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PALABRAS CLAVES: Cosmoloǵıa, No gaussianidad, Inflación, Anisotroṕıa estadist́ıca,
Teoŕıa de perturbaciones cosmológicas, Perturbación primordial en la curvatura.

DESCRIPCIÓN: Se estudian los descriptores estad́ısticos para algunos modelos cos-
mológicos inflacionarios que permiten obtener altos niveles de no gaussianidad y violacion
de la isotroṕıa estad́ıstica. Básicamente, se estudian dos tipos de modelos: modelos que in-
volucran sólo campos escalares, particularmente un modelo inflacionario de rodadura lenta
con potencial escalar cuadrático de dos componentes con términos cinéticos canónicos, y
modelos que incluyen campos escalares y vectoriales.

Se muestra que para el modelo de rodadura lenta con potencial escalar cuadrático de dos
componentes, es possible obtener valores altos y observables para los niveles de no gaus-
sianidad fNL y τNL en el bi-espectro Bζ y en el tri-espectro Tζ , respectivamente, de la
perturbación primordial en la curvatura ζ . Se consideran contribuciones a nivel árbol y
a un lazo en el espectro Pζ , en el bi-espectro Bζ y en el tri-espectro Tζ . Se muestra que
valores considerables se pueden obtener aun cuando ζ es generada durante inflación. Cinco
aspectos son considerados cuando se extrae el espacio disponible de parámetros.

Para los modelos que incluyen campos escalares y vectoriales, nuevamente se estudia el
espectro Pζ, el bi- espectro Bζ y el tri-espectro Tζ de la perturbación primordial en la
curvatura, cuando Bζ y Tζ son generados por perturbaciones escalares y vectoriales. Se
estudian las contribuciones a nivel árbol y a un lazo, considerando que las ultimas puedan
dominar sobre las primeras. Se calculan los niveles de no gaussianidad fNL y τNL, y se
encuentran relaciones de consistencia entre éstos y el nivel de anisotroṕıa estad́ıstica gζ en
el espectro Pζ, concluyendo que para valores pequeños de gζ los niveles de no-gaussianidad
pueden ser altos, en algunos casos excediendo las cotas observacionales actuales.

1Tésis de Doctorado.
2Facultad de Ciencias, Escuela de F́ısica, Yeinzon Rodŕıguez Garćıa (Director).
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Chapter1
INTRODUCTION

The corner-stone of modern cosmology is that, at least on large scales, the visible universe
seems to be the same in all directions around us and around all points, i.e. the Universe is
almost homogeneous and isotropic. This is borne out by a variety of observations, particu-
lary observations of cosmic microwave background (CMB); this radiation has been traveling
to us for about 14000 million years (see Fig. 1.1), supporting the conclusion that the Uni-
verse at sufficiently large distances is nearly the same. On the other hand, it is apparent
that nearby regions of the observable Universe are at present highly inhomogeneous, with
material clumped into stars, galaxies and galaxy clusters. It is believed that these struc-
tures have formed over the time via gravitational attraction, from a distribution that was
more homogeneous in the past.

The large-scale behavior of the Universe can be described by assuming a homogeneous
background. On this background, we can superimpose the short scale irregularities. For
much of the evolution of the observable Universe, these irregularities can be considered to
be small perturbations on the evolution of the background (unperturbed) Universe. The
metric of unperturbed Universe is called the Friedman-Leimatre-Roberson-Walker metric,
and its line element can be to written as:

ds2 = −dt2 + a2(t)
(

dr2 + r2(dθ2 + sin φ2dφ2
)

, (1.1)

where a(t) is the scale factor and r, θ, φ are the spherical comoving coordinates1

The model described by the above metric is known as the standard cosmological model
(known also as Big-Bang cosmological model) [66, 171, 172, 173, 216] and is the successful

1A particle in this metric have fixed-coordiantes.
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framework that describes the observed properties of the Universe: homogeneity and isotropy
at large scales, Hubble expansion, almost 14 billion years of evolution in agreement with
globular clusters and radioactive isotopes dating, cosmic microwave background radiation
(CMB) confirmed by Penzias and Wilson’s discovery in 1965 [48, 164], and the relative
abundances of light elements [9, 10, 67, 93, 161, 215, 217] in full agreement with observation.

Figure 1.1: A representation of the evolution of the universe over 13.7 billion years. The far
left depicts the earliest moment we can now probe, when a period of “ inflation ” produced
a burst of exponential growth in the universe. (Size is depicted by the vertical extent of
the grid in this graphic.) For the next several billion years, the expansion of the universe
gradually slowed down as the matter in the universe pulled on itself via gravity. More
recently, the expansion has begun to speed up again as the repulsive effects of dark energy
have come to dominate the expansion of the universe. The afterglow light seen by WMAP
was emitted about 380,000 years after inflation and has traversed the universe largely
unimpeded since then. The conditions of earlier times are imprinted on this light; it also
forms a backlight for later developments of the universe (Courtesy of the NASA/WMAP
Science Team [159]).

The introduction of a period of exponential expansion (called inflationary) [8, 82, 131], prior
to the Big-Bang, brought an elegant solution to the horizon, flatness, and unwanted relics
problems that were present in the original standard cosmological model [8, 82, 117, 131, 169].
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In spite of its success at solving the above mentioned problems, the inflationary period be-
came perhaps more important because of its ability to stretch the quantum fluctuations
of the fields living in the FRW spacetime [18, 83, 87, 131, 154, 156, 169, 201], making
them classical [7, 36, 78, 84, 110, 133, 136, 140, 144, 150, 160] and almost constant soon
after horizon exit. They correspond to small inhomogeneities in the energy density and are
responsible, via gravitational attraction, of the large-scale structure seen today in the Uni-
verse. If this scenario turned to be correct, the energy density inhomogeneities should have
left their trace in the CMB released at the time of recombination. Indeed, the Cosmic Back-
ground Explorer (COBE) in 1992 [158] found and mapped small anisotropies in the CMB
temperature of the order of 1 part in 105 (with average temperature T0 = 2.725± 0.002 K
[24]), on scales of order thousands of Megaparsecs. With 30 times better angular resolution
and sensitivity than COBE, the Wilkinson Microwave Anisotropy Probe (WMAP) [159]
confirmed this picture (see Fig. 1.2), measuring in turn the cosmological parameters with
a 1% order precision [119] on scales of order tens of Megaparsecs. The PLANCK satellite
[59, 206], launched in may 2009, will be able to refine these observations (see Fig. 1.3
and 1.4). With 10 times better angular resolution and sensitivity than WMAP, PLANCK
promises to determine the temperature anisotropies with a resolution of the order of 1 part
in 106, and the cosmological parameters with a 0.1% order precision.

Figure 1.2: CMB temperature anisotropies as seen by the WMAP satellite (five years
resuls) [119]. The oval shape is a projection to display the whole sky. The temperature
anisotropies are found to be of the order of 1 part in 105. The background temperature
is T0 = 2.725± 0.002 K; regions at that temperature are in very light blue. The hottest
regions (in red) correspond to ∆T ≃ 200µK. The coldest regions (in very dark blue)
correspond to ∆T ≃ −200µK (Courtesy of the NASA/WMAP Science Team [159]).
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Figure 1.3: Simulation of the CMB temperature anisotropies as seen by the PLANCK
satellite. PLANCK will provide a map of the CMB field at all angular resolutions greater
than 10 arcminutes and with a temperature resolution of the order of 1 part in 106 (ten
times better than WMAP) (Courtesy of ESA’s PLANCK mission [59]).

The anisotropies in the CMB temperature2 δT/T0 are directly related to the perturbation
in the spatial curvature ζ (Sachs-Wolfe effect), whose primarily origin is the stretched
quantum fluctuations of one or several scalar fields φi that fill the Universe during inflation
[140, 176]3:

(

δT

T0

)

k

= −1

5
ζk . (1.2)

The quantity ζ is related to the perturbation in the intrinsic curvature of space-time slices
with uniform energy density [149]:

(3)R =
4

a2
∇2ψ , (1.3)

where ψ is the first order scalar perturbation in the spacial metric.

Astronomers work with the observable quantity δT/T and theoretical cosmologists work
with ζ . Therefore, we may study the statistical porperties of the observed δT/T through the

2From now on, and unless otherwise stated, the perturbation δy in any quantity y will be regarded as
first-order in cosmological perturbation theory. Unperturbed quantities will be denoted by a subscript 0
unless otherwise stated.

3In this and the following expressions the subscripts k stand for the Fourier modes with comoving
wavenumber k.
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Figure 1.4: A map of the area of the sky mapped by PLANCK during the first light survey.
The colours indicate the magnitude of the deviations of the temperature of the Cosmic
Microwave Background from its average value (red is hotter and blue is colder). (Courtesy
of ESA’s PLANCK mission [59]).

spectral functions associated with the primordial curvature perturbation ζ , whose properties
are in general model dependent. Knowing the statistical descriptors of ζ for some particular
and well motivated cosmological model proposed for the origin of large scale strucutre, we
can reject the model or keep it, because some of the statistical descriptors for δT/T are
known with good acuracy or at least have an upper bound [119].

The statistical properties of the CMB temperature anisotropies can be then described
in terms of the spectral functions, like the spectrum, bispectrum, trispectrum, etc., of
the primordial curvature perturbation ζ . This spectral functions are given in terms of
other quantities, which have an observational value or an uppper bound. For example, the
spectrum Pζ is parametrized in terms of an amplitude Pζ

1/2, a spectral index nζ and the level
of statistical anisotropy gζ ; the bispectrum Bζ and trispectrum Tζ are parametrized in terms
of products of the spectrum Pζ and the quantities fNL, and τNL and gNL, respectively. As we
will see in the next chapter, the statistical descriptors fNL, τNL and gNL are usually called
levels of non-gaussianity, because non zero values for these quantities imply non-gaussianity
in the primordial curvature perturbation ζ as well in the constrast in the temperature of the
CMB radiation δT/T . The non-gaussian characteristics in the CMB are actually present in
the observation [119] as we will see in more detail in Section 2.4. The status of observation
can be summarized as follows4: the spectral amplitude Pζ

1/2 = (4.957± 0.094)× 10−5 [35],
the spectral index nζ = 0.960 ± 0.014 at 2σ [119], the level of non-gaussianity fNL in the

4We are using values according of the five year of data from NASA’s WMAP satellite [119]
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bispectrum is in the range −9 < fNL < 111 at 2σ [119]; and there is no observational
bound on the levels of non-gaussinity τNL and gNL in the trispectrum Tζ . The amount of
statistical anisotropy gζ in the spectrum Pζ is in the range gζ ≃ 0.290± 0.093 [79].

Regarding the statistical descriptors, non-gaussianity in the primordial curvature pertur-
bation ζ is one of the subjects of more interest in modern cosmology, because the non-
gaussianity parameters fNL and τNL together with the spectrum amplitude Aζ and spectral
index nζ allow us to discriminate between the different models proposed for the origin of the
large-scale structure (see for example Refs. [3, 5, 6]). The most studied and popular models
are those called the slow-roll models with canonical kinetic terms, because of their simplic-
ity and because they easily satisfy the spectral index nζ requierements from observation.
However, the usual predictions of these models is that the levels of non-gaussianity in the
primordial curvature perturbation are expected to be unobservable [22, 148, 191, 211, 226].
However, as we will show in chapters 3 and 4, there are some aditional issues that have not
been taken into account in the current literature. We study these issues to show that it is
possible to generate sizeable and observable levels of non-gaussianity in a subclass of small-
field slow-roll inflationary models with canonical kinetic terms; our main conclussion is that
if non-gaussianity is detected, the aforementioned models could have strong possibilities to
be the ones responsibles for the formation of the large-scale structure.

According to the usual assumption, one or more of these scalar field perturbations are
responsible for the curvature perturbation. In that case, the n-point correlators of ζ are
translationally and rotationally invariants. However, violations of such invariances entail
modifications of the usual definitions for the spectral functions in terms of the statistical
descriptors [1, 12, 41]. These violations may be consequences either of the presence of vector
field perturbations [12, 19, 49, 50, 51, 52, 53, 54, 73, 74, 75, 76, 94, 95, 96, 97, 102, 103, 113,
224], spinor field perturbations [30, 194], or p-form perturbations [70, 71, 111, 115, 116],
contributing significantly to ζ , of anisotropic expansion [17, 30, 47, 81, 97, 102, 115, 165,
166, 218] or of an inhomogeneous background [12, 41, 52]. Violation of the statistical
isotropy (i.e. violation of the rotational invariance in the n-point correlators of ζ) seems
to be present in the data [14, 80, 88, 178] and, although its statistical significance is still
low, the continuous presence of anomalies in every CMB data analysis (see for instance
Refs. [34, 58, 62, 63, 85, 86, 91, 92, 122, 123, 162, 184, 205]) suggests the evidence might be
decisive in the forthcoming years. The presence of vector fields in the inflationary dynamics
is not only important to be responsible of violations of the statistical isotropy, they also
may generate sizeable levels of non-gaussianity described by fNL and τNL; particularly we
will show in Chapter 5, that including vector fields allows us to get consistency relations
between the statistical descriptors, more precisely between the non-gaussianity levels fNL

and τNL and the amount of statistical anisotropy gζ.

Because of the progressive improvement in the accuracy of the satellite measurements de-
scribed above, it is pertinent to study the statistical descriptors of the primordial curvature
perturbation ζ , for cosmological models of the origin of the large-scale structure in the
Universe. It is very important because they could be a crucial tool to discriminate between
some of most usual cosmological models [5, 6].
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The layout of the thesis is the following: the Chapter 2 is devoted to study the statistical
descriptors for a probability distribution function and its relation with the observational
parameters, i.e., the spectrum amplitude, the spectral index the levels of non-gaussianity
fNL and τNL in the bispectrum Bζ and trispectrum Tζ respectively and the level of statistical
anisotropy in the power spectrum, gζ . In this chapter, we also review some generalities of
the δN formalism, it has become the standard technique to calculate ζ and its statistical
descriptors. In Chapters 3 and 4 we show that it is possible to attain very high, including
observable, values for the levels of non-gaussianity fNL and τNL, in a subclass of small-
field slow-roll models of inflation with canonical kinetic terms. Comparison with current
observationally bounds is made. Chapter 5 is devoted to study the statistical descriptors
of the primordial curvature perturbation ζ when scalar and vector fields perturbations
are present in the inflationary dynamicc. The levels of non-gaussianity fNL and τNL are
calculated and related to the level of statisitcal anisotropy in the power spectrum, gζ . We
show that the levels of non-gaussianity may be very high, in some cases exceeding the
current observationally limit. Finally we conclude in Chapter 6.



Chapter2
δN FORMALISM AND STATISTICAL

DESCRIPTORS FOR ζ

SECTION 2.1

Introduction

The primordial curvature perturbation ζ , as well as the contrast in the temperature of
the cosmic microwave background radiation δT/T and the gravitational potential Φg, are
examples of cosmological functions of space and time being described by probability dis-
tribution functions. In particular, the probability distribution function f(ζ) for ζ has well
defined statistical descriptors which depend directly upon the particular inflationary model
and that are suitable for comparison with present observational data. Such a comparison
allows us either to reject or to keep particular inflationary models as those which better
represent nature’s behaviour. In this chapter we give a complete and general description
of the δN formalism including both scalar and vector fields1. This formalism is a powerful
tool and it is commonly used to calculate the primordial curvature perturbation ζ . We
also present a cosmologically motivated description of the statistical descriptors for prob-
ability distribution functions, focusing mainly on f(ζ). Finally, in Section 2.4 we give the
observational constraints for ζ .

1Vector fields will be responsible of violations of the statistical isotropy, as we will see in Chapter 5.



The δN formalism 24

SECTION 2.2

The δN formalism

The δN formalism [52, 139, 142, 181, 182, 202] provides a powerful method for calculating
ζ and all its statistical descriptors at any desired order in cosmological perturbation theory.
The δN formalism for scalar field perturbations was given at the linear level in Refs. [181,
202] and at the non-linear level, which generates non- gaussianity, it was described in Refs.
[139, 142]. In a recent paper [52] the δN formalism was extended to include vector as well
as scalar fields. In this section, we give a brief review of the formalism without assuming
statistical isotropy and define the primordial curvature perturbation ζ .

In the cosmological standard model [155] the observable Universe is homogeneous and
isotropic, being described by the unperturbed Friedmann-Robertson-Walker metric whose
line element, for a spatially flat universe, looks as follows:

ds2 = −dt2 + a2(t)δijdx
idxj , (2.1)

where a(t) is the global expansion parameter, t is the cosmic time, and x represents the
position in cartesian spatial coordinates. The homogeneity and isotropy conditions describe
very well the Universe at large scales, but departures from the unperturbed background are
observationally evident at smaller scales.

One way to parametrize the departures from the homogeneous and isotropic background is
to include perturbations in the metric, for which we have to define a slicing and a threading.
The slicing will be defined so that the energy density in fixed-t slices of spacetime is uniform.
The threading will correspond to comoving fixed-x world lines. With generic coordinates
the perturbed metric of the perturbed universe may be defined as

ds2 = gµνdx
µdxν . (2.2)

To define the cosmological perturbations, one chooses a coordinate system in the perturbed
universe, and then compares that universe with an unperturbed one. The unperturbed
universe is taken to be homogeneous, and is usually taken to be isotropic as well.

2.2.1 The curvature perturbation

To define the curvature perturbation, we smooth2 the metric tensor and the energy-momentum
tensor on a comoving scale R and one considers the super-horizon regime aR > H−1 where

2Smoothing a function g(x) means that g at each location is replaced by its average within a sphere
of coordinate radius R around that position. The averaging may be done with a smooth window function
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H ≡ ȧ/a is the Hubble parameter and a(t) is the scale factor normalised to 1 at present3.
The energy density ρ and pressure P are smoothed on the same scale. On the reason-
able assumption that the smoothing scale is the biggest relevant scale, spatial gradients
of the smoothed metric and energy-momentum tensors will be negligible. As a result, the
evolution of these quantities at each comoving location will be that of some homogeneous
‘separate universe’. In contrast with earlier works on the separation universe assumption,
we will in this section allow the possibility that the separate universes are anisotropic even
though homogoneous.

