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Co-director

Rodrigo Gonzalo Torres Sáez
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RESUMEN

TÍTULO:DISEÑO Y CLASIFICACIÓN DE PÉPTIDOS ANTIMICROBIANOS Y ANTIBAC-
TERIANOS 1.

AUTOR: NYDIA PAOLA RONDÓN VILLARREAL 2

PALABRAS CLAVES: PÉPTIDOS ANTIBACTERIANOS, CLASIFICACIÓN, DISEÑO.

DESCRIPCIÓN:

Uno de los problemas de salud pública más importantes es la resistencia a los antibióticos que
poseen bacterias patógenas de gran impacto en la salud humana. El problema es tan importante
que puede afectar a la medicina moderna, como por ejemplo, en el área de ciruǵıas especializadas,
debido al gran riesgo de adquirir una bacteria super resistente intrahospitalaria, que no pueda ser
tratada con los antibiticos existentes. La situacin es bastante desalentadora, la resistencia a los
antibiticos está creciendo a tasas alarmantes y el número de nuevos antibióticos desarrollados
y probados ha disminuido en las últimos décadas, básicamente por razones económicas y de
regulación. En este sentido, múltiples empresas farmacéuticas han abandonado la investigación
y el desarrollo de nuevos compuestos antimicrobianos. Sin embargo, en los últimos años, un
buen número de investigadores se ha enfocado en el desarrollo de nuevos antibióticos. Entre
estos, los péptidos antimicrobianos (PAMs) han aparecido como una solución prometedora para
combatir estas bacterias super resistentes. Por esta razón, múltiples esfuerzos teóricos se han
llevado a cabo en el desarrollo de nuevas herramientas computacionales para el diseño racional
de péptidos que sean mejores y más efectivos.

En esta tesis, se proponen dos estrategias para diseñar nuevos péptidos antibacterianos
potenciales. Adicionalmente, la toxicidad de los péptidos también fue considerada en una de
las estrategias propuestas. Los resultados han sido bastante satisfactorios. Múltiples péptidos
que fueron diseñados en esta tesis fueron sintetizados y probados a nivel experimental y han
mostrado actividad contra tres bacterias resistentes a los antibióticos. Adicionalmente, se re-
alizaron pruebas de toxicidad a los péptidos más activos, y resultaron ser no tóxicos en eritrocitos
de carnero y en células de tejido de pulmón de la ĺınea A549.

1Trabajo de grado de doctorado
2Facultad de ingenieŕıas fisicomecánicas. Escuela de ingenieŕıas eléctrica, electrónica y de telecomunicaciones

(E3T). Director: Daniel Alfonso Sierra Bueno, Ph.D., co-director: Rodrigo Gonzalo Torres Sáez, Ph.D.
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ABSTRACT

TITLE: DESIGN AND CLASSIFICATION OF ANTIMICROBIAL AND ANTIBACTERIAL
PEPTIDES 1.

AUTHOR: NYDIA PAOLA RONDÓN VILLARREAL 2

KEYWORDS: ANTIBACTERIAL PEPTIDES, CLASSIFICATION, DESIGN.

DESCRIPTION:

One of the most important public health issues is the microbial and bacterial resistance to
conventional antibiotics by pathogen microorganisms. This issue is so serious that modern
medicine could be affected, e.g. in the area of advanced surgeries, due to the great risk of
acquiring intrahospitalary multidrug-resistant bacterial infections that cannot be controlled by
existing medications. The situation is even worse, antimicrobial resistance is increasing at
an alarming rate and the number of new antibiotics developed and approved has decreased
in the last decades, basically for economic and regulatory obstacles. In this regard, multiple
pharmaceutical industries have abandoned the research and development of new antimicrobial
compounds. However, in recent years, many researches have been focused in the development
of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising
alternative to combat antibiotic-resistant microorganisms. For this reason, many theoretical
efforts have been done in the development of new computational tools for the rational design
of both better and effective AMPs.
In this thesis, two strategies to design new potential antibacterial peptides are proposed. More-
over, the toxicity of the peptides was also considered in one of the proposed strategies. The
results have been highly satisfactory. Peptides that were designed in this thesis have been tested
experimentally and they have been active against three strains of multidrug-resistant bacteria.
Additionally, toxicity tests were performed for the most active peptides, and they are non-toxic
neither on lamb erythrocytes nor on lung tissue cell line A549.

1Doctoral dissertation: Ph.D. on Engineering
2Facultad de ingenieŕıas fisicomecánicas. Escuela de ingenieŕıas eléctrica, electrónica y de telecomunicaciones

(E3T). Advisor: Daniel Alfonso Sierra Bueno, Ph.D., co-advisor: Rodrigo Gonzalo Torres Sáez, Ph.D.
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Chapter 1

Introduction

Antimicrobial resistance is one of the most important public health problems around the world,
especially in developing countries where economical, biological, pharmacological and cultural
aspects increase this problem [1]. This issue is so serious that modern medicine could be affec-
ted, e.g. in the area of advanced surgeries, due to the great risk of acquiring intrahospitalary
multidrug-resistant bacterial infections that cannot be controlled by existing medications [2,3].

According with the CDC urgent solutions are required for at least 15 microorganisms
(See Table 1.1). The situation is extremely critical for three of them, Clostridium difficile,
Carbapenem-resistant Enterobacteriaceae (CRE) and Drug-resistant Neisseria gonorrhoeae. Only
the C. difficile is responsible for more than 250,000 infections, 14,000 deaths and more than
$ 1 billion in excess medical costs per year in the United States [4]. It is estimated that the
yearly costs of antimicrobial resistance to the U.S. health system is between $21 to $34 billion
dollars [5].

Similarly, the European Center for Disease, Prevention and Control (ECDC) estimated in
2009 that each year 25,000 deaths in Europe are caused by resistant bacteria. Moreover, it was
estimated that at least EUR 1.5 billion are spent in health care costs and productivity losses
associated with these bacterial infections. Since the antibacterial resistance is increasing, it is
likely that these numbers are higher nowadays [6].

In 2014, the World Health Organization (WHO) published the antimicrobial resistant global
report on surveillance, pointing out that urgent actions are required to control these microor-
ganisms. The data reported by WHO show that estimated proportion of resistance for bacteria
Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella and Shigella species
is over the 80% in at least one of the world regions (See Table 1.2). However, WHO remarks
that the given proportions of resistance in microorganisms should be treated as indicators and
not as measures due to the lack of agreed global standards for antibacterial surveillance [5].

The situation is even worse, antimicrobial resistance is increasing at an alarming rate and
the number of new antibiotics developed and approved has decreased in the last decades, basi-
cally for economic and regulatory obstacles. In this regard, multiple pharmaceutical industries
have abandoned the research and development of new antimicrobial compounds [7–9]. High
costs of production (US $ 2.6 billion) [10], and the long time required for the development
and posterior approval of the new medicine (more than 10 years) [10] have affected dramat-
ically the arising of both new and more effective antibiotics. Moreover, the short duration
of the treatment with antimicrobial agents (no more than 10 days), in comparison with the
medicine for chronic diseases that would be used in treatments for more than one year, restrict
their commercial market [11–13]. Additionally, the approval for a new antibacterial medicine
is often an obstacle, due to an inflexible regulatory pathway, and difficulties such as differences
in clinical trials requirements among countries, bureaucracy, absence of clarity, among others [7].
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Table 1.1: Classification of dangerous microorganisms according with the CDC. Data per year
in the United States.
Microorganisms No. I.R.S.a No. Deathsb A.M.C.c

Threat level of Urgent

Clostridium Difficile 250,000 14,000 1,000,000,000
Carbapenem-resistant Enterobacte-

riaceae

9,000 600 -

Drug-resistant Neisseria Gonor-

rhoeae

246,000 - -

Threat level of Serious

Multidrug-resistant Acinetobacter 7,300 500 -
Drug-resistant Campylobacter 1,300,000 120 -

Fluconazole-resistant Candida 3,400 220 6,000 - 29,000 f.e.i.d

Extended spectrum β-lactamase
producing Enterobacteriaceae

26,000 1,700 40,000 f.e.i

Vancomycin-resistant Enteoroccus 20,000 1,300 -
Multidrug-resistant Pseudomonas

Aeruginosa

6,700 440 -

Drug-resistant non-typhoidal
Salmonella

100,000 450 365,000,000

Drug-resistant Salmonella Serotype

Typhi

3,800 - -

Drug-resistant Shigella 27,000 40 -
Methicillin-resistant Staphylococcus

Aureus

80,461 11,285 -

Drug-resistant Streptococcus Pneu-

moniae

1,200,000 7,000 96,000,000

Drug-resistant Tuberculosis 1,042 - -

Threat level of Concerning

Vancomycin-resistant Staphylococ-

cus Aureus

- - -

Erythromycin-resistant group A
Streptococcus

1,300 160 -

Clindamycin-resistant group B
Streptococcus

7,600 440 -

aNumber of infections with resistant strains. bNumber of Deaths. cAssociated medical costs ($U.S.
dollars). df.e.i.=For each infection.

Table 1.2: Proportions of resistance for bacteria of international concerna

Bacteria AFRb AMRc EMRd EURe SEARf WPRg

Escherichia colih 2 - 70 0 - 48 22 - 63 3 - 82 16 - 68 0 - 77
Escherichia colii 14 - 71 8 - 58 21 - 62 8 - 48 32 - 64 3 - 96
Klebsiella pneumoniaej 8 - 77 4 - 71 22 - 50 2 - 82 34 - 81 1 - 72

Klebsiella pneumoniaek 0 - 4 0 - 11 0 - 54 0 - 68 0 - 8 0 - 8

MR Staphylococcus aureusl 12 - 80 21 - 90 10 - 53 0.3 - 60 10 - 26 4 - 84
Nontyphoidal Salmonellam 0 - 35 0 - 96 2 - 49 2 - 3 0.2 - 4 0 - 14
Shigella speciesn 0 - 3 0 - 8 3 - 10 0 - 47 0 - 82 3 - 28
Neisseria gonorrhoeae 0 - 12 0 - 31 0 - 12 0 - 36 0 - 5 0 - 31

aData from national sources. bAfrican Region. cRegion of the Americas. dEastern Mediterranean Re-
gion. eEuropean Region. fSouth-East Asia Region. gWestern Pacific Region. hEscherichia coli resis-
tance to third-generation cephalosporins. iEscherichia coli resistance to fluoroquinolones. jKlebsiella
pneumoniae resistance to third-generation cephalosporins. kKlebsiella pneumoniae resistance to car-
bapenems. lmethicillin-resistant Staphylococcus aureus. mNontyphoidal Salmonella resistance to
fluoroquinolones. nShigella species resistance to fluoroquinolones. oNeisseria gonorrhoeae decreased
susceptibility to third-generation cephalosporins.
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According with Brown and Wright [14] the post-antibiotic age has arrived. Pathogenic bac-
teria that are resistant to multiple or all available antibiotics are isolated frequently. Hence,
new antibiotics are urgently needed, and despite multiple efforts, only two new antibiotics (tela-
vancin and ceftaroline) have been approved since 2009 [15]. In this sense, most of the available
antibiotics were discovered in the golden era: sulfonamides (sulfanilamide), β-Lactams (peni-
cillins, cephalosporins, carbapenems), aminoglycosides (spectinomycin, kanamycin, neomycin),
tetracyclines (tetracycline, doxycycline), chloramphenicols (chloramphenicol), macrolides (ery-
thromycin, clarithromycin), glycopeptides (vancomycin, teicoplanin), oxazolidinones (linezolid),
ansamycins (rifamycin), quinolones (ciprofloxacin), streptogramins (pristinamycin). Years later,
the medicinal chemistry era started, and the development of new antibiotics was focused on the
creation of synthetic versions of the natural antibiotics. Therefore, most of the existing anti-
biotics tend to target the bacterial cell wall, DNA or ribosomes, and are derived from natural
sources. Later, by the 1990s the resistance era began and the emphasis was on target-based
drug discovery to find broad-spectrum agents. Unfortunately, this model has failed to provide
new antibiotics, and it is important to understand the failures of target-based approaches in
order to obtain better results and new potential antibiotics [14].

The message is clear, new strategies to stimulate the research and development of new
antibacterials are required. Therefore, multiple organizations, including IDSA (Infectious Dis-
eases Society of America), have proposed The 10 x ’20 Initiative with the aim of developing
10 new antibiotics by the year 2020. These organizations are encouraging the pharmaceutical
companies, scientists, politicians and the whole humanity in the search of new solutions for the
antimicrobial resistance issue, especially for the multidrug-resistant bacteria since they repre-
sent a great risk for humankind [2]. Moreover, there are other initiatives that are also playing
an important role in the fight against antibacterial resistance. Among them are: the Joint
Programming Initiative on Antimicrobial Resistance supported by Canada and 18 European
countries, World Alliance Against Antibiotic Resistance (WAAAR, France), Antibiotic Union
(UK), ReAct(Sweden), and the Antibiotic Resistance Initiative (ISGlobal, Spain) [9].

In the fight against super bacteria, antimicrobial peptides (AMPs) have appeared as a
promising solution to this important public health problem. In the last years, the scientific
community has been using computational tools to design new AMPs [16]. The main objective
of these in silico 1 models is to search for peptides that are likely to present antimicrobial
activity, thus reducing the cost and the time spent in the synthesis of peptides without any
biological activity or with high toxicity for human beings.

Therefore, the main goal of this thesis was to propose a methodology to design new potential
non-toxic antibacterial peptides, based on the Hypothesis that

It is possible to use genetic algorithms, classification methods, string kernel methods, and
peptide descriptors to design effective non-toxic antibacterial peptides.

One of the important aspects to consider in the design of new antibacterial peptides was to
reduce the number of false positives, with the aim to avoid the synthesis of peptides that would
not possess antibacterial activity or peptides that would be toxic.

1in silico means performed on computer
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Two strategies were proposed. Both of them involve the creation of a genetic algorithm that
allows the design of peptides, that hold with established ranges for physicochemical properties
such as charge, isoelectric point, hydrophobicity and instability index. These ranges are esta-
blished by the user, and both genetic algorithms generate the number of candidate peptides
that the user desires. Although the genetic algorithms are similar in their design, there is an
important difference between them. The optimization function of the genetic algorithm in the
second strategy includes an estimation of the probability that a peptide will possess antibacte-
rial activity, and an estimation of the probability of being a toxic peptide. These estimations of
the probabilities are given by classifiers created using logistic classifier and a larger dataset that
the one that was used in the first strategy. In contrast, the genetic algorithm of the first strategy
does not consider neither the antibacterial activity nor the toxicity of the peptides during the
design process of the peptides using the genetic algorithm. Therefore, the first strategy requires
additional steps after the design of the peptides with the genetic algorithm, i.e., the designed
peptides should be classified as antimicrobial and as antibacterial peptides before the analysis
of their secondary structure. In this sense, we believe that the design of new non-toxic antibac-
terial peptides is more efficient using the strategy 2. A graphical summary of the strategies
designed in this thesis is shown in Figure 1.1.

The obtained results are highly satisfactory. More than 18 peptides designed in this the-
sis have been tested experimentally and they have been active against Staphylococcus Aureus,
Pseudomona aeruginosa, and Scherichia coli O157:H7 strains. Additionally, toxicity tests were
performed for the most active peptides, and they are non-toxic neither on lamb erythrocytes
nor on lung tissue cell line A549 1. Two of these peptides (GIBIM-P6 and GIBIM-P5F8W),
and the proposed strategies are in the process of being patented.

Finally, parts of this thesis have been published in [17, 18] and are going to be published
in [19].

1The experimental tests of the peptides have been performed by undergrad, master and PhD students of
chemistry at the GIBIM Lab - Universidad Industrial de Santander
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Strategy 2

Peptides designed with the algorithm

Peptides with alpha-helix structure

Genetic algorithm to design

antimicrobial peptides

Select the peptides to synthesize

Strategy 1

Classifiers of

antimicrobial peptides

Peptides that are predicted as

antimicrobial peptides

Classifiers of

antibacterial peptides

Peptides that are predicted as

antibacterial peptides

Check secondary structure 

with PEP-FOLD 2.0 tool1

1 http://mobyle.rpbs.univ-paris-diderot.fr/

cgi-bin/portal.py#forms::PEP-FOLD

Genetic algorithm to design

non-toxic antibacterial peptides

Peptides designed with the algorithm

Peptides with alpha-helix structure

Select the peptides to synthetize

Check secondary structure 

with PEP-FOLD 2.0 tool1

Optimization function uses:

* Classifier of antibacterial 

peptides

* Classifier of toxic peptides

* Optional constraints

Figure 1.1: Graphical summary of the strategies designed in this thesis.
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Chapter 2

Rational design of antimicrobial and

antibacterial peptides

2.1 Antimicrobial peptides

The antimicrobial peptides (AMPs) are small host defense proteins that are part of the immune
system of multicellular organisms such as plants and animals. In general, they possess a positive
net charge and hydrophobic percentages greater than 30% [20,21]. The typical length of these
peptides is not well established and there are different opinions in this regard. Some authors
state that their length is less than 50 amino acids [21–23], while others claim that their length
is less than 100 [24–26].

Additionally, these peptides are active against multiple microorganisms such as virus, bac-
teria, parasites, among others [21,25,27]. Due to their several advantages over small molecules,
such as high specificity, high penetration, ease of manufacturing, the antimicrobial peptides
have emerged as a promising solution for the threat of antibacterial resistance [28]. Moreover,
these peptides are able to destroy the bacterial membrane or essential component inside the
cell. Therefore, it is less likely that bacteria develop AMP resistance, since they would require
the complete alteration of the membrane and/or bypassing of several biochemical pathways [29].

However, AMPs generally have low stability in vivo and are degraded by both endogenous
human proteases and proteases secreted by invading microbes [29]. Additionally, problems such
as toxicity and high cost of production are important drawbacks for therapeutic applications
of these peptides [29]. Therefore, the main goal is to obtain new peptides that possess high
antibacterial activity, low toxicity and low propensity to proteolytic degradation.

On the other hand, it is important to mention that the function of a peptide depends on its
primary structure, i.e., its amino acid sequence. Theory suggests that the amino acid sequence
of a peptide plays an important role in determining its three-dimensional structure, and thereby
its function. If two proteins have a different function, then these two proteins have different
amino acid sequences. Moreover, multiple genetic diseases are related to the production of
defective proteins. These proteins are defective because their primary structures have been
changed by only one single amino acid alteration, and this alteration may lead to a change in
the function of the protein. Moreover, proteins that display similar functions in different species
often have similar amino acid regions that are essential to their function, and therefore, these
regions are conserved [30]. In the same way, it is likely that peptides that display antibacterial
activity also display conserved regions, in their amino acid sequences, that are responsible for
the antibacterial activity.
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2.1.1 Mechanisms of action of antimicrobial peptides in bacteria

Antibacterial peptides possess interesting advantages in comparison with conventional antibio-
tics, such as the speed in killing bacteria and the fact that they are not hindered by the resistance
mechanisms developed by bacteria [31].

Studies have shown that all peptides interact with membranes and two different mechanisms
have been identified: membrane-disruptive (barrel stave, toroidal, carpet and micellar aggregate
models) and non-membrane disruptive (intracellular targets) [16].

Bacterial cell membranes contain high proportion of negatively charged phospholipid head-
groups such as phosphatidylglycerol (PG), cardiolipin (CL), or phosphatidylserine (PS). Hence,
the initial contact between bacterial membranes and cationic peptides occurs through electro-
static interactions [27].

