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Resumen
Título: Algoritmo de reconstrucción de imágenes a partir de proyecciones espectrales aleatorias usando regularizadores de bajo rango1

Autor: TATIANA CAROLINA GÉLVEZ BARRERA **

Palabras Clave: Adquisición de imágenes espectrales, problemas de recuperación de imágenes espectrales, información previa de bajo rango,

términos regularizadores.

Descripción: El uso de información previa es crucial en la solución de problemas inversos mal condicionados en el procesamiento de imágenes.

Esta tesis estudia el denominado bajo rango como información previa de una imagen espectral (IE) abordando la pregunta de investigación ¿cómo

aprovechar la propiedad de bajo rango para resolver problemas de recuperación de imágenes espectrales? Una IE puede ser modelada como un

arreglo tridimensional con dos dimensiones espaciales y una dimensión espectral. Típicamente, las escenas naturales contienen redundancia en

las respuestas espectrales y similitudes en las estructuras espaciales, tal que la propiedad de bajo rango indica que una IE se encuentra en un

subespacio de baja dimensión. Sin embargo, la literatura omite comúnmente un aspecto crítico relacionado con la distinta connotación que tiene la

propiedad de bajo rango en las dimensiones espaciales y espectral. Por lo tanto, esta tesis analiza la propiedad de bajo rango por medio de premisas

teóricas y estudios empíricos para determinar cómo emplear el bajo rango, obteniendo las siguientes contribuciones principalmente. Un enfoque

que incorpora la propiedad de bajo rango implícitamente en la arquitectura de una red neuronal, proponiendo una alternativa a la formulación

típica de una función de regularización. Además, se introduce el concepto de similitud de rango-uno asumiendo que las correlaciones estructurales

en una IE son preservadas a lo largo de las bandas espectrales. Este concepto determina una dimensión adicional a las dimensiones espaciales y

espectral para emplear la propiedad de bajo rango. Finalmente, se presenta la implementación y desarrollo de cuatro algoritmos de recuperación de

imágenes espectrales, cubriendo formulaciones de optimización convexa y aprendizaje profundo que consideran la propiedad de bajo rango en la

dimensión espacial, espectral, de similitud, y desde el punto de vista global y no-local. En particular, se abordan los problemas de eliminación de

ruido, superresolución, fusión, fusión compresiva, y reconstrucción compresiva, superando los métodos de referencia comparativa en métricas de

calidad objetivas y visuales.

1 Tesis doctoral

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingenierías Eléctrica, Electrónica y telecomunicaciones.
Director: Henry Arguello Fuentes.
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Abstract
Title: Image Recovery Algorithm from Random Spectral Projections via Low-Rank Regularizations *

Author: TATIANA CAROLINA GELVEZ BARRERA **

Keywords: Spectral imaging, spectral image recovery problems, low-rank prior, regularization terms.

Description: Using prior information is crucial for solving ill-posed inverse problems in image processing. This thesis aims to study the so-called

low-rank prior exhibited by a spectral image (SI), addressing the research question of how to take advantage of the low-rank prior for solving

spectral imaging recovery problems. A SI can be modeled as a three-dimensional array with two spatial and one spectral dimension. Natural
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Introduction

Spectral imaging sensors collect spatial-spectral information of a scene through specialized opti-

cal systems. The information is commonly organized in a three-dimensional (3D) datacube, refe-

rred to as a spectral image (SI), with two spatial and one spectral dimension (Khan et al., 2018).

A SI can be called a multispectral image (MSI) or a hyperspectral image (HSI) associating do-

zens or hundreds of spectral bands, respectively (Lu et al., 2019). Each SI spatial location contains

a spectral distribution, dubbed spectral signature, that uniquely characterizes the captured mate-

rial. Hence, spectral imaging supports remote sensing applications such as precision agriculture,

classification, and material identification (Vargas et al., 2019).

SI acquisition is commonly affected by systematic artifacts linked with external conditions

and optical aberrations that corrupt, degrade, or diminish the amount of captured random spectral

projections, referred to as measurements (Amigo and Santos, 2020). For instance, the presence of

such artifacts generates many challenges in the SI analysis, so that correct post-processing to reco-

ver the underlying scene is a critical step (Chang et al., 2020a). The photon efficiency, light source

nature, and atmospheric conditions can add Gaussian noise, outlines, and striping, leading to a

denoising problem (Xue et al., 2019). Moreover, SI sensing technologies face a trade-off between

the spatial and spectral resolution, limiting the acquisition of a simultaneously high spatial-spectral

resolution image (HRI), which has lead to a single HSI super-resolution (HSI-SR) or HSI-MSI fu-

sion problem (Guilloteau et al., 2020). The compressive spectral imaging (CSI) paradigm provides

few compressed measurements, leading to a reconstruction problem (Barajas et al., 2020). Going
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further, some methods aim to perform high-level imaging tasks from the observations, yielding

to problems such as clustering (Hinojosa et al., 2018), classification (Sanchez et al., 2019) and

compressive HSI-MSI fusion (Vargas et al., 2018a).

SI recovery is an active research field addressing the aforementioned ill-posed inverse

problems, where there exist several feasible scenes that match the known measurements. The-

refore, using prior information related to the SI natural characteristics is crucial to counter the

ill-posing and effectively find a solution. The mainstream of the employed SI prior information

includes (8) Wavelet-based representation assuming particular SI properties in the Wavelet trans-

formation (Vaish et al., 2019); (88) joint-sparsity assuming that the SI can be represented as the

product of two matrices where only a few rows contain nonzero entries (Gao et al., 2020); (888)

sparsity assuming a SI sparse representation with few nonzero coefficients in a given orthonormal

basis (Correa et al., 2016); (8E) total-variation (TV) assuming smooth transitions within the SI spa-

tial locations (Zeng et al., 2020); and (E) low-rankness assuming a SI low-dimensional subspace

representation by cause of high spatial-spectral structural correlations. (Fu et al., 2016).

The SI prior information can be included in greedy algorithms, model-based optimization,

deep-learning (DL), and deep image prior (DIP) approach. The Greedy strategy considers the prior

information through analytic, heuristic, and systematic procedures to recover the SI (Mäkinen

et al., 2020). The model-based optimization includes the prior information through hand-crafted

regularization terms in an optimization problem (Chen et al., 2018). The data-driven DL strategy

learns the prior information or the mapping operator by processing a vast amount of available

datasets (Ongie et al., 2020). The non-data-driven DIP approach captures the low-level statistics of
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the SI via a single generator network structure without data-training (Ulyanov et al., 2018).

SI recovery strategies taking advantage of priors based on a representation basis have ob-

tained satisfactory performance. Nonetheless, the choice of the representation basis is a critical

issue to obtain such good results (León-López and Fuentes, 2020). Using sparsity implies the prior

knowledge of an orthonormal basis or a dictionary learning with a large amount of data to be pro-

cessed (Tu et al., 2020). On the other hand, despite the availability of traditional basis such as the

Cosine, Wavelet or Karhunen-Loeve transforms, the optimal representation basis varies according

to the scene. For instance, the representation basis may vary if the scene contains landscape or city

objects, or if the scene is static or dynamic (Correa-Pugliese et al., 2016).

Incorporating the low-rank prior through efficient strategies has attracted widespread inter-

est in the SI analysis as an alternative to the traditional approaches based on a representation basis.

Specifically, a natural and noiseless SI commonly contains a few different materials represented

with unique spectral signatures repeated at various spatial locations, generating high redundancy

across the spectral domain (Ongie and Jacob, 2017). Besides, the same structure is commonly re-

peated at various sub-regions, generating high local and nonlocal spatial self-similarities. These

spatial-spectral correlations enable the use of a low-rank prior where the SI can be low-rank appro-

ximated (Chang et al., 2020a). In general, the inclusion of low-rank regularizations for SI recovery

problems from random spectral projections have faced the following challenges:

1. Analysis of the SI low-rank prior: The low-rank prior has been applied in different moda-

lities to promote the low-rankness across the spatial or spectral dimension. For instance, (Liu

et al., 2018) adopt the low-rank recovery with a local neighborhood weighted spatial-spectral
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TV model. (Zeng et al., 2020) adopt a low-rank tensor modeling with a global sparse and

TV regularizer. (Xue et al., 2017b) combine the sparsity and non-local low-rank property to

eliminate the noise. Still, these works do not consider the analysis and validation of the low-

rank property along the spatial and spectral dimensions and from the global and non-local

point of view over multiple spectral datasets.

2. Incorporation of the low-rank prior in SI recovery: There exist various strategies in which

the low-rank prior can be incorporated in the solution of SI recovery problems. Model-based

optimization employs hand-crafted regularization terms to introduce the low-rank prior in

an optimization problem (Chen et al., 2019; Chang et al., 2020b). However, the regulariza-

tions usually do not cover the wide variety of SIs. On the other hand, DL-based approaches

combine the learning of a black-box operator from available datasets with a low-rank pro-

perty (Song et al., 2019; Cao et al., 2019b). However, DL approaches require a vast a amount

of training datasets, which results challenging in the spectral imaging field. Still, developing

alternative model-based, DL-based or DIP-based strategies to incorporate the low-rank prior

across the spatial and spectral dimension is an active research field.

3. Development of SI recovery methods using the low-rank prior: SI recovery such as SI

denoising, single HSI-SR, CSI reconstruction, HSI-MSI fusion, and compressive HSI-MSI

fusion are commonly highly ill-posed problems. Therefore, improving the recovery quality

of these problems by developing methodologies that incorporate the studied low-rank pro-

perty with the proposed regularizations is a challenge.
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This thesis addressed the aforementioned challenges by achieving the following objectives.

General objective. To develop low-rank regularizations for recovering SIs from

encoded random spectral projections in order to improve the reconstructed image quality.

Specific objectives.

1. To analyze the low-rank properties of SIs to validate the assumption that a low-rank regulari-

zation could improve the performance of the spectral inverse problem from encoded random

projections.

2. To design two regularization terms to measure the low-rank characteristic of spectral images.

3. To formulate an optimization problem which includes the low-rank regularization terms to

solve the spectral inverse problem from encoded random projections.

4. To design a numerical algorithm to solve the proposed spectral inverse optimization problem.

5. To verify the developed algorithm by using two state-of-the-art random encoder projectors.

Contributions. The thesis’ contribution consists of an extensive research for in-

corporating the low-rank prior to solve ill-posed SI recovery problems, as detailed below.

1. The research discusses theoretical premises and builds empirical studies to analyze the SI

low-rank property. Section 2.2 analyzes the low-rank property across the spectral domain,

under which a few materials uniquely represented by a spectral signature are repeated at

various SI spatial locations, leading to a global spectral low-rank prior. Section 3.2 analyzes

the low-rank property across the spatial domain, under which similar structures are repeated
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at different locations, leading to a non-local low-rank prior. Section 4.2 analyzes the low-

rank property across a proposed similarity domain, under which the sorting of similar blocks

can be shared among the spectral bands, leading to a novel rank-one similarity prior.

2. The research formulates various regularizations to take advantage of the intrinsic SI spatial-

spectral correlations. Section 2.3 incorporates the global spectral low-rank prior through a

hand-crafted regularization known as the nuclear norm. Section 3.3 incorporates the global

spectral low-rank prior through the modeling of a SI as a linear combination of two matrices,

and incorporates the non-local low-rank prior through an explicit hand-crafted regularization

term that promotes self-similarities between small extracted patches. Differently, Section 4.3

combines the global spectral low-rank, non-local self-similarities and the rank-one similarity

prior through an implicit regularization term. Section 5.2 proposes an alternative strategy to

incorporate the global spectral low-rank prior intrinsically in a neural network architecture,

without requiring an explicit function.

3. The research develops practical algorithms to solve various ill-posed SI recovery problems

following convex optimization formulations to guarantee finding a global optimal. Speci-

fically, Section 2.4 presents an alternating minimization with the block-coordinate descent

method (BCDM) for CSI reconstruction. Section 3.4 presents a compressive HSI-MSI fusion

algorithm iteratively solved with the alternating direction method of multipliers (ADMM).

Section 4.4 presents a HSI-MSI fusion algorithm following the plug-and-play with ADMM

(PnP-ADMM) approach. Section 5.3 presents a non-data-driven DIP-based approach for sol-
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ving single HSI-SR, SI denoising, and CSI reconstruction.

4. The developed algorithms are evaluated over several publicly available daily objects, multis-

pectral, and hyperspectral datasets. Furthermore, two hyperspectral datasets were acquired in

the Optics Laboratory from Universidad Industrial de Santander as described in Section 4.5.

5. The developed methods for CSI reconstruction were evaluated by using three implementable

state-of-the-art random encoder projectors: CASSI, SSCSI, and C-CASSI.
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1. Spectral imaging theoretical background

Spectral imaging sensors capture spectral information (_) at various bidimensional (2D) (G, H)

spatial locations from a scene, forming a discrete 3D SI representing a SI (Rueda et al., 2016).

Capturing rich spectral information supports diverse remote sensing applications such as disaster

management, material identification, and precision agriculture (Vargas et al., 2019). The SI can be

denoted as a third-order tensor F ∈ R#×#×! with # ×# spatial pixels and ! spectral bands, whose

vector notation is given by f ∈ R=, = = #2!.

Figure 1 (a) depicts a 3D SI, and four common acquisition techniques: (b) The whisk-

broom consists of a point-scanning capturing the spectral distribution of a spatial pixel f8 ∈ R! , for

8 = 1, . . . , #2 at a time; (c) The push-broom consists of a line-scanning capturing 2D slices with

spatial-spectral data at a time; (d) The tunable spectral filter consists of an area-scanning capturing

the spatial distribution of a spectral band fℓ ∈ R#2
, for ℓ = 1, . . . , ! at a time; and (e) The snapshot

technique captures the whole spatial-spectral data at one single snapshot.

#

#

!

Spatial pixel
f8 ∈ R!

Spectral band
fℓ ∈ R# 2

(a) Datacube (b) Point-scanning (c) Line-scanning (d) Area-scanning (d) Snapshot

Figure 1. Spectral imaging acquisition techniques.
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1.1. Hyperspectral and multispectral imaging

Current imaging sensors face a trade-off between the spatial/spectral resolution and the signal-

to-noise ratio by cause of limited amount of incident energy (Guilloteau et al., 2020). Hypers-

pectral sensors such as Hyperion, reflective optics system imaging spectrometer (ROSIS), and

airborne visible/infrared imaging spectrometer (AVIRIS) can record an HSI with hundreds of low-

resolution narrow spectral bands (Lu et al., 2019). Meanwhile, multispectral sensors such as Land-

sat, Sentinel-2, and RedEdge, can integrate tens to hundreds of nanometers into one high-resolution

spectral band to obtain an MSI.

Let M ∈ R#2
ℎ
×#2

denote a uniform spatial sub-sampling, B ∈ R#2×#2
denote a spatial blu-

rring convolution, and lllh ∈ R#
2
ℎ
! denote additive Gaussian noise. The HSI, denoted by fh ∈ R#

2
ℎ
! ,

can be modeled as a spatial blurred and sub-sampled version of an underlying HRI f ∈ R#2! as

fh = (I!⊗M) (I!⊗B)f +lllh = M̄B̄f +lllh, (1)

where the Kronecker product ⊗ applies the sub-sampling and blurring across the spectral bands

maintaining a vector notation, so that M̄ ∈ R#2
ℎ
!×#2! and B̄ ∈ R#2!×#2! . The HSI contains #2

ℎ
=

#2/3ℎ2 spatial pixels, with 3ℎ > 1 being a spatial sub-sampling factor.

Similarly, let R ∈ R!<×! denote a multispectral sensor response, and lllm ∈ R#
2!< denote

additive Gaussian noise. The MSI, denoted by fm ∈R#
2!< , can be modeled as a spectrally degraded

version of the HRI f as

fm = (R⊗I#2)f +lllm = R̄f +lllm, (2)
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where ⊗ applies the spectral degradation along all spatial pixels, so that R̄ ∈ R#2!<×#2! . The MSI

contains !< = !/3< spectral bands, where 3< > 1 is a spectral degradation factor.

1.2. Compressive spectral imaging

The CSI paradigm reduces the time-consuming effort of conventional scanning techniques by in-

corporating the compressive sensing theory to spectral imaging, where a high-dimensional SI can

be acquired and compressed simultaneously into few random projections if satisfying sparsity and

incoherence principles (Candès and Wakin, 2008; Brady, 2009). Some remarkable compressive

optical systems are described below.

Coded aperture snapshot spectral imaging. The coded aperture snapshot spectral

imaging system (CASSI) is composed of three main optical elements, a binary coded aperture that

spatially modulates the incoming light, a dispersive element that smears the encoded light, and

a detector that multiplexes the encoded smeared light in a focal plane array (FPA) (Wagadarikar

et al., 2008). The number of measurements acquired with one CASSI snapshot is equal to < =

# (#+!−1). For rich spatial-spectral acquisitions, additional snapshots can be acquired by varying

the coded aperture spatial distribution, so that < = &# (# + ! − 1) for & snapshots (Rueda et al.,

2016).

Colored coded aperture snapshot spectral imaging. The colored-CASSI system

(C-CASSI) replaces the binary coded apertures in CASSI by an array of optical filters known as

colored coded apertures. This replacement provides a higher degree of randomness in the spectral

domain, which in turn, reduces the amount of required compressed measurements (Arguello and

Arce, 2014). The number of measurements acquired with C-CASSI is given by &# (# + ! − 1))
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for & snapshots (Rueda et al., 2016).

Spatial-spectral encoded compressive hyperspectral imager. The spatial-spectral

encoded compressive hyperspectral imager (SSCSI) uses a single static coded aperture in front

of the sensor. The spatial-spectral modulation varies according to the distance between the coded

aperture and the sensor. If the coded aperture is mounted directly on the sensor, the shear vanishes

and it only modulates the spatial dimensions, and if the coded aperture is placed in the spectral

plane, the coding pattern for the spatial dimension will be the same (Lin et al., 2014).

Figure 2 shows an schematic representation of CASSI, C-CASSI, and SSCSI. Left: CASSI:

the scene 5> (G, H,_) is encoded by a coded aperture ) (G, H) which block/unblock the energy in the

(G, H) spatial location across _ wavelengths. The spectrum components of the coded field are se-

parated by a dispersive element + (_). The dispersed field is then integrated over the FPA. Middle:

C-CASSI: the binary coded aperture is replaced by a colored coded aperture )_ (G, H) which filters

the incoming light at the spatial and spectral domains. Right: SSCSI: the scene 5> (G, H,_) passes

through a diffraction grating to disperse its light into the spectral plane. The resulting dispersed

field is encoded by an attenuation coded aperture mounted at a slight offset in front of the sensor.

1.3. Spectral imaging recovery problems

The general discrete SI forward model can be mathematically described as

y = Φf +lll, (3)
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Figure 2. Compressive optical systems.

where y ∈ R< stands for observed measurements, Φ ∈ R<×= stands for the sensing matrix, and

lll ∈ R< stands for the acquisition process noise. According to the nature of the sensing matrix, the

SI recovery from the observed measurements is referred to as a different recovery problem.

1.3.1. Spectral image denoising. Inverse problem when < = =, Φ ∈ R=×= denotes

an identity matrix, and y models noisy measurements. This problem appears by cause of the optical

system external factors and environment conditions during the acquisition process, such as the

illumination, or atmospheric conditions (Chen et al., 2017).

1.3.2. Single hyperspectral image super-resolution. Inverse problem when < =

=/3ℎ2, Φ = M̄B̄, and y = fh models the spatially degraded HSI in (1). The single HSI-SR problem

appears by cause of the technology limitations, so that the spatial resolution is affected when

acquiring a SI with several spectral bands (Guilloteau et al., 2020).

1.3.3. Multispectral-hyperspectral image fusion. Inverse problem when< = =/3ℎ2

+ =/3<, Φ = [(M̄B̄)) R̄) ]) , and y = [fh
) fm

) ]) . The HSI-MSI fusion problem aims to synthesize

an HRI by combining the useful information of the HSI in (1) with low-spatial-and-high-spectral
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resolution; and the MSI in (2) with high-spatial-and-low-spectral resolution (Dian et al., 2021).

1.3.4. Compressive spectral imaging reconstruction. Inverse problem when the

number of measurements is less than the SI dimension, i.e.,<� =,Φ=H ∈R<×= denotes a sensing

matrix modeling a compressive optical system, and y ∈ R< models compressed measurements,

where the ratio W = </= is known as the compression ratio.

1.3.5. Compressive spectral imaging fusion. Inverse problem when < =<ℎ+<<,

Φ = [(HℎM̄B̄)) H<R̄) ]) , and y = [y)
ℎ

y)<]) . The compressive HSI-MSI fusion problem aims to

synthesize an HRI by combining the useful information of an HSI and an MSI from the correspon-

ding compressed observations.

The use of prior information such as sparsity, smoothness or low-rankness is a crucual

idea to effectively recover the SI from the noisy, MSI, HSI or compressed measurements. The

prior information is typically introduced trough hand-crafted regularization functions in an inverse

problem formulation given by

f̂ ∈ argmin
f∈R=

� (f |y) + ]'(f), (4)

where f̂ ∈ R= denotes the estimated SI, � (·) :R=×R<→R denotes the fidelity term to the observa-

tions y, '(·) : R=→ R denotes an explicit regularization function that promotes different SI prior

information, with ] > 0 being a regularization parameter to balance the terms.
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1.4. Low-rank regularization

The low-rank prior assumes that a high-dimensional SI lies in a low-dimensional subspace because

of the presence of high spatial-spectral correlations (Mei et al., 2018; Cao et al., 2019a). Low-rank

modeling aims to recover the underlying SI from degraded observations by finding a low-rank

approximation. Notably, the low-rank prior can be differently regularized as if considering the

spatial or spectral dimensions (He et al., 2020; Yokoya et al., 2017).