We consider the slicing of spacetime with uniform energy density, and the threading which
moves with the expansion (comoving threading). By virtue of the separate universe as-
sumption, the threading will be orthogonal to the slicing. The spatial metric can then be
written as

gij(x, t) ≡ a2(t)e2ζ(x,t)
(

Ie2h(x,t)
)

ij
, (2.3)

where I is the unit matrix, and the matrix h is traceless so that Ie2h has unit determinant.
The smoothing scale is chosen to be somewhat shorter than the scales of interest, so that
the Fourier components of ζ on those scales is unaffected by the smoothing. The time
dependence of the locally defined scale factor a(x, t) ≡ a(t) exp(ζ) defines the rate at which
an infinitesimal comoving volume V expands: V̇/V = 3ȧ(x, t)/a(x, t).

We split ln a and hij into an unperturbed part plus a perturbation:

ln a(x, τ) ≡ ln a(τ) + ζ(x, τ) , (2.4)

hij(x, τ) ≡ hij(τ) + δhij(x, τ) . (2.5)

The unperturbed parts can be defined as spatial averages within the observable Universe,
but any definition will do as long as it makes the perturbations small within the observable
Universe. If they are small enough, ζ and δhij can be treated as first-order perturbations.
That is expected to be the case, with the proviso that a second-order treatment of ζ will
be necessary to handle its non-gaussianity if that is present at a level corresponding to
fNL <∼ 1 (with the gaussian and non-gaussian components correlated) [143].

Under the reasonable assumption that the Hubble scale H−1 is the biggest relevant distance
scale, the energy continuity equation d(Vρ) = −PdV at each location is the same as in a
homogeneous universe; as far as the evolution of ρ is concerned, we are dealing with a
family of separate homogeneous universes. With the additional assumption that the initial
condition is set by scalar fields during inflation, the smoothed hij(t) is time-independent
after smoothing and then the separate universes are homogeneous as well as isotropic.

such as a gaussian. The smoothed function is supposed to have no significant Fourier components with
coordinate wavenumbers k ≫ R−1, which means that its gradient at a typical location is at most of order
1/R. A function g with that property is said to be ‘smooth on the scale R’.

3The value of the scale factor at present epoch is usually denoted by a0.
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Since we are working on slices of uniform ρ, the energy continuity equation can be written

ρ̇(t) = −3
[

H(t) + ζ̇(x, t)
]

[ρ(t) + P (x, t)] . (2.6)

One write
P (x, t) = P (t) + δP (x, t), (2.7)

so that δP is the pressure perturbation on the uniform density slices, and choose P (t) so
that the unperturbed quantities satisfy the unperturbed equation ρ̇ = −3H(ρ+ P ). Then

ζ̇ = − HδP

ρ+ P + δP
. (2.8)

This gives ζ̇ if we know ρ(t) and P (x, t). It makes ζ(x) time-independent4 during any
era when P is a unique function of ρ [139, 219] (hence uniform on slices of uniform ρ).
The pressure perturbation is said to be adiabatic in this case, otherwise it is said to be
non-adiabatic.

The key assumption in the above discussion is that in the superhorizon regime certain
smoothed quantities (in this case ρ and P ) evolve at each location as they would in an
unperturbed universe. In other words, the evolution of the perturbed universe is that of a
family of unperturbed universes. This is the separate universe assumption, that is useful
also in other situations [140].

The primordial curvature perturbation ζ is directly probed by observation on ‘cosmological
scales’ corresponding to roughly e−15H−1

0
<∼ k−1 <∼ H−1

0
5. These scale begin to enter the

horizon when when T ∼ 1MeV. The Universe at that stage is radiation dominated to very
high accuracy[72, 99, 107, 108], implying P = ρ/3 and a constant curvature perturbation
which we denote simply by ζ(x), and it is the one constrained by observation as we will see
in section 2.4. When cosmological scales are the only ones of interest, one should choose
the smoothing scale as R ∼ e−15H−1

0 . Unless stated otherwise, we make this choice.

Within a given scenario, ζ will exist also on smaller inverse wavenumbers, down to some
‘coherence length’ which might be as low as k−1 ∼ e−60H−1

0 (the scale leaving the horizon
at the end of inflation). If one is interested in such scales, the smoothing scale R should be
chosen to be (somewhat less than) the coherence length.

2.2.2 The δN formula

Keeping the comoving threading, we can write the analogue of Eq. (2.3) for a generic slicing:

g̃ij(x, τ) ≡ ã2(x, τ)
(

Ie2h̃(x,τ)
)

ij
, (2.9)

4Absorving ζ̇ into the unperturbed scale factor.
5H0 is the Hubble parameter today.
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with again Ie2h̃ having unit determinant so that the rate of volume expansion is V̇/V =
3ã(x, t). Starting with an initial ‘flat’ slicing such that the locally-defined scale factor is
homogeneous, and ending with a slicing of uniform density, we then have

ζ(x, t) = δN(x, t) = N(x, t)−N0(t), (2.10)

where the number of e-folds of expansion is defined in terms of the volume expansion by
the usual expression Ṅ = V̇/3V. The choice of the initial epoch has no effect on δN ,
because the expansion going from one flat slice to another is uniform. We will choose the
initial epoch to be a few Hubble times after the smoothing scale leaves the horizon during
inflation. According to the usual assumption, the evolution of the local expansion rate is
determined by the initial values of one or more of the perturbed scalar fields φI . Then we
can write

φI(x) = φI + δφI(x), (2.11)

ζ(x, t) = δN(φ1(x), φ2(x), . . . , t) = NI(t)δφI(x) +

+
1

2
NIJ(t)δφI(x)δφJ(x) +

1

3
NIJK(t)δφI(x)δφJ(x)δφK(x) . . . , (2.12)

where NI ≡ ∂N/∂φI , etc., and the partial derivatives are evaluated with the fields at their
unperturbed values denoted simply by φI . The field perturbations δφI in Eq. (2.12) are
defined on the ‘flat’ slicing such that a(x, t) is uniform.

The unperturbed field values are defined as the spatial averages, over a comoving box
within which the perturbations are defined. The box size aL should satisfy LH0 ≫ 1
so that the observable Universe should fit comfortably inside it [138]. Observations are
available within the observable universe and, except for the low multipoles of the CMB,
all observations probe scales k ≫ H0. To handle them, one should choose the box size as
L = H−1

0 [121]. A smaller choice would throw away some of the data while a bigger choice
would make the spatial averages unobservable. Low multipoles ℓ of the CMB anisotropy
explore scales of order H−1

0 /ℓ not very much smaller than H−1
0 . To handle them one has to

take L bigger than H−1
0 . For most purposes, one should use a box, such that ln(LH0) is just

a few (ie. not exponentially large) [114, 138, 140]. When comparing the loop contribution
with observation one should normally set L = H−1

0 , except for the low CMB multipoles
where one should choose L≫ H−1

0 with ln(kL) ∼ 1. With the choice L = H−1
0 , ln(kL) ∼ 5

for the scales explored by the CMB multipoles with ℓ ∼ 100, while ln(kL) ∼ 10 for the
scales explored by galaxy surveys. Since we are interested in giving orders of magnitude
and simple mathematical expressions, in the current thesis we will set ln(kL) ∼ 16 without
loss of generality.

The spatial averages of the scalar fields, that determine NI , etc., and hence ζ cannot in
general be calculated. Instead they are parameters, that have to be specified along with
the relevant parameters of the action before the correlators of ζ can be calculated. The

6As we will see in the next chapters, the ln(kL) dependence appear when we consider higher order
corrections to ζ, explicitly in the higher order correlators which describe its statistical properties.
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only exception is when ζ is determined by the perturbation of the inflaton in single-field
inflation. Then, the unperturbed field value when cosmological scales leave the horizon can
be calculated, knowing the number of e-folds to the end of inflation which is determined
by the evolution of the scale factor after inflation. Although the unperturbed field values
cannot be calculated, their mean square for a random location of the minimal box (ie. of
the observable Universe) can sometimes be calculated using the stochastic formalism [203].

On the other hand, if we suppose that one or more perturbed vector fields also affect the
evolution of the local expansion rate, the curvature perturbation, in the simplest case where
ζ is generated by one scalar field and one vector field and assuming that the anisotropy
in the expansion of the Universe is negligible, can be calculated up to quadratic terms by
means of the following truncated expansion [52]

ζ(x) ≡ δN(φ(x), Ai(x), t)

= Nφδφ+N i
AδAi +

1

2
Nφφ(δφ)

2 +N i
φAδφδAi +

1

2
N ij

AAδAiδAj , (2.13)

where

Nφ ≡ ∂N

∂φ
, N i

A ≡ ∂N

∂Ai
, Nφφ ≡ ∂2N

∂φ2
, N ij

AA ≡ ∂2N

∂Ai∂Aj
, N i

φA ≡ ∂2N

∂Ai∂φ
, (2.14)

φ being the scalar field and A the vector field, with i denoting the spatial indices running
from 1 to 3. As with the scalar fields, the unperturbed vector field values are defined as
averages within the chosen box.

In these formulas there is no need to define the basis (triad) for the components Ai. Also,
we need not assume that Ai comes from a 4-vector field, still less from a gauge field.

2.2.3 The growth of ζ

As noted earlier, ζ is constant during any era when pressure P is a unique function of
energy density ρ. In the simplest scenario, the field whose perturbation generates ζ is the
inflaton field φ in a single-field model. Then the local value of φ is supposed to determine
the subsequent evolution of both pressure and energy density, making ζ constant from the
beginning.

Alternatives to the simplest scenario generate all or part of ζ at successively later eras.
Such generation is possible during any era, unless there is sufficiently complete matter
domination (P = 0) or radiation domination (ρ = P/3). Possibilities in chronological order
include generation during

(i) multi-field inflation [202],
(ii) at the end of inflation [135],
(iii) during preheating [114],
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(iv) at reheating, and
(v) at a second reheating through the curvaton mechanism [132, 145, 146, 153].

A vector field cannot replace the scalar field in the simplest scenario, because unperturbed
inflation with a single unperturbed vector field will be very anisotropic and so will be the
resulting curvature perturbation. Even with isotropic inflation, we will see in Chapter 5 that
a single vector field perturbation cannot be responsible for the entire curvature perturbation
(at least in the scenarios that were discussed in the Ref. [52]) because its contribution is
highly anisotropic. It could instead be responsible for part of the curvature perturbation,
through any of the mechanisms listed above.

SECTION 2.3

Statistical descriptors for a probability distribution function

A probability distribution function f(ζ) for any function of space and time ζ(x, t) may be
understood as the univocal correspondence between the possible values that ζ may take
throughout the space and the normalised frecuency of appearences of such values for a given
time. Any continous function of ζ might represent a probability distribution function as
long as f(ζ) ≥ 0 and

∫∞

−∞
f(ζ)dζ = 1. However, for a particular probability distribution

function, how many independent parameters do we need to completely characterize it in a
unique way? And despite the possible infinite number of parameters required to do this,
what is the information encoded in those parameters?

The answers to these questions rely on the moments mζ(n) of the distribution.

For a given probability distribution function f(ζ), there are an infinite number of moments
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that work as statistical descriptors of ζ(x, t):

the mean value : mζ(1) ≡ 〈ζ〉 =
∫

ζf(ζ)dζ , (2.15)

the variance : mζ(2) ≡
∫

(ζ − 〈ζ〉)2f(ζ)dζ , (2.16)

the skewness : mζ(3) ≡
∫

(ζ − 〈ζ〉)3f(ζ)dζ
[

mζ(2)
]3/2

, (2.17)

the kurtosis : mζ(4) ≡
∫

(ζ − 〈ζ〉)4f(ζ)dζ
[

mζ(2)
]2 , (2.18)

.

.

.

and so on.

What can we say about ζ(x, t) from the knowledge of the moments of the distribution? If,
for instance, all the odd moments with n ≥ 3 (skewness, ... etc) are zero, we can say that
the probability distribution function f(ζ) is even around the mean value. If in addition
all the even moments with n ≥ 4 (kurtosis, ... etc) are expressed only as products of the
variance, we can say that the distribution function is gaussian. Indeed, as is well known,
the only quantities required to reproduce a gaussian function are the mean value and the
variance:

fgaussian(ζ) ≡
1

√

2πmζ(2)
e−(ζ−mζ(1))

2/2mζ (2) . (2.19)

Departures from the exact gaussianity come either from non-vanishing odd moments with
n ≥ 3, in which case the probability distribution function is non-symmetric around the mean
value, or from higher n ≥ 4 even moments different to products of the variance, in which
case the probability distribution function continues to be symmetric around the mean value
although its “peakedness”7 is bigger than that for a gaussian function, or from both of them.
A non-gaussian probability distribution function requires then more moments, other than
the mean value and the variance, to be completely reconstructed. Such a reconstruction
process is described for instance in Ref. [183].

Working in momentum space is especially useful in cosmology because the modes associated
with the quantum fluctuations of scalar fields during inflation become classical once they
leave the horizon [7, 36, 78, 84, 110, 133, 136, 140, 144, 150, 160]. The same applies for
the primordial curvature perturbation ζ which, in addition, is a conserved quantity while
staying outside the horizon if the adiabatic condition is satisfied [139]. As regards the
moments of the probability distribution function, they have a direct connection with the
correlation functions for the Fourier modes ζk =

∫

d3kζ(x)e−ik·x defined in flat space.

7Higher even standarized moments different to products of the variance mean more of the variance is
due to infrequent extreme deviations, as opposed to frequent modestly- sized deviations.
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As the n-point correlators of ζk are generically defined in terms of spectral functions of the
wavevectors involved:

two− point correlation → spectrum Pζ :

〈ζk1
ζk2

〉 ≡ (2π)3δ3(k1 + k2)Pζ(k) , (2.20)

three− point correlation → bispectrum Bζ :

〈ζk1
ζk2

ζk3
〉 ≡ (2π)3δ3(k1 + k2 + k3)Bζ(k1,k2,k3) , (2.21)

four− point correlation → trispectrum Tζ :

〈ζk1
ζk2

ζk3
ζk4

〉 ≡ (2π)3δ3(k1 + k2 + k3 + k4)Tζ(k1,k2,k3,k4) , (2.22)

.

.

.

and so on,

the moments of the distribution are then written as momentum integrals of the spectral
functions for the modes ζk:

the variance : mζ(2) =

∫

d3k

(2π)3
Pζ(k) , (2.23)

the skewness : mζ(3) =

∫

d3k1 d3k2
(2π)6

Bζ(k1,k2,k3)
[ ∫

d3k
(2π)3

Pζ(k)
]3/2

, (2.24)

the kurtosis : mζ(4) =

∫

d3k1 d3k2 d3k3
(2π)9

Tζ(k1,k2,k3,k4)
[ ∫

d3k
(2π)3

Pζ(k)
]2 , (2.25)

.

.

.

and so on.

Non-gaussianity in ζ is, therefore, associated with non-vanishing higher order spectral func-
tions, starting from the bispectrum Bζ .

2.3.1 Statsitical descriptors for primordial curvature
perturbation ζ

Theoretical cosmologists work with ζ . However, astronomers work with observable quanti-
ties such as the contrast in the temperature of the cosmic microwave background radiation
δT/T . The connection between the theoretical cosmologist quantity ζ and the astronomer
quantity δT/T is given by the Sachs-Wolfe effect [176] which, at first-order and for super-
horizon scales, looks as follows:

(

δT

T

)

k

= −1

5
ζk . (2.26)
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Thus, although it is essential to study the Sachs-Wolfe relation at higher orders, which is far
more complicated than Eq. (2.26), theoretical cosmologists may study the statistical prop-
erties of the observed δT/T through the spectral functions associated with the curvature
perturbation ζ8:

mean value of δT/T = 0 → mean value of ζ = 0 , (2.27)

variance : mδT/T (2) → spectrum : Pζ(k) , (2.28)

skewness : mδT/T (3) → bispectrum : Bζ(k1,k2,k3) , (2.29)

kurtosis : mδT/T (4) → trispectrum : Tζ(k1,k2,k3,k4) , (2.30)

.

.

.

and so on.

Now, we will parametrize the spectral functions of ζ in terms of quantities which are the
ones for which observational bounds are given. Because of the direct connection between
these quantities and the moments of the probability distribution function f(ζ), we may also
call these quantities as the statistical descriptors for f(ζ).

The bispectrum Bζ and trispectrum Tζ are parametrized in terms of products of the spec-
trum Pζ, and the quantities fNL and τNL and gNL respectively9 [31, 40, 148]:

Bζ(k1,k2,k3) ≡ 6

5
fNL(k1,k2,k3) [Pζ(k1)Pζ(k2) + c. p.] , (2.31)

Tζ(k1,k2,k3,k4) ≡ 1

2
τNL(k1,k2,k3,k4) [Pζ(k1)Pζ(k2)Pζ(k1 + k4) + c. p.] +

+
54

25
gNL(k1,k2,k3,k4) [Pζ(k1)Pζ(k2)Pζ(k3) + c. p.] ,

(2.32)

where c. p. means cyclic permutations. Higher order spectral functions would be parametrized
in an analogous way.

By virtue of the reality condition ζ(−k) = ζ∗(k), an equivalent definition of the spectrum
is

〈ζ(k1)ζ
∗(k2)〉 = (2π)3δ3(k1 − k2)Pζ(k) . (2.33)

8If we assume that the statistical inhomogeneity is present, i.e translational invariance of the n-point
correlators of ζ is broken, it is necesary introduce modifications of the usual definitions of the statistical
descriptors of the primordial curvature perturbation ζ. For example, if there is statistical inhomogeneity
then 〈ζk1

ζk2
〉 is not proportional to δ(k1 + k2). In this thesis we will assume statistical homogeneity, so

that the statistical descriptors given in the last subsection can be correctly applied.
9There is actually a sign difference between the fNL defined here and that defined in Ref. [148]. The

origin of the sign difference lies in the way the observed fNL is defined [120], through the Bardeen’s
curvature perturbation: ΦB = ΦB

L + fNL(Φ
B
L )

2 with ΦB = (3/5)ζ, and the way fNL is defined in Ref.
[148], through the gauge invariant Newtonian potential: ΦN = ΦN

L + fNL(Φ
N
L )2 with ΦN = −(3/5)ζ.
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Setting k1 = k2 the left hand side is 〈|ζ(k)|2〉. It follows that the the spectrum is positive
and nonzero. Even if Pζ(k) is anisotropic, the reality condition requires Pζ(k) = Pζ(−k).
The spectrum will therefore be of the form [1]

Pζ(k) = P iso
ζ (k)

[

1 + gζ(d̂ · k̂)2 + · · ·
]

, (2.34)

where P iso
ζ (k) is the average over all directions, d̂ is some unit vector, k̂ is a unit vector along

k and gζ is the level of statistical anisotropy. The homogeneity and isotropy requirements at
large scales imply that the spectrum Pζ and bispectrum Bζ are functions of the wavenumbers
only. For the trispectrum Tζ and the other higher order spectral functions, the momentum
dependence also involves the direction of the wavevectors.