In the barrel stave model, a relatively small number of individual peptides are perpendicu-
larly inserted and aggregated in a barrel-like ring inside the membrane, leading to a transmem-
brane pore or channel with a cylindrical structure. This type of interaction is typical for small
number of peptides. In the toroidal pore model, peptides are inserted from the membrane
surface into the hydrophobic part of the lipid bilayer and the pore wall is formed by both,
hydrophilic regions of peptide molecules and lipid head groups. The carpet mechanism occurs
when there are strong electrostatic interactions between peptides and negatively charged phos-
pholipid polar head groups. The peptides bind to the membrane carpeting the phospholipid
bilayer. When some critical threshold concentration of peptide is reached, the rupture of the
membrane takes place followed by micelle formation. In the aggregate model the peptides
are clustered, after binding to the phospholipid head groups, into unstructured aggregates that
allow the pore formation that span the membrane for short periods. This mechanism allows
antimicrobial peptides to enter the intracellular space to perform their killing activities. Finally,
there is an increasing evidence that the formation of ion channels, transmembrane pores and
membrane rupture are not the only mechanisms of microbial killing, indicating that antimicro-
bial peptides have other intracellular targets [16, 27].

2.2 Rational design of antimicrobial peptides

In the rational design of antimicrobial peptides, in silico models are used or created in order
to identify peptides that could become new antimicrobial medicines. In this sense, multiple
strategies have been used in the design of antimicrobial peptides. Among them, it is possible to
find three major approaches: improvement of the existing peptides, regression and classification.

The information to create these in silico models is available in multiple databases of antimi-
crobial peptides. Table 2.1 shows a summary of these databases.
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Table 2.1: Databases for antimicrobial peptides∗.
Database Peptides Availability

AMSDb [32] Plant/Animal AMPs Inactive

SAPD [33] Synthetic antibiotic peptides Inactive

Peptaibol [34] Peptaibols http://www.cryst.bbk.ac.uk/peptaibol

APD [35,36] AMPs http://aps.unmc.edu/AP/main.php

DAMPD (up-
dated version
of ANTIMIC)
[37]

AMPs http://apps.sanbi.ac.za/dampd/index.php

PenBase [38] Penaeidins http://penbase.immunaqua.com

CyBase [39] Cyclic proteins http://www.cybase.org.au/index.php?page=welcome

BAGEL2 [40] Bacteriocins http://bagel2.molgenrug.nl/

AMPer [41] Gene-coded AMPs http://marray.cmdr.ubc.ca/cgi-bin/amp.pl.

BACTIBASE
[42,43]

Bacteriocins http://bactibase.pfba-lab-tun.org/main.php

Defensins [44] Defensins http://defensins.bii.a-star.edu.sg/

RAPD [45] Recombinant AMPs http://faculty.ist.unomaha.edu/chen/rapd/index.php

phytAMP [46] Plant AMPs http://phytamp.pfba-lab-tun.org/about.php

CAMP [47] AMPs http://www.bicnirrh.res.in/antimicrobial/index.php

YADAMP
[48]

AMPs http://yadamp.unisa.it/default.aspx

DADP [49] Anuran defense peptides http://split4.pmfst.hr/dadp/?

THIOBASE
[50]

Thiopeptides http://db-mml.sjtu.edu.cn/THIOBASE/

EnzyBase [51] Cleaving enzymes http://biotechlab.fudan.edu.cn/database/EnzyBase/home.php

LAMP [52] AMPs http://biotechlab.fudan.edu.cn/database/lamp/

MilkAMP [32] Milk AMPs http://milkampdb.org/home.php

DBAASP [53] AMPs http://dbaasp.org/home.xhtml

BaAMPs [54] Biofilm-active AMPs http://www.baamps.it/

* Adapted from [55]

2.2.1 Peptide descriptors

Generally speaking, peptide descriptors can be viewed as numerical values that give informa-
tion about the structure, the composition, the topology and the chemical features of a peptide.
These descriptors are widely used in the rational design of antimicrobial peptides and they
can be organized in four categories: 2D Quantitative Structure-Activity Relationship (QSAR)
descriptors, 3D QSAR descriptors, inductive descriptors and other descriptors.

The descriptors of the first category do not need information about the three dimensional
orientation of the compound, because they measure the topological and geometrical properties
of the molecule. In this category the descriptors can be grouped in constitutional descriptors,
electrostatic and Quantum-chemical descriptors, topological descriptors, geometrical descrip-
tors, fragment-based descriptors and molecular fingerprints [56]. In contrast, the 3D QSAR
descriptors require the conformation of the compound experimentally or by molecular mecha-
nics. They give numerical information about the compound structure and can be organized in
the following groups of descriptors: comparative molecular field analysis, comparative molecular
similarity indices analysis, comparative molecular moment analysis, weighted holistic invariant
molecular descriptors and grid-independent descriptors [56].

The third category is comprised of those descriptors that allow the quantification of in-
ductive and steric interactions between any substituent and reaction centre, the partial atomic
charges, analogues of chemical hardness-softness and electronegativity. They are expressed in
terms of the parameters of bound atoms such as their electronegativities, the covalent radii and
the intramolecular distances [57].
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The last category is created by those descriptors that are not so common in the rational
design of antimicrobial peptides. Some examples of these descriptors are: distance between the
first and second arginines [58], contact energy between neighboring amino acids [59, 60], and
internal dipole moment [61], among others.

2.2.2 Improvement of the existing peptides

This approach consists in the modification of the existing peptides in order to obtain better
versions of them. The existing peptides are considered as a template that will be changed in
a small proportion in order to look for a significant improvement of the antimicrobial activity
or a significant reduction of the toxicity. These type of studies have allowed the identification
of specific properties of AMPs that could affect the antimicrobial activity, the stability and the
toxicity of the peptide. Section 2.2.5 shows a summary of the main properties that have been
addressed in these studies. For example, in the study of Kim et. al [29], two peptides were
designed with enhanced stability and cell specificity by systematic amino acid arrangement.
This study used as design criteria the amphipathicity of the peptides when folded into α-helical
structures, the structural features that are important for effective antimicrobial activity and
selectivity, and the reduction of protease-scissile sites as much as possible.

Multiple studies have shown that a single amino acid substitution might enhance antimicro-
bial activity, reduce the toxicity or both [24,62,63]. In this sense, in the study of Tan et. al [24]
six amino acids (K, E, G, S, A, and L) were individually used to replace the valine (V) at the
sixteenth location of the non-polar face of V13K. The designed peptides showed great antimi-
crobial activity against Gram-negative bacteria and weak hemolytic activity against human red
blood cells. Zhu et. al. [62] show that tryptophan at the hydrophobic face has a significant
role in transforming an amphipathic peptide into a P. aeruginosa-targeted AMP. Similarly, the
study of Wu et. al [63] proposes an amino acid-based prediction method to improve the activity
of antimicrobial peptides by the substitution of one or two amino acids. These substitutions
were performed considering the information of the amino acid activity contribution matrix that
they developed. This matrix has an activity contribution value for each amino acid in each
position of the model peptide. Their designed peptides possessed higher antimicrobial activities
than the model peptide.

Additionally, this approach also includes those studies that have used optimization algo-
rithms in order to improve some properties of antimicrobial peptides. For example, Maccari
et. al. [64] introduced a method for virtual screening of antimicrobial peptides with natural
and non-natural amino acids. They used Quantitative structure-activity relationship (QSAR)
descriptors to code the peptides and trained two statistical models. The first model represents
antimicrobial physicochemical properties, while the second model accounts for the all-helix con-
formation of the peptide. These models were used as fitness functions for a multi-objective
evolutional algorithm. The results were satisfactory, they designed two ab-initio natural pep-
tides and optimized the well-known Cecropin-Mellitin alpha helical antimicrobial peptide, by
the reduction of its size while preserving its activity. In the study of Fjell et. al [65], a genetic
algorithm was designed to generate candidate antibacterial peptide sequences. They found that
this approach dramatically lowers the number of peptides that must be evaluated experimen-
tally by the identification of those peptides with high potency. Additionally, they found that
the results are dependent on the starting population and that the most reliable predictions will
be obtained for peptides that are similar to those ones that were used to build the model. De-
spite these limitations, they reported several novel peptides that were active against important
pathogens. The algorithm created by Juretić et. al. [66] allows the design of antimicrobial

24



peptides with a high therapeutic index. They used as reference the gram-negative bacteria
Escherichia coli, and a total of 73 frog-derived AMPs were collected with their corresponding
MIC (Minimal Inhibitory Concentration) values. Their results were satisfactory, one peptide
was designed and tested experimentally, and its therapeutic index was higher than the best
AMP present in their dataset. However, this study is limited to frog-derived AMPs that are
active against E. coli.

Finally, due to the huge number of possible amino acids combinations, stochastic opti-
mization methods become a useful tool to perform directed random searches in large problem
spaces [64], such as the rational design of antimicrobial peptides.

2.2.3 Regression models

The second approach uses regression models in order to create predictors of important char-
acteristics of peptides such as the Minimal Inhibitory Concentration [61,67], antimicrobial po-
tency [68,69], and antibacterial activity [22,70], among others. A summary of these regression
applications is shown in Table 2.2.

Table 2.2: Studies of regression in the rational design of Antimicrobial Peptides
Tech.a Size input

dataset
Pred. feat.
b

Val. Tech. c r2 d Other e

ANN - [70] 933(A),
500(B),
1,433(A+B)

3 3 - 0.87±0.10,
0.83±0.12,
0.80±0.09
(AROC)

ANN - [68] 189 4 4 0.85 0.72 q2

MLRA - [61] 37 1 1 0.68 - 0.72 0.199 - 0.2230
(SEE)

PLS - [67] 33 1 1 0.975, 0.972 0.742, 0.737
(q2)

PLS - [69] 58 2 2 0.73 0.61 (q2)
a Technique: ANN= Artificial neural networks, MLRA=Multiple linear regression analysis,
PLS=Partial least squares. b Predicted feature: 1=Minimal inhibitory concentration, 2=antimicrobial
potency in suicide expression system, 3=antibacterial activity, 4=antimicrobial potency. c Validation
technique: 1=Independent test set, 2=Leave-one-out cross-validation, 3= 10-fold cross-validation,
4= leave-20%-out cross-validation. d r2=coefficient of determination. e SEE= Standard error of
estimation, q2= cross-validated correlation, AROC= Area under the ROC curves (mean±standard
deviation).

2.2.4 Classification models

The third approach deals with the recognition of patterns inside the reported antimicrobial
peptides in order to differentiate them from those that do not present any biological activity, or
to discriminate peptides that possess activity against different microorganisms. In general, the
classification of antimicrobial or antibacterial peptides is a binary process with an imbalanced
initial dataset. However, there are studies dealing with multi class classification [71]. Table 2.3
presents a summary of classification studies.

On the other hand, there are also studies that deal with the classification of toxic peptides.
For example, the study of Gupta et. al. [28] proposes a hybrid method for the prediction of
toxic peptides. The peptides are represented by motifs and their dipeptide composition. In the
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Table 2.3: Studies of classification in the rational design of Antimicrobial Peptides
Tech. a Input dataset

b

Val.
Tech. c

Sn % d Sp % e Acc % f Mcc g

ANN [68] 1,157/991 2 - - 90 -

ANN [72] 436/436 1 88.17 88.17 88.17 -

DA [47] 2,578/4,011 4 - - 87.5 0.74

NNA [73] 2,752/10,014 3 80.23 94.59 93.31 0.7312

QM [72] 436/436 1 90.02 90.72 90.37 -

RF [47] 2,578/4,011 4 - - 93.2 0.86

SVM [74] 146/146 4 75.36 97.3 83.02 -

SVM [47] 2,578/4,011 4 - - 93.2 0.86

SVM [72] 436/436 1 92.11 92.11 92.11 -

SVM [75] 861/861 1 90.59 93.69 92.14 0.843
a Technique: ANN=Artificial neural networks, DA=Discriminant Analysis, NNA=Nearest neighbor
algorithm, QM= Quantitative matrices, RF=Random Forests, SVM=Support vector machines. b

Input dataset: Number of positive samples/Number of negative samples. c Validation Technique:
1= 5-fold cross-validation, 2= Independent test set, 3=Jackknife test, 4= 10-fold cross-validation d

Sn=sensitivity. e Sp=specificity. f Acc=accuracy. g Mcc=Matthew’s correlation coefficient.

first step various motifs are searched in the query peptides, and if any of the motifs of toxic
peptide is present, then its SVM score is increased by the value of 5. The final score is used for
the prediction. This model achieved an accuracy around 98%.

2.2.5 Properties that might affect the antimicrobial activity and the toxicity

of the peptides

In the rational design of antimicrobial and antibacterial peptides it is important to consider the
theoretical aspects that have been published based on the experimental results. In this sense,
there are multiple physicochemical properties, that can be tuned up by modifications in the
amino acid content, that play a crucial role in the activity and toxicity of peptides. Among
them, the most well known are size, charge, and hydrophobicity [29,76].

The length of a peptide can affect both, the antibacterial activity and the toxicity. The
length of α-helical peptides should be at least 22 amino acids in order to transverse the lipid
bilayer of bacteria in the barrel-stave model, while for β-sheet peptides the length should be at
least 8 amino acids. However, long peptides could be more toxic than short peptides, like for
example a shortened melittin peptide exhibited at least 300 times less toxicity to rat erythro-
cytes, compared with the original form [76].

It is well known, that a positive net charge is essential for the initial interaction with ne-
gatively charged cell membranes [76]. The charge value of the known antimicrobial peptides
varies between -12 and +30. Considering that the majority of them (97.4%) have a net charge
between -5 and +10, this might be an useful range, for this physicochemical property, in the
rational design of antimicrobial peptides [55]. However, high values of positive charge might be
related with an increment in the toxicity of the peptides.

The hydrophobicity also affects the antimicrobial activity of a peptide. In most cases,
an increase in the hydrophobicity on the positively charged side can increase its antimicrobial
activity. However, it seems that there is an optimal value of hydrophobicity for each peptide,
beyond which its activity decreases rapidly [76]. Moreover, an increase in the levels of hydropho-
bicity might be strongly correlated with mammalian cell toxicity [29]. Therefore, in the rational
design of antimicrobial peptides, the hydrophobicity should be selected considering an optimal
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window [76].

Moreover, the amino acid composition of the AMPs is an important feature to consider
in the design of effective and non-toxic peptides. The following list shows interesting facts that
have been addressed in multiple studies in this regard.

• Leucines (L), glycines (G) and lysines (K) are the most frequent amino acids in all the
2,329 peptides in the APD database, according with Wang [55].

• Proline (P) and glycine (G) are not preferred in the design of α-helical peptides, since
they have lower helix-forming propensities compared to other amino acids. In fact, it was
found that a higher proline content reduced the capability of a peptide to permeabilize E.
coli cell membrane [76].

• Amino acids with long alipathic side chains (such as valine (V), leucine (L), isoleucine (I)
and glutamine (Q)) should be used to increase both the hydrophobic and polar face depths,
which are important in modulating membrane interaction and antimicrobial activity [29].

• A reduction of the cytotoxicity (of a human AMP) was achieved by removing asparagine
(N) and glutamine (Q) residues and adding two units of arginine (R) (a more positively
charged residue) [76].

• To reduce potential cross linking or oxidation, Giuseppe et. al [77] excluded cysteine (C)
and methionine residues in the synthesis phase.

• The use of lysine (K) instead of arginine (R) at the scissile site might impede tryptic
digestion, because trypsin has up to 10-fold greater affinity for arginine than for lysine [29].

• The hydrophobicity of peptides can be increased by replacing all the valine (V) residues
with isoleucine (I) or leucine (L) residues [29].

• Peptides that do not contain either non-natural or chemically modified amino acids, can
be produced in a cost-effective manner in biological expression systems [29].

• It has been reported that replacing tryptophan (W) and phenylalanine (F) residues with
less hydrophobic amino acids or interrupting the hydrophobic patches with basic amino
acids decreases the toxicity of AMPs [29].

• The substitution of a threonine (T) residue on the middle position of the hydrophobic face
with a tryptophan (W) residue, transforms an amphipathic peptide into a P. aeruginosa-
targeted antimicrobial peptide [62].

• In the study of Gupta et. al it was observed that cysteine (C), histidine (H), asparagine
(N) and proline (P) residues are abundant as well as preferred at various positions in toxic
peptides [28].

• Cysteine (C) was preferred at almost all positions in toxic peptides according with the
study of Gupta et. al [28]

• Proline (P), glycine (G), arginine (R) and serine (S) were found to be preferred at few
positions at N-terminus, while valine (V), asparagine (N) and histidine (H) were preferred
at few positions at C-terminus of non-toxic peptides [28].

• Methionine (M), leucine (L), phenylalanine (F) and isoleucine (I) were preferred at various
positions at N-terminus, while leucine (L), glycine (G) and lysine (K) were preferred at
various positions at C-terminus of non-toxic peptides [28].
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• Composition of proline (P), asparagine (N) and histidine (H) was found to be higher in
toxic peptides in comparison to non-toxic peptides [28].

• Resistance to proteolytic enzymes could be overcome by making peptides with only D-
amino acids [78].

• Albada et. al have shown that systemic l-to-d exchange of amino acid could decrease the
hemolytic potency of peptides without compromising their therapeutic activity [79].

Finally, it is important to mention that all the properties that are correlated with the an-
timicrobial activity, the toxicity and stability, should be considered together since the change
in one of them, might alter other properties [76].

2.3 Current limitations in the rational design of antimicrobial

peptides

In the rational design of antimicrobial peptides there are multiple limitations to deal with.
Among them, the most important are:

• Lack of benchmark datasets: Due to the existence of multiple peptide databases that are
growing day by day, there is not a benchmark dataset to work with. In the literature,
most of the studies create their own dataset. Therefore, fair comparisons between different
methods are difficult.

• Lack of a negative dataset: In most of the studies the negative datasets are build with
random sequences from UniProt [80] that are label as non-AMP, non-membrane and non-
secretory proteins. Although it is expected that these random sequences do not possess
antimicrobial activity, experimental results are not available to probe this hypothesis.

• Few experimental structure data available: The 3-Dimensional structure has been ob-
tained experimentally for only a few number of antimicrobial peptides. Therefore, it is
difficult to obtain relationships between the structure and the antimicrobial activity of
the peptides.

• Unanswered questions about AMPs: One of the major limitations in the rational design
of antimicrobial peptides is the inability to describe their mechanism of action in physical-
chemical terms and the lack of explicit, molecular, structure-function relationships [81].

• Models considering just one aspect: Most of the available models consider either the
antimicrobial activity or the toxicity but not both. However, potential peptides should
be very active with a low toxicity value, and the models should consider both aspects
at the same time, as the improvement of the antimicrobial activity might lead to an
increment of the toxicity or viceversa. Therefore, in this thesis we propose a strategy to
generate potential antibacterial peptides with a low toxicity probability. Our models use
peptide descriptors related with the primary structure of the peptides, considering the
importance of the amino acid sequence in the final function of the peptide. Moreover, the
models are based on classification performances and restrictions of the most important
physicochemical properties according with the literature.
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2.4 Overcoming one limitation

In this thesis, two strategies to design antibacterial peptides are proposed. The second strategy
deals with the design of non-toxic antibacterial peptides. Therefore, this thesis helps to over-
come one of the limitations in the rational design of antibacterial peptides.

The design of the proposed strategies involved different stages, as shown in Figure 2.1. The
following chapters contain the details of these stages.

