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Resumen

TÍTULO: Algoritmo de reconstrucción para la fusión de imágenes espectrales multibanda comprimidas
basado en desmezclado espectral. 1

AUTOR: Edwin Mauricio Vargas Díaz.2

PALABRAS CLAVE: Imágenes espectrales, muestreo compresivo, fusión de datos, muestreo remoto.

DESCRIPCIÓN:

En los últimos años, una forma común de mejorar la resolución espacial de imágenes hiper-espectrales
(HS) ha sido la fusión con información complementaria proveniente de imágenes multiespectrales (MS)
o pancromáticas. La imagen HS de alta resolución resultante permite aplicaciones en campos donde la
adquisición de imágenes de alta resolución espectral y espacial es extremadamente costosa. Este trabajo
propone un nuevo método para reconstruir una imagen de alta resolución espacial y alta resolución espectral
a partir de medidas comprimidas adquiridas por múltiples sensores, cada uno con diferente resolución
espacial y espectral, específicamente imágenes HS y MS comprimidas. Para resolver este problema, se
introduce un modelo de fusión basado en el modelo de mezclas lineales clásicamente usado para imágenes
HS. Además, se desarrolla un algoritmo de optimización basado en una estrategia de bloques coordenados
descendiente. Las restricciones de no negatividad y suma a uno, resultantes de las propiedades físicas de
las abundancias, y una penalización de variación total, son usadas para regularizar este problema inverso
mal condicionado. Resultados de simulación para imágenes HS y MS reales comprimidas, muestran que
el algoritmo propuesto puede proveer resultados de fusión que son muy cercanos a aquellos obtenidos con
imágenes no comprimidas, con la ventaja de usar un número reducido de medidas.

1Trabajo de Investigación
2Escuela de ingenierías eléctrica, electrónica y telecomunicaciones, Universidad Industrial de Santander.

Supervisor, Henry Arguello Fuentes.
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Abstract

Title: Reconstruction Algorithm for Compressive Multiband Spectral Imaging Fusion based on Spectral
Unmixing.3

Author: Edwin Mauricio Vargas Diaz.4

Keywords: Spectral Imaging, compressive sampling, data fusion, remote sensing.

In the last years, one common way of enhancing the spatial resolution of hyperspectral (HS) images has
been to fuse this image with complementary information coming from multispectral (MS) or panchromatic
images. The resultant high resolution HS image allows applications in fields where building a unique
imaging system with high spectral and high spatial resolution requirements is extremely expensive. This
work proposes a new method for reconstructing a high-spatial high-spectral image from measurements
acquired after compressed sensing by multiple sensors of different spectral and spatial resolutions, with a
specific attention to HS and MS compressed images. To solve this problem, we introduce a fusion model
based on the linear spectral unmixing model classically used for HS images and investigate an optimization
algorithm based on a block coordinate descent strategy. The non-negative and sum-to-one constraints
resulting from the intrinsic physical properties of abundances as well as a total variation penalization are
used to regularize this ill-posed inverse problem. Simulations results conducted on realistic compressed
HS and MS images show that the proposed algorithm can provide fusion results that are very close to
those obtained with uncompressed images, with the advantage of using a significant reduced number of
measurements.

3Research work
4Escuela de ingenierías eléctrica, electrónica y telecomunicaciones, Universidad Industrial de Santander.

Supervisor, Henry Arguello Fuentes.
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Introduction

Hyperspectral (HS) sensors collect data that can be represented by a three-dimensional
data cube [1]. This data cube referred to as HS image is a collection of 2D images, where
each 2D image is captured at a specific wavelength. HS images are characterized by a
high spectral resolution which allows an accurate identification of the different materials
contained in the scene of interest. Analyzing the spectral information of HS images has
allowed the development of many applications in the fields of remote sensing [2], medical
imaging [3] or astronomy [4]. However, due to technological reasons, HS images are limited
by their relatively low spatial resolution [5, 6, 7]. For instance, the Hyperion imaging
spectrometer yields HS images with about 220 spectral bands, which extend from the
visible region (0.4 to 0.7 µm) through the SWIR (about 2.5 µm), with a spatial resolution
of 30 m by pixel [8] that can be insufficient for some practical applications.
In addition to their reduced spatial resolution, conventional spectral imaging devices have
the drawback of requiring to scan a number of zones that grows linearly in proportion
to the desired spatial or spectral resolutions. Finally, HS images require to acquire a
large amount of data that must be stored and transmitted. To overcome this limitation,
motivated by the compressed sensing (CS) theory [9], several compressive spectral imagers
have been recently proposed [10, 11, 12]. Compressive spectral imaging (CSI) techniques
[13, 14] exploit the fact that HS images are sparse in some basis and can thus be efficiently
compressed by using CS. As a consequence, the images acquired with CSI have a reduced
number of measurements when compared to conventional spectral imaging devices, which
makes them attractive for many practical applications.
To overcome the spatial resolution limitation, a common trend is to fuse HS images with
high spatially resolved sensors. For instance, the IKONOS satellite sensor can provided
multispectral images with four bands (near-infrared, red, green and blue) and with a spa-
tial resolution of 3.2 m [15] which is comparatively higher than HS sensors. A typical
example studied in this work is the fusion of HS images (having high spectral resolution)
with multispectral (MS) images (having high spatial resolution) [16, 17]. Another ex-
ample is HS pansharpening, which addresses the fusion of panchromatic and HS images
[18]. Many algorithms have been proposed in the literature for image fusion (see [18, 19]
for recent reviews). Fast fusion algorithms based on spectral mixture analysis have been
developed to fuse HS and MS images [20, 21]. The coupled nonnegative matrix factoriza-
tion (CNMF) has also been recently proposed to estimate the endmember and abundance
matrices using an alternating optimization method [22].
This research work investigates a new algorithm allowing the fusion of HS and MS images
acquired with compressive spectral imagers using a sparse representation of abundance
maps. The sparsity of abundance maps has already been exploited for image fusion. The
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compressive spectral fusion problem was recently investigated in [23] where the image of
interest was decomposed in a fixed basis with a sparse representation. A related compres-
sive fusion method based on a multiresolution analysis and a simple maximum selection
fusion rule was previously proposed in [24], where the images to be fused were acquired
in a single band with the same size. In this work, we consider CSI devices such as the
Colored Coded Aperture Snapshot Spectral Imager (C-CASSI) and the Multiple Snap-
shot Spatial Spectral coded Compressive Spectral Imager (SSCSI), which sense multiple
2D coded projections of the underlying scene. More formally, the projections measured in
C-CASSI and SSCSI systems can be written as y = Hf, where f ∈ RN2L is a vector repre-
sentation of the spatio-spectral 3-dimensional source F ∈ RN×N×L (N ×N is used for the
spatial dimensions and L is the spectral dimension), and H is a matrix that is associated
with the optical architecture of the spectral imagers. Note that the non-zero entries of H
are determined by the colored coded aperture in the CASSI architecture [25] and by the
coded mask in SSCSI [26]. Note also that these optical filters or coded apertures can be
selected randomly or designed as in [27, 25, 28, 29].
The proposed fusion algorithm reconstructs the high-spatial high-spectral image repre-
sented by the vector f ∈ RN2L from compressive measurements ym and yh, resulting from
HS and MS images concatenated in vectors fm ∈ RN2Lm and fh ∈ RN2

hL. Note that the
target image must have the high-spatial resolution of fm and the high-spectral resolution
of fh. The proposed algorithm is based on the linear mixture model, which assumes that
each pixel of the target image is a linear mixture of spectral signatures (referred to as
endmembers). Using the linear mixture model (LMM), an observation pixel fj ∈ RL can
be represented as fj = Mαj , where M ∈ RL×p is the endmember matrix whose columns
are spectral signatures, p is the number of materials in the image (supposed to be known)
and αj = [αj1, ..., αjp]