On the other hand if the n-point correlators are also invariant under rotations (statistical
isotropy) the spectral functions Pζ(k) ≡ (2π2/k3)Pζ(k) and Bζ(k1,k2,k3) depend only on
the magnitude of the wavevectors [1]. In this case the spectrum Pζ is parametrized in terms

of an amplitude P1/2
ζ and a spectral index nζ which measures the deviation from an exactly

scale-invariant spectrum [140]:

Pζ(k) ≡
2π2

k3
Pζ

(

k

aH

)nζ−1

. (2.35)

Given the present observational status, nζ , fNL, τNL, gNL and gζ are the statistical descrip-

tors that discriminate among models for the origin of the large-scale structure once P1/2
ζ

has been fixed to the observed value. Since non-vanishing higher order spectral functions
such as Bζ and Tζ imply non-gaussianity in the primordial curvature perturbation ζ , the
statistical descriptors fNL, τNL and gNL are usually called the levels of non-gaussianity.

SECTION 2.4

Observational constraints

Direct observation, coming from the anisotropy of the CMB and the inhomogeneity of
the galaxy distribution, gives information on what are called cosmological scales [119].
These correspond to a range ∆ ln k ∼ 10 or so downwards from the scale k−1 ∼ H−1

0 that
corresponds to the size of the observable Universe.

2.4.1 Spectrum and non-gaussianity

Observational results concerning the spectrum Pζ are generally obtained with the assump-
tion of statistical isotropy (gζ = 0), but they would not be greatly affected by the inclusion
of anisotropy at the 10% level.
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NASA’s COBE-satellite provided us with a reliable value for the spectral amplitude P1/2
ζ

[35]: P1/2
ζ = (4.957 ± 0.094) × 10−5 which is usually called the COBE normalisation. As

regards the spectral index, the latest data release and analysis from the WMAP satellite
shows that nζ = 0.960 ± 0.014 [119] which rejects exact scale invariance at more than 2σ.
Such a result has been extensively used to constrain inflation model building [5], and al-
though several classes of inflationary models have been ruled out through the spectral index,
lots of models are still allowed; that is why it is so important an appropiate knowledge of
the statistical descriptors fNL and τNL. Present observations show that the primordial cur-
vature perturbation ζ is almost, but not completely, gaussian. The level of non-gaussianity
fNL in the bispectrum Bζ , after five years of data from NASA’s WMAP satellite, is in the
range −9 < fNL < 111 at 2σ [119]. There is at present no observational bound on the
level of non-gaussianity τNL in the trispectrum Tζ although it was predicted that COBE
should either detect it or impose the lower bound |τNL| <∼ 108 [31, 163]. It is expected that
future WMAP data releases will either detect non-gaussianity or reduce the bounds on fNL

and τNL at the 2σ level to |fNL| <∼ 40 [120] and |τNL| <∼ 2 × 104 [112] respectively. The
ESA’s PLANCK satellite [59, 206], launched in 2009, promises to reduce the bounds to
|fNL| <∼ 10 [120] and |τNL| <∼ 560 [112] at the 2σ level if non- gaussianity is not detected.
In addition, by studying the 21-cm emission spectral line in the cosmic neutral Hydrogen
prior to the era of reionization, it is also possible to know about the levels of non-gaussianity
fNL and τNL; the 21-cm background anisotropies capture information about the primordial
non-gaussianity better than any high resolution map of cosmic microwave background ra-
diation: an experiment like this could reduce the bounds on the non-gaussianity levels to
|fNL| <∼ 0.2 [44, 45] and |τNL| <∼ 20 [45] at the 2σ confidence. Finally, it is worth stating
that there have been recent claims about the detection of non-gaussianity in the bispectrum
Bζ of ζ from the WMAP 3-year data [101, 223]. Such claims, which report a rejection of
fNL = 0 at more that 2σ (26.9 < fNL < 146.7), are based on the estimation of the bispec-
trum while using some specific foreground masks. The WMAP 5-year analysis [119] shows
a similar behaviour when using those masks, but reduces the significance of the results
when other more conservative masks are included allowing again the possibility of exact
gaussianity.

2.4.2 Statistical anisotropy and statistical inhomogeneity

Taking all the uncertainties into account, observation is consistent with statistical anisotropy
and statistical inhomogeneity allowing either of these things at around the 10% level. In-
deed, some recent papers [14, 79, 80, 88, 178] claim for the presence of statistical anisotropy
in the five-year data from the NASA’s WMAP satellite [159]. In this section we briefly re-
view what is known.

Assuming statistical homogeneity of the curvature perturbation, a recent study [79] of the
CMB temperature perturbation finds weak evidence for statistical anisotropy (see Fig. 2.1
for an example of who is statitiscal anisotropy). They keep only the leading (quadrupolar)
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(a) (b) (c)

Figure 2.1: Statistical anisotropy. (a). This simulation corresponds to the statistical
isotropic case gζ = 0. (b). In contrast, this simulation corresponds to the statistical

anisotropic case with gζ = 1, d̂ pointing along the horizontal direction and setting to zero

the isotropic part. (c). Same as in (b) but with d̂ pointing along the vertical direction.
(Courtesy of Mindaugas Karčiauskas).

term of Eq. (2.34):

Pζ(k) = P iso
ζ (k)

(

1 + gζ(d̂ · k̂)2
)

, (2.36)

and find gζ ≃ 0.290± 0.031 which rules out statistical isotropy at more than 9σ. Neverthe-
less, the preferred direction lies near the plane of the solar system, which makes the authors
of Ref. [79] believe that this effect could be due to an unresolved systematic error (among
other possible systematic errors which have not been demonstrated either to be the source
of this statistical anisotropy nor to be completely uncorrelated [79]).

Even if the result found in Ref. [79] turns out to be due to a systematic error, some fore-
casted constraints on gζ show that the statistical anisotropy subject is worth studying [167]:
|gζ| <∼ 0.1 for the NASA’s WMAP satellite [159] if there is no detection, and |gζ| <∼ 0.02 for
the ESA’s PLANCK satellite [59] if there is no detection. There is at present no bound on
statistical anisotropy of the 3-point or higher correlators.

In some different studies, the mean-square CMB perturbation in opposite hemispheres has
been measured, to see if there is any difference between hemispheres. Quite recent works
[62, 63, 86] find a difference of order ten percent, for a certain choice of the hemispheres,
with statistical significance at the 99% level. Given the difficulty of handling systematic
uncertainties it would be premature to regard the evidence for this hemispherical anisotropy
as completely overwhelming. Nevertheless, what would hemispherical anisotropy imply for
the curvature perturbation? Focussing on a small patch of sky, the statistical anisotropy of
the curvature perturbation implies that the mean-square temperature perturbation within
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a given small patch will in general depend on the direction of that patch. This is because
the mean square within such a patch depends upon the mean square of the curvature
perturbation in a small planar region of space perpendicular to the line of sight located at
last scattering. But the mean-square temperature will be the same in patches at opposite
directions in the sky, because they explore the curvature perturbation ζ(k) in the same
k-plane and the spectrum Pζ(k) is invariant under the change k → −k. It follows that
statistical anisotropy of the curvature perturbation cannot by itself generate a hemispherical
anisotropy. We may then conclude that hemispherical anisotropy of the CMB temperature
requires statistical inhomogeneity of the curvature perturbation. Then 〈ζ(k1)ζ(k2)〉 is not
proportional to δ3(k1 + k2) [41].

SECTION 2.5

Conclusions

In this chapter we have presented the statistical description of primordial curvature per-
turbation ζ . This framework allows us to define statistical descriptors, which provides a
bridge between theory and observation. The relevant parameters that parametrize these
statistical descritors are: the spectrum amplitude Pζ

1/2, the spectral index nζ , the levels of
non-gaussianity fNL, τNL and gNL and the level of statistical anisotropy gζ . Some of these
parameters have an upper bound from observation, so it is very important to study the-
oretical models that successfully reproduce these observations. To study these theoretical
aspects, we have presented a poweful tool to calculate the primordial cuvature pertubation
ζ and all its statistical descriptors; such a tool is usully called the δN formalism. In the
next two chapters we will see how to work out this formalism.



Chapter3
ON THE ISSUE OF THE ζ SERIES

CONVERGENCE AND LOOP CORRECTIONS IN

THE GENERATION OF OBSERVABLE

PRIMORDIAL NON- GAUSSIANITY IN

SLOW-ROLL INFLATION: THE BISPECTRUM

SECTION 3.1

Introduction

Since COBE [158] discovered and mapped the anisotropies in the temperature of the cosmic
microwave background radiation [199], many balloon and satellite experiments have refined
the measurements of such anisotropies, reaching up to now an amazing combined precision.
The COBE sequel has continued with the WMAP satellite [159] which has been able to
measure the temperature angular power spectrum up to the third peak with unprecedent
precision [90], and increase the level of sensitivity to primordial non-gaussianity in the
bispectrum by two orders of magnitude compared to COBE [118, 119]. The next-to-WMAP
satellite, PLANCK [59], which was launched in may of 2009, is expected to precisely measure
the temperature angular power spectrum up to the eighth peak [206], and improve the level
of sensitivity to primordial non-gaussianity in the bispectrum by one order of magnitude
compared to WMAP [120].



Introduction 38

Because of the progressive improvement in the accuracy of the satellite measurements de-
scribed above, it is pertinent to study cosmological inflationary models that generate signif-
icant (and observable) levels of non-gaussianity. An interesting way to address the problem
involves the δN formalism [52, 139, 142, 181, 182, 202], which can be employed to give the
levels of non-gaussianity fNL [142] and τNL [6, 31] in the bispectrum Bζ and trispectrum
Tζ of the primordial curvature perturbation ζ respectively. Such non-gaussianity levels are
given, for slow-roll inflationary models, in terms of the local evolution of the universe un-
der consideration, as well as of the n-point correlators, evaluated a few Hubble times after
horizon exit, of the perturbations δφi in the scalar fields that determine the dynamics of
such a universe during inflation.

In the δN formalism for slow-roll inflationary models, the primordial curvature perturbation
ζ(x, t) is written as a Taylor series in the scalar field perturbations δφi(x, t⋆) evaluated a
few Hublle times after horizon exit1,

ζ(t,x) =
∑

I

NI(t)δφI(x, t⋆)−
∑

I

NI(t)〈δφI(x, t⋆)〉+

+
1

2

∑

IJ

NIJ(t)δφI(x, t⋆)δφJ(x, t⋆)−
1

2

∑

IJ

NIJ(t)〈δφI(x, t⋆)δφJ(x, t⋆)〉+

+
1

3!

∑

IJK

NIJK(t)δφI(x, t⋆)δφJ(x, t⋆)δφk(x, t⋆)

− 1

3!

∑

IJK

NIJK(t)〈δφI(x, t⋆)δφJ(x, t⋆)δφK(x, t⋆)〉+

+... , (3.1)

It is in this way that the correlation functions of ζ (for instance, 〈ζk1
ζk2

ζk3
〉) can be ob-

tained in terms of series, as often happens in Quantum Field Theory where the probability
amplitude is a series whose possible truncation at any desired order is determined by the
coupling constants of the theory. A highly relevant question is that of whether the series for
δN converges in cosmological perturbation theory and whether it is possible in addition to
find some quantities that determine the possible truncation of the series, which in this sense
would be analogous to the coupling constants in Quantum Field Theory. In general such
quantities will depend on the specific inflationary model; the series then cannot be simply
truncated at some order until one is sure that it does indeed converge, and besides, one has
to be careful not to forget any term that may be leading in the series even if it is of higher or-
der in the coupling constant. This issue has not been investigated in the present literature,
and generally the series has been truncated to second- or third-order neglecting in addition
terms that could be the leading ones [5, 6, 22, 31, 40, 142, 181, 188, 211, 225, 226, 228].

The most studied and popular inflationary models nowadays are those of the slow-roll vari-
ety with canonical kinetic terms [137, 140, 141], because of their simplicity and because they

1This equation is similar to one in Eq. (2.12), the difference is that here we are redefined it so that
〈ζ(t,x) = 0〉.
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easily satisfy the spectral index requirements for the generation of large-scale structures.
One of the usual predictions from inflation and the theory of cosmological perturbations is
that the levels of non-gaussianity in the primordial perturbations are expected to be unob-
servably small when considering this class of models [22, 127, 148, 188, 189, 190, 191, 211,
226, 228]2. This fact leads us to analyze the cosmological perturbations in the framework
of first-order cosmological perturbation theory. Non-gaussian characteristics are then sup-
pressed since the non-linearities in the inflaton potential and in the metric perturbations
are not taken into account. The non-gaussian characteristics are actually present and they
are made explicit if second-order [143] or higher-order corrections are considered.

The whole literature that encompasses the slow-roll inflationary models with canonical
kinetic terms reports that the non- gaussianity level fNL is expected to be very small,
being of the order of the slow-roll parameters ǫi and ηi, (ǫi, |ηi| ≪ 1) [22, 148, 191, 211, 226].
These works have not taken into account either the convergence of the series for ζ nor the
possibility that loop corrections dominate over the tree level ones in the n-point correlators.
Our main result in this chapter is the recognition of the possible convergence of the ζ series,
and the existence of some “coupling constants” that determine the possible truncation of
the ζ series at any desired order. When this situation is encountered in a subclass of small-
field slow-roll inflationary models with canonical kinetic terms, the one-loop corrections
may dominate the series when calculating either the spectrum Pζ, or the bispectrum Bζ .
This in turn may generate sizeable and observable levels of non-gaussianity in total contrast
with the general claims found in the present literature.

The layout of the chapter is the following: Section 3.2 is devoted to the issue of the ζ series
convergence and loop corrections in the framework of the δN formalism. The presentation
of the current knowledge about primordial non-gaussianity in slow-roll inflationary models
is given in Section 3.3. A particular subclass of small-field slow- roll inflationary models is
the subject of Section 3.4 as it is this subclass of models that generate significant levels of
non- gaussianity. The available parameter space for this subclass of models is constrained
in Section 3.5 by taking into account some observational requirements such as the COBE
normalisation, the scalar spectral tilt, and the minimal amount of inflation. Another re-
quirement of methodological nature, the possible tree-level or one-loop dominance in Pζ

and/or Bζ , is considered in this section. The level of non-gaussianity fNL in the bispec-
trum Bζ is calculated in Section 3.6 for models where ζ is generated during inflation; a
comparison with the current literature is made. Section 3.7 is devoted to central issues
in the consistency of the approach followed such as satisfying necessary conditions for the

2One possible exception is the two-field slow-roll model analyzed in Ref. [5] (see also Refs. [28, 29]) where
observable, of order one, values for fNL are generated for a reduced window parameter associated with the
initial field values when taking into account only the tree-level terms in both Pζ and Bζ . However, such a
result seems to be incompatible with the general expectation, proved in Ref. [211], of fNL being of order
the slow-roll parameters, and in consequence unobservable, for two-field slow-roll models with separable
potential when considering only the tree-level terms both in Pζ and Bζ . The origin of the discrepancy
could be understood by conjecturing that the trajectory in field space, for the models in Refs. [5, 28, 29],
seems to be sharply curved, being quite near a saddle point; such a condition is required, according to Ref.
[211], to generate fNL ∼ O(1).
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convergence of the ζ series and working in a perturbative regime. Finally in Section 3.8
we conclude. As regards the level of non-gaussianity τNL in the trispectrum Tζ , it will be
studied in the following Chapter.

SECTION 3.2

ζ series convergence and loop corrections

In order to calculate ζ(t,x) from Eq. (2.12), we need information about the physical content
of the Universe at times t and tin. By choosing the initial time tin a few Hubble times after
the cosmologically relevant scales leave the horizon during inflation tin = t⋆, and the final
time t corresponding to a slice of uniform energy density, we recognize that N , for slow-roll
inflationary models, is completely parametrized by the values a few Hubble times after
horizon exit of the scalar fields φi present during inflation and the energy density at the
time at which one wishes to calculate ζ :

ζ(t,x) ≡ N(ρ(t), φ1(t⋆,x), φ2(t⋆,x), ...)−N(ρ(t), φ1(t⋆), φ2(t⋆), ...) . (3.2)

The previous expression can be Taylor-expanded around the unperturbed background val-
ues for the scalar fields φi and suitably redefined so that 〈ζ(t,x)〉 = 0. Thus,

ζ(t,x) =
∑

I

NI(t)δφI(x, t⋆)−
∑

I

NI(t)〈δφI(x, t⋆)〉+

+
1

2

∑

IJ

NIJ(t)δφI(x, t⋆)δφJ(x, t⋆)−
1

2

∑

IJ

NIJ(t)〈δφI(x, t⋆)δφJ(x, t⋆)〉+

+
1

3!

∑

IJK

NIJK(t)δφI(x, t⋆)δφJ(x, t⋆)δφk(x, t⋆)

− 1

3!

∑

IJK

NIJK(t)〈δφI(x, t⋆)δφJ(x, t⋆)δφK(x, t⋆)〉+

+... , (3.3)

where the δφi(t⋆,x) are the scalar field perturbations in the flat slice a few Hubble times
after horizon exit, whose spectrum amplitude is given by [33]

P1/2
δφi

=
H⋆

2π
, (3.4)

and the notation for the N derivatives is Ni ≡ ∂N
∂φi

, Nij ≡ ∂2N
∂φi∂φj

, and so on.