Future works

Design of new peptides

Creation of the first genetic
algorithm

Creation of antibacterial
and antimicrobial peptides

classifiers

Creation of the initial 
dataset

Analysis of the designed
peptides, feedback, and

new approaches

Design of new peptides,
analysis, and feedback

Creation of antibacterial 
peptides classifiers with a 

low false positive rate

Creation of a more complete 
dataset for antibacterial 

peptides classifier

Creation of toxic 
peptides classifiers with a 

low false positive rate

Creation of the dataset 
for the toxic peptides 

classifier

Creation of the second 
genetic algorithm

Figure 2.1: Stages performed in the design of the proposed strategies.
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Chapter 3

Strategy 1 to design potential

antibacterial peptides

The proposed strategy to design new antibacterial peptides by using genetic algorithms and
classification methods is shown in Figure 3.1. The first step is to use the genetic algorithm
to design a number n of peptides using as input the sequences of the antibacterial peptides
reported in the APD and CAMP databases. Later, the n peptides should be tested in the
antimicrobial peptides classifier and the peptides that are classified as antimicrobial peptides
should be saved. Then, these peptides should be tested in the antibacterial peptides classifier
and those that are classified as antibacterial peptides should be analyzed in the PEP-FOLD
2.0 tool [82], in order to select those peptides that possess a predicted alpha-helix structure.
Finally, those peptides are candidate peptides to be synthesized.
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with PEP-FOLD 2.0 tool1

Figure 3.1: Workflow of the proposed strategy 1.
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3.1 Genetic algorithm DEPRAMPs 1.0

New antibacterial peptides could lead to the discovery of new antibiotics that have activity
against multidrug-resistant bacteria. Therefore, strategies that allow the design of new po-
tential antibacterial peptides should be created. In this strategy, we designed and developed a
genetic algorithm (DEPRAMPs 1.0) that allows the generation of a desired number of peptides,
of a given length, that satisfy the established ranges for each one of the physicochemical descrip-
tors selected in this thesis: charge, hydrophobicity, isoelectric point, and instability index (See
Table 3.1). These descriptors were selected considering their crucial role in the antibacterial
activity, toxicity and stability of the peptides. The user can modify the default ranges. How-
ever, we recommend to use these ranges due to they were established considering the literature
review, and they have given good results in the experimental tests performed at the GIBIM Lab.

Table 3.1: Suggested ranges for the physicochemical properties

Property Default range

Charge [2, 8]
Hydrophobicity [−1.5, 1.5]
Isoelectric point [7, 12]
Instability index < 40

3.2 Overview of DEPRAMPs 1.0 algorithm

The optimization problem to solve is given by the Equation 3.1,

Maximize fitness(p)
subject to :
h1(p) : x1min

< x1(p) < x1max

h2(p) : x2min
< x2(p) < x2max

h3(p) : x3min
< x3(p) < x3max

h4(p) : x4(p) < x4max

(3.1)

where, p is the amino acid sequence of a peptide, fitness(p) is the fitness of the peptide p

and is given by the Equation 3.2, x1(p), x2(p), x3(p), and x4(p) are the charge, isoelectric point,
hydrophobicity and instability index of the peptide p, respectively. The range of possible values
for each of these physicochemical properties is given by the user, the minimum allowed value is
ximin

and the maximum is ximax where the value of i = {1, 2, 3, 4} indicates the desired property.

fitness(p) = (
∑i=3

i=1

(

pilow(p)
2 + piup

(p)2
)

+ p4(p)
2) ∗ −1

pilow(p) =

{

0 if (ximin
− xi(p)) < 0

ximin−xi(p)

ximin

otherwise

piup
(p) =

{

0 if (xi(p)− ximax
) < 0

xi(p)−ximax

ximax
otherwise

p4(p) =

{

0 if (x4(p)− x4max
) < 0

x4(p)−x4max

x4max
otherwise

(3.2)

Figure 3.2 shows a graphical representation of the fitness function. The design of this
function was based in the penalty methods that allow to transform a constrained optimization
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problem into an unconstrained optimization problem. Moreover, since the main objective is
to design peptides that posses their physicochemical properties values inside a desired range
of values, the designed function takes into account the distance that exists between the closest
limit of the desired interval and the current property value, and assigns a proportional value
to this distance. If the current value belongs to the desired interval, then a value of zero is
assigned. Finally, the sum of the squared values obtained for each constraint is multiplied by
-1 to allow the use of this function as the fitness value of the genetic algorithm. In this type
of algorithms, the individuals that posses the higher fitness values are the ones that are going
to survive in each generation. In this sense, the best fitness value for the designed function is
equal to zero, i.e., the value for all the physicochemical properties complies with the desired
constraints.

-p4(p) = 0 -p4(p) > 0

0

x4max

ximin

0

ximax

-pilow
(p) = 0

-pilow(p) < 0

-pilow
(p) = 0

-piup
(p) = 0

-piup(p) = 0

-piup(p) < 0

Figure 3.2: Graphical representation of the fitness function used in the genetic algorithm. Blue
regions correspond to those values of xi that comply with the desired constraints. Therefore,
the best value for the fitness function is equal to zero.

The workflow of the designed genetic algorithm is shown in Figure 3.3. The algorithm starts
with the generation of the population, followed by the fitness evaluation for all the individuals.
Later, the offspring is generated and a percentage of the population is replaced with the new
individuals. The peptides with a low fitness value are the ones that are replaced by the offspring.
In each iteration, the diversity of the population is measured and if its value is lower than the
desired threshold, then a fixing strategy is used, and new individuals are created to replace the
worse individuals in the current population. The stopping criteria is given by the number of
generations or by the number of desired peptides. In each iteration, the peptides in the current
population are evaluated in order to determine the number of candidate peptides in the current
population. A candidate peptide is a peptide that complies with the constraints h1, h2, h3, and
h4. If the number of candidate peptides is equal or higher than the desired number of candidate
peptides (desNum), then the genetic algorithm stops and the candidate peptides are printed.

The parameters that should be set by the user are shown in Table 3.2 with their co-
rresponding default values. The user can modify them, although some suggestions should be
considered:

• The size of the peptide should be enough to guarantee antibacterial activity and stability
of the peptide. According with Bahar and Ren [76], the length of alpha-helical peptides
should be at least 22 amino acids in order to transverse the lipid bilayer of bacteria in the
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Replacement

Diversity <

div_threshold

NumCandPep
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Fix with new individuals
Yes

No

No

Printing of candidate peptides

numIterations

< numgen   

Yes

No

Yes

Figure 3.3: Workflow of the genetic algorithm DEPRAMPs 1.0.

barrel-stave model. However, the antimicrobial peptide Lactoferrampin is active against
multiple bacteria and its length is 17 amino acids. Since, the Lactoferrampin was the
first peptide synthesized at the GIBIM Lab, we decided to perform the first experimental
tests for peptides with 17 amino acids. Currently new experiments are being performed
for peptides with 15 amino acids.

• It is recommended that the size of the population would around four times the number of
candidate peptides in order to reduce the computational time of the simulation.

• The ranges of the physicochemical properties should not be changed if the user is new in
the rational design of antimicrobial and antibacterial peptides. In that case, the default
values are a good option.

3.2.1 Creation of the population

In this step, the genetic algorithm creates as many peptides, of the desired length, as indicated
by the user (desNum). The procedure to create these peptides is illustrated in figure 3.4. All
the antibacterial peptides reported in the APD and CAMP databases are joined in a unique se-
quence. Then, the genetic algorithm selects a random number between 1 and the desired length
of the peptide minus two, i.e. 1 <= r <= desLength − 1. With the value of r the creation of
the peptides starts. The first peptide will be created with the amino acids comprehend between
the position r + 1 and the position r + desLength, then the next peptide will be created with
the amino acids between the position r + desLength + 1 and the position r + 2 ∗ desLength,
and so on. If the end of the unique sequence is reached before the total number of peptides
have been created, then, the procedure starts again with a different value of r. This procedure
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Table 3.2: Parameters of the designed genetic algorithm

Parameter Default value

Size of the peptides (desLength) 17
Number of candidate peptides (desNum) 100
Size of the population (sizePop) 500
Number of generations (numgen) 1000
Percentage of crossover (percross) 0.8
Percentage of mutation (permut) 0.2
Percentage of replacement in each generation (perrep) 0.7
Percentage of replacement for diversity (perrepdiv) 0.5
Diversity threshold (divthreshold) 0.6
Desired antibacterial probability (desProbabp) 0.99
Desired toxicity probability (desProbtox) 0.01
Minimum value for charge (x1min

) 2
Maximum value for charge (x1max) 8
Minimum value for hydrophobicity (x2min

) -1.5
Maximum value for hydrophobicity (x2max) 1.5
Minimum value for isoelectric point (x3min

) 7
Maximum value for isoelectric point (x3max) 12
Maximum value for instability index (x4max) 40
Hard constraints (hardCons) No

is repeated until all the peptides have been created.

V QQ EE TT KK KAA AN NN LL LF F DD H

desLength=5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r=2 r+ desLength

individuals[1]= TQKAE

individuals[3]= DKFNL

individuals[2]= NLFTA

16 17 18 19 20 21 22 23

. . .

. . .

Figure 3.4: Creation of the initial population. In this figure the parameter desLength was set
to 5 just for graphical issues. The suggested value is 17 amino acids.

3.2.2 Creation of the offspring

In this step, the peptides that will replace the worse individuals in the population are created.
The number of replacements is given by the size of the population (sizePop) and the percentage
of replacement in each generation (perrep).

The creation of the offspring is illustrated in Figure 3.5. The first step is the selection of
the parents. Two parents are selected to create one child, hence, the number of selected parents
is twice the number of desired children. The parents are selected by roulette selection.
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Selection of the parents

Crossover

New Child

Mutation

Figure 3.5: Steps in the creation of the offspring.

Once all the parents have been selected, the children are created. The first child is created
with the first two parents, the second child with the following parents, and so on. For each child,
a random number between 0 and 1 is created and if the number is lower than the percentage
of crossover percross, then the crossover takes place. This procedure is shown in Figure 3.6. A
random number rc between 1 and desLength − 1 is created. This number indicates the part
that the child will get from each parent. The first part is from the first parent and the second
part from the second parent. If there is no crossover, then the child is a copy of the first parent.

rc=2

0 1 2 3 4

V QQ E T

0 1 2 3 4

V FQ D K

0 1 2 3 4

T KA FD

rc=2

Parent 1 Parent 2

New Child

Figure 3.6: Graphical illustration of the crossover of two parents to create one child.

Once the child has been created, the mutation might take place. A random number rm
between 0 and 1 is generated. If rm < permut then a random mutation of one amino acid is
performed. The position of the mutation and the new amino acid are chosen randomly, without
considering any physicochemical property.

3.2.3 Replacement

The designed genetic algorithm replaces a percentage of the population (perrep) in each gene-
ration. The individuals to replace are those that have the worse fitness values. The genetic
algorithm calculates the phenotypic diversity of the population in each new generation. This
measure is obtained by the Equation 3.3, where uniqueind is the number of unique peptides,
and totalind is the total number of peptides in the population. If the diversity value is lower than
the established threshold (divthreshold), then a correction action takes place, and new individuals
are created to replace a percentage (perrepdiv) of the current population. The individuals that
are replaced are those that have the lowest fitness values. The correction action is performed
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as many times as required until one of the two stop criterion is reached.

diversity =
uniqueind

totalind
(3.3)

3.2.4 Stop criteria

For the design of new antibacterial peptides a new stop criterion was designed. This criterion
comprehends the number of candidate peptides that exist in the current population. If the
number of unique candidate peptides is equal or higher than the number of desired peptides,
then the algorithm stops and the candidate peptides are printed. Additionally, the stop crite-
rion given by the number of generations was also implemented in this genetic algorithm.

3.2.5 Printing of candidate peptides

At the end of the simulation, the candidate peptides are printed in two files. The first one
corresponds to the fasta file of the sequences. The second file is .info and it contains the infor-
mation of the designed peptides such as peptide sequence, charge, hydrophobicity, isoelectric
point and instability index.

3.3 Simulations performed

In order to determine a suitable factor between number of candidate peptides and size of the
population, we performed simulations with the number of candidate peptides set to 25, and the
size of the population set to 1, 2, 3, 4, 6, and 8 times the number of candidate peptides. Five
simulations were performed for each value. For these simulations, the number of generations
was set to 2000.

Additionally, we performed multiple simulations of the genetic algorithm using different
values for the parameters: size of the peptides (desLength), number of candidate peptides
(desNum) and size of the population (sizePop). For this purpose, we used a Latin Square (see
Figure 3.7) with these parameters and 16 different simulations were designed. Each of the
simulations was run 3 times.
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Figure 3.7: Latin square of the performed simulations.
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3.3.1 The genetic algorithm is quite fast if the correct size of the population

is set

Table 3.3 shows the average time and number of generations that the genetic algorithm spent
in the design of 25 candidate peptides when the size of the population was set to different va-
lues. The simulations for a population of size 25, 50 and 75 peptides were not satisfactory. The
genetic algorithm was not able to design the desired amount of peptides and it stopped after
2000 generations.

Table 3.3: Average time and number of generations spent by the genetic algorithm when de-
signing 25 peptides. The standard deviation is shown in parenthesis. The simulations were
performed in a computer with 4 GB of RAM memory, and an IntelR© CoreTM i5-480M proce-
ssor with 2 cores and 2.67GHz of frequency.

Size population Time in seconds Number generations

100 562.287 (107.758) 102 (28)
150 14.761 (0.343) 1 (0)
200 17.388 (2.027) 1 (0)

It is interesting that if the correct size of the population is used, the genetic algorithm only
requires one generation to obtain the desired candidate peptides. Although the number of gene-
rations is the same in different runs, the computational time is different. This situation might
be caused by the random nature of the crossover and mutation processes when the offspring is
created.

3.3.2 The designed peptides comply with the established constraints

Figure 3.8 shows the boxplots of the charge, isoelectric point, hydrophobicity and instability
index for the peptides that were designed with the genetic algorithm. The established ranges
for these physicochemical properties were fulfilled for all the peptides. Hence, we can conclude
that the genetic algorithm works satisfactorily and that the number of generations does not
affect the obtained results, i.e., even with just one generation the genetic algorithm is able to
design the desired new candidate peptides.

3.4 Classification of antimicrobial and antibacterial peptides by

using kernel methods and peptide descriptors

The majority of studies related to the classification of antimicrobial and antibacterial peptides
have used QSAR and machine learning techniques [47,68]. In this section, we proposed to use
string kernel methods in conjunction with support vector machines to classify antimicrobial and
antibacterial peptides. We believed that the order of the amino acids in peptide sequences might
give enough information to classify them according to their biological activity. This assumption
is based on the studies of Wang et. al [73], Chen and Luo [83], and Lata et. al. [72] that have
obtained good results using the information of the amino acid composition, dipeptide composi-
tion and/or pseudo-amino acid composition. Therefore, the p-spectrum and mismatch kernels
were used to perform the classification processes. Additionally, we performed simulations using
local and global sequence alignment scores as kernel values. Finally, classifiers using peptide
descriptors were also created. The obtained results showed that the order of the amino acids in
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Figure 3.8: Boxplots of the physicochemical properties of the peptides design by the genetic
algorithm.

a peptide is an important feature to take into account in the classification processes of antimi-
crobial and antibacterial peptides.

3.4.1 Creation of the working dataset

In the context of classification processes of antimicrobial and antibacterial peptides, the se-
lection of the data can be done using datasets that appear in literature such as [67, 73, 84] or
creating a new dataset with the information given in the international databases of antimicrobial
peptides, as multiple studies have done [22,68,70,72,75,83,85]. The creation of the dataset of
non-antimicrobial peptides presents some difficulties due to the absence of a non-antimicrobial
peptides database. However, the most common strategy is to create this dataset with random
sequences from UniProt [80] that are label as non-AMP, non-membrane and non-secretory pro-
teins [73].

Building an antibacterial peptides classifier requires a training set of known antibacterial
peptides and non-antibacterial peptides. The set of non-antibacterial peptides, however, con-
sists of peptides that do not show activity against any microorganism and peptides that possess
activity against microorganisms but bacteria. Hence (from a pattern recognition point of view)
the negative class consists of two subtypes. Examples of classifiers that use the negative subtype
of active peptides can be found in [86, 87] while examples of classifiers that use the negative
subtype of non-active peptides are [72, 74, 75]. Due to the lack of a benchmark dataset for
the classification of antibacterial peptides, different strategies have been used to build training
sets. For this reason, a fair comparison between the antibacterial peptides classifiers found in the
literature is difficult. However, reported accuracies vary between 85% and 95% [35,72,74,75,86].

For this part of the thesis, the positive dataset (further denoted as Abps) includes those
peptides, from the APD database [36], that only reports activity against bacteria. The pep-
tides that were active against bacteria and other microorganisms were not used to create the
dataset. The total number of antibacterial peptides was 1,008. The negative dataset includes
192 peptides that do not report activity against bacteria (further denoted as non-Abps), and
10,014 peptides obtained by Wang et. al [73] from non-secretory proteins, and they are used as
non-antimicrobial peptides. Figure 3.9 shows a graphical representation of the working dataset.
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Figure 3.9: Graphical representation of the working dataset.

3.4.2 Common strategies to deal with the imbalanced problem

In the context of binary classification, the imbalanced problem appears in those applications
where the number of samples in one class is much higher than the number of samples of the
other class. In these situations, the classifiers will label the samples of the majority class with
high precision while the samples of the minority class will be classified wrongly [88,89].

In general, there are three approaches to deal with the imbalanced situation: internal, exter-
nal and cost-sensitive learning. The internal approach comprehends those methods that modify
the learning algorithm to consider the imbalanced problem, while the external refers to those
methods that resample the initial dataset in order to obtain a more balanced situation. The
cost-sensitive learning approach incorporates both internal and external level, i.e., resampling
of the dataset and modifications of the learning algorithm [90].

In the case of external approaches, two categories can be proposed. The first one studies the
best data to include them in the training set, and the second category concentrates in the study
of the best proportion of positive and negative examples to include in the training set [89]. Some
of the methods at the external level are random undersampling, random oversampling, synthetic
minority oversampling technique, selective preprocessing of imbalanced data, among others [90].

The internal approaches have the disadvantage of being algorithm specific. This is problem-
atic when it is desired to use a different algorithm considering that depending on the character-
istics of the samples, some algorithms achieve better results than others. On the other hand, the
main drawback of the cost-sensitive methods consists in the assignation of the misclassification
costs, which are usually unavailable [90].

Finally, there is a new category that comprehends ensemble-based methods to deal with
the imbalanced issue. These methods combine the ensemble learning techniques with one of
the above approaches, specifically, external and cost-sensitive learning. Among the ensemble
techniques that have been used to deal with the imbalanced problem are AdaCost, RareBoost,
AdaC1, AdaC2, AdaC3, SMOTEBoost, RUSBoost, DataBoost-IM, overbagging, and under-
bagging, among others. For more information of these methods please refer to [90].
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3.4.3 Kernel methods

In multiple situations, the classification problems present data that cannot be differentiated
with linear relations. In these cases, the usage of kernel methods allows to perform a linear
classification process by the mapping of the data into an N -dimensional space of order N bigger
than the order of the initial space. This can be done because the classes in this new space,
called feature space, are usually linearly separable [91].

In the kernel methods, there are two important elements: the kernel function and the kernel
matrix. The kernel function is defined by (3.4) [92]

k(x, z) = 〈φ (x) , φ (z)〉 . (3.4)

where x, z are elements of any set and their image φ(x) is a vector in RN . This kernel
function is used to obtain the kernel matrix, defined in (3.5), that contains the inner product
of all pairs of data points in the feature space [92].

Ki,j = 〈φ (xi) , φ (xj)〉 = k (xi,xj) . (3.5)

where xi, xj are elements of any set and their image φ(xi), is a vector in RN and Ki,j is
the element in the row i and column j of the kernel matrix. It is important to mention that the
kernel function calculates the inner product of the images of two elements in the feature space
without explicitly computing the mapping of these elements.

The selection of the kernel function should consider the type of the input data, and the
selection of the learning algorithm depends of the process that is required: classification, pre-
diction or clustering. One of the algorithms used in classification processes is support vector
machines [92], which was selected in this thesis as the learning algorithm used in the classifica-
tion of antimicrobial and antibacterial peptides.