T ∈ Rp contains the abundances of the jth pixel of the HS image
(see [30] for details). As a consequence, the target high resolution HS image can be writ-
ten as f = Mα, where M = M ⊗ IN2 , IN2 ∈ RN2×N2 is the N2 × N2 identity matrix,
⊗ is the Kronecker product, and α = vec(AT ) ∈ RN2p is obtained by vectorizing the
matrix A = [α1, · · · ,αN2 ] ∈ Rp×N2 containing the abundances of all the image pixels.
The procedure by which the spectrum of a pixel is decomposed in a set of endmembers
and its corresponding abundance fractions under the LMM is well know as linear spectral
unmixing (or spectral unmixing). It should be noted that spectral unmixing and therefore
the LMM was already used for image fusion in recent works such as [21, 22]. However,
these works did not take into account any compressive sensing operation (i.e., the matrices
Hm and Hh were equal to the identity matrix), which is the main contribution of this
thesis. In Fig. 1 is depicted an schematic representation of the problem of fusing HS and
MS compressed images based on spectral unmixing which we aim to solve.
This work shows that acquiring images with CS and exploiting jointly the LMM for the
unknown image of interest and the sparsity of abundance maps leads to efficient image
fusion when compared to other existing approaches [21, 23, 24], even if the observed
images have been compressed and acquired with reduced acquisition time. Note that
standard endmember extraction algorithms, such as VCA [31], SVMAX [32] or N-FINDR
[33], cannot be used directly when the observed images have been subjected to CS. This
endmember extraction step is contained within the proposed fusion algorithm.
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Figure 1: Schematic representation of the fusion problem addressed in this work.
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1

Objectives

1.1 General Objective

To design an algorithm based on Spectral Unmixing to reconstruct a high-spatial high-
spectral image from fusing a compressive low-spatial high-spectral image measurement
and a compressive high-spatial low-spectral image measurement.

1.2 Specific objectives

• To develop a matrix model of the compressive hyperspectral image measurement
and compressive multispectral image measurements which are intended to be fused.

• To formulate an optimization algorithm based on the linear spectral mixing model
in order to fuse compressive measurements of HS and MS images.

• To design an iterative algorithm in order to recover the high-spatial high-spectral
resolution image from compressive measurements.

• To validate the designed algorithm through simulations and, compare the recon-
struction results with respect to the state-of-art fusion algorithms .
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2

Theoretical Background

2.1 Spectral Imaging

The spectrum of a point in a scene is represented by the distribution of its electromag-
netic radiation over a range of wavelengths. Since a huge amount of applications can be
developed from detailed spectra, several acquisition systems for precise spectral measure-
ments have been studied for decades. These include applications in the fields of remote
sensing [2], medical imaging [3, 34], geology [35], biological science [36], scientific obser-
vation and many other fields [37]. The traditional sampling methods for HS imaging are
based on measuring sequence of 2D images, which are then concatenated into a single data
cube. For instance, push-broom spectral imaging sensors [38] capture a spectral cube with
one focal plane array (FPA) measurement per spatial line of the scene [13], and whereas
whisk-broom acquires a single spectral pixel at a time [39], and tunable filter imagers [40]
measure 2D images at a specific wavelength. In all the traditional methods for HS data
acquisition, due to technological reasons, there is a trade off between spectral and spa-
tial resolution. Generally, HS images benefit from excellent spectroscopic properties with
several or hundreds of thousands of contiguous bands but are limited by their relatively
low spatial resolution [5]. For instance, the Hyperion imaging spectrometer yields HS im-
ages with about 220 spectral bands, which extend from the visible region (0.4 to 0.7 µm)
through the SWIR (about 2.5 µm), with a spatial resolution of 30 m [8]. In addition to
their reduced spatial resolution, conventional spectral imaging devices have the drawback
of requiring to scan a number of zones that grow linearly in proportion to the desired
spatial or spectral resolution. Finally, HS images require to acquire a large amount of
data that must be stored and transmitted.

2.2 Compressive Spectral Imaging

Motivated by the development of compressed sensing theory (CS), more recent approaches
to acquire spectral data have been proposed. CS relies on two principles: sparsity and
incoherence [41]. Sparsity is related to the signals of interest and CSI exploits the fact that
hyperspectral images can be sparsely represented in a proper basis Ψ. More formally, if
we consider a hyperspectral image represented as a vector f ∈ RN2L, this can be expressed
as f = Ψθ, where θ is an S-sparse vector and S ≪ N2L. Incoherence relates to the
sensing modality and expresses the idea that sparse vectors in Ψ must be spread out

12



in the domain in which they are acquired [41]. There are mainly two approaches for
compressing spectral data that have been implemented in practical applications: i) spatial
coding based CS imagers, such as the coded aperture snapshot spectral imager (CASSI)
[42], and ii) spatial and spectral coding-based spectral imagers, such as the spatio-spectral
encoded compressive spectral imager (SSCSI) [43], or the Colored CASSI (C-CASSI) [25].
In this work, we focus on the second class which captures a spectral scene using a single
or multiple 2D snapshots obtained with different sampling patterns. The next subsections
describe, in detail, the mathematical model of C-CASSI and SSCSI. Note that these
two architectures have been implemented in practical applications (based on spatial and
spectral coding), which explains why they have been considered in our work. Even though
only two CSI devices are considered, the techniques developed here might be extended to
other architectures such as those studied in [11, 12, 29]. Note that the structure of the
matrix H is related to the optical architecture of each implementation. Finally, it is worth
noting that the matrices Hm and Hh which will be used later in section 4, correspond
to MS and HS alternatives, and they are instances of the matrices H presented in this
section.

2.2.1 Colored CASSI. The coded aperture snapshot spectral imager (CASSI) is
one of the most representative CSI architectures, which comprises a dispersive element
and a coded aperture [42]. The coded aperture is the spatial coding optical element
defined as a block-unblock lithographic mask or a spatial light modulator (SLM) [13].
The CASSI architecture codifies the 3D data only in the spatial domain, i.e., each pixel
of the coded aperture blocks or let pass the entire spectral information. The colored
CASSI (C-CASSI) is a different variation of the CASSI system, which replaces the binary
masks by multiple-patterned arrays of selectable optical filters or colored coded apertures
to provide a richer modulation in both spatial and spectral domains [25]. In Figure 2.1
a colored coded aperture pattern is shown. Each pixel on the coded aperture is one of
the possible optical filters whose spectral response can be selected. C-CASSI reduces the
number of 2D measurements required to recover the underlying image due to the higher
randomness of these 3D coded aperture structures. Note that the coded source is dispersed
by a prism and that the coded and dispersed source is captured by a focal plane array
(FPA). The sensing representation of the C-CASSI system is depicted in Fig 2.2. The ℓ-th
intensity at the (i, j)-th pixel of the detector using a colored coded aperture Tℓ is

Y ℓ
ij =

L−1∑
k=0

Fi(j−k)kT
ℓ
i(j−k)k + ωij (2.1)

where F is an N × N × L spectral data cube, T ℓ
ijk ∈ {0, 1} is the discretization of the

ℓ-th colored coded aperture, ωij is the white Gaussian noise of the sensing system, and
ℓ = 0, ...,K − 1 with K ∈ N representing the number of snapshots. Vectorizing the
measurements Yℓ

ij leads to
yℓ = Hℓf + ω (2.2)

where yℓ ∈ RV is a vector representation of Yℓ
ij with V = N(N + L− 1),

f = vec([f0, ..., fL−1]) is the vector representation of the data cube F , fk is the vectorization
of the k-th spectral band, and Hℓ ∈ RV×N2L is the sensing matrix of the ℓth snapshot.
The set of measurements associated with the K snapshots can be written as

y = Hf + ω (2.3)
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Figure 2.1: Colored coded aperture. Each pixel on the coded aperture is an optical filter whose spectral
response can be selected. Source [43].

where y = [yT
0 , ...,yT

K−1]
T contains all the measurements and H = [HT

0 , ...,HT
K−1]

T ∈
RKV×N2L. An example of matrix H for L = 3 and K = 2 is displayed in Fig. 2.3. Note
that the non-zero entries (indicated by white squares) of this matrix are determined by
the 3D coded aperture. More precisely, the structure of the matrix Hℓ consists of a set
of diagonal patterns determined by the ℓth colored coded aperture Tℓ, which are located
along the horizontal direction, such that one spatial dimension is shifted downward, as
many times as the number of spectral bands. Finally, note that the structure of the
complete matrix H is obtained by stacking the K matrices Hℓ for ℓ = 0, ...,K − 1.

