, C₂₁H₁₆F₃NO₂ (371.35 g/mol); cristales blancos, P.f. (no corregido) 124-125 °C.
- 4.4.4.8-Cloro-9-metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>d. De 0.93 g (2.89 mmoles) de la amina <u>3</u>d disueltos en 20 mL de metanol, 66.8 mg (0,20 mmoles) de Na₂WO₄'2H₂O y 1.31mL (11.57 mmoles) de peróxido de hidrógeno al 30% se obtuvieron 0.41 g (1.24 mmoles, 43%) del cicloaducto isoxazolidínico <u>4</u>d, C₂₁H₁₈NClO (335.83 g/mol), cristales blancos, P.f. (no corregido) 180-181 °C.
- 4.4.5 8,9-Dimetil-2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>e. De 0.90 g (2.99 mmoles) de la amina <u>3</u>e disueltos en 20 mL de metanol, 66.8 mg (0,21mmoles) de Na₂WO₄:2H₂O y 1.35mL (11.96 mmoles) de peróxido de hidrógeno al 30% se obtuvieron 0.47 g (1.48 mmoles, 48%) del cicloaducto isoxazolidínico <u>4</u>e, C₂₂H₂₁NO (315.41 g/mol), cristales blancos, P.f. (no corregido) 219-220 °C.
- 4.4.6 6,8-Dimetil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>f. De 1.2 g (3.98 mmoles) de la amina <u>3</u>f disueltos en 20 mL de metanol, 92.0 mg (0,28 mmoles) de Na₂WO₄·2H₂O y 1.80mL (15.92 mmoles) de peróxido de hidrógeno al 30% se obtuvieron 0.76 g (2.40 mmoles, 60%) del cicloaducto isoxazolidínico <u>4</u>f, C₂₂H₂₁NO (315.41 g/mol), cristales blancos, P.f. (no corregido) 154-155 °C.

4.5. Obtención de las *cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)benzoazepinas <u>5</u>a-f

Figura 7. Estructura general de las *cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepinas <u>5</u>a-f

Metodología general

En un balón de fondo redondo de 50 mL de capacidad, se depositaron el respectivo cicloaducto isoxazolidínico **4a-f** y 10–15 mL de ácido acético glacial. A esta mezcla se adicionaron 8 moles de zinc en polvo por cada mol del cicloaducto empleado. La mezcla de reacción se calentó entre 60–65°C durante 2-4 horas, al cabo de las cuales se enfrió a temperatura ambiente, se trató con una solución de hidróxido de potasio hasta obtener un pH básico (pH \approx 8), y se extrajo con acetato de etilo (3 x 50 mL). La fase orgánica se secó sobre sulfato de sodio anhidro, se filtró y el acetato de etilo se destiló a presión reducida. El residuo orgánico que quedó se purificó por cromatografía en columna, utilizando como eluente una mezcla de heptano:acetato de etilo con aumento gradual de la polaridad (10:1, 5:1, 2:1). Las tetrahidro-1-benzoazepinas fueron aisladas como sustancias sólidas de color blanco, exceptuando la tetrahidro-1-benzoazepina <u>5</u>c que se aisló como una sustancia vítrea de color amarillo.

4.5.1. cis-4-Hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-benzoazepina 5a. De 0.26 g (0.90 mmoles) del cicloaducto isoxazolidínico 4a en 15 mL (262 mmoles) de ácido acético glacial y 0.47 g (7,2 mmoles) de zinc en polvo, se obtuvieron 0.23 g (0.79 mmoles, 88%) de la tetrahidro-1-benzoazepina 5a, C₂₀H₁₉NO (289.37 g/mol); cristales blancos, P.f. (no corregido) 139-140 °C.

4.5.2. 7-Metil-cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-benzoazepina

<u>5</u>b. De 0.35 g (1.16 mmoles) del cicloaducto isoxazolidínico **<u>4</u>b** en 15 mL (262 mmoles) de ácido acético glacial y 0.60 g (9.28 mmoles) de zinc en polvo, se obtuvieron 0.34 g (1.13 mmoles, 97%) de la tetrahidro-1-benzoazepina **<u>5</u>b**, $C_{21}H_{21}NO$ (303.4 g/mol); cristales blancos, P.f. (no corregido) 117-118°C.

4.5.3. 7-Trifluorometoxi-cis-4-hidroxi-2-(1'-naftil)-2,3,4,5.tetrahidro-1(1H)-

benzoazepina <u>5</u>**c.** De 0.27 g (0.73 mmoles) del cicloaducto isoxazolidínico 4d en 15 mL (262 mmoles) de ácido acético glacial y 0.38 g (5.84 mmoles) de zinc en polvo, se obtuvieron 0.24 g (0.64 mmoles, 88%) de la tetrahidro-1-benzoazepina 5c, $C_{21}H_{18}F_3NO_2$ (373.4 g/mol). Sustancia vítrea.

4.5.4. 8-Cloro-9-metil-cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-

benzoazepina <u>5</u>**d**. De 0.15 g (0.44 mmoles) del cicloaducto isoxazolidínico <u>4</u>**c** en 15 mL (262 mmoles) de ácido acético glacial y 0.23 g (3.52 mmoles) de zinc en polvo, se obtuvieron 0.06 g (0.16 mmoles, 37%) de la tetrahidro-1benzoazepina <u>5</u>**d**, $C_{21}H_{20}CINO$ (337.8 g/mol), P.f. (no corregido) 193-194°C.

4.5.5. 8,9-Dimetil-cis-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-

benzoazepina <u>5</u>e. De 0.18 g (0.57 mmoles) del cicloaducto isoxazolidínico <u>4</u>e en 15 mL (262 mmoles) de ácido acético glacial y 0.30 g (4.57 mmoles) de zinc en polvo, se obtuvieron 0.06 g (0.17 mmoles, 30%) de la tetrahidro-1-benzoazepina <u>5</u>e, $C_{22}H_{23}NO$ (317.4 g/mol), P.f. (no corregido) 183-184°C.

4.5.6. 6,8-dimetil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepina
<u>5</u>f. De 0.22 g (0.69 mmoles) del cicloaducto isoxazolidínico <u>4</u>f en 15 mL (262 mmoles) de ácido acético glacial y 0.36 g (5.52 mmoles) de zinc en polvo, se

obtuvieron 0.15 g (0.47 mmoles, 70%) de la tetrahidro-1-benzoazepina $\underline{5}f$, C₂₂H₂₃NO (317.4 g/mol), P.f. (no corregido) 65-66°C.

5. DISCUSIÓN DE RESULTADOS

En esta sección se presenta un análisis de los resultados obtenidos durante la realización de cada una de las etapas que constituyen la ruta de síntesis empleada. Como se verá a continuación, gran parte del análisis está dedicado a la elucidación estructural de los productos intermedios y finales de interés.

En el esquema 5 se muestra la ruta general de síntesis utilizada para la construcción de las nuevas moléculas propuestas. En este esquema se observan también dos rutas convergentes para acceder a los precursores claves, las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>3</u>a-f. Este enfoque sintético constituye una ventaja ya que permite usar diferentes clases de reactivos y, por ende, diferentes metodologías para obtener los precursores estratégicos, a partir de los cuales es posible acceder a los productos finales objeto de investigación del presente proyecto de grado.

Esquema 5. Ruta de síntesis empleada para acceder a las nuevas 2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepinas 4a-f y *cis*-2-(1'-naftil)-4-hidroxi-2,3,4,5-tetrahidro-1(1*H*)-benzoazepinas 5a-f

5.1. Preparación de las N-alilanilinas <u>1</u>a-f

Las *N*-alilanilinas de partida <u>1</u>**a**-**f**, resultaron de la reacción de *N*-alilación de las anilinas polifuncionalizadas seleccionadas, con el cloruro de alilo como agente alquilante y DMF anhidra como solvente, en presencia de carbonato de sodio (Na₂CO₃) y a temperaturas entre 40-50°C (Esquema 6). Debido a la poca reactividad del cloruro de alilo, fue necesaria la adición de pequeñas cantidades de yoduro de potasio a la mezcla de reacción. De esta manera, se genera primero yoduro de alilo, el cual reacciona más fácilmente con la anilina debido a que el yoduro es mejor nucleófugo que el cloruro, favoreciendo así la sustitución nucleofilica bimolecular.

En las condiciones de reacción utilizadas, fue muy difícil controlar la formación de productos de doble *N*-alquilación; las características físicas y espectroscópicas de estos productos no se reportan en el presente trabajo debido a que no representan ningún interés para el logro de los objetivos planteados.

Esquema 6. N-Alilación de las anilinas seleccionadas. Preparación de las N-alilanilinas 1a-f.

Las *N*-alilanilinas <u>1</u>a-f fueron purificadas por cromatografía en columna, utilizando como eluente una mezcla de heptano:acetato de etilo, con aumento gradual del gradiente de la polaridad (80:1, 40:1, 20:1), se obtuvieron como aceites amarillos de baja viscosidad con rendimientos del 76-50%. La caracterización estructural de estas *N*-alilanilinas se realizó por espectroscopia de infrarrojo y espectrometría de masas.

En los espectros de IR (anexo 1.1) se puede observar claramente la banda de absorción de la vibración de tensión del grupo N-H en 3447-3408 cm⁻¹, característica de aminas secundarias, así como las bandas de absorción de mediana intensidad correspondientes al fragmento alílico: la vibración de tensión del enlace C=C en 1646-1642 cm⁻¹ y la vibración de flexión de fuera del plano del enlace =C-H en 920-917 cm⁻¹. Los rendimientos y las bandas de absorción características en los espectros de infrarrojo de estos compuestos se reportan en la tabla 1.

		Bandas de abs	sorción (cm ⁻¹)		Rendimiento
Compuesto	Vib. T.A.	Vib. T. C=C	Vib. T. C=C	Vib. F. C=H	(%)
	N-H	alílico	aromático	alílico	
<u>1</u> a	3413	1644	1603	919	53
<u>1</u> b	3411	1642	1617	918	52
<u>1</u> c	3428	1646	1613	918	76
<u>1</u> d	3447	1644	1598	920	59
<u>1</u> e	3438	1643	1591	917	76
<u>1</u> f	3408	1643	1603	920	50

 Tabla 1. Rendimientos y bandas de absorción características en los espectros de IR de las N-alilanilinas

 1a-f

En los espectros de masas (anexo 1.2), se registran los picos de alta intensidad (91-100 %) de los iones moleculares que corresponden a las formulas condensadas y que confirman la formación de las *N*-alilanilinas. La principal fragmentación que experimentan los iones moleculares involucra al fragmento alilo, siendo la pérdida de 27 unidades la que da origen a los iones fragmento (picos de base) con una relación masa carga (m/z) de 106 y 190 para los compuestos **1a** y **1c**. Para los derivados **1b**, **d-f**, sus iones moleculares también representan los iones picos de base. En el esquema 7 se presentan las posibles rutas de fragmentación de los iones moleculares de **1a-f**, mientras que en la tabla 2 se relacionan los iones más característicos registrados en los espectros de masas y sus intensidades relativas.