1.4.1. Global spectral low-rank prior. The global spectral low-rank is based on

the physical observation that natural scenes commonly contain a few number (A � !) of different

materials uniquely represented by its spectral signature, i.e., each spatial pixel can be modeled as

a linear combination of few spectral distributions repeated at several spatial locations (Cohen and

Gillis, 2017; Mei et al., 2018).

The global spectral low-rank prior can be regularized unfolding the SI as a 2D matrix F ∈

R#
2×! = [f1 . . . fℓ . . . f!], where each column contain a spectral band. In this formulation, the SI

can be well approximated with a low-rank matrix where only A � ! different spectral distributions

span the scene i.e., rank(F) = A, where rank(·) is referred to as the rank of a matrix determining

the number of non-zero singular values.

In addition, the global spectral low-rank can be implicitly regularized in the observation mo-

del through a SI mixture model. The linear mixture model (LMM) assumes that the 8Cℎ spatial pixel

f8 can be modeled as a linear combination of the form f8 =Ea8, where E ∈ R!×A = [e1 . . . eZ . . . eA]

denotes an endmember matrix, whose columns eZ ∈ R! contain a unique spectral distribution,
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for Z = 1, . . . , A, and a8 ∈ RA denotes an abundance vector, whose elements contain the fractional

proportions of each endmember at the 8Cℎ spatial pixel, for 8 = 1, . . . , #2. Consequently, f can be

represented with the following decomposition

f = (E⊗I#2)ā = Ēā, (5)

where ā ∈ R#2A
+ = [a)1 . . . a8) . . . a)

#2]) stacks the abundances; Ē ∈ R#2!×#2A
+ encompasses the end-

members spanning the SI; I#2 refers to an identity matrix of size #2; and ⊗ denotes the Kronecker

product, introduced to apply the endmembers along the spatial locations.

The LMM usually accurately characterizes a SI where the endmembers do not interact with each

other. Nonetheless, the LMM does not reliably describe a SI where the endmembers interact in

complex spatial-spectral scenarios (Bioucas-Dias et al., 2012). Therefore, the non-linear mixture

model (NLMM) aims to take into account the non-linear interactions and scattering factors through

the use of physical models based on the nature of the environment, or flexible models that appro-

ximate the non-linearity with a convolutional neural network (CNN), Kernels, or post-non-linear

transformations (Altmann et al., 2014; Heylen et al., 2014). The NLMM is given by

f =N(E, ā), (6)

where N(·) stands for an implicit function that defines non-linear interactions between the end-

members and the abundances (Wang et al., 2019b). The aforementioned mixture models impose
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additional physical constraints over components E and ā. Precisely, the non-negative constraint that

considers the nature of reflected light in spectral signatures, such that the entries of the endmember

matrix E have to be non-negative, and the sum-to-one constraint that considers the entire compo-

sition of the pixels, such that the sum of non-negative fractional proportions of each endmember at

each pixel has to be one, i.e., a8 [0]≥ 0, and
∑A
0=1 a8 [0]= 1,∀8. (Jia and Qian, 2009).

1.4.2. Local and non-local spatial low-rank prior. Typically, the spatial distri-

bution of an HRI is highly structured, such that, there exist high self-similarities between small

collections of spatial pixels, dubbed patches. Thus, an exemplar patch, or proportional versions of

an exemplar patch, may appear several times at different spatial locations of the HRI. This feature

generates high redundancy, where each matrix grouping similar versions of an exemplar patch can

be assumed to be well approximated with a low-rank matrix. This prior can be referred to as lo-

cal or non-local low-rank approximation, according to the grouping of patches located at local or

non-local positions (Zhang et al., 2018b; Fu et al., 2016).

The non-local low-rank prior has been applied over spectral imaging inverse problems (Xu

et al., 2019; Chang et al., 2020a) following four main steps: (i) dis-aggregation of the whole HRI

into small spatial overlapped patches of fixed size; (ii) grouping of the patches according to their

similarity degree (Kervrann and Boulanger, 2006); (iii) low-rank approximation of each patch-

group stacked in a matrix whose rows and columns are assumed to be all proportional to each

other (Zhang et al., 2014); and (iv) aggregation of the patches extracted from the low-rank appro-

ximation of the patch-groups to form the HRI.
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2. Global low-rank regularization for compressive spectral imaging reconstruction

Part of this chapter has been adapted from the journal paper (Gelvez et al., 2017) (published) and

conference (Gélvez et al., 2016) (published).

This chapter presents the first approach developed in this thesis for the inclusion of low-

rank regularizations in spectral imaging recovery, where I propose a CSI reconstruction method to

estimate a SI from compressed measurements, that combines the sparsity and the global spectral

low-rank prior, thus outperforming previous literature approaches. Section 2.1 presents the most

related works for CSI reconstruction employing sparsity and low-rank priors, and the identified

gaps that motivated the proposed approach, with the following main contributions.

1. Validation of the global spectral low-rank prior through an extensive empirical study of the

Pearson correlation matrix along several datasets detailed in Section 2.2.

2. Formulation of a convex optimization inverse problem that unlike previous CSI reconstruc-

tion methods employing sparse representations, seeks for a solution that simultaneously sa-

tisfies the sparse and global spectral low-rank priors, as shown in Section 2.3.

3. Development of a practical algorithm that addresses the solution of the formulated convex

optimization inverse problem following a BCDM, described in Section 2.4.

4. A quantitative gain in the quality of the CSI reconstruction along various datasets and com-

pressive optical systems. The simulations and experiments evaluating the performance of the

proposed method including the global spectral low-rank prior are reported in Section 2.5.
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2.1. Compressive spectral imaging reconstruction related works

Compressive optical systems encode and disperse a SI to sense its spatial-spectral data with few

2D compressed measurements. Traditional CSI techniques reconstruct the full-dimension SI ta-

king advantage of the sparsity prior as a SI is highly compressible when represented in a proper

orthonormal basis. The sparsity prior assumes that an =−dimensional SI has a B−sparse represen-

tation, B � =, in some proper orthonormal basis Ψ ∈ R=×=, such that, f = Ψ\\\, where \\\ ∈ R= is a

vector that contains B� = non-zero coefficients, i.e ‖\\\‖0 = B� =, where ‖ · ‖0 is referred to as the

ℓ0-pseudo-norm determining the number of non-zero values in an array.

Most of CSI reconstruction algorithms are based on an ℓ2 − ℓ1 unconstrained convex op-

timization problem, whose cost function includes the ℓ2-norm as the data-fidelity term and the

ℓ1-norm as the regularization to estimate the sparse approximation (Bioucas-Dias and Figueiredo,

2007; Afonso et al., 2010). Unlike, the remarkable gradient projection for sparse reconstruction

(GPSR) algorithm reformulates the ℓ2− ℓ1 inverse problem as a bound-constrained quadratic pro-

gramming optimization (Figueiredo et al., 2007b). On the other hand, (Oymak et al., 2015) showed

that the performance of multi-objective optimization, when a SI satisfies simultaneously low-rank

and sparse structures, is not better than the performance of individually using a single structure.

Nonetheless, the main assumption in such study is that the SI is given by the sum of a low-rank

matrix with a sparse matrix i.e., the sparsity and low-rankness conditions are promoted in sa-

me domain. In contrast, the simultaneous sparsity and low-rank priors can be effectively used by

representing the SI in different domains. For instance, (Golbabaee and Vandergheynst, 2012) com-
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bined the joint-sparse and low-rank priors to recover the Wavelet coefficient matrix of a SI with a

proximal gradient algorithm; (Gogna et al., 2014) presented an efficient Split Bregman algorithm,

combining the joint-sparse/sparse and low-rank priors; and (Jia et al., 2015) took further advantage

incorporating the smoothness prior, low-rank prior, and a structural self-similarity prior, improving

the CSI reconstruction quality through the joint of various priors.

The development of CSI recovery methods combining various priors is then an active re-

search field. Previous mentioned approaches assume the compressive sensing matrix as a convolu-

tional operator representing the theoretical single-pixel camera, exposing a gap in the CSI recons-

truction when using implementable and practical optical systems such as the CASSI and SSCSI

remarkable systems described in Section 1.2. Therefore, this chapter studies the incorporation of

the global spectral low-rank prior for CSI reconstruction, including an empirical analysis, a convex

problem formulation, and a numerical solution for the studied implementable architectures.

2.2. Global spectral low-rank prior analysis

Recalling the global spectral low-rank prior in Section 1.4.1 based on the high spectral redundan-

cies, this subsection presents the analysis of the global spectral low-rank prior, supported by an

extensive empirical study of the Pearson correlation matrix for various publicly available datasets.

The global spectral low-rank prior can be analyzed by calculating the internal correlations

within the spatial pixels of a SI. Mathematically, the Pearson correlation coefficient between the

spectral distributions fD and fE corresponding to the DCℎ and ECℎ spatial pixels can be calculated as

C(D, E) = cov(fD, fE)
rfD rfE

, (7)
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where C ∈ R#2×#2
denotes the Pearson correlation matrix, cov(·) denotes the covariance, and r

denotes the standard deviation of the spectral distributions. The Pearson correlation coefficients

take values in the range [−1 1], where positive values indicate that the spectral distributions are

directly correlated, negative values indicate that the spectral distributions are counter correlated,

and zero indicates that there is no correlation. The higher the absolute value of the coefficient,

the strongest the direct or counter correlation. As an example, Fig. 3 left illustrates the Pearson

correlation matrix for the Samson dataset (see Appendix 1), measuring the linear dependence bet-

ween each pair of the #2 spatial pixels. The white square shows that the 56.91% of pairs present

a correlation coefficient higher than 0.9. The color histogram shows the distribution of all entries

of the Pearson correlation matrix. Furthermore, Fig. 3 right shows the zoomed entries of two pairs

of spatial pixels. The red one presents a direct correlation (0.9816) indicating similar spectral dis-

tribution of the material at that location, and the blue one presents a counter correlation (−0.6485)

indicating different spectral distribution of the materials as shown in the plots.
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Figure 3. Example of the Pearson correlation matrix analysis.
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The global spectral low-rank prior is then validated through the calculation of the Pearson

correlation matrix for nine datasets (see Appendix 1) shown in Fig. 4. The percentage of spatial

pixel pairs is shown for each correlation matrix as well as the color histogram. Notice that the

spectral correlations above 0.9 are higher for hyperspectral than for multispectral scenes, suppor-

ting the idea of taking advantage of the global spectral low-rank prior for solving hyperspectral

imaging recovery problems, such as the CSI reconstruction problem addressed in this chapter.
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Figure 4. Pearson correlation matrix analysis for nine datasets.
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2.3. Optimization problem formulation for compressive spectral imaging reconstruction

Based on the observation model in (3), I formulate a CSI reconstruction optimization problem that

combines the sparsity and the global spectral low-rank prior. The estimated SI f̂ from the compres-

sed measurements is enforced to satisfy the sparsity prior in the orthonormal representation basis

Ψ, and the global spectral low-rank property when represented as a matrix F = E42−1(f), where

E42(·)−1 : R#2! ↦→ R#2×! unfolds a vector as a matrix, by the following minimization

minimize
f∈R# 2!

‖y−Hf‖22,

subject to ‖Ψ−1f‖0 ≤ nB; rank(E42−1(f)) ≤ nA ,
(8)

where nB represents the maximum number of non-zero coefficients of the sparse representation, and

nA represents the maximum rank of the matrix representation. The ℓ0−pseudo-norm and the rank(·)

have been shown to be non-convex constraints, so that (8) is a non-deterministic polynomial-time

hard (NP-hard) problem and its solution is difficult to approximate (Candes and Recht, 2008).

To overcome such limitation, the problem is reformulated by employing the convex relaxation of

the sparsity and low-rank constraints through the ℓ1-norm and nuclear-norm ℓ∗-norm, obtaining

equivalent solutions with high probability at a polynomial time (Wright et al., 2008), i.e., the mini-

mization of ‖x‖1 =
=∑
8=1
|G8 | promotes an array with few non-zero coefficients, and the minimization

of ‖X‖∗ =
∑
8f8, where f8 is the 8Cℎ− singular value of X, promotes a low-rank approximation of
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X (Candes and Recht, 2008). Then, the convex relaxation of (8) is given by

minimize
f∈R# 2!

‖y−Hf‖22,

subject to ‖Ψ−1f‖1 ≤ nI′; ‖E42−1(f)‖∗ ≤ nA ′,
(9)

where nI′ represents the maximum value for the sum of the coefficients in the sparse representation,

and nA ′ represents the maximum value for the sum of the eigenvalues of the matrix representation.

The sparsity and low-rank constraints in (9) reduce the feasible set of the problem, increa-

sing the complexity for finding the optimal solution. Therefore, the explicit constraints are incor-

porated into the objective function penalizing big values for the ℓ1-norm and ℓ∗-norm but, without

restricting the search domain as follows

f̂ ∈ argmin
f∈R# 2!

‖y−Hf‖22 + g‖Ψ
−1f‖1 + V‖E42−1(f)‖∗, (10)

where g > 0, and V > 0 denote the regularization parameters to balance the terms.

2.4. Joint sparse and low-rank compressive spectral imaging algorithm

To effectively solve problem in (10), the proposed strategy begins with the inclusion of two auxi-

liary variables \\\ ∈ R#2! and F ∈ R#2×! into the optimization problem, modeling the sparse and the

low-rank representations, respectively, as follows

minimize
f, \\\, F

‖y−Hf‖22 + g‖\\\‖1 + V‖F‖∗

subject to \\\ = Ψ−1f; F = E42−1(f).
(11)
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2.4.1. Alternating minimization. The inclusion of the auxiliary variables allows to deco-

uple the problem, so that, the sparse and low-rank regularizations and the data fidelity term can be

addressed independently by alternating the minimization of the Lagrangian function given by

{f̂, F̂, \̂\\} ∈ argmin
f, F, \\\

‖y−Hf‖22 + g‖\\\‖1 + V‖F‖∗ +[‖\\\ −Ψ
−1f‖22 + `‖F− E42

−1(f)‖22, (12)

where [ > 0 and ` > 0 are adjustable Lagrangian parameters.

Solving for the sparse representation. Given a previous estimation of the SI f: ,

the sparse representation is updated by solving

\̂\\
:+1 ∈ argmin

\\\∈R# 2!
[‖\\\ −Ψ−1f: ‖22 + g‖\\\‖1. (13)

Problem in (13) results in the well-known ℓ2 − ℓ1 inverse problem. Therefore, the sparse repre-

sentation can be estimated by the PnP of any conventional ℓ2 − ℓ1 solver such as those described

in (Figueiredo et al., 2007a; Wright et al., 2009; Afonso et al., 2011).

Solving for the low-rank representation. Given an updated version of the SI defi-

ned as f: = Ψ\̂\\:+1, the low-rank matrix representation is updated by solving

F̂:+1 ∈ argmin
F∈R# 2×!

`‖F− E42−1(f: )‖22 + V‖F‖∗. (14)

Problem in (14) results in the well-known ℓ2 − ℓ∗ inverse problem that minimizes the ℓ2-
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norm to maintain data-fidelity, and the ℓ∗-norm regularization to enforce a low-rank approxima-

tion. Therefore, the low-rank representation can be estimated by implementing the element-wise

soft-shrinkage to the singular value decomposition (SVD) of the matrix F, described in Algo-

rithm 1 (Zhao and Yang, 2015).

Algorithm 1 line 5 minimizes the squared ℓ2-norm term in (14). There, the matrix L:1+1 is

a temporal matrix approximation which subtracts ` times the residual between the matrix repre-

sentation obtained from the initial estimation f: , and the low-rank approximation at the current

iteration F:1 . In Algorithm 1, line 6 matrices U:1+1 ∈ R#2×#2
, S:1+1 ∈ R#2×! and V:1+1 ∈ R!×!

represent the left-singular vectors, the singular values and the right-singular vectors of the matrix

L:1+1, respectively. Then, the singular values in S:1+1 are used to reduce the rank of the matrix

which turns in minimizing the ℓ∗-norm term in (14). Remark that this method does not require a

Algorithm 1. Low-rank approximation

1: procedure LRA(f: , `, V, 1) ⊲ f: : previous estimation of the SI, ` > 0, V > 0: regularization
parameters, and  1 : maximum number of iterations.

2: F0← 0
3: :1← 0
4: while :1 <  1 do ⊲ while stopping criteria is not achived
5: L:1+1← F:1 − `(E42−1(f: ) −F:1)
6: [U:1+1 S:1+1 V:1+1] ← svd(L:1+1) ⊲ Singular value decomposition

7: U:1+1←
∑Σ
8=2f8

Σ
⊲ f8 is the 8Cℎ singular value of S:1+1, for 8 = 0, . . . ,Σ−1.

8: s:1+1←max(0,diag(S:1+1) − VU:1+1)
9: F:1+1← U:1+1 diag(s:1+1)V:1+1) ⊲ elementwise soft shrinkage

10: :1← :1 +1
11: return F 1 ⊲ low-rank SI matrix representation
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prior knowledge about the rank of the matrix, and I set the parameter U:1+1 in Algorithm 1 line 7

for the element-wise soft-shrinkage as the average of the singular values of the previous calcu-

lated matrix L:1+1. Any other strategy could be used, producing a different rank condition for

the updated matrix F:1+1. For instance, if there exists a prior estimation for the rank of F given

by F̂, the operations in Algorithm 1 lines 7 and 8 could be replaced by a hard-thresholding as,

s:1+1←max(0,diag(S:1+1) −S:1+1(F̂ +1, F̂ +1)).

Solving for the spectral image. The SI f̂ is then updated by considering the esti-

mated sparse representation and low-rank approximation, such that it also fits the observed com-

pressed measurements, by solving the ℓ2 problem,

f̂:+1 ∈ argmin
f∈R# 2!

‖y−Hf‖22 +[‖\\\
:+1−Ψ−1f‖22 + `‖F

:+1− E42−1(f)‖22, (15)

which can be parsed as a quadratic optimization problem that minimizes the function b (f),

f̂:+1 ∈ argmin
f∈R# 2!

b (f) = 1
2

f)Qf + (c:+1)) f + 1:+1,

1:+1 = y)y+[(\̂\\:+1)) \̂\\:+1 + `(E42(F̂:+1)))E42(F̂:+1),

c:+1 = H)y+[Ψ\̂\\:+1 + `E42(F̂:+1)

Q = H)H+[Ψ)Ψ+ `I =H)H+ ([+ `)I,

(16)

Problem in (16) is then solved by using the steepest descent approach described in Al-

gorithm 2. The array ∇:2+1 in Algorithm 2 line 5 represents the search direction calculated as the
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gradient of the objective funcion b (f). The backtracking in Algorithm 2 line 6 is a procedure which

chooses the optimum candidate for the step V:2+1 in the gradient descent algorithm. The selection

of the proper step leads the algorithm to make reasonable progress along the given search direction

∇:2+1 per iteration (Nocedal and Wright, 2006).

Algorithm 2. Steepest descend

1: procedure STEDES(f: ,Q, c:+1, b, 2) ⊲ f: : previous estimation, Q, c:+1: parameters of the
quadratic minimization problem, b the objective function in (16), and  2 : maximum number
of iterations.

2: f0← f:

3: :2← 0
4: while :2 <  2 do ⊲ while stopping criteria is not achived
5: ∇:2+1← 2Qf:2 + c:+1 ⊲ optimum search direction
6: V:2+1← backtracking(f:2 ,∇:2+1, b) ⊲ optimum step
7: f:2+1← f:2 − V:2+1∇:2+1

8: :2← :2 +1
9: return f 2 ⊲ joint low-rank and sparse estimation

The backtracking procedure can be easily implemented following the procedure shown in

Algorithm 3, where notation b (·) implies to evaluate the objective function in (16). By last, the

estimated SI joining the sparse representation, low-rank approximation and compressed measu-

rements is updated in Algorithm 2 line 7 by subtracting the gradient ∇:2+1 from the previous

estimation considering the optimum step V:2+1.

The three previous sparse, low-rank and fidelity-data steps are executed iteratively until a

stopping criteria is achieved. The proposed joint sparse and low-rank CSI reconstruction method

is summarized in Algorithm 4. There, the initial estimation of the SI in line 2 was chosen to be a

low-quality version obtained by using the transpose, H) , as an approximation of the inverse H−1.
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Algorithm 3. Backtracking

1: procedure BACKTRACKING(f:2 ,∇:2+1, b) ⊲ f:2 : previous estimation of the SI, ∇:2+1 : search
direction, and b : the objective function in (16).

2: V← 1
3: d← rand(0,1)
4: 2← rand(0,1)
5: while b (f:2 + V∇:2+1) ≥ b (f:2) + 2V∇:2+1)∇:2+1 do
6: V← dV

7: return V ⊲ optimum step

Algorithm 4. Joint sparse and low-rank CSI reconstruction algorithm
1: procedure JOINTSPARLOW(y, g, `, V,[,H,Ψ, ) ⊲ y :

compressed measurements, g > 0, ` > 0, V > 0, [ > 0 : regularization parameters, H : sensing

matrix, Ψ : representation basis, and  : maximum number of iterations.

2: f0←H)y ⊲ starting low quality estimation of f

3: Q←H)H+ ([+ `)I
4: :← 0

5: while : <  do ⊲ while stopping criteria is not achived

6: \̂\\
:+1← argmin

\\\∈R# 2!
[‖\\\ −Ψ−1f: ‖22 + g‖\\\‖1

7: f: ←Ψ\̂
:+1

8: F̂:+1← argmin
F∈R# 2×!

`‖F− E42−1(f: )‖22 + V‖F‖∗

9: c:+1←H)y+[Ψ\̂\\:+1 + `E42(F̂:+1)
10: 1:+1← y)y+[(\̂\\:+1)) \̂\\:+1 + `(E42(F̂:+1)))E42(F̂:+1)
11: f̂:+1← argmin

f∈R# 2!