2.2.2 Spatio-Spectral Coded Compressive Spectral Imager SSCSI. Sim-
ilar to colored-CASSI, SSCSI optically modulates the 3D data cube in both spatial and
spectral dimensions, and acquires 2D projections. The SSCSI proposed in [26] uses a
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Figure 2.2: Schematic representation of the sensing phenomena behind CASSI system.
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Figure 2.3: The sensing matrix H of the CASSI architecture for L = 3 and K = 2. The white squares
represent the passing (non-blocking) elements.

diffraction grating to disperse the light into the spectrum plane and inserts a coding mask
between the spectrum plane and the sensor plane to achieve the desired spatial-spectral
modulation. A schematic representation of the compression procedure behind SSCSI is
shown in Fig 2.4. The ℓ-th intensity at the (i, j)-th pixel of the SSCSI detector is defined
as

Y ℓ
ij =

L−1∑
k=0

FijkT
ℓ
ijk + ωij . (2.4)

Note that SSCSI measurements are also defined as in (2.2) and (2.3) with V = N2.
However, the structure of the matrix H slightly differs from the one used in C-CASSI. It
is also structured as a set of diagonal patterns but is not shifted downward. Moreover, the
patterns do not repeat horizontally, allowing spectral coding. Fig 2.5 shows an example
of matrix H associated with the SSCSI system.

2.3 Linear Mixing Model

The basic assumption in the linear mixing model (LMM) is that given a scene, the surface
is constituted by a small number of distinct materials that have relatively constant spectral
properties [30]. Thus, based on the LMM, it is assumed that each pixel of the hyperspectral
image is a linear mixture of spectral signatures (referred to as endmembers) that represent
each different substance. Hence, the mathematical model for an observed pixel fj ∈ RL can
be represented as fj = Mαj , where M ∈ RL×p is the endmember matrix whose columns
are spectral signatures, p is the number of materials contained in the image and αj =
[αj1, ..., αjp]

T ∈ Rp represents the abundance fractions of the endmembers. Furthermore,
using the LMM to represent every pixel in the image, we can describe a hyperspectral image
as f = Mα, where M = M ⊗ I, I ∈ RN2×N2 is the identity matrix, ⊗ is the Kronecker
product operation, and α = [αT

1 , ..., α
T
p ]

T ∈ RN2p, where αk ∈ RN2 is the abundance
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map of the k-th endmember, it accounts for the abundance of all pixels. At this point,
it is important to mention that standard endmember extraction algorithms exist, such as
VCA [31], SVMAX [32] or N-FINDR [33]. Unfortunately, the aforementioned unmixing
algorithms cannot be used directly when the observed images have been compressed.

2.4 Hyperspectral and Multispectral Data Fusion

In all the traditional methods for HS data acquisition, due to technological reasons, there
is a trade off between spectral and spatial resolution. Generally, HS images benefit from
excellent spectroscopic properties with several or hundreds of thousands of contiguous
bands but are limited by their relatively low spatial resolution [5]. Spaceborne imaging
spectrometers are usually designed to provided data with a moderate ground sampling
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distance (GSD) [e.g.; 30 m]. To overcome the spatial resolution limitation, a common
trend is to fuse images with different spectral and spatial resolutions. A typical example
studied in this work is the fusion of HS images (having high spectral resolution) with mul-
tispectral (MS) images (having high spatial resolution) [16, 17]. Another example is HS
pansharpening, which addresses the fusion of panchromatic and HS images [18]. Based on
different theories such as component substitution, multiresolution analysis (MRA), spec-
tral unmixing, and Bayesian probability, several HS-MS data fusion techniques have been
proposed. See [44] for a comparative review of recent fusion algorithms. In this research
work, we focus on fusion of HS and MS data based on the LMM. Unmixing based fusion
aims at obtaining endmember information and high-resolution abundance matrices from
the HS and MS images, respectively [20, 21]. To name a few, Yokoya et al. proposed
Coupled Nonnegative Matrix Factorization (CNMF) [22], where the HS and MS data are
alternately unmixed by NMF under the constraint of sensor observation models. In [21],
Qi wei et al. proposed a fusion approach where a joint fusion and unmixing problem is
formulated as maximizing the joint posterior distribution with respect to the endmember
signatures and abundance problems. The common point of these works is to obtain end-
members from the HS image and abundance maps from the MS image alternatively.

2.5 Vertex Component Analysis

Vertex component analysis (VCA) is a numerical tool to estimate the endmembers of
a scene under a linear mixing scenario, which exploits two facts: the endmembers are
located at the vertices of a simplex and the affine transformation of a simplex is also a
simplex [31]. Specifically, VCA models the spectral measurements as y = Mγα, where γ
is a scale factor modeling the illumination variability, and the fractional abundance αj

represents the fractional area occupied by the mj endmember. This model leads to two
constraints: the spectral signature is a nonnegative linear combination of endmemembers
where the abundances sum to one. Thus the complete set of measurements Cp = {y ∈
RL : y = Mγα,α ≽ 0, 1Tα = 1, γ ≥ 0} is a convex cone in RL. Based on this model,
the VCA algorithm projects this cone onto a properly chosen hyperplane resulting in a
simplex Sp with vertices being the endmembers. To find the endmembers, the algorithm
works as follows (see [45][31] for more details):

1. Generate a random vector f orthonormal to the subspace spanned by the endmembers
already determined.

2. Project the data Y = [y1, · · · ,yN ], with N as the number of pixels, onto f, i.e.
v = YT f.

3. Find the endmember yk that maximizes the projection, where k := arg maxj=1,··· ,N |v|.

4. Repeat until all endmembers are exhausted.

2.6 Rayleigh-Ritz procedure

The Rayleigh-Ritz procedure is a method for finding approximations to eigenvalues and
eigenvectors of a given matrix A ∈ Rn×n that cannot be solved analytically [46]. The
procedure is as follows

1. Compute an orthonormal basis B ∈ Rn×m, with m ≤ n, approximating the eigenspace
corresponding to m eigenvectors.
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2. Compute R = BTAB.

3. Compute the eigenvalues of R solving Rri = λ̃iri.

4. Form the Ritz pairs (λ̃i,ui) = (λ̃i,Rri), i = 1, · · · ,m.
Estimated Ritz pairs are the best approximations to the pairs (λi,wi) for i = 1, · · · ,m,
where λi and wi are the eigenvalues and eigenvectors of the matrix A, respectively. Fur-
ther, the following theorem establishes how close are the m calculated Ritz pairs to (λi,wi)
for i = 1, · · · ,m.

Theorem 2.6.1. Consider that the matrix A has spectrum SA = {λ1(A), · · · , λN (A)},
where the eigenvalues satisfy λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A). The corresponding unit
eigenvectors are wi, for all i = 1, · · · , N . Suppose that, for a given Ritz vector uk0 the
eigenpair (λk0(A),wk0) satisfies that

λk0(A) = arg min
λ∈SA

|λ− ρ(uk0)|, (2.5)

where ρ(uk) = uT
k Auk. Then,

|sin(ϕk0)| ≤
∥Auk0 − uk0ρ(uk0)∥2

γk0
, (2.6)

where ϕk0 is the angle between uk0 and wk0, with

γk0 = min
λ∈SA,λ ̸=λk0

(A)
|λ− ρ(uk0)|. (2.7)

Proof. The proof of this theorem can be found in [46].

Notice that, from Theorem 2.6.1, the Ritz pairs (λ̃i,ui) can be considered a reasonable
approximation to m eigenpairs (λi(A),wi), as it can be seen in (2.6).
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3

Compressive Spectral Image Fusion

3.1 Problem statement

This section formulates the data fusion problem considered in this work to estimate a high-
spatial high-spectral resolution image from two compressed images with different spectral
and spatial resolutions.

3.1.1 Observation models. It is very common to assume that HS and MS images
result from the application of linear spatial and linear spectral degradations to a higher
resolution image f = Mα [21, 47, 17]. Moreover, as we mentioned before, we propose to
consider compressed spectral images that are modeled from linear projections. Thus we
consider the following models for the observed compressed MS and HS images

ym = HmRλf + Nm = HmRλMα+ Nm

yh = HhSsf + Nh = HhSsMα+ Nh
(3.1)

where

• Rλ = R⊗IN2 models the linear spectral degradation, and R ∈ RLm×L is the spectral
response of the MS sensor.