Esquema 7. Posible patrón de fragmentación de los iones moleculares de las N-alilanilinas <u>1</u>a-f

$ \begin{array}{c} \text{IONES (I, \%)} \\ R_3 \\ R_2 \\ R_1 \\ R_1 \\ H \end{array} \bullet + $														
Compuesto	M *+	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5								
<u>1</u> ^a	133 (99)	106 (100)	104 (32)	92 (12)	77 (62)	65 (32)								
<u>1</u> b	147 (100)	120 (90)	118 (22)	106 (22)	91 (34)	79 (19)								
<u>1</u> c	217 (91)	190 (100)	188 (27)	176 (18)	161 (6)	149 (11)								
<u>1</u> d	$181(100)^{*}$	154 (93)	152 (37)	140 (52)	125 (11)	113 (3)								
<u>1</u> e	161 (100)	134 (69)	132 (44)	120 (71)	105 (14)	93 (6)								
<u>1</u> f	161 (100)	134 (99)	132 (19)	120 (8)	105(22)	93 (8)								

Tabla 2. Iones característicos (m/z) y sus intensidades relativas (%) en los espectros de masas de las *N*-alilanilinas <u>1</u>a-f

^{*} Relativo al isótopo de ³⁵Cl

5.2 Transposición amino-Claisen de las N-alilanilinas <u>1</u>a-f a las 2-alilanilinas <u>2</u>a-f

Una vez obtenidas y caracterizadas, las *N*-alilanilinas <u>1</u>**a-f**, fueron transformadas en sus respectivos regioisómeros <u>2</u>**a-f** a través de un proceso de reordenamiento amino-Claisen, que tuvo lugar cuando las primeras se calentaron entre 136-142°C durante 6-12 horas en la presencia del ácido de Lewis trifluoruro de boro dietil éter, el cual actúa como catalizador y al mismo tiempo como solvente de la reacción^{55,56} (Esquema 8).

Esquema 8. Preparación de las 2-alilanilinas 2a-f

Teniendo en cuenta los ensayos realizados previamente para encontrar las condiciones optimas de reacción, se pudo establecer que los mejores rendimientos se obtienen cuando se emplea un exceso de 0.2-0.5 equivalentes del catalizador ácido. Los productos transpuestos **2a-f** se aislaron como aceites amarillos de baja viscosidad y con rendimientos del 83-57%.

Los espectros de IR (anexo 2.1) de estos compuestos evidencian las bandas de absorción características de las 2-alilanilinas esperadas como, por ejemplo, las vibraciones de tensión asimétrica y simétrica del enlace N-H, características de una amina primaria, que están localizadas en la región de 3482-3443 cm⁻¹ y 3399-3365 cm⁻¹, respectivamente; también se observan las bandas de absorción que genera el fragmento alilo: la vibración de tensión del enlace C=C en 1631-1620 cm⁻¹, y la banda de vibración de flexión fuera del plano del enlace =C-H en 920-913 cm⁻¹. En la tabla 3 se reportan los rendimientos y las bandas de absorción características en los espectro de IR de las 2-alilanilinas preparadas.

		F	Bandas de absorci	ón (cm ⁻¹)		Rendimiento
Compuesto	Vib. T.A.	Vib. T.S. N-	Vib. T. C=C	Vib. T. C=C	Vib. FC=H	(%)
	N-H	Н	alílico	aromático	alílico	
<u>2</u> a	3451	3372	1620	1493	916	60
<u>2</u> b	3443	3365	1631	1507	913	79
<u>2</u> c	3466	3387	1628	1504	920	83
<u>2</u> d	3482	3399	1622	1473	917	72
<u>2</u> e	3470	3388	1621	1493	913	57
<u>2</u> f	3446	3368	1621	1494	913	82

 Tabla 3. Rendimientos y bandas de absorción características en los espectros de IR de las 2-alilanilinas

 2a-f

Los espectros de masas corroboran la formación de los productos transpuestos (anexo 2.2), al registrar los picos de los iones moleculares correspondientes a sus formulas condensadas. Los iones moleculares de estos compuestos, que a su vez son los iones picos de base, presentan un particular reordenamiento que da origen, muy posiblemente, a una estructura cíclica de tipo 2-metildihidroindolinio, a partir de la cual tiene lugar una ruptura β con respecto al nitrógeno, con pérdida del grupo metilo, lo que condiciona la formación de los iones fragmentos Φ_1 de mediana y alta intensidades. Esta ruta de fragmentación permite diferenciar los productos transpuestos de sus precursores, ya que en los espectros de los últimos no se presenta la pérdida de 15 unidades. En la tabla 4 se registran los iones característicos y sus intensidades relativas presentes en los espectros de masas, y en el esquema 9 se propone el posible patrón de fragmentación de los iones moleculares de **2a-f**.

$R_{3} \xrightarrow{R^{4}} NH_{2}$														
Compuesto	M •+	Φ_1	Φ_2	Φ_3	Φ_4									
<u>2</u> a	133 (100)	118 (67)	106 (43)	132 (59)	117 (30)									
<u>2</u> b	147 (100)	132 (81)	120 (25)	132 (81)	117 (21)									
<u>2</u> c	217 (100)	202 (35)	190 (22)	132(48)	100 (22)									
<u>2</u> d	$181(100)^*$	166 (59)	154 (35)	146 (47)	131 (96)									
<u>2</u> e	161 (100)	146 (87)	134 (26)	146 (87)	131 (43)									
<u>2</u> f	161 (100)	146 (94)	134 (42)	146 (94)	131 (46)									

Tabla 4. Iones característicos (m/z) y sus intensidades relativas (%) en los espectros de masas de las 2alilanilinas <u>2</u>a-f

^{*} Relativo al isótopo de ³⁵Cl

Esquema 9. Posible patrón de fragmentación de los iones moleculares de las 2-alilanilinas <u>2</u>a-f

5.3 Preparación de las 2-alil-N-(1'-naftilmetil)-anilinas 3a-f

La síntesis de las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>**3**</u> \mathbf{a} -**f** se llevó a cabo utilizando dos metodologías: la metodología **A** que consiste en una reacción de aminación reductiva indirecta del 1-naftalencarbaldehido con las 2-alilanilinas y un agente reductor apropiado (Esquema 10), y la metodología **B** que se basa en la reacción de mono-*N*-naftilación de 2-alilanilinas (Esquema 12).

Las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>3</u> a-c, f fueron los productos que resultaron de la correspondiente amino-reducción indirecta del 1-naftalencarbaldehido con las 2-alilanilinas <u>2</u>a-c, f, usando borohidruro de sodio como agente reductor. Estas aminas secundarias se aislaron como aceites viscosos de color amarillo con rendimientos entre el 89-72%.

Esquema 10. Metodología A: Amino-reducción indirecta del 1-naftalencarbaldehido con las 2-alilanilinas <u>2</u> a-c, f

La reacción entre aldehídos o cetonas y aminas primarias en presencia de agentes reductores es conocida como amino-reducción, y es una herramienta muy utilizada en las síntesis de diferentes tipos de aminas. La amino-reducción es directa cuando se mezcla la amina con el compuesto carbonílico y el agente reductor en el mismo reactor, y es considerada indirecta cuando la reacción implica la previa formación de la imina con posterior reducción, en dos pasos separados.⁵⁷ El borohidruro de sodio (NaBH₄) es un agente reductor económico, de fácil manipulación, ambientalmente amigable y muy empleado en la obtención de aminas secundarias. Su acción reductora se debe a que en el medio de reacción libera iones hidruro altamente básicos que están habilitados para realizar un ataque nucleofílico sobre el carbono electrodeficiente del grupo imino, lo que provoca el desplazamiento de un par de electrofilos, que en este caso son los protones provenientes de un solvente prótico como, por ejemplo, metanol (Esquema 11).⁵⁸

Esquema 11. Mecanismo de la reducción de iminas con NaBH₄

De este mecanismo simplificado queda claro que los sustituyentes del nitrógeno y del carbono no deben ser muy voluminosos porque pueden impedir la acción reductora del NaBH₄. La anterior suposición fue el principal factor estructural que se tuvo en cuenta cuando se analizó la manera cómo se accedería a las 2-alil-N-(1'naftilmetil)anilinas sustituidas en las posiciones 2 y 6 del anillo de benceno. Debido a los posibles inconvenientes al intentar reducir las correspondientes aldiminas, fue que surgió como alternativa la metodología **B** (Esquema 12).

Así, las 2-alilanilinas $\underline{2}$ d, e fueron sometidas a una reacción de *N*-alquilación con el 1-clorometilnaftaleno, que permitió la obtención de las correspondientes 2-alil-*N*-(1'-

naftilmetil)-anilinas <u>3</u> d, e. Esta reacción se llevó a cabo en la presencia de carbonato de sodio y empleando DMF anhidra como solvente. Para agilizar el proceso de sustitución nucleofilica se adicionó a la mezcla de reacción pequeñas cantidades de yoduro de potasio (KI). Las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>3</u> d, e fueron purificadas por cromatografía en columna, utilizando como eluente una mezcla de heptano:acetato de etilo, con aumento gradual del gradiente de la polaridad (90:1, 80:1, 70:1), se obtuvieron como aceites viscosos de color amarillo con rendimientos del 47 y 67%, respectivamente.

Esquema 12. Metodología B: mono-N-naftilación de las 2-alilanilinas 2 d, e

En las condiciones de reacción utilizadas, al igual que en la preparación de las mono-*N*alilanilinas, la formación de productos de doble alquilación en este caso las *N*,*N*-di(1'naftilmetil)anilinas, fue difícil de controlar, alcanzando una proporción significativa (15-20%) de la conversión total de las 2-alilanilinas. La identidad de los productos de la doble *N*-naftilación se determinó únicamente por espectrometría de masas y espectroscopia de infrarrojo, sin embargo, estos datos no se reportan porque no constituyen ningún interés para los propósitos empleados.

Los espectros de IR (Anexo 3.1) de <u>3</u>a-f evidencian la formación de las aminas secundarias esperadas, al revelar, en primera instancia, la desaparición de las bandas de tensión asimétrica y simétrica que caracterizan al enlace N-H de una amina primaria, y la aparición de una banda de absorción aguda, en 3434-3370 cm⁻¹, que representa la vibración de tensión asimétrica del grupo amino secundario (-NH-). Al analizar con detenimiento estos espectros, se pueden apreciar en 1637-1634 cm⁻¹ y 920-912 cm⁻¹, las bandas de absorción propias del fragmento alílico. En la tabla 5 se registran los rendimientos y las principales bandas de absorción encontradas en los espectros de IR de las 2-alil-*N*-(1'-naftilmetil)-anilinas <u>3</u>a-f.

		Ba	ndas de absorción	(cm^{-1})		Rendimientos
Compuesto	Vib. T.A.	Vib. T.	Vib. F. –C=H	Vib. T. =C-	Vib. T. C=C	(%)
compuesto	N-H	C=C	alílico	H aromático	aromático	(70)
		alílico				
<u>3</u> a	3433	1636	914	3046	1509	72
<u>3</u> b	3424	1635	913	3058	1513	89
<u>3</u> c	3434	1637	920	3065	1514	82
<u>3</u> d	3374	1636	916	3058	1510	47
<u>3</u> e	3370	1636	914	3055	1509	67
<u>3</u> f	3430	1634	912	3051	1510	75

Tabla 5. Rendimientos y bandas de absorción características en los espectro IR de los compuestos 3a-f

Los espectros de masas (Anexo 3.2) también corroboran la formación de los productos **<u>3</u>a-f**, al registrar los picos de los iones moleculares que coinciden con los pesos de sus formulas condensadas. La principal fragmentación de los iones moleculares de **<u>3</u>a-f**, es la ruptura α al nitrógeno con la formación de los iones fragmento del tipo dihidroquinolinio Φ_1 y benzotropilio Φ_2 . Este último, con una relación masa-carga *m/z* de 141 unidades, es el ion pico de base en los fragmentogramas, y el responsable de la aparición del ion fragmento indenilo Φ_3 , al perder una molécula de acetileno (Esquema 13). En la tabla 6 se reportan los iones más característicos y sus intensidades relativas en los espectros de masas de estos compuestos.