1
2

f)Qf + (c:+1)) f + 1:+1

12: :← : +1

13: return f ⊲ estimated datacube

2.4.2. Analysis of the computational complexity. The complexity of the proposed

iterative joint CSI reconstruction algorithm is as follows: Initialization of f0 in Algorithm 4 line 2
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is a matrix-vector product of order $ (2#2!<), and calculation of Q in Algorithm 4 line 3 is of

order $ (2(#2!)2<). Besides, the complexity per iteration in the loop corresponds to the sum of,

the sparse estimation of the SI with resolution # × # × ! in Algorithm 4 line 6 which has been

proved to be of complexity $ (#2!) using the GPSR solver (Figueiredo et al., 2007a), the update

of the SI estimation in Algorithm 4 line 7 which is a matrix-vector product of order $ (#4!2), the

low-rank approximation of the matrix with resolution #2 × ! in Algorithm 4 line 8 depends on

the computation of the SVD which has been proved to be of order $ (#2!2 + !) (Zhao and Yang,

2015). Calculation in Algorithm 4 line 9 has complexity $ (#4!2), calculation in Algorithm 4

line 10 has complexity $ (2#2!), and the steepest descent in Algorithm 4 line 11 which has been

proved to be of complexity $ (#2!) (Zhao and Yang, 2015). Hence, the overall computational

complexity of Algorithm 4 is $ (2#4!2< +2#4!2 +2#2!< +4#2! +#2!2 + !).

2.4.3. Convergence analysis. The convergence of the proposed algorithm is shown

by analyzing the convergence of each step per iteration of Algorithm 4. First, step in Algorithm 4

line 6 is solved using the conventional solver GPSR whose convergence has been proved in (Fi-

gueiredo et al., 2007a). Also, step in Algorithm 4 line 8 is solved using the element-wise soft

shrinkage whose convergence has been proved in (Cai et al., 2010). The steepest descent method

to solve the problem in Algorithm 4 line 16 converges if the matrix Q is symmetric and positive

definite (Nocedal and Wright, 2006). Since Q =H)H+ ([+ `)I, is clearly symmetric, to guarantee

matrix Q being positive definite I rely on the statement that a matrix is positive definite if and only

if all of its eigenvalues are positive (Nocedal and Wright, 2006).

Proposition 1: Let a matrix B ∈ R=×= be the sum of any matrix C ∈ R=×= plus a scaled
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identity hI ∈ R=×=, B = C+ hI. The eigenvalues of B, i8, 8 = 0, . . . , =− 1, are given by the sum of

the eigenvalues of C, î8, 8 = 0, . . . , =−1, plus h, i8 = î8 +h.

Proof: The natural procedure to find the eigenvalues of B is given by, det(B−XI) = 0, X ∈R.

Replacing B by the sum C+hI, I obtain,

det(C+hI− XI) = det(C− (X−h)I) = det(C− X̂I) = 0, (17)

where, X̂ = X−h. By solving (17), I obtain the characteristic polynomial of C whose roots are its

eigenvalues, (X̂− î0) (X̂− î1) . . . (X̂− î=−1). Replacing X̂ = X−h I obtain,

(X− (h + î0)) (X− (h + î1)) . . . (X− (h + î=−1)). (18)

Observe that (18) corresponds to the characteristic polynomial of the matrix B, whose roots are its

eigenvalues. Thus, i8 = î8 +h and proposition 1 is proved.

A square symmetric matrix E ∈ R=×= is positive semi-definite if x)Ex ≥ 0 for all x ∈ R=.

Note that, for all z ∈ R#2! , z) (H)H)z = (Hz)) (Hz) =‖ Hz ‖22≥ 0, then the matrix H)H is positive

semi-definite and all of its eigenvalues are non-negative. Regarding proposition 1, the eigenvalues

of Q are given by the sum of the eigenvalues of H)H plus ([+ `). As [ > 0, and ` > 0, the eigen-

values of Q are guaranteed to be always positive. Hence, Q is positive definite, and the steepest

descend algorithm will converge. As each step of the joint CSI reconstruction algorithm converges

and the stopping criteria is a finite number of iterations, the algorithm globally converges.
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Observe that the proposed solution follows a convex formulation, such that a local minima

is guaranteed to be a global minima (Boyd et al., 2011).

2.5. Simulations and results

Simulated experiments were carried out to measure the gain, if any, given by the proposed joint

sparse and low-rank CSI reconstruction under diverse experimental setups. The results were com-

pared against the reconstructions obtained by solving the conventional ℓ2 − ℓ1 problem using the

GPSR solver. Remark: In Algorithm 4 line 6, I solve the ℓ2 − ℓ1-norm problem at each iteration

of the general joint algorithm using an iterative solver, i.e. an iterative algorithm inside another

iterative algorithm. In this work, I set 10 iterations to solve the ℓ2 − ℓ1-norm problem at each ite-

ration of the joint algorithm. In this regard, I make the comparison between the traditional and the

proposed algorithm taking into account the total amount of iterations done by the ℓ2−ℓ1 solver. For

instance, if I use 10 iterations in the joint algorithm, I compare the results using 100 iterations with

the single traditional solver. Also, a sensitivity analysis of the involved parameters is presented.

In the experiments, the quality was analyzed over the Samson, Jasper, Urban, and Cuprite

datasets in Appendix 1 satisfying a low-rank structure, following the setup in (Zhu et al., 2014a).

Seven experimental configurations were set by varying the spatial-spectral resolution as follows

C1 ∈ R16×16×128: From Samson.

C2 ∈ R32×32×128: From Jasper.

C3 ∈ R64×64×128: From Urban.

C4 ∈ R64×64×128: From Cuprite.

C5 ∈ R16×16×16: From Samson.

C6 ∈ R16×16×32: From Samson.

C7 ∈ R16×16×64: From Samson.
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The rank for each dataset was assumed to be the known amount of different materials pre-

sent in the scene, i.e. A = 3, A = 4, A = 6, A = 12, for Samson, Jasper, Urban, and Cuprite datasets.

Furthermore, the acquisition of the compressed measurements was carried out by simulating the

CASSI and SSCSI compressive architectures described in Section 1.2.

The ℓ2− ℓ1 problem in (13) was solved by using the GPSR solver, nonetheless, the choose

of any other solver will equally affects both comparison methods, the traditional and the proposed

CSI reconstruction algorithm.

Finally, the quality of the reconstructions obtained with the proposed and conventional ℓ2−

ℓ1-norm approach was measured through the spatial and spectral peak signal to noise ratio (PSNR)

and the structural similarity (SSIM) metrics defined in Appendix 2.

2.5.1. Regularization parameters analysis. This experiment analyzes the beha-

viour of parameters g, `, and V involved in the proposed CSI reconstruction algorithm since they

highly affect the reconstruction quality, and the search of the proper parameters can be a tedious

task. Parameter g accounts for the performance of the conventional ℓ2 − ℓ1 minimization problem

by controlling the speed towards the sparse representation. Parameter ` states how far in terms of

the ℓ2-norm the estimated low-rank matrix is allowed to be from the original given matrix, and

parameter V controls the speed towards the low-rank approximation.

Figure 5 shows the parameter analysis for C1 when using CASSI (top) and SSCSI (bottom).

Figure 5 (a) and Fig. 5 (b) show the spatial PSNR varying the number of iterations  , and g in an

equally spaced range [14−6 114−4]. Once g is fixed, Fig. 5 (c) and Fig. 5 (d) show the spatial PSNR

varying ` and V in an equally spaced range of [14−2 1] and [14−5 14−1]. These parameters always
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fall within the range (0 1], however, an extended search is required to find the best choice per each

configuration. When there is a previous knowledge of the rank, the element-wise soft-shrinkage

can be replaced with a hard-thresholding, eliminating V, and only the seek for ` is required, varied

in an equally spaced range [14−2 1], as shown in Fig. 5 (e) and Fig. 5(f). For all parameters a

smooth approximation towards the best choice can be observed. This, given that the proposed CSI

reconstruction algorithm follows a convex formulation. The spatial PSNR was shown as illustration

of the smooth behaviour, that holds for the spectral PSNR and the SSIM metrics.
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Figure 5. Parameter analysis of the proposed CSI reconstruction algorithm.

2.5.2. Performance evaluation. This subsection evaluates the performance of the

proposed alogorithm through several experiments.
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Quality test along different datasets. Tables 1 and 2 show the quality comparison

between the traditional algorithm labeled as “sparse”, the proposed joint sparse and low-rank CSI

reconstruction algorithm without prior information of the rank labeled as “joint", and the proposed

joint sparse and low-rank CSI reconstruction algorithm with prior information of the rank labeled

as “joint-r” for the CASSI and the SSCSI architectures. It can be observed that the proposed algo-

rithm improved the reconstruction quality for all tested configurations along the three quantitative

metrics. The gain using the CASSI architecture was up to 3[dB], and using the SSCSI architectures

was up to 4[dB] which is the expected behaviour due to the SSCSI architecture does not multiplex

the spectral information, so that the spectral correlations can be better considered. Notice that a

higher gain is obtained when having prior knowledge about the rank of the underlying structure.

Nonetheless, even without such prior knowledge about the rank, an improvement is also attained

with the proposed CSI reconstruction algorithm.

Table 1
Reconstruction quality - CASSI architecture

Data cube C1 C2 C3 C4
% of captured data 41.89% 58.22% 58.29% 69.95%

Spatial
PSNR
[dB]

sparse 20.9784 24.5606 21.2609 25.7060
joint 21.0042 26.1277 22.7974 28.5328
joint-r 22.6785 26.1848 22.7977 28.5339

Spectral
PSNR
[dB]

sparse 29.1606 21.7445 20.9852 24.5313
joint 30.0688 22.8637 22.7087 27.5078
joint-r 31.5125 23.0971 22.7088 27.8055

SSIM
sparse 0.7398 0.8313 0.7511 0.6759
joint 0.7501 0.8545 0.8249 0.8144
joint-r 0.8113 0.8580 0.8249 0.8144



2.5 Simulations and results 56

Table 2
Reconstruction quality - SSCSI architecture

Data cube C1 C2 C3 C4
% of captured data 25% 35.15% 50% 39.06%

Spatial
PSNR
[dB]

sparse 31.3648 33.9345 35.0364 37.4355
joint 35.3002 34.6322 36.2072 38.8397
joint-r 38.3572 36.6847 37.3229 38.8592

Spectral
PSNR
[dB]

sparse 32.1510 31.9740 34.0564 35.6405
joint 36.3804 33.1888 36.9949 37.3599
joint-r 43.2932 34.1520 36.7396 37.6759

SSIM
sparse 0.9523 0.9768 0.9843 0.9699
joint 0.9828 0.9808 0.9886 0.9767
joint-r 0.9873 0.9878 0.9907 0.9777

Quality test along different amount of captured data. This experiment compares

the reconstruction quality varying the amount of captured data. For this, recall that in the CAS-

SI and SSCSI architectures the percentage of captured data depends on the number of acquired

snapshots. In particular, they were acquired 2,6, and 10 snapshots corresponding to 13.96%,

41.89%, and 69,82% of captured information with the CASSI architecture, and 32, 45, and 64

snapshots corresponding to 25%, 35.15%, and 50% of captured information with the SSCSI ar-

chitecture over configuration C1. Tables 3 and 4 summarize the results for the CASSI and SSCSI

architectures, respectively. It can be observed that the larger the amount of information, the higher

the obtained reconstruction quality for both, the CASSI and SSCSI architectures. Also, observe that

for the CASSI architecture a higher gain is obtained when using more compressed measurements.

In contrast, for SSCSI the gain is more significant when capturing less compressed measurements

given that the optical setup allows to better consider the spectral correlations.
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Table 3
Reconstruction quality vs captured data - CASSI architecture

% of captured data 13.96% 41.89% 69,82%

Spatial
PSNR
[dB]

sparse 13.1288 20.9784 25.7297
joint 15.1649 21.0042 26.4576
joint-r 15.4591 22.6785 28.7845

Spectral
PSNR
[dB]

sparse 20.3882 29.1606 33.4722
joint 23.1994 30.0688 35.0245
joint-r 23.2654 31.5125 37.0460

SSIM
sparse 0.3638 0.7398 0.8726
joint 0.4662 0.7501 0.8893
joint-r 0.4805 0.8113 0.9172

Table 4
Reconstruction quality vs captured data - SSCSI architecture

% of captured data 25% 35.15% 50%

Spatial
PSNR
[dB]

sparse 31.3648 37.1098 39.7283
joint 35.3002 37.9113 40.9896
joint-r 38.3572 41.7885 44.1918

Spectral
PSNR
[dB]

sparse 32.1510 42.9314 45.5245
joint 36.3804 43.0472 46.6181
joint-r 43.2932 46.6506 49.5578

SSIM
sparse 0.9523 0.9872 0.9924
joint 0.9828 0.9895 0.9951
joint-r 0.9873 0.9953 0.9971

Quality test varying the spatial-spectral resolution ratio. This experiment compa-

res reconstruction quality varying the SI spatial-spectral resolution ratio calculated as ((' = !/#2.

For this, C5, C6, C7, and C1 that account for the same dataset with the same spatial resolution

but different spectral resolution were employed. Tables 5 and 6 present quality results along the

different spatial-spectral ratios. The intuition aimed that the bigger the value for ((', the highest
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the reconstruction quality gain, since it means more redundancy in the low-rank matrix approxi-

mation and hence, more gain when taking advantage of this property. Nevertheless, this is not the

case for the CASSI architecture, since the higher gain appears to be when a smaller spatial-spectral

ratio is used, and variables as the rank of the low-rank matrix or the ratio between the number of

endmembers and the resolutions of the SI must be considered. On the other hand, for the SSCSI

architecture, a direct effect of the ((' over the reconstruction quality is evident since in general, a

higher ratio produces a higher reconstruction quality under a comparative amount of captured data.

Table 5
Reconstruction quality vs spatial-spectral resolution ratio - CASSI architecture

Data cube C5 C6 C7 C1
% of captured data 72.66% 73.43% 69.43% 69.82%

((' 6.25% 12.5% 25% 50%

Spatial
PSNR
[dB]

sparse 25.3656 24.3692 24.3111 25.7297
joint 25.0790 25.6642 25.8098 26.4576
joint-r 30.0120 28.5988 28.1130 28.7845

Spectral
PSNR
[dB]

sparse 32.2292 31.4208 32.1225 33.4722
joint 32.4963 32.8737 33.5321 35.0245
joint-r 37.4498 35.7267 35.5775 37.0460

SSIM
sparse 0.9325 0.8798 0.8530 0.8726
joint 0.9224 0.8957 0.8787 0.8893
joint-r 0.9747 0.9404 0.9117 0.9172

Recovered spectral distributions comparison. Figure 6 (a) and Fig. 6 (b) show a

comparison of the reconstructed spectral distribution at two spatial locations of configuration C1

by using the “sparse”, “joint", and “joint-r” algorithms using acquired compressed measurements
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Table 6
Reconstruction quality vs spatial-spectral resolution ratio - SSCSI architecture

Data cube C5 C6 C7 C1
% of captured data 25% 25% 25% 25%

((' 6.25% 12.5% 25% 50%

Spatial
PSNR
[dB]

sparse 19.4493 22.4640 27.9729 31.3648
joint 23.9089 24.2759 30.8132 35.3002
joint-r 25.8907 33.7786 37.0001 38.3572

Spectral
PSNR
[dB]

sparse 25.6091 30.4848 34.2171 32.1510
joint 28.7140 32.2180 35.4849 36.3804
joint-r 32.0526 40.3016 41.9582 43.2932

SSIM
sparse 0.8349 0.8505 0.9160 0.9523
joint 0.9427 0.8946 0.9595 0.9828
joint-r 0.9529 0.9847 0.9874 0.9873

from the CASSI architecture. It can be observed the comparison of the recovered spectral distri-

bution of two different spatial pixels when using 41.89% of captured data with the proposed CSI

reconstruction algorithm against the traditional method and the corresponding ground-truth. The

spectral distributions evidence the gain of taking advantage of the global spectral low-rank prior

into the proposed CSI reconstruction algorithm inasmuch the recovered spectral distributions are

closer to the reference one. Figure 6 (c) and Fig. 6 (d) show the same comparison over configu-

ration C5 using compressed measurements from the SSCSI architecture. It can be observed the

spectral distribution at two spatial locations with 25% of captured data, also evidencing the effec-

tiveness of the proposal in the reconstruction of the spectral distributions by estimating the spectral

correlations through the global spectral low-rank regularization.



2.5 Simulations and results 60

(b)

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1

Spectral signature
original
sparse
joint-r
joint

In
te
ns
ity

400 500 600 700 800 900
wavelength [nm]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
te
ns
ity

original
sparse
joint-r
joint

(a)

400 500 600 700 800 900
wavelength [nm]

Spectral signature

original
sparse
joint-r
joint

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1

In
te
ns
ity

(c)

400 500 600 700 800 900
wavelength [nm]

(d)

400 500 600 700 800 900
wavelength [nm]

0.1

0.2

0.3

0.4

0.5

0.6

0.7
In
te
ns
ity

Spectral signature Spectral signature
original
sparse
joint-r
joint

Figure 6. Recovered spectral distributions visual comparison

Recovered spatial distribution comparison. Figure 7 shows a visual comparison of

the reconstructed spatial distributions over C3 with the CASSI and SSCSI architectures. In detail,

Fig. 7 left shows the reconstructions of the spectral bands 37, 70, 74, and 95 from CASSI com-

pressed measurements with 41.89% of captured data, and Fig. 7 right shows the reconstructions

of the spectral bands 37, 70, 74, and 95 from SSCSI compressed measurements with 50.00% of
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captured data. It can be visually evidenced the improvements of the proposal, particularly, for the

CASSI reconstructions where unlike the soft texture scenes obtained with the “sparse” algorithm,

the “joint” and “joint-r” reconstructions exhibit a sharper appearance which results in more defined

details, and in higher reconstruction quality. In the SSCSI reconstructions the gain is not visually

clear along the spatial dimension since all PSNR are up to 30[dB], however, the gain was clearly

observed along the spectral bands in Fig. 6.
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Figure 7. Reconstructed spatial distribution visual comparison.

2.6. Conclusions

This chapter presented the first approximation for including the low-rank prior into the SI recovery

field. Specifically, this chapter studied the SI low-rankness from a global point of view, considering

the spectral redundancy and the CSI reconstruction problem. The global spectral low-rank prior

was validated through an extensive empirical study of the Pearson correlation matrix, showing
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that it is especially strong for hyperspectral remote sensing datasets cause of its high spectral

resolution. Furthermore, the nuclear norm was chosen as the regularization function to measure and

promote the global spectral low-rank prior, incorporated into an unconstrained convex optimization

problem. An alternating iterative algorithm was developed to solve the formulated inverse problem,

presenting its computational complexity and proving its convergence. Notably, the complexity is

bounded by the complexity of the SVD computation required by the nuclear norm minimization,

so looking for a faster computation or strategy to obtain a low-rank approximation is suggested for

future works. Finally, the developed method was tested over several datasets satisfying the low-

rank prior when represented as a matrix to perform CSI reconstruction from simulated CASSI, and

SSCSI compressed measurements. The proposed algorithm improved the reconstruction quality

by up to 4dB in the PSNR and showed robustness to the variation of the spatial-spectral resolution

ratio and the compressive acquisition protocol.
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3. Non-local low-rank abundance prior for compressive spectral imaging fusion

Part of this chapter has been adapted from the journal paper (Gelvez and Arguello, 2020) [©

[2020] IEEE. Reprinted] (published) and conference (Gelvez and Arguello, 2018) (published).

This chapter presents the second developed approach for including low-rank regularizations in

spectral imaging recovery, where I propose a CSI fusion method to combine the spatial-spectral

data from CASSI and SSCSI compressed measurements. The method employs the low-rank prior

in two ways: (i) the global low-rank through the LMM, and the non-local low-rank prior through

an explicit regularization term. Section 3.1 presents the most related works for CSI fusion and the

found gaps motivating the proposed approach, with the following main contributions.

1. The analysis of the global low-rank prior through a theoretical premise using the LMM, and

the validation of the non-local low-rank prior through an extensive empirical study of the

non-local self-similarities, are described in Section 3.2.

2. The formulation of a convex optimization problem that combines the global low-rank with

the non-local low-rank, is presented in Section 3.3.

3. The development of a numerical algorithm that solves the formulated convex optimization

problem following a BCDM, is detailed in Section 3.4.

4. A quantitative gain in the quality of the CSI fusion along various datasets, validating the

effectiveness of the non-local low-rank prior through several simulations and experiments as

reported in Section 3.5.
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3.1. Compressive spectral imaging fusion related works

The CSI fusion problem aims to obtain an HRI fusing the information from two sets of compressed

measurements. The first set contains compressed data from an HSI with a fine spectral sampling

but low-spatial resolution. The second set contains compressed data from an MSI with a fine spatial

sampling but low-spectral resolution (Teodoro et al., 2017). Thus, CSI fusion avoids reconstructing

the entire HRI and MSI independently (Chen et al., 2014).

Literature reports few related works to the CSI fusion problem, which mainly take advanta-

ge of the HRI smoothness property assuming that natural scenes exhibit smooth transitions within

the spatial pixels. The non-smooth pixels commonly correspond to sharp edges or object’s boun-

daries. To name, authors in (Vargas et al., 2017) employed the LMM and promoted a smooth HRI

through the total-variation regularization (TV). Then, authors in (Vargas et al., 2019) employed the

ℓ1 regularization to consider the sparsity more than smoothness prior benefiting scenarios where

the HRI results highly compressible. Finally, (Vargas et al., 2018a) focused the formulation on the

design and optimization of the MSI and HRI sensing matrices more than in the HRI regularization,

so that the acquisition process of the compressed measurements benefits the CSI fusion. These

methods have a gap regarding the low-rank property, particularly, when combining the rich spec-

tral information preserved in the HRI, motivating the use of a spectral low-rank prior, with the rich

spatial information preserved in the MSI, motivating the use of a spatial low-rank prior, so that,

the HRI can recover its refined spatial-spectral information. Considering that to my knowledge, no

study to date has examined the implementation of the low-rank priors into the CSI fusion inverse
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problem, this chapter presents an approach to fuse the information from two sets of compressed

measurements including the global low-rank and the non-local low-rank priors.