• Ss = IL ⊗ SB models the spatial degradation, B ∈ RN2×N2 is a cyclic convolu-
tion operator acting on the bands, and S ∈ RN2

h×N2 is a downsampling operator
(satisfying the condition SST = IN2

h
)

• Hm ∈ Rnm×N2Lm and Hh ∈ Rnh×N2
hL are the sensing matrices for the MS and HS

images, with nm and nh the numbers of measurements used to sense the MS and HS
images. A more detailed description of the structure of the sensing matrices will be
presented in the following section.

• Nm ∈ Rnm ,Nh ∈ Rnh are additive noise terms.

• ym ∈ Rnm and yh ∈ Rnh are the observed MS and HS compressed images.

The image restoration problem considered in this work consists of estimating the high
resolution (HR) image f from the observed compressed measurements ym and yh.
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3.1.2 Problem formulation. Based on the previous models (3.1), we propose to
consider the following optimization problem in order to estimate the matrix M and the
vector α from the observed compressive images ym and yh

argmin
M,α

c(M,α) = f(M,α) + φ(α)

subject to (s.t.) α ≥ 0,1T
p A = 1T

N2 , 0 ≤M ≤ 1

(3.2)

where ≥ means “element-wise greater than”, 1T
p is a p× 1 vector with all ones and

f(M,α) =
1

2
∥ym −Hm RλMα∥22 +

1

2
∥yh −HhSsMα∥22

includes two data fidelity terms related to the MS and HS images. Finally,

φ(α) = λ∥Gα∥1 + λTV∥Dα∥1 (3.3)

is a regularization operator, where the first term enforces sparsity of abundance maps in a
wavelet representation and the second one includes a form of total variation (TV) regular-
izer preserving sharp edges or object boundaries [48]. The construction of the dictionary G
and the matrix D will be detailed in the section devoted to numerical experiments. Note
that ∥·∥2 and ∥·∥1 are used for the l2 and l1 norms, and that λ and λTV are regularization
parameters. Note also that the constraints for α in (3.2) are the abundance non-negativity
constraint (ANC) and the abundance sum-to-one constraint (ASC), which are classically
used in hyperspectral imaging [30]. Moreover, the constraint for the matrix M expresses
the fact that each spectral signature represents the reflectances of different materials that
belong to the interval [0, 1].

3.2 Optimization Method

This section studies the optimization algorithm that is proposed to solve (3.2). Note that
this problem is nonconvex with respect to (M,α) [49], making its solution challenging.
The strategy investigated here is a block coordinate descent (BCD) approach, alternating
optimizations with respect to the matrix M and the vector α [49]. The two resulting
optimization problems are convex and can thus be solved using the ADMM algorithm
[50]. A sketch of the proposed strategy is detailed in Algorithm 1. The initialization of
the algorithm and the optimization steps with respect to α and M are detailed in the
following sections.

Algorithm 1: Proposed compressive image fusion
Input : ym, yh, R,B,S,Hm,Hh

Output: α̂ and M̂
1: M(0) = EE(yh) %Endmember Extraction
2: for i = 1 to stopping rule do
3: α(t) = argmin

α∈A
f(M(t−1),α) + φ(α) % AL 2

4: M(t) = argmin
M∈M

f(M,α(t)) % AL 4

5: end for
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3.2.1 Initialization. The endmember matrix is initialized with a fast estimation ap-
proach based on the Rayleigh-Ritz (RR) theory which was developed within this research
work [51]. The idea of this method is to estimate the signal subspace from the compressive
measurements using the RR theory and to estimate the endmembers using the fact that
the LMM constrains the endmembers to be located at the vertices of a simplex. More
precisely, this approach first estimates a subset of eigenvectors to approximate the signal
subspace via RR theory, and then searches the endmembers in the approximated subspace
using the vertex component analysis (VCA) (see the Appendix A for more details).

3.2.2 Optimization with respect to the abundance matrix. The first step
of the minimization problem (3.2) optimizes the cost function with respect to α for a fixed
M using the ADMM algorithm. An auxiliary variable is introduced to split the objective
function and the constraints leading to the following problem

argmin
α,vi

1
2∥ym −HmRλv1∥22 + 1

2∥yh −HhSdv3∥22
+λ∥v5∥1 + λTV ∥v6∥1 + iA(v7)

subject to

v1 = Mv2 v5 = Gα
v2 = α v6 = Dα

v3 = Mv4 v7 = α
v4 = Bsα

(3.4)

where i = 1, ..., 7, Sd = IL ⊗ S, Bs = Ip ⊗ B, and the function iA is defined on the set
A = {α|α ≥ 0} by

iA(α) =

{
0 if α ∈ A
∞ if α ̸∈ A. (3.5)

Note that the number of splitting variables could have been reduced, e.g., by eliminating
v2. However, the main motivation for the proposed algorithm is that it separates the
spatial and spectral operations leading to subproblems which are simpler to solve. For
convenience, we introduce the following notations

v =



v1

v2

v3

v4

v5

v6

v7


,C =



0
I
0

Bs

G
D
I


,E =



I −M 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I −M 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


and the cost function

h(v) = 1
2∥ym −HmRλv1∥22 + 1

2∥yh −HhSdv3∥22
+λ∥v5∥1 + λTV ∥v6∥1 + iA(v7)

with Ev = Cα. Using these notations, (3.4) reduces to

argmin
α,v

h(v)

subject to Ev = Cα.
(3.6)

The augmented Lagrangian associated with (3.6) is

L(α,v,g) = h(v) + ρ
2∥Ev−Cα+ g∥22 (3.7)
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where g is the scaled dual variable and ρ ≥ 0 is weighting the augmented Lagrangian
term. The exact procedure used for estimating α is summarized in Algorithm 2.

Algorithm 2: ADMM algorithm to estimate α

Input : ym, yh, R,B,S,Hm,Hh,M, ρ ≥ 0

Output: α(k+1)

1: v(0),g(0)

2: for k = 1 to stopping rule do
3: α(k+1) = argmin

α
L(α,v(k),g(k))

4: v(k+1) = argmin
v

L(α(k+1),v,g(k))

5: g(k+1) = g(k) + v(k+1) −Cα(k+1)

6: end for

The augmented Lagrangian (3.7) associated with the optimization problem (3.6) can be
rewritten, in detail, as

L(α,v,g) = 1
2∥ym −HmRλv1∥22 + 1

2∥yh −HhSdv3∥22
+λ∥v5∥1 + λTV∥v6∥1 + iA(v7) +

ρ
2∥v1 −Mv2 + g1∥22

+ρ
2∥v2 −α+ g2∥22 +

ρ
2∥v3 −Mv4 + g3∥22

+ρ
2∥v4 −Bsα+ g4∥22 +

ρ
2∥v5 −Gα+ g5∥22

+ρ
2∥v6 −Dα+ g6∥22 +

ρ
2∥v7 −α+ g7∥22.

(3.8)

Thus, the different detailed steps for the estimation of α using the ADMM algorithm can
be summarized in Algorithm 3 whereas more details are provided below.

Algorithm 3: ADMM algorithm to estimate α

Input : ym,yh,R,B,S,Hm,Hh,M, ρ ≥ 0

Output: α(k+1)

1: v(0),g(0)

2: for k = 1 to stopping rule do
3: α(k+1) = argmin

α
L(α,v(k)

i ,g(k)
i )

4: for l = 1 to 7 do
5: v(k+1)

l = argmin
vl

L(α(k+1),vl,vi,g(k)
i )

6: end for
7: g(k+1)

1 = g(k)
1 + v(k+1)

1 −α(k+1)

8: g(k+1)
2 = g(k)

2 + v(k+1)
2 −Bsα

(k+1)

9: g(k+1)
3 = g(k)

3 + v(k+1)
3 −Gα(k+1)

10: g(k+1)
4 = g(k)

4 + v(k+1)
4 −Dα(k+1)

11: g(k+1)
5 = g(k)

5 + v(k+1)
5 −α(k+1)

12: end for
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Updating α. To find the solution α of the first minimization problem, we force the
derivative of (3.8) with respect to α to be zero and solve the resultant system, leading to

α =
(
3I + BT

s Bs + DTD
)−1

Ξ (3.9)

where Ξ = v2 + g2 + BT
s (v4 + g4) + GT (v5 + g5) + DT (v6 + g6) + v7 + g7.