The expression in Eq. (3.3) has been used to calculate the statistical descriptors of ζ at
any desired order in cosmological perturbation theory by consistently truncating the series
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[142]. For instance, by truncating the series at first order, the amplitude of the spectrum
Pζ of ζ defined in Eqs. (2.20) and (2.35) is given by [181]

Pζ =

(

H⋆

2π

)2
∑

i

N2
i , (3.5)

which in turn gives the well known formula for the spectral index [181]:

nζ − 1 = −2ǫ− 2m2
P

∑

ij ViNjNij

V
∑

iN
2
i

, (3.6)

where a subindex i in V means a derivative with respect to the φi field, and being ǫ one of
the slow-roll parameters defined by ǫ = −Ḣ/H2, mP = (8πG)−2 the reduced Planck mass,
and V the scalar inflationary potential. Analogously, the level of non-gaussianity fNL in the
bispectrum Bζ of ζ defined in Eqs. (2.21) and (2.31) is obtained by truncating the series
at second order and assuming that the scalar field perturbations δφi are perfectly gaussian
[142]:

6

5
fNL =

∑

ij NiNjNij

[
∑

iN
2
i ]

2 + Pζ

∑

ijkNijNjkNki

[
∑

iN
2
i ]

3 ln(kL) . (3.7)

In the last expression the ln(kL) factor is of order one, L being the infrared cutoff when
calculating the stochastic properties in a minimal box [27, 138].

The truncated series methodology has proved to be powerful and reliable at reproducing
successfully the level of non-gaussianity fNL in single-field slow-roll models [189] and in the
curvaton scenario [31]. Nevertheless, for more general models, how reliable is it to truncate
the series at some order? In the first place, from Eq. (3.3) it is impossible to know whether
the series converges until the N derivatives are explicitly calculated and the convergence
radius is obtained; obviously if the series is not convergent at all, the expansion in Eq.
(3.3) is meaningless. Without any proof of the contrary, the current assumption in the
literature [3, 6, 22, 31, 40, 142, 181, 188, 211, 225, 226, 228] has been that the ζ series
is convergent. In addition, supposing that the convergence radius is finally known, the
truncation at any desired order would again be meaningless if some leading terms in the
series get excluded. Such a situation might easily happen if each x-dependent term in the ζ
series is considered smaller than the previous one, which indeed is the standard assumption
[3, 6, 22, 31, 40, 142, 181, 188, 211, 225, 226, 228], but which is not a universal fact.

When studying the series through a diagrammatic approach [39], in an analogous way
to that for Quantum Field Theory via Feynman diagrams, the first-order terms in the
spectral functions are called the tree-level terms. Examples of these tree-level terms are
those in Eqs. (3.5) and (3.6), and the first one in Eq. (3.7). Higher-order corrections,
such as that which contributes with the second term in Eq. (3.7), are called the loop
terms because they involve internal momentum integrations. The statistical descriptors of
ζ has been so far studied by naively neglecting the loop corrections against the tree-level
terms [3, 6, 22, 31, 40, 142, 181, 188, 211, 225, 226, 228]; nevertheless, as might happen
in Quantum Field Theory, eventually some loop corrections could be bigger than the tree-
level terms, so it is essential to properly study the possible n-loop dominance in the spectral
functions.
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SECTION 3.3

Non-gaussianity in slow-roll inflation

The most frequent class of inflationary models found in the literature are those which satisfy
the so called slow-roll conditions, as these very simple models easily meet the spectral index
observational requirements discussed in Subsection 2.4 for the generation of large-scale
structures.

The slow-roll conditions for single-field inflationary models with canonical kinetic terms
read

φ̇2 ≪ V (φ) , (3.8)

|φ̈| ≪ |3Hφ̇| , (3.9)

where φ is the inflaton field and V (φ) is the scalar field potential. On defining the slow-roll
parameters ǫ and ηφ as [140]

ǫ ≡ − Ḣ

H2
, (3.10)

ηφ ≡ ǫ− φ̈

Hφ̇
, (3.11)

the slow-roll conditions in Eqs. (3.8) and (3.9) translate into strong constraints for the
slow-roll parameters: ǫ, |ηφ| ≪ 1, which actually become ǫ, |ηφ| <∼ 10−2 in view of Eq. (3.6)
for single-field inflation:

nζ − 1 = 2ηφ − 6ǫ , (3.12)

and the observational requirements presented in Subsection 2.4.

Multifield slow-roll models may also be characterized by a set of slow-roll parameters which
generalize those in Eqs. (3.10) and (3.11) [141]:

ǫi ≡ m2
P

2

(

Vi
V

)2

, (3.13)

ηi ≡ m2
P

Vii
V
. (3.14)

By writing the slow-roll parameters in terms of derivatives of the scalar potential, as in the
latter two expressions, we realize that the slow-roll conditions require very flat potentials
to be met.

The level of non-gaussianity fNL in slow-roll inflationary models with canonical kinetic
terms has been studied both for single-field [148] and for multiple-field inflation [22, 211,
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226], assuming ζ series convergence and considering only the tree-level terms both in Pζ

and in Bζ . What these works find is a strong dependence on the slow-roll parameters ǫi
and ηi; for instance, Ref. [148] gives us for single-field models:

6

5
fNL = ǫ(1 + f) + 2ǫ− ηφ , (3.15)

where f is a function of the shape of the wavevectors triangle within the range 0 ≤ f ≤ 5/6.
Refs. [21, 138] show that in such a case the inclusion of loop corrections is unnecessary
because the latter are so small compared to the tree-level terms. Thus, fNL in single-field
models with canonical kinetic terms is slow-roll suppressed and, therefore, unobservably
small. As regards the multifield models, fNL was shown, first in the case of two- field
inflation with separable potential [211] and later for multiple-field inflation with separable
[22] and non-separable [226] potentials, to be a rather complex function of the slow-roll
parameters and the scalar potential that in most of the cases ends up being slow-roll
suppressed. Only for models with a sharply curved trajectory in field space might the fNL

be at most of order one, the only possible examples to date being the models of Refs.
[3, 28, 29, 37]. Again, such predictions are based on the assumptions that the ζ series
is convergent and that the tree-level terms are the leading ones, so they might be badly
violated if loop corrections are considered.

Following a parallel treatment to that in Ref. [211], the level of non-gaussianity τNL is
calculated in Ref. [188] for multifield slow-roll inflationary models with canonical kinetic
terms, separable potential, and assuming convergence of the ζ series and tree-level dom-
inance. From reaching similar conclusions to those found for the fNL case, the τNL is
slow-roll suppressed in most of the cases although it might be of order one if the trajectory
in field space is sharply curved. Nevertheless, as we will shown in the next chapter, there
may be a big enhancement in τNL if loop corrections are taken into account.

Finally, it is worth mentioning that there are other classes of models where the levels of non-
gaussianity fNL and τNL are big enough to be observable. Some of these models correspond
to general langrangians with non-canonical kinetic terms (k-inflation [12], DBI inflation
[195], ghost inflation [11], etc.), where the sizeable levels of non-gaussianity have mostly a
quantum origin, i.e. their origin relies on the quantum correlators of the field perturbations a
few Hubble times after horizon exit. Non-gaussianity in Bζ has been studied in these models
for the single-field case [42, 187] and also for the multifield case [16, 68, 124, 125]. A recent
paper discusses the non-gaussianity in Tζ for these general models for single-field inflation
[15]. In contrast, there are some other models where the large non-gaussianities have their
origin in the field dynamics at the end of inflation [26, 135]; nice examples of this proposal
are studied for instance in Refs. [151, 152, 179, 180]. However, since the inflationary models
of the slow-roll variety with canonical kinetic terms are the simplest, the most popular, and
the best studied so far although, in principle, the non-gaussianity statistical descriptors are
too small to ever be observable, it is very interesting to consider the possibility of having
an example of such models which does generate sizeable and observable values for fNL and
τNL. This appealing possibility will be the subject of the following sections and also the
next chapter.
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SECTION 3.4

A subclass of small-field slow-roll inflationary models

According to the classification of inflationary models proposed in Ref. [57], the small-field
models are those of the form that would be expected as a result of spontaneous symmetry
breaking, with a field initially near an unstable equilibrium point (usually taken to be at
the origin) and rolling toward a stable minimum 〈φ〉 6= 0. Thus, inflation occurs when the
field is small relative to its expectation value φ ≪ 〈φ〉. Some interesting examples are the
original models of new inflation [8, 128], modular inflation from string theory [55], natural
inflation [64], and hilltop inflation [32]. As a result, the inflationary potential for small-field
models may be taken as

V =
∑

i

Λi

[

1−
(

φi

µi

)p]

, (3.16)

where the subscript i here denotes the relevant quantities of the ith field, p is the same for
all fields, and Λi and µi are the parameters describing the height and tilt of the potential
of the ith field.

While Ref. [2] studies the spectrum of ζ for general values of the parameter p and an
arbitrary number of fields, assuming ζ series convergence and tree-level dominance, we will
specialize to the p = 2 case for two fields φ and σ:

V = V0

(

1 +
1

2
ηφ

φ2

m2
P

+
1

2
ησ

σ2

m2
P

)

, (3.17)

where we have traded the expressions

Λ1 + Λ2 for V0 , (3.18)

Λ1

µ2
1

for −V0
ηφ
2m2

P

, (3.19)

and
Λ2

µ2
2

for − V0
ησ
2m2

P

. (3.20)

By doing this, and assuming that the first term in Eq. (3.17) dominates, ηφ < 0 and ησ < 0
become the usual η slow-roll parameters associated with the fields φ and σ.

We have chosen for simplicity the σ = 0 trajectory (see Fig. 3.1) since in that case the
potential in Eq. (3.17) reproduces for some number of e-folds the hybrid inflation scenario
[129] where φ is the inflaton and σ is the waterfall field. Non-gaussianity in such a model
has been studied in Refs. [3, 61, 142, 143, 207, 228]; in particular, Ref. [142] used a one-
loop correction to conjecture that fNL in this model would be sizeable only if ζ was not
generated during inflation, which turns out not to be a necessary requirement as we will
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Figure 3.1: Our small-field slow-roll potential of Eq. (3.17) with ηφ, ησ < 0. The inflaton
starts near the maximum and moves away from the origin following the σ = 0 trajectory
depicted with the solid black line. (This figure has been taken from Ref. [5]).

show later [43, 175]. Ref. [3], in contrast, works only at tree-level with the same potential
as Eq. (3.17) but relaxing the σ = 0 condition, finding that values for fNL ∼ O(1) are
possible for a small set of initial conditions and assuming a saddle-point-like form for the
potential (ηφ < 0 and ησ > 0).

SECTION 3.5

Constraints for having a reliable parameter space

We will explore now the constraints that the model must satisfy before we calculate the
level of non-gaussianity fNL. Our guiding idea will be the consideration of the role that
the tree-level terms and one-loop corrections in Pζ and Bζ have in the determination of the
available parameter space. Only after calculating fNL in Section 3.6 will we come back to
the discussion of the consistency of the approach followed in the present section by studying
the ζ series convergence and the validity of the truncation at one loop level.
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3.5.1 Tree-level or one-loop dominance: fNL

Since we are considering a slow-roll regime, the evolution of the background φ and σ fields
in such a case is given by the Klein-Gordon equation

φ̈+ 3Hφ̇+ Vφ = 0 , (3.21)

supplemented with the slow-roll condition in Eq. (3.9). This leads to

φ(N) = φ⋆ exp(−Nηφ) , (3.22)

σ(N) = σ⋆ exp(−Nησ) , (3.23)

so the potential above leads to the following derivatives of N with respect to φ⋆ and σ⋆ for
the σ = 0 trajectory:3

Nφ =
1

ηφφ⋆
, Nσ = 0 , (3.24)

Nφφ = − 1

ηφφ2
⋆

, Nφσ = 0 , Nσσ =
ησ
η2φφ

2
⋆

exp[2N(ηφ − ησ)] , (3.25)

Nφφφ =
2

ηφφ3
⋆

, Nφφσ = 0 , Nσσφ = − 2η2σ
η3φφ

3
⋆

exp[2N(ηφ − ησ)] , Nσσσ = 0 ,(3.26)

...

and so on.

By means of the δN formalism, we can make use of the above formulae to calculate the
spectrum and the bispectrum of the curvature perturbation including the tree-level and
the one-loop contributions when |ησ| > |ηφ| (see Appendix A). This is the interesting case
since, as will be shown in Section 3.6, it generates sizeable values for fNL. Following the
results in Appendix A, we will write down just the leading terms to the tree-level and one-
loop contributions given in Eqs. (A.1), (A.7), (A.11) and (A.28).

P tree
ζ =

1

η2φφ
2
⋆

(

H⋆

2π

)2

, (3.27)

P1−loop
ζ =

η2σ
η4φφ

4
⋆

exp[4N(ηφ − ησ)]

(

H⋆

2π

)4

ln(kL) , (3.28)

Btree
ζ = − 1

η3φφ
4
⋆

(

H⋆

2π

)4

4π4

(∑

i k
3
i

∏

i k
3
i

)

, (3.29)

B1−loop
ζ =

η3σ
η6φφ

6
⋆

exp[6N(ηφ − ησ)]

(

H⋆

2π

)6

ln(kL)4π4

(∑

i k
3
i

∏

i k
3
i

)

. (3.30)

Because of the exponential factors in Eqs. (3.28) and (3.30), it might be possible that the
one-loop corrections dominate over Pζ and/or Bζ . There are three posibilities in complete
connection with the position of the φ field when the cosmologically relevant scales are
exiting the horizon:

3When calculating the N -derivatives, we have considered that the final time corresponds to a slice of
uniform energy density. This means, in the slow-roll approximation, that V is homogeneous.
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Both Bζ and Pζ are dominated by the one-loop corrections

Comparing Eqs. (3.27) with (3.28) and Eqs. (3.29) with (3.30) we require in this case that

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.31)

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.32)

in which case only the first inequality is required. Employing the definition for the tensor
to scalar ratio r [137]:

r ≡ PT

Pζ
=

8
m2

P

(

H⋆

2π

)2

Pζ
, (3.33)

P1/2
T being the amplitude of the spectrum for primordial gravitational waves, we can write

such an inequality as

(

φ⋆

mP

)2

≪ rPζ

8

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] . (3.34)

From now on we will name the parameter window described by Eq. (3.34) as the low φ⋆

region since the latter represents a region of allowed values for φ⋆ limited by an upper
bound.

Bζ dominated by the one-loop correction and Pζ dominated by the tree-level
term

Comparing Eqs. (3.27) with (3.28) and Eqs. (3.29) with (3.30) we require in this case that

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.35)

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.36)

which combines to give, employing the definition for the tensor to scalar ratio r introduced
in Eq. (3.33),

rPζ

8

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≪
(

φ⋆

mP

)2

≪ rPζ

8

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] . (3.37)

From now on we will name the parameter window described by Eq. (3.37) as the interme-
diate φ⋆ region since the latter represents a region of allowed values for φ⋆ limited by both
an upper and a lower bound.
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Both Bζ and Pζ are dominated by the tree-level terms

Comparing Eqs. (3.27) with (3.28) and Eqs. (3.29) with (3.30) we require in this case that

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.38)

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (3.39)

in which case only the second inequality is required. Employing the definition for the tensor
to scalar ratio r introduced in Eq. (3.33), we can write such an inequality as

(

φ⋆

mP

)2

≫ rPζ

8

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] . (3.40)

From now on we will name the parameter window described by Eq. (3.40) as the high φ⋆

region, since the latter represents a region of allowed values for φ⋆ limited by a lower bound.

3.5.2 Spectrum normalisation condition

The model must satisfy the COBE normalisation on the spectrum amplitude P1/2
ζ [35]

considering that ζ is assumed to be generated during inflation4. There exist two possibilities
discussed right below.

ζ generated during inflation and Pζ dominated by the one-loop correction

According to Eq. (3.28), and the tensor to scalar ratio r definition in Eq. (3.33), we have
in this case

P1−loop
ζ =

η2σ
η4φφ

4
⋆

exp[4N(|ησ| − |ηφ|)]
(

H⋆

2π

)4

ln(kL)

=
η2σ
η4φ

exp[4N(|ησ| − |ηφ|)]
(

mP

φ⋆

)4(
rPζ

8

)2

ln(kL) , (3.41)

which reduces to
(

φ⋆

mP

)4

=
(r

8

)2

Pζ
η2σ
η4φ

exp[4N(|ησ| − |ηφ|)] ln(kL) , (3.42)

where Pζ must be replaced by the observed value presented in Subsection 2.4.

4The scenario where ζ is assumed not to be generated during inflation will be presented in the next
chapter.
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ζ generated during inflation and Pζ dominated by the tree-level term

According to Eq. (3.27), and the tensor to scalar ratio r definition in Eq. (3.33), we have
in this case

P tree
ζ =

1

η2φφ
2
⋆

(

H⋆

2π

)2

=
1

η2φ

(

mP

φ⋆

)2
rPζ

8
, (3.43)

which reduces to
(

φ⋆

mP

)2

=
1

η2φ

r

8
. (3.44)

Notice that in such a situation, the value of the φ field when the cosmologically relevant
scales are exiting the horizon depends exclusively on the tensor to scalar ratio r, once ηφ
has been fixed by the spectral tilt constraint as we will see later.

3.5.3 Spectral tilt constraint

The combined 5-year WMAP + Type I Supernovae + Baryon Acoustic Oscillations data
[119] constrain the value for the spectral tilt as

nζ − 1 = −0.040± 0.014 . (3.45)

Here again we have two possibilities: Pζ is dominated either by the one-loop correction or
by the tree-level term:

Pζ dominated by the one-loop correction

In this case the usual spectral index formula at tree-level [181] gets modified to account for
the leading one-loop correction:

nζ − 1 = −4ǫ− 2m2
P

∑

ijk VkNijkNij

V
∑

ij NijNij
+ [ln(kL)]−1 . (3.46)

By making use of the derivatives in Eqs. (3.24), (3.25), and (3.26), we have

nζ − 1 = −4ǫ+ 4ησ + [ln(kL)]−1 , (3.47)

which implies that the observed value for nζ is never reproduced in view of ln(kL) ∼ O(1).
Moreover, when calculating the running spectral index dnζ/d ln k from Eq. (3.47), we
obtain

dnζ

d ln k
= − [ln(kL)]−2 , (3.48)
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which rules out the possibility that Pζ is dominated by the one-loop correction since the
calculated dnζ/d ln k is far from the observationally allowed 2σ range of values: −0.0728 <
dnζ/d ln k < 0.0087 [119]5.