Tabla 6. Iones característicos (m/z) y sus intensidades relativas (%) en los espectros de masas de las2-alil-N-(1'-naftilmetil)-anilinas <u>3</u>a-f

IONES (I, %)													
R^{4} R^{2} R^{1} H R^{2}													
Compuesto	M •+	*	_										
compuesto	IVI	Φ_1	Φ_2	Φ_3									
<u><u>3</u>a</u>	273 (16)	Φ ₁ 132 (28)	Φ ₂ 141 (100)	Φ ₃ 115 (37)									
<u><u>3</u>a <u><u>3</u>b</u></u>	273 (16) 287 (16)	Φ ₁ 132 (28) 146 (28)	Φ ₂ 141 (100) 141 (100)	Φ ₃ 115 (37) 115 (28)									
<u>3a</u> <u>3b</u> <u>3</u> c	273 (16) 287 (16) 357 (4)	Φ1 132 (28) 146 (28) 216 (7)	Φ ₂ 141 (100) 141 (100) 141 (100)	Φ ₃ 115 (37) 115 (28) 115 (23)									
<u>3a</u> <u>3b</u> <u>3c</u> <u>3</u> d	273 (16) 287 (16) 357 (4) 321 (3)*	Φ1 132 (28) 146 (28) 216 (7) 180 (13)	Φ ₂ 141 (100) 141 (100) 141 (100) 141 (100)	Φ ₃ 115 (37) 115 (28) 115 (23) 115 (28)									
	$ \begin{array}{r} 1 \\ 273 (16) \\ 287 (16) \\ 357 (4) \\ 321 (3)^* \\ 301 (10) \\ \end{array} $	$\begin{array}{c c} \Phi_1 \\ \hline 132 (28) \\ \hline 146 (28) \\ \hline 216 (7) \\ \hline 180 (13) \\ \hline 160 (40) \\ \end{array}$	Φ₂ 141 (100) 141 (100) 141 (100) 141 (100) 141 (100) 141 (100)	Φ ₃ 115 (37) 115 (28) 115 (23) 115 (28) 115 (28) 115 (31)									

* Relativo al isótopo de ³⁵Cl

Esquema 13. Posible patrón de fragmentación de los iones moleculares de las 2-alil-*N*-(1'-naftilmetil)anilinas <u>3</u>a-f

Las estructuras de <u>3</u>a-f quedaron plenamente confirmadas con el análisis detallado de sus espectros de RMN ¹H (anexo 3.3) y RMN ¹³C (anexo 3.4), y los de correlaciones homonuclear COSY ¹H-¹H (anexo 3.5) y heteronuclear HMBC y HSQC.

La aparición de las señales correspondientes a los protones del anillo de naftaleno en la región aromática de los espectros de RMN ¹H de estos compuestos, es la principal evidencia que indica que tanto la amino-reducción indirecta como la alquilación de las 2-alilanilinas **2a-f**, se llevaron a cabo con éxito. En el intervalo comprendido entre 8.13 y 7.45 ppm de los espectros de RMN ¹H de **3a-f**, se registran señales con diferentes multiplicidades que integran para los siete protones del anillo de naftaleno, y entre 7.26 y 7.53 ppm resuenan los protones del anillo de benceno.

Desplazadas hacia campo más alto, se encuentran las señales pertenecientes a los protones del fragmento alílico. Entre 3.32-3.25 ppm se observa un doblete que fue asignado a los protones del grupo metilénico (- CH_2 -), las señales con forma de multiplete o de doblete de cuartete de los protones metilénicos terminales (= CH_AH_B) se encuentran localizadas en el

intervalo de 5.08-4.88 ppm, y el protón metínico (-CH=) que resuena como un dobletedoblete-triplete entre 5.96-5.84 ppm. En la región intermedia de los espectro, en 4.80-4.53 ppm, también se puede observar la aparición de un singulete angosto que es generado por los protones metilénicos que conectan al átomo de nitrógeno con el anillo de naftaleno. El hecho de que estos protones resuenen a campo intermedio se debe al efecto anisotrópico de desprotección que ejerce el nitrógeno electronegativo sobre ellos. Las anteriores señales se pueden visualizar en el espectro de RMN ¹H del derivado <u>3</u>f que se reproduce en la figura 8.

Los desplazamientos químicos y las constantes de acoplamiento de los protones presentes en las 2-alil-N-(1'-naftilmetil)anilinas **<u>3</u>a-f** se reportan en la tabla 7.

Figura 8. Espectro de RMN¹H de la 2-Alil-3,5-dimetil-*N*-(1'-naftilmetil)-anilina <u>3</u>f

Los espectros bidimensionales COSY 1 H, 1 H permitieron establecer las correlaciones geminales y vecinales de los protones alílicos, así como las de los protones aromáticos pertenecientes al anillo de benceno y naftaleno, correlaciones que facilitaron la correcta asignación de los desplazamientos químicos de todos los protones. En la figura 9 se reproduce una expansión de la zona aromática del espectro COSY 1 H, 1 H de la amina <u>3</u>f, en

la que se aprecian las correlaciones vecinales que presentan los protones del naftaleno: el protón 8'-H con el 7'-H (línea azul), el protón 5'-H con el 6'-H (línea amarilla), el protón 3'-H con el 4'-H (línea verde) y el protón 2'-H con el 3'-H (línea negra). No se puede observar correlación entre los dos protones del benceno (flecha verde).

naftilmetil)-anilina <u>3</u>f

El análisis de los espectros de RMN 13 C, realizado con la finalidad de asignar inequívocamente los desplazamientos químicos a cada uno de los átomos de carbono que constituyen las 2-alil-*N*-(1'-naftilmetil)anilinas **<u>3</u>a-f**, se llevó a cabo paralelamente con la interpretación de los espectros bidimensionales de correlación heteronuclear HSQC y HMBC. En la tabla 8 se reportan los desplazamientos químicos de los carbonos registrados en los espectros de RMN 13 C de las aminas secundarias **<u>3</u>a-f**.

				Desp	lazamientos qu	iímicos	(δ, ppm)	, Multipli	cidades y	/ Constant	es de Acc	plamien	to (J, Hz)) de los P	rotones	3					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
Comp.	3' Comp. Protones alílicos Protones Protones del benceno Protones del Naftaleno Otros Protones - =CH_2 =CH_2 =CH_2 =CH_2 - H 3.H 4.H 5.H 6.H 2'_2H 3'_2H 4'_2H 5'_2H 6'_2 7'_2 8'_2H R' R'																				
	CH ₂ -	=CH ₂ (H- trans)	=CH ₂ (H- <i>cis</i>)	=CH-	-CH ₂ -	Н	3-Н	4-H	5-H	6-H	2'-Н	3'-Н	4'-H	5'-H	6'- Н	7'- Н	8'-H	R ¹	R ²	R ³	R ⁴
<u>3</u> a	3.32 d 6.2	5.03 dq 17.0, 1.6	5.07 dq 10.1, 1.6	5.96 ddt 17.0, 10.1, 6.2	4.80 s	-	7.15 dd 7.8, 1.5	6.84- 6.80 m	7.23 td 7.8, 1.5	6.84- 6.80 m	7.58- 7.55 m	7.48 t 8.1	7.86 d 8.1	7.95- 7.93 m	7.58- n	.7.55 n	8.11- 8.09 m	-	-	-	-
<u>3</u> e	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									8.14- 8.12 m	2.33 s	2.32 s	-	-							
<u>3</u> f	3.29 dd 5.6, 1.6	4.91 dq 17.1, 1.6	4.96 dq 10.1, 1.6	5.84 ddt 17.1, 10.1, 5.6	4.75 s	4.05 s	-	6.53 d 2.7	-	6.53 d 2.7	7.54- 7.51 m	7.45 t 8.2	7.84 d 8.2	7.94- 7.91 m	7.54- n	-7.51 n	8.10- 8.07 m	-	2.30 s	-	2.29 s

Tabla 7. Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J, Hz) de los protones en los espectros de RMN ¹H de las 2-alil-N-(1'-naftilmetil)anilinas <u>3</u>a-f*

* Para las 2-alil-*N*-(1'-naftilmetil)anilinas **<u>3</u>b-d**, aún no se tienen datos de RMN. Actualmente, las muestras se encuentran en el Laboratorio de Resonancia Magnética de la Universidad de Los Andes en Mérida, Venezuela.

]	Desplaza	mientos o	químicos	(δ, ppm)	de los car	bonos										
R^{4} R^{3} R^{2} R^{2} R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} R^{2																								
C.	Carb	onos alíli	cos	Carbono metilenico		Ca	arbonos d	lel bencei	10					Car	bonos de	l Naftale	no				C	tros Ca	rbono	s
	-CH ₂ -	=CH ₂	=CH-	N-CH ₂ -	1-C	2-C	3-C	4-C	5-C	6-C	1'-C	2'-C	3'-C	4'-C	4a'- C	5'-C	6'-C	7'-C	8'-C	8a'- C	R ¹	R ²	R ³	R ⁴
<u>3</u> a	36.4	116.5	136.0	46.6	134.0	123.6	130.0	111.1	127.9	117.8	137.8	125.7	125.9	128.3	134.3	128.9	125.9	126.5	123.7	131.7	-	-	-	-
<u>3</u> e	36.8	115.9	137.4	51.6	146.6	129.7	127.4	124.6	136.4	130.1	136.2	125.7	125.8	128.0	134.0	128.9	125.9	126.3	123.7	131.7	14.8	20.8	-	-
<u>3</u> f	31.3	115.4	135.2	46.8	146.5	119.1	136.9	120.8	136.8	109.8	134.8	125.7	125.9	128.2	134.0	128.8	126.1	126.3	123.9	131.8	-	20.1	-	21.6

Tabla 8. Desplazamientos químicos (δ, ppm) de los carbonos en los espectros de RMN ¹³C de las 2-alil-*N*-(1'-naftilmetil)anilinas <u>3</u>a-f

5.4 Preparación de los 2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepinas <u>4</u>a-f

Es en esta etapa de la ruta de síntesis planteada que se explicará la razón por la cual estas aminas secundarias, las 2-alil-N-(1'-naftilmetil)anilinas **<u>3</u>a-f**, son utilizadas como los precursores claves en la construcción de los 1,4-epoxicicloaductos **<u>4</u>a-f**, a través de una secuencia de reacciones de oxidación y cicloadición intramolecular 1,3-dipolar (Esquema 14).

Esquema 14. Síntesis de las 1,4-epoxi-2-(1'-naftil)tetrahidro-1-benzoazepinas 4a-f

El hecho de que las 2-alil-*N*-(1'-naftilmetil)anilinas <u>3</u>**a**-**f** posean en su estructura un grupo amino secundario que fácilmente puede ser oxidado a su correspondiente nitrona y, además, un fragmento olefínico que puede actuar como dipolarófilo y reaccionar con la nitrona (dipolo) previamente formada, las convierte en sustratos idóneos para promover la generación simultánea de un enlace C-C y un acople C-O y así acceder a los cicloaductos <u>4</u>**a**-**f**, en un proceso concertado conocido como cicloadición dipolar-1,3 nitrona-olefína, en su versión intramolecular.

Con base en lo anterior, las 2-alilanilinas **<u>3</u>a-f** fueron sometidas a un proceso de oxidación selectiva con el sistema peróxido de hidrógeno-tungstanato de sodio (H_2O_2/Na_2WO_4) en metanol.^{59,60} El producto de esa oxidación es una especie altamente reactiva (nitrona), cuya formación se puede corroborar por cromatografía de capa delgada y que no se aísla sino que, una vez se ha eliminado el metanol y el catalizador, se disuelve en tolueno, se calienta y así se induce térmicamente su cicloadición intramolecular dipolar-1,3. De esta manera, se obtuvieron los 1,4-epoxicicloaductos **<u>4</u>a-f** esperados, los cuales se aislaron como sustancias cristalinas blancas y con rendimientos del 69-43%. (Tabla 9).

La ausencia de las bandas de vibración de tensión del enlace C=C y de flexión fuera del plano del enlace =C-H del fragmento alílico, así como de la banda de vibración de tensión asimétrica del grupo N-H en los espectros de IR de estos compuestos (Anexo 4.1), representaron el primer indicio que señalaba que la cicloadición intramolecular 1,3-dipolar nitrona-olefina había transcurrido satisfactoriamente. En los espectros también se observa la aparición de dos nuevas bandas de absorción de mediana intensidad, en 991-976 cm⁻¹ y 1058-1050 cm⁻¹, que corresponden a las vibraciones de tensión de los enlaces N-O y C-O, respectivamente, y que constituyen una clara evidencia de la formación de un nuevo enlace, donde el oxígeno hace de puente entre un nitrógeno y un carbono en una estructura cíclica. En la tabla 9 se encuentran registrados los rendimientos, los puntos de fusión (no corregidos) y las bandas de absorción características en los espectros de IR de dichos 1,4-epoxi-cicloaductos.