A graphical representation of the creation of an antimicrobial or antibacterial peptides cla-
ssifier using kernel methods with support vector machines is shown in Figure 3.10. The first
step consists in the creation of the kernel matrix, followed by the calculation of the pattern
function through the application of the learning algorithm, which in this thesis is support vec-
tor machines.
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P-spectrum kernel

For a sequence S, its spectrum of order p corresponds to the histogram of all their contiguous
substrings of length p. The kernel based on this spectrum, allows the comparison between two
sequences, calculating the number of substrings of length p they have in common [92].

In this work the p-spectrum was calculated using an adaptation of the p-spectrum recursion
algorithm defined in [92]. The algorithm was modified with the function isEqual and in the
superior limit of the sum as shown in (3.6).

kp(s, t) =

|s|−p+1
∑

i=1

|t|−p+1
∑

j=1

isEqual(s(i : i+ p− 1), t(j : j + p− 1)) (3.6)

where kp(s, t) is the p-spectrum for sequences s and t, |s| is the length of the sequence s,
s(i : i + p − 1) is the subsequence of s that starts in position i and ends in position i + p − 1
and isEqual(a, b) is the function defined by (3.7)

isEqual(a, b) =

{

1 if a = b

0 otherwise
(3.7)

Mismatch kernel

The mismatch kernel is very useful in bioinformatics applications because it allows some de-
gree of mismatching between the subsequences that two sequences share. The mismatch kernel
K(k,m)(s, t) allows the comparison between sequences s and t, calculating the number of k-
length substrings, that strings s and t share, differing by at most m mismatches. The following
definitions are used in the formal definition of the mismatch kernel [93].

• k-mer: subsequences of length k.

• A: alphabet of the sequences of size |A| = l. In our case, the alphabet are the common
amino acids, therefore l = 20.

• (k,m)(α)− neighborhood: It is composed by the set of all k-length subsequences β from
A that differ from α by at most m mismatches. It is denoted as N(k,m)(α).

• Φ(k,m)(α)− Feature map given by the equation 3.8: if α is a k −mer,

Φ(k,m)(α) = (φβ(α))β ∈ Ak (3.8)

where φβ(α) = 1 if β belongs to N(k,m)(α), and φβ(α) = 0 otherwise.

• For a sequence s, the map comprehends the summation of the feature vectors for all the
k-mers in s:

Φ(k,m)(s) =
∑

k−mersαins

Φ(k,m)(α) (3.9)

Finally, the mismatch kernel K(k,m)(s, t) is the inner product in feature space of the feature
vectors of the sequences s and t, as given in the Equation 3.10

K(k,m)(s, t) = 〈Φ(k,m)(s),Φ(k,m)(t)〉 (3.10)
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Figure 3.11: Alignment and score of sequences s and t using the Needleman-Wunsch algorithm.
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Figure 3.12: Alignment and score of sequences s and t using the Smith-Waterman algorithm.

Needleman-Wunsch algorithm - Global alignment

The Needleman-Wunsch algorithm was developed to find similarities in the amino acid sequences
of two proteins. This algorithm finds the maximum match, which may represent the largest
number of amino acids of one protein that can be matched with the amino acids of another
protein, allowing all possible interruptions in either of the protein sequences, or it may be a
value that is a complex function of the relationship between the sequences [94].

The Matlab function nwalign [95] allows to perform a global alignment using the Needleman-
Wunsch algorithm. Among the outputs of this function are the score and the alignment. For
example, the score and alignment for the sequences s =KKLPMP and t =KAKAAP are shown
in Figure 3.11.

In this thesis the score given by the global alignment between sequences s and t, is used as
the value of a kernel function Kglobal(s, t).

Smith-Waterman algorithm - Local alignment

The Smith-Waterman algorithm is used to find the pair of segments with maximum similarity
between two sequences. An important aspect of this algorithm is that the similarity measure
given by the algorithm allows deletions and insertions of arbitrary length [96].

The Matlab function swalign [95] is used to perform local alignments using the Smith-
Waterman algorithm. In this thesis, the score given by this function is used as the value of
a kernel function Klocal(s, t). Figure 3.12 shows the score and alignment obtained with this
function for the sequences s =KKLPMP and t =KAKAAP.

3.4.4 Peptide descriptors

In the machine learning context, a peptide is usually represented by an n-dimensional vector,
where n is the number of peptide descriptors, also known as features, calculated for this chemical
compound. In this thesis, two categories of feature sets were used. The first category includes
features sets that contain physicochemical information of the peptides (f0 - f11). The second
category includes features sets that consider the amino acid content and the order of the amino
acids in the peptide sequence (f12 - f16). Table 3.4 shows the feature sets used and the tool
that is used to obtain them.
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Table 3.4: Feature sets and tools used in the creation of the classifiers.

Feat. Set No. of Features Description Tool

f0 240 Normalized Moreau-Broto autocorrelation Propy [97]
f1 240 Moran autocorrelation Propy [97]
f2 240 Geary autocorrelation Propy [97]
f3 147 Composition, transition, distribution descriptors Propy [97]
f4 90 Sequence order coupling numbers Propy [97]
f5 50 Quasi-sequence-order descriptors Propy [97]
f6 21 Hydrophobicity SPiCE [98]
f7 21 Normalized VDW SPiCE [98]
f8 21 Polarity SPiCE [98]
f9 21 Polarizability SPiCE [98]
f10 21 Charge SPiCE [98]
f11 19 Autocorrelation SPiCE [98]
f12 20 Amino acid composition Propy [97]
f13 400 Dipeptide composition Propy [97]
f14 20 N-terminal end amino acid count SPiCE [98]
f15 20 C-terminal end amino acid count SPiCE [98]
f16 40 Composition moment vector Own code [99]

3.4.5 Simulations performed

Ten different classifiers were created using the mentioned kernels, algorithms and peptide des-
criptors. Five classifiers allow the discrimination between antimicrobial and non-antimicrobial
peptides, and the other five classifiers deals with the discrimination between antibacterial and
non-antibacterial peptides. A 10-fold cross-validation process was performed for all the classi-
fiers, i.e., all the classifiers were trained and tested using the same folds. This methodology
allows a fair comparison between the classifiers.

For the antimicrobial peptides classifiers, a random subsampling of 400 antimicrobial pep-
tides and 400 non-antimicrobial peptides was performed. In this sense, the initial dataset is
composed by 800 peptides. Similarly, for the antibacterial peptides classifier, a random sub-
sampling of 192 antibacterial peptides was performed. The final dataset for these classifiers was
composed by 192 antibacterial and 192 non-antibacterial peptides.

We used support vector machines as the learning algorithm, using six different values for
the penalization parameter C = {0.001, 0.01, 0.1, 1, 10, 100}. For the classifiers created using
the Needleman-Wunsch and Smith-Waterman algorithms, the values for gap-open and gap-
extension were set to 8 and the scoring matrix was BLOSUM50. The performance measures
were sensitivity, specificity, false positive rate, false negative rate and precision.

3.4.6 Results and Discussion

Antimicrobial and antibacterial peptides classifiers created using string kernels are
competitive

Tables 3.5 and 3.6 show the values for the sensitivity, specificity, false positive rate, false
negative rate and accuracy, obtained with the different classifiers. In Table 3.5 the bold values
are the best significant values according with ANOVA and Tukey tests (p value < 0.05). In
table 3.6 the red values are the worse significant values according with ANOVA and Tukey
tests, i.e., the black color values shown in the table are the best significant values.
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Table 3.5: Sensitivity, specificity, false positive rate, false negative rate and accuracy for the
antimicrobial peptides classifiers created using peptide descriptors and kernel methods. The
learning algorithm used is support vector machines with different c values

Classifier c=0.001 c= 0.01 c=0.1 c=1 c=10 c=100

Descriptors 0.845(0.098) 0.850(0.096) 0.850(0.096) 0.850(0.096) 0.850(0.096) 0.850(0.096)
P-spectrum 1.000(0.000) 0.823(0.062) 0.820(0.057) 0.793(0.070) 0.790(0.069) 0.790(0.069)

Sen Mismatch 0.858(0.058) 0.845(0.054) 0.795(0.055) 0.798(0.049) 0.765(0.053) 0.783(0.069)
Swalign 0.750(0.078) 0.863(0.044) 0.840(0.065) 0.795(0.061) 0.730(0.067) 0.738(0.065)
Nwalign 0.825(0.041) 0.855(0.052) 0.848(0.064) 0.765(0.063) 0.755(0.087) 0.753(0.075)

Descriptors 0.868(0.062) 0.850(0.070) 0.850(0.070) 0.850(0.070) 0.850(0.070) 0.850(0.070)
P-spectrum 0.000(0.000) 0.918(0.070) 0.888(0.060) 0.860(0.053) 0.860(0.053) 0.860(0.053)

Sp Mismatch 0.885(0.047) 0.855(0.061) 0.813(0.059) 0.765(0.080) 0.778(0.067) 0.783(0.069)
Swalign 0.958(0.039) 0.903(0.042) 0.848(0.063) 0.808(0.076) 0.710(0.065) 0.703(0.079)
Nwalign 0.855(0.056) 0.855(0.056) 0.810(0.064) 0.765(0.071) 0.750(0.080) 0.750(0.080)

Descriptors 0.133(0.062) 0.150(0.070) 0.150(0.070) 0.150(0.070) 0.150(0.070) 0.150(0.070)
P-spectrum 1.000(0.000) 0.083(0.070) 0.113(0.060) 0.140(0.053) 0.140(0.053) 0.140(0.053)

Fpr Mismatch 0.115(0.047) 0.145(0.061) 0.188(0.059) 0.235(0.080) 0.223(0.067) 0.218(0.069)
Swalign 0.043(0.039) 0.098(0.042) 0.153(0.063) 0.193(0.076) 0.290(0.065) 0.298(0.079)
Nwalign 0.145(0.056) 0.115(0.056) 0.190(0.064) 0.235(0.071) 0.250(0.080) 0.250(0.080)

Descriptors 0.155(0.098) 0.150(0.096) 0.150(0.096) 0.150(0.096) 0.150(0.096) 0.150(0.096)
P-spectrum 0.000(0.000) 0.178(0.062) 0.180(0.057) 0.208(0.070) 0.210(0.069) 0.210(0.069)

Fnr Mismatch 0.143(0.058) 0.155(0.054) 0.205(0.055) 0.203(0.049) 0.235(0.053) 0.213(0.050)
Swalign 0.250(0.078) 0.138(0.044) 0.160(0.065) 0.205(0.061) 0.270(0.067) 0.263(0.065)
Nwalign 0.175(0.041) 0.145(0.052) 0.153(0.064) 0.235(0.063) 0.245(0.087) 0.248(0.075)

Descriptors 0.856(0.055) 0.850(0.061) 0.850(0.061) 0.850(0.061) 0.850(0.061) 0.850(0.061)
P-spectrum 0.500(0.000) 0.870(0.045) 0.854(0.043) 0.826(0.040) 0.825(0.039) 0.825(0.039)

Acc Mismatch 0.871(0.029) 0.850(0.038) 0.804(0.035) 0.781(0.036) 0.771(0.032) 0.785(0.037)
Swalign 0.854(0.049) 0.883(0.033) 0.844(0.032) 0.801(0.053) 0.720(0.053) 0.720(0.051)
Nwalign 0.840(0.024) 0.870(0.048) 0.829(0.047) 0.765(0.039) 0.753(0.051) 0.751(0.052)
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In general, the classifiers created using string kernel methods have obtained a similar be-
havior that the one obtained using peptide descriptors. In the case of antimicrobial peptides
classifiers there are some special situations. For example, for the sensitivity and false negative
rate values, the best option is the one obtained with the p-spectrum kernel with c = 0.001.
However, this classifier obtained the worse values for specificity and false positive rate. There-
fore, a more accurate measure for the general performance of these classifiers is the accuracy,
due to these classifiers were created using balanced datasets. In this sense, the classifier created
with peptide descriptors obtained the best performance regarding the value for c. In the case
of the string kernel methods, the value of c has an influence in the performance obtained for
the antimicrobial peptides classifiers. However, all the classifiers obtained a competitive perfor-
mance when c = 0.01. On the contrary, in the antibacterial peptides classifiers the c value only
affects the classifiers created using the p-spectrum and mismatch kernels.

These results are interesting since the classifiers created using string kernels do not include
any physicochemical information of the peptides. Therefore, it is feasible that the order of the
amino acids inside the peptide sequences gives enough information to determine the presence
or absence of any antimicrobial activity.

In addition, the obtained results using the 10-fold cross-validation technique show that the
classifiers created are statistically stable due to the small variation that they present in the per-
formance measures when the training dataset is changed. Moreover, there is not a significant
difference in their performances and any of them could be use in the classification of antimicro-
bial and antibacterial peptides.
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Table 3.6: Sensitivity, specificity, false positive rate, false negative rate and accuracy for the
antibacterial peptides classifiers created using peptide descriptors and kernel methods. The
learning algorithm used is support vector machines with different c values

Classifier c=0.001 c= 0.01 c=0.1 c=1 c=10 c=100

Descriptors 0.776(0.099) 0.761(0.131) 0.761(0.131) 0.761(0.131) 0.761(0.131) 0.761(0.131)
P-spectrum 0.800(0.396) 0.881(0.069) 0.886(0.048) 0.854(0.084) 0.854(0.084) 0.854(0.084)

Sen Mismatch 0.808(0.066) 0.797(0.055) 0.755(0.092) 0.741(0.096) 0.756(0.082) 0.730(0.104)
Swalign 0.855(0.080) 0.897(0.072) 0.828(0.071) 0.765(0.077) 0.765(0.077) 0.765(0.077)
Nwalign 0.834(0.071) 0.891(0.046) 0.817(0.137) 0.807(0.100) 0.792(0.105) 0.792(0.105)

Descriptors 0.820(0.117) 0.793(0.087) 0.793(0.087) 0.793(0.087) 0.793(0.087) 0.793(0.087)
P-spectrum 0.264(0.274) 0.786(0.073) 0.791(0.080) 0.801(0.087) 0.801(0.087) 0.801(0.087)

Sp Mismatch 0.771(0.148) 0.757(0.138) 0.740(0.097) 0.724(0.075) 0.708(0.101) 0.698(0.096)
Swalign 0.734(0.067) 0.812(0.045) 0.828(0.079) 0.812(0.062) 0.812(0.062) 0.812(0.062)
Nwalign 0.781(0.049) 0.813(0.049) 0.765(0.094) 0.771(0.079) 0.755(0.078) 0.755(0.078)

Descriptors 0.180(0.117) 0.207(0.087) 0.207(0.087) 0.207(0.087) 0.207(0.087) 0.207(0.087)
P-spectrum 0.736(0.274) 0.214(0.073) 0.209(0.080) 0.199(0.087) 0.199(0.087) 0.199(0.087)

Fpr Mismatch 0.229(0.148) 0.243(0.138) 0.260(0.097) 0.276(0.075) 0.292(0.101) 0.302(0.096)
Swalign 0.266(0.067) 0.188(0.045) 0.172(0.079) 0.188(0.062) 0.188(0.062) 0.188(0.062)
Nwalign 0.219(0.049) 0.187(0.049) 0.235(0.094) 0.229(0.079) 0.245(0.078) 0.245(0.078)

Descriptors 0.224(0.099) 0.239(0.131) 0.239(0.131) 0.239(0.131) 0.239(0.131) 0.239(0.131)
P-spectrum 0.200(0.396) 0.119(0.069) 0.114(0.048) 0.146(0.084) 0.146(0.084) 0.146(0.084)

Fnr Mismatch 0.192(0.066) 0.203(0.055) 0.245(0.092) 0.259(0.096) 0.244(0.082) 0.270(0.104)
Swalign 0.145(0.080) 0.103(0.072) 0.172(0.071) 0.235(0.077) 0.235(0.077) 0.235(0.077)
Nwalign 0.166(0.071) 0.109(0.046) 0.183(0.137) 0.193(0.100) 0.208(0.105) 0.208(0.105)

Descriptors 0.797(0.044) 0.776(0.052) 0.776(0.052) 0.776(0.052) 0.776(0.052) 0.776(0.052)
P-spectrum 0.535(0.183) 0.833(0.062) 0.838(0.050) 0.828(0.056) 0.828(0.056) 0.828(0.056)

Acc Mismatch 0.790(0.095) 0.777(0.079) 0.748(0.046) 0.732(0.059) 0.732(0.066) 0.713(0.068)
Swalign 0.794(0.063) 0.854(0.054) 0.828(0.054) 0.789(0.046) 0.789(0.046) 0.789(0.046)
Nwalign 0.807(0.048) 0.852(0.039) 0.792(0.076) 0.789(0.076) 0.773(0.080) 0.773(0.080)
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3.5 Posterior analysis of the peptides

Once the list of the designed candidate peptides was obtained, we performed an additional
analysis of the peptides before their synthesis. The first step consisted in the prediction of the
secondary structure of the peptides using the PEP-FOLD 2.0 tool [82] (http://mobyle.rpbs.univ-
paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD). Those peptides that exhibited an alpha-
helix secondary structure were selected due to they are likely to be antibacterial peptides. More-
over, it is recommended to select those peptides that do not present an homology higher than
50% with the antimicrobial peptides reported in the APD and CAMP database. This last step
is to allow the possibility that the new peptide could be patented in case that the experimental
results are satisfactory. Therefore, the selected peptides to be synthesized were those that ful-
filled the previous requirements.

3.6 Experimental results

Multiple experimental tests were performed with peptides designed in this thesis and with
analogues of these peptides. Due to limitations in the available resources the experimental
tests were performed for approximately 20 candidate peptides. The synthesis of these peptides
was performed via solid phase peptide synthesis (SPPS) [100] using the tea-bag procedure re-
ported in [101], in accordance with standard Fmoc chemistry and with a 0.63 substituted rink
amide 4MBHA resin and Fmoc amino acids [102]. These peptides were cleaved with a mix
of trifluoroacetic acid (TFA)/triisopropylsilan (TIS)/ethanedithiol/H2O (92.5/2.5/2.5:2.5) for
2 hours and then retrieved by precipitation with cold diethyl ether [103]. Then, the peptides
were desalted by gel exclusion chromatography using G-10 columns (Amersham, USA). Finally,
the peptides were purified by Reverse Phase-High Performance Liquid Chromatography (RP-
HPLC) in a Vydac C-18 preparative column, using as mobile phase the mixture of: (A) H2O

+ 0.01% TFA and (B) acetonitrile + 0.01% TFA.

Antibacterial activity of the peptides was carried out as described in [104]. To test the bac-
tericidal activity of the peptides, samples of approximately 4.6x108 CFU (colony-forming unit)
per ml of E. Coli O157: H7, MRSA and P. aeruginosa were incubated in 96-well microplates
containing lysogeny broth (LB) for gram-negative bacteria or Mueller-Hinton (MH) for gram-
positive bacteria, and peptide solutions at nal concentration between a range of 0.5 and 100 µM
of peptide. Ofloxacin was used as growth inhibition control. Bacterial cells were incubated at
37C with constant agitation for 1 hour and monitored by enumerating viable cells using growth
kinetics. Bacterial growth was monitored by turbidimetry quantifying optical density (OD) at
λ= 595 nm for 8 hours.