Pζ dominated by the tree-level term

Now the usual spectral index formula [181] applies:

nζ − 1 = −2ǫ− 2m2
P

∑

ij ViNjNij

V
∑

iN
2
i

, (3.49)

giving the following result once the derivatives in Eqs. (3.24), (3.25), and (3.26) have been
used:

nζ − 1 = −2ǫ+ 2ηφ . (3.50)

The efect of the ǫ parameter may be discarded in the previous expression since, as often
happens in small-field models [6, 32], ǫ is negligible being much less than |ησ|:

ǫ =
m2

P

2

V 2
φ + V 2

σ

V 2
= |ηφ|

[

1

2
|ηφ|

(

φ

mP

)2
]

≪ |ηφ| < |ησ| , (3.51)

according to the prescription that the potential in Eq. (3.17) is dominated by the constant
term. Thus, by using the central value for nζ − 1, we get

ηφ = −0.020 . (3.52)

3.5.4 Amount of inflation

Because of the characteristics of the inflationary potential in Eq. (3.17), inflation is eternal
in this model. However, Ref. [157] introduced the multi-brid inflation idea of Refs. [179,
180] so that the potential in Eq. (3.17) is achieved during inflation while a third field ρ
acting as a waterfall field is stabilized in ρ = 0. During inflation ρ is heavy and it is trapped
with a vacuum expectation value equal to zero, so neglecting it during inflation is a good
approximation. The end of inflation comes when the effective mass of ρ becomes negative,
which is possible to obtain if V0 in the potential of Eq. (3.17) is replaced by

V0 =
1

2
G(φ, σ)ρ2 +

λ

4

(

ρ2 − Σ2

λ

)2

, (3.53)

where
G(φ, σ) = g1φ

2 + g2σ
2 , (3.54)

5We thank Eiichiro Komatsu for pointing out to us the dependence of nζ and dnζ/d ln k on ln(kL).
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Σ has some definite value and g1, g2, and λ some coupling constants. The end of inflation
actually happens on a hypersurface defined in general by [157, 180]

G(φ, σ) = Σ2 . (3.55)

In general the hypersurface in Eq. (3.54), defined by the end of inflation condition, is not
a surface of uniform energy density. Because the δN formalism requires the final slice to
be of uniform energy density6, we need to add a small correction term to the amount of
expansion up to the surface where ρ is destabilised. In addition, the end of inflation is
inhomogeneous, which generically leads to different predictions from those obtained during
inflation for the spectral functions [4, 135, 177]. In particular, large levels of non-gaussianity
may be obtained by tunning the free parameters of the model. Specifically, by making
g1/g2 ≪ 1, large values for fNL and τNL are obtained due to the end of inflation mechanism
rather than due to the dynamics during slow-roll inflation [4, 98, 157].

Ref. [38] chose instead the case g21/g
2
2 = ηφ/ησ such that the surface where ρ is destabilised

corresponds to a surface of uniform energy density7. In this case all of the spectral functions
are the same as those calculated in this thesis (see Refs. [38, 43, 175]), which in turn are
valid at the final hypersurface of uniform energy density during slow-roll inflation. Thus,
we have a definite mechanism to end inflation which, nevertheless, leaves intact the non-
gaussianity generated during inflation.

It is well known that the number of e-folds of expansion from the time the cosmological
scales exit the horizon to the end of inflation is presumably around but less than 62 [56,
140, 155, 220]. The slow-roll evolution of the φ field in Eq. (3.22) tells us that such an
amount of inflation is given by

N = − 1

ηφ
ln

(

φend

φ⋆

)

<∼ 62 , (3.56)

where φend is the value of the φ field at the end of inflation. Such a value depends noticeably
on the coupling constants in Eq. (3.53). We will in this chapter not concentrate on the
allowed parameter window for g1, g2, and λ. Instead, we will give an upper bound on φ
during inflation, for the ηφ < 0 case, consistent with the potential in Eq. (3.17) and the
end of inflation mechanism described above.

Keeping in mind the results of Ref. [13] which say that the ultraviolet cutoff in cosmological
perturbation theory could be a few orders of magnitude bigger than mP , we will tune
the coupling constants in Eq. (3.53) so that inflation for ηφ < 0 comes to an end when
|ηφ|φ2/2m2

P ∼ 10−2. This allows us to be on the safe side (avoiding large modifications
to the potential coming from ultraviolet cutoff-suppressed non-renormalisable terms, and
keeping the potential dominated by the constant V0 term). Coming back to Eq. (3.56), we

6See for instance Ref. [43].
7Ref. [38] studies as well the case where g21 = g22, but we are not going to consider it here.
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get then

N =
1

|ηφ|
ln

[

(

2× 10−2

|ηφ|

)1/2
mP

φ⋆

]

<∼ 62 , (3.57)

which leads to
φ⋆

mP

>∼
(

2× 10−2

|ηφ|

)1/2

exp(−62|ηφ|) . (3.58)

SECTION 3.6

Non-Gaussianity: fNL

In this section we will calculate the level of non-gaussianity represented in the parameter
fNL by taking into account the constraints presented in Subsections 3.5.2, 3.5.3, and 3.5.4,
and the different φ⋆ regions discussed in Subsection 3.5.1.

3.6.1 The low φ⋆ region

This case is of no observational interest because Pζ dominated by the one-loop correction
is already ruled out by the observed spectral index and its running as shown in Subsection
3.5.3. In addition, the generated non-gaussianity is so big that it causes violation of the
observational constraint fNL > −9:

6

5
fNL =

B1−loop
ζ

4π4
∑

i k
3

i∏
i k

3

i
(P1−loop

ζ )2
= −[Pζ ln(kL)]

−1/2 ∼ −2× 104 , (3.59)

according to the expressions in Eqs. (2.35), (2.31), (3.28), and (3.30).

We want to remark that, although it is of no observational interest, this case represents the
first example of large non- gaussianity in the bispectrum Bζ of ζ for a slow-roll model of
inflation with canonical kinetic terms. It is funny to realize that the model in this case is
additionally ruled out because the observational constraint on fNL is violated by an excess
and not by a shortfall as is currently thought [22, 148, 191, 211, 226].
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3.6.2 The intermediate φ⋆ region

The level of non-gaussianity, according to the expressions in Eqs. (2.35), (2.31), (3.27), and
(3.30), is in this case given by

6

5
fNL =

B1−loop
ζ

4π4
∑

i k
3

i∏
i k

3

i
(Ptree

ζ )2
=

η3σ
η2φφ

2
⋆

exp[6N(|ησ | − |ηφ|)]
(

H⋆

2π

)2

ln(kL)

=
η3σ
η2φ

exp[6N(|ησ | − |ηφ|)]
(

mP

φ⋆

)2 rPζ

8
ln(kL)

= η3σ exp[6N(|ησ | − |ηφ|)]Pζ ln(kL) , (3.60)

⇒ 6

5
fNL ≈ −2.457 × 10−9|ησ|3 exp[300 ln(5.657 × 10−2r−1/2) (|ησ| − 0.020)] , (3.61)

where in the last line we have used expressions from Eqs. (3.44), (3.52), and (3.57).

Now, by implementing the spectral tilt constraint in Eq. (3.52) in the spectrum normal-
isation constraint in Eq. (3.44) and the amount of inflation constraint in Eq. (3.58), we
conclude that the tensor to scalar ratio r is bounded from below: r >∼ 2.680× 10−4.

In the plot r vs |ησ| in figure 3.2, we show lines of constant fNL corresponding to the values
fNL = −5,−10,−15. We also show the high and intermediate φ⋆ regions in agreement with
the constraint in Eq. (3.37):

rPζ

8

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≪
(

φ⋆

mP

)2

≪ rPζ

8

η3σ
η3φ

exp[6N(|ησ| − |ηφ|)] ,

⇒ 8.139×106 ≪ |ησ|3 exp[300 ln(5.657×10−2r−1/2) (|ησ| − 0.020)] ≪ 8.210×1012 . (3.62)

As is evident from the plot, the WMAP (and also PLANCK) observationally allowed 2σ
range of values for negative fNL, −9 < fNL, is completely inside the intermediate φ⋆ region
as required. More negative values for fNL, up to fNL = −20.647 are consistent within
our framework for the intermediate φ⋆ region, but they are ruled out from observation.
Nevertheless, like for the low φ⋆ region studied above, it is interesting to see a slow- roll
inflationary model with canonical kinetic terms where the observational restriction on fNL

may be violated by an excess and not by a shortfall. So we conclude that if Bζ is dominated
by the one-loop correction but Pζ is dominated by the tree-level term, sizeable non-gaussianity
is generated even if ζ is generated during inflation. We also conclude, from looking at the
small values that the tensor to scalar ratio r takes in figure 3.2 compared with the present
technological bound r >∼ 10−3 [65], that for non-gaussianity to be observable in this model,
primordial gravitational waves must be undetectable.

Notice that in oder to get positive values for fNL, which is observationally more interesting
in view of the results presented in Subsection 2.4, ησ should be positive according to Eq.
(3.60). However, being ηφ negative in order to reproduce the observed spectral tilt, the
argument of the exponential in Eq. (3.60) would be negative, making the fNL obtained too
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Figure 3.2: Contours of fNL in the r vs |ησ| plot. The intermediate (high) φ⋆ region
corresponds to the shaded (white) region. The WMAP (and also PLANCK) observationally
allowed 2σ range of values for negative fNL, −9 < fNL, is completely inside the intermediate
φ⋆ region. Notice that the boundary line between the high and the intermediate φ⋆ regions
matches almost exactly the fNL = −1.667 line.

small to be observationally interesting8. As regards the general case, in view of the previous
reason being model dependent, we may only say that in order to get fNL positive when Bζ

is dominated by the one-loop corrections, Bζ should be positive (based on the definition
of fNL in Eq. (2.31)) which means that the maximum between Nσσ and Nφφ should be
positive in view of Eq. (A.12).

Finally we want to point out that, by reducing our model to the single-field case, the
consistency relation between fNL and nζ presented in Ref. [46]: fNL ∼ O(nζ − 1) is not
violated since in that case Bζ is never dominated by the one-loop corrections for slow-roll
inflation as demonstrated in Ref. [138]9. Thus, the level of non-gaussianity fNL for our
model reduced to the single-field case is described by the high φ⋆ region as shown below.

8We thank Eiichiro Komatsu for questioning us about this issue.
9We thank Filippo Vernizzi for questioning us about this issue.
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3.6.3 The high φ⋆ region

This case is of no observational interest because, according to the expressions in Eqs.
(2.35), (2.31), (3.27), (3.29), and (3.52), the non-gaussianity generated is too small to be
observable:

6

5
fNL =

Btree
ζ

4π4
∑

i k
3

i∏
i k

3

i
(P tree

ζ )2
= −ηφ = 0.020 , (3.63)

in agreement with the consistency relation of Ref. [46] for our model reduced to the single-
field case, and with the general expectations of Refs. [22, 148, 191, 211, 226] for slow-roll
inflationary models with canonical kinetic terms where only the tree-level contributions are
considered.

SECTION 3.7

Convergence of the ζ series and perturbative regime

In Sections 3.5 and 3.6 we have worked up to the one-loop diagrams in order to constrain
the parameter space and find the level of non-gaussianity fNL. It is time then to address
the issue of the ζ series convergence and justify the existence of a perturbative regime so
that the truncation of the series up to the one-loop order, for the model we have considered,
is valid. A way to do that is by rederiving the ζ series in terms of δφ⋆ and δσ⋆ by equating
the unperturbed scalar potential to the perturbed one at the final time t; this of course is
valid in view of the first slow-roll condition in Eq. (3.8) and the final slice being one of
uniform energy density:

V0

{

1 +
1

2
ηφ

φ2
⋆

m2
P

exp[−2Nηφ] +
1

2
ησ

σ2
⋆

m2
P

exp[−2Nησ]

}

= V0

{

1 +
1

2
ηφ

(φ⋆ + δφ⋆)
2

m2
P

exp[−2(N + δN)ηφ] +
1

2
ησ

(σ⋆ + δσ⋆)
2

m2
P

exp[−2(N + δN)ησ]

}

.

(3.64)

From the previous expression it follows that

ηφφ
2
⋆ exp[−2Nηφ] + ησσ

2
⋆ exp[−2Nησ]

= ηφ(φ⋆ + δφ⋆)
2 exp[−2(N + δN)ηφ] + ησ(σ⋆ + δσ⋆)

2 exp[−2(N + δN)ησ] , (3.65)

which is easier to handle in terms of variables x and y defined as

x ≡ δφ⋆

φ⋆
, (3.66)

y ≡
[

η3σ
η3φ

σ2
⋆

φ2
⋆

(

1 +
δσ⋆
σ⋆

)2

exp[2N(ηφ − ησ)]

]1/2

. (3.67)
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Thus, the exponentials factors contaning N (but not δN) are completely absorbed in y,
and the expression in Eq. (3.65) looks as follows:

1 +
η2φ
η2σ

1
(

1 + δσ⋆

σ⋆

)2 y
2 = (1 + x)2 exp[−2δNηφ] +

η2φ
η2σ
y2 exp[−2δNησ] . (3.68)

If we were able to solve for δN in Eq. (3.68) in terms of ηφ, ησ, x, and y (after making
σ⋆ = 0), we could Taylor-expand around x = 0 and y = 0 reproducing the x-dependent
part of Eq. (3.3). This would be really good because the Taylor expansion would look so
clean, in the sense that all the concerning exponential factors contaning N which appear
explicitely in Eq. (3.3) would already be absorbed in y, that the issue of truncating at some
specific order in δφ⋆ and δσ⋆ would be simply justified by requiring |x| ≪ 1 and |y| ≪ 1.
Nevertheless, as is seen in Eq. (3.68), it is impossible to solve for δN in terms of ηφ, ησ, x,
and y unless we make a Taylor expansion of the exponential functions aroud δN = 0:

0 =











[

(1 + x)2 − 1
]

+
η2φ
η2σ
y2






1− 1

(

1 + δσ⋆

σ⋆

)2

















+

+δN

[

−2ηφ(1 + x)2 − 2
η2φ
ησ
y2
]

+ δN2
[

2η2φ(1 + x)2 + 2η2φy
2
]

+ ... . (3.69)

Notice that the Taylor expansion of the exponential functions is always convergent whatever
the arguments of the exponentials are. Moreover, if the Taylor expansion derived from a
function f(x) converges, it converges precisely to f(x) [200]. Thus, the expression in Eq.
(3.69) is actually the same as the expression in Eq. (3.68).

Now, solving for δN in terms of ηφ, ησ, x, and y, although possible in view of the expression
in Eq. (3.69), is not an easy business. That is why we will truncate the series in Eq. (3.69)
up to second order in δN and solve the resultant quadratic equation10. Notice that, since
ζ ≡ δN − 〈δN〉 and ζ ∼ 10−5, we may truncate the series in Eq. (3.69) up to whatever
order we wish and still reproduce ζ to high accuracy. Thus, the solution for the quadratic
equation coming from the series in Eq. (3.69) after truncation at second order is:

δN ≈
{1

2
(1 + x)2 +

1

2

ηφ
ησ
y2 ±

{

[

1

2
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1
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









[
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]

+
η2φ
η2σ
y2






1− 1

(

1 + δσ⋆

σ⋆

)2

















[

(1 + x)2 + y2
]

}1/2}

×

×
{

ηφ
[

(1 + x)2 + y2
]}−1

. (3.70)

10The truncation up to second order in δN has been chosen in order to have complete consistency with
the order of the variables x and y in Eq. (3.68).



Convergence of the ζ series and perturbative regime 57

If in addition we make Taylor expansions of the square root and the factor in the third line
of the previous expression around x = 0 and y = 0:
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
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
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
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y2 + ... , (3.71)

{

ηφ
[

(1 + x)2 + y2
]}−1

=
1

ηφ

[

1− 2x+ 3x2 − y2 + ...
]

, (3.72)

introducing them into Eq. (3.70), we end up with the following power series for δN :

δN ≈ 1

ηφ

(

x− x2

2
+

η2φ
2η2σ

y2 + ...

)

, (3.73)

where the ± symbol is changed to the − sign so that δN remains a perturbation, and the
trajectory σ = 0 is chosen. Coming back to the variables δφ⋆ and δσ⋆ we see that Eq.
(3.73) reproduces the x-dependent part of Eq. (3.3) in view of Eqs. (3.24) and (3.25) up
to second order in δφ⋆ and δσ⋆:

δN ≈ δφ⋆

ηφφ⋆
− 1

2ηφ

(

δφ⋆

φ⋆

)2

+
ησ
2η2φ

(

δσ⋆
φ⋆

)2

exp [2N (ηφ − ησ)] + ... . (3.74)

Eq. (3.73), although reliable only up to second order, tells us that the expected behaviour of
δN in terms of ηφ, ησ, x, and y is indeed obtained. Moreover, from our previous discussion
we know that δN can be exactly written in terms of a series of x and y withouth the
explicit appearance of the concerning exponential factors containing N . This is indeed
partially confirmed up to third order when introducing Eqs. (3.24), (3.25), and (3.26) into
the x-dependent part of Eq. (3.3):

δN =
1

ηφ

(

x− x2

2
+

η2φ
2η2σ

y2 +
x3

3
− ηφ

3ησ
xy2 + ...