 Tabla 9. Rendimientos, puntos de fusión (no corregidos) y bandas de absorción características en los espectros de IR de los 1,4-epoxicicloaductos <u>4</u>a-f

		Bandas de abs	sorción (cm ⁻¹)		Rendimiento	$\mathbf{D} \mathbf{f} (\mathbf{O} \mathbf{C})$
Compuesto	Vib. T. C-O	Vib. T. N-O	Vib. T. =C-	Vib. T. C=C	(%)	r.i. (C)
			H aromático	aromático		
<u>4</u> a	1052	988	3066	1479	67	129-130
<u>4</u> b	1054	976	3053	1486	52	190-191
<u>4</u> c	1052	989	3064	1486	69	124-125
<u>4</u> d	1051	988	3058	1459	43	180-181
<u>4</u> e	1050	991	3058	1483	48	219-220
<u>4</u> f	1058	986	3045	1481	60	154-155

El análisis de los compuestos por cromatografía de gases acoplada a espectrometría de masas (GC-MS) registró en todos los casos, la presencia de un solo isómero de los dos posibles cicloaductos isómeros que se pueden generar durante el proceso de cicloadición. Los iones moleculares que se registran en los espectros de masas, coinciden con el peso molecular de las fórmulas condensadas de los cicloaductos esperados <u>4</u>a-f.

La fragmentación de los iones moleculares de <u>4</u>a-f (Anexo 4.2), involucra, presumiblemente, la pérdida de una molécula de benzo[1,2]oxazol ($R^1R^2R^3R^4C_8H_3NO$),

que da origen a los iones pico de base Φ_4 (para los cicloaductos 4a, 4c y 4d) con una relación masa-carga *m/z* de 154 unidades. La estructura más probable de estos iones es la del catión-radical vinil-1-naftilio. Por otra ruta, los iones moleculares, después de sufrir una fragmentación análoga a la *retro*-Diels-Alder con migración de un hidrógeno β al átomo de nitrógeno originan los cationes-radicales azadienicos Φ_6 , que son, a su vez, los iones picos de base para los cicloaductos 4e y 4f. También es característico que los iones moleculares pierdan un radical hidroxilo y formilo con la consiguiente generación de los cationes 2-(1'naftil)-1(3*H*)-benzoazepinico Φ_1 y 2-(1'-naftil)dihidroquinolinio Φ_2 . Por otro canal de fragmentación, Φ_2 pierde el fragmento $C_{10}H_{12}$ y origina el fragmento Φ_7 , que es el ión pico de base para el compuesto 4b, y cuya estructura más probable es la de un ión del tipo *N*-metilidinbencenaminio. En la tabla 10 se reportan los iones más característicos que se registran en los espectros de masas de los 1,4-epoxicicloaductos 4a-f y sus intensidades relativas, mientras que en el esquema 15 Se propone un posible patrón de fragmentación de los iones moleculares de estos compuestos.

R^{4}																
Comp.	M .+	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8							
Comp.	M ^{.+}	Φ ₁	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆	Φ ₇	Φ ₈							
<u>4</u> a	287(61)	270(38)	258(18)	244(22)	154(100)	153 (80)	105 (38)	104 (55)	127 (18)							
Comp.	M ^{.+}	Φ ₁	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆	Φ ₇	Φ ₈							
<u>4</u> a	287(61)	270(38)	258(18)	244(22)	154(100)	153 (80)	105 (38)	104 (55)	127 (18)							
<u>4</u> b	301(56)	284(25)	272(16)	258(16)	154 (60)	153 (60)	119 (81)	118(100)	127 (16)							
Comp.	M ⁺	Φ ₁	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆	Φ ₇	Φ ₈							
<u>4a</u>	287(61)	270(38)	258(18)	244(22)	154(100)	153 (80)	105 (38)	104 (55)	127 (18)							
<u>4b</u>	301(56)	284(25)	272(16)	258(16)	154(60)	153 (60)	119 (81)	118(100)	127 (16)							
<u>4c</u>	371(24)	354(14)	342(7)	328(7)	154(100)	153 (70)	189 (33)	188 (51)	127 (14)							
Comp.	M ^{·+}	Φ ₁	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆	Φ ₇	Φ ₈							
<u>4a</u>	287(61)	270(38)	258(18)	244(22)	154(100)	153 (80)	105 (38)	104 (55)	127 (18)							
<u>4b</u>	301(56)	284(25)	272(16)	258(16)	154 (60)	153 (60)	119 (81)	118(100)	127 (16)							
<u>4c</u>	371(24)	354(14)	342(7)	328(7)	154(100)	153 (70)	189 (33)	188 (51)	127 (14)							
<u>4d</u> *	335(13)	318(7)	306(3)	292(3)	154(100)	153 (64)	153 (64)	152 (25)	127 (11)							
Comp.	M ⁺	Φ ₁	Φ ₂	Φ ₃	Φ ₄	Φ ₅	Φ ₆	Φ ₇	Φ ₈							
<u>4a</u>	287(61)	270(38)	258(18)	244(22)	154(100)	153 (80)	105 (38)	104 (55)	127 (18)							
<u>4b</u>	301(56)	284(25)	272(16)	258(16)	154(60)	153 (60)	119 (81)	118(100)	127 (16)							
<u>4c</u>	371(24)	354(14)	342(7)	328(7)	154(100)	153 (70)	189 (33)	188 (51)	127 (14)							
<u>4d</u> [*]	335(13)	318(7)	306(3)	292(3)	154(100)	153 (64)	153 (64)	152 (25)	127 (11)							
<u>4e</u>	315(31)	298(11)	286(4)	272(7)	154(37)	153 (42)	133(100)	132 (36)	127 (12)							

Tabla 10. Iones característicos (*m/z*) y sus intensidades relativas (%) en los espectros de masas de los 1,4-epoxicicloaductos <u>4</u>a-f

* Relativo al isótopo de ³⁵Cl

Esquema 15. Posible patrón de fragmentación de los iones moleculares de los 1,4-epoxi-cicloaductos <u>4</u>a-f

La información obtenida de la interpretación de los espectros de RMN ¹H (Anexo 4.3) y RMN ¹³C (Anexo 4.4), pero especialmente de los bidimensionales de correlación homonuclear COSY ¹H,¹H (Anexo 4.5) y heteronuclear HSQC (Anexo 4.6) y HMBC, confirmó inequivocamente la identidad y la estereoquímica exclusivamente *exo* de los cicloaductos <u>4</u>a-f, corroborando de paso lo que antes se había observado en el análisis de los compuestos por cromatografía de gases, es decir, la formación de un solo estereoisómero. Los resultados de RMN no dan ninguna información sobre la existencia del cicloaducto *endo*, lo cual es una prueba de que la cicloadición intramolecular dipolar-1,3 transcurrió con un alto grado de estereoselectividad.

Antes de analizar la estereoquímica de los productos aislados, se hará una descripción general de la forma como se asignaron los desplazamientos químicos de todos los protones y carbonos, y que condujo a la identificación inequívoca de sus estructuras moleculares (Tablas 11 y 12). Como ejemplo representativo para la identificación de este tipo de compuestos, se escogió el espectro del 1,4-epoxicicloaducto 4f, el cual se muestra en la figura 10. En la región de campo alto e intermedio de este espectro, se observa la presencia de 8 tipos de señales que integran para 12 protones alifáticos, de los cuales 6 fueron asignados como pertenecientes a los carbonos del anillo tetrahidroazepínico, y los otros seis que pertenecen a los dos grupos metilo que están presentes en el anillo de benceno. En cuanto a la asignación individual de cada una de las 6 señales de los protones azepínicos, se procedió de la siguiente manera: el doblete de doblete de doblete (ddd) que aparece centrado en 2.85 ppm fue asignado al protón metilénico designado como 3-H_B, éste presenta constantes de acoplamiento de 12.2, 8.8, y 1.4 Hz, que son valores característicos para un acople geminal y dos acoples vecinales con los protones 2-H y 4-H, respectivamente. Centrado en 2.44 ppm se encuentra el doblete ancho del protón que fue denominado como 5-H_A, que presenta sólo una constante de acoplamiento geminal de 16.6 Hz. La ausencia de una constante de acoplamiento con el protón vecinal 4-H, se puede explicar con ayuda de la ecuación de Karplus que correlaciona el valor de las constantes de acoplamiento con los ángulos diedro entre protones vecinales, que en este caso, el ángulo diedro entre ellos debe tener un valor cercano a 90°. La señal que genera el protón que fue designado como $3-H_A$ se observa como un multiplete en el rango de 2.63 - 2.51 ppm. El protón que fue designado como 5-H_B resuena en 3.25ppm en forma de doblete de doblete (dd), con constantes de acoplamiento de 16.6 y 5.4 Hz debido a los acoplamientos geminal con el protón 5-H_A y vecinal con el protón 4-H, respectivamente. En la zona intermedia del espectro, centrado en 5.29 ppm, se encuentra la señal con forma de doblete de doblete que fue asignada al protón metínico 2-H, éste presentan constantes de acoplamiento de 8.8 Hz $({}^{3}J_{2-H,3-HB})$ y 2.6 Hz $({}^{3}J_{2-H, 3-HA})$. Desplazada 0.31 ppm hacia campo más alto, se encuentra la señal con forma de triplete que fue asignada al protón metínico 4-H.

A campo bajo, en el rango de 8.10 y 7.45 ppm, se revelan las señales de los protones del anillo de naftaleno, y en el intervalo 6.92-6.85 ppm resuenan los protones del anillo de benceno. En la tabla 11 se reportan los desplazamientos químicos y las multiplicidades de todos los protones en los espectros de los cicloaductos <u>4</u>a-f.

Figura 10. Espectro de RMN ¹H del 1,4-epoxi-cicloaducto <u>4</u>f

Es necesario mencionar que las anteriores asignaciones se hicieron sobre la base de las correlaciones que los protones presentan en el espectro ¹H,¹H-COSY. Como ilustración, en la figura 11 se presenta una expansión de la región comprendida entre 5.50–2.00 ppm del espectro ¹H,¹H-COSY de <u>4</u>f, en la que se aprecian claramente las correlaciones entre el protón 2-H y los protones 3-H_A (línea roja) y 3-H_B (línea celeste); entre el protón 4-H y los protones 3-H_A (línea amarilla) y 5-H_B (línea verde); entre el protón 5-H_B y su homólogo geminal 5-H_A (línea negra) y el protón 3-H_B y su homólogo geminal 3-H_A (línea morada).

Figura 11. Expansión de la región 5.50–2.00 ppm del espectro de ¹H,¹H-COSY de la 6,8-dimetil-2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>f

En los espectros de RMN ¹³C se registran las señales correspondientes a los cuatro carbonos alifáticos del anillo tetrahidroazepínico (Tabla 12). Por ser las señales de estos cuatro carbonos las más representativas, se presenta a continuación un breve análisis de la manera como se asignaron, tomando nuevamente como modelo el espectro del cicloaducto **4f**. Así, las señales que se registran en 43.8 y 33.2 ppm del espectro de **4f** fueron asignadas a los carbonos metilénicos 3-C y 5-C, mientras que las señales que aparecen en 75.1 y 72.4 ppm fueron asignadas a los carbonos metínicos 4-C y 2-C, respectivamente. Las anteriores asignaciones y la de todos los carbonos que constituyen las moléculas de los cicloaductos sintetizados, se corroboraron con los espectros de correlación heteronuclear HSQC y HMBC. Para que no queden dudas sobre las asignaciones realizadas, en la figura 12 se muestra una ampliación de la zona alifática del espectro de HSQC del cicloaducto **4f**, en la que se observa claramente las mutuas correlaciones entre los carbonos secundarios y terciarios con sus respectivos protones a los que están conectados.