Due to the circular structure of matrices Bs and D, we can efficiently compute the solution
using the fast Fourier transform, with a complexity of O(p×N logN).

Updating v1. The minimization problem involving v1 can be obtained by solving ∂L/∂v1 =
0, leading to

v1 =
(
ETE + ρI

)−1
Θ (3.10)

where E = HmRλ and Θ = ETym+Mv2−g1. Note that the inverse matrix in (3.10) can
be precomputed. It should be noted that if we consider an MS image of size 256×256×10
the size of matrix to be inverted is 655360× 655360, which is high. To solve this problem
efficiently we can take advantage of the structure of the sensing (Hm) and downsampling
(Rλ) matrices to rearrange the matrix E in a block diagonal matrix Ẽ which is easier to
invert. As explained in [52], it can be achieved using two unitary matrices R1 and R2

such that ~E = R2ERT
1 (for more details about the matrices R1 and R2, the reader is

invited to consult [52]). Considering that we have Km snapshots to acquire the MS image
fm, this step has complexity O(KmV ), where V was defined in Section III. We did not
encounter any numerical problem when using this strategy.

Updating v2. To minimize the Lagrangian (3.8) with respect to v2, we solve ∂L/∂v2 = 0,
yielding

v2 =
(

MTM + I
)−1

Γ (3.11)

where Γ = MT
(v1 + g1) + α − g2. Since

(
MTM + I

)−1
=

(
MTM + I

)−1 ⊗ I, the
inverse term in (3.11) can be easily computed by calculating the inverse of the matrix
MTM + I ∈ Rp×p which is of small size due to the small number the endmembers p
contained in a scene. The complexity of this step is O(N2p).

Updating v3. To update v3, we solve the equation ∂L/∂v3 = 0, whose solution is

v3 =
(
FTF + ρI

)−1
∆ (3.12)

where F = HhSd and ∆ = FTyh +Mv4− g3. Note also that the inverse matrix in (3.12)
can be pre-computed. If we consider, e.g., an HS image of size 128×128×160, we need to
invert a huge matrix of size 2621440×2621440. This problem can be solved by rearranging
the matrix F as for E in (3.10). If Kh snapshots have been used to acquire the HS image
fh, the complexity of computing v3 is O(KhV ).

Updating v4. The update of v4 can be found by solving ∂L/∂v4 = 0, whose solution is

v4 =
(

MTM + I
)−1

Λ (3.13)

where Λ = MT
(v3 + g3) +Bsα− g4. Note that the inverse term is the same as in (3.11).

The complexity to update v4 is O(N2p).
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Updating v5. The minimization with respect to v5 corresponds to the scaled proximal
operator of the closed, proper and convex function ∥·∥1, i.e.,

argmin
v5

λ∥v5∥1 +
ρ

2
∥v5 −Gα+ g5∥22 (3.14)

whose solution is defined using the soft-thresholding operator

v5 = Sλ/ρ (Gα− g5) (3.15)

where Sϵ(·) is the soft-thresholding function defined as Sϵ(s) = sgn(s) ⊙ max (0, |s| − ϵ).
The complexity to obtain v5 is of the order O(p×N logN).

Updating v6. Similarly to the optimization with respect to v5, the minimization problem
for v6 leads to

v6 = SλTV /ρ (Dα− g6) . (3.16)
The complexity of this step is also of the order O(p×N logN).

Updating v7. The minimization with respect to v7 is the proximal operator of the indi-
cator function of the convex set A which reduces to Euclidean projection onto A, i.e.,

ΠA(α− g7) = argmin
v7∈A

∥v7 − (α− g7)∥22. (3.17)

The total complexity of the Algorithm 3 is dominated by the update steps of v1 and v3

being O(KhNh(Nh+L−1)+KmN(N+Lm−1)) for the C-CASSI system and O(KhN
2
h+

KmN2) for the SSCSI system.

Convergence. In order to guarantee the convergence of Algorithm 2, we need to ensure
that the augmented Lagrangian in (3.7) is a proper convex and closed function, according
to the ADMM algorithm. This condition is satisfied since (3.7) is the sum of nonneg-
ative convex functions [50]. Moreover, since the proper convex optimization function is
continuous, it is closed, ensuring the convergence of Algorithm 2 [53].

3.2.3 Optimization with respect to the endmember matrix. The optimiza-
tion of the cost function (3.2) with respect to M for a fixed α can be solved by using
the ADMM algorithm. To facilitate the solution of this problem, we first rewrite the HS
image as f = Am, where m = vec(MT ), A = IL ⊗AT , and A = [α1, ...,αN2 ] contains
the abundances of all the image pixels. This reparameterization leads to

argmin
m

1
2∥ym −HmRλAm∥22 + 1

2∥yh −HhSsAm∥22
+iM(m)

(3.18)

where the function iM(m) is a function defined in the set M = {m|0 ≤ m ≤ 1} as in
(3.5). To solve this problem, we split the vector m into three auxiliary variables w1, w2,
w3 in order to obtain the following problem

argmin
m,wi

1
2∥ym −HmRλw1∥22 + 1

2∥yh −HhSdw2∥22
+iM(w3)

subject to w1 = Am w3 = m
w2 = Âm

(3.19)

24



where j = 1, ..., 3, and Â = IL ⊗ BA. For notational convenience, we introduce the
following quantities

w =

w1

w2

w3

 ,E =

A
Â
I


and the cost function

l(w) =
1

2
∥ym −HmRλw1∥22 +

1

2
∥yh −HhSdw2∥22 + g(w3).

As a consequence, the problem (3.19) reduces to

argmin
m,w

l(w)

subject to w = Em
(3.20)

with the following augmented Lagrangian

L(m,w,d) = l(w) + ρ
2∥w−Em + d∥22 (3.21)

where d is the scaled dual variables and ρ ≥ 0 is weighting the augmented Lagrangian
term. The ADMM algorithm for m is summarized in Algorithm 4.

Algorithm 4: ADMM algorithm to estimate m
Input : ym,yh,R,B,S,Hm,Hh,α, ρ ≥ 0

Output: m(k+1)

1: w(0),d(0)

2: for k = 1 to stopping rule do
3: m(k+1) = argmin

m
L(m,w(k),d(k))

4: w(k+1) = argmin
w

L(m(k+1),w,d(k))

5: d(k+1) = d(k) + w(k+1) −Em(k+1)

6: end for

Similar to the previous algorithm, we define the augmented Lagrangian (3.21), in detail,
associated with the problem (3.19), i.e.,

L(α,w,d) = 1
2∥ym −HmRλw1∥22 + 1

2∥yh −HhSdw2∥22
+iM(w3) +

ρ
2∥w1 −Am + d1∥22 +

ρ
2∥w2 − Âm + d2∥22

+ρ
2∥w3 −m + d3∥22.

(3.22)

Based on this Lagrangian, the different steps of the ADMM algorithm are summarized in
Algorithm 5. More details are provided below.

Updating m. To update m, we solve the equation ∂L/∂m = 0 whose solution is

m =
(

I + ATA + ÂT Â
)−1

ξ (3.23)

where ξ = AT
(w1+d1)+ÂT (w2+d2)+w3+d3. Note that the inverse matrix appearing in

the right hand side can be pre-computed before the iterations. Computing the expression
of m has a complexity of the order O(p×N2).
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Algorithm 5: ADMM algorithm to estimate α

Input : ym,yh,R,B,S,Hm,Hh,M, ρ ≥ 0

Output: α(k+1)

1: v(0),d(0)

2: for k = 1 to stopping rule do
3: m(k+1) = argmin

m
L(α,w(k)

i ,d(k)
i )

4: for l = 1 to 3 do
5: w(k+1)

l = argmin
wl

L(m(k+1),wl,wi,d(k)
i )

6: end for
7: d(k+1)

1 = d(k)
1 + w(k+1)

1 −Am(k+1)

8: d(k+1)
2 = d(k)

2 + w(k+1)
2 − Âm(k+1)

9: d(k+1)
3 = d(k)

3 + w(k+1)
3 −m(k+1)

10: end for

Updating w1. The minimization of (3.22) with respect to w1 can be obtained by solving
∂L/∂w1 = 0, leading to

w1 =
(
ETE + ρI

)−1
Θ (3.24)

where E = HmRλ and Θ = ETym + Am− d1. Again, the inverse matrix is the same as
in (3.10) and can be precomputed.