The results were highly satisfactory, the majority of the peptides were active against bac-
teria, and two of them (GIBIM-P6 and GIBIM-P5F8W) possess a competitive antibacterial
activity, i.e, peptide GIBIM-P6 shows a minimal inhibitory concentration (MIC) of 5.0, 10 and
10 µM for Escherichia coli O157:H7, methicillin-resistant Staphylococcus aureus, and Pseu-
domona aeruginosa, respectively. The peptide GIBIM-P5F8W shows a MIC of 0.5, 5.0 and 10
µM for Escherichia coli O157:H7, methicillin-resistant Staphylococcus aureus, and Pseudomona
aeruginosa, respectively. Moreover, this peptide at 25 µM provoked membrane permeabiliza-
tion of these bacteria as determined by the Sytox Green uptake assay. Table 3.7 shows the
MIC99 values for the designed peptides, while Table 3.8 shows the MIC90 values for existing
antimicrobial agents against Escherichia coli, Staphylococcus aureus, and Pseudomona aerugi-
nosa. It can be observed that two of our peptides are highly competitive considering that their
MIC99 values are lower or equal to MIC90 values of commercial antimicrobial agents against
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non-resistant strains. Moreover, it is expected that the MIC99 values of the antimicrobial
agents will be higher than their MIC90 values, i.e., it is expected that a higher concentration
of the antimicrobial agent would be required to inhibit the growth of 99% of bacteria, instead
of the 90% of bacteria.

Table 3.7: MIC99 values of our candidate peptides. Data given by Jennifer Cruz and Yuly
Prada, students of the GIBIM Lab.

Peptide E. coli MRSA P. aeruginosa

GIBIM-P5F8W 0.5 5 10
GIBIM-P6 5 10 10
GIBIM-JC1 10 25 10
GIBIM-JC2 50 25 >100
GIBIM-JC3 50 25 >100
GIBIM-JC4 50 50 100
GIBIM-JC5 50 75 >100
GIBIM-JC6 >100 50 >100
GIBIM-JC7 100 75 75
GIBIM-JC8 100 75 >100
GIBIM-JC9 75 >100 100
GIBIM-JC10 100 100 10
GIBIM-JC11 >100 50 25
GIBIM-JC12 100 100 10
GIBIM-JC13 50 75 25
GIBIM-JC14 50 75 25
GIBIM-JC15 75 100 50
GIBIM-JC16 75 100 50
GIBIM-YP1 50 25 Not tested

The cytotoxicity of the peptides in mammalian cells is obtained by evaluating their hemolytic
activity on sheep erythrocytes. One mL of erythrocytes from defibrinated sheep blood were sub-
jected to centrifugation (1000 x g, 10 min) and subsequently washed with Hanks + Glucose.
The erythrocytes were resuspended in this medium at a density of 2x107 cells/mL, aliquots of
100 µL of this suspension were transferred to eppendorf tubes and incubated with peptide at
the desired concentrations (37 C, 4 h). Erythrocytes were subsequently centrifuged (13,000 x g,
5 min) and aliquots of the supernatant (80 µL) were transferred to a 96 well plate to measure
hemoglobin released at 550 nm in a plate reader. All peptides showed a low toxicity, with a
percentage of less than 40% hemolysis at a concentration of 50 µM. Additionally, the cytotox-
icity of GIBIM-P6 and GIBIM-P5F8W peptides was assessed in lung tissue cell line A549 to
determine its selectivity in a range of 25 to 100 mM. Both peptides exhibited a low cytotoxicity
on A549 cells.

The experimental tests were performed by the PhD student Jennifer Cruz and the master
student Yuly Prada, both members of the GIBIM Lab from the School of Chemistry at Univer-
sidad Industrial de Santander.

3.7 Conclusions

The algorithm DEPRAMPs 1.0 might be useful in multiple applications that require the design
of peptides that comply with the established ranges for charge, isoelectric point, hydrophobicity
and instability index. Moreover, the input sequences that are used in this algorithm might lead
to the desire function of the designed peptides. For example, if we want to design antibacte-
rial peptides, then the input sequences should be those that have been reported as antibacterial.
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Table 3.8: MIC90 values of existing antimicrobial agents. Data taken from [105]

Agent E. coli S. aureus P. aeruginosa

Ofloxacina 0.12 16b 128
Omiganan 32 16 256
Bacitracin – 400 –
Erythromicyn – >8 –
Fusidic acid – 0.25 –
Gentamicin 2 0.5 8
Levofloxacin – >8 –
Mupirocin – ≤4 –
Neomycin 4 >16 128
Oxacillin – >2 –
TAO <1.2 20 <1.2
Vancomycin – 1
Ceftazidime >16 – >16
Ceftriaxone >32 – >32
Ciprofloxacin >8 – >8
Imipenem 0.25 – 16
Polymyxin B 0.5 – 0.5

a MIC values taken from http://antibiotics.toku-e.com/antimicrobial 868 1.html
b MIC value against MRSA.

It is possible to perform classification of antimicrobial and antibacterial peptides using only
the information given by the string kernels. However, the performance achieved with these
classifiers is not significantly better than the performance obtained when peptide descriptors
are used.

Although the peptides that have been designed with this strategy have shown satisfactory
results, there are some improvements that could be performed:

• Due to the subsampling performed in the antibacterial peptides set, it is possible that we
are losing important information of patterns responsible for the antibacterial activity in
peptides. Therefore, it is recommended to work with the entire dataset of antibacterial
peptides.

• In this strategy, the peptides that possess antibacterial activity in conjunction with other
biological activity were not used. These peptides might be very useful in the pharma-
ceutical industry, since they could become new antibiotics and they could become a new
medicine for other diseases. In this sense, it is highly recommended to use these peptides
in the design of new antibacterial peptides.

• The time required to design new potential antibacterial peptides might be reduce if the
classifiers are involved during the design process. With this strategy, multiple peptides
designed by the genetic algorithm are rejected in the following steps, and multiple simu-
lations and trials have to be performed in order to obtain a large list of new potential
antibacterial peptides.

• The toxicity part should be included in the design of new antibacterial peptides, due to
it is important that the peptides possess a high antibacterial activity with a low toxicity
for human beings. In this sense, the synthesis of toxic peptides could be reduced, saving
time and money in the discovery of new potential antibiotics.
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Chapter 4

Creation of the final classifier of

antibacterial peptides

In the fight against multi-drug resistant bacteria, the antibacterial peptides have appeared as a
promising source of new antibiotics. These peptides are a subset of the antimicrobial peptides
(AMPs). To screen for new antibacterial peptides, computational tools are being used to avoid
screening peptides that will not show activity against bacteria or will be toxic for humans. The
purpose of an antibacterial peptides classifier is to determine if a peptide has activity against
bacteria.

4.1 Creation of the input dataset

In this part of the thesis, the positive dataset (further denoted as A) includes all the peptides,
from the APD [36] and the CAMP [47] databases, that report antibacterial activity, i.e., those
peptides that are active against bacteria and other microorganisms. The total number of an-
tibacterial peptides was 2,339. The negative dataset includes 460 peptides, from the mentioned
databases, which do not report antibacterial activity (further denoted as B) and 4,889 peptides
obtained byWang et. al [73] from non-secretory proteins, and they are used as non-antimicrobial
peptides.

The selection of the non-antimicrobial peptides involves two steps. The first one is to delete
those peptides with a length larger than 100 amino acids, due to the synthesis difficulties of
long peptides. Then, those peptides that had a sequence identity higher than 50% in a cluster
analysis done with cd-hit [106,107] were eliminated. After these selection steps 4,889 non-active
non-antibacterial peptides are left (further denoted as set C). Figure 4.1 shows a graphical rep-
resentation of the dataset used to create the antibacterial peptides classifier.

4.2 Selection of the machine learning algorithm

This step consists in the selection of a learning algorithm that could achieve very good perfor-
mance, in classification processes, given by the accuracy of the predictions and the computa-
tional complexity [108]. In general, a classification algorithm is used to perform a binary or a
multi class classification. The difference between these two processes consists in the possible
value for the predicted feature y. If y takes values from {1, 2, ..., N}, where N is the number of
possible classes and if N > 2 it would correspond to a multi class classification. But if N = 2,
the process is a binary classification [92]. Commonly, the classification processes of antimicro-

51



Non-Antimicrobial Peptides* Antimicrobial Peptides APD and CAMP databases
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Figure 4.1: Graphical representation of the dataset to create the antibacterial peptides classifier.

bial and antibacterial peptides have been done using binary classification.

However, there are some works that have applied different algorithms in the classification
or prediction of antimicrobial peptides, such as: Fourier transformation to discover new candi-
date antimicrobial peptides [109], fuzzy logic for the prediction of antimicrobial activity [85],
hidden Markov models in the prediction of candidate short cationic amphipatic antibacterial
peptides [110], among others.

In this thesis, three types of antibacterial peptides classifiers were proposed, each one using
a different configuration of negative datasets: antibacterial versus non-antibacterial (A vs B),
antibacterial versus non-antimicrobial (A vs C), and antibacterial versus both non-antibacterial
and non-antimicrobial (A vs B+C). Figure 4.2 shows the data configurations used in each one
of these classifiers.

Configuration 2Configuration 1 Configuration 3

A vs C A vs B
A 
vs 

B + C

Figure 4.2: Proposed classifiers with their corresponding data configurations. A: antibacterial
peptides, B: non-antibacterial peptides, C: non-antimicrobial peptides.

Four different classifiers were used: linear discriminant analysis (LDA) [111], support vec-
tor machines with linear kernel (SVM-linear) [111, 112], logistic classifier (LC) [111, 113] and
k-nearest neighbors (kNN) [111]. The performance measures were calculated using a stratified
10-fold cross-validation loop, and the test set included samples of the three sets (A, B, and C).
An inner 10-fold cross-validation was used to optimize the meta-parameters of the classifiers
SVM-linear (C parameter), LC (λ parameter) and kNN (k parameter).

The comparison of the classifiers might be considered as unfair for those classifiers that use
only one of the negative subtypes in the training process, because the test data include samples
of both negative subtypes. However, we consider this comparison as fair since our final goal is
to use the classifier in the design of new antibacterial peptides.
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4.3 Selection of peptide features

The selection of the peptide features that are used in a classification process affects the perfor-
mance of the antimicrobial or antibacterial peptides classifier. Different strategies to deal with
the selection of the best set of peptide features have been developed and can be grouped in two
different approaches: automatic or manual selection.

The automatic selection approach allows the selection of the best set of features considering
their performance in the mathematical model of the classifier. Some algorithms that have been
used to perform this task are correlation-based methods, statistical criteria, methods based on
information theory, genetic algorithms, simulated annealing, sequential feature forward selec-
tion, sequential backward feature elimination, among others [56]. Some algorithms that have
been used to select peptide features in the rational design of AMPs are: principal component
regression [70], partial least-squares regression [70], fractional factorial design [69] and incre-
mental feature selection [73].

The manual selection comprehends those sets of descriptors selected by prior knowledge, i.e.
they do not apply any algorithm to select them. Some studies, in the rational design of AMPs,
that have used this approach can be found in [58,61,67,68,85,110,114].

In this section, the peptides were represented by the descriptors used in the previous chap-
ter (See section 3.4.4), and we performed a feature set forward selection process. Instead of
adding a single feature to the final set of selected features, we added a feature set in each
step of the procedure. The learning algorithm used was the k-nearest neighbors for which the
number of neighbors was optimized using an internal 10-fold cross-validation loop. An outer
10-fold cross-validation loop was used to obtain the performance measures to select the best
feature set in each step; see Figure 4.3. The double cross-validation loop allows the evaluation
of the classifiers performance using samples that were not used in the optimization process of
the classifiers. Examples of studies that have used a double cross-validation loop can be found
in [115,116].
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Figure 4.3: Proposed methodology to perform the feature set forward selection.
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4.4 Evaluation measures

For a fair comparison between the proposed configurations of classifiers, we created the classi-
fiers inside the same 10-fold cross-validation loop, i.e. the samples assigned to the folds are
synchronized. The performance measures used as optimization criteria were the area under
the ROC curve (AUC), the partial area under the ROC curve which is integrated from 0% to
5% false positive (partial AUC, pAUC), and the average precision (AP). Figure 4.4 shows the
graphical representation of the evaluation measures.
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Figure 4.4: Graphical representation of the evaluation measures.

The optimization criterion plays an important role in model and feature selection processes.
For example, the AUC measure, which comprehends the area of the entire ROC curve is not
useful to differentiate between two classifiers that behave differently in one specific region of
specificity. In a similar way, the AP, which comprehends the area under the precision-recall
curve, does not allow a differentiation between two classifiers that achieve different precision va-
lues in different regions of sensitivity. In this sense, the pAUC is most useful when only certain
regions of the ROC space are of particular interest. In our case, a small false positive rate (i.e.,
high specificity region) is preferred, due to the costs (in time and money) associated with the
synthesis of peptides that do not possess antibacterial activity. Figure 4.5 presents an example
where the selection of the best classifier is affected depending on the evaluation measure used.
If the AUC value is used, then the best classifier is the blue one. On the contrary, if the pAUC
is used, then the best classifier is the red one.

Moreover, the pAUC values might not be as good as desirable, since in multiple applications
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Figure 4.5: Two ROC curves are plotted. The pAUC value of the red curve is higher than
the pAUC value of the blue one. However, if the AUC value is observed the situation is the
opposite, the AUC value of the blue one is higher than the red one.

it is difficult to create a classifier that possess a low false positive rate and a high true positive
rate.

4.5 Cascade models as a strategy to improve the performance.

Because our intent is to find the most promising antibacterial peptide, one may wonder if we
should not construct classifiers that are even more focused on only finding the most positive
peptides. For that we created a cascade classifier in which the first base classifier of the cascades
evaluates the samples, and if the probability of being positive is higher than 0.5, then, samples
are evaluated in the second base classifier. The final probability will be the one given by the
second base classifier. Figure 4.6 shows the three different configurations that we explored.

Configuration 6Configuration 5Configuration 4

A + B
vs 
C

A 
vs 
B 

A 
vs 

B + C

A 
vs 
B 

A 
vs 
C

A 
vs 
B 

Figure 4.6: Proposed cascade classifiers with their corresponding datasets. A: antibacterial
peptides, B: non-antibacterial peptides, C: non-antimicrobial peptides.

4.6 Results and Discussion

Figure 4.7 shows the t-SNE and PCA (principal component analysis) maps [117] for the sam-
ples of different peptide sets A, B and C, based on the proposed feature sets. These mappings
suggest that there is not a clear distinction between the positive class and both negative classes.
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As previous classifiers are able to achieve good results this suggests that distances in the original
space are not well preserved in the 2D maps.

t-SNE PCA

Set A

Set C
Set B

Set A

Set C
Set B

Figure 4.7: t-SNE and PCA maps of the dataset used to create the antibacterial peptides
classifier, using the 1631 features of table 3.4. A: antibacterial peptides, B: non-antibacterial
peptides and C: non-antimicrobial peptides.

4.6.1 A non-linear model might be suitable to classify antibacterial peptides

than linear models.

Table 4.1 shows the pAUC, AP and AUC values for all the proposed classifiers. Bold values
are the best significant values, according with ANOVA and Tukey tests.

The best performance values are obtained by the nonlinear kNN. For the pAUC there are
no significant differences between configuration 2 and 3 classifiers. On the contrary, for the AP
and AUC values, there are no significant differences between configuration 1 and 3 classifiers
(p-value > 0.05). These results suggest that for the reduction of the false positives rate it is
necessary to use the non-antibacterial peptides, i.e. set B, in the training process of a nonlinear
classifier.

In contrast, AUC values suggest to use only the non-antimicrobial peptides (set C) in the
negative set. According to this measure, there are no significant differences between the linear
classifiers (SVC linear and LC), the nonlinear kNN for configuration 1 classifier, and the non-
linear kNN for configuration 3 classifier that uses both negative subtypes. Therefore, looking
at AUC values might lead to wrong conclusions and care must be taken when using this per-
formance measure.
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Table 4.1: pAUC (for p=0.05), AP and AUC values, and between parenthesis the standard
deviation over the 10 folds, for the classifiers trained according to configurations 1, 2 and 3
created using all available features. A: antibacterial peptides, B: non-antibacterial peptides and
C: non-antimicrobial peptides.

Measure Classifier LDA SVC linear LC kNN

Conf. 1: A vs C 0.001(0.000) 0.021(0.004) 0.016(0.003) 0.023(0.003)
pAUC Conf. 2: A vs B 0.002(0.000) 0.002(0.001) 0.001(0.000) 0.027(0.002)

Conf. 3: A vs B+C 0.020(0.003) 0.020(0.003) 0.013(0.002) 0.030(0.003)

Conf. 1: A vs C 0.312(0.006) 0.841(0.037) 0.807(0.024) 0.878(0.017)
AP Conf. 2: A vs B 0.290(0.024) 0.364(0.023) 0.341(0.011) 0.808(0.023)

Conf. 3: A vs B+C 0.312(0.004) 0.831(0.023) 0.758(0.016) 0.885(0.018)

Conf. 1: A vs C 0.493(0.004) 0.922(0.018) 0.925(0.010) 0.943(0.007)
AUC Conf. 2: A vs B 0.595(0.017) 0.568(0.032) 0.555(0.027) 0.833(0.021)

Conf. 3: A vs B+C 0.494(0.003) 0.914(0.012) 0.891(0.007) 0.920(0.015)

4.6.2 The selection of the features sets is affected by both the optimization

criterion and the configuration of the negative dataset.

Figure 4.8 shows the results of the feature set forward selection for the proposed configurations
using different optimization criteria. Each row corresponds to a different feature set, and each
column represents at which step, of the feature set forward selection, the feature set is being
selected. The color in each box corresponds to the number of times that a feature set was chosen
in each step of the selection process, inside a 10-fold cross-validation loop.

The selection of the feature sets is affected by both the configuration of the negative class,
and the optimization criterion. When only set C is used as the negative class, results are much
different from when set B or sets B+C are used. Apparently, feature set f10 (which contains
charge values) is very useful for the discrimination of set C from A, but when the more cha-
llenging set B is added, this does not hold anymore. These results are supported by multiple
studies that claim that a positive net charge is essential for the initial interaction with negatively
charged cell membranes [24, 76]. From a biological point of view, it is expected that peptides
from set C do not possess a positive net charge and therefore, these features are preferred in the
classification process. However, peptides from set B might possess a positive net charge that
helps in the biological activity against other microorganisms, and consequently, these features
are not longer preferred.

The preferred feature set for the classifiers that use the set B is the set f13 that corresponds
to the dipeptide composition. This feature set does not encode, explicitly, any physicochemical
information, but just information on the amino acid content and the order of the amino acids
in the peptide sequences. Moreover, when the pAUC is used as the optimization criterion, this
feature set is highly selected for all the three classifiers. These results suggest that antibacterial
peptides can be recognized from their peptide sequences or sequence fragments. This is sup-
ported by Bodapati et. al [118] who showed that the C-terminal region is required for specificity
and dictates the antimicrobial profile, whereas, the N-terminal sequence is necessary for activity.

When sets B+C are used, and the optimization criterion is changed from pAUC to AP or
AUC, the preferred feature set change from f13 to f12. These results show that the amino
acid content of the peptides (f12) is very useful in the discrimination of antibacterial peptides.
However, if the goal is to reduce the number of false positives, the order of the amino acids
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Figure 4.8: Results for the feature set forward selection process for the single classifiers. Each
box contains the number of times that a feature set was chosen in each step of the selection
process, inside a 10-fold cross-validation loop. A: antibacterial peptides, B: non-antibacterial
peptides, C: non-antimicrobial peptides.

inside the peptide sequences might lead to better results. Additionally, if the AUC measure is
used as the optimization criterion, not only the selected feature sets are affected, but also the
recommended configuration of the classifier (i.e., AUC favors Configuration 1: A versus C).

Therefore, the model and feature selection processes should be performed with the opti-
mization criterion that might lead to the desired results. In our case, the pAUC criterion, to
select the classifier (with its corresponding features) that achieves a good performance with a
low false positive rate.

4.6.3 Both negative subtypes should be used in the creation of an antibac-

terial peptides classifier.