2-*exo-*(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>f

Con el fin de establecer la estereoquímica de los cicloaductos aislados $\underline{4}a$ - \mathbf{f} , se realizaron experimentos NOESY a cada uno de ellos. En la figura 11 se reproduce el espectro NOESY del 1,4-epoxi-cicloaducto $\underline{4}\mathbf{f}$, en el que se puede evidenciar la ausencia de interacción espacial (circulo verde) entre los protones metínicos 4-H y 2-H, por lo que se puede inferir que los protones se encuentran en lados opuestos del plano del biciclo. La ausencia de interacción espacial entre estos dos protones estereogénicos sugiere que el protón 4-H debe tener una disposición espacial pseudoecuatorial opuesta a la del protón 2-H, que debe tener una disposición axial. De lo anterior resulta que el grupo 2-(1'-naftil) posee una disposición espacial ecuatorial, con lo cual se confirma que la estereoquímica de los cicloaductos aislados es *exo*. Adicionalmente, la interacción espacial bien definida que se observa entre el protón metínico 2-H y el protón aromático 9-H (circulo amarillo) que apoya aún más la estereoquímica *exo* de estos compuestos, ya que en una configuración *endo* dificilmente se presentaría esta interacción.

Figura 13. Espectro NOESY de la 6,8-dimetil-2-*exo*-(1'-nattil)-1,4-epoxi-2,5,4,5-tetranidro benzoazepina <u>4</u>f

El espectro de NOESY permite establecer también la disposición relativa de los protones metilénicos 3- H_A y 3- H_B , 5- H_A y 5- H_B con respecto a los protones metínicos 2-H y 4-H. Esto se puede determinar con la magnitud de las interacciones espaciales que presenta el protón 2-H con los protones 3- H_A y 3- H_B , así como las que presenta el protón 4-H con los protones 5- H_A y 5- H_B . La intensidad de los contornos de los "cross peaks" que corresponden a estas interacciones indica la proximidad entre ellos y, por tanto, la mutua disposición espacial. Según estos criterios, en el espectro NOESY del cicloaducto **4f** el protón 2-H presenta una interacción más intensa con el protón 3- H_B (flecha roja) que con el protón 3- H_A , de lo cual se deduce que 2-H y 3 H_B comparten una disposición axial, mientras que 3 H_A es ecuatorial. Para el protón 4-H, al analizar las interacciones de este protón con los protones 5- H_A y 5- H_B , se constata que la intensidad con el segundo protón (flecha azul) es mucho más grande y, por tanto, 5- H_B se orienta de manera pseudoecuatorial, tal como 4-H, mientras que la disposición de 5-H_A únicamente puede ser axial, disposición que se corrobora mediante la interacción con el protón axial 3-H_B (flecha verde).

Por último, la estereoquímica *exo* quedó completamente establecida, en el caso particular de los 1,4-epoxi-cicloaductos $\underline{4}a$ -d, al lograrse su resolución por difracción de rayos X empleando la técnica de monocristal, que permitió definir las orientaciones espaciales exactas de todos los átomos dentro de la estructura molecular tridimensional de los mismos. En la figura 12 se reproduce la estructura molecular tridimensional obtenida para el derivado $\underline{4}c$.

Figura 14. Estructura tridimensional resuelta por difracción de rayos X de monocristal de la 7-trifluorometoxi-2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>c

							Desj	olazami	ento quím	ico de lo	os protone	es (δ, ppm)								
								R ₃ R ²	R^4 7 8 9 R^1	5 H 5 H 4 3 2 2 3	8' ⁷ 4'	5' 5'									
		0	Protones azepin	nicos	0		P	rotones	del bence	no		-	Proto	ones del Naf	taleno				Otros p	rotones	
	2-Н	3-H _A	3-H _A 3-H _B 4-H 5- H _A 5-H _B 6-H 7-H 8-H 9-H 2'-H 3'-H 4'-H 5'-H 6'-H 7'-H 8'-H													R ¹	\mathbb{R}^2	R ³	R ⁴		
<u>4</u> a	5.29 dd 8.7, 2.5	2.58 ddd 12.4, 6.6, 2.5	2.87 dddd 12.4, 8.7, 1.6, 1.5	4.94 t 6.2	2.62 d 16.6	3.49 dd 16.6, 6.2		7.22	– 7.12 m		8.08 d 7.3	7.56 t 7.7	7.81 d 8.0	7.48 m	7.79 td 8.0, 2.8	7.48 m	7.91 m	-	-	-	-
<u>4</u> b	5.26 dd 8.7, 2.6	2.57 dddd 12.4, 5.6, 2.6, 1.2	2.86 ddd 12.4, 8.7, 1.6	4.95- 4.88 m	2.56 d 16.4	3.45 dd 16.5, 5.4	7.03 s	-	7.03 s	7.03 s	8.08 d 7.2	7.57 t 7.6	7.8 d 7.6	7.94 – 7.88 m	7.53	– 7.45 m	7.79 dd 7.6, 2.8	-	-	2.37 s	-
<u>4</u> c	5.25 dd 8.7, 2.8	2.60 dddd 12.7, 7.6, 2.8, 1.2	2.86 ddd 12.7, 8,7, 1.7	4.92 t 5.8	2.62 d 16.8	3.47 dd 16.8, 5.3	7.08 s	-	7.14 dd 8.6, 0.4	7.07 d 8.7	8.04 d 7.2	7.55 t 7.6	7.81 d 8.4	7.91 m	7.52	– 7.45 m	7.77 m	-	-	-	-
<u>4</u> d	5.12 dd 8.8, 2.8	2.56 dddd 12.1, 8.0, 2.8, 1.2	2.85 ddd 12.1, 8.8, 1,6	4.89 t 6.3	2.57 d 16.4	3.43 dd 16.5, 5.8	6.99 d 8.2	7.20 d 8.2	-	-	8.18 dt 7.2, 1,0	7.58 dd 8.1, 7.3	7.81 dd 8.0, 0.6	7.92 m	7.52	– 7.45 m	7.73 m	2.32 s	-	-	-
<u>4</u> e	5.12 dd 8.7, 2.8	2.55 dddd 12.4, 7.6, 2.8, 1.2	2.88 ddd 12.4, 8.7, 1.6	4.90 t 6.3	2.58 d 16.6	3.47 dd 16.5, 5.5	.8 6.97 7.03 d d d d . .5, 7.8 7.8 .				8.25 d 7.2	7.60 t 8.0	7.82 d 8.2	7.91 dd 7.0, 2.5	7.43 td 6.8, 2.0	7.51 td 6.8, 1.2	7.75 dd 6.8, 2.0	2.21 s	2.28 s	-	-
<u>4</u> f	5.29 dd 8.8, 2.6	2.57 dddd 12.2, 7.6, 2.6, 1.2	2.85 ddd 12.2, 8.8, 1.4	4.98 t 6.4	2.44 d 16.6	3.25 dd 16.6, 5.4	-	6.92 s	-	6.85 s	8.1 d 7.5	7.57 t 7.7	7.80 d 8.0	7.91 dd 6.3, 3.1	7.52	– 7.45 m	7.79 dd 6.4, 2.5	-	2.31 s	-	2.25 s

Tabla 11. Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J, Hz) de los protones en los espectros de RMN ¹H de los cicloaductos <u>4</u>a-f

									Ι	Desplazar	niento qu	ıímico de	los Carb	onos (ð, j	ppm)									
	R3 7 6 R2 8 9 N2 2 R1 2 2' 4' Carbonos azepinicos Carbonos del benceno Otros Carbonos																							
	Ca	'arbonos azepinicos Carbonos del benceno Carbonos del Naftaleno Otros Carbono							arbonos															
	2-C	3-C	4-C	5-C	5a-C	6-C	7-C	8-C	9-C	9a-C	1'-C	2'-C	3'-C	4'-C	4'a-C	5'-C	6'-C	7'-C	8'-C	8'a-C	\mathbb{R}^1	R ²	R ³	R^4
<u>4</u> a	72.5	43.3	75.1	34.9	125.6	130.0	122.2	126.2	122.2	151.0	138.9	123.3	125.9	127.4	134.0	125.4	123.1	126.0	129.1	130.1	-	-	-	-
<u>4</u> b	72.4	42.9	75.0	34.8	125.2	130.4	135.7	127.4	121.9	148.4	139.0	123.1	125.8	127.3	133.9	129.1	125.3	125.9	123.2	130.0	-	-	21.0	-
<u>4</u> c	72.3	43.2	74.4	35.1	127.5	122.4	147.0	123.4	119.6	149.4	138.4	123.1	126.0	127.5	133.9	129.2	125.4	125.8	122.9	129.9	-	-	120.5	-
																							d 257.0	
<u>4</u> d	70.9	43.8	74.9	34.2	123.8	127.9	125.9	133.0	129.4	150.2	50.2 138.4 122.9 126.2 127.4 134.0 129.2 125.4 125.9 123.1 129.9 14.1										-			
<u>4</u> e	70.9	43.8	75.2	34.7	122.4	126.8	126.9	135.3	129.5	148.9	138.9	123.0	126.0	127.2	134.0	129.1	125.3	125.8	123.2	130.0	12.7	20.0	-	-
<u>4</u> f	72.4	43.6	75.1	33.0	120.7	137.6	128.3	136.3	120.2	150.7	139.1	123.1	125.8	127.2	133.9	129.1	125.3	125.9	123.2	130.0	-	21.0	-	18.6

Tabla 12. Desplazamientos químicos (δ , ppm) de los carbonos en los espectros de RMN ¹³C de los cicloaductos <u>4</u>a-f

5.5 Preparación de las *cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)benzoazepinas <u>5</u>a-f

Las *cis*-4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepinas **5a-f**, son los productos de la escisión reductiva del enlace cabeza de puente N-O de las 2-*exo*-(1'-naftil)-1,4-epoxitetrahidro-1-benzoazepinas **4a-f**. Dicha apertura tiene lugar cuando se calientan los 1,4-epoxi-cicloaductos en ácido acético y en presencia de zinc en polvo⁶¹⁻⁶³ (Esquema 16). Las nuevas tetrahidro-1-benzoazepinas **5a-f** se obtuvieron como sólidos blancos **5 a**, **b**, **d-f** y como un sólido vítreo amarillo **5c**, después que el crudo de la reacción fue purificado por cromatografía en columna sobre gel de sílice. Es necesario mencionar que la apertura reductiva transcurrió muy rápido y con buenos rendimientos para aquellos cicloaductos que no presentan sustitución en el carbono C-9; para los derivados **4d** y **4e**, la presencia del grupo metilo en la posición C-9 crea impedimentos estéricos que dificultan la apertura, por lo que el grado de conversión a sus correspondientes amino-alcoholes también se reduce considerablemente, incluso después de prolongados tiempos de reacción en condiciones más severas de calentamiento.

Esquema 16. Síntesis de las nuevas *cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1*H*-1-benzoazepinas <u>5</u>a-f

Se puede evidenciar que la escisión del enlace N-O tuvo lugar, al analizar los espectros de IR (Anexo 5.1), los cuales revelan la presencia de una banda de absorción ancha localizada en la región de 3395-3281 cm⁻¹, que en realidad corresponde al solapamiento de las bandas de vibración de tensión de los enlaces O-H y N-H. En los espectros también se aprecian las bandas de vibración de los enlaces C-N y C-O. Los rendimientos, puntos de fusión (no
corregidos) y las principales bandas de absorción que se observan en los espectros de IR de las nuevas tetrahidro-1-benzoazepinas <u>5</u>a-f, se encuentran resumidos en la tabla 13.