Updating w2. To minimize the Lagrangian (3.22) with respect to v2, we solve ∂L/∂v2 =
0, yielding

w2 =
(
FTF + ρI

)−1
∆ (3.25)

where F = HhSd and ∆ = FTyh + Âm− d2. Note that the inverse term is the same as
in (3.12) and can be computed efficiently.

Updating w3. Minimizing the Lagrangian with respect to w3 involves the proximal op-
erator of the indicator function of the set M, whose solution is obtained by computing
the Euclidean projection of m− g3 onto the convex set M. i.e.,

ΠM(m− g3) = argmin
w3∈M

∥w3 − (m− g3)∥22. (3.26)

The complexity of Algorithm 5 is dominated by the update steps of w1 and w2 being
O(KhNh(Nh+L−1)+KmN(N+Lm−1)) for the C-CASSI system and O(KhN

2
h+KmN2)

for the SSCSI system.

Convergence. The energy function (3.21) is proper convex since it corresponds to the
sum of nonnegative convex functions. Moreover, since the proper convex optimization
function is continuous, it is closed guaranteeing the convergence of Algorithm 3 [53].

3.2.4 Global algorithm convergence. Given that the optimization problem in
(3.2) viewed as a function of α or M separately is convex and attains a unique minimum,
from Theorem 4.1 in [54], we know that every limit point of the sequence {α(t),M(t)}
generated by Algorithm 1 is a stationary point of the considered optimization problem.
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4

Simulation Results

4.1 Simulation Results

This section studies fusion results for HS and MS compressed images obtained using the
proposed algorithm for three different datasets with available ground truth. Following
Wald’s protocol [18], each reference image was degraded to generate the MS and HS images
to be fused. The HS image was generated by applying a spatial blur to the reference image
with a 7 × 7 Gaussian filter with standard deviation σ = 1.5 and by downsampling the
result by a factor of 4 in each direction. The MS image was generated by uniformly
downsampling the spectral dimension of the reference image resulting in an M-band MS
image, with M ∈ {6, 9, 10}, for datasets 1, 2, and 3, respectively. The observed HS and MS
images were finally compressed using C-CASSI or SSCSI systems with sensing matrices
whose entries were generated using a Bernoulli distribution. Indeed, the optical filters can
be modeled as realizations of a Bernoulli random variable where the value “1” corresponds
to a light transmissive element and the value “0” to a blocking element [27, 25]. The
compression ratio was fixed to 0.5. Additionally, the HS and MS compressed images were
both contaminated by additive white Gaussian noise, with a signal to noise ratio equal to
SNR = 30 dB for every snapshot.
Before running the proposed algorithm, we need to define the matrices G, D and the
different hyperparameters in (3.3). Following [25], the dictionary G was selected as the
Kronecker product Ip ⊗ Ψ, where Ψ is a Symlet wavelet kernel. The operator D was
decoupled in two operators acting on the rows and columns of each abundance map, as
explained in [55]. Tuning the regularization hyperparameters is an interesting and complex
problem. However, experimentally we noted that constant values for these parameters
provided very interesting results. Thus, the hyperparameters λ, λTV and ρ were fixed
for all datasets and were determined by cross-validation leading to λ = λTV = 0.006 and
ρ = 0.005 for C-CASSI and λ = λTV = 0.001 and ρ = 0.001 for SSCSI.
The results obtained with the proposed fusion strategy are compared with the FUMI
method of [21] (that does not use compressive measurements) and with the compressive
fusion strategy proposed in [23] (that does not use spectral unmixing). We also consider the
method studied in [24] for the first dataset (Jasper)1. Since the approach in [24] processes
images with the same spatial and spectral resolutions, we upsampled the HS image to the

1The authors are very grateful to T. Wan and A. Achim for sharing their codes allowing a fair compar-
ison.
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spatial resolution of the MS image and the MS image to the spectral resolution of the MS
image by bicubic interpolation. The approach of [24] was then applied band per band to
the two interpolated images.
4.1.1 Jasper dataset. The Jasper ridge HS image is of size 128×128×66 [56] [57] and
contains p = 4 endmembers. Quantitative fusion results are reported in Table 4.1 whereas
qualitative fusion results are displayed in Figs. 4.1 and 4.2. The reconstructed images
using the proposed algorithm are displayed in Figs. 4.1 (f) and (g). They are visually very
close to the results obtained with FUMI, which is based on the full dataset without CS.
The FUMI method provides a reference in terms of PSNR, which is understandable since
it processes images without CS, while the methods in [23] and [24] provide poor results.
Fig. 4.2 displays examples of reconstructed pixel reflectances obtained with the proposed
method that can be compared with the method of [29] and FUMI. The advantage of using
the LMM can be clearly observed on this example since the reconstructed reflectance
obtained with the method of [29] deviates more significantly from the ground truth. On
the other hand, the numerical results in Table 4.1 indicate that the proposed method
slightly outperforms FUMI even if it uses a reduced amount of data and requires less
execution time.
Since the proposed fusion method allows spectral unmixing, it is interesting to analyze
the quality of the abundance and endmember estimates. The estimated endmembers are
displayed in Fig. 4.3 whereas quantitative results related to unmixing are provided in Table
4.2. The quality of the unmixing results is evaluated using the normalized mean square
error of the abundance and endmember matrices (referred to as NMSEA and NMSEM).
The spectral distortion of the endmembers is also computed using the spectral angle
mapper (SAM) denoted as SAMM [58]. These results show that the estimated endmembers
are very close to the ground truth even if the fusion has been performed using images with
a significant reduced number of measurements. Table 4.2 confirms that the proposed
method provides competitive quantitative results with respect to FUMI.

Table 4.1: Performance of MS + HS fusion methods (Jasper dataset): PSNR (dB), UIQI, SAM (degrees),
ERGAS, DD (×10−2 ), time (seconds) and the data (%)

Methods PSNR UIQI SAM ERGAS DD Time Data
C-CASSI 39.75 0.999 1.319 1.491 0.492 12.04 50%

SSCSI 39.22 0.999 1.401 1.545 0.436 13.58 50%
[23] 31.55 0.995 3.103 1.665 1.949 15.75 50%
[24] 27.64 0.971 5.875 8.802 4.103 663.3 50%

FUMI 39.76 0.997 1.933 1.623 0.491 25.81 100%

Table 4.2: Unmixing Performance (Jasper data set): SAM (degrees), NMSEM (in Decibels), NMSEA (in
Decibels)

Methods SAMM NMSEM NMSEA

C-CASSI 2.7075 -20.3326 -14.834
SSCSI 2.7127 -28.6689 -13.646
FUMI 4.0634 -21.1070 -18.579

4.1.2 Urban dataset. In this experiment, the reference image is a section of 128×128
pixels of the Urban HS image [56] [57], whose spectral dimension was subsampled by a

28



(a) (b)

(e) (f)

(c)

(g)

(d)

Figure 4.1: Fusion results (Jasper Dataset): (a) MS image. (b) HS image. (c) FUMI (no compression).
(d) Method of [23] using the C-CASSI system. (e) [24]. (f) Proposed method with 50% compression using
the C-CASSI system. (g) Proposed method with 50% compression using the SSCSI system.

factor of 2 resulting in a reference image of size 128×128×81. The number of endmembers
present in this scene is p = 6. Quantitative and qualitative fusion results are presented
in Table 4.3 and in Figs. 4.4 and 4.5. Quantitative unmixing results are also reported in
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Figure 4.2: Reconstructed reflectance of the pixel (54, 45) using the proposed approach, the methods of
[23] and [24] and FUMI, compared to the Jasper ground truth.

Figure 4.3: Four unmixed endmembers for the Jasper dataset obtained using FUMI and the proposed
method with the C-CASSI and SSCSI systems, which are compared to the ground truth.