A comparison between the three configurations of classifiers was performed using the feature
sets that were most often selected for the classifiers trained, according to configurations 1 and
3 using the pAUC as the optimization criterion. For configuration 1 the best performance is
obtained when the feature set f13 or f3 is used. For configuration 3 those are feature sets f13
and f14. Table 4.2 shows the performance values for the three configurations when different
feature sets are used (f3, f3 + f13, f13, and f13 + f14). We performed an ANOVA and a Tukey
test for each performance measure, and bold values are the best significant values among the 12
classifiers. For the AP and AUC measures, there is no significant difference between configura-
tion 1 and configuration 3. For the pAUC measure, configuration 1 is significantly worse than
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the other two configurations. Hence, configuration 3 obtained competitive results across the
three performance measures, and therefore, the use of both negative subtypes is recommended
in the creation of an antibacterial peptides classifier.

Table 4.2: pAUC (p=0.05), AUC and AP values obtained for each classifier strategies when
using different feature sets

Measure Classifier f3 f3 + f13 f13 f13 + f14

Conf. 1: A vs C 0.024(0.003) 0.024(0.004) 0.023(0.003) 0.023(0.003)
pAUC Conf. 2: A vs B 0.023(0.002) 0.024(0.008) 0.027(0.002) 0.026(0.002)

Conf. 3: A vs B+C 0.026(0.003) 0.029(0.003) 0.029(0.002) 0.030(0.002)

Conf. 1: A vs C 0.922(0.010) 0.930(0.011) 0.914(0.010) 0.928(0.009)
AP Conf. 2: A vs B 0.784(0.023) 0.794(0.082) 0.805(0.032) 0.798(0.031)

Conf. 3: A vs B+C 0.892(0.021) 0.897(0.018) 0.881(0.021) 0.898(0.022)

Conf. 1: A vs C 0.857(0.020) 0.868(0.023) 0.851(0.019) 0.865(0.018)
AUC Conf. 2: A vs B 0.747(0.024) 0.746(0.143) 0.787(0.029) 0.780(0.027)

Conf. 3: A vs B+C 0.847(0.025) 0.863(0.021) 0.894(0.021) 0.866(0.021)

4.6.4 Single classifiers outperform cascade classifiers.

Table 4.3 shows the results of the performances obtained with the proposed single and cascades
classifiers using all feature sets. In general, the cascade classifiers obtained competitive results,
although there is always a single classifier that outperforms all of the proposed cascades, for
each of the three performance measures. From this, we conclude that the strategy of a cascade
model is not preferred.

Table 4.3: Performance values obtained for single and cascade classifiers when the pAUC is
used as the optimization criterion and all features sets are used.

Classifier pAUC(std) AP(std) AUC(std)

Conf. 1: A vs C 0.023(0.003) 0.878(0.017) 0.943(0.007)
Conf. 2: A vs B 0.027(0.002) 0.808(0.023) 0.833(0.021)
Conf. 3: A vs B+C 0.030(0.003) 0.885(0.018) 0.920(0.015)
Conf. 4: A vs C → A vs B 0.023(0.003) 0.823(0.017) 0.877(0.014)
Conf. 5: A vs B+C → A vs B 0.027(0.002) 0.795(0.021) 0.819(0.019)
Conf. 6: A+B vs C → A vs B 0.014(0.002) 0.777(0.017) 0.872(0.011)

Moreover, Figure 4.9 shows the best ROC curve obtained for each one of the proposed con-
figurations. It can be observed that the pAUC is higher for configuration 3 classifier. However,
if the AUC value is considered, the higher value is obtained with the configuration 1 classifier.
Moreover, the ROC curves show that cascade classifiers and the configuration 2 classifier do not
obtain a high true positive rate and the AUC value is not competitive in comparison with the
AUC values obtained for configuration 1 and 3 classifiers. Finally, the ROC curve of configura-
tion 2 is wider than the ROC curve of configuration 1 in the region delimited by the red line,
hence, the pAUC value is higher for configuration 2 classifier.
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Figure 4.9: ROC curves of the 6 configurations. The red line indicates a value of 0.05 for the
false positive rate.

4.6.5 The logistic classifier is preferred for the design of new antibacterial

peptides

An analysis of the results obtained with the kNN classifier showed that the best value for the
parameter k was always set to 1 regarding the configuration of the negative dataset or the
optimization criteria used. In this sense, this model might not be very good at generalization
and another model should be used.

Moreover, in the design of new antibacterial peptides, it is very useful to obtain the pro-
bability that a peptide possess antibacterial activity and the probability that a peptide is a
non-toxic peptide. Hence, the logistic classifier is a good option considering that LC provides
estimates of the posterior probability of class membership while SVM is purely discriminative
and it is necessary to map the SVM scores toward probabilities.

Therefore, a feature set forward selection process was performed for the configuration 3
classifier using LC. Figure 4.10 shows the obtained results. The feature sets that were highly
selected were f3 (composition, transition, distribution descriptors), f13 (dipeptide composition)
and f5 (quasi-sequence-order descriptors). As in the case of the kNN, the feature sets that were
highly selected with LC, were feature sets that are related to the amino acid composition and
the order of the amino acids in the peptide sequences. Different models were built for the three
configurations using different feature sets. Table 4.4 shows the pAUC, AP and AUC values
for the different classifiers. The results of ANOVA and Tukey test show that there are not
significant differences between configuration 3 classifiers using different feature sets, and any
of these models could be selected as the final classifier. Finally, the feature selection process
allowed to improve the performance of the logistic classifier.
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Figure 4.10: Results for the feature set forward selection process for configuration 3 classifier.
Each box contains the number of times that a feature set was chosen in each step of the selection
process, inside a 10-fold cross-validation loop. A: antibacterial peptides, B: non-antibacterial
peptides, C: non-antimicrobial peptides.

Table 4.4: pAUC, AP and AUC values obtained for each single classifier when the pAUC, with
p=0.05, is used as the optimization criterion and different feature sets are used

Classifier f3 f13 f3 + f5 f3 + f13 f5 + f13

Conf. 1 0.016(0.003) 0.015(0.003) 0.015(0.003) 0.014(0.003) 0.016(0.003)
pAUC Conf. 2 0.004(0.001) 0.001(0.000) 0.003(0.001) 0.001(0.001) 0.001(0.001)

Conf. 3 0.022(0.004) 0.022(0.003) 0.023(0.004) 0.022(0.003) 0.022(0.003)

Conf. 1 0.821(0.026) 0.818(0.021) 0.827(0.025) 0.816(0.022) 0.822(0.024)
AP Conf. 2 0.469(0.039) 0.339(0.006) 0.428(0.029) 0.343(0.005) 0.341(0.008)

Conf. 3 0.851(0.025) 0.855(0.020) 0.865(0.027) 0.862(0.019) 0.854(0.022)

Conf. 1 0.919(0.012) 0.918(0.011) 0.926(0.011) 0.922(0.011) 0.921(0.010)
AUC Conf. 2 0.660(0.032) 0.522(0.023) 0.625(0.026) 0.530(0.013) 0.526(0.023)

Conf. 3 0.925(0.012) 0.926(0.013) 0.934(0.011) 0.930(0.012) 0.926(0.011)

4.6.6 Final classifier

The classifiers obtained using pAUC as the optimization criterion and configuration 3 were
applied to the sets A, B and C, and their probabilities were plotted. Figure 4.11 shows the
boxplots obtained with each model. According with the results, we decided to work with the
model obtained using the feature sets f3 + f13, because it is the model that allows the best di-
fferentiation between antibacterial peptides and non-antibacterial/non-antimicrobial peptides.
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Figure 4.11: Boxplots of the estimated probability of a peptide to possess antibacterial activity,
for configuration 3 classifiers using different feature sets.

4.7 Conclusions

The discovery of new antimicrobial peptides that possess antibacterial activity could lead to
the creation of new antibiotics and might help in the fight against antibacterial resistance. We
showed that when building an antibacterial peptides classifier, it is helpful to include both the
non-antibacterial and the non-antimicrobial peptides as negative examples (instead of only one
category).

The optimization criterion has an influence in both, the configuration of the classifier and
the feature selection process. Based on our results, we recommend the use of the pAUC in model
and feature selection, for those applications where a low false positive rate is preferred. This
measure allows the selection of the classifier that possess a high true positive rate in a region of
specificity. In contrast, the AUC and AP are not useful to discriminate between classifiers that
possess different behaviors in distinct regions of specificity or sensitivity, respectively. Thereby,
we recommend using these two measures after the selection processes to have an understanding
of the final classifier performance.

We did find that features related to the sequence description of the peptide were preferred
to be used by the classifier than features that have a biophysical meaning. These results su-
ggest that the order of the amino acids, inside the peptide sequence, plays an important role in
the discrimination between antibacterial and non-antibacterial peptides. For peptides with the
same amino acid content and different peptide sequences, multiple biophysical features have the
same value. This might be the case for features such as charge, weight, isoelectric point, among
others. Thereby, sequence description features might lead to better performance of classifiers.

Cascade classifiers were not able to improve on the best single. This situation might be
caused by the low performance of the second base classifier, due to the few number of train
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samples for this classifier. The final performance of these cascades is given by a combination
of the performances of both base classifiers. From that we conclude that, the addition of the
second base classifier, which is the same for all cascade configurations, reduces the performance
achieved by the first one.

In the design of new antibacterial peptides using classification algorithms, it is important
to consider learning algorithms that use most of the training data and that allow an estimation
of the posterior probability. A binary classifier with a hard label might not be very useful in
the design and improvement of antibacterial peptides, due to the impossibility to determine the
peptide sequence with the higher probability of having antibacterial activity.
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Chapter 5

Creation of the classifier of toxic

peptides

There are multiple antimicrobial peptides that are active against multidrug-resistant bacteria.
However, their toxicity is one of the main limitations for these molecules to become effective an-
tibiotics. Hence, computational approaches that can predict the toxicity of peptides are highly
demanding. These methods allow the design of peptides with low toxicity while retaining the
biological activities, saving time and money in the creation of new therapeutics [28].

In the literature, we can find a number of user-friendly webservers that can be used in the
design of non-toxic peptides. Here some examples:

• ClanTox is a classifier of animal toxins [119].

• BTXpred is used to predict bacterial toxins [120]

• NTXpred predicts neurotoxins [121]

• ToxinPred predicts toxic peptides [28]

• DBETH predicts bacterial toxins [122], among others

The datasets used to create these tools are different for each one of them. Hence, it is
not possible to perform a fair comparison between them. Moreover, the datasets comprehends
peptides with a length higher than 100 amino acids, with exception of the tool ToxinPred which
uses peptides with less than 35 amino acids. Therefore, we decided to create a toxic peptides
classifier that comprehends peptides with a length between 7 and 100 amino acids, and that
evaluates a peptide and gives its probability of being toxic.

5.1 Materials and Methods

5.1.1 Dataset

In the literature, there are not many works that deals with the classification of toxic or non-toxic
peptides. Therefore, there is not a benchmark dataset to work with. In the work of Gupta et.
al. [28], a toxicity classifier was created using the information available in multiple databases
and the results were satisfactory. However, the datasets used in this study comprehend peptides
of length less than 35.

In this thesis we are working with peptides with a maximum length of 100 amino acids.
Therefore, we used a similar strategy than the one used by Gupta et. al. [28], to create a
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dataset that comprehends toxic and non-toxic peptides with length between 7 and 100 amino
acids.

The peptides of our dataset were obtained from the database SwissProt [123]. Only those
peptides that are reviewed, do not possess unusual amino acids (i.e. X, Z, B and U) and their
length is between 7 and 100 were considered. Moreover, the positive class or toxic peptides
comprehends those peptides that have the keyword toxin (KW0800), while the peptides of the
negative class or non-toxic peptides do not contain the keywords toxin (KW0800) and aller-
gen(KW).

The resulting number of toxic peptides was 3,973 and the number of non-toxic peptides
was 50,406. In order to reduce the ratio of imbalance between the two classes, we remove the
sequences that were highly homologues using the program CD-Hit [107] with C=0.7. This step
allow us to reduce the size of the negative class to 16,484 peptides in a not random way. Hence,
it is expected to obtain a better performance for samples of the minority class [88].

5.1.2 Creation of the toxic peptides classifier

To create the desired classifier we used the same feature sets that were used in the creation of
the antibacterial peptides classifier (See chapter 4). Additionally, we also performed a com-
parison between 4 learning algorithms and a feature set forward selection process. Finally, the
classifier that will be used in the rational design of new peptides is the one that allows the
best differentiation between the desired group of peptides, i.e. non-toxic and non-hemolytic
antibacterial peptides, and the rest.

5.2 Results and Discussion

Figure 5.1 shows the t-SNE and PCA maps [117] for the toxic and non-toxic peptides. In the
2D maps, there is not a good separation between the positive and negative class. However,
since linear classifiers obtained good performance results when all the features are used, it is
likely that a clear differentiation exists in a higher dimensional space.

t-SNE PCA

Toxic
No-toxic

Toxic
No-toxic

Figure 5.1: t-SNE and PCA maps of the dataset used to create the toxic peptides classifier,
using the 1631 features of table 3.4.
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5.2.1 The logistic classifier is preferred to create the toxic peptides classifier

As a first step, we performed a comparison between four learning algorithms (LDA, NMC, LC,
and kNN) using all the available feature sets. The meta-parameters of the classifiers LC (λ)
and kNN (k) were optimized using an inner 10-fold cross-validation loop, and the pAUC as the
optimization criterion. This criterion was choosen because our main interest is to increase the
number of true negatives (i.e., reduce the number of false positives).

Table 5.1 shows the performance measures obtained with the four classifiers. Bold values
are the best significant values (p value < 0.05).

Table 5.1: Comparison of learning algorithms

Classifier pAUC AUC AP

LDA 0.001(0.000) 0.486(0.006) 0.192(0.001)
NMC 0.004(0.001) 0.351(0.017) 0.698(0.012)
LC 0.031(0.002) 0.951(0.009) 0.855(0.017)
kNN 0.044(0.001) 0.960(0.008) 0.982(0.006)

Although the non-linear kNN algorithm obtained the best performance, this model might
not be very useful due to the value of the parameter k was always set to 1 by the optimization
process. This situation is not desirable since this model might not be good at generalization.
Therefore, the logistic classifier is preferred for the creation of the toxicity peptides classifier,
and a feature set forward selection process was performed, using the pAUC as the optimization
criterion. Figure 5.2 shows the results obtained. The feature sets that were highly selected
were f13, f2, f14 and f16. Different models were built using combinations of these feature sets.
Table 5.2 presents the pAUC, AP and AUC values for the different classifiers. The results of
ANOVA and Tukey test show that there are not significant differences between these models,
and any of them could be selected as the final classifier.
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Figure 5.2: Results of the feature set selection process for the toxicity classifier using LC and
pAUC as the optimization criterion.
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Table 5.2: pAUC, AP and AUC values obtained for the logistic classifier when the pAUC, with
p=0.05, is used as the optimization criterion and different feature sets are used

f13 + f2 + f14 f13 + f14 + f16 f13 + f16 + f2 f13 + f2 + f14 + f16

pAUC 0.034(0.002) 0.033(0.001) 0.034(0.002) 0.034(0.002)
AP 0.883(0.015) 0.877(0.014) 0.884(0.017) 0.889(0.015)
AUC 0.959(0.007) 0.958(0.008) 0.959(0.008) 0.960(0.007)

5.2.2 The logistic classifier allows the differentiation of non-toxic and non-

hemolytic peptides

Since the main objective is to design peptides that are likely to possess a high antibacterial acti-
vity and a low probability of being toxic, we divided the antibacterial peptides that were used
in the creation of the antibacterial peptides classifier, in 4 groups that were created according
to their toxicity or hemolicity:

1. Group 1 - Abps non-toxic and non-hemolytic: Those antibacterial peptides that
belong to the APD or CAMP database and are found at SwissProt as non-hemolytic and
non-toxic (188 peptides).

2. Group 2 - Abps toxic and hemolytic: Those antibacterial peptides that belong to the
APD or CAMP database and are found at SwissProt as toxic and hemolytic (29 peptides).

3. Group 3 - Abps toxic: Those antibacterial peptides that belong to the APD or CAMP
database and are found at SwissProt as toxic (14 peptides).

4. Group 4 - Abps hemolytic: Those antibacterial peptides that belong to the APD or
CAMP database and are found at SwissProt as hemolytic (86 peptides).

The peptides of these 4 groups were evaluated in the proposed classifiers and their proba-
bility of being toxic were saved and plotted in boxplots (Figure 5.3). Although there are not
significant differences between the models, the classifier created with the feature sets f13, f2, f14,
and f16 allows a good differentiation between the peptides of our interest (non-toxic and non-
hemolytic antibacterial peptides) and the toxic and/or hemolytic peptides. Therefore, the final
classifier is built using these feature sets.

5.3 Conclusions

Predicting the probability that a peptide would be toxic is an important step in the design
of novel potential antibiotics. In this sense, computational methods like logistic classifier are
important tools that can be used to predict posterior probabilities with competitive results.
Our final classifier was created with the logistic classifier and the values for the pAUC (with
p=0.05), AP and AUC were 0.034, 0.889 and 0.960, respectively.
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Figure 5.3: Boxplots of the estimated probability that a peptide would be toxic, using classifiers
created with different feature sets

The features that were selected as the most informative in the context of toxicity are mainly
those features based in the amino acid composition and the order of the amino acids inside
the peptide sequence. Additionally, the features obtained with the Geary autocorrelation allo-
wed a better discrimination between non-toxic and non-hemolytic antibacterial peptides. In
this sense, physicochemical properties like atomic mass, atomic Van der Waals volume, atomic
electronegativities and atomic polarizabilities of the amino acids present in a peptide, should
be analyzed in order to determine a possible relationship between them and the toxicity and
hemolicity of the peptides.

The final classifier allows the differentiation between the desired peptides (i.e., non-toxic
and non-hemolytic antibacterial peptides) and the toxic and/or hemolytic peptides. Therefore,
it is used in the rational design of new antibacterial peptides in the next chapter.
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Chapter 6

Strategy 2 to design potential

non-toxic antibacterial peptides

In this strategy, the genetic algorithm involves the decision of the classifiers in the design
process of the peptides. Moreover, a toxic peptides classifier in now involved in the design of
new peptides. Once the new potential non-toxic antibacterial peptides have been designed, the
next step comprehends the analysis of their secondary structure by using the PEP-FOLD 2.0
tool [82]. The idea is to synthesize those peptides that possess a predicted alpha-helix structure.
Figure 6.1 shows the proposed strategy.
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Strategy 2

1 http://mobyle.rpbs.univ-paris-diderot.fr/

cgi-bin/portal.py#forms::PEP-FOLD

Genetic algorithm to design

non-toxic antibacterial peptides

Peptides designed with the algorithm

Peptides with alpha-helix structure

Select the peptides to synthetize

Check secondary structure 

with PEP-FOLD 2.0 tool1

Optimization function uses:

* Classifier of antibacterial 

peptides

* Classifier of toxic peptides

* Optional constraints

Figure 6.1: Workflow of the proposed strategy 2.
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6.1 Genetic algorithm PRODEABPs 1.0

In this strategy, we designed and developed a genetic algorithm (PRODEABPs 1.0) that allows
the generation of a desired number of peptides for which the predicted probabilities of being
toxic and antibacterial are under and above the thresholds established by the user, respectively.

Moreover, this algorithm designs peptides, of a given length, that satisfy the established
ranges for each one of the physicochemical descriptors selected in this thesis: charge, hydropho-
bicity, isoelectric point, and instability index. The user can modify the default ranges. However,
we recommend to use the ranges that were established in the genetic algorithm DEPRAMPs
1.0.