		Bandas de ab	Rendimiento	$\mathbf{D} \mathbf{f} (\mathbf{OC})$		
Compuesto	V.T. N-H /	V.T. C-O	V.T. C-N	V.T. C=C	(%)	F.I. (C)
	V.T. O-H			Aromático		
<u>5</u> a	3286	1024	1239	1470	88	139-140
<u>5</u> b	3281	1026	1244	1477	97	117-118
<u>5</u> c	3352	1028	1248	1472	88	
<u>5</u> d	3219	1035	1255	1453	37	193-194
<u>5</u> e	3395	1034	1260	1460	30	183-184
<u>5</u> f	3309	1023	1230	1464	70	65-66

 Tabla 13. Puntos de fusión (no corregidos), rendimientos y bandas de absorción características en los espectro de IR de los amino-alcoholes <u>5</u>a-f

El análisis por espectrometría de masas confirma la formación de 5a-f, al registrar en sus espectros de masas (Anexo 5.2) los picos de los iones moleculares que corresponden a los pesos moleculares de los compuestos esperados. En el espectro de masas del derivado 5a se aprecia que el ion molecular presenta la mayor intensidad, siendo también, el pico de base de este derivado. Sin embargo, la principal fragmentación de los iones moleculares está asociada con una ruptura análoga a la *retro*-Diels-Alder con migración de un hidrógeno β al átomo de nitrógeno, que origina los iones fragmento Φ_{10} con una relación masa-carga m/z122, 154, 134 y 134, que, a su vez, son los iones picos de base para los derivados 5 b,d,e,f, respectivamente. Otra fragmentación característica de los iones moleculares involucra la pérdida de una molécula de 2-(2-aminoaril)acetaldehído (R¹R²R³R⁴C₈H₅NO), que condiciona la generación del catión- radical vinil-1-naftilio Φ_5 con una relación masa-carga m/z de 154 unidades, del cual, por pérdida de un átomo de hidrógeno, se forma el catión vinil-1-naftilio Φ_6 con m/z de 153 unidades. Este ion fragmento representa el ion pico de base para el derivado 5c. En el esquema 17 se presenta el posible patrón de fragmentación de los iones moleculares de 5a-f, y en la tabla 14 se reportan los iones más representativos registrados en los espectros de masas junto con sus intensidades relativas.

Esquema 17. Posible patrón de fragmentación de los iones moleculares de las *cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1-benzoazepinas <u>5</u>a-f

De anteriores trabajos realizados en el LSO, se conoce que la apertura reductiva de 1,4-epoxi-cicloaductos del tipo $\underline{4}a$ -f es un proceso altamente estereoselectivo, por lo tanto, si su estereoquímica es *exo*, entonces la estereoquímica de las tetrahidro-1-benzoazepinas $\underline{5}a$ -f que resultan de dicha apertura debe ser *cis*. Para corroborar lo anterior, se comenzó con el análisis de los cromatogramas de los amino-alcoholes $\underline{5}a$ -f, que aunque no dan información sobre su estereoquímica, sí aportan información fidedigna sobre la presencia de mezclas de posibles estereoisómeros; en todos los casos, se observó la presencia de un

solo pico cromatográfico que, según el razonamiento anteriormente expuesto, debe pertenecer con toda seguridad al estereoisómero *cis*.

IONES (I, %) R_3 R_4											
Comp.	M .+	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	Φ9	Φ_{10}
<u>5</u> a	289	245	244	183	165	154	153	118	117	107	106
	(100)	(63)	(85)	(17)	(21)	(24)	(38)	(50)	(32)	(39)	(46)
<u>5</u> b	303	259	258	183	165	154	153	132	131	121	122
	(79)	(49)	(49)	(12)	(18)	(17)	(36)	(63)	(28)	(79)	(100)
<u>5</u> c	373	329	328	183	165	154	153	202	201	191	190
	(77)	(56)	(64)	(78)	(84)	(71)	(100)	(71)	(30)	(62)	(80)
<u>5</u> d	337*	293	292	183	165	154	153	166	165	155	154
	(39)	(20)	(23)	(37)	(57)	(100)	(54)	(34)	(56)	(57)	(100)
<u>5</u> e	317	273	272		165		153	146	145	135	134
	(46)	(18)	(25)		(15)		(36)	(48)	(28)	(48)	(100)
<u>5</u> f	317	273	272		165	154	153	146	145	135	134
	(44)	(28)	(30)		(7)	(13)	(27)	(52)	(27)	(33)	(100)

Tabla 14. Iones característicos (m/z) y sus intensidades relativas (%) en los espectros de masas de las *cis*-4-hidroxi-2-(1'-naftil)tetrahidro-1-benzoazepinas <u>5</u>a-f

* Relativo al isótopo de ³⁵Cl

La formación de las nuevas tetrahidro-1-benzoazepinas <u>5</u>a-f se corroboró de manera inequívoca con el análisis de sus espectros unidimensionales de RMN ¹H (Anexo 5.3) y RMN ¹³C (Anexo 5.4), y bidimensionales de correlación homonuclear COSY ¹H-¹H (Anexo5.5) y heteronuclear HSQC (Anexo 5.6) y HMBC. Adicionalmente, para verificar la estereoquímica *cis* y la conformación del anillo azepínico, se realizaron los experimentos de correlación espacial NOESY. Para la asignación de los desplazamientos químicos de los protones, se escogió como modelo el espectro de RMN ¹H del amino-alcohol <u>5</u>f (Figura 13).

En la región de campo alto e intermedio de este espectro se distinguen 8 grupos de señales que integran para 13 protones, seis de los cuales pertenecen a los carbonos secundarios y

terciarios del anillo azepínico, otros seis que pertenecen a los dos grupos metilo que están presentes en el anillo de benceno y la señal ancha que debe pertenecer al protón del grupo amino y/o hidroxilo. En esta clase de compuestos, es una característica general que las señales de los protones $3-H_{ax}$ y $3-H_{eq}$ se solapen y aparezcan con una multiplicidad difícil de determinar, porque tiene forma de singulete muy ancho. En el espectro del compuesto que se está analizando, la señal de estos dos protones también se solapa con los singuletes generados por los grupos metilo del anillo de benceno. Sin embargo, se diferencian de los demás, porque son los que resuenan a campo más alto.

El protón 5-H_{eq} resuena en 3.27 ppm en forma de doblete (d) con una constante de acoplamiento geminal de 13.5 Hz (${}^{2}J_{5-Heq,5-Hax}$). En 3.05 ppm aparece el doblete de doblete (dd) que fue asignado al protón 5-H_{ax}; este protón presenta una constante de acoplamiento geminal de 13.5 Hz y una vecinal con el protón 4-H_{ax} de 9.8 Hz. El protón 4-H_{ax} resuena en forma de doblete de doblete de doblete (dd) centrado en 3.99 ppm. Como un doblete (d) centrado en 4.73 ppm aparece la señal que fue asignada al protón 2-H_{ax}.

Debido a que las multiplicidades y ubicación de las señales que se observan en la zona aromática de estos espectros, son muy parecidas a las registradas en los espectros de los precursores, no se presenta su análisis. Los desplazamientos químicos, las multiplicidades y las constantes de acoplamientos de todos los protones de las nuevas tetrahidro-1-benzoazepinas están reportados en la tabla 15.

Figura 15. Espectro de RMN ¹H de la 6,8-dimetil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)benzoazepina <u>5</u>f

Todas las asignaciones de los desplazamientos químicos de los protones se corroboraron con ayuda de los espectros de correlación homonuclear ¹H,¹H-COSY. En particular, en la expansión de la región 5.00–2.20 ppm del espectro ¹H,¹H-COSY del amino-alcohol **<u>5</u>f** que se muestra en la figura 16, se observan perfectamente las correlaciones de los protones alifáticos, exceptuando la correlación entre los protones $3-H_{eq}$, $3-H_{ax}$ debido a que sus señales se solapan con los singuletes de los grupos metilo. Las demás correlaciones se resaltan con líneas a colores, así: la correlación entre uno de los protones $3-H_{eq}$ y el protón $2-H_{ax}$ (línea azul); la correlación entre los protones $5-H_{eq}$ y $5-H_{ax}$ (línea verde); la correlación entre el protón $4-H_{ax}$ y $5-H_{ax}$ (línea amarilla); y la correlación entre el protón $4-H_{ax}$ y uno de los protones 3-H (línea negra).

Figura 16. Expansión de la región 5.00–2.20 ppm del espectro de ¹H,¹H-COSY del amino-alcohol <u>5</u>f

Adicionalmente, la asignación de los desplazamientos químicos de los carbonos que se registran en los espectros de RMN ¹³C (Tabla 16), se efectuó de manera inequívoca con ayuda de los espectros de correlación heteronuclear HSQC y HMBC.

Una vez se estableció la identidad de las nuevas tetrahidro-1-benzoazepinas **5a-f**, y que éstas se formaron como un único estereoisómero, el siguiente paso fue establecer su estereoquímica con ayuda de los experimentos de correlación espacial NOESY, estereoquímica que de acuerdo con trabajos previos realizados en el LSO,^{41,45,46} debería ser *cis*. Como ejemplo se analiza el espectro NOESY del derivado **5**f, el cual se reproduce en la figura 17. Se puede evidenciar en este espectro una interacción espacial fuerte entre los protones metínicos 2-H y 4-H (circulo amarillo), que son los protones que en definitiva determinan la estereoquímica de sus correspondientes carbonos quirales, la cual indica que estos dos protones estereogénicos están orientados del mismo lado del plano del anillo tetrahidroazepínico. Ahora bien, conociendo de antemano que la disposición del protón 2-H

en el cicloaducto precursor era axial, y que durante el proceso de apertura reductiva las orientaciones de los sustituyentes en el centro estereogénico C-2 no sufren ningún cambio orientacional, se concluye entonces, que las disposiciones de los protones 2-H y 4-H en el anillo azepínico son axiales. En consecuencia, los grupos 2-(1'-naftilo) y 4-hidroxilo son ecuatoriales y, por tanto, *cis* entre sí en el anillo azepínico.

Figura 17. Espectro NOESY de la 6,8-dimetil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)benzoazepina <u>5</u>f

El análisis realizado permite concluir de manera categórica que las nuevas 4-hidroxi-2-(1'naftil)tetrahidro-1-benzoazepinas presentan una estereoquímica *cis*, y confirmar de paso el alto grado de estereoselectividad que caracteriza a la apertura reductiva del enlace N-O de los 1,4-epoxicicloaductos. Adicionalmente, con el establecimiento de la estereoquímica *cis* de los aminoalcoholes, se reconfirma la estereoquímica *exo* de los cicloaductos precursores.