3.2. Global and non-local low-rank regularization analysis

The spatial-spectral HRI redundancy is analyzed from two perspectives: the global low-rank th-

rough a theoretical premise via the LMM, and the non-local low-rank through an extensive empi-

rical study. To ease the physical understanding and the mathematical formulations, Figure 8 illus-

trates an HRI as a third-order tensor F ∈ R#×#×! , the unfolding as a 2D matrix F ∈ R#2×! , where

each column contains the vectorization of one spectral band, and the LMM of F decomposing the

matrix F into the product of an abundance matrix A, and an endmember matrix E.

(a) Tensor form

F ∈ R#×#×!
!

#

#

(b) Matrix form

F ∈ R# 2×!

!

#2

(c) Linear Mixture Model

A ∈ R# 2×A (E ∈ R!×A ))

A

#2 A

!

Figure 8. HRI visual representations.

3.2.1. Global low-rank theoretical premise. Assuming that an HRI only contains

A � min(#2, !) different materials, each one characterized by an unique spectral distribution, the

LMM states that the matrix representing the HRI can be decomposed as the product F = AE) ,

where A ∈ R#2×A = [a1 . . . a8 . . . a#2]) represents an abundance matrix containing the spatial

fractional proportions a8 ∈ RA of each spatial pixel, and E ∈ R!×A = [e1 . . . eZ . . . eA] represents

an endmembers matrix containing A different spectral distributions eZ ∈ R! that span the image.
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The rank of the matrix F is then mathematically determined by the minimum between the

rank of the matrices in the decomposition, i.e between the rank of A and the rank of E. Given that

the rank of a matrix is less or equal to its fewer dimension, the rank of A and E typically corres-

ponds to the number of spectral distributions A. Therefore, the rank(F) =min(rank(A), rank(E)) ≤

A � min(#2, !). Thus, F is shown to be low-rank since rank(F) � min(#2, !), supporting the

inclusion of the global low-rank prior through the LMM.

3.2.2. Non-local low-rank empirical study. Then, this subsection presents an ex-

tensive empirical study of the non-local low-rank prior, where the the singular value decay of the

matrices grouping similar patches for various spectral datasets is expected to be fast, especially

from the first to the second singular value. The empirical study follows the procedure below, whe-

re p8 ∈ R?
2! , ? ∈ Z+ � # denotes a reference patch aligned at top-left corner at the 8Cℎ location of

the HRI containing ?2 spatial pixels.

1. Extraction of � = #2− ?2+1 overlapped patches modeled as p8 =T8f, where T8 ∈ {0,1}?
2!×#2!

is a selection matrix to extract the spatial pixels of the 8Cℎ reference patch. Furthermore, let

P = {p1, . . . ,p8, . . .p�} be the set containing the � extracted patches, where the same spatial

pixel can appear several times in different extracted patches.

2. Patch grouping to build � patch-groups, through the partition of the set P with � disjoint

subsets, such that, each patch can belong only to one patch-group. Thus, let Part(P) be

the set of partitions of P, so that, the set of � patch-groups P̄ ⊂ Part(P) is given by P̄ =

{P1, . . . ,P6, . . .P�}, where |P6 | = �6, satisfying
∑�
6=1 �6 = �.
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In particular, P̄ is the partition in which each subset P6 contains similar patches chosen

according to a similarity degree metric. This step can be performed by the :-means method,

which aims at partitioning a dataset into distinct non-overlapping clusters where each data

point belongs to only one group (Lloyd, 1982).

To ease notation, let P6 ∈ R?
2!×�6 = C6 (f) be the matrix representation of the 6Cℎ patch-group

(P6), where C6 : R#2!→ R?2!×�6 is the operator to extract the patches belonging to P6 from

the HRI (f).

3. Analysis of each matrix representing a patch-group (P6), whose singular value decay is ex-

pected to be fast, so that, the patch-group can be well approximated with a low-rank matrix.

Figure 9 illustrates the decay of the singular values of all patch-groups extracted for every

analyzed dataset. The color histogram at the right of the singular value decays indicates the amount

of patches contained at each build patch-group, given by the k-means method. Furthermore, the

amount of patch-groups varies from one dataset to another in concordance to the resolution of

the dataset. It can be observed the expected singular value fast decay from the first to the second

singular value. Therefore, the empirical analysis supports the use of the non-local low-rank prior

into the solution of spectral imaging inverse problems, where the patch-groups can be approxima-

ted with a low-rank matrix. Besides, notice that this behaviour is stronger over the hyperspectral

remote sensing datasets than over the multispectral datasets, because of the combination of high

spatial-spectral redundancies.
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Figure 9. Singular value decay for non-local patch-groups.
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3.3. Optimization problem formulation for compressive spectral imaging fusion

Given the CSI fusion formulation in 1.3.5, and the LMM formulated in 1.4.1, the CSI fusion

observation model is given by

yh = Hhfh +nh =HhM̄B̄Ēa+nh =HhShĒa+nh,

ym = Hmfm +nm =HmR̄Ēa+nm =HmSmĒa+nm,

(19)

where yh ∈ R<ℎ denotes the HRI compressed measurements acquired with an optical system mode-

led by the sensing matrix Hh ∈ R<ℎ×#
2
ℎ
! , with <ℎ � #2

ℎ
!; ym ∈ R<< denotes the MSI compressed

measurements acquired with an optical system modeled by the sensing matrix Hm ∈ R<<×#
2!< ,

with << � #2!<; and nh ∈ R<ℎ , and nm ∈ R<< denote additive Gaussian noise.

I formulate a CSI fusion that joints the smoothness, global low-rank, and non-local low-

rank priors, where the endmembers are directly estimated from the compressed measurements,

or initialized from a fast reconstruction of the HRI, and the abundances are iteratively updated by

promoting the proposed priors. The global low-rank prior is implicitly included with the estimation

of the HRI as the product of variables Ē and a, and the smoothness and non-local low-rank priors

are explicitly included through two regularization terms over the abundances instead of the entire

HRI, reducing the computational complexity.

The data fidelity term w.r.t the compressed measurements yh and ym is given by

5 (a, Ē) = 1
2
‖HhShĒa−yh‖22 +

1
2
‖HmSmĒa−ym‖22. (20)
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The smoothness prior that promotes smooth transitions within the spatial locations in the

abundances can be included with the TV regularization, calculated as 6(a) = ‖D̄va‖1 + ‖D̄ha‖1,

where D̄v ∈ R#
2A×#2A =Dv⊗ IA , and D̄h ∈ R#

2A×#2A =Dh⊗ IA encompass the vertical and horizontal

discrete difference operators Dv ∈ R#
2×#2

, and Dh ∈ R#
2×#2

, applied over the A abundance maps.

These operators can be stacked in just one operator as 6(a) = ‖Da‖1.

The non-local low-rank prior that takes advantage of the self-similarities between small

patches in the abundances can be included by finding the lower rank approximation of each patch-

group built from the abundances. This prior can be formulated as ℎ(a) = ∑�
6=1 ‖C6 (a)‖∗, where

C6 : R#2A → R?2!×�6 denotes the operator to extract the patches belonging to P6 from a.

The proposed problem is then compactly formulated as

minimize
a,Ē

B(a, Ē) = 5 (a, Ē) + g6(a) + `ℎ(a)

subject to a8 [0] ≥ 0,
A∑
0=1

a8 [0] = 1,∀8,
(21)

where, g > 0 and ` > 0 are two parameters to control the relative weights of the regularization

terms. Further, the non-negative and sum-to-one LMM constraints in (21) can be restated as

minimize
a,Ē

5 (a, Ē) + g6(a) + `ℎ(a) +q(a), (22)
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where q(·) : R#2A → R̃ is the following indicator function

q(a) =
{

0, a ∈D
∞, a ∉D

, (23)

with D = {d ∈ R#2A | d8 [3] ≥ 0,
∑A
3=1 d8 [3] = 1,∀8}. This implies that the cost function can take

values in the extended real number line R̃ = R∪ {∞}.

On the other hand, the HRI defined as fh = ShĒa = (I! ⊗M) (I! ⊗B)Ēa can be rewritten as

fh = (I! ⊗M)Ē(IA ⊗B)a = M̄ĒB̄a, (24)

where M̄ = I! ⊗M ∈ R#2
ℎ
!×#2! accounts for the downsampling, and B̄ = IA ⊗B ∈ R#2A×#2A accounts

for the blurring. This notation will be useful in the solution of the proposed optimization problem,

which is lastly formulated by replacing each term of the cost function in (22) as follows

minimize
a,Ē

1
2
‖HhM̄ĒB̄a−yh‖22 +

1
2
‖HmSmĒa−ym‖22 + g‖Da‖1 + `

�∑
6=1
‖C6 (a)‖∗ +q(a). (25)

3.4. Numerical algorithm

To solve (25), I formulate an algorithm following a BCDM that alternates the minimization with

respect to the abundances a, and the endmembers Ē. Each subproblem is solved using the ADMM

as detailed below (Boyd et al., 2011).
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3.4.1. Abundance estimation algorithm. The abundances update introduces the

auxiliary variable v = [v1
) . . .v7

) ]) , obtaining the minimization problem

minimize
v,a

k(v,a) = 1
2
‖HhM̄v1−yh‖22 +

1
2
‖Hmv3−ym‖22 +

g‖v5‖1 + `

�∑
6=1
‖C6 (v6)‖∗ + q(v7),

subject to v1 = Ēv2; v2 = B̄a; v3 = SmĒv4; v4 = a;

v5 = Da; v6 = a; v7 = a.

(26)

Introducing the variable v yields to the equality constraints in (26). The ADMM then looks for

minimizing the augmented Lagrangian function expressed as

â, v̂, ĝ ∈ argmin
a,v,g

L(a,v,g) = 1
2
‖HhM̄v1−yh‖22 +

1
2
‖Hmv3−ym‖22 +

g‖v5‖1 + `
�∑
6=1
‖C6 (v6)‖∗ + q(v7) +

d

2
‖v1− Ēv2−g1‖22 +

d

2
‖v2− B̄a−g2‖22 +

d

2
‖v3−SmĒv4−g3‖22 +

d

2
‖v4−a−g4‖22+

d

2
‖v5−Da−g5‖22 +

d

2
‖v6−a−g6‖22 +

d

2
‖v7−a−g7‖22,

(27)

with d > 0 being the dual regularization parameter.

Minimization over variables a,v, and g in (27) leads to solutions summarized in Algorithm 5 with

variables computed as detailed in Table 7. In Algorithm 5 line 5 the abundances are efficiently

computed with the fast Fourier transform, in which, F(·), and F−1(·) denote the Fourier transform,

and inverse Fourier transform operators, respectively, and w0 ∈ R#
2A is the first column of W0.
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Algorithm 5. Abundance estimation with the ADMM approach

1: procedure ABUE(Ē, Hh, Hm, yh, ym, M,B, D, Sm, `, g, d, IterA)

2: F← 0; vF← 0; gF← 0 ⊲ Initialization

3: WU ← Table 7 U = 1, . . . ,4 ⊲ Precomputation

4: while F < IterA do ⊲ Update

5: aF+1← F−1
{
F{bF0 }
F{w0}

}
6: vF+1U ←W−1

U bFU , U = 1, . . . ,4.
7: vF+15 ← softg/d (DaF+1 +gF5 )
8: vF+16 ← NonLocal`/d (aF+1 +gF6 )
9: vF+17 ← SimplexProjection(aF+1 +gF7 )

10: gF+1← gF +vF+1− cF+1

11: F← F +1
12: return aIterA

Table 7
Summary variable computation in the abundance estimation

W0 ∈ R#2A×#2A = B̄) B̄+3I#2A +D)D

W1 ∈ R#2!×#2! = (HhM̄)) (HhM̄) + dI#2!

W2 ∈ R#2A×#2A = Ē) Ē+ I#2A

W3 ∈ R#2!<×#2!< = H)
mHm + dI#2!<

W4 ∈ R#2A×#2A = (SmĒ)) (SmĒ) + I#2A

b0
F ∈ R#2A = B̄) (v2

F −g2
F) + (v4

F −g4
F) +D) (v5

F −g5
F) + (v6

F −g6
F) + (v7

F −g7
F)

b1
F ∈ R#2! = (HhM̄))yh + d(Ēv2

F +g1
F)

b2
F
∈ R#2A = Ē) (v1

F −g1
F) + (B̄aF+1 +g2

F)
b3
F ∈ R#2!< = H)

my< + d(SmĒv4
F +g3

F)
b4
F ∈ R#2A = (SmĒ)) (v3

F+1−g3
F) + (aF+1 +g4

F)

cF+1 = [(Ēv2
F+1)) (B̄aF+1)) (SmĒv4

F+1)) (aF+1)) (DaF+1)) (aF+1)) (aF+1)) ])
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In Algorithm 5 line 8, NonLocalg/d (·) denotes the procedure to promote the non-local low-rank

prior with parameter g/d over the abundances. For this, let z6
F = aF+1 + g6

F be a non-local high-

rank version of the abundances. The followed procedure is given below.

1. Extract � patches as p8 = T8z6
F, where T8 ∈ {0,1}?

2A×#2A .

2. Build � patch-groups as P6,6 ∈ R?
2A×�6 = C6 (z6

F).

3. Find the low-rank approximation for each patch-group, assuming a sufficient amount of

elements by solving the optimization problems

minimize
Q6,6

`‖Q6,6‖∗ +
d

2
‖Q6,6 −P6,6‖22, for 6 = 1, . . . ,�, (28)

where Q6,6 := C6 (v6) is estimated with the soft-thresholding operator over the SVD as

Q̂6,6← U6,6soft`/d (f(P6,6))V)
6,6 . (29)

U6,6 refers to the left singular vectors, f(·) indicates the singular values, and V6,6 refers to

the right singular vectors of the matrix P6,6. softb (·) indicates the soft thresholding operator

that for a structure o ∈ RΓ is given by,

softb (o) =
{

0, >j ≤ b
>j, >j > b

for j = 1 . . .Γ. (30)

4. Estimate the value of each entry of the variable v6 through an aggregation step that averages
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the individual estimations along the � low-rank approximations of the patch-groups as

v̂6 =
1
u
◦

�∑
6=1

C−1
6 (Q6,6), (31)

where u ∈ R#2A is a weighted array related to the number of times that each entry is repeated

along the patch-groups.

Finally, in Algorithm 5 line 9 SimplexProjection(·) indicates the projection of the argument to the

set D defined in (23).

Figure 10 sums up the entire scheme, where the HRI (fh) and the MSI (fm) are modeled

as spatial/spectral degraded versions of an HRI (f). The degradation phenomena is implicit in the

sensing process and it cannot be controlled. The measurements yh and ym are acquired by using

compressive optical systems denoted by matrices Hh, and Hm. The information from yh and ym

is fused to obtain the HRI with a proposed CSI fusion based on the LMM, such that, the HRI is

decomposed as a linear combination of a set of few endmembers (E) to specific abundances (a).

Besides, it considers two scenarios: (i) the endmembers can be estimated from the HRI compres-

sed measurements, or (ii) initialized from a fast reconstruction of the HRI. The inverse problem

includes two data fidelity terms, a smoothness, and a non-local low-rank prior. The non-local low-

rank prior illustrated in Fig. 10 (right) takes advantage of the self-similarities by following four

steps, (i) extraction of � patches of fixed size from a previous estimation of the abundances âF; (ii)

grouping of the patches into � patch-groups by using a similarity degree metric; (iii) finding of the

lower-rank approximation for each patch-group; and (iv) aggregation of the u8 estimations of each
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Figure 10. Scheme of the CSI fusion approach with non-local low-rank prior.
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entry along the � low-rank patch-groups. These steps are repeated iteratively in the algorithm until

the stopping criteria is achieved.

Abundance estimation algorithm convergence. The convergence of Algorithm 5

is guaranteed under the global feasibility, coercivity, Lipschitz, and regularity conditions for the

convergence of ADMM optimization described in Theorem 1 of (Wang et al., 2019c). For this

purpose, let us define the feasible set of problem (26) as

E := {(v,a) ∈ R(!+!<+6)#2
: Jv+Ka = 0},

J =



I −Ē 0 0 0 0 0

0 I 0 0 0 0 0

0 0 I −SmĒ 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I



; K =



0

−B̄

0

−I

−D

−I

−I



.

(32)

Assume that Im(J) ⊆ Im(K), such that, the problem is feasible. Subsequently, observe that:

1. All terms of the objective function in (26) are non-negative, such that, k(v,a) →∞ if (v,a) ∈

E and ‖(v,a)‖ →∞. Thus, the coercivity condition is satisfied.

2. For any fixed v, argmina{k(v,a) : Ka = A} results in a strongly convex function on closed,

convex set, such that, it has a unique minimizer. Likewise, when minimizing w.r.t. each in-

dependent variable v1, . . . ,v7, the resulting subproblems are convex on closed, convex sets,
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such that, they have unique minimizers. Thus, the Lipschitz sub-minimization paths condi-

tion is satisfied.

3. The objective function can be decoupled as k(v,a) = ∑
5 k 5 (v 5 ), where k1(v1) is an ℓ2-

norm, so it is clearly continuous, and k 5 (v 5 ), for 5 ≠ 1, consists on four norms and one indi-

cator function, so that, they are all restricted prox-regularity functions (Wang et al., 2019c).

As a consequence, Algorithm 5 to estimate the abundances converges.

3.4.2. Endmember estimation algorithm. The endmembers update introduces the

auxiliary variable w = [w1
) , . . . ,w4

) ]) , obtaining the minimization problem

minimize
Ē,w

1
2
‖HhM̄w1−yh‖22 +

1
2
‖Hmw3−ym‖22

subject to w1 = w2Ba; w2 = Ē; w3 = w4a; w4 = Ē.

(33)

Notice that variable w introduces the equality constraints in (33). The ADMM then looks for

minimizing the augmented Lagrangian function of problem in (33) expressed as

ˆ̄E, ŵ, ĥ ∈ argmin
Ē,w,h

L(Ē,w,h) = 1
2
‖HhM̄w1−yh‖22 +

1
2
‖Hmw3−ym‖22+

W

2
‖w1−w2Ba−h1‖22 +

W

2
‖w2− Ē−h2‖22+

W

2
‖w3−w4a−h3‖22 +

W

2
‖w4− Ē−h4‖22,

(34)

with W > 0 being the dual regularization parameter.

Minimization over each variable Ē,w, and h in (34) leads to Algorithm 6. There, in lines 4
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and 5, the subproblems only involve ℓ2-norms with closed-form solutions, and in line 6 variable

e = [(wG+1
2 Ba)) (ĒG+1)) (wG+1

4 a)) (ĒG+1)]) .

Algorithm 6. Endmembers Estimation with ADMM approach
1: procedure ENDE(a, Hh, Hm, yh, ym, M, B, W, IterE)
2: G← 0; wG← 0; hG← 0 ⊲ Initialization
3: while G < IterE do ⊲ Update
4: ĒG+1 := argmin

Ē
L(Ē,wG ,hG)

5: wG+1 := argmin
w

L(ĒG+1,w,hG)

6: hG+1 := hG +wG+1− eG+1
7: G← G +1
8: return ĒIterE

Endmember estimation algorithm convergence. The objective function in (33) is

the sum of two ℓ2-norms, thus, minimizing a closed and proper convex function with linear cons-

traints. Therefore, the Algorithm 2 is guaranteed to converge (Boyd et al., 2011).

3.4.3. General scheme. The general scheme of the proposed CSI fusion numerical

algorithm is depicted in Algorithm 7. In line 3, the initialization considers two scenarios. Scenario

1 is used when the compressive optical system does not disperse the spectral information, so that,

the endmembers can be rapidly, and accurately estimated from the HRI compressed measurements

yh, using strategy in (Vargas et al., 2018b). In this scenario, the variable Iter can be set to 1, and the

variable IterE to 0. Scenario 2 is used otherwise. There, the HRI is rapidly recovered (ẑh) using any

literature algorithm such as the gradient projection for sparse reconstruction (GPSR) (Figueiredo

et al., 2007b), employed in this chapter. Then, f̂h is used to initialize the endmembers (Ē0) using

algorithm in (Nascimento and Dias, 2005), based on the component vertex analysis.
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Algorithm 7. Compressive Spectral Imaging Fusion Approach
1: procedure CSIF(Hh, Hm, yh, ym, M,B, D, Sm, `, g, d, W, Iter, IterA, IterE)

2: I← 0
3: Ē0← Initialization(Hh, yh) ⊲ See 3.4.3
4: while I < Iter do ⊲ Update
5: aI+1← AbuE(ĒI

, Hh, Hm, yh, ym, M, B, D, Sm, `, g, d, IterA) ⊲ Algorithm 5
6: ĒI+1← EndE(aI+1, Hh, Hm, yh, ym, M, B, W, IterE) ⊲ Algorithm 6
7: I← I+1.

High-resolution image estimation algorithm convergence. Algorithm 7 follows a

BCDM alternating over variables (a, Ē) to minimize the continuous objective function in (21).

Note that, the level set X0 = {(a, Ē) : B(a, Ē) ≤ B(a0, Ē0)}, with Ē0 as indicated in 3.4.3, and a0 = 0,

is bounded. Further, given the convergence guarantees for each subproblem that optimizes a, and

Ē, the sequence {(aI, ĒI)}I=1,...�C4A generated by the BCDM using the cyclic rule, asymptotically

converges to other element in the set. Thus, it is defined and bounded, and the algorithm converges

according to Theorem 4.1. in (Tseng, 2001).

High-resolution image estimation algorithm computational complexity. The pro-

posed algorithm computational complexity relies upon the strategy to promote the non-local low-

rank prior in the abundances update. Specifically, it depends on the complexity of the third and

fourth steps consisting on the grouping of the � patches into � patch-groups, and the lower-rank

approximation for each patch-group.

For the patch grouping, I employ the k-means method, whose complexity is known to be $ (�2).