Table 4.4 whereas the estimated endmembers are shown in Fig. 4.6. Visual results in Fig.
4.4 show that the estimated image is very close to the ground truth. Figs. 4.5 and 4.6
show that the estimated signatures can follow the spectral variations of the ground truth.
Moreover, quantitative results reported in Table 4.3 and 4.4 indicate that all performance
measures used to evaluate the fusion and unmixing are very satisfactory even if the fusion
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has been performed using CS images with a significant reduced number of measurements.

Table 4.3: Performance of MS + HS fusion methods (Urban data set): PSNR (dB), UIQI, SAM (degrees),
ERGAS, DD (×10−2 ), time (seconds) and the data (%)

Methods PSNR UIQI SAM ERGAS DD Time Data
C-CASSI 38.04 0.997 1.810 1.791 0.518 14.88 50%

SSCSI 37.03 0.997 2.083 2.018 0.512 17.36 50%
[23] 29.04 0.963 2.784 2.472 2.805 15.75 50%

FUMI 37.23 0.995 1.815 1.077 0.624 11.87 100%

Table 4.4: Unmixing Performance (Urban data set): SAM (degrees), NMSEM (in Decibels), NMSEA (in
Decibels)

Methods SAMM NMSEM NMSEA

C-CASSI 2.2137 -20.2804 -8.3795
SSCSI 3.1766 -22.5964 -8.0117
FUMI 5.6956 -21.5586 -9.7831

(a) (b) (c)

(e) (f)(d)
Figure 4.4: Fusion results (Urban Dataset): (a) MS image. (b) HS image. (c) FUMI method with no
compression. (d) Method proposed in [23] using the C-CASSI system. (e) Proposed method with 50%
compression using the C-CASSI system. (f) Proposed method with 50% compression using the SSCSI
system.

4.1.3 Pavia dataset. The reference image used in this last experiment is the scene
acquired over Pavia (Northern Italy) by the reflective optics system imaging spectrometer
(ROSIS). We worked with a section of the image containing 128 × 128 pixels leading to
a reference image of size 128× 128× 103. Quantitative and qualitative fusion results are
reported in Table 4.5 and Fig. 4.7. The results in Table 4.5 indicate that the proposed
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Figure 4.5: Reflectance of the pixel (45, 54) using the proposed approach, method proposed in [23] and
FUMI compared to the Urban ground truth.

approach yields a competitive performance when compared to the FUMI method run on
the full dataset.

4.1.4 Impact of the compressive ratio. The last experiments analyze the perfor-
mance of the proposed algorithm for different numbers of measurements extracted from
the Pavia dataset. The PSNRs of the reconstructed images for CASSI and SSCSI as func-
tion of the compressive ratio are depicted in Fig. 4.8. They indicate that the accuracy of
the recovered images is directly proportional to the amount of data, as expected.

Table 4.5: Performance of MS + HS fusion methods (Pavia data set): PSNR (dB), UIQI, SAM (degrees),
ERGAS, DD (×10−2 ), time (seconds) and the data (%)

Methods PSNR UIQI SAM ERGAS DD Time Data
C-CASSI 42.20 0.996 2.678 2.832 0.603 18.23 50%

SSCSI 41.59 0.995 2.807 3.151 0.709 22.49 50%
[23] 34.39 0.969 3.141 3.454 1.201 19.48 50%

FUMI 43.34 0.995 2.216 1.395 0.573 37.64 100%

4.2 Algorithm convergence

In order to illustrate the good convergence of Algorithm 1, a typical evolution of the
cost function (3.2) as a function of the iteration number is displayed in Fig. 4.9. The
Jasper dataset was used for this experiment and the compressive measurements were
simulated with the C-CASSI system with an SNR equal to 30 dB. Fig. 4.9 confirms
the fast convergence of the algorithm to a critical point of the objective function, which
is here close to 27.73. Note that one iteration of Algorithm 1 includes one iteration
of Algorithms 2 and 4. In order to analyze the sensitivity to initialization, we ran the
proposed algorithm with 200 different initializations. These initializations were obtained
by computing different noisy versions of the endmembers estimated with the method
presented in [51]. More precisely, the endmembers resulting from [51] were corrupted by
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Figure 4.6: Six unmixed endmembers for the Urban dataset obtained using FUMI and the proposed
method with C-CASSI and SSCSI systems with a comparison to the ground truth.

different white Gaussian noise sequences with the same SNR equal to 30 dB. The histogram
of the corresponding values of the objective function is plotted in Fig. 4.10 showing two
different modes, confirming the non-convexity of our fusion problem. Table 4.6 shows
quantitative results associated with images corresponding to the two modes of Fig. 4.10
whereas reconstructed images corresponding to these two modes are displayed in Fig. 4.11.
These results show that the reconstructed images are visually almost indistinguishable
and that the quantitative results are very similar, confirming the good performance of the
proposed fusion algorithm.
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(a) (b)

(d) (e) (f)

(c)

Figure 4.7: Fusion results (Pavia Dataset): (a) MS image. (b) HS image. (c) FUMI method with no
compression. (d) Method proposed in [23] using the C-CASSI system. (e) Proposed method with 50%
compression using the C-CASSI system. (f) Proposed method with 50% compression using the SSCSI
system.
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Figure 4.8: PSNRs obtained with the proposed compressive fusion method for different amounts of data
for CASSI and SSCSI systems.

Table 4.6: Comparison of the two modes in Jasper data set: Objective function value, PSNR (dB), UIQI,
SAM (degrees), ERGAS, DD (×10−2 )

Obj PSNR UIQI SAM ERGAS DD
27.727 38.6712 0.999 1.508 1.6634 0.474
28.196 39.6982 0.999 1.341 1.4779 0.426
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Figure 4.9: Typical evolution of the objective function c(M, α) defined in (3.2) during the optimization
using Algorithm 1.

Figure 4.10: Histogram of the final values of the objective function c(M, α) in (3.2) obtained after 200
different endmember initializations.
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Figure 4.11: Reconstructed images with two different values of the objective function, namely (a) c(M, α) =
27.73 and (b) c(M, α) = 28.20.

36



5

Conclusions

• This work studied a new fusion algorithm based on spectral unmixing for recon-
structing a high-spatial high-spectral image from two compressed multispectral and
hyperspectral images.

• A mathematical model for the HS and MS images was developed. The model assumes
that the complementary high spatial resolution MS and high spectral resolution HS
images result from linear spectral and linear spatial degradations of the target high
resolution HS image.

• An optimization problem to recover a high resolution HS image from compressive
measurements of HS and MS images has been proposed. The optimization problem
includes the linear mixing model in the high resolution HS image, two data fidelity
terms corresponding to the MS and HS compressed images, and a regularization
function on the abundance maps.

• An iterative algorithm was proposed to solve the formulated optimization problem.
The algorithm is an instance of the Block Coordinate Descent algorithm where each
block is solved with the alternating direction method of multipliers. The algorithm
guarantees the convergence to an stationary point.

• Our results showed that it is possible to recover a high resolution hyperspectral image
from compressive spectral imagers, using fewer data samples than using conventional
techniques. Further, the algorithm was able to recover good quality of the spectral
signatures of the scene even if the information has been compressed.

• Regularization parameters were estimated by cross-validation in this work. It would
be also interesting to study methods allowing these parameters to be estimated
directly from the data such as the methods investigated in [59].
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A

Endmember Initialization

A.1 Endmember Initialization

In this section we detailed describe the strategy used to estimate the initial guest of
the endmembers. We introduce an equivalent observation model of CSI systems and an
orthogonal formulation in order to include the Rayleigh-Ritz procedure in the context
of CSI acquisition model. We consider the following equivalent model for the observed
compressive hyperspectral image

Y = HX (A.1)
where X ∈ RL×N is the hyperspectral image, with L as the number of spectral bands
and N as the number of pixels; H ∈ RM×L models the sensing process; and Y ∈ RM×N

represents the acquired data, where M is the number of measurements. In a CS scenario,
it is assumed that M ≪ L. In (A.1) we consider that X = [x1, · · · ,xN ], where each
column xi is the spectral signature of a pixel of the hyperspectral image. This equivalent
formulation can be achieved under the assumption that every spectral pixel is captured
in all snapshots with all available filters. In practical applications the number of optical
filters are limited, thus this assumption is easily satisfied.