)

. (3.75)

The bottom line of this discussion is that we have been able to identify two quantities that
determine the truncation of the series up to some specific order. These two quantities are
x and y which we could identify as the “coupling constants” of the theory in the context of
Quantum Field Theory. By making |x| ≪ 1 and |y| ≪ 1 we can see from Eq. (3.75) that all
the terms higher than second order in x and y are subleading compared to the second-order
ones. As regards the first-order terms compared to the second-order ones, we see that the
latter are not necessarily subleading compared to the former because of the non-existence
of the first-order y term and in view of |y/x| <∼ 1600 from Eqs. (3.66) and (3.67) and the
values for ηφ, ησ and N considered in Sections 3.5, 3.6 and 4.6. In the language of the
Feynman-like diagrams [39], truncating δN in Eq. (3.75) up to second order in x and y
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means considering only the leading diagrams at tree level and one loop which is what we
have done in Sections 3.5, 3.6. In fact, |x| ≪ 1 and |y| ≪ 1 mean that

|x| ≡
∣

∣

∣

∣

δφ⋆

φ⋆

∣

∣

∣

∣

≈
(

H⋆

2π

)

1

φ⋆
≪ 1 , (3.76)

|y| ≡
{

η3σ
η3φ

δσ2
⋆

φ2
⋆

exp[2N(ηφ − ησ)]

}1/2

≈
{

η3σ
η3φ

(

H⋆

2π

)2
1

φ2
⋆

exp[2N(ηφ − ησ)]

}1/2

≪ 1 ,

(3.77)
which are well satisfied for the cases when Pζ is dominated by the tree-level term (see
Subsection 3.5.2 - Eq. (3.43) and Subsection 3.5.1 - Eq. (3.35)):

(

H⋆

2π

)

1

φ⋆

= |ηφ|P1/2
ζ ≈ 10−6 , (3.78)

{

η3σ
η3φ

(

H⋆

2π

)2
1

φ2
⋆

exp[2N(ηφ − ησ)]

}1/2

≪
{

ησ
ηφ

exp[−2N(|ησ| − |ηφ|)]
}1/2

<∼ 2 . (3.79)

By explicitly calculating the two-loop and three-loop diagrams for Pζ and Bζ , and employing
the results of Ref. [100], we have checked that the conditions |x| ≪ 1 and |y| ≪ 1 efectively
make these diagrams subleading compared to the leading ones at one-loop level.

Finally, we will discuss the convergence of the ζ series in view of Eqs. (3.70), (3.71), and
(3.72). We first note that the series in Eq. (3.71) is always convergent. As regards the
series in Eq. (3.72), it will not be convergent at all while the function

1

(1 + x)2 + y2
≈ 1

(1 + x)2 +B2x2
, (3.80)

with

B =

(

ησ
ηφ

)3/2

exp[N(ηφ − ησ)] , (3.81)

does not satisfy the following necessary condition [200]: for the Taylor series around x = 0
of a function f(x) to be convergent, it is necessary that the extension f(z) to the complex
plane of f(x) is continous in a neighbourhood of z = 0. If this is the case, and the Taylor
series of f(z) is indeed convergent, the convergence circle must either match or be inside
the aforementioned neighbourhood. Of course, this is not a sufficient condition, but at least
gives us a constraint on the possible values that x may take.

Applying this condition to the expression in Eq. (3.80), we see that the extension of this
function to the complex plane has poles for (1 + z)2 = −B2z2 which leads to

z =
±iB − 1

B2 + 1
. (3.82)

Therefore, the extension to the complex plane of Eq. (3.80) is continous for

|z| < B2 + 1

B2 + 1
= 1 , (3.83)
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so the necessary condition for the convergence of the series in Eq. (3.72), and therefore
for the convergence of the series in Eq. (3.70) which is what we are interested in, is
given by |x| < 1. Thus, such a necessary condition for the convergence of the ζ series is
automatically satisfied once we choose |x| ≪ 1, as we have seen above it is required for
working in a perturbative regime.

SECTION 3.8

Conclusions

Is it reasonable to study the primordial curvature perturbation ζ by identifying it with
a truncated δN series expansion? Is it actually possible to cut out with confidence such
a series at some specific order? Is it true that all the slow-roll inflationary models with
canonical kinetic terms produce primordial non-gaussianity supressed by the slow-roll pa-
rameters? Are the loop corrections in cosmological perturbation theory always smaller than
the tree-level terms? We have addressed these questions in this chapter, answering all of
them by paying particular attention to a special slow-roll inflationary model. The ζ series
expansion is indeed a powerful tool to study the statistical descriptors of ζ ; nevertheless,
we should seek for the convergence radius in order not to obtain results that actually have
nothing to do with ζ . We may cut out the series but, to be completely sure about the
precision of our approximations, we have to study the conditions for the existence of a per-
turbative regime. Non-gaussianity in slow-roll inflationary models with canonical kinetic
terms is not always suppressed by the slow-roll parameters; we have seen this at tree-level
for fNL in Refs. [3, 37], and considering loop corrections for fNL in the prersent chapter
and in Refs. [43, 38]. Particulary, we shown in this chapter that it is possible to attain
very high, including observable, values for the level of non-gaussianity fNL associated with
the bispectrum Bζ of the primordial curvature perturbation ζ , in a subclass of small-field
slow-roll models of inflation with canonical kinetic terms. Such a result was obtained by
taking care of loop corrections both in the spectrum Pζ and the bispectrum Bζ and as-
suming that the latter can dominate over the former; of course, this possibility is model
dependent. More precisely, we can say that if Bζ is dominated by the one-loop correction
but Pζ is dominated by the tree-level term, sizeable non-gaussianity is generated even if ζ
is generated during inflation. What is interesting is that this kind of particular models are
populary known to predict too small values for the level of non-gaussianity fNL, as small
as the slow-roll parameters. Finally, as far as we have investigated, the loop corrections in
cosmological perturbation theory are not always smaller than the tree-level terms; in fact,
when they become the leading contributions, a surprising phenomenology appears in front
of our eyes.



Chapter4
ON THE ISSUE OF THE ζ SERIES

CONVERGENCE AND LOOP CORRECTIONS IN

THE GENERATION OF OBSERVABLE

PRIMORDIAL NON- GAUSSIANITY IN

SLOW-ROLL INFLATION: THE TRISPECTRUM

SECTION 4.1

Introduction

The primordial curvature perturbation ζ [56, 140, 155, 220], and its δN expansion1 [52, 139,
142, 181, 182, 202], was the subject of study in a previous chapter (see also [43]). We were
interested in how well the convergence of the ζ series was understood, and if the traditional
arguments to cut out the ζ series at second order [142, 228], keeping only the tree-level
terms to study the statistical descriptors of ζ [5, 22, 37, 40, 188, 211, 226, 225, 227], were
reliable2. We argued that a previous study of the ζ series convergence, the viability of a
perturbative regime, and the relative weight of the loop contributions against the tree- level

1By “δN expansion” we mean approximating δN by a power series expansion in the initial conditions. By
“δN formula” we mean the statement that to lowest order in spatial gradients ζ ≡ δN . These conventions
have been and will be used throughout the text.

2We follow the terminology of Ref. [39] to identify the tree-level terms and the loop contributions in a
diagrammatic approach. The associated diagrams are called Feynman-like diagrams.
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terms, were completely necessary and in some cases surprising. For instance, the levels of
non-gaussianity fNL and τNL in the bispectrum Bζ and trispectrum Tζ of ζ respectively,
for slow-roll inflationary models with canonical kinetic terms [137, 140, 141], are usually
thought to be of order O(ǫi, ηi) [22, 211, 226]3 and O(r) [188, 192]4 respectively, were ǫi
and ηi are the slow-roll parameters with ǫi, |ηi| ≪ 1 [141] and r is the tensor to scalar ratio
[137] with r < 0.22 at the 95% confidence level [119]. However, in order to reach such
a conclusion, generic models were used where the loop contributions are comparatively
suppressed and, therefore, the truncated δN expansion may be used. Of course exceptions
may occur, and in those cases it is crucial to check up to what order the truncated δN
expansion may be used, and which loop contributions are larger than the tree-level terms. In
any of these cases, general models or exceptions, the question regarding the representation
of ζ by the δN expansion is a matter to discuss.

Refs. [5, 37] show that large, and observable, non-gaussianity in Bζ is indeed possible for
certain classes of slow-roll models with canonical kinetic terms and special trajectories in
field space, relying only on the tree-level terms. Ref. [38] does the same for Bζ and Tζ but
this time arguing that the loop corrections are always suppressed against the tree-level terms
if the quantum fluctuations of the scalar fields do not overwhelm the classical evolution.
Nonetheless, although the resultant phenomenology from papers in Refs. [5, 37, 38] is very
interesting, the classicality argument used in Ref. [38] is very conservatively stated leading
to too strong conclusions as we will argue later in this chapter. More research remains
to be done to understand the role of the quantum diffusion and, being this beyond the
scope of the present chapter, we will leave the discussion for a future research project.
We addressed the ζ series convergence and the existence of a perturbative regime in the
previous chapter, showing how important the requirements to guarantee those conditions
are. Moreover, we showed that for a subclass of small-field slow-roll inflationary models
with canonical kinetic terms, the one-loop correction to Bζ might be much larger than
the tree-level terms, giving as a result large, and observable, non-gaussianity parameterised
by fNL. The present chapter extends the analysis presented in the previous one to Tζ
showing, for the first time, that large and observable non-gaussianity parameterised by τNL

is possible in slow-roll inflationary models with canonical kinetic terms due to loop effects,
in total contrast with the usual belief based on the results of Refs. [188, 192]. In order to
properly identify the non-gaussianity levels found in previous chapter and in the present
one with those that are constrained by observation, we comment on the probability that
an observer in an ensemble of realizations of the density field in our scenario sees a non-
gaussian distribution. As we will show such a probability is non-negligible for the concave
downward potential, making indeed the observation of the non-gaussianity studied in this
chapter quite possible.

The layout of the chapter is the following: in Section 4.2 we make some aditional comments
about ot the slow-roll inflationary model that exhibits large levels of non-gaussianity when

3See however Refs. [5, 37].
4See however Refs. [198, 38].
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loop corrections are considered. This model was described in more detail in Section 3.4.
In Section 4.3 we study the impact of the quantum fluctions of the scalar fields on their
classical evolution. As a result we argue how the loop suppression proof given in Ref. [38]
does not apply to our model. Section 4.4 studies the probability of realizing the scenario
proposed in this thesis for a typical observer. Section 4.5 is devoted to the reduction of
the available parameter window by taking into account some restrictions of methodological
and physical nature. The level of non-gaussianity τNL in the trispectrum Tζ is calculated
in Section 4.6 for models where ζ is, or is not, generated during inflation; a comparison
with the current literature and the results found in the previous chapter for fNL is done. In
Section 4.7.2 the level of non-gaussianity fNL in the bispectrum Bζ is calculated for models
where ζ is not generated during inflation. Finally, Section 4.8 presents the conclusions.

SECTION 4.2

A quadratic two-field slow-roll model of inflation

We will give in this Section some relevants remarks about the inflationary potential studied
in Section 3.4 and given by

V = V0

(

1 +
1

2
ηφ

φ2

m2
P

+
1

2
ησ

σ2

m2
P

)

, (4.1)

where φ and σ are the inflaton fields and mP is the reduced Planck mass. By assuming that
the first term in Eq. (4.1) dominates, ηφ and ησ become the usual η slow-roll parameters
associated with the fields φ and σ.

We have chosen the σ = 0 trajectory since this case is the easiest to work from the point
of view of the analytical calculations and because it gives the most interesting results. In
addition, such a trajectory for the potential in Eq. (4.1) reproduces for some number of
e-folds (for ηφ, ησ > 0) the hybrid inflation scenario [129] where φ is the inflaton and σ is
the waterfall field. We will analyze in Section 4.4 the probability for an observer to live in a
region where σ = 0 for the concave downward potential. Non-gaussianity in the bispectrum
Bζ of ζ for this kind of model has been studied in Refs. [5, 37, 38, 43, 61, 142, 143, 207, 228];
in particular, Ref. [43] shows that the one-loop correction dominates over the tree-level
terms if ηφ, ησ < 0 and |ησ| > |ηφ|, generating in this way large values for fNL even if ζ
is generated during inflation. Refs. [5, 37], in contrast, work only at tree-level with the
same potential as Eq. (4.1) but relaxing the σ = 0 condition, finding that large values for
fNL are possible for a small set of initial conditions. Ref. [38] improves the analysis in
Ref. [37], this time taking into account also the trispectrum Tζ of ζ and the role of the
loop corrections. According to that reference, large values for τNL are also possible for a
small set of initial conditions if the tree-level terms dominate over the loop corrections.
Moreover, it is claimed that loop corrections for this model are always suppressed against
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the tree-level terms if the quantum fluctuations of the fields are subdominant against their
classical evolution. The opposite case seems to happen for some narrow range of initial
conditions including σ⋆ = 0, which is the case studied in this chapter. As we will argue
in Section 4.3, the classicality condition in Ref. [38] is expressed in a very conservative
way, leading to too strong and non-general conclusions. Dominance of loop corrections is
then safe from the classical vs quantum condition, allowing the interesting large levels of
non-gaussianity discussed in Chapter 3 and in the present one.

Following the results in Appendix A, we will write down the leading terms to the spectrum,
bispectrum, and trispectrum of the primordial curvature perturbation ζ including the tree-
level and one-loop contributions given in Eqs. (3.27), (3.28), (3.29), (3.30), (A.29) and
(A.30):
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η2φφ
2
⋆
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, (4.2)
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. (4.7)

where L is the infrared cutoff chosen so that the quantities are calculated in a minimal
box [27, 138]. Except when considering low CMB multipoles, the box size should be set at
L ∼ H0 [114, 121], giving ln(kL) ∼ O(1) for relevant cosmological scales.

The important factor in the loop corrections is the exponential. This exponential function
is directly related to the quadratic form of the potential with a leading constant term. It
will give a large contribution if ηφ > ησ. In Chapter 3, we chose the concave downward
potential in order to satisfy the spectral tilt constraint, which makes ηφ < 0, while keeping
|ησ| > |ηφ|. In this chapter we will consider the same case.
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SECTION 4.3

Classicality

Ref. [38] argues in Appendices A and B how, by imposing the requirement that the quantum
fluctuations of the fields around their background values do not overwhelm the respective
classical evolutions, the loop corrections to Pζ, Bζ , and Tζ are suppressed against the tree-
level terms. The proof relies on the fact that, if the classicality condition is satisfied, the
second-order terms in the δN expansion in Eq. (3.3), are subleading against the first-order
terms. This in turn implies

P 1−loop
ζ

P tree
ζ

≪ 1 , (4.8)

B1−loop
ζ

Btree
ζ

≪ 1 , (4.9)

T 1−loop
ζ

T tree
ζ

≪ 1 , (4.10)

as explicitly stated in Eqs. (A.16-A.19) of Ref. [38]. In addition, under the same as-
sumptions, higher order corrections in the spectral functions Pζ , Bζ , and Tζ are always
subleading against the one-loop corrections and, therefore, subleading against the tree-level
terms. This conclusion is obtained if the δN expansion may be truncated at fourth order.
However, what is the classicality condition employed in Ref. [38]?

Assuming slow-roll evolution for each field φi, which is valid only if the quantum fluctuation
δφi is by far smaller than the classical evolution ∆φi, the classical change in the φi field
during a Hubble time around horizon exit is

∆φi(t⋆) ≈ − Vi(φ)

3H2
∗

√
6
, (4.11)

where Vi denotes the derivative of the potential with respect to the i-th field. Comparing
the latter expression with the quantum fluctuation

δφi(t⋆) ≈
H∗

2π
, (4.12)

and requiring that ∆φi is much larger than δφi, we get

|φ̇i|⋆ ≫
√

3

2π2
H2

∗ . (4.13)

For our quadratic two-field slow-roll model of inflation, where the slow-roll evolution is
given by Eqs. (3.22)-(3.23), the previous expression translates into

|φi|⋆ ≫
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3

2π2
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ηi

∣

∣

∣

∣

, (4.14)
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which is the one given in Eq. (A.1) of Ref. [38]. Such a condition is equivalent to

∣

∣

∣

∣

δφi

φi

∣

∣

∣

∣

⋆

≪
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ηi√
6

∣

∣

∣

∣

, (4.15)

which is the one given in Eq. (A.2) of Ref. [38]. Thus, under this condition, the trajectory
σ = 0 studied in this thesis seems not to be well described by the slow-roll approximation
and, therefore, the obtained results based in the δN formalism would not be reliable.

This classicality argument given in Ref. [38] is too conservatively stated. To see why it is like
that, we may reason in the following way for general inflationary models: for any point along
the background classical trajectory in field space it is possible to rotate the field axes so that,
instantaneously, there is an inflaton (or ‘adiabatic’) field that points along the trajectory
and some light ‘entropy’ fields which point in orthogonal directions [77]. The quantum
fluctuations for the entropy fields are non-vanishing but the classical evolution for each of
these fields is zero. Since the condition in Eq. (4.13) is not formulated in any particular field
parameterisation, we may argue that for any multi-field inflationary model the application
of this condition would lead to a background inflationary trajectory dominated by the
quantum evolution. Thus, slow-roll conditions would always be impossible to apply. A
more general classicality condition should still be the one in Eq. (4.13) but only applied
to the adiabatic field and not to the entropy fields. In that respect the σ = 0 trajectory
studied in this thesis is safe from large quantum fluctuations since the classicality condition
in Eq. (4.13) applied only to the φ field is extremely well satisfied as long as Pζ ≪ 1, which
is actually the case for single field slow-roll inflation [174]. Indeed, a much better way of
stating the classicality condition is the following:5 if the inflationary trajectory must be
dominated by the classical motion of the fields, then the perturbation in the amount of
inflation, due to the quantum fluctuations of the fields, must be negligible:

δN ≪ 1 . (4.16)

By virtue of the δN formalism, this expression is simply satisfied if the free parameters
of the inflationary model under consideration are chosen so that the COBE normalisation
(P1/2

ζ ≈ 5 × 10−5 [35]) is satisfied, which is always the case. Nevertheless, we understand
that the role of quantum diffusion is of great importance (see for instance Refs. [69, 168]),
and a dedicated study of this issue is left for a future research project.

5We acknowledge Misao Sasaki for pointing out to us this idea.
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SECTION 4.4

Probability

The main purpose of this chapter is to identify regions in the parameter space with high
levels of primordial non-gaussianity. Then, we proceed to compare the obtained non-
gaussianity with observation. In order to do the latter, we first need to realize what the
probability is for a typical observer to live in a universe where the inflationary trajectory is
the one studied in this thesis: σ = 0. This is particularly relevant for the concave downward
potential where the background trajectory σ = 0 is unstable.

In the context of quantum cosmology, the probability of quantum creation of a closed
universe is proportional to [130, 212, 213, 214]

P ∼ exp

(

−24π2m4
P

V

)

, (4.17)

which means that the universe can be created if V is not too much smaller than the Planck
density. Thus, for our concave downward potential, having chosen the field contributions
to V in Eq. (3.17) to be negligible is good because it increases the probability. In addition,
within a set of initial conditions for φ, the most probable initial condition for σ is σ = 0.
The φ = 0 trajectory is also highly probable but, since we are assuming |ησ| > |ηφ|, the
σ = 0 trajectory is more probable. This of course implies that the levels of non-gaussianity
obtained in this thesis may be observable.