Further, the number of overlapped extracted patches is set to � = (#2− ?+1)2. Thus, the complexity

of grouping similar patches per each iteration is $ ((#2 − ? + 1)4) which in turn, is bounded by

$ (#4). Notice that, this complexity can be reduced by fixing the indices of the patches that belong
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to the patch-groups during some few general iterations.

For calculating the lower-rank approximations in (29), the SVD is employed, whose computational

complexity is known to be $ (D2E + DE + E3) for a D × E matrix. Assuming that all patch-groups

contain the same amount of elements, the SVD must be calculated � times per iteration over a

matrix of size ?2A × �� , �� = �/�. Thus, the complexity of this step per iteration is given by

$ (� ((?2A)2(��) + ?2A �� + (��)3)), (35)

which considering that ?2 � #2, and A is a very small number compared to the dimension of the

HRI, A �mı́n(#2, !), and � is a fixed few amount of patch-groups, the complexity is bounded by

�3, and in consequence by #6. Then, the complexity of the proposal is of order $ (#6).

3.5. Simulations and results

Simulated experiments were carried out to evaluate the proposed CSI fusion approach under diver-

se experimental setups which could affect the performance of the algorithm.

The compressive optical systems correspond to the C-CASSI and SSCSI described in Section 1.2.

The employed databases consist in the Jasper-ridge, Urban and Pavia University described in Ap-

pendix 1, with the modified versions as presented in (Zhu et al., 2014b).

The performance was evaluated with the image fusion error metrics described in Appendix 2: the

PSNR, the UIQI, the SAM and the ERGAS.

3.5.1. Implementation details. In all cases, the 90% and 50% of the data of the

HSI/MSI were acquired using the SSCSI and C-CASSI architectures, where the entries of the sen-
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sing matrices were generated following a Bernoulli distribution. The blurring matrix has a standard

variation of 1.5, and the added Gaussian noises have 30 and 40 [dB] of SNR level for the HRI and

MSI acquisition. The selection for the number of patch-groups �, size of patches (? × ?), and

parameters `, and g, playing a significant role was addressed as below.

The number of patch-groups (�) was set to correspond to the amount of endmembers from

each database. Thus, if A = 4, then � = 4. This, based on the intuition that if an HRI only contains

A independent spectral signatures, then grouping the extracted patches according to its spectral

response will lead to high self-similar patch-groups.

The patch size (?× ?) was selected via cross-validation, in which ? was varied in the range

? = [3 5 7 9 11] for each database and optical system. Figure 11 shows the fusion quality in

terms of the PSNR as a function of the patch size. It can be seen that this parameter significantly

affects the quality when using SSCSI, where the difference in the quality achieves up to 5 [db].

Unlike, it does not significantly affect the quality when using C-CASSI, where the maximum

quality difference is 1 [db]. This, considering that SSCSI preserves more spatial details of the

image, such that, variations in the patch size can generate very accurate similar patch-groups.
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Figure 11. Selection of patch-size experiment.
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From this experiment, I selected a patch size of ? = 5 which provides good quality results in most

of the cases.

The parameter ` related to the non-local low-rank regularization term, determining the low-

rank approximation of each patch-group, and g related to the total-variation regularization term,

determining the smoothness level, were selected via cross-validation in which, ` was varied in the

interval [10−6;10−3] and g was varied in the interval [10−8;10−5] for each database and optical

system. Remark: All experiments set the patch size to ? = 5, the dual parameters to d = 2.754−6

and W = 1, which were empirically chosen. Figure 12 shows the quality in terms of PSNR when

varying the algorithm parameters along the three data bases and the two optical systems. There, it

can be observed that the algorithm presents smooth transitions and achieves a peak value (marked

with a green asterisk) inside the evaluated intervals.

Table 8 summarizes the experimental setup and chosen algorithm parameters based on the

results of this experiment. The Column labeled as Data indicates the percentage of compressed

data acquired w.r.t. the HRI dimension.

Table 8
Algorithm Parameters

Database
HSI Source MSI Source Data [%] Parameters

3ℎ
Shots

3<
Shots

SSCSI C-CASSI � ?× ? ` g
SSCSI C-CASSI SSCSI C-CASSI

Jasper 4 59 20 11 3 3 10.13 10.46 4 5×5 54−5 14−6

Urban 4 73 21 9 5 5 11.81 10.92 6 5×5 54−5 54−7

Pavia 4 90 22 10 5 5 10.62 10.98 6 5×5 54−5 54−7

Finally, all simulations were carried out using Matlab 2018a in a computer with Intel(R)

Core(TM) i7-6700 CPU @ 3.40GHz.
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3.5.2. Performance evaluation. The performance of the proposal is compared

against the CSI fusion in (Vargas et al., 2019), employing a sparsity prior over the abundances

to fuse the compressed measurements. To the best of the author knowledge, this is the most effecti-

ve method that fuses two sets of compressed measurements. Further, results are compared against

the multi-band image fusion approach in (Wei et al., 2016a) using the full HRI and MSI data.

Tables 9, 10, and 11 show the quantitative results in terms of the fusion metrics. Abbrevia-

tions Ours, Classic, and FUMI refer to the proposed fusion using the non-local low-rank prior,

the literature method using the sparsity prior, and the literature method using full data. The pro-

Table 9
Fusion metrics for Jasper database

System SSCSI C-CASSI FUMIMethod Ours Classic Ours Classic
PSNR 42.5049 36.3763 37.2109 34.2388 39.9734
UIQUI 0.9898 0.9616 0.9777 0.9607 0.9974
SAM 1.3079 2.4008 2.2177 2.4305 1.7898
ERGAS 2.3070 5.2691 2.6150 2.7907 1.5333
Time[s] 161 16.25 162 23.56 11.9720
Data 10.13% 10.46% 100%

Table 10
Fusion metrics for Urban database

System SSCSI C-CASSI FUMIMethod Ours Classic Ours Classic
PSNR 41.4325 31.8746 35.6286 35.3664 40.4498
UIQUI 0.9974 0.9748 0.9909 0.9887 0.9972
SAM 1.0554 2.9543 1.8699 2.0026 1.3107
ERGAS 0.6584 2.0968 1.2426 1.3751 0.7668
Time[s] 346 18.45 300 19.65 44.6458
Data 11.81% 10.92% 100%

posal outperforms the Classic method, with an average improvement of 4.8 dB in PSNR, and a

gain of 0.019 in the UIQI, while reducing the angle between the reference and estimated spectra



3.5 Simulations and results 86

Table 11
Fusion metrics for Pavia database

System SSCSI C-CASSI FUMIMethod Ours Classic Ours Classic
PSNR 39.0931 31.2186 37.1879 35.2967 42.3394
UIQUI 0.9894 0.9442 0.9827 0.9812 0.9961
SAM 1.1623 8.6189 2.7313 5.6159 2.0523
ERGAS 0.8394 4.6607 1.9365 2.7821 1.0403
Time[s] 407 25.88 417 27.05 31.2606
Data 10.62% 10.98% 100%

in 2.28 of the SAM metric, and a reduction of 1.6 in the ERGAS. In relation to the FUMI method,

the proposal obtained comparable performance in terms of the UIQI, SAM and ERGAS metrics.

while improving the quality of the fused image in terms of PSNR for the Jasper and Urban data-

sets. This result demonstrates that using the non-local low-rank effectively restore the structural

comprehensive information from the compressed measurements.

Figure 13 shows the spectral response at two spatial positions of each database compared

to the proposed and Classic estimations along each one of the experimental configurations. There,

F1, F2, and F3 stands for Jasper, Urban, and Pavia datasets. The zoom versions evidence the

visual similarity improvement in the estimated spectrum of the fused image. Figure 14 shows a

qualitative RGB representations comparison of the fused HRI along each approach, where the

fused HRI obtained with the non-local low-rank prior is visually closer to the original one.
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3.6. Conclusions

This chapter studied the SI low-rankness from the global and non-local points of view, considering

the spectral and spatial correlations for solving the CSI fusion problem. Specifically, the global

spectral low-rank was analyzed by a theoretical premise using the LMM, where each pixel was

modeled as a linear combination of a few pure spectral responses. The non-local low-rank prior

was validated through an extensive empirical study of the SVD decay obtained from matrices

stacking similar patches located at non-local positions. The exhibited fast SVD decay supported

incorporating the non-local low-rank assumption by a hand-crafted explicit regularization function.

The formulated CSI fusion was solved following a BCDM, iteratively updating the abundances and

the endmembers. In particular, the abundances were assumed to preserve the non-local low-rank

and smoothness priors, which reduced the computational complexity against assuming the low-

rankness over the complete image. Simulations over three datasets and the CASSI and SSCSI

compressive optical systems showed that the proposal outperformed the CSI fusion state-of-the-

art method in up to 2dBs and 8dBs for the CASSI and SSCSI systems. The proposal obtained a

comparable spectral quality against methods using complete data, with a significant improvement

in the spatial quality.
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4. Joint non-local, spectral, and similarity low-rank priors for spectral imaging fusion

Part of this chapter has been adapted from the journal paper entitled Joint Nonlocal, Spectral,

and Similarity Low-Rank Priors for Hyperspectral-Multispectral Image Fusion Submitted to IEEE

Transactions on Geoscience and Remote Sensing.

The previous chapter adopted the low-rank prior for fusing two sets of compressed measu-

rements. Unlike, this chapter addresses the fusion of two full-dimensional SIs, where I propose an

HSI-MSI fusion that jointly promotes various low-rank regularizations. The method synthesizes

the HRI through the PnP of a non-local patch-based denoiser in the ADMM. The HRI correlations

are considered via the non-local self-similarity, the spectral low-rank, and an introduced rank-one

similarity prior. Section 4.1 presents the most related works, where the separate use of low-rank

priors in traditional methods motivates the proposal that leads to the following main contributions.

1. The introduction of the concept of rank-one similarity prior, validated through an extensive

empirical study can be found in Section 4.2.

2. The joint of the non-local self-similarity, spectral low-rank, and rank-one similarity priors

with an implicit regularization for HSI-MSI fusion are described in Section 4.3.

3. The development of a practical algorithm based on PnP-ADMM to solve the fusion problem

via the multichannel block-matching and 3D filtering (BM3D) denoising in Section 4.4.

4. A significant improvement in the visual and objective metrics, particularly in the spectral

PSNR, with excellent recovery of spectral signatures at low-contrast regions in Section 4.5.
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5. The acquisition of two hyperspectral datasets at the Optics Laboratory from the Universidad

Industrial de Santander as described in 4.5.1, which will be publicly available to the academic

community to be used in the SI recovery research field.

4.1. Hyperspectral-multispectral image fusion related works

Hyperspectral imaging sensors face with a trade-off between the spatial resolution and the signal-

to-noise ratio due to limited amount of incident energy (Guilloteau et al., 2020). Hence, HSI-

MSI fusion is a computational technique that aims to combine the valuable information of two

images obtained from different sensors. Precisely, an HRI is synthesized from a low-spatial-and-

high-spectral resolution HSI, and a high-spatial-and-low-spectral resolution MSI (Piella, 2003).

Fused information adds robustness and eases subsequent processing in various remote sensing

applications (Bioucas-Dias et al., 2013; Li et al., 2019a; Fan et al., 2018).

Particularly, in variational non-blind methods, the point spread function of the spectral ima-

ging cameras is assumed to be known, and the HSI and MSI are modeled as blur and downsampling

linear operations of the HRI. Existing variational HSI-MSI fusion methods take advantage of the

redundant information of the HRI with prior information as sparsity, smoothness and low-rankness

to regularize the resulting ill-posed inverse problem. Some remarkable frameworks taking advan-

tage of such priors include sparse representation, modeling the HRI as a linear combination of

few atoms in a redundant dictionary (Akhtar et al., 2014; Wei et al., 2015; Dong et al., 2016; Fang

et al., 2018; Han et al., 2018; Jian et al., 2020); Bayesian formulations, using the observation

model to build appropriate posterior distributions (Simoes et al., 2014; Akhtar et al., 2015, 2016;

Wei et al., 2016b; Xue et al., 2017a; Lin et al., 2017; Sui et al., 2019); matrix factorization, de-
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composing the HRI as the linear combination of few endmembers with specific abundances (Wei

et al., 2016a; Zhou et al., 2017; Wu et al., 2020b; Liu et al., 2020; Wu et al., 2020a; Yi et al., 2020;

Zhou et al., 2020); and tensor decomposition, extending the matrix factorization methods to a 3D

modeling (Li et al., 2018a, 2019b; Xu et al., 2019; Ma et al., 2020; Dian and Li, 2019; Li et al.,

2020b; Wang et al., 2020a).

Among above mentioned priors, the low-rankness taking advantage of the structural local

and non-local self-similarities present in the HRI has been demonstrated to significantly improve

the recovery quality in general spectral imaging reconstruction (Wang et al., 2020a). Therefore, this

chapter focus on the employment of low-rank priors considering the spectral redundancies, and the

structural non-local self-similarities. In fact, recent work in (Chang et al., 2020a) established that

the low-rank correlations along spatial, spectral, and non-local self-similarity dimensions contri-

bute different in the recovery quality of an HRI, where the joint of non-local self-similarity and

spectral low-rank priors is the most beneficial to consider the low-rankness of the HRI. However,

with exception of (Wang et al., 2020a; Li et al., 2020b) that combine non-local tensor decompo-

sition with spectral unmixing and sparse representation, respectively. Previous HSI-MSI fusion

methods considering low-rankness use the low-rank priors separately. In addition, there is still a

gap in (Wang et al., 2020a; Li et al., 2020b) where they neglect the existence and the contribution

of a low-rank prior in the similarity dimension.

Motivated by such gaps, I present an HSI-MSI fusion that unlike previous methods syner-

gistically combines the nonlocal self-similarity, the spectral low-rank, and an introduced low-rank

similarity prior, dubbed rank-one similarity, to recover the HRI. This concept is introduced upon
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the idea that intrinsic nonlocal spatial structures occur across the entire spectral dimension.

4.2. Rank-one similarity prior

The geometry of the objects in an HRI is typically irrespective of the object reflectance and respon-

sivity at different spectral bands. Therefore, I introduce the following rank-one similarity prior to

formalize an intrinsic HRI characteristic under which all spectral bands share common structural

similarities of small spatial blocks.

4.2.1. Concept. Let f ∈R#2! represent the vector form of an HRI with #2 spatial

pixels and ! spectral bands, and let P_,8 ∈R?×? denote a ?×? HRI block whose top-left corner is

at the 8th spatial position, 8=1, . . . , #2, within the _th spectral band, _=1, . . . , !.

A dissimilarity map is a 2D array containing the dissimilarity measure of a reference block

to its neighboring blocks. Let D_,8 ∈RF×F denote the dissimilarity map for the P_,8 reference block,

where F ∈ Z+ is the neighborhood size for searching similar blocks and whose entries are calculated

in terms of the ℓ2-norm as

D_,8 ( 9) = ‖P_,8 −P_, 9 ‖22, (36)

for 9 ⊆Ω8, where Ω8 is a set containing the indexes of the blocks within the F×F neighbourhood

of the reference block.

I further denote D̃8 ∈RF
2×! the matrix whose columns contain the normalized and vecto-

rized dissimilarity maps for reference blocks at the same position index 8 over all spectral bands

D̃8 = [vec(D1,8)/B(D1,8), . . . ,vec(D!,8)/B(D!,8)], (37)
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where B(D_,8) denotes the sample standard deviation of D_,8.

The rank-one similarity prior assumes that, for a high-contrast reference block at position

index 8, the dissimilarity maps differ across the spectral bands only by a proportionality factor,

i.e. D_,8 =U_,8D1,8 ∀_. Adopting this prior in practice means approximating D̃8 (37) by a rank-one

matrix. While alternative formulations are possible (e.g., adopting different norms for (36), or an

histogram equalization of each D_,8 ( 9) prior to forming (37)), for the sake of simplicity I adopt the

above basic definitions throughout this chapter.

4.2.2. Concept test. The rank-one similarity prior is validated through an extensive

empirical study that analyzes the singular values of the matrix (37), whose decay is expected to be

fast, especially from the first to the second singular value on high-contrast blocks (37). Figure 15

shows a high-contrast (top) and a low-contrast (bottom) reference block of size ?×?=8×8 from the

Colombia dataset acquired in the optics laboratory of Universidad Industrial de Santander (Gelvez-

Barrera, 2021). A red square bounds each reference block into the RGB version of the search

neighborhood employed to generate a dissimilarity map of size 39×39 across the first principal

component (PC) and five spectral bands. The dissimilarity maps D_,8, ∀_, (36) appear to be all

proportional to each other so that D̃8 (37) exhibits a fast singular value decay. The plots at right

show the singular-value decays when varying the dissimilarity map size from 19×19 to 239×239,

while maintaining the reference block size fixed to 8×8. Observe that the decays for the high-

contrast reference block are faster than for the low-contrast reference block and that the decays are

faster for smaller dissimilarity map size. The fast decay from the first to the second singular value

indicates that D̃8 can be approximated as a rank-one matrix.
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Figure 15. Illustration of the rank-one similarity prior in the Colombia dataset.

The complete empirical study follows the procedure below over ten datasets covering real-

world objects, remote sensing, and satellite sources (Yasuma et al., 2008; M Graña, 2008).

1. Calculate the reference block contrast C(P_,8) as

C(P_,8) =max(P_,8) −min(P_,8). (38)

2. Calculate the singular values of D̃8, ∀8.

3. Analyze the singular-value decay, where high-contrast reference blocks are expected to yield

a fast decay, i.e. large C(P_,8) leads to fast decay of the singular values of D̃8.

I primarily focus on the case where the block size is ?×?=8×8 and the neighborhood size
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is F×F=39×39, as in (Dabov et al., 2007).

Figure 16 illustrates the singular value decay for all possible reference blocks D̃8,∀8 (37)

from twelve publicly available datasets. I define a high-contrast reference block as a reference

block whose contrast is higher than the half of the contrast’s range for every analyzed dataset;

notice that other definitions are also possible.

The decays are grouped in quantiles ([0%-1%), [1%-5%), [5%-20%), [20%-50%), [50%-

80%), [80%-95%), [95%-99%), [99%-100%]) and each singular value is colored according to the

maximum contrast of the values that belong to the corresponding quantile; red color indicates high-

contrast blocks, and blue color indicates low-contrast blocks. The color histogram on the right-hand

side of each plot shows the distribution of the reference blocks according to their contrast; one can

observe that in a typical natural image, the most frequent blocks have a relatively low-contrast

(Cupitre being an exception, with a nearly uniform histogram). The plots show that only a very

slim band of upper quantiles of the singular values (slowest decay) might feature only low-contrast

blocks: higher-contrast blocks always have fast decay of the associated singular values and must

appear at bottom.

The expected behavior can be observed in the figure, where high-contrast blocks (on average

16.47% of all blocks) lead to a fast decay, i.e. red color must appear at the bottom and must be

absent at the top of plots. In particular, the second singular value is on average 3.2×10−3 times

the first one, i.e., a decay from the first one of 99.7% within the first quartile, 5.9×10−3 times the

first one, i.e., a 99.4% drop for the first lower half of its distribution. The rate of decay continues

through the further singular values, as can be seen in the figure, supporting the incorporation of the
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rank-one similarity prior to the solution of spectral imaging problems. For instance, for the HSI-

MSI fusion, the rank-one similarity prior is helpful to effectively propagate the detailed spatial

information presented in the MSI across the narrow spectral bands presented in the HSI.

Feathers Cloth Flower

Lemons Jelly Stuff_Toy

Botswana Ardilla Colombia

Jasper Cupitre China

Figure 16. Empirical validation of the rank-one similarity prior.
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4.3. Proposed hyperspectral-multispectral image fusion

The proposed HSI-MSI fusion follows a subspace-based formulation and a PnP-ADMM algorithm

to estimate the HRI from the HSI and MSI degraded observations according to the following linear

forward model introduced in 1.1

fh = M̄B̄f +lllh

fm = R̄f +lllm.

(39)

The proposed cost function comprises two ℓ2-norms maintaining the data fidelity to the

observations and one implicit regularization function q : R#2! → R that aims to promote jointly

the spectral low-rank, the nonlocal self-similarities, and the rank-one similarity prior, taking full

advantage of the intrinsic spatial-spectral structural correlations. The HSI-MSI fusion is thus an

inverse problem formulated as

minimize
f∈R# 2!

5 (f) = 1
2
‖fh−M̄B̄f‖22 +

`

2
‖fm− R̄f‖22 +_q(f), (40)

where `>0 and _>0 correspond to the regularization parameters that balance the three terms.

4.4. PnP-ADMM algorithm

The proposed algorithm to solve (40) follows the established PnP-ADMM framework (Chan et al.,

2016), promoting the low-rank priors through a denoiser based on nonlocal regularization (Dabov

et al., 2007).

The PnP-ADMM strategy begins with the introduction of three auxiliary variables v8, for
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; = 1,2,3, upon which (40) becomes

minimize
f,v;

1
2
‖fh−M̄v1‖22 +

`

2
‖fm− R̄v2‖22 +_q(v3),

subject to v1 = B̄f; v2 = f; v3 = f,

(41)

whose augmented Lagrangian optimization problem with dual variables g; , for ; = 1,2,3 is given

by

minimize
f,v; ,g;

L(f,v; ,g;) =
1
2
‖fh−M̄v1‖22 +

`

2
‖fm− R̄v2‖22 +_q(v3)+

d

2
‖v1− B̄f +g1‖22 +

d

2
‖v2− f +g2‖22 +

d

2
‖v3− f +g3‖22,

(42)

where d > 0 is the dual regularization parameter.

Each primal variable is optimized by solving the following iterative alternating process

summarized in Algorithm 8 with variables calculated as detailed in Table 12.

f:+1 ∈ argmin
f

L(f,v:; ,g
:
; ).

v:+1; ∈ argmin
v;

L(f:+1,v; ,g:; ).
(43)

4.4.1. Initialization. In Algorithm 8 line 3, the estimated HRI and the auxiliary

and dual variables are initialized as

f0← 1
2
(B̄)M̄) f + R̄) f); v0

1← B̄f0; v0
2← f0; v0

3← f0. (44)



4.4 Proposed hyperspectral-multispectral image fusion 100

4.4.2. Precomputation. In Algorithm 8 line 4 the matrices that will be used to

invert the optimization sub-problems are precomputed as detailed in Table 12.