6.2 Overview of the designed genetic algorithm

The optimization problem to solve is given by the Equation 6.1,

Maximize fitness(p)
subject to :
h1(p) : probabp(p) > desProbabp
h2(p) : probtox(p) < desProbtox
h3(p) : x1min

< x1(p) < x1max

h4(p) : x2min
< x2(p) < x2max

h5(p) : x3min
< x3(p) < x3max

h6(p) : x4(p) < x4max

(6.1)

where, p is the amino acid sequence of a peptide, fitness(p) is the fitness of the peptide
p and is given by the Equation 6.2, probabp(p) is the probability that the peptide p has an-
tibacterial activity, and probtox(p) is the probability that the peptide p is toxic. The desired
thresholds for the antibacterial probability and the toxicity probability are given by desProbabp
and desProbtox, respectively. x1(p), x2(p), x3(p), and x4(p) are the charge, isoelectric point,
hydrophobicity and instability index of the peptide p, respectively. The range of possible values
for each of these physicochemical properties is given by the user, the minimum allowed value is
ximin

and the maximum is ximax where the value of i indicates the desired property.

fitness(p) =

(

1

1 + e(−probabp(p)+0.9)
− 0.5

)

∗ 100 +

(

1

1 + e(−probnon−tox(p)+0.9)
− 0.5

)

∗ 200 (6.2)

In the Equation 6.2, the term probnon−tox(p) is the probability that the peptide p is a
non-toxic peptide, and is given by 1 − probtox(p). The design of this function was based in
the assumption that a high antibacterial probability value and a low toxicity probability value
are desired. Hence, a shifted sigmoid function was used for each probability in order to assign
positive values to probabilities that are higher than 0.9. However, the designed function works
for any desired probability value due to its value increases if the probability value increases.
Additionally, in the fitness function the contribution of the non-toxic probability is multiplied
by twice the factor of the antibacterial part, due to the difficulty to design peptides that has
a low toxicity probability. With this strategy, the peptides that are non-toxic are preferred
over those that have a high antibacterial probability. When a peptide has both probabilities
in the desired values, the peptide becomes a candidate peptide and it is preferred over those
peptides that only posses one probability in the desired value. Moreover, the probabp(p) and
probtox(p) values are given by the final classifiers of the chapter 4 and 5, respectively. Finally,
the penalization function to deal with the constraints is included in the selection of the parents
in order to lead the solution to the desired intervals. Figure 6.2 shows the plot of the fitness
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function used in the genetic algorithm.
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Figure 6.2: Graphic of the fitness function used in the genetic algorithm. The contribution of
the non-toxic probability is twice the contribution of the antibacterial probability since it is
more difficult to find a peptide with a high probability of not being toxic, than to find a peptide
with a high probability of being antibacterial.

The workflow of this genetic algorithm is the same as the one used in the genetic algorithm
DEPRAMPs 1.0 (See Figure 6.3). However, there are important differences in the fitness
function, the selection of the parents in the creation of the offspring, and the selection of the
candidate peptides.

6.2.1 Selection of the parents in the creation of the offspring

Two parents are selected to create one child, hence, the number of selected parents is twice the
number of desired children. The selection of one parent is as follows:

1. Parenta and Parentb are selected, by roulette selection, based on their fitness values.

2. The penalization for each parent is obtained. This value is given by the Equation 6.3.

pilow(p) =

{

0 if (ximin
− xi(p)) < 0

ximin−xi(p)

ximin

otherwise

piup(p) =

{

0 if (xi(p)− ximax) < 0
xi(p)−ximax

ximax
otherwise

p4(p) =

{

0 if (x4(p)− x4max) < 0
x4(p)−x4max

x4max
otherwise

penalization(p) = (
∑i=3

i=1

(

pilow(p)
2 + piup(p)

2
)

+ p4(p)
2) ∗ −1

(6.3)

where x1(p), x2(p), x3(p) and x4(p) are the charge, isoelectric point, hydrophobicity and
instability index of the peptide p, respectively.

3. The best parent is selected based on these criteria:

• If both parents have penalization equal to zero, then the best parent is the one with
the highest fitness value.

• If only one parent has penalization equal to zero, then this is the best parent.
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Figure 6.3: Workflow of the genetic algorithm PRODEABPs 1.0.

• If none has penalization equal to zero, then, the best parent is the one with the
smaller penalization value.

Once all the parents have been selected, the children are created in the same way that they
are created in the genetic algorithm DEPRAMPs 1.0.

6.2.2 Selection of candidate peptides

In this genetic algorithm, a candidate peptide is a peptide that complies with the desired proba-
bilities of antibacterial activity and toxicity, i.e. a peptide that complies h1 and h2 constraints.
Moreover, if the parameter of hard constraints (hardCons) is set to yes, then a candidate
peptide should also satisfy the constraints h3, h4, h5, and h6.

6.3 Simulations performed

In order to determine a suitable factor between number of candidate peptides and size of the
population, we performed simulations with the number of candidate peptides set to 25, and the
size of the population set to 1, 2, ...,10 times the number of candidate peptides. Five simu-
lations were performed for each value. For these simulations, the number of generations was
set to 5,000 and the parameter hardCons was set to yes. The desired antibacterial probability
(desProbabp) was set to 0.99 and the desired toxicity probability (desProbtox) was set to 0.01.

Additionally, we performed multiple simulations of the genetic algorithm using different
values for the parameters: size of the peptides (desLength), number of candidate peptides
(desNum) and size of the population (sizePop). For this purpose, we used a Latin Square (see
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Figure 6.4) with these parameters. In total, 16 different simulations were designed. Each of the
simulations was run 6 times, 3 times with the parameter hardCons = yes i.e., the candidate
peptides must fulfill all the constraints, and 3 times with the parameter hardCons = no (the
candidate peptides fulfill constraints h1 and h2).
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Figure 6.4: Latin square of the performed simulations.

6.4 Results

6.4.1 The size of the population should be about four times the number of

candidate peptides

Figure 6.5 shows the average time and number of generations required to design 25 candidate
peptides when different sizes of the population are used. For these simulations the parameter
hardCons was set to yes due to it is expected that the required time to perform a simulation
will be higher when all the constraints must be fulfilled. The simulations that used 25 and 50
peptides in the population were not satisfactory. They could not reach the desired number of
candidate peptides in 2000 generations.

In general, an increment on the size of the population might lead to a reduction in the number
of generations required to design the candidate peptides. However, this increment might lead
to an increment on the computational time of the simulation, due to the fitness evaluation of
the peptides. Therefore, according with our results, the size of the population should be set to
about four times the number of candidate peptides in order to reduce both, the computational
time and the number of generations. Moreover, it can be observed that an increment in the size
of the population does not imply a reduction of time or number of generations. This situation
might be caused by the random nature of the crossover and mutation processes, or by the initial
population of the genetic algorithm.
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Figure 6.5: Normalized average time and number of generations required to design 25 peptides
using different sizes of the population. Time=1 ≡ 6363.983 seconds, and number of genera-
tions=1 ≡ 404 generations.

6.4.2 The initial population influences in the performance of the genetic

algorithm

Figure 6.6 shows the colormaps for the time and number of generations required to obtain the
desired number of candidate peptides using different sizes of the population. The maps on the
left are obtained when the parameter hardCons is set to no. The colormaps of the right when
the parameter hardCons is set to yes. The values inside each color box represents the value
and the standard deviation of the time for the colormaps in the top of the figure, and the value
and the standard deviation of the number of generations for the colormaps in the bottom of the
figure.

As mentioned before, it can be observed that an increment in the size of the population
does not imply a reduction in time or number of generations. Additionally, there are some cases
where the standard deviation is extremely high. Therefore, it is likely that the initial popula-
tion has a great influence in the performance of the genetic algorithm. If the initial population
has a high diversity with some candidate peptides, the simulation will be faster than when the
initial population does not contain any candidate peptide. However, due to the diversity of the
population is controlled in each generation, the algorithm is able to obtain the desired results
with the fixing strategy. In these fixing procedures new peptides are created, and if the number
of generations is large enough, the genetic algorithm will be able to achieve the desired number
of candidate peptides.

On the other hand, depending on the quality of the initial population, the number of ge-
nerations seems to be less when the size of the population increases. Having a higher number
of peptides increases the chances of finding different candidate peptides in each generation.
However, it is important to consider that a larger population also implies more computational
time due to the calculation of the fitness values. Therefore, we recommend that the size of the
population would be around four times the number of candidate peptides.
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Figure 6.6: Time and number of generations required to obtain the desired number of candidate
peptides when different sizes of the population are used. The values inside each color box
represents the standard deviation. The simulations were performed in a computer with 4 GB of
RAM memory, and an IntelR© CoreTM i5-480M processor with 2 cores and 2.67GHz of frequency.

6.4.3 The designed peptides comply with the established constraints

Two groups of candidate peptides were created. The first group named soft constraints that con-
tains all the candidate peptides that were obtained during the simulations using the parameter
hardCons = no. The second group comprehends those peptides that were designed using the
parameter hardCons = yes. This last group is named hard constraints. The physicochemical
properties of the designed peptides were calculated and their corresponding boxplots are shown
in Figure 6.7.

All the designed peptides, from both groups, comply with the restrictions for both antibac-
terial and toxicity probability set by the user. Additionally, all the peptides of the group hard
constraints also comply with the constraints for the physicochemical properties. Similarly, most
of the peptides from the group soft constraints fulfill these constraints too, because the selection
of the parents (in each generation) involves the evaluation of these constraints.
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Figure 6.7: Physicochemical properties of the designed peptides.

6.5 Posterior analysis of the peptides

As in the strategy 1, the peptides that have been designed with the genetic algorithm PRODE-
ABPs 1.0, should be analyzed with the PEP-FOLD 2.0 tool [82] (http://mobyle.rpbs.univ-
paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD) in order to determine their secondary
structure. The peptides that display a predicted alpha-helix secondary structure should be
selected for the next step. Figure 6.8 shows the primary and secondary structure of two pep-
tides designed with the genetic algorithm PRODEABPs 1.0., and that posses an alpha-helix
secondary structure according with PEP-FOLD 2.0 tool.

AGPSAFKLLGRIIHHVGVGAVLDILKDVGKGLLS

Figure 6.8: Primary and secondary structure of two peptides designed with the genetic algorithm
PRODEABPs 1.0.

Later, the remaining peptides should be analyzed in their primary structure, i.e., multiple
conditions about the amino acid content of the peptides can be established in the selection of
the peptides. For example, the number of cysteines (C) in the peptide could be set to zero
due to the difficulty that they represent in the synthesis process of the peptides. Therefore,
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it is recommended to consider the properties that might affect the antimicrobial activity and
the toxicity of the peptides that were presented in Chapter 2 (See section 2.2.5). Finally, it is
recommended to select those peptides that do not present an homology higher than 50% with
the antimicrobial peptides reported in the APD and CAMP database. This step is required in
case that the designed peptide will be patented.

6.6 Conclusions

The proposed genetic algorithm allows the design of new potential non-toxic antibacterial pep-
tides. The speed of the algorithm depends on how good is the initial population. However, if the
number of generations is large enough, the genetic algorithm will be able to obtain the desired
results due to the fixing procedure that allows the insertion of new peptides in the population.
This diversity control is a fundamental part in the development of the genetic algorithm. A
good diversity in the population helps to find the desired number of candidate peptides.

The fact that the initial population leads to different results is not a disadvantage for us,
since the main goal of the algorithm is to help in the creation of a large library of potential
non-toxic antibacterial peptides. In this sense, we are not interested on finding a global mini-
mum, the purpose is to find multiple local minimums. These minimums corresponds to those
peptides that comply with the desired constraints, and therefore, peptides that are likely to be
effective in experimental tests.

The design of new potential non-toxic antibacterial peptides is more efficient using the stra-
tegy 2 than the strategy 1, because the genetic algorithm gives as results those peptides that are
already classified as antibacterial peptides. Moreover, this strategy involves the decision of a
toxic peptides classifier which helps in the selection of peptides that not only would be effective
against bacteria, but also peptides that would not be toxic for human beings.

The main differences between the two strategies are:

• The optimization function used in the genetic algorithms.

• The selection of the parents in the strategy 2 involves a competition between peptides,
where the best ones, in terms of penalization values, are selected.

• The genetic algorithm of the strategy 2 allows to design peptides that are not forced to
fulfill the constraints related with the physicochemical properties, although, the suggested
ranges are considered in the design of the peptides.

• The classifiers used in the strategy 2 were created with a more complete dataset. There-
fore, if strategy 1 is going to be used, we recommend to use the dataset used in the strategy
2. Moreover, we also recommend to use the toxic peptides classifier in the strategy 1.

After the generation of multiple candidate non-toxic antibacterial peptides, the selection
of those that are going to be synthesized is a difficult step, since all of the designed peptides
are equally likely to be effective. Therefore, additional filters are required and further studies
have to be developed in order to improve the prediction of new potential antibacterial peptides.
Important aspects such as the stability of the peptides and the mechanism of action could enrich
the genetic algorithm designed in this thesis.
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Chapter 7

Conclusions and future works

7.1 Summary

This thesis helps to overcome one of the limitations in the rational design of antibacterial pep-
tides since it allows the design of new peptides that are likely to be non-toxic and to possess
antibacterial activity. Among the main contributions of this thesis we can find the proposed
methodology, the designed peptides that have shown a competitive antibacterial activity and a
low cytotoxicity, the softwares DEPRAMPs 1.0 and PRODEABPs 1.0, and journal articles.

The methodology proposed in this thesis allows the design of peptides using the probabi-
lities for antibacterial activity and toxicity of a peptide at the same time. Since the design
of the classifiers was focused on the reduction of the false positive rate, it is likely that this
thesis helps to the reduction of time and costs associated with the synthesis of peptides that
do not possess the desired properties. Moreover, the results associated with this thesis are of
high importance for the research groups CEMOS and GIBIM. The bioinformatics research line
was strengthened with the development of this thesis and the support given to undergrad and
master thesis in this area. Moreover, thesis of undergrad, master and other Ph.D. students
used peptides designed in this thesis. Additionally, the proposed methodology is in the process
of being patented since some pharmaceutical companies have shown interest in the work that
has been performed in this thesis. Furthermore, two peptides designed in this thesis are in the
process of being patented and it is expected that they could become potential new antibiotics
in a near future (around 10 years), and in a long term might save thousands of lives.

On the other hand, although the antimicrobial peptides have been studied in the last decades,
in our personal opinion, the area of the rational design of antibacterial peptides is in its first
stages of development. We believed that the design of new effective antibacterial peptides re-
quires the integration of multiple aspects such as the toxicity, stability, mechanism of action,
and selectivity against gram-positive or gram-negative bacteria, among others. Additionally,
one of the main limitations in this field is the inability to describe their mechanism of action
in physical-chemical terms and the lack of explicit, molecular, structure-function relationships.
Therefore, we believed that future works in the rational design of antibacterial peptides are re-
quired urgently in order to find a potential solution to the threat of multidrug-resistant bacteria.

Finally, we encourage the scientific community to increase the research in the search of new
potential antibiotics. Scientific research should not be focused in the return of the investment
but on the real needs of human society. In this sense, we believed that this thesis is an important
step in the search of effective antibacterial peptides that could become new antibiotics in the
future.
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7.2 Products of this thesis

7.2.1 Journal Articles

Published

• Paola Rondón-Villarreal, Daniel A. Sierra, Rodrigo Torres. Machine Learning in the
Rational Design of Antimicrobial Peptides. Current Computer Aided-Drug Design, ISSN
1573-4099, Vol 10, Number 3, 2014, Pag 183.

• Daniel Osorio, Paola Rondón-Villarreal, Rodrigo Torres. Peptides: A Package for Data
Mining of Antimicrobial Peptides. The R Journal, ISSN 2073-4859, Vol 7, Number 1,
2015, Pag 4.

• Paola Rondón-Villarreal, Daniel A. Sierra, Rodrigo Torres. Classification of antimicrobial
peptides by using the p-spectrum kernel and support vector machines. Advances in Com-
putational Biology. Advances in Intelligent Systems and Computing, ISSN 2194-5365, Vol
232, Pag 155.

• Daniel Osorio, Paola Rondón-Villarreal, Rodrigo Torres. Stability analysis of antimicro-
bial peptides in solvation conditions by molecular dynamics. Advances in Computational
Biology. Advances in Intelligent Systems and Computing, ISSN 2194-5365, Vol 232, 2014,
Pag 127.

• Jennifer Ruiz, Jhon Calderon, Paola Rondón-Villarreal, Rodrigo Torres. Analysis of struc-
ture and hemolytic activity relationships of antimicrobial peptides (AMPs). Advances in
Computational Biology. Advances in Intelligent Systems and Computing, ISSN 2194-5365,
Vol 232, 2014, Pag 253.

• Yuly Andrea Prada, Fanny Guzmán, Paola Rondón-Villarreal, Patricia Escobar, Clau-
dia Ortiz, Daniel Sierra, Rodrigo Torres, Enrique Mej́ıa. A new synthetic peptide with
antibacterial potential in vitro against Escherichia coli O157:H7 and Methicilin resistant
Staphylococcus aureus (MRSA). Probiotics and Antimicrobial Proteins, First online: 15
June 2016.

In revision process

• Paola Rondón-Villarreal, Marcel J.T. Reinders, Francy Camacho, Rodrigo Torres, Daniel
A. Sierra, David M.J. Tax. Implications of the Optimization Criterion When Creating an
Antibacterial Peptide Classifier.

• Jenniffer Cruz, Paola Rondón-Villarreal, Claudia Ortiz, Fanny Guzmán, Claudio Alvarez,
Roberto Fernández-Lafuente, Luis Rivas, Maŕıa Ángeles Ábengozar, Fernando Albericio,
Mauricio Urquiza, Daniel A. Sierra, Rodrigo G. Torres. Rational Design and Evaluation
of Novel Antimicrobial Peptides Bioactives Against Escherichia coli O157:H7, methicillin-
resistant Staphylococcus aureus and Pseudomonas aeruginosa.

7.2.2 Participation in academic and scientific events

• Finalist in the Falling Walls Lab Berlin. Presentation title: Breaking the wall of antibiotic
resistance. Berlin, Germany 2015.

• Oral Presentations at the 2nd Colombian Congress on Computational Biology and Bioin-
formatics CCBCOL. Manizales, Colombia 2013:
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– Classification of antimicrobial peptides by using the p-spectrum kernel and support
vector machines. Advances in Computational Biology. Presented by Paola Rondón-
Villarreal.

– Stability analysis of antimicrobial peptides in solvation conditions by molecular dy-
namics. Advances in Computational Biology. Presented by Daniel Osorio.

– Analysis of structure and hemolytic activity relationships of antimicrobial peptides
(AMPs). Presented by Jennifer Ruiz.

• Poster at the 2015 IEEE Thirty Fifth Central American and Panama Convention (CON-
CAPAN XXXV). C. Lastre-Domı́nguez, P. Rondón-Villarreal, D.A. Sierra, Classification
of Peptides Using Ensembles by Applying Different Strategies that Deal with Imbalanced
Data and Combination Rules. Tegucigalpa, Honduras 2015. Presented by Carlos Lastre.

7.2.3 Support to final degree projects

• Master thesis. Clasificación de Péptidos a partir de diferentes métodos y estrategias de
ensamble de clasificadores en condición desbalanceada. Author: Carlos Mauricio Lastre
Domı́nguez. Advisor: Daniel Alfonso Sierra Bueno. Co-advisor: Nydia Paola Rondón
Villarreal.

• Undergrad thesis. Análisis del potencial de disrupción de membranas y estabilidad de
péptidos catiónicos antimicrobianos por simulaciones de dinámica molecular. Author:
Daniel Camilo Osorio Hurtado. Advisor: Rodrigo Gonzalo Torres Sáez. Co-advisor:
Nydia Paola Rondón Villarreal.