A.1.1 Compressive Orthogonal Random Projections. Based on the acquisi-
tion model introduced in (A.1), and taking into account the singular value decomposition
(SVD) of the matrix H, one can obtain that

Y = (UDVT )X, (A.2)

where H = UDVT , U ∈ RM×M , V ∈ RL×L satisfy that UTU = IM , VVT = IL, and
D ∈ RM×L is a diagonal matrix. Note that, given that M ≪ L, the matrix H is rank
deficient, which implies that the inverse problem concerning to estimate X is an ill-posed
problem [60]. Thus, in order to solve this limitation we first estimate the closest full column
rank approximation to the matrix H. Specifically, we consider the following lemma for
calculating the full column rank approximation of the matrix H.

Lemma A.1.1. Define r = rank(H), with r ≤M . Then, the best low rank approximation
of the matrix H is the following truncated matrix

H̃ = ŨD̃ṼT , (A.3)
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where Ũ ∈ RM×r is the matrix U in (A.2) with the last M−r columns removed, Ṽ ∈ RL×r

is the matrix V in (A.2) with the last (L−r) columns removed, and D̃ ∈ Rr×r is a diagonal
matrix, where its entries are given by the first r entries in the main diagonal of D in (A.2).

Proof. The proof of this lemma is developed in [61].

Considering the full column rank closest approximation established in Lemma A.1.1, we
can equivalently approximate the measurements in (A.1) as

Ỹ = D̃UTY = ṼTX, (A.4)

The main motivation for considering this approximated system in (A.4) is that this pro-
vides a link between the Rayleigh-Ritz theory and CSI model. Considering the system
(A.4), it can be observed that

ỸỸT /N = ṼTXXT Ṽ/N = ṼTΣṼ, (A.5)

where Σ represents the covariance matrix of the dataset X. Notice that XXT = Σ is
valid when the dataset has zero mean. Further, it is worth nothing that taking A = Σ,
and B = Ṽ, the matrix ỸỸT /N in (A.5) represents the matrix R in the Rayleigh-Ritz
procedure summarized in Section 2.6. According to Theorem 2.6.1, the eigenvectors of Σ,
which are the basis of the subspace in which the dataset X lies, can be approximated using
the pairs (λ̃i,ui) yielded by the Rayleigh-Ritz procedure. The next section introduces a
recent technique based on Principal Component Analysis (PCA) to estimate eigenvectors
of the covariance matrix Σ using the Ritz vectors.
A.1.2 Signal Subspace Estimation. This section presents a procedure to estimate
the finite dimensional space in which the sensed hyperspectral image X belongs. In fact,
in order to take advantage of the statistical relationship between the covariance matrix of
the data Σ and the measurements in (A.5), we use the Compressive-Projection Principal
Component Analysis (CPPCA) technique developed in [62] to estimate the eigenvectors
from compressive measurements explained as follows.

A.1.3 CPPCA procedure. First, we aim at estimating the eigendecomposition of
the covariance matrix Σ from the approximated measurements Ỹ in (A.4). To do that,
first consider the covariance matrix Σ = WΛWT such that W = [w1, · · · ,wL], and wi,
for i = 1, · · · , N are the unit eigenvectors. Then, consider a fixed eigenvector wk. Given
the fact that matrix Ṽ is orthogonal, then the orthogonal projector to the generated
subspace P by the matrix Ṽ is given by ṼṼT [46]. Thus, the normalized orthogonal
projection of wk onto P is given by

vk =
ṼṼTwk

∥ṼṼTwk∥2
. (A.6)

Then, considering (A.6), in the CPPCA approach is observed that building an auxiliary
subspace Q given by

Qk = P⊥ ⊕ span(vk), (A.7)

contains the eigenvector wk [62], i.e. wk ∈ Qk, where P⊥ denotes the orthogonal comple-
ment of P. Moreover, according to the sensing process in (A.4) we can split the dataset
X = [x1,x2, · · · ,xN ] into J partitions X(j) each one associated with its own randomly
chosen projection Ṽ(j), for j = 1, · · · , J . We assume that the splitted dataset is separated
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such that each X(j) closely resembles the whole dataset X statistically and so it has approx-
imately the same eigendecomposition [63, 64]. Thus, forming the corresponding subspaces
Q(j)

k for each partition (j) via (A.7) it can be concluded that wk ∈ Q
(1)
k ∩ · · · ∩Q

(J)
k . Since

we do not have knowledge about the normalized projections v(j)
k , under the assumption

that eigenvalue λk(Σ) is sufficiently separated in value with respect to the other ones, we
can use the Ritz vectors u(j)

k to approximate v(j)
k and form the spaces Q(j)

k [62]. Consider-
ing these conditions and due to Q(j)

k are convex and closed, a projection onto convex set
optimization can be used to approximate W. Thus, iteratively the eigenvector wk can be
approximated as

ŵ(i)
k =

1

J

J∑
j=1

Q(j)
k Q(j)T

k ŵ(i−1)
k , (A.8)

where i is the iteration index, the projection onto Q(j) is performed by the matrix Q(j)
k =[

u(j)
k , I− Ṽ(j)Ṽ(j)T

]
∈ RL×(L+1), and CPPCA initializes ŵ(0)

k to the average of the Ritz
vectors [62]. The iterations in (A.8) converges to ŵk which after appropriate normalization
will approximate the desired eigenvector wk (up to sign) [62]. Finally, we note that a
limitation of CPPCA is given by the fact that the Rayleigh-Ritz method requires well
separated eigenvalues, which in HS images is true for the first largest eigenvalues.

A.1.4 Endmember Estimation Algorithm. This final section presents the pro-
posed algorithm for estimating the endmembers from compressive measurements. Algo-
rithm 6 summarizes the proposed procedure. First, Algorithm 6 estimates the measure-

Algorithm 6: Endmember Estimation Algorithm
1: Input: Y ∈ RM×N , H ∈ RM×L. Choose the number of partitions J .
2: H̃ = ŨD̃ṼT (A.2)
3: Ỹ = ṼTX (A.4)
4: Ŵ← CPPCA(Ỹ, Ṽ, J) Algorithm 7
5: M̂← VCA(Ŵd, Ỹ) Algorithm in [31]
6: Return M̂

ments of the CSI system using the approximation defined in (A.4). Second, the basis of
the signal subspace (i.e. Ŵd) is estimate from the first d columns of Ŵ using the CPPCA
procedure. For the sake of completeness of the proposed approach, CPPCA procedure is
described in Algorithm 7. CPPCA computes the corresponding PCA coefficients using
the pseudoinverse Z(j) = (Ṽ(j)TŴd)

+Ỹ(j). Finally, the VCA procedure is performed to
the subspace previously identified. Here, we note that if we project the cone Cp, which lie
in a subspace of dimension p in a subspace Ed ⊃ Ep, followed by a projection in a properly
hyperplane, the projection is still a simplex with the same vertices that Sp.
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Algorithm 7: CPPCA Procedure [62]
1: Input: Ỹ, Ṽ, J
2: Choose

{
X(1),X(2), · · · ,X(J)

}
3: Determine

{
Ṽ(1), · · · , Ṽ(J)

}
4: Set:

{
Ỹ(j) = Ṽ(j)T X(j)| j = 1, · · · , J

}
5: Estimate the Ritz vectors

{
u(j)
k | k = 1, · · · , L, j = 1, · · · , J

}
of the L eigenvectors

wk of the matrix Σ̃
(j), according to Section 2.6. (A.5)

6: P(j)⊥ = I− ~V(j)Ṽ(j)T

7: for k = 1 : L do
8: Q(j)

k =
[
u(j)
k ,P(j)⊥

]
(A.7)

9: ŵ(0)
k = 1

JL

∑
k,j u(j)

k .
10: for i = 1 : T do
11: ŵ(i)

k = 1
J

∑J
j=1 Q(j)

k Q(j)T

k ŵ(i−1)
k (A.8)

12: end for
13: end for
14: Return Ŵ = [ŵ1, · · · , ŵL]
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