Algorithm 8. PnP-ADMM HSI-MSI fusion

1: procedure R1BM3D(fh, fm, M̄, B̄, `, g, d, 8C4AB)

2: :← 0
3: (f: ,v:

;
,g:
;
) ← (As in 44). ⊲ Initialization

4: W: ← Table 12 ⊲ Precomputation
5: while : < 8C4AB do ⊲ Update
6: f:+1←W−1

0 d:0
7: v:+11 ←W−1

1 d:1
8: v:+12 ←W−1

2 d:2
9: v:+13 ← BM3Dg/d (f:+1−g:3) ⊲ PnP BM3D

10: g:+11 ← v:+11 − B̄f:+1 +g:1 .

11: g:+12 ← v:+12 − f:+1 +g:2 .

12: g:+13 ← v:+13 − f:+1 +g:3 .

13: :← : +1
14: return f8C4AB

Table 12
Summary of variables computation

W0 ∈ R#2!×#2! = B̄) B̄+2I#2! .

W1 ∈ R#2!×#2! = M̄M̄) + dI#2! .

W2 ∈ R#2!×#2! = `R̄) R̄+ dI#2! .

d:0 ∈ R#2! = B̄) (v:1 +g:1) + (v
:
2 +g:2) + (v

:
3 +g:3).

d1
: ∈ R#2! = M̄) fh + d(B̄f:+1−g:1).

d2
: ∈ R#2! = `R̄) fm + d(f:+1−g:2).

4.4.3. Plug-and-Play of the Multichannel BM3D. In Algorithm 8 line 9, the mul-

tichannel BM3D is included to take advantage of the redundant information and intrinsic HRI



4.4 Proposed hyperspectral-multispectral image fusion 101

structure entailing important considerations detailed below.

In practice, the rank-one similarity prior is verified because the structural features that de-

termine the nonlocal block similarity are repeated across the different spectral bands. However,

over real-world measurements, the structural features may be buried under noise and be distorted

by the coarse sampling, depending on the particular band. Therefore, it is challenging to obtain a

reliable dissimilarity map to build the block-matching by working over individual bands.

When applying the principal component analysis (PCA) to the wavelengths, the structural

features typically end up being represented with a substantially higher signal-to-noise ratio (SNR)

in the first principal component (PC). Therefore, it is convenient to operate the block-matching

over the first PC; otherwise, noise can disrupt the block-matching as illustrated in Fig. 17. There,

the block-matching is executed in the first PC for a low-contrast and a high-contrast reference block

that are bounded and zoomed in dashed magenta and cyan windows, respectively. The reference

blocks are bounded with a red square and its corresponding matched similar blocks are bounded

with a green square. The matched similar blocks found in the first PC that are superimposed over

the 3th and 7th PCs result well suited for other few PCs, except for the noisy case where the last

components are mainly driven by noise; therefore, the block-matching found in the first PC can be

propagated to filter only other PCs that are considered significant. As the structural features drive

the block-matching on the first PC, it can be used by the rank-one prior for all spectral bands.

In principle, the BM3D can be applied separately on each band using the common block-

matching inherited from the first PC. However, the spectral decorrelation provided by the PCA is

also beneficial to further sparsify the 3D spectrum of a group of blocks within each spectral band
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Figure 17. Propagation of the block-matching over the PCs.

in the multichannel BM3D, which is therefore applied upon PCA.

In Algorithm 8 line 9, the update of v3 assumes that q:3 = f:+1−g:3 is a noisy version of

v3 whose effective noise is considered to be white Gaussian with standard deviation given by

f=
√
_/d. Therefore, a denoised version of v3 is obtained by the PnP of the multichannel BM3D,

where the block-matching step is driven over the first PC as follows.
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1. Calculate the PCs of q:3 organized as the matrix Q:
3 ∈ R

!×#2
.

2. Find the mutual similar blocks by applying the block-matching in the first PC.

3. Propagate the positions of the found similar blocks to filter and preserve a small number

A� ! of PCs, promoting the rank-one similarity, the spectral low-rank, and the nonlocal self-

similarities jointly. The amount A of preserved PCs is updated at each iteration by using the

hyperspectral signal subspace identification by minimum error (HySime) method (Bioucas-

Dias and Nascimento, 2008).

Notice that the procedure above remarkably reduces the algorithm’s computational comple-

xity, avoiding the calculation of multiple block-matching at each PC or at each band. Furthermore,

the first PC has the highest inter-pixel variance with well-defined blocks so that the filtering is con-

servative, and it is expected not to match together blocks that are dissimilar in other PCs, which

are typically smoother. Nonetheless, in the rare but possible event where the block-matching on

the first PC creates a group of dissimilar blocks in another PC, multichannel BM3D does not break

down because the noise attenuation is done after shrinkage of the 3D transform of the group. Fi-

nally, matching significantly different blocks (e.g., above the noise level that exists in that PC) will

elicit 3D-transform spectrum coefficients larger than the shrinkage threshold. Hence, these coeffi-

cients will be preserved, and the blocks’ differences will be preserved after the inversion of the 3D

transform.
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4.5. Simulations and results

To evaluate the proposed R1BM3D HSI-MSI fusion, I conducted extensive experiments across va-

rious publicly available multispectral and hyperspectral datasets described in Appendix 1. Further-

more, I acquired two hyperspectral datasets (Ardilla and Colombia) at the Optics Laboratory from

the Universidad Industrial de Santander as described in the following section.

4.5.1. Hyperspectral dataset acquisition. The testbed prototype shown in Fig. 18

uses an objective lens and the Allied Vision Technologies (AVT) Marlin F-145B2 IRF 15fps

IEEE1394 Digital Camera. The light Source consists on the TLS-300XR illuminator (Tunable

300 W Ozone Free Xe, RS232/GPIB) with 0.3− 1.8`m of spectral range and two fixed slits of

600`m widths located at the input and output of the monochromator.1

Camera Light Source Slit Calibration

Figure 18. Hyperspectral dataset acquisition sytem

The Ardilla and Colombia datasets of 776× 1032× 121 spatial-spectral resolution were

acquired in the 0.37− 0.77`m spectral range in intervals of 0.01`m in the (0.37`m to 0.45`m)

1 I gratefully thanks to the laboratory workers Ph.D.(c) Hans García, Ph.D.(c) Andrés Jeréz, and Ph.D.(c) Miguel
Marquez for their contribution in the acquisition setup implementation and description.
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and (0.65`m to 0.77`m) spectral ranges, and in intervals of 0.002`m in the (0.45`m to 0.65`m)

spectral range. A down-sampled version of size 388× 516× 121 of each dataset is employed to

reduce the computational complexity. An RGB image of the scene acquired with a smartphone and

the RGB mapping representation from the acquired HSIs are depicted in Fig. 19

Ardilla-phone Ardilla-mapping Colombia-phone Colombia-mapping

Figure 19. RGB mapping of the acquired datasets.

I compare R1BM3D against various state-of-the-art approaches that employ different stra-

tegies to obtain the fused image. Specifically, against the subspace based hyperspectral super-

resolution (HySure) (Simoes et al., 2014); the HSI-MSI fusion based on Bayesian sparse represen-

tation (BSR) (Wei et al., 2015); the non-negative structured sparse representation (NSSR) (Dong

et al., 2016); the couple sparse tensor factorization (CSTF) (Li et al., 2018a); and the clustering

manifold structure (CMS) (Zhang et al., 2018a). All of comparison methods were implemented by

their published code found in (Junjun-Jiang, 2020).

The main parameters of R1BM3D and each comparison method have been tuned separately

by trial and error for each dataset to optimize the PSNR. The details are given in Section 4.5.3.

The fusion performance is evaluated in terms of the global, spatial and spectral peak signal-

to-noise ratio (PSNR) measured in decibels (dB), the universal image quality index (UIQI), the
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spectral angle mapper (SAM) measured in degrees, and the dimensionless global relative error of

synthesis (ERGAS) in 2 for 8-bit representations of original and estimated images, i.e., I scale the

images to the range [0,255].

4.5.2. Comparative benchmarking. Table 13 summarizes the objective results

averaged over five replications changing the random noise for each case. It can be observed that

R1BM3D outperforms previous methods by up to 3 dBs in the global PSNR, where the improve-

ment mainly comes from the gain in the spectral domain as shown with the spectral PSNR.

Table 13
HSI-MSI Fusion Metrics: RMSE, ERGAS, SAM (degrees), UIQI, PSNR (dB).

Pavia University
Methods RMSE ↓ ERGAS ↓ SAM ↓ UIQI ↑ Global PSNR Spatial PSNR Spectral PSNR
HySure 2.330±0.016 0.849±0.006 1.506±0.017 0.992±8.532×10−5 39.524±0.058 39.754±0.060 32.706±0.079
BSR 2.363±0.004 0.846±0.001 1.493±0.003 0.992±2.995×10−5 39.399±0.014 39.802±0.012 32.706±0.016
NSSR 2.341±0.010 0.832±0.003 1.495±0.006 0.992±8.519×10−5 41.835±0.482 40.285±0.039 32.753±0.034
CSTF 2.432±0.035 0.870±0.010 1.576±0.039 0.991±2.793×10−4 41.706±0.329 39.915±0.104 32.389±0.183
CMS 3.171±0.010 1.090±0.002 2.109±0.009 0.984±8.442×10−5 39.440±0.502 38.327±0.015 30.387±0.026
NLTD 2.114 0.756 1.298 0.985 41.627 − −
R1BM3D 1.960±0.014 0.697±0.007 1.188±0.005 0.994±1.042×10−4 43.673±0.214 41.858±0.099 35.198±0.042

Stuff_Toy Dataset
Methods RMSE ↓ ERGAS ↓ SAM ↓ UIQI ↑ Global PSNR Spatial PSNR Spectral PSNR
HySure 3.858±0.102 0.437±0.013 3.775±0.202 0.994±2.547×10−4 35.294±0.228 37.309±0.149 24.899±0.360
BSR 3.080±0.007 0.318±0.001 2.643±0.008 0.997±1.223×10−5 37.248±0.019 37.209±0.020 27.581±0.016
NSSR 3.108±0.049 0.328±0.005 2.433±0.035 0.997±9.114×10−5 37.170±0.137 37.570±0.168 28.108±0.115
CSTF 2.941±0.070 0.309±0.008 2.094±0.066 0.997±2.760×10−4 37.649±0.205 38.080±0.161 29.846±0.206
CMS 3.197±0.018 0.328±0.002 3.007±0.023 0.997±2.520×10−5 36.922±0.050 36.681±0.053 27.045±0.054
R1BM3D 2.183±0.005 0.226±0.001 1.252±0.006 0.999±6.748×10−6 40.237±0.018 40.638±0.021 35.401±0.037

Urban Dataset
Methods RMSE ↓ ERGAS ↓ SAM ↓ UIQI ↑ Global PSNR Spatial PSNR Spectral PSNR
HySure 3.119±0.086 0.497±0.014 1.373±0.046 0.989±2.257×10−4 36.173±0.235 35.029±0.185 34.144±0.208
BSR 2.662±0.005 0.422±0.001 1.145±0.003 0.992±2.784×10−5 37.546±0.015 36.354±0.014 35.679±0.019
NSSR 3.088±0.009 0.492±0.002 1.423±0.004 0.989±6.836×10−5 36.255±0.025 35.010±0.028 34.034±0.025
CSTF 3.192±0.096 0.510±0.001 1.412±0.003 0.988±3.539×10−4 35.987±0.016 34.687±0.012 33.919±0.017
CMS 3.195±0.005 0.519±0.001 1.434±0.003 0.988±4.027×10−5 35.960±0.014 34.532±0.013 33.936±0.015
R1BM3D 2.544±0.0030 0.402±0.001 1.097±0.002 0.992±1.813×10−5 37.944±0.010 36.738±0.012 36.741±0.014

To visualize the spectral reconstruction quality improvement reported in Table 13, Fig. 20

shows the spectral signatures and difference in absolute value with respect to the ground-truth for

a random spatial location P1 in the reconstructions for each fused image.
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Figure 20. Spectral signature comparison at a random spatial location P1.

Comparison of the recovered spectral signatures at a random spatial location P1 for each

dataset. The absolute error plots confirm that the spectral signatures obtained by the R1BM3D

method are more accurate than those obtained by the comparison methods.

These results show that the R1BM3D spectral reconstructions are more accurate than those

of the comparison methods. Figure 21 shows an RGB mapping of the obtained reconstructions for

Pavia University, Stuff_Toy, and Urban datasets by using the R1BM3D and comparative bench-

marking. The spatial improvement can be visualized in the zoomed sub-region, especially in the

reconstruction of smooth regions. Each recovered image shows the obtained global PSNR in dBs.

Notice in the zoomed versions that the fused image obtained with R1BM3D presents a better re-
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construction than the other methods.

Pavia University
Groundtruth

Groundtruth
R1BM3D

R1BM3D
44.67

CMS

CMS
40.05

CSTF

CSTF
42.33

NSSR

NSSR
42.67

BSR

BSR
39.42

HySure

HySure
39.60

Stuff_Toy
Groundtruth

Groundtruth

R1BM3D

R1BM3D

40.25

CMS

CMS

36.94

CSTF

CSTF

37.45

NSSR

NSSR

37.34

BSR

BSR

37.26

HySure

HySure

34.49

Urban
GroundtruthGroundtruthR1BM3DR1BM3D

37.94

CMSCMS
35.96

CSTFCSTF
35.98

NSSRNSSR
36.25

BSRBSR
37.54

HySureHySure

36.17

Figure 21. RGB mapping of the recovered datasets.

Figure 22 illustrates a quality comparison taking into account the reference block contrast.

It can be observed for the three datasets that the quality improvement obtained at low-contrast

reference blocks is more significant than the obtained for high-contrast reference blocks in compa-

rison to the benchmarking methods, indicating that R1BM3D is especially good at recovering the

spectral response of low-contrast reference blocks. Analysis of fusion quality vs block contrast.
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The PSNR is computed for each block of size ?×?=8×8 within a fused image and collected into

nine bins according to the contrast (38) of the block at the corresponding position in the ground-

truth image. The histogram shows the block bin count, confirming that high-contrast blocks are

not frequent. The plots show the average PSNR over each contrast bin, comparing the proposed

R1BM3D with the best comparison method for each dataset (NSSR for Pavia University, CSTF

for Stuff_Toy, and BSR for Urban). The R1BM3D is superior especially for bins corresponding to

low-contrast blocks.

Figure 22. Analysis of fusion quality vs block contrast.

4.5.3. Parameters selection. Due to the very different spatial and spectral sam-

pling conditions characterizing each dataset, the fusion algorithms all benefit from separate tuning

of their key parameters. The comparison methods are tuned by trial and error as follows in or-

der to maximize the PSNR of the fused image separately for each dataset. For NSSR the num-

ber of dictionary atoms, the number of iterations, and the regularization terms are set to  =256,

iter=11, [1=14−4, and [2=84−3 for Pavia University;  =280, iter=12, [1=14−1, and [2=3.34−4

for Stuff_Toy; and  =300, iter=12, [1=3.54−5, and [2=1.7 for Urban dataset. For the CSTF the

number of dictionary atoms of the spatial-spectral modes are set to =F =256, =ℎ=256 and =B=11
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for Pavia University; =F =150, =ℎ=150 and =B=12 for Stuff_Toy; and =F =250, =ℎ=250 and =B=5

for Urban dataset. For the CMS the size of the overlapped local full band patches, the number of

clusters, and the interval between patches are set to
√
@=2,  =250, and 3=1 for Pavia University;

√
@=8,  =500, and 3=2 for Stuff_Toy; and

√
@=2,  =300, and 3=1 for Urban dataset.

R1BM3D has three key parameters, _ controlling the implicit regularization term, d contro-

lling the dual variable weights, and ` controlling the weight of the fidelity term to the MSI. In the

experiments, I fix _ = f2d, where f stands for the MSI effective noise standard deviation, which

is assumed by the multichannel BM3D for denoising. Then, d and ` are tuned through simulations

for each dataset. Figure 23 shows the global PSNR as function of d and `. From the simulations,

I set `=7 and d=0.16 for Pavia University; `=0.6 and d=0.02 for Stuff_Toy; and `=1.65 and

d=0.009 for Urban dataset. In general, the selection of d affects the convergence speed. Very small

values will produce a fast convergence but will reduce the importance of the dual terms, affecting

the quality. Meanwhile, very high values of d will produce slow convergence. Also, notice that `

is commonly higher than d, so that the fidelity to the MSI is more relevant to obtain good quality.

Figure 23. Parameters Analysis for each dataset.
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4.5.4. Rank analysis. The number of PCs that are preserved at each iteration is

analyzed. This number is directly related to the underlying HRI rank, which is expected to be low.

Figure 24 shows the nuclear norm, the number of preserved PCs, and the global PSNR as the

iterations progress. Analysis of the number of preserved PCs during the iterations of R1BM3D.

The plots show the behaviour of the number of preserved PCs that are considered significant, the

nuclear-norm of the estimated HRI, and the obtained global PSNR across the iterations. After some

iterations, the number of PCs converges to a small number for the three datasets. This behavior

was expected because of the low-rank property. Furthermore, it can be observed a counter-relation

between the nuclear norm and the global PSNR during the first few iterations, in which a high

value in the nuclear norm implies low quality. These results indicate that the information removed

during the first iterations effectively corresponds to noise. It can be observed that the number of

preserved PCs converges to a relatively small number, inducing a low-rank structure. Notice how

the nuclear norm fluctuates opposite to the PSNR; this is most noticeable during the first stages of

recovery when the filtering suppresses spurious and erroneous structures from the HRI estimate.

Pavia University

Iterations

Stuff_Toy

Iterations

Urban

Iterations

Figure 24. Analysis of the number of preserved PCs during the iterations of R1BM3D.
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4.6. Discussion

The presented fusion approach takes advantage of a rank-one similarity prior, under which the

dissimilarity maps of high-contrast reference blocks are assumed to be proportional to each other

across the spectral domain. Nonetheless, the analysis reported in Fig. 22 shows that the greatest im-

provement comes from low-contrast blocks instead of from high-contrast blocks, which is perhaps

unexpected. These results could indicate that the strategy of finding the dissimilarity maps in the

first PC can improve the recovery of low-contrast blocks. Since low-contrast areas are more im-

pacted by noise, their reconstruction can be challenging for the comparison methods. Using the

rank-one prior in R1BM3D helps by guiding the block-matching under heavy noise, and therefore

the quality is improved.

In connection to this work, it is interesting to mention the hyperspectral denoising method

FastHyDe presented in (Zhuang and Bioucas-Dias, 2018). While FastHyDe is also based on a low-

rank approximation of the HRI and self-similarity via BM3D, the combination of these principles

with the rank-one similarity prior proposed here is stronger and more efficient than the one adopted

by FastHyDe. Specifically, in FastHyDe it is assumed that each PC is internally self-similar and

the denoising is applied separately on each PCs implying that the block-matching is operated

independently on each PC, which leads to increased computation and can also be impaired by the

low SNR of some PCs. R1BM3D is instead a multichannel approach, where through the rank-one

self-similarity prior, the block-matching is operated only once, on the PC with the highest SNR,

and reuse the matching positions for all PCs; this leads to computational savings and substantial
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benefit for content with low SNR and low-contrast.

4.7. Conclusions

This chapter considered the joint of various low-rank regularizations in order to improve the HSI-

MSI fusion recovery quality. Unlike previous chapters using explicit regularizers, the proposed

R1BM3D method combined the low-rank priors through an implicit regularization function. No-

tably, I introduced an alternative low-rank prior, dubbed rank-one similarity prior, as an intrinsic

HRI characteristic under which the structural similarities of small blocks are shared across all spec-

tral bands. I conducted an extensive empirical study over several real-world objects and remote-

sensing and satellite datasets, finding support for such rank-one similarity prior. Furthermore, I

developed an effective algorithm that uses a non-local patch-based denoiser to promote the propo-

sed low-rank priors. Finally, the experiments showed that R1BM3D can significantly improve the

HSI-MSI fusion, with the most remarkable improvement observed in the recovery of the spectral

information at low-contrast locations.
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5. Mixture-Net: Low-Rank Deep Image Prior Inspired by Mixture Models for Spectral

Image Recovery

Part of this chapter has been adapted from the conferences (Gelvez et al., 2021a,b) [© [2021]

IEEE. Reprinted] (published) and journal Mixture-Net: Low-Rank Deep Image Prior Inspired by

Mixture Models for Spectral Image Recovery Submitted to IEEE Trans. on Image Processing.

This chapter presents a strategy to incorporate the low-rank prior without requiring a defined

regularization function. The proposed approach, dubbed Mixture-Net, aims to learn implicitly the

SI low-rankness through a non-data-driven deep neural network, whose architecture is inspired on

mixture models. Section 5.1 describes the related works, where the hand-crafted regularizer design

and DL data-driven limitations, motivate the proposal with the following main contributions.

1. Mixture-Net: An interpretable network architecture inspired by linear and non-linear low-

rank mixture models, where the learned weights and features can be interpreted as the SI

abundances and endmembers. (Section 5.2.2).

2. A scheme of multiple deep-blocks, whose loss functions contain particular model-based re-

gularizers to improve the SI learned spatial-spectral correlations (Section 5.2.3).

3. A non-data-driven DIP-based approach for SI denoising, HSI-SR, and CSI reconstruction

(Section 5.2).

4. A significant improvement for SI recovery in terms of recovery quality while reducing the

processing complexity through the non-data-driven approach (Section 5.3).
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5.1. Spectral image recovery related works

Using prior information is crucial in current SI recovery methods to effectively solve the ill-posed

inverse problems, through greedy algorithms, model-based optimization, or DL approaches.