• Undergrad thesis. Sistema de clasificación de péptidos antibacterianos utilizando máquinas
de soporte vectorial. Author: Francy Liliana Camacho Urrea. Advisor: Lola Xiomara
Bautista. Co-advisors: Nydia Paola Rondón Villarreal, Rodrigo Gonzalo Torres Sáez,
Daniel Alfonso Sierra Bueno.

• Peptides that were designed in this thesis have been used in the PhD thesis of Jennifer
Cruz, master thesis of Yuly Andrea Prada, Marlon Yesid Cáceres, and Andrés Mauricio
Castañeda. These students are members of the research group GIBIM at the Chemistry
School - Universidad Industrial de Santander.

7.2.4 Potential non-toxic antibacterial peptides

• Peptides GIBIM-P6 and GIBIM-P5F8W that are in the process of being patented.

7.2.5 Softwares

• Software DEPRAMPs 1.0 to design peptides with specific physicochemical properties.

• Software PRODEABPs 1.0 to design non-toxic antibacterial peptides.

7.3 Future works

Once a library of potential non-toxic antibacterial peptides has been created, an important step
is the selection of the best peptides to synthesize. This selection process requires additional
information of the peptides in order to determine which ones are the best option. Therefore,
future works should be done in order to improve the design of potential new antibacterial
peptides. These are some of the improvements that could be performed to the proposed genetic
algorithm:
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• To include the prediction of the secondary structure of the peptides in the design process.
As a result, it would be possible to design peptides that will possess a predicted alpha-helix
structure, reducing the time spent in the posterior analysis of the designed peptides.

• To include the probability that a peptide will be stable. In this sense, it is important to
design peptides that will be stable and that would not be susceptible to degradation at a
systemic level.

• To create classifiers that allow the differentiation of peptides that are active against gram-
positive, gram-negative or both types of bacteria.

• To create classifiers that allow the prediction of the most likely mechanism of action for
a peptide.

• To include more physicochemical properties related with the antibacterial activity, toxicity
and stability of the peptides.

• To include molecular dynamics simulations in the posterior analysis of the best candidate
peptides before the synthesis process.
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[103] Jofré, C. , Guzmán, F. , Cárdenas, C. , Albericio, F. , and Marshall, S. H. . A natural
peptide and its variants derived from the processing of infectious pancreatic necrosis virus
(IPNV) displaying enhanced antimicrobial activity: A novel alternative for the control of
bacterial diseases. Peptides, 32:852–858, 2011.

[104] Haney, E. F. , Lau, F. , and Vogel, H. J. . Solution structures and model membrane
interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(10):2355–2364, 2007.

[105] Fritsche, T. R. , Rhomberg, P. R. , Sader, H. S. , and Jones, R. N. . Antimicrobial activity
of omiganan pentahydrochloride tested against contemporary bacterial pathogens com-
monly responsible for catheter-associated infections. Journal of Antimicrobial Chemother-
apy, 61:1092–1098, 2008.

[106] Li, W. and Godzik, A. . Cd-hit: a fast program for clustering and comparing large sets
of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

[107] Huang, Y. , Niu, B. , Gao, Y. , Fu, L. , and Li, W. . CD-HIT Suite: a web server for
clustering and comparing biological sequences. Bioinformatics, 26(5):680–682, 2010.

[108] Ali, S. and Smith, K. A. . On learning algorithm selection for classification. Applied Soft
Computing, 6(2):119–138, 2006.

[109] Nagarajan, V. , Kaushik, N. , Murali, B. , Zhang, C. , Lakhera, S. , Elasri, M. O.
, and Deng, Y. . A Fourier Transformation based Method to Mine Peptide Space for
Antimicrobial Activity. BMC Bioinformatics, 7(Suppl 2):S2–S9, 2006.

[110] Polanco, C. and Samaniego, J. L. . Detection of selective cationic amphipatic antibacterial
peptides by Hidden Markov models. Acta Biochimica Polonica, 56(1):167–176, 2009.

[111] Webb, A. R. and Copsey, K. D. . Statistical Pattern Recognition. Wiley, Chichester, UK,
third edition, 2011.

[112] Burges, C. J. . A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[113] Hastie, T. , Tibshirani, R. , and Friedman, J. . The Elements of Statistical Learning.
Springer, New York, NY, USA, springer series in statistics edition, 2001.

[114] Jiang, Z. , Vasil, A. I. , Gera, L. , Vasil, M. L. , and Hodges, R. S. . Rational Design of
alpha-Helical Antimicrobial Peptides to Target Gram-negative Pathogens, Acinetobacter
baumannii and Pseudomonas aeruginosa: Utilization of Charge, ’Specificity Determi-
nants’, Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to
Improve the Therapeutic Ratio . Chemical Biology & Drug Design, 77(4):225–240, 2011.

[115] Wessels, L. F. A. , Reinders, M. J. T. , Hart, A. A. M. , Veenman, C. J. , Dai, H. , He,
Y. D. , and Veer, L. J. , van’t. A protocol for building and evaluating predictors of disease
state based on microarray data. Bioinformatics, 21(19):3755–3762, 2005.

90



[116] Szymaska, E. , Saccenti, E. , Smilde, A. K. , and Westerhuis, J. A. . Double-check: vali-
dation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics,
8(Suppl 1):S3–S16, 2012.

[117] Maaten, L. V. , der and Hinton, G. . Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008.

[118] Bodapati, K. C. , Soudy, R. , Etayash, H. , Stiles, M. , and Kaur, K. . Design, synthesis
and evaluation of antimicrobial activity of N-terminal modified Leucocin A analogues.
Bioorganic & medicinal chemistry, 21(13):3715–3722, 2013.

[119] Naamati, G. , Askenazi, M. , and Linial, M. . ClanTox: a classifier of short animal toxins.
Nucleic acids research, 37(Web Server issue):W363 – W368, 2009.

[120] Saha, S. and Raghava, G. P. S. . BTXpred: Prediction of bacterial toxins. In silico
Biology, 7(4-5):405–412, 2007.

[121] Saha, S. and Raghava, G. P. S. . Prediction of neurotoxins based on their function and
source. In silico Biology, 7(4-5):369–387, 2007.

[122] Chakraborty, A. , Ghosh, S. , Chowdhary, G. , Maulik, U. , and Chakrabarti, S. . DBETH:
A Database of Bacterial Exotoxins for Human. Nucleic Acids Research, 40(Database
issue):D615–D620, 2012.

[123] Bairoch, A. and Apweiler, R. . The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucleic Acids Research, 28(1):45–48, 2000.

91



Bibliography

Ali, S. and Smith, K. A. (2006). On learning algorithm selection for classification. Applied Soft
Computing, 6(2):119–138.
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Cherkasov, A. (2009). Identification of novel antibacterial peptides by chemoinformatics and
machine learning.Journal of Medicinal Chemistry, 52(7):2006–2015.

Fritsche, T. R., Rhomberg, P. R., Sader, H. S., and Jones, R. N. (2008). Antimicrobial activity
of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly
responsible for catheter-associated infections. Journal of Antimicrobial Chemotherapy, 61:1092–
1098.

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., and Herrera, F. (2012). A review
on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Ap-
proaches. IEEE transactions on systems, man, and cybernetics. Part C, Applications and
Reviews, 42(4):463–484.

Giuliani, A., Pirri, G., and Nicoletto, S. F. (2007). Antimicrobial peptides: an overview of a
promising class of therapeutics.Central European Journal of Biology, 2(1):1–33.

Gogoladze, G., Grigolava, M., Vishnepolsky, B., Chubinidze, M., Duroux, P., Lefranc, M.-P.,
and Pirtskhalava, M. (2014). DBAASP: database of antimicrobial activity and structure of
peptides. FEMS microbiology letters, 357(1):63–68.

Gueguen, Y., Garnier, J., Robert, L., Lefranc, M.-P., Mougenot, I., De Lorgeril, J., Janech,
M., Gross, P. S., Warr, G. W., Cuthbertson, B., Barracco, M. A., Bulet, P., Aumelas, A.,
Yang, Y., Bo, D., Xiang, J., Tassanakajon, A., Piquemal, D., and Bachère, E. (2006). PenBase,
the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recom-
mended nomenclature.Developmental & Comparative Immunology, 30(3):283–288.

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., and
Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins.
PloS one, 8(9):e73957–e73966.

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., and Raghava, G. P. S. (2015).
Peptide Toxicity Prediction. In Computational Peptidology, volume 1268, pages 143–157.

Hammami, R., Hamida, J. B., Vergoten, G., and Fliss, I. (2009). PhytAMP: a database dedi-
cated to antimicrobial plant peptides. Nucleic Acids Research, 37(Database issue):D963–D968.

94



Hammami, R., Zouhir, A., Hamida, J. B., and Fliss, I. (2007). BACTIBASE: a new web-
accessible database for bacteriocin characterization. BMC Microbiology, 7:89–94.

Hammami, R., Zouhir, A., Le Lay, C., Hamida, J. B., and Fliss, I. (2010). BACTIBASE sec-
ond release: a database and tool platform for bacteriocin characterization. BMC Microbiology,
10(22):1–5.

Hancock, R. E. W. and Sahl, H.-G. (2006). Antimicrobial and host-defense peptides as new
anti-infective therapeutic strategies. Nature Biotechnology, 24(12):1551–1557.

Haney, E. F., Lau, F., and Vogel, H. J. (2007). Solution structures and model membrane inter-
actions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochimica
et Biophysica Acta (BBA) - Biomembranes, 1768(10):2355–2364.

Hastie, T., Tibshirani, R., and Friedman, J. (2001).The Elements of Statistical Learning.
Springer, New York, NY, USA, springer series in statistics edition.

He, H. and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284.

HHS, U. D. o. H., Services, H., CDC, C. f. D. C., and Prevention (2013). Antibiotic resistance
threats in the United States, 2013. Technical report, USA.

Hilpert, K., Elliott, M. R., Volkmer-Engert, R., Henklein, P., Donini, O., Zhou, Q., Winkler,
D. F. H., and Hancock, R. E. W. (2006). Sequence requirements and an optimization strategy
for short antimicrobial peptides. Chemistry & Biology, 13(10):1101–1107.

Houghten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of
peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Pro-
ceedings of the National Academy of Sciences of the United States of America, 82(15):5131–5135.

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite: a web server for
clustering and comparing biological sequences. Bioinformatics, 26(5):680–682.

Infectious Diseases Society of America (2010). The 10 x ’20 Initiative: pursuing a global com-
mitment to develop 10 new antibacterial drugs by 2020. Clinical infectious diseases, 50(8):1081–
1083.

Jenssen, H., Fjell, C. D., Cherkasov, A., and Hancock, R. E. W. (2008). QSAR modeling and
computer-aided design of antimicrobial peptides. Journal of Peptide Science, 14(1):110–114.

Jenssen, H. v., Lejon, T., Hilpert, K., Fjell, C. D., Cherkasov, A., and Hancock, R. E. W.
(2007). Evaluating different descriptors for model design of antimicrobial peptides with en-
hanced activity toward P. aeruginosa. Chemical Biology Drug Design, 70(2):134–142.

Jiang, Z., Vasil, A. I., Gera, L., Vasil, M. L., and Hodges, R. S. (2011). Rational Design of
alpha-Helical Antimicrobial Peptides to Target Gram-negative Pathogens, Acinetobacter bau-
mannii and Pseudomonas aeruginosa: Utilization of Charge, ’Specificity Determinants’, Total
Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Thera-
peutic Ratio. Chemical Biology & Drug Design, 77(4):225–240.

95
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98



Archer, J. A. C., and Bajic, V. B. (2012). DAMPD: a manually curated antimicrobial peptide
database.Nucleic Acids Research, 40(Database issue):D1108–D1112.

Szymaska, E., Saccenti, E., Smilde, A. K., and Westerhuis, J. A. (2012). Double-check: valida-
tion of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8(Suppl
1):S3–S16.

Taboureau, O., Olsen, O. H., Nielsen, J. D., Raventos, D., Mygind, P. H., and Kristensen, H.-H.
(2006). Design of novispirin antimicrobial peptides by quantitative structure-activity relation-
ship. Chemical Biology & Drug Design, 68(1):48–57.

Takahashi, D., Shukla, S. K., Prakash, O., and Zhang, G. (2010). Structural determinants of
host defense peptides for antimicrobial activity and target cell selectivity.Biochimie, 92(9):1236–
1241.

Tan, J., Huang, J., Huang, Y., and Chen, Y. (2014). Effects of single amino acid substitution
on the biophysical properties and biological activities of an amphipathic α-helical antibacterial
peptide against Gram-negative bacteria. Molecules, 19(8):10803–10817.

Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K., and Idicula-Thomas, S. (2010). CAMP:
a useful resource for research on antimicrobial peptides. Nucleic Acids Research, 38(Database
issue):D774–D780.

Torrent, M., Andreu, D., Nogués, V. M., and Boix, E. (2011). Connecting Peptide Physico-
chemical and Antimicrobial Properties by a Rational Prediction Model.PLoS one, 6(2):e16968–
e16975.

Tossi, A. and Sandri, L. (2002). Molecular Diversity in Gene-Encoded, Cationic Antimicrobial
Polypeptides.Current Pharmaceutical Design, 8(9):743–761.

van den Berg, B. A., Reinders, M. J., Roubos, J. A., and de Ridder, D. (2014). SPiCE: a
web-based tool for sequence-based protein classification and exploration.BMC Bioinformatics,
15:93–102.

Ventola, C. L. (2015). The Antibiotic Resistance Crisis Part 1 : Causes and Threats.Pharmacy
and Therapeutics, 40(4):277–283.

Wade, D. and Englund, J. (2002). Synthetic antibiotic peptides database. Protein and peptide
letters, 9(1):53–57.

Wang, C. K. L., Kaas, Q., Chiche, L., and Craik, D. J. (2007). CyBase: a database of cyclic
protein sequences and structures, with applications in protein discovery and engineering. Nu-
cleic Acids Research, 36(Database issue):D206–D2010.

Wang, G. (2013).Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Super-
bugs.Pharmaceuticals, 6(6):728–758.

Wang, G. (2015). Improved Methods for Classification, Prediction, and Design of Antimicrobial
Peptides. In Computational Peptidology, volume 1268, pages 43–66.

Wang, G., Li, X., and Wang, Z. (2009). APD2: the updated antimicrobial peptide database

99



and its application in peptide design. Nucleic Acids Research, 37(Database issue):D933–D937.

Wang, P., Hu, L., Liu, G., Jiang, N., Chen, X., Xu, J., Zheng, W., Li, L., Tan, M., Chen, Z.,
Song, H., Cai, Y.-D., and Chou, K.-C. (2011). Prediction of antimicrobial peptides based on
sequence alignment and feature selection methods. PloS one, 6(4):e18476–e18484.

Wang, Z. and Wang, G. (2004). APD: the Antimicrobial Peptide Database.Nucleic Acids Re-
search, 32(Database issue):D590–D592.

Webb, A. R. and Copsey, K. D. (2011). Statistical Pattern Recognition. Wiley, Chichester, UK,
third edition.

Wessels, L. F. A., Reinders, M. J. T., Hart, A. A. M., Veenman, C. J., Dai, H., He, Y. D.,
and van’t Veer, L. J. (2005). A protocol for building and evaluating predictors of disease state
based on microarray data.Bioinformatics, 21(19):3755–3762.

Whitmore, L. and Wallace, B. A. (2004). The Peptaibol Database: a database for sequences and
structures of naturally occurring peptaibols.Nucleic Acids Research, 32(Database issue):D593–
D594.

WHO, W. H. O. (2014). Antimicrobial Resistance Global Report on Surveillance. Technical
report, France.

Williams, K. J. and Bax, R. P. (2009). Challenges in developing new antibacterial drugs. Cur-
rent Opinion in Investigational Drugs, 10(2):157–163.

Wimley, W. C. and Hristova, K. (2011). Antimicrobial peptides: successes, challenges and
unanswered questions. The Journal of membrane biology, 239(1-2):27–34.

Wu, H., Lu, H., Huang, J., Li, G., and Huang, Q. (2012). EnzyBase: a novel database for
enzybiotic studies. BMC Microbiology, 12:54–58.

Wu, X., Wang, Z., Li, X., Fan, Y., He, G., Wan, Y., Yu, C., Tang, J., Li, M., Zhang, X., Zhang,
H., Xiang, R., Pan, Y., Liu, Y., Lu, L., and Yang, L. (2014). In vitro and in vivo activities of
antimicrobial peptides developed using an amino acid-based activity prediction method. An-
timicrobial agents and chemotherapy, 58(9):5342–5349.

Xiao, X., Wang, P., Lin, W.-Z., Jia, J.-H., and Chou, K.-C. (2013). iAMP-2L: a two-level
multi-label classifier for identifying antimicrobial peptides and their functional types. Analyti-
cal biochemistry, 436(2):168–177.

Zhao, X., Wu, H., Lu, H., Li, G., and Huang, Q. (2013). LAMP: A Database Linking Antimi-
crobial Peptides. PloS one, 8(6):e66557–e66562.

Zhu, X., Ma, Z., Wang, J., Chou, S., and Shan, A. (2014). Importance of Tryptophan in
Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial
Peptide. PloS one, 9(12):e114605–e114623.

100


	Introduction
	Rational design of antimicrobial and antibacterial peptides
	Antimicrobial peptides
	Mechanisms of action of antimicrobial peptides in bacteria

	Rational design of antimicrobial peptides
	Peptide descriptors
	Improvement of the existing peptides
	Regression models
	Classification models
	Properties that might affect the antimicrobial activity and the toxicity of the peptides

	Current limitations in the rational design of antimicrobial peptides
	Overcoming one limitation

	Strategy 1 to design potential antibacterial peptides
	Genetic algorithm DEPRAMPs 1.0
	Overview of DEPRAMPs 1.0 algorithm
	Creation of the population
	Creation of the offspring
	Replacement
	Stop criteria
	Printing of candidate peptides

	Simulations performed
	The genetic algorithm is quite fast if the correct size of the population is set
	The designed peptides comply with the established constraints

	Classification of antimicrobial and antibacterial peptides by using kernel methods and peptide descriptors
	Creation of the working dataset
	Common strategies to deal with the imbalanced problem
	Kernel methods
	Peptide descriptors
	Simulations performed
	Results and Discussion

	Posterior analysis of the peptides
	Experimental results
	Conclusions

	Creation of the final classifier of antibacterial peptides
	Creation of the input dataset
	Selection of the machine learning algorithm
	Selection of peptide features
	Evaluation measures 
	 Cascade models as a strategy to improve the performance. 
	Results and Discussion
	A non-linear model might be suitable to classify antibacterial peptides than linear models. 
	The selection of the features sets is affected by both the optimization criterion and the configuration of the negative dataset. 
	Both negative subtypes should be used in the creation of an antibacterial peptides classifier. 
	Single classifiers outperform cascade classifiers. 
	The logistic classifier is preferred for the design of new antibacterial peptides
	Final classifier

	Conclusions

	Creation of the classifier of toxic peptides
	Materials and Methods
	Dataset
	Creation of the toxic peptides classifier

	Results and Discussion
	The logistic classifier is preferred to create the toxic peptides classifier
	The logistic classifier allows the differentiation of non-toxic and non-hemolytic peptides

	Conclusions

	Strategy 2 to design potential non-toxic antibacterial peptides
	Genetic algorithm PRODEABPs 1.0
	Overview of the designed genetic algorithm
	Selection of the parents in the creation of the offspring
	Selection of candidate peptides

	Simulations performed
	Results
	The size of the population should be about four times the number of candidate peptides
	The initial population influences in the performance of the genetic algorithm
	The designed peptides comply with the established constraints

	Posterior analysis of the peptides
	Conclusions

	Conclusions and future works
	Summary
	Products of this thesis 
	Journal Articles
	Participation in academic and scientific events
	Support to final degree projects
	Potential non-toxic antibacterial peptides
	Softwares

	Future works

	References
	Bibliography