	Desplazamiento químico de los protones (δ, ppm)																			
	$R^{3} \xrightarrow{7} \xrightarrow{6} \xrightarrow{5} \xrightarrow{4'} \xrightarrow{6'} \xrightarrow{6'} \xrightarrow{7'} \xrightarrow{6'} \xrightarrow{7'} \xrightarrow{6'} \xrightarrow{7'} \xrightarrow$																			
		Pr	otones azepínic	08			Protones d	lel bencen)			Protones	del Naftaleno			Otros protones				
	2-Н	3- 3- H _{ax} H _{eq}	4-H _{ax}	5-H _{ax}	5-H _{eq}	6-H	7-H	8-H	9-H	2'- Н	3'-Н	4'-H	5'-Н	6'- 7' H H	- 8'- H	R ¹	R ²	R ³	R ⁴	
<u>5</u> a	4.72 m	2.40 s.a.	4.02 ddd 12.7, 9.9, 2.1	3.22 dd 13.6, 10.2	3.11 dd 13.6, 2.1	7.24 dd 7.4, 0.8	6.96 td 7.4, 1.1	7.13 td 7.6, 1.3	6.71 dd 8.0, 0.8	8.11 s	7.59–7.47 m	7.85 d 8.2	7.95- 7.90 m	7.59–7.47 m	7.75 s	-	-	-	-	
<u>5</u> b	4.68 s	2.39 s.a.	4.00 ddd 12.4, 9.9, 1.8	3.21 dd 13.3, 10.2	3.04 dd 13.3, 1.8	7.07 s	-	6.95 d 7.6	6.62 d 7.7	8.09 s	7.60–7.44 m	7.85 d 8.2	7.98- 7.88 m	7.60–7.44 m	7.73 s	-	-	2.33 s	-	
<u>5</u> c	4.69 s	2.38 s.a.	4.00 ddd 12.8, 9.9, 2.1	3.18 dd 13.6, 10.1	3.05 dd 13.6, 2.1	7.10 d 2.3	-	6.98 dd 8.5, 2.3	6.67 t 6.9	8.06 s	7.54 dtt 14.8, 9.8, 5.0	7.85 d 8.2	7.97- 7.89 m	7.54 dtt 14.8, 9.8, 5.0	7.70 s	-	-	-	-	
<u>5</u> d	4.69 s	2.36 s.a.	4.01 ddd 12.0, 9.9, 2.5	3.17 dd 13.5, 9.8	3.09 dd 13.5, 2.5	7.03 d 8.1	6.97 d 8.1	-	-	8.05 s	7.58–7.48 m	7.86 d 8.3	7.96.7.89 m	7.58–7.48 m	7.73 s	2.07 s	-	-	-	
<u>5</u> e	4.67 s	2.40 s.a.	4.04 ddd 13.8, 10.4, 2.1	3.21 dd 13.1, 10.5	3.08 dd 13.1, 2.1	7.03 d 7.7	6.80 d 7.7	-	-	8.09 s	7.59–7.48 m	7.86 d 8.1	7.96- 7.89 m	7.59–7.48 m	7.78 s	1.91 s	2.27 s	-	-	
<u>5</u> f	4.73 d 12.7	2.37 s.a.	3.99 ddd 13.3, 9.7, 1.9	3.05 dd 13.8, 9.7	3.27 d 13.8	-	6.71 s	-	6.41 s	8.13 s	7.62–7.44 m	7.85 dd 10.6, 6.5	7.96- 7.90 m	7.62–7.44 m	7.71 d 6.4	-	2.24 s	-	2.40 s	

Tabla 15. Desplazamientos químicos (δ , ppm) y constantes de acoplamiento (J, Hz) de los protones en los espectros de RMN ¹H de los amino-alcoholes <u>5</u>a-f

	Desplazamiento químico de los Carbonos (ô, ppm)																							
Despiazamiento químico de los Carbonos (o, ppm) R^4 R^3 7^{-6} 4^{-6} R^4 R^2 8^{-9} N 2^{-7} R^1 H 2^{-7} 2^{-7} 2^{-7} 3^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 2^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-7} 6^{-7} 3^{-7} 4^{-																								
	0	Carbono	s azepín	icos		Ca	arbonos c	lel bence	no			Carbonos del Naftaleno								Otros Carbonos				
	2- C	3-C	4- C	5-C	5a-C	6-C	7-C	8-C	9-C	9a-C	1'-C	2'-C	3'-С	4'-C	4'a- C	5'-C	6'-C	7'-C	8'-C	8'a- C	R ¹	R ²	R ³	R ⁴
<u>5</u> a	-	47.2	70.4	44.7	128.4	131.8	121.9	127.5	120.1	149.6	139.9	123.3	126.5	128.3	134.1	129.2	125.7	125.8	123.3	130.4	-	-	-	-
<u>5</u> b	-	46.8	70.6	44.7	128.4	132.4	131.3	128.0	120.1	147.2	139.9	123.3	126.5	128.3	134.1	129.1	125.7	125.8	123.3	130.4	-	-	20.6	-
<u>5</u> c	-	46.4	70.0	44.5	129.9	124.4	143.6	120.1	120.8	148.3	139.5	123.1	126.6	128.5	134.1	129.2	125.7	120.0	123.1	130.3	-	-	130.3 d 256.1	-
<u>5</u> d	-	46.4	70.2	44.2	127.0	129.8	122.1	133.0	124.5	149.1	139.7	123.2	126.5	128.6	134.1	129.1	125.8	126.0	123.2	130.2	14.3	-	-	-
<u>5</u> e	-	46.9	70.6	44.7	128.3	128.7	123.3	135.5	125.0	148.0	140.4	123.3	126.3	128.3	134.1	129.1	125.8	125.9	123.3	130.3	13.0	20.8	-	-
<u>5</u> f	-	46.1	70.2	38.1	124.2	137.8	125.2	136.4	119.0	149.9	140.0	123.3	126.4	128.3	134.1	129.2	125.7	125.8	123.3	130.4	-	20.9	-	20.9

Tabla 16. Desplazamientos o	químicos (δ, ppm) de los c	carbonos en los espectros de l	RMN ¹³ C de los amino-alcoholes <u>5</u> a-f

CONCLUSIONES Y RECOMENDACIONES

Los resultados obtenidos en el presente trabajo de grado confirman una vez más el carácter general de la ruta sintética empleada. A través de esta ruta de síntesis, se logró la preparación de 6 nuevos 1,4-epoxi-2-(1'-naftil)tetrahidro-1-benzazepinas y 6 nuevas 4-hidroxi-2-(1'-naftil)tetrahidro-1-benzazepinas, cuyas propiedades físico-químicas y espectroscópicas se reportan por primera vez, cumpliendo así con el principal objetivo planteado en este trabajo.

La síntesis de los precursores clave, las 2-alil-*N*-(1'-naftilmetil)anilinas <u>**3**</u>**a-f**, fue posible mediante la implementación de dos metodologías distintas, pero convergentes, superando así dificultades presentadas en trabajos realizados anteriormente. De igual forma, se reafirma la condición de precursores idóneos para la construcción del anillo de la 1,4-epoxitetrahidro-1-benzoazepina, mediante la reacción de cicloadición 1,3-dipolar.

Se comprobó que la presencia de sustituyentes en la posición *orto* al nitrógeno en las moléculas de los precursores claves, crea dificultades durante el proceso de oxidación/cicloadición dipolar-1,3, por lo que los tiempos de reacción son mayores para dichos derivados, y los rendimientos de los correspondientes 1,4-epoxi-cicloaductos disminuyen drásticamente. Sin embargo, la estereoquímica de la cicloadición, no se ve afectada.

Para todos los casos, se observó que la reacción de cicloadición intramolecular 1,3-dipolar de las nitronas derivadas de las 2-alil-*N*-(1'-naftimetil)anilinas transcurrió con formación exclusiva de los cicloaductos *exo*, y que la apertura reductiva del anillo isoxazolidínico fue altamente estereoselectiva, con formación de las correspondientes *cis*-4-hidroxitetrahidro-1-benzoazepinas 2-(1'-naftil) sustituidas con el anillo azepínico en conformación de silla.

Se recomienda continuar con el análisis biológico (antiparasitario y sobre el sistema nervioso central) de más derivados de las 2-exo-(1'naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-

benzoazepinas y de las *cis*-4-hidroxi-2-(1'-naftil)-tetrahidro-1-benzoazepinas, ya que se enviaron para análisis unos pocos derivados, sin que se conozcan aún los resultados.

Expandir aun más los alcances de la ruta sintética, utilizando, por ejemplo, derivados del 2-naftalencarbaldehído. Así se podría crear una quimioteca más voluminosa y diversificada con el fin de estudiar sus potenciales propiedades antiparasitarias y su acción sobre el sistema nervioso central, que permitan la identificación de compuestos líderes para posteriores estudios de relación estructura-actividad (QSAR).

BIBLIOGRAFÍA

- Zhao, H.; Zhang, X.; Hodgetts, K.; Thurkauf, A.; Hammer, J.; Chandrasekhar, J.; Kieltyka, A.; Brodbeck, R.; Rachwal, A.; Primus, R. and Manly, C. *Bioorg. Med. Chem. Lett.*, 2003, 13, 701.
- 2. Ikemoto, T.; Ito, T.; Nishiguchi, A. and Kiminori, T. *Tetrahedron Lett.*, 2004, 45, 9335.
- 3. Armesto, D.; Caballero, O.; Ortiz, M. J.; Agarrabeitia, A. R.; Martin-Fontecha, M. and Torres, M. R. *J.Org. Chem.*, 2003, 68, 6661.
- Di Fabio, R.; Micheli, F.; Barladi, D.; Bertani, B.; Conti, N.; Dal Forno, G.; Feriani, A.; Donati, D.; Marchioro, C.; Messeri, T.; Missio, A.; Pasquarello, A.; Pentassuglia, G.; Pizzi, D.; Provera, S.; Quaglia, A. and Sabbatini, F. *Il Farmaco* 2003, *58*, 723.
- 5. Cossy, J.; Poitevin, C. and Gomez, D. J. Org. Chem., 1998, 63, 4554.
- 6. Joseph, B.; Joucla, L. and Putey, A. Tetrahedron Lett., 2005, 46, 8177.
- Kondo, K.; Ogawa, H.; Yamashita, H.; Miyamoto, H.; Tanaka, M.; Naakaya, K.; Kitano, K.; Yamamura, Y.; Nakamura, S.; Onogawa, T. Mori, T. and Tominaga, M. *Bioorg. Med. Chem.*, 1999, 7, 1743.
- 8. Kunick, C. and Link, A. J. Med. Chem., 1998, 41, 1299.
- Garofalo, A.; Ragno, G.; Campiani, G.; Brizzi, A. and Nacci, V. *Tetrahedron*, 2000, 56, 9351.
- Ishikawa, T.; Manabe, S.; Aikawa, T.; Kudo, T. and Saito, S. Org. Lett., 2004, 6, 2361.
- Ikemoto, T.; Ito, T.; Nishiguchi, A.; Miura, S. and Tomimatsu, K. Org. Process Res. Dev., 2005, 9, 168.

- 12. Lewin, A. H.; Szewczyk, J.; Wilson, J. W. and Carrol, F. I. *Tetrahedron*, 2005, 61, 7144.
- 13. Boeglin, D.; Bonnet, D. and Hilbert, M. J. Comb. Chem., 2007, 9, 487.
- Avila-Zárraga, J.G.; Lujan Montelongo, A.; Covarrubias-Zúliga, A. and Romero-Ortega, M. *Tetrahedron Lett.*, 2006, 47, 7987.
- 15. Cropper, E. L.; White, A.; Ford. A. and Hii, K. J. Org. Chem., 2006, 71, 1732.
- Qadir, M.; Cobb, J.; Sheldrake, P.; Whittall, N.; White, A.; Hii, K.; Horton, P. and Hursthouse, M. J. Org. Chem., 2005, 70, 1545.
- Nishida, A.; Nakagawa, M.; Theeraladanon, C. and Arisawa, M. *Tetrahedron* 2004, 60, 3017.
- 18. Schrock, R.; Hoveyda, A. and Dolman, S. Org. Lett., 2003, 5, 4899.
- 19. Zhang, P. and Bierer, D. J. Nat. Prod., 2000, 63, 643.
- **20.** Yet, L. Chem. Rev., **2000**, 100, 2963.
- Qadir, M.; Priestley, R. E.; Rising, T. W. D. F.; Gelbrich, Th.; Coles, S. J.; Hursthouse, M. B.; Sheldrake, P. W.; Whittall, N. and Hii K. K. *Tetrahedron* 2003, 44, 3675.
- 22. Kohara, T.; Tanaka, H.; Kimura, K.; Fujimoto, T.; Yamamoto, I. and Arita, M. *Synthesis* 2002, 355.
- 23. Fujita, K.; Yamamoto, K. and Yamaguchi, R. Org. Lett., 2002, 4, 2691.
- 24. Baudoin, O.; Cesario, M.; Guénard, D. and Guéritte, F. J. Org. Chem., 2002, 67, 1199.
- Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider, R. and Fort, Y. Org. Lett., 2003, 5, 2311.

- Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K. and Yamaguchi, R. *Org. Lett.*, 2004, *6*, 2785.
- 27. Park, Y. S.; Yum, E. K.; Basu, A. and Beak, P. Org. Lett., 2006, 8, 2667.
- 28. Wirt, U.; Frölich, R. and Wünsch, B. Tetrahedron: Asymmetry 2005, 16, 2199.
- 29. Yamamoto, H.; Pandey, G.; Asai, Y.; Nakano, M.; Kinoshita, A.; Namba, K.; Imagawa, H. and Nishizawa, M. *Org. Lett.*, 2007, *17*, 3910.
- Yang, M. G.; Shi, J.; Modi, D. P.; Wells, J.; Cochran, B. M.; Wolf, M. A.; Thompson, L. A.; Ramanjulu, M. M.; Roach, A. H.; Zaczeck, R.; Robertosn, D. W.; Wexler, R. R. and Olson, R. E. *Bioorg. Med. Chem. Lett.*, 2007, 17, 3910.
- 31. Boto, A.; Hernandez, D. and Hernandez, R. J. Org. Chem., 2008, 73, 5287.
- **32.** Wieking, K.; Knockaert, M.; Leost, M.; Zaharevitz, D. W.; Meijer, L. and Kunick, C. *Arch. Pharm. Pharm. Med. Chem.*, **2002**, *7*, 311.
- 33. Pessoa-Mahana, H. and Valderrama, J. A. Synth. Commun., 2000, 30, 3481.
- Jean-Gérard, L.; Pauvert, M.; Collet, S.; Guingant, A.; Evain, M. Tetrahedron 2007, 63, 1250.
- 35. Sorbera, L. A.; Leeson, P. A. and Castañer, J. Drugs Fut., 2002, 27, 27.
- Yadav, J. S.; Subba, B. V.; Gupta, M. K.; Prabhakar, A. and Jagadeesh, B. Chem. Commun., 2004, 2124.
- 37. Ren, H.; Zanger, M. and Mckee, J. R. Synth. Commun., 2006, 36, 355.
- 38. Jaimes-Barajas, J. Extensión de la transposición amino-Claisen a la preparación de derivados de la 6,11-dihidrodibenzo[b,e]azepina. Bucaramanga, 2004. Trabajo de Investigación. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química.

- **39.** Yépes-Pérez, A. La alquilación intramolecular de Friedel-Crafts y la oxidación de aminas aromáticas secundarias *N*-sustituidas-Dos metodologías potencialmente útiles en la construcción de los sistemas heterocíclicos de la benzo[*e*]nafto[1,2-*b*]azepina y la nafto[1,2-*b*]azepina. Bucaramanga, **2004.** Tesis de Pregrado. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química.
- 40. Gómez-Ayala, S. L. Estudio exploratorio de la viabilidad de una ruta alterna basada en la transposición amino-Claisen de *N*-alil-*N*-aril-*N*-tienilaminas para acceder a las 2,5-dihidro-1*H*-[tieno-(2,3-*e*)benzo-1-azepinas]. Bucaramanga, 2003. Tesis de Pregrado. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química.
- 41. Blanco-Jaimes, M. C. Síntesis estereoselectiva de *cis*-4-hidroxi-2-(2'-tienil)tetrahidro-1-benzoazepinas empleando una ruta convergente para acceder a sus precursores clave, las *orto*-alilanilinas *N*-tienil sustituidas. Bucaramanga, 2007. Tesis de Pregrado. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Laboratorio de Síntesis Orgánica.
- 42. Raysth-Martínez, W. Preparación de *orto*-alilanilinas y su uso racional en la síntesis estereoselectiva de dos nuevas series de *cis*-4-hidroxi-2-(1'-naftil; 2'-furil)tetrahidro-1-benzoazepinas. Bucaramanga, 2007. Tesis de Pregrado. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Laboratorio de Síntesis Orgánica.
- 43. Acosta Quintero, L. M. Uso racional de los productos de *N*-alquenilación de anilinas en la síntesis estereoselectiva de nuevas series de 1,4-epoxi-2-vinil-(isopropenil, estiril) y *cis*-4-hidroxi-2-vinil(isopropenil)-tetrahidro-1-benzoazepinas. Bucaramanga, 2008. Tesis de Pregrado. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Laboratorio de Síntesis Orgánica.
- 44. Palma, A.; Gómez, S. L.; Stashenko, E.; Bahsas, A. and Amaro-Luis, J. M. Synlett 2006, 14, 2275.

- 45. Gómez-Ayala, S. L. Las *orto*-alilanilinas *N*-bencilosustituido como precursores apropiados en la síntesis de nuevas 2-fenil(aril)-4-hidroxitetrahidro-1-benzoazepinas.
 2006. Tesis de Maestría. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Laboratorio de Síntesis Orgánica.
- 46. Yépes-Pérez, A. F. Estudio del potencial sintético de las β-alil-α-naftilamina *N*-sustituidas y las *N*-(2-alilbencilsustituido)anilinas en la construcción de los sistemas heterocíclicos de la nafto[1,2-b]azepina y la dibenzo[b,e]azepina. Bucaramanga, 2007. Tesis de maestría. Universidad Industrial de Santander. Facultad de Ciencias. Escuela de Química. Laboratorio de Síntesis Orgánica.
- Palma, A.; Yépez, A. F.; Stashenko, E.; Bahsas, A. and Amaro-Luis, J. *Tetrahedron Lett.*, 2006, 47, 5825.
- Fontenla, J. A.; Gato, A.; Marini, L.; Palma, A.; Gómez, S. L. and Yépez, A. F. Methods Find. Exp. Clin. Pharmacol 2006, 28, suppl. 2, 109.
- 49. Marini, L.; Fontenla, J. A.; Palma, A.; Gómez, S. L. and Yépez, F. *Methods Find. Exp. Clin. Pharmacol* 2008, *30*, suppl. 2, 155.
- 50. Palma, A.; Yépes, A. F.; Leal S. M.; Coronado, C.A. and Escobar, P. *Bioorg. Med. Chem Lett.*, 2009, 19, 2360.
- Escobar, P.; Leal, S. M.; Coronado, C. A.; Gómez, S. L. and Palma, A. XI Congreso Nacional de Farmacología y Terapéutica. I Congreso Iberoamericano de Farmacología. Bucaramanga, 2007.
- Leal, S.; Escobar, P.; Gómez, S. L. and Palma, A. 4th World Congress on Leishmaniasis. Lucknow, India, 2009.
- Leal, S.; Yépes, A. F.; Palma, A. and Escobar, P. XIV Congreso Colombiano de Parasitología y Medicina Tropical y X Simposio PECET. Medellín, 2009.

- 54. Palma, A.; Bahsas, A. and Blanco, M. C. New 1,1-*bis*-aryl-1-(2-thienyl; 5-bromo-2-thienyl; phenyl, a-naphtyl)methanes as unexpected products of the cyclocondensation reaction of 6-allyl-3-chloro-2-methylanilines *N*-methylene-substituted and mercaptoacetic acid. Congreso Iberoamericano y XXIV Congreso Peruano de Química. Cuzco, Perú. 2008.
- 55. Lutz, R. P. Chem. Rev., 1984, 84, 205.
- 56. Anderson, W. and Lai, G. Synthesis, 1995, 1287.
- 57. Byung T. C. and Sang K. K. Tetrahedron 2005, 61, 5725.
- 58. Abdel-Magid, A.; Carson, K. and Harris, B. J. Org. Chem., 1996, 61, 3849.
- Murahashi, Sh.-I.; Mitsui, H.; Shiota, T.; Tsuda, T. and Watanabe, Sh. J. Org. Chem., 1990, 55, 1736.
- 60. Murahashi, Sh.-I.; Imada, Y. and Ohtake, H. J. Org. Chem., 1994, 59, 6170.
- 61. Tufariello, J. and Gatrone, R. Tetrahedron Lett., 1978, 19, 2753.
- Goti, A.; Cardona, F.; Faggi, E.; Liguori, F. and Cacciarini, M. *Tetrahedron Lett.*, 2003, 44, 2315.
- 63. Ilida, H. and Kibayashi, C. Tetrahedron Lett., 1981, 22, 1913.

ANEXOS

(ESPECTROS DE IR, EM, RMN¹H, RMN¹³C, ¹H,¹H-COSY, HSQC Y NOESY)

ANEXOS 1. ESPECTROS DE IR Y EM DE LA N-ALILANILINA 1f

Anexo 1.2. Espectro de masas de la 3,5-dimetil-*N*-alilanilina <u>1</u>f

ANEXOS 2. ESPECTROS DE IR Y EM DE LA 2-ALILANILINA <u>2</u>f

Anexo 2.1. Espectro de infrarrojo de la 3,5-dimetil-2-alilanilina <u>2</u>f

Anexo 2.2. Espectro de masas de la 3,5-dimetil-2-alilanilina <u>2</u>f

ANEXOS 3. ESPECTROS DE IR Y EM DE LA 2-ALIL-*N*-(1'-NAFTILMETIL)ANILINA <u>3</u>f y RMN DE LA 3,5-DIMETIL-2-ALIL-*N*-(1'-NAFTILMETIL)ANILINA <u>3</u>e

Anexo 3.1. Espectro de infrarrojo de la 3,5-dimetil-2-alil-N-(1'-naftilmetil)-anilina 3f

Anexo 3.2. Espectro de masas de la 3,5-dimetil-2-alil-N-(1'-naftilmetil)-anilina 3f

Anexo 3.3. Espectro de RMN ¹H de la 6-Alil-2,3-dimetil-*N*-(1'-naftilmetil)-anilina <u>3</u>e

Anexo 3.4. Espectro de RMN ¹³C de la 6-Alil-2,3-dimetil-*N*-(1'-naftilmetil)-anilina <u>3</u>e

Anexo 3.5. Espectro de correlación homonuclear 1 H, 1 H-COSY de la 6-Alil-2,3-dimetil-*N*-(1'-naftilmetil)-anilina <u>3</u>e

ANEXOS 4. ESPECTROS DE IR, EM DE LA 1,4-EPOXI TETRAHIDRO-1-BENZOAZEPINA <u>4</u>f y RMN DE LA 1,4-EPOXI TETRAHIDRO-1-BENZOAZEPINA <u>4</u>b

Anexo 4.1. Espectro de infrarrojo del cicloaducto 6,8-dimetil-2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>f

Anexo 4.2. Espectro de masas del cicloaducto 6,8-dimetil-2-*exo*-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>f

Anexo 4.3. Espectro de RMN ¹H del cicloaducto 7-metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina $\underline{4}\mathbf{b}$

Anexo 4.4. Espectro de RMN ¹³C del cicloaducto 7-metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina $\underline{4b}$

Anexo 4.5. Espectro de correlación homonuclear ¹H,¹H-COSY del cicloaducto 7-metil-2exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>b

Anexo 4.6. Espectro de correlación heteronuclear HSQC del cicloaducto 7-metil-2-exo-(1'-naftil)-1,4-epoxi-2,3,4,5-tetrahidro-1-benzoazepina <u>4</u>b

ANEXOS 5. ESPECTROS DE IR, EM DE LA TETRAHIDRO-1-BENZOAZEPINA <u>5</u>f Y RMN DE LA TETRAHIDRO-1-BENZOAZEPINA <u>5</u>b

Anexo 5.1. Espectro de infrarrojo de la 6,8-dimetil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepina $\underline{5}f$

Anexo 5.2. Espectro de masas de la 6,8-dimetil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepina $\underline{5}f$

Anexo 5.3. Espectro de RMN ¹H de la 7-Metil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5tetrahidro-1(1*H*)-benzoazepina <u>5</u>b

Anexo 5.4. Espectro de RMN ¹³C de la 7-Metil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepina **<u>5</u>b**

Anexo 5.5. Espectro de correlación homonuclear ¹H, ¹H-COSY de la 7-Metil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1*H*)-benzoazepina $\underline{5b}$

102

Anexo 5.6. Espectro de correlación heteronuclear HSQC de la 7-Metil-*cis*-4-hidroxi-2-(1'-naftil)-2,3,4,5-tetrahidro-1(1H)-benzoazepina5b