Greedy methods include the prior information by following a sequence of reasonable steps

seeking locally optimal solutions (Blumensath et al., 2012; Maggioni et al., 2012). Meanwhile,

model-based optimization methods consider the prior information by designing hand-crafted re-

gularizers to reduce the feasible search set, finding thus globally optimal solutions (Mullah et al.,

2020; Xu et al., 2020; Li et al., 2020a; Gelvez et al., 2017). For instance, the low-rank regularizer

promotes a low-dimensional subspace prior by modeling the SI as a low-rank structure (Kanatsou-

lis et al., 2018; Bacca et al., 2019; Dian et al., 2018). Nonetheless, hand-crafted regularizers are

often insufficient to handle the wide variety of spectral information.

Data-driven DL methods learn the prior information by training a black-box non-linear

mapping from a SI dataset. The DL black-box nature has been tackled by making systematic con-

nections between model-based iterative algorithms and deep neural networks (Wang et al., 2020b;

Ramírez et al., 2021; Vu et al., 2020). Nonetheless, DL methods are still impractical because of the

expensive acquisition cost of several SI datasets with high spectral resolution.

DIP methods overcame the DL data dependency, thus showing that a single generator net-

work is sufficient to capture the low-level spectral statistics, recovering the SI in a non-data-driven

manner (Ulyanov et al., 2018; Bacca et al., 2021; Zhang et al., 2019). Nonetheless, the DIP net-

works also behave as a black-box, where the architecture disregards the prior information. Re-
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cently, authors in (Miao et al., 2021) and (Gelvez et al., 2021a) proposed a proper neural network

architecture to incorporate the LMM as prior information to solve SI denoising and CSI reconstruc-

tion, respectively. However, the SI non-linear interactions and the benefits of using an interpretable

network have not been considered.

This chapter tackles aforementioned limitation through a non-data driven DIP-based ap-

proach that incorporates the low-rankness in an interpretable architecture.

5.2. Proposed spectral image recovery method

The proposal follows the mathematical notation and formulation of the SI problems defined in

Section 1.3, and the low-rank mixture models for SIs defined in Section 1.4.2.

The proposed SI recovery method aims to include the prior information implicitly in the

architecture of a deep model that generates the SI measurements by minimizing

\̂ ∈ argmin
\

L
(
y,ΦM\ (f0)

)
, (45)

where f̂ :=M\̂ (f0) denotes the recovered SI, M\ (·) :R=→R= denotes the deep generative network

with \ adjustable weights, L (·) :R<×R<→R denotes a customized loss function, and f0 ∈ R= de-

notes the model input. Notice that (45) only requires the measurements y, the acquisition operator

Φ, and the input f0, i.e., the proposed method is non-data-driven.

Then, the proposed SI recovery method consists of three components schematized in Fig.

25. (i) The input structure is based on tensor decomposition. (ii) The Mixture-Net interpretable

architecture generates the recovered SI, the learned features interpreted as the abundances, and
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the adjusted weights interpreted as the endmembers. (iii) The customized loss function includes

the forward model, the losses of each deep-block, and the mixture model physical constraints.

Specifically, (i) the input f0 is learned as a tensor decomposition to impose a low-rank structure

that passes through the network. (ii) Mixture-Net is composed by a sequence of multiple inter-

pretable deep-blocks M\: (·). The : Cℎ interpretable deep-block contains an abundance block-layer

A:
\
(f:−1), consisting of a CNN to learn the spatial correlations, an endmember block-layer EE(ā: )

performing the matrix product according to the LMM, and a non-linearity block-layer N\: (EE: (ā: )

containing a CNN to learn the non-linear mapping operator of the NLMM . (iii) The customized

loss function considers the forward operator Φ and the sum of the single losses employed at each

interpretable deep-block including the abundance constraint

(i) Input (ii) Mixture-Net: Network with multiple interpretable deep-blocks M\ (·) Output

Interpretable deep-block
Abundance block-layer

A:
\
(f:−1)

Endmember block-layer
EE (ā: )

Non-linearity block-layer
N\: (EE: (ā: )

loss function
L: (f: |y,Φ)

U Z0
V

W

d
#

d#
d!

#

#
!

M\1 (·) M\: (·) M\ (·)

(iii) Loss function L(f | y,Φ) =∑
: g:L

:
(
M\: (f:−1) | y,Φ

)
, L: (f: | y,Φ) =

y−Φf:
2

2 +W
:
∑A
0=1 a:

8
[0] = 1.

f:−1
f:

Φ

y:
⊕_

1−
_a:A·

·
·

a:1

e:A·
·
·

e:1

Figure 25. Proposed SI recovery method scheme.

5.2.1. Input structure component. The input component determines the input

structure for the network M\ (·), considering the fixed and learned approaches.
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Fixed Input. The input is fixed in the sense that its entries do not change during

the learning process. Thus, the input is chosen as a fixed array f0 ∈ R= generated as random noise,

constant values, SI rough estimation, or so on.

Learned Input. The input is computed as an adjustable variable from a blind re-

presentation by solving the problem

{\̂, f̂0} ∈ argmin
\,f0∈R=

L
(
y,ΦM\ (f0)

)
. (46)

Authors in (Bacca et al., 2021) suggested imposing a low-dimensional structure over the input f0 to

force obtaining a low-dimensional output. Therefore, a low-rank structure is imposed by learning

the input according to the Tucker decomposition as f0 = vec(Z), Z =Z0 ×1 U×2 V×3 W, where

the variables Z0,U,V,W are fitted by minimizing (46). The Tucker decomposition maintains the

SI 3D structure and guarantees low-dimensionality given that Z> ∈ R#d×#d×!d stands for a 3D

low-rank tensor, where #d < # and !d < !, where d is a scale factor.

5.2.2. Mixture-Net: Network architecture component. To capture the SI prior informa-

tion implicitly, Mixture-Net is composed of a sequence of  interpretable deep-blocks inspired

by low-rank mixture models, containing an abundance, an endmember, and a non-linearity block-

layer.

Abundance block-layer. The first block-layer consists of a CNN that filters the

input with the size of the reference SI to obtain an output whose structure and dimensions should

match for being interpreted as the abundances. The abundance block-layer of the :-th interpretable
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deep-block can be expressed as

a: =A:
\ (f

:−1), (47)

where A:
\
(·) : R#2! → R#2A connotes the CNN with A being a tunable hyper-parameter related to

the SI rank. This block-layer incorporates the non-negativity and sum-to-one physical constraints

described in Section 1.4.1 by using the sigmoid function as the activation of the last layer and

including the following regularization term in the loss function

'(ā: ) =
A∑
0=1

a:8 [0] = 1, a8 [0] ≥ 0,∀8. (48)

Endemember block-layer. The second block-layer consists of an operator that per-

forms the matrix multiplication between the learned features in the abundance block-layer a: and

the adjusted model weights in the endmember block-layer E: , whose dimensions should match

to be interpreted as the endmembers. The endmember block-layer can be expressed as the linear

component of the low-rank mixture model as

L: = EE:
(
ā:

)
= (E: ⊗ I#2)ā: , (49)

where EE: (·) : R#2A→ R#2! models the fully connected endmember block-layer. This block-layer

includes the non-negativity constraint described in Section 1.4.1 by projecting the estimated end-

members into R+ at each gradient step.
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Non-Linearity block-layer. The third block-layer consists of a convolutional ope-

rator determining the non-linear transformation applied to the linear component obtained in the

endmember block-layer L: . Therefore, the block-layer learns the non-linear interactions providing

an output whose structure and dimension should match to be interpreted as the recovered SI. The

third block-layer can be expressed as the non-linear component of the low-rank mixture model as

NL: =N\: (EE:
(
a:

)
), (50)

where N:
\
(·) : R#2A → R#2! connotes a CNN that determines the non-linear transformation follo-

wing the NLMM .

In this manner, the : Cℎ interpretable deep-block estimates the recovered SI, generating three

outputs given by

M\: (f:−1) = f: = (1−_)L: +_NL: ,

L: = EE: (A:
\ (f

:−1)),

NL: = N\: (EE: (A:
\ (f

:−1)).

(51)

for : = 1, . . . ,  interpretable deep-blocks. Notice that L: results from multiplying the ad-

justed weights E: with the learned features a: , such that L: can be interpreted as the SI LMM.

Similarly, NL: results from applying a non-linear transformation N\: (·) to the linear term L: ,

such that NL: can be interpreted as the NLMM . Therefore, each estimated f: results from an

affine combination of a linear and a non-linear term regulated by the parameter 0 ≤ _ ≤ 1.
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5.2.3. Customized loss function component. The chosen loss function for each SI

recovery problem is decisive for the learning effectiveness. Therefore, a customized loss function

is presented that considers the forward model, the independent deep-blocks, and the physical cons-

traints. First, the forward sensing operator Φ is applied at each deep-block output to predict the

measurements. Subsequently, the model weights \\\ are adjusted by minimizing a loss measuring

the difference between the observed and predicted measurements, and containing the mixture mo-

del physical constraints. The customized loss function is composed of the sum of the independent

losses at each deep-block as follows

{\\\∗} ∈ argmı́n
\\\

∑
:

g:L
:
(
f: | y,Φ

)
,

L: (f: | y,Φ) = � (f: |y) +W:
A∑
0=1

a:8 [0] = 1,
(52)

where, f: :=M\: (f:−1), M\: (·) : R#2!→ R#2! stands for the : Cℎ interpretable deep-block, g: > 0

denotes the : Cℎ loss function relative weight in the sum, and W: > 0 denotes the : Cℎ regulari-

zation parameter that controls the trade-off between the fidelity-data � (f: |y) and the abundance

constraint. The output at each deep-block could be interpreted as the recovered SI; therefore, two

possible strategies are studied for defining the recovered SI (i) using the last deep-block output, i.e.,

f̂ := f and (ii) using the average between the last two deep-blocks outputs, i.e., f̂ := (f + f −1)/2.

5.3. Simulations and Results

The experiments to evaluate the Mixture-Net performance were conducted over the Pavia Univer-

sity, Pavia Center, CAVE, KAIST, ARAD, and Jasper-Ridge publicly available spectral datasets
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described in Appendix 1.

Mixture-Net was tested in three SI recovery tasks, SI denoising, HSI-SR, and CSI recons-

truction. For HSI-SR and CSI reconstruction, the ℓ2-norm was used as the fidelity term, given by

� (f: |y) =
y−Φf:

2
2. For SI denoising, the SURE loss in (Nguyen et al., 2020) was used given by

� (f: |y) =
y−Φf:

2
2−f

2 + 2f
#2!

divy(Φf: ), (53)

where divy(Φf: ) is the divergence of Φf: := ΦM\: (f0) computed with the Monte-Carlo SURE

strategy in (Ramani et al., 2008) as

divy(Φf: )) ≈ b)
(
Φ(M\: (f0 + n)) −ΦM\: (f0)

n

)
. (54)

b ∈ R#2! is an i.i.d. Gaussian distribution with zero mean and unit variance, and n is a small value

of order 1×10−5.

The quality improvement is quantified through the spectral angle mapper (SAM), the root

mean squared error (RMSE), the dimensionless global relative error of synthesis (ERGAS), the

peak signal-to-noise ratio (PSNR), and the structural similarity (SSIM) metrics defined in Appen-

dix 2. All experiments were run on an Intel Xeon W-3223 with 64GB of memory, and an NVIDIA
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RTX 3090 GPU with 24GB of memory2.

5.3.1. Characterization of Mixture-Net. The first experiment illustrates the effect

of varying each one of the components and hyper-parameters affecting the Mixture-Net. (i) The

input strategy, imposing various structures over the network input. (ii) The abundance block-layer

scheme, involving the number of layers and filters. (iii) The non-linearity block-layer, varying the

number of endmembers. (iv) The number  of employed deep-blocks. For this purpose, the HSI-

SR task is solved over the Pavia Center dataset.

Input structure. I evaluated five strategies imposing a particular structure over the

Mixture-Net input f0. The former four belong to the fixed approach in Section 5.2.1 as follows. A

Constant input, using a tensor with all values equal to 0.5, i.e., Z ∈ {0.5}#×#×! . A Random input,

generating a random tensor with a normal Gaussian distribution. A Mesh-grid input, initializing

the tensor by the method in (Ulyanov et al., 2018). A Estimated input, using a rough image estima-

tion given by vec(Z) = Φ)y. The fifth is the learned strategy learning a low-dimensional Tucker

Decomposition from random noise using d = 0.4 as described in Section 5.2.1.

Furthermore, the input f0 considers a perturbation at each iteration of the learning process,

emulating external noise. This strategy has been shown to improve the results quality (Ulyanov

et al., 2018). The perturbation is given by

f (0) = vec(Z) + V[[[, (55)

2 The source code is publicly available in Mixture-Net code

https://github.com/TatianaGelvez/Mixture-Net
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where vec(·) denotes a vectorization operator, V ∈ R+ is a parameter controlling the perturbation

level, and [[[8, 9 ∼N(0,1) stands for Gaussian additive noise.

Figure 26 shows the Mixture-Net quality results when using the five strategies imposing a

structure in the input of Mixture-Net. The box-plot of the quantitative performance is measured

in terms of the (left) PSNR (purple) / SAM (green) and (right) SSIM (yellow) / RMSE (red)

metrics. The level of perturbation was varied across the values [0, 14−2, 34−2, 54−2, 84−2, 14−1].

The Abundance block-layer is a CNN with six layers using thirty two filters, and I set the hyper-

parameters as ;A = 54−3, _ = 0 (only the LMM), and A = 8. It can be observed that the random

input is far away from being a good input in a DIP architecture, where even the mesh-grid or rough

estimation strategies improves the obtained quality. The proposed Learned input emerges as the

best strategy, exhibiting a variance no greater than 0.47 [dBs] of PSNR and 0.27 degrees of SAM.

Abundance-block-layer. The abundance block-layer tuning evaluates three archi-

tectures to learn the spatial features leading to the estimated abundance maps. The Convolutio-

nal refers to a sequence of 2D convolutional layers with padding as explained in (Goodfellow

et al., 2016). The Auto-encoder refers to a sequence of 2D convolutional layers, where the first

half increase at the double at each feature, i.e., [ℓ, 2ℓ, . . . , 2hℓ], and the remaining half decrease

[2hℓ, (2h − 1)ℓ, . . . , ℓ] as presented in (Choi et al., 2017a). The ResNet refers to a sequence of

residual neural layers, where the first and the last convolutional layers are concatenated as des-

cribed in (Bacca et al., 2021). Figure 27 shows Quantitative performance in terms of PSNR (left)

and SAM (right) metrics varying the number of layers and the learned features per layer for three

architectures to estimate the abundances. The performance is shown varying the corresponding
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Figure 26. Input structure quantitative performance box-plot.

hyper-parameters: the number of layers varies in the range [1,2,3,4,5] for the Convolutional and

Res-Net architectures, and in the range [3,5,7] for the Auto-encoder; and the number of features

per layer varies in the range [8,16,32,64]. The best learning-rate was found to be ;A = 14−3, and

the noise perturbation of the input was set to be V = 0.7. It can be observed that the Convolutional

architecture provides the highest quality, showing the most stable behavior with minimal variances

when using thirty two features or more.

Non-linearity block-layer. This experiment evaluates the effect of introducing the

non-linearity block-layer in the architecture varying the rank. The rank can be addressed as a hyper-

parameter related to the number of different materials in the SI. Figure 28 shows a quantitative

comparison between Mixture-Net with just the LMM (_ = 0 in (51)) and Mixture-Net when the
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Figure 27. Architectures quantitative performance.
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non-linearity block-layer is included, i.e., _ > 0. Specifically, the performance is measured in terms

of the PSNR (left) and SAM (right) metrics when using the linear block-layer, i.e., _ = 0 in (51),

and when including the non-linearity block-layer with _ = 0.7. The rank value varies in the range

[3,4,5,6,7,8,9,10,15,20]. The non-linearity block-layer is composed of two consecutive spatial-

spectral networks presented in (Wang et al., 2019a), where the best learning rate was found to be

;A = 14−3. It can be observed a clear improvement in the quality, especially for small values of the

rank. This result indicates that using many endmembers yields to compensate for the non-linear

relations in the underlying scene. However, applications such as material identification should be

aware of just a few ground truth endmembers that interact in non-linear ways to form the scene,

instead of using a large number of endmembers that do not match the spectral response of any

material (Bioucas-Dias et al., 2012).

↑ PSNR [dBs] ↓ SAM [Degrees]

Rank Rank

Figure 28. Non-linearity block-layer performance.
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Number of interpretable deep-blocks. This experiment evaluates the effect of con-

catenating multiple interpretable deep-blocks, where the non-linearity block-layer is included only

at the last deep-block. Each deep-block in the sequence provides an output f: that could be in-

terpreted as the recovered image. Therefore, Fig. 29 plots the quantitative comparison among the

output quality at each deep-block when concatenating two, three, four, and five deep-blocks. For

instance, the experiment of five deep-blocks (Block-5) provides six recovered images, five given by

the linear representation obtained at each deep-block, and one given by the non-linear representa-

tion obtained at the fifth deep-block. Quantitative performance in terms of PSNR when using two,

three, four and five deep-blocks, i.e.,  = [2,3,4,5]. The dark lines indicate the mean value, and

the width of the light boxes indicates the variance of running five experiments. The non-linearity

block-layer is composed of two consecutive spatial-spectral networks presented in (Wang et al.,

2019a), where the best learning rate was found to be ;A = 14−3. The labels are shared among the

plots with exception to the label of the non-linearity block shown at each box. It can be observed

that using two and three deep-blocks improves the quality. However, from using four deep-blocks,

the quality decreases because the neural network begins getting over-fitting to the data-fidelity

term. Therefore, I concatenate two deep-blocks that provide a slight result variance as shown in

Fig. 29.

5.3.2. Mixture-Net Performance for Spectral Image Recovery. After determi-

ning the hyper-parameters and Mixture-Net optimal structure, the second experiment compares

the recovery performance against state-of-the-art methods when solving denoising, single HSI-SR,

and CSI reconstruction.
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Figure 29. Multiple deep-blocks quantitative performance.

Denoising. This experiment evaluates the Mixture-Net performance for SI denoi-

sing in the presence of Gaussian additive noise over the Pavia University dataset. The SURE loss

is used to avoid over-fitting in the learning process without an early stop strategy. The perfor-

mance was evaluated against the block-matching and 3D filtering (Dabov et al., 2007), the first

order spectral roughness penalty for denoising (Rasti et al., 2013), the hyperspectral restoration

method (Rasti et al., 2017), the hyperspectral-DIP (Sidorov and Yngve Hardeberg, 2019), the

SURE-CNN (Choi et al., 2017a), and the unsupervised disentangled spatio-spectral deep priors

(DS2DP) method (Miao et al., 2021).

Table 14 presents the denoising quantitative results regarding PSNR and SSIM metrics,

where Mixture-Net obtains a significant improvement, especially in the SSIM metric, indicating
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that the recovered SI intrinsic structures with Mixture-Net are improved over the state-of-the-

art methods as observed in Fig. 30. Visual RGB mapping of the denoised Pavia University for a

noise level of f = 50/255. Notice in the zoomed version that Mixture-Net suppresses the Gaussian

noise in the smooth regions maintaining the shapes and structures. A qualitative comparison of the

spectral quality is shown at the bottom for two spatial pixels P1 and P2.

Table 14
Denoising Quantitative Results for Pavia University

Noise Metric BM3D FORPDN HyRes DIP
SURE
CNN DS2DP

Mixture
-Net

100
255

↑PSNR 29.14 26.03 28.41 26.47 29.62 27.54 30.95
↓SSIM 0.7536 0.5971 0.7379 0.6834 0.8019 0.7187 0.8686

50
255

↑PSNR 32.97 30.44 31.78 30.69 33.29 32.12 34.47
↓SSIM 0.8814 0.7989 0.8549 0.8460 0.9048 0.8963 0.9424

25
255

↑PSNR 36.48 34.34 35.35 34.48 36.09 35.55 36.99
↓SSIM 0.9416 0.9063 0.9271 0.9165 0.9452 0.9511 0.9651

Single Hyperspectral Super-Resolution. This experiment employs the Pavia Cen-

ter and Stuff-Toys datasets for two spatial downsampling factors, 3 = 4 and 3 = 8. The quality was

compared against several state-of-the-art methods, including the bicubic interpolation; four deep

single gray/RGB image SR methods, EDSR (Lim et al., 2017), RCAN (Zhang et al., 2018c), and

SAN (Dai et al., 2019); four data-driven DL single HSI-SR methods, 3DCNN (Mei et al., 2017),

GDRRN (Li et al., 2018b), and SSPSR (Jiang et al., 2020); and the non-data-driven Hyperspectral-

DIP method (Sidorov and Yngve Hardeberg, 2019). The optimization uses the Adam algorithm (King-

ma and Ba, 2014) with a learning rate of 14−3 and all hyper-parameters W: equal to 0.5. A different
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Figure 30. Visual RGB mapping of the denoised Pavia University.

value of the rank A in (48) was set for each dataset. The number of deep-blocks,  , were found

for each dataset through cross-validation. Precisely, I established A = 6 and  = 3, and A = 12 and

 = 4, for Pavia Center and Stuff-Toys, respectively.

Tables 15 and 16 compare the quantitative results for the single HSI-SR over the evaluated

methods. It can be seen that the non-data-driven Mixture-Net outperforms or achieves competitive
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quality even against the data-driven methods such as the SSPSR for both datasets, both downsam-

pling factors, and all evaluated metrics. The spectral quality measured with the SAM metric results

remarkably improved for the Pavia Center dataset. Thus, the intrinsic low-rank prior is more subs-

tantial when a higher number of correlated spectral bands are considered. Figure 31 shows a visual

comparison of the RGB mapping of some super-resolved images for the Pavia Center dataset for

spatial downsampling factor 3 = 4 (top) and 3 = 8 (bottom), where the proposed method improves

the spatial quality, particularly for the highest down-sampling factor 3 = 8.