SECTION 4.5

Reducing the available parameter window

The analysis of the observed spectral index and the ζ series convergence was given in
Subsection 3.5.2 and in Section 3.7, respectively. Regarding the existence of a perturbative
regime, we have to add to the discussion in Section 3.7 that, by cutting out the series in
Eq. (3.75) at second-order, just one Feynman-like diagram per spectral function of ζ is
necessary to study the loop corrections to these spectral functions6. That is why in the

6This is assuming that the Feynman-like diagrams containing n-point correlators of the field pertur-
bations with n ≥ 3 are subdominat against the diagrams containing only two-point correlators. For the
trispectrum this does not happen when the tree-level terms dominate over the loop corrections [188, 192].
However, for the cases considered in this chapter, when the loop corrections in the trispectrum dominate
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previous chapter there was just one leading diagram for the one-loop correction to Pζ (Fig.
A.2a), as well as one leading diagram for the one-loop correction to Bζ (Fig. A.4a). When
applied to Tζ , this analysis shows that the only diagrams to consider are the one in Fig.
A.5a for the tree-level terms, and the one in Fig. A.5b for the loop corrections. Such
diagrams lead to the expressions in Eqs. (A.29) and (A.30) for T tree

ζ and T 1−loop
ζ .

In the following, we will give the relevant information for Tζ when ζ is generated during
inflation, and for both Bζ and Tζ when ζ is not generated during inflation.

4.5.1 Tree-level or one-loop dominance: τNL

The exponencial factors in Eqs. (4.3) and (4.7) open up the possibility that the loop
corrections dominate over Pζ and/or Tζ . There are three posibilities:

Both Tζ and Pζ are dominated by the one-loop corrections

Comparing Eqs. (4.2) with (4.3) and Eqs. (4.6) with (4.7) we requiere in this case that

η2σ
η2φ

exp[4N(ηφ − ησ)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.18)

4
η4σ
η4φ

exp[8N(ηφ − ησ)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.19)

in which case only the first inequality is required. Employing the definition for the tensor
to scalar ratio r introduced in Eq. (3.33), we can write such inequality as

(

φ⋆

mP

)2

≪ rPζ

8

η2σ
η2φ

exp[4N(ηφ − ησ)] . (4.20)

From now on we will name the parameter window described by Eq. (4.20) as the low φ⋆

T -region7, since the latter represents a region of allowed values for φ⋆ limited by an upper
bound.

over the tree-level terms generating in turn large values for τNL, the diagrams containing n-point correlators
of the field perturbations with n ≥ 3 are expected to be subdominat because of their dependence on the
slow-roll parameters [100].

7The T in T -region is introduced in order to differentiate explicitly between these regions and those
found in the subsection 3.5.1 for Bζ .
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Tζ dominated by the one-loop correction and Pζ dominated by the tree-level
term

Comparing Eqs. (4.2) with (4.3) and Eqs. (4.6) with (4.7) we requiere in this case that

η2σ
η2φ

exp[4N(ηφ − ησ)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.21)

4
η4σ
η4φ

exp[8N(ηφ − ησ)] ≫ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.22)

which combine to give, employing the definition for the tensor to scalar ratio r introduced
in Eq. (3.33),

rPζ

8

η2σ
η2φ

exp[4N(ηφ − ησ)] ≪
(

φ⋆

mP

)2

≪ rPζ

8

4η4σ
η4φ

exp[8N(ηφ − ησ)] . (4.23)

From now on we will name the parameter window described by Eq. (4.23) as the interme-
diate φ⋆ T -region, since the latter represents a region of allowed values for φ⋆ limited by
both an upper and a lower bound.

Both Tζ and Pζ are dominated by the tree-level terms

Comparing Eqs. (4.2) with (4.3) and Eqs. (4.6) with (4.7) we requiere in this case that

η2σ
η2φ

exp[4N(ηφ − ησ)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.24)

4
η4σ
η4φ

exp[8N(ηφ − ησ)] ≪ 1
1
φ2
⋆

(

H⋆

2π

)2 , (4.25)

in which case only the second inequality is required. Employing the definition for the tensor
to scalar ratio r introduced in Eq. (3.33), we can write such an inequality as

(

φ⋆

mP

)2

≫ rPζ

8

4η4σ
η4φ

exp[8N(ηφ − ησ)] . (4.26)

From now on we will name the parameter window described by Eq. (4.26) as the high φ⋆

T -region, since the latter represents a region of allowed values for φ⋆ limited by a lower
bound.

4.5.2 The normalisation of the spectrum

Either ζ is or is not generated during inflation, we must satisfy the appropriate spectrum
normalisation condition. There exists four possibilities; however, it was shown in Subsection
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3.5.2 that the case where ζ is generated during inflation and Pζ is dominated by the one-loop
correction, is no of observational interest since it is impossible to reproduce the observed
spectral index and its running. We also showed in this Subsection, that when ζ is generated
during inflation and Pζ is dominated by the tree-level correction, the available parameter
region is given by Eq. (3.44). The other two possibilities are discussed right below.

ζ not generated during inflation and Pζ dominated by the one-loop correction

According to Eqs. (4.3) and (3.33) we have in this case

P1−loop
ζ =

η2σ
η4φφ

4
⋆

exp[4N(ηφ − ησ)]

(

H⋆

2π

)4

ln(kL)

=
η2σ
η4φ

exp[4N(ηφ − ησ)]

(

mP

φ∗

)4(
rPζ

8

)2

ln(kL) , (4.27)

which reduces to
(

φ⋆

mP

)4

≫
(r

8

)2

Pζ
η2σ
η4φ

exp[4N(ηφ − ησ)] ln(kL) , (4.28)

where Pζ must be replaced by the observed value P1/2
ζ = (4.957± 0.094)× 10−5 [35].

ζ not generated during inflation and Pζ dominated by the tree-level term

The equation 3.44 tells us that in this case the constraint to satisfy is

(

φ⋆

mP

)2

≫ 1

η2φ

r

8
. (4.29)

SECTION 4.6

Non-Gaussianity: τNL

In this section we will calculate the level of non-gaussianity represented in the parameter
τNL. Since the contributions to the trispectrum Tζ , calculated in Eqs. (4.6) and (4.7),
and coming from Figs. A.5a and A.5b respectively, present a wavevector dependence as
that of the first line in Eq. (2.32), we conclude that for the specific subclass of inflationary
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models we are considering, the non-gaussianity in Tζ is parameterized in terms of τNL. This
automatically leads to gNL ≪ τNL. In view of this, τNL is given in this case as [31]:

1

2
τNL =

Tζ

8π6
[

1
k3
2
k3
4
|k3+k4|3

+ 23 permutations
]

P3
ζ

. (4.30)

4.6.1 The intermediate φ⋆ T -region

The level of non-gaussianity τNL according to Eqs. (4.2), (4.7) and (4.30), is given by

1

2
τNL =

T 1−loop
ζ

8π6
[

1
k3
2
k3
4
|k3+k4|3

+ 23 permutations
]

(P tree
ζ )3

=
2η4σ
η2φφ

2
⋆

exp[8N(|ησ| − |ηφ|)]
(

H⋆

2π

)2

ln(kL)

=
2η4σ
η2φ

exp[8N(|ησ| − |ηφ|)]
(

mP

φ⋆

)2
rPζ

8
ln(kL)

= 2η4σ exp[8N(|ησ| − |ηφ|)]Pζ ln(kL)

⇒ 1

2
τNL ≃ 4.91× 10−9|ησ|4 exp[400 ln(5.657× 10−2r−1/2)(|ησ| − 0.020)] , (4.31)

where in the last line we have used the expressions in Eqs. (3.44) and (3.57).

Now, by implementing the spectral tilt constraint in Eq. (3.52) in the spectrum normal-
isation constraint in Eq. (3.44) and the amount of inflation constraint in Eq. (3.58), we
conclude that the tensor to scalar ratio r is bounded from below: r >∼ 2.680× 10−4.

In the r vs |ησ| plot in figure 4.1, we show lines of constant τNL corresponding to the values
τNL = 20, 560, 2 × 104. We also show the high (in white) and intermediate (shaded) φ⋆

T -regions in agreement with the constraint in Eq. (4.23):

rPζ

8

η2σ
η2φ

exp[4N(|ησ| − |ηφ|)] ≪
(

φ⋆

mP

)2

≪ rPζ

2

η4σ
η4φ

exp[8N(|ησ| − |ηφ|)] ,

⇒ 4.070×104 ≪ |ησ|4 exp[400 ln(5.657×10−2r−1/2)(|ησ|−0.020)] ≪ 1.656×1017 . (4.32)

As is evident from the plot, the observationally expected 2σ range of values for WMAP,
|τNL| >∼ 2×104 [112], PLANCK, |τNL| >∼ 560 [112], and even the 21 cm background anisotropies,
|τNL| >∼ 20 [45], and for positive τNL, are completely inside the intermediate φ⋆ T -region as
required. Higher values for τNL, up to τNL = 1.7×105 are consistent within our framework
for the intermediate φ⋆ T -region.

In subsection 3.6, we studied fNL for the case when ζ is generated during inflation, Bζ is
dominated by the one-loop correction, and Pζ is dominated by the tree-level term. Fig.
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Figure 4.1: Contours of τNL in the r vs |ησ| plot. The intermediate (high) φ⋆ T -region
corresponds to the shaded (white) region. The observationally expected 2σ range of values,
for WMAP, PLANCK, and even the 21 cm background anisotropies, and for positive τNL,
τNL > 20 are completely inside the intermediate φ⋆ T -region. Notice that the boundary line
between the high and the intermediate φ⋆ T -regions matches almost exactly the τNL = 0.04
line.

3.2 shows the results found. The WMAP [159] (and also PLANCK [120]) observationally
allowed 2σ range of values for negative fNL, −9 < fNL, is completely inside the intermediate
φ⋆ region8. Fig. 4.2 shows both Figs. 3.2 and 4.1 in the same plot. Incidentally, for
the available parameter window, lines for constant τNL almost exactly matches lines for
constant fNL. Thus, it is possible to see that, according the observational status presented
in the Section 2.4, non-gaussianity is more likely to be detected through the trispectrum than
through the bispectrum, for the inflationary model studied in this chapter with concave
downward potential, and from the WMAP, PLANCK, and even the 21 cm background
anisotropies observations. Fig. 4.2 also shows some consistency relations between the values
of fNL and τNL that will be useful at testing the inflationary model considered with concave
downward potential against observations. For instance, if WMAP detected non-gaussianity
through the trispectrum with τNL ≥ 8×104 at the 2σ level, the slow-roll inflationary model

8The intermediate φ⋆ T - region (where Tζ is dominated by the one-loop correction and Pζ is domi-
nated by the tree-level term) encloses the intermediate φ⋆ region (where Bζ is dominated by the one-loop
correction and Pζ is dominated by the tree-level term).
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Figure 4.2: Contours of both fNL and τNL in the r vs |ησ| plot. The intermediate (high)
φ⋆ region corresponds to the shaded (white) region. Lines for constant τNL almost exactly
matches lines for constant fNL. According to this figure, and to the observational status,
non-gaussianity is more likely to be detected through the trispectrum than through the bispec-
trum, for the inflationary model studied in this chapter with concave downward potential,
and from the WMAP, PLANCK, and even the 21 cm background anisotropies observations.
These lines also show some consistency relations between the values of fNL and τNL that
will be useful at testing the inflationary model considered with concave downward potential
against observations.

with concave downward potential considered in this chapter would be ruled out since the
predicted fNL would be outside the current observational interval.

Similarly to the fNL case, it is interesting to see a slow-roll inflationary model with canonical
kinetic terms where large, and observable, values for τNL may be obtained (in contrast to
the expected τNL ∼ O(r) from the tree-level calculation [188, 192]). So we conclude that
if Tζ is dominated by the one- loop correction but Pζ is dominated by the tree-level term,
sizeable non-gaussianity is generated even if ζ is generated during inflation.



ζ not generated during inflation 73

4.6.2 The high φ⋆ T -region

According to the expressions in Eqs. (2.35), (3.52), (4.6), (4.2) and (4.30) the value of τNL

is in this case

1

2
τNL =

T tree
ζ

8π6
[

1
k3
2
k3
4
|k3+k4|3

+ 23 permutations
]

(P tree
ζ )3

=
1

2
η2φ = 2× 10−4 , (4.33)

in agreement with the general expectations of Ref. [40] for slow-roll inflationary models
with canonical kinetic terms where only the tree-level contributions are considered and the
field perturbations are assumed to be gaussian. This result is no observational interest
because the generated non-gaussianity is too small to be observable.

SECTION 4.7

ζ not generated during inflation

We will assume in this Section that the fields driving inflation have nothing to do with
the generation of ζ ; nevertheless, they will generate the primordial non-gaussianity (see for
instance Refs. [31, 89, 104, 105, 106, 109, 126, 204]). To this end, the post-inflationary
evolution, particularly the generation of ζ , will be assumed not to generate significative
levels of non-gaussianity in comparison with those generated during inflation.

4.7.1 τNL

The low φ⋆ T -region

It is possible, in principle, that Pζ is dominated by the one-loop correction as long as ζ is
not generated during inflation. Thus, the observed spectral index constraint is no longer
required and, therefore, the low φ⋆ T -region is in principle viable.

Combining the conditions in Eqs. (4.20) and (4.28) with the expression for the number of
e-folds in Eq. (3.57), we get:

1 <∼
rn2

16
Pζ exp[N |ησ|(4− 2/n)] , (4.34)

and

1 >∼ 106
(rn

16

)2

Pζ exp(4N |ησ|) , (4.35)
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where we have defined the parameter n as the ratio between the two η parameters: n =
ησ/ηφ. These two expressions lead to

rn <∼ 1.6× 10−5|ησ| exp(−2N |ησ|/n) , (4.36)

as a necessary but not sufficient condition to satisfy both Eqs. (4.34) and (4.35). However,
by introducing such a condition in Eq. (4.34), we see that the latter translate into the
following constraint:

1 <∼ 10−6|ησ|2Pζ exp[4N |ησ|(1− 1/n)] . (4.37)

The previous expression is impossible to satisfy because the highest value the right hand
side may take is for n→ ∞ and, of course, ησ = 0.1 and N = 62. Such a value, 1.45×10−6,
is much less than one. We conclude that this case is of no interest because it is imposible
to satisfy the normalisation spectrum condition in Eq. (4.28).

The intermediate φ⋆ T -region

The level of non-gaussianity τNL in this case is given by

1

2
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8π6
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+ 23 permutations
]

P3
ζ

=
2η4σ
η8φφ

8
⋆

exp[8N(|ησ| − |ηφ|)]
(

H⋆

2π

)

P−3
ζ ln(kL)

=
2η4σ
η8φ

exp[8N(|ησ| − |ηφ|)]
(

mP

φ⋆

)8
(r

8

)4

Pζ ln(kL)

=
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exp(8N |ησ|)
(r
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)4

Pζ ln(kL)

≃ 2.60× 1016 (nr)4 , (4.38)

where in the last line we have introduced again the ratio n defined in previous subsubsection,
and chosen for simplicity |ησ| = 0.1 and N = 62 so that the non-gaussianity is maximized.

From Eqs. (4.23), (4.29) and (3.57), and those coming from the ζ series convergence
constraints in Eqs. (3.76) and (3.77), with |ησ| = 0.1 and N = 62, lead to the following
conditions that reduce the available parameter space:

• The perturbative regime constraint |x| ≪ 1:

r <∼ 6.51× 104 n exp

[

−12.4

n

]

. (4.39)
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• The perturbative regime constraint |y| ≪ 1:

r <∼
2.68× 10−1

n2
. (4.40)

• The Pζ dominated by the tree-level term constraint:

r <∼
1.10× 10−4

n
exp

[

12.4

n

]

. (4.41)

• The Tζ dominated by the one-loop correction constraint:

r >∼
4.68× 10−12

n3
exp

[

37.2

n

]

. (4.42)

• The spectrum normalisation constraint:

r <∼
1.6× 10−4

n
exp

[

−12.4

n

]

. (4.43)

Analysing these expressions, we conclude that the constraint in the first item is automati-
cally satisfied once the constraint in the fifth item is satisfied. Moreover, from the constraint
in the fifth item, we see that the highest possible value r may take is 4.75 × 10−6. And
finally, to make the constraint in the fourth item consistent with the constraints in the sec-
ond, third, and fifth items, the lower bound n >∼ 2.58 is required. The resultant available
parameter window, together with the lines for constant values of τNL, τNL = 1, 5, 10, 15,
is presented in Fig. 4.3 for 2.58 ≤ n ≤ 200. Fig. 4.4 shows the range 200 ≤ n ≤ 2000
with the lines τNL = 1, 5, while Fig. 4.5 shows the range 2000 ≤ n ≤ 3000 also with the
lines τNL = 1, 5. As the figures reveal, when Tζ is dominated by the one-loop correction and
Pζ is dominated by the tree-level term, large values for τNL are obtained although not so
large as in the case where ζ is generated during inflation. Indeed, an upper bound on τNL,
according to Eqs. (4.38) and (4.43), is 34.078 when n→ ∞.

We conclude that, even if ζ is not generated during inflation, we may find observable values
for τNL. However, such observable values could only be observed by the 21 cm background
anisotropies at the 1σ level according to the observational status presented in Section 2.4.
We also conclude that, for non- gaussianity to be observable, primordial gravitational waves
must be undetectable.
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Figure 4.3: Contours of τNL in the r vs n plot, for 2.58 ≤ n ≤ 200, when ζ is not
generated during inflation. The allowed parameter space corresponds to the white region.
The constraint in Eq. (4.42) almost matches (visually) the horizontal axis. The largest
possible value τNL may take in this range is 15.

The high φ⋆ T -region

This case is of no interest because the generated non-gaussianity is too small to be observ-
able:
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(
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ζ

⇒ τNL ≪ |ηφ|2 , (4.44)

according to the expressions in Eqs. (4.2) and (4.6).
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Figure 4.4: Contours of τNL in the r vs n plot, for 200 ≤ n ≤ 2000, when ζ is not
generated during inflation. The allowed parameter space corresponds to the white region.
The constraint in Eq. (4.42) matches (visually) the horizontal axis. The largest possible
value τNL may take in this range is a bit higher than 5.