3
=

4
3
=

8

Ground truth EDSR RCAN SAN 3DCNN GDRRN SSPSR DIP Mixture-Net

PSNR

PSNR

25.00
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24.85

28.86
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24.86
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25.20

29.16
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28.11

26.90

29.91

.

Figure 31. RGB representation of the reconstructed composite Pavia Center dataset

Compressive Spectral Imaging Reconstruction. This experiment compares the ef-

fectiveness of Mixture-Net for CSI reconstruction against data-driven and non-data-driven state-

of-the-art methods, including the non-data-driven Plug-and-Play (PnP) (Yuan et al., 2020) and TL-

DIP (Bacca et al., 2021) methods, and the data-driven Deep Non-local Unrolling (DNU) (Wang

et al., 2020b) and Autoencoder (AE) (Choi et al., 2017a) methods. This experiment employs the

KAIST and the ARAD datasets, where the DNU and AE methods were trained with the publicly

available codes using a training dataset of 27 and 450 scenes for the KAIST and ARAD datasets,
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Table 15
Single Hyperspectral Super-Resolution Quantitative Results for Pavia Center

Method 3 SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑

Bicubic 4 6.1399 0.0437 6.8814 27.5874 0.6961

EDSR 4 5.8657 0.0379 6.0199 28.7981 0.7722
RCAN 4 5.9785 0.0376 6.0485 28.8165 0.7719
SAN 4 5.9590 0.0374 5.9903 28.8554 0.7740

3DCNN 4 5.8669 0.0396 6.2665 28.4114 0.7501
GDRRN 4 5.4750 0.0393 6.2264 28.4726 0.7530
SSPSR 4 5.4612 0.0362 5.8014 29.1581 0.7903

DIP 4 6.2665 0.0410 6.4845 28.1061 0.7365
Mixture-Net 4 4.2120 0.0352 5.8084 29.914 0.8396

Bicubic 8 7.8478 0.0630 4.8280 24.5972 0.4725

EDSR 8 7.8594 0.05983 4.6359 25.0041 0.5130
RCAN 8 7.9992 0.0604 4.6930 24.9183 0.5086
SAN 8 8.0371 0.0609 4.7646 24.8485 0.5054

3DCNN 8 7.6878 0.0605 4.6469 24.9336 0.5038
GDRRN 8 7.3531 0.0607 4.6220 24.8648 0.5014
SSPSR 8 7.3312 0.0586 4.5266 25.1985 0.5365

DIP 8 7.9281 0.0618 4.7366 24.7252 0.4963
Mixture-Net 8 6.7855 0.0485 4.0015 26.9041 0.7148

respectively.

Figure 32 shows a visual representation of the estimations with the reconstruction quality

measured in PSNR and SSIM using the non-data-driven PnP and DIP methods, and the training-

data dependent DNU, and AE methods against the interpretable method Mixture-Net for the KAIST

and ARAD datasets. It can be observed that Mixture-Net improves the quality of reconstruction by
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Table 16
Single Hyperspectral Super-Resolution Quantitative Results for Stuff-Toys

Method 3 SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑

Bicubic 4 4.1759 0.0212 5.2719 34.7214 0.9277

EDSR 4 3.5499 0.0149 3.5921 38.1575 0.9522
RCAN 4 3.6050 0.0142 3.4178 38.7585 0.9530
SAN 4 3.5951 0.0143 3.4200 38.7188 0.9531

3DCNN 4 3.3463 0.0154 3.7042 37.9759 0.9522
GDRRN 4 3.4143 0.0145 3.5086 38.4507 0.9538
SSPSR 4 3.1846 0.0138 3.3384 39.0892 0.9553

DIP 4 8.4935 0.0124 2.5358 38.1329 0.9631
Mixture-Net 4 5.3285 0.0110 2.1997 39.1640 0.9821

Bicubic 8 5.8962 0.0346 4.2175 30.2056 0.8526

EDSR 8 5.6865 0.0279 3.3903 32.4072 0.8842
RCAN 8 5.9771 0.0268 3.1781 32.9544 0.8884
SAN 8 5.8683 0.0267 3.1437 33.0012 0.8888

3DCNN 8 5.0948 0.0292 3.5536 31.9691 0.8863
GDRRN 8 5.3597 0.0280 3.3460 32.5763 0.8890
SSPSR 8 4.4874 0.0257 3.0419 33.4340 0.9010

DIP 8 8.3342 0.0231 2.3697 32.7324 0.9291
Mixture-Net 8 5.5027 0.0208 2.1061 33.6270 0.9432

up to 7 [dB] and obtains the highest SSIM outperforming even the methods employing data during

the training step. Figure 32, at right, shows the spectral reconstruction of a random spatial location,

illustrating that Mixture-Net improves the spectral response estimation.

5.3.3. High-level Tasks Experiments. This experiment aims to evaluate the poten-

tial application of Mixture-Net to perform high-level tasks such as unmixing and material identi-
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Figure 32. Recovery quality comparison.

fication without requiring to run complementary routines. For this, Mixture-Net takes advantage

of the structure inspired by mixture models, implicitly providing two outputs interpreted as the

corresponding abundances and endmembers.

A single shot of the Dual Disperser Coded Aperture Snapshot Spectral Imaging (DD-

CASSI) (Gehm et al., 2007) and the Jasper dataset were employed for the unmixing experiment.

Figure 33 shows the unmixing high-level task application resulting from the interpretable weighs

and features of the proposed deep model. It can be seen a false RGB representation of Jasper’s

ground truth and Mixture-Net estimation, and the interpreted endmember. and abundance matri-

ces. Notice that the learned features in the abundance block-layer converge to a rough estimation of

the abundances. Similarly, the adjusted weights in the endmember block-layer converge to a rough

estimation of the endmembers. It demonstrates that Mixture-Net could be used for the unmixing

problem at any additional cost.

A single shot of the DD-CASSI is employed and the Fake image containing a real and a



5.4 Conclusions 136

G
ro

un
d

tr
ut

h
False RGB Endmembers Abundance 1 Abundance 2 Abundance 3 Abundance 4

E
st

im
at

ed

29.23dB 15.29dB 23.91dB 15.00dB 15.63dB

Figure 33. Unmixing application.

fake plastic fruit with similar shape and color for the material identification experiment. The image

is spatially sub-sampled to 256× 256 pixels. Figure 34 shows the (left) ground truth and a false

RGB mapping of the Mixture-Net estimation with A = 15. At the top-right, the figure shows two

of the obtained features that can be interpreted as abundances. A thresholding is applied over the

abundances and show the binary maps at the bottom-right to determine if the materials of both

objects are the same. The color checker help shows that the obtained abundance can determine that

the materials are different, identifying the fake object without running additional routines.

5.4. Conclusions

Unlike the convex optimization framework employed in previous chapters, this chapter addres-

sed the low-rank incorporation for SI recovery under a DL framework. Specifically, I presented a

non-data-driven SI recovery method based on DIP, where the low-rank mixture models inspired

the network dubbed Mixture-Net. Beyond previous literature methods, the introduced Mixture-Net

implicitly incorporated the low-rankness prior knowledge in the network architecture, addressing



5.4 Conclusions 137

Figure 34. Material identification application

the black-box nature of standard DL. The proposal was divided into three components, the input,

imposing a low-dimensional structure through the learning of a Tucker decomposition; the inter-

pretable Mixture-Net, following a sequence of multiple deep-blocks to estimate the abundances,

the endmembers, and the SI with non-linear relations; and the custom loss function that considers a

regularization term related to physical constraints. The non-data-driven Mixture-Net effectiveness

was demonstrated over three main SI recovery problems: SI denoising, single HSI-SR, and CSI

reconstruction in terms of different metrics, outperforming even data-driven methods requiring

the training of a vast amount of data. Along with the experiments, I noted that imposing a low-

dimensional structure over the input improves the quality of the recovered image. On the other

hand, the non-linearity block-layer drastically improved the obtained quality by considering the
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non-linear relationships between the endmembers. The extension of Mixture-Net to address any

other SI recovery task is suggested for future works. Remark that Mixture-Net supports the use of

different loss functions, where the interpretable advantage enabled to perform further high-level

tasks as linear unmixing and material identification without using additional routines.
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Conclusions

The objective of this dissertation was to develop approaches based on low-rank regularization

to recover a SI from a set of random spectral observations. Therefore, the thesis was composed of

three main fronts relating to current problems found in the literature: (i) the analysis of the low-rank

property exhibited by natural SIs across the spatial and spectral dimensions, (ii) the formulation of

regularization strategies to effectively take advantage of the SI low-rankness, and (iii) the design

of practical algorithms based on the low-rank regularization to improve the SI recovery quality.

The low-rank prior was analyzed through theoretical premises and empirical studies, where

the low-rankness was found to have a different connotation along the spatial and spectral dimen-

sions. Fulfilling the first specific objective, “to analyze the low-rank properties of SIs to validate the

assumption that a low-rank regularization could improve the performance of the spectral inverse

problem from encoded random projections,” Section 2.2 analyzed the low-rankness as a global pro-

perty cause of the high redundancy of a few spectral signatures repeated at several spatial locations.

Section 3.2 analyzed the low-rankness as a non-local property across the spatial dimension cause

of structural self-similarities. Beyond the spatial and spectral dimensions, Section 4.2 analyzed

the low-rankness across a proposed similarity domain, assuming that the sorting of similar blocks

can be shared among the spectral bands. The introduced rank-one similarity prior was validated th-

rough an extensive empirical study over several real and synthetic spectral datasets, suggesting that

the rank-one similarity prior is strongest over hyperspectral remote sensing datasets. The analysis

results supported the inclusion of the low-rank prior to address ill-posed SI inverse problems.



Conclusions 140

The low-rank prior was mainly regularized through hand-crafted regularization functions

and model-based premises incorporated in traditional convex optimization formulations. Fulfilling

the second and third specific objectives “To design two regularization terms to measure the SI

low-rank characteristic” and “To formulate an optimization problem which includes the low-rank

regularization terms to solve the spectral inverse problem from encoded random projections,” Sec-

tion 2.3 incorporated the global spectral low-rank prior through the nuclear norm. Section 3.3

incorporated the global spectral low-rank prior through the LMM and the non-local low-rank prior

through a proposed hand-crafted regularization term that promoted self-similarities between small

extracted patches. Differently, Section 4.3 combined the global spectral low-rank, non-local self-

similarities, and the rank-one similarity prior through an implicit regularization term. Contrary to

the traditional regularization with an explicit or implicit function, Section 5.2 incorporated the glo-

bal spectral low-rank prior into the architecture of a proposed neural network, providing a new

strategy to consider prior information into general DL-based approaches.

Fulfilling the fourth specific objective, “To design a numerical algorithm to solve the pro-

posed spectral inverse optimization problem,” the low-rank regularization was incorporated in four

developed practical algorithms covering the convex optimization with global optimums and DL

frameworks to solve ill-posed SI recovery problem. Sections 2.4, 3.4, and 5.3 tackled inverse pro-

blems from the compressive acquisition approach, providing a competitive alternative to traditional

sparse and transform-based approaches. Notice that, fulfilling the fifth specific objective, “To ve-

rify the developed algorithm by using two state-of-the-art random encoder projectors,” the SI was

recovered using CASSI and SSCSI compressed random spectral projections. Further, Sections 4.4
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and 5.3 addressed the HSI-MSI fusion and single HSI-SR inverse problems, providing strategies

to alleviate the current technology limitation in the acquisition of a high-spatial-spectral resolution

image.

In perspective, there is still room for improvement when applying the low-rank prior to

solve SI recovery problems. Specifically, future works can focus on: (i) to determine in which di-

mension the low-rank property results more substantial for spectral imaging analysis. This research

could significantly facilitate the selection of the regularization term promoting the low-rankness,

alleviating the formulation of complex models combining several low-rank priors. It could be ex-

pected to find that the low-rankness has a different relevance according to the nature of the SI,

i.e., depending on the spatial-spectral resolution and the intrinsic structures in the present objects.

(ii) to extend the use of the novel rank-one similarity prior. This dissertation specifically used the

rank-one similarity prior to solve the HSI-MSI fusion problem. Nonetheless, the concept of the

proposed prior could be extended to many more applications involving SIs. It could be expected

that the rank-one similarity prior will improve the obtained quality, especially in applications facing

limitations at recovering the spectral details at low-contrast regions, for instance, SI denoising. (iii)

to extrapolate the idea of implicitly incorporating prior information into a neural network archi-

tecture to promote SI prior information. This dissertation specifically addressed the global spectral

low-rank prior by proposing two layers representing the theoretical endmembers and abundances.

Therefore, it could be expected that the non-local self-similarities and rank-one similarity prior can

also be incorporated through a combination of proper layers in a neural network.
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Appendix A. Spectral Image Datasets

The developed SI recovery methods and low-rank analysis are validated along various publicly

available datasets covering daily objects, remote sensing, and satellite sources, and two hyperspec-

tral datasets acquired at the Optics Laboratory from the Universidad Industrial de Santander.

ARAD hyperspectral database. Set of 510 images 3 of 512× 512× 31 spatial-

spectral resolution taken with the Specim IQ mobile hyperspectral camera spanning the 0.4−0.70

`m spectral range in intervals of 0.01 `m Arad et al. (2020). A fake RGB visual representation of

four images from the ARAD dataset are depicted in Fig. 35

Scene 462 Scene 463 Scene 464 Scene 465

Figure 35. RGB mapping of the ARAD database.

CAVE multispectral database. Subset of six images from the standard CAVE da-

taset4 of 512× 512× 31 spatial-spectral resolution taken with the Cooled CCD camera spanning

the 0.4−0.7 `m spectral range in intervals of 0.01 `m. A fake RGB visual representation of four

images from the CAVE dataset are depicted in Fig. 36

3 Available in https://competitions.codalab.org/competitions/22226.

4 Available in https://www.cs.columbia.edu/CAVE/databases/multispectral/. Accessed: 20-Nov-2020

https://competitions.codalab.org/competitions/22226
https://www.cs.columbia.edu/CAVE/databases/multispectral/
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Feathers Flowers Stuff_Toy Lemons

Figure 36. RGB mapping of the CAVE database.

KAIST hyperspectral database. Set of 30 images 5 of 512×512×31 spatial-spectral

resolution taken with the Pointgrey Grasshopper 9.1MP Monochromatic (GS3-U3-91S6M-C) ca-

mera spanning the 0.4−0.72 `m spectral range in intervals of 0.01 `m Choi et al. (2017b). A fake

RGB visual representation of four images from the KAIST dataset are depicted in Fig. 37

Scene 01 Scene 21 Scene 23 Scene 28

Figure 37. RGB mapping of the KAIST database.

Botswana. The Botswana dataset of 1476× 256× 145 spatial-spectral resolution

taken with the Hyperion sensor spanning the 0.4− 2.5`m spectral range in intervals of 0.01`m,

contains fourteen identified classes representing the land cover types in seasonal swamps, occasio-

nal swamps, and drier woodlands.

5 Available in KAIST Dataset. Accessed: 15-Jan-2022.

http://vclab.kaist.ac.kr/siggraphasia2017p1/
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China. The China dataset belongs to a farmland near the city of Yuncheng Jiangsu

province in China, which was acquired on 3 May 2006 and 23 April 2007. This scene is mainly a

combination of soil, river, tree, building, road, and agricultural field Hasanlou and Seydi (2018).

Cuprite. The Cuprite dataset of 250× 190× 224 spatial-spectral resolution taken

with AVIRIS spanning the 0.4−2.5`m spectral range in intervals of 0.01`m, contains information

about twelve different minerals. After removing the (1− 2, 221− 224,104− 113, and 148− 167)

water absorption and noisy bands, a subset of size 250×190×188 is employed.

Jasper Ridge. The Jasper Ridge dataset of 512× 614× 224 spatial-spectral reso-

lution spanning the (0.38− 2.5`m spectral range in intervals of 0.0946`m Zhu et al. (2014a),

contains information about four materials: Road, Soil, Water, and Tree. After removing the 1−3,

108− 112, 154− 166 and 220− 224 noisy bands, a subset of size 100× 100× 198 aligned at the

(105,269)Cℎ spatial location in the original image is employed.

KSC. The Kennedy Space Center dataset (KSC) of 512×614×224 spatial-spectral

resolution taken with AVIRIS spanning the 0.4 − 2.5`m spectral range in intervals of 0.01`m

contains information of thirteen classes representing various land cover types. After removing

water absorption and noisy bands, a subset of size 512×614×176 is employed.

Pavia Center. Semi-synthetic Pavia Center dataset of 1096× 1096× 102 spatial-

spectral resolution taken with the ROSIS sensor spanning the 0.43−0.86`m spectral range. Follo-

wing the setup in Jiang et al. (2020) a subset aligned at the top-left of the (1,670) spatial location

of size 256×256×102 is employed.



References 169

Pavia University. Semi-synthetic Pavia University dataset of 610×340×103 spatial-

spectral resolution taken with ROSIS spanning the (0.43−0.86) `m spectral range. Following the

setup in Wang et al. (2020a) removing the water absorption and noisy bands, the top-left subset of

size 256×256×93 is employed.

Samson. The Samson dataset of 952× 952× 156 spatial-spectral resolution span-

ning the 0.4− 0.889`m spectral range contains information about three materials: soil, tree, and

water Zhu et al. (2014a). A subset of size 95×95×156 aligned at the (252,332)Cℎ spatial location

in the original image is employed to reduce the computational complexity.

Urban. The Urban dataset of 307×307×210 spatial-spectral resolution spanning

the 0.4− 2.5`m spectral range is presented in three versions containing information about four,

five, or six materials Zhu et al. (2014a). After removing the 1−4, 76,87, 101−111, 136−153, and

198−210 noisy bands, a subset of size 307×307×162 is employed.

USA. The USA dataset belongs to an irrigated agricultural field of Hermiston city

in Umatilla County, Oregon, OR, the USA, which was acquired with Hyperion sensors on May 1,

2004, and May 8, 2007, respectively. The land cover types are soil, irrigated fields, river, building,

type of cultivated land and grassland Hasanlou and Seydi (2018).

A fake RGB and resized visual representation of the above mentioned datasets are depicted

in Fig. 38. The datasets are publicly available in 6.

6 Available in http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes#Pavia_Centre_and_University and https://rslab.ut.ac.ir/data Accessed: 15-Jan-2022.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
https://rslab.ut.ac.ir/data
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Botswana China Cuprite Jasper-Ridge KSC

PaviaC PaviaU Samson Urban USA

Figure 38. RGB mapping of the remote sensing datasets.

Appendix B. Quantitative Quality Metrics

The developed methods are evaluated in terms of the following quantitative quality metrics.

Global Peak-signal-to-noise-ratio. The peak signal to noise ratio (PSNR), measu-

red in decibels [dB], is defined as the ratio between the maximum possible power of a signal and

the power of corrupting noise that affects the fidelity of its representation, so that, a higher value

indicates superior quality of fusion. The global PSNR is calculated as

PSNR(f, f̂) = 10log10

(
max(f)2

MSE(f, f̂)

)
, (56)

where max(f) is the maximum possible pixel value of f, and MSE stands for the mean square error

between the original signal f and its estimation f̂.

Spatial peak-signal-to-noise-ratio. The spatial PSNR is calculated as the average

between the PSNRℓ, for ℓ = 1, . . . , ! spectral bands. The PSNR for the ℓCℎ spectral band fℓ is given
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by

PSNRℓ = 10log10

(
max(fℓ)2

MSE(fℓ, f̂ℓ)

)
. (57)

Spectral peak-signal-to-noise-ratio. The spectral PSNR is calculated as the avera-

ge between the PSNR8 for 8 = 1, . . . , #2, spatial locations. The PSNR at the8Cℎ spatial location is

given by

PSNR8 = 10log10

(
max(f8)2

MSE(f8, f̂8)

)
, (58)

Structural Similarity. The structural similarity SSIM metric allows to measure the

local similarity between two images Wang et al. (2004). Unlike the PSNR metric, SSIM considers

the image degradation as the perceived change in the structural information, hence, it is considered

a perception-based model. The SSIM between sections - and . of an image is calculated as,

SSIM(-,. ) = (2`-`. + 21) (2cov(-,. ) + 22)
(`2

-
+ `2

.
+ 21) (r2

-
+ r2

.
+ 22)

, (59)

where `- and `. are the average of - and . , r2
-

and r2
.

are the variance of - and . , cov(-,. ) is

the covariance of - and . , and 21 and 22 are stabilization variables.

Universal image quality index. The universal image quality index (UIQI) measu-

res the amount of transformation of relevant data from reference image into fused image. The

closer to 1 indicates that the reference and fused image are more similar. The UIQI is calculated as

UIQI(f, f̂) =
4cov(f, f̂)`f`f̂

(r2
f + r

2
f̂
) (`2

f + `
2
f̂
)
. (60)
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Spectral angle mapper. The SAM determines the spectral similarity between two

spectra by calculating the angle between two pixels viewed as vectors in a space with dimen-

sionality equal to the number of bands. Smaller angles represent closer matches to the reference

spectrum. The global SAM between f and f̂ is calculated as

SAM(f, f̂) = 1
=<

=<∑
ℓ=1

arccos
(
〈zℓ, f̂ℓ〉
‖zℓ‖2‖ f̂ℓ‖2

)
. (61)

Relative dimensionless global error:. The ERGAS computes the quality of the

fused image in terms of the normalized average error of each band of processed image. Increase in

the value of ERGAS indicates distortion in the fused image, lower value of ERGAS indicates that

the fused image is similar to the reference image. The ERGAS is calculated as

ERGAS(f, f̂) = 100∗ 3ℎ

√√√
1
!

!∑
_=1

(
RMSE(f_, f̂_)

`_

)
, (62)

where RMSE(z_, f̂_) denotes the root MSE between the _Cℎ spectral band of the image and its

estimation, and `_ denotes the mean of the _Cℎ spectral band of the HSI.
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