4.7.2 fNL

The low φ⋆ region

From Eqs. (3.34) and (4.20) we see that the low φ⋆ region and the low φ⋆ T -region are
exactly the same, being only constrained by the fact that Pζ is dominated by the one-loop
correction. Thus, the obtained conclusions in Subsubsection 4.7.1 equally apply. Therefore,
this case is of no interest because it is impossible to satisfy the normalisation spectrum
condition in Eq. (4.28) for the low φ⋆ region.
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Figure 4.5: Contours of τNL in the r vs n plot, for 2000 ≤ n ≤ 3000, when ζ is not
generated during inflation. The allowed parameter space corresponds to the white region.
The constraint in Eq. (4.42) matches (visually) the horizontal axis. The largest possible
value τNL may take in this range is a bit higher than 5.

The intermediate φ⋆ region

The level of non-gaussianity is in this case given by
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≈ −8.59× 109(nr)3 , (4.45)

where in the last line we have chosen again for simplicity |ησ| = 0.1 and N = 62 so that
the non-gaussianity is maximized.

Since the spectrum normalisation constraint in Eq. (4.43) equally applies to this case, we
conclude from it and from Eq. (4.45) that an upper bound on |fNL| is 2.93 × 10−2 when
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n→ ∞. fNL is, of course, unobservable. We conclude that when ζ is not generated during
inflation, but the primordial non- gaussianity is, it is impossible to detect non-gaussianity
through the bispectrum. However, in view of Subsubsection 4.7.1, it is possible to detect it
through the trispectrum.

The high φ⋆ region

This case is of no interest because the generated non-gaussianity is too small to be observ-
able:

6

5
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4π4
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ζ

≪ |ηφ| , (4.46)

according to the expressions in Eqs. (3.27) and (3.29).

SECTION 4.8

Conclusions

In this chapter we extended the analysis given in the previous one, but this time we cal-
culated the trispectrum Tζ of the primordial curvature perturbation ζ , generated during a
slow-roll inflationary epoch and considering a two- field quadratic model of inflation with
canonical kinetic terms. In order to obtain a large level of non-gaussianity, we consider
loop contributions as well as tree level terms, and show that it is possible to attain very
high, including observable, values for the level of non-gaussianity τNL if Tζ is dominated
by the one-loop contribution and Pζ is dominated by tree level term. The statement pre-
sented in Ref. [38] about the suppression of the loop corrections against the tree-level terms
when considering classicality was analyzed in this chapter and argued to be too strongly
stated leading to non-general conclusions. The probability that a typical observer sees a
non-gaussian distribution in the model considered in this thesis was investigated and found
to be non-negligible.



Chapter5
NON-GAUSSIANITY FROM VECTOR FIELD

PERTURBATIONS

SECTION 5.1

Introduction

The anisotropies in the temperature of the cosmic microwave background (CMB) radiation,
which have strong connections with the origin of the large-scale structure in the observable
Universe, is one of hottest topics in modern cosmology. The properties of the CMB tem-
perature anisotropies are described in terms of the spectral functions, like the spectrum,
bispectrum, trispectrum, etc., of the primordial curvature perturbation ζ [43]. In most of
the cosmological models the n-point correlators of ζ are supposed to be translationally and
rotationally invariants. However, violations of such invariances entail modifications of the
usual definitions for the spectral functions in terms of the statistical descriptors [1, 12, 41].
These violations may be consequences either of the presence of vector field perturbations
[12, 19, 49, 50, 51, 52, 53, 54, 73, 74, 75, 76, 94, 95, 96, 97, 102, 103, 113, 224], spinor
field perturbations [30, 194], or p-form perturbations [70, 71, 111, 115, 116], contributing
significantly to ζ , of anisotropic expansion [17, 30, 47, 81, 97, 102, 115, 165, 166, 218]
or of an inhomogeneous background [12, 41, 52]. Violation of the statistical isotropy
(i.e. violation of the rotational invariance in the n-point correlators of ζ) seems to be
present in the data [14, 80, 88, 178] and, although its statistical significance is still low,
the continuous presence of anomalies in every CMB data analysis (see for instance Refs.
[34, 58, 62, 63, 85, 86, 91, 92, 122, 123, 162, 184, 205]) suggests the evidence might be
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decisive in the forthcoming years. Since the statistical anisotropy is observationally low, it
entails a big problem when vector fields are present during inflation, because they generically
lead to a high amount of statistical anisotropy, higher than that coming from observations
[52, 75, 102]. To solve this problem, people use different mechanisms in order to make
those models consistent with observation, for example using a triad of orthogonal vectors
[12, 25], a large number of identical randomly oriented vectors fields [75], or assuming that
the contribution of vector fields to the total energy density is negligible [52, 102].

The amount of statistical anisotropy is quantified throught the parameter gζ, usually called
the level of statistical anisotropy in the spectrum. Eq. (2.34) gives us the primordial power
spectrum that takes into account the leading effects of violations of statistical isotropy by
the presence of some vector field in the inflationary era. As we could see in Section 2.4
the gζ parameter has observational bounds and works, together with the non-gaussianity
parameters fNL, τNL, gNL, etc., as statistical descriptors for ζ . Therefore, it could be a
crucial tool to discriminate between some of the more usual cosmological models.

Recent works point out the possibility that a vector field causes part of the primordial cur-
vature perturbation and show that the particular presence of vector fields in the inflationary
dynamics may generate sizeable levels of non-gaussianity described by fNL [23, 103, 210]
and τNL [20, 209]. In such works the authors included both vector and scalar field perturba-
tions, and asummed that the contributions to the spectrum from vector field perturbations
were smaller than those coming from scalar fields and in an opposite way for bispectrum
and trispectrum.

In this chapter we use the δN formalism to calculate the tree-level and one-loop contri-
butions to the bispectrum Bζ and trispectrum Tζ of ζ , including vector and scalar field
perturbations. We then calculate the order of magnitude of the levels of non-gaussianity
in Bζ and Tζ including the one-loop contributions and write down formulas that relate the
order of magnitude of the levels of non-gaussianity fNL and τNL with the amount of statis-
tical anisotropy in the spectrum gζ . Finally, comparison with the expected observational
bound from WMAP is done.

SECTION 5.2

Statistical descriptors from vector field perturbations

As we saw in Chapter 2, the δN formalism [52, 139, 142, 182, 202, 181] is a powerful tool
to calculate the primordial curvature perturbation and all its statistical descriptor to any
desired order. In the simplest case where ζ is generated by one scalar field and one vector
field and assuming that the anisotropy in the expansion of the Universe is negligible, it can
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be calculated up to quadratic terms by means of the following truncated expansion [52]:

ζ(x) ≡ δN(φ(x), Ai(x), t) = Nφδφ+N
i
AδAi+

1

2
Nφφ(δφ)

2+N i
φAδφδAi+

1

2
N ij

AAδAiδAj , (5.1)

where

Nφ ≡ ∂N

∂φ
, N i

A ≡ ∂N

∂Ai

, Nφφ ≡ ∂2N

∂φ2
, N ij

AA ≡ ∂2N

∂Ai∂Aj

, N i
φA ≡ ∂2N

∂Ai∂φ
, (5.2)

φ being the scalar field and A the vector field, with i denoting the spatial indices running
from 1 to 3. In the Section 2.3 we defined the power spectrum Pζ , the bispectrum Bζ and
trispectrum Tζ for the primordial curvature perturbation, through the Fourier modes of ζ
as:

〈ζ(k)ζ(k′)〉 ≡ (2π)3δ(k + k′)Pζ(k) ≡ (2π)3δ(k+ k′)
2π2

k3
Pζ(k) , (5.3)

〈ζ(k)ζ(k′)ζ(k′′)〉 ≡ (2π)3δ(k + k′ + k′′)Bζ(k,k
′,k′′)

≡ (2π)3δ(k + k′ + k′′)
4π4

k3k′3
Bζ(k,k

′,k′′) . (5.4)

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 ≡ (2π)4δ(k1 + k2 + k3 + k4)Tζ(k1,k2,k3,k4)

≡ (2π)3δ(k1 + k2 + k3 + k4)

(

2π2
)3

k31k
3
2 |k2 + k3|3

Tζ(k1,k2,k3,k4) .(5.5)

Using Eq. (5.1) and the definitions given in Eqs. (5.3) and (5.4), it was found in Ref. [52]
that the tree-level contribution to the spectrum is of the form shown in Eq. (2.36), that is

Pζ(k) = P iso
ζ (k)

(

1 + gζ(d̂ · k̂)2
)

. (5.6)

In addition, an analogous form for the contribution to fNL was given in Ref. [103], showing
that both, Pζ and fNL have anisotropic contributions coming from the vector field pertur-
bation. The one-loop correction to the spectrum was also given in Ref. [52], however they
kept it in an integral form. In this chapter we give the tree-level and one-loop contributions
to the bispectrum and to the trispectrum. We also estimate the integrals coming from loop
corections in order to get an order of magnitude for fNL and τNL.

Using the Fourier fmodes for Eqs. Eq. (5.1), (5.3), (5.4) and (5.5) and considering contri-
butions up to one-loop order, the expressions for Pζ , Bζ and Tζ , are1:

Ptree
ζ (k) = N2

φPδφ(k) +N i
AN

j
ATij(k)

= N2
φPδφ(k) +N2

AP+(k) + (NA · k̂)2P+(k) (rlong − 1) , (5.7)

P1−loop
ζ (k) =

∫

d3pk3

4π|k + p|3p3
[

1

2
N2

φφPδφ(|k+ p|)Pδφ(p) +N i
φAN

j
φAPδφ(|k+ p|)Tij(p)

+
1

2
N ij

AAN
kl
AATik(k+ p)Tjl(p)

]

, (5.8)

1These expresions can be calculated using the diagrammatic tool that we will present in a forthcoming
paper [208].
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Btree
ζ (k,k′,k′′) = N2

φNφφ[Pδφ(k)Pδφ(k
′) + c. p.] +N i

AN
k
AN

mn
AA

[

Tim(k)Tkn(k′) + c. p.
]

+ NφN
i
AN

j
φA

[

Pδφ(k)Tij(k′) + 5 perm.
]

, (5.9)

B1−loop
ζ (k,k′,k′′) = N6

φφ

∫

d3pk3k′3

4πp3|k+ p|3|k′ − p|3Pδφ(p)Pδφ(|k+ p|)Pδφ(|k′ − p|)

+ N ij
AAN

kl
AAN

mn
AA

∫

d3pk3k′3

4πp3|k+ p|3|k′ − p|3Til(p)Tkn(k+ p)Tjm(k′′ − p)

+ NφφN
i
φAN

j
φA

∫

d3pk3k′3

4πp3|k′′ + p|3|k′ − p|3
{

Pδφ(p)Pδφ(|k′′ + p|)Tij(k′ − p)

+ Pδφ(p)Pδφ(|k′ − p|)Tij(k′′ + p) + Pδφ(|k′ − p|)Pδφ(|k′′ + p|)Tij(p)
}

+ N i
φAN

j
φAN

kl
AA

∫

d3pk3k′3

4πp3|k′′ + p|3|k′ − p|3
{

Pδφ(p)Tik(k′ − p)Tjl(k′′ + p)

+ Pδφ(|k′′ + p|)Tik(p)Tjl(k′ − p) + Pδφ(|k′ − p|)Tik(p)Tjl(k′′ + p)

}

, (5.10)

T tree
ζ (k1,k2,k3,k4) = N2

φN
2
φφ[Pδφ(k2)Pδφ(k4)Pδφ(|k1 + k2|) + 11 perm.]

+ N i
AN

j
AN

kl
AAN

mn
AA

[

Tik(k2)Tjm(k4)Tln(k1 + k2) + 11 perm.
]

+ N2
φN

i
AφN

j
Aφ

[

Pδφ(k2)Pδφ(k4)Tij(k1 + k2) + 11 perm.
]

+ N i
AN

j
AN

k
AφN

l
Aφ

[

Tik(k2)Tjl(k4)Pδφ(|k1 + k2|) + 11 perm.
]

+ NφNφφN
i
AN

j
Aφ

[

Pδφ(k2)Tij(k4)Pδφ(|k1 + k2|) + 23 perm.
]

+ NφN
i
AN

j
AφN

kl
AA

[

Pδφ(k2)Tik(k4)Tjl(k1 + k2) + 23 perm.
]

, (5.11)

T 1−loop
ζA (k1,k2,k3,k4) = N ij

AAN
kl
AAN

mn
AANop

AA

∫

d3p k31k
3
3 |k3 + k4|3

4πp3|k1 − p|3|k3 + p|3|k3 + k4 + p|3 ×

×Tim(p)Tjk(k1 − p)Tnp(k3 + p)Tlo(k3 + k4 + p) , (5.12)

where
Tij(k) ≡ T even

ij (k)P+(k) + iT odd
ij (k)P−(k) + T long

ij (k)Plong(k) , (5.13)

and
T even
ij (k) ≡ δij − k̂ik̂j , T odd

ij (k) ≡ ǫijkk̂k , T long
ij (k) ≡ k̂ik̂j . (5.14)

Eq. (5.7) was writen in the form of Eq. (5.6) with d̂ = N̂A, NA being a vector with
magnitude NA ≡

√

N i
AN

i
A, and rlong ≡ Plong/P+, where Plong is the power spectrum for

the longitudinal component, and P+ and P− are the parity conserving and violating power
spectra defined by

P± ≡ 1

2
(PR ±PL) , (5.15)

with PR and PL denoting the power spectra for the transverse components with right-
handed and left-handed polarisations [52].
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The above expressions can be further separated into different terms: one due to perturba-
tions in the scalar field, another due to the vector field perturbations, and the other due to
the mixed terms:

Pζ
tree(k) = Pζ

tree
φ (k) + Pζ

tree
A (k), (5.16)

P1−loop
ζ (k) = Pζ

1−loop
φ (k) + Pζ

1−loop
A (k) + Pζ

1−loop
φA (k) , (5.17)

Btree
ζ (k,k′,k′′) = Bζ

tree
φ (k,k′,k′′) + Bζ

tree
A (k,k′,k′′) + Bζ

tree
φA (k,k′,k′′) , (5.18)

B1−loop
ζ (k,k′,k′′) = Bζ

1−loop
φ (k,k′,k′′) + Bζ

1−loop
A (k,k′,k′′)

+ Bζ
1−loop
φA (k,k′,k′′) , (5.19)

T tree
ζ (k1,k2,k3,k4) = Tζ

tree
φ (k1,k2,k3,k4) + Tζ

tree
A (k1,k2,k3,k4)

+ Tζ
tree
φA (k1,k2,k3,k4) , (5.20)

T 1−loop
ζ (k1,k2,k3,k4) = Tζ

1−loop
φ (k1,k2,k3,k4) + Tζ

1−loop
A (k1,k2,k3,k4)

+ Tζ
1−loop
φA (k1,k2,k3,k4) , (5.21)

Observational analysis tell us that the statistical anisotropy in CMB temperature perturba-
tion could be observable in a future through current experiments like WMAP or PLANCK.
Eq. (5.6) combined with recent studies [80] tells us that the level of statistical anisotropies
gζ has an upper bound and in the best case (99% confidence level) this is gζ <∼ 0.383 [79].
During our analysis we will adopt an upper bound for gζ : gζ <∼ 0.1. In order to satisfy the
latter observational constraint over the spectrum, we must be sure that the contributions
coming from vector fields in Eqs. (5.7) and (5.8) are smaller than those coming from scalar
fields. That means that the first term in Eq. (5.16) dominates over all the other terms,
even those coming from one-loop contributions. With the previous conclusion in mind we
feel free to make assumptions over the other contributions, specially for those coming from
vector field perturbations.

SECTION 5.3

Vector field contributions to the statistical descriptors

As we explain in the previous section, our unique restriction from observation is related to
the amount of statistical anisotropy present in the spectrum, so we need to be sure that
the first term in Eq. (5.16) always dominates. In our study we will assume that the terms
coming only from the vector field dominate over those coming from the mixed terms and
from the scalar fields only, except for the case of the tree-level spectrum2. Based on the

2For an actual realisation of this scenario, we need to show that such constraints are fully satisfied.
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assumption made, Eqs. (5.16) - (5.19) take the form:

Pζ
tree(k) = Pζ

tree
φ (k) + Pζ

tree
A (k) , (5.22)

P1−loop
ζ (k) = Pζ

1−loop
A (k) , (5.23)

Btree
ζ (k,k′,k′′) = Bζ

tree
A (k,k′,k′′) , (5.24)

B1−loop
ζ (k,k′,k′′) = Bζ

1−loop
A (k,k′,k′′) (5.25)

T tree
ζ (k1,k2,k3,k4) = Tζ

tree
A (k1,k2,k3,k4) , (5.26)

T 1−loop
ζ (k1,k2,k3,k4) = Tζ

1−loop
A (k1,k2,k3,k4) , (5.27)

The above expressions lead us to eight different ways that allow us to study and probably
get a high level of non- gaussianity3

• Vector field spectrum (PζA) and bispectrum (BζA) dominated by the tree-level terms
[103].

• Vector field spectrum (PζA) and bispectrum (BζA) dominated by the 1-loop contribu-
tions.

• Vector field spectrum (PζA) dominated by the tree-level terms and bispectrum (BζA)
dominated by the 1-loop contributions.

• Vector field spectrum (PζA) dominated by the 1-loop contributions and bispectrum
(BζA) dominated by the tree-level terms.

• Vector field spectrum (PζA) and trispectrum (TζA) dominated by the tree-level terms.

• Vector field spectrum (PζA) and trispectrum (TζA) dominated by the one-loop contri-
butions.

• Vector field spectrum (PζA) dominated by the tree-level terms and trispectrum (TζA)
dominated by the 1-loop contributions.

• Vector field spectrum (PζA) dominated by the 1-loop contributions and trispectrum
(TζA) dominated by the tree-level terms.

In order to study these possibilities, we first need to estimate the integrals coming from
loop contributions. From Eqs. (5.8), (5.10), (5.12), (5.23), (5.25) and (5.27) the integrals

3Our assumption is inspired in the one given in Ref. [31]. In that work the authors use two scalar fields
instead of one scalar and one vector field as in this chapter. A realisation of such a scenario can be found
in Chapter 3 (see also Refs. [43, 175, 121]).
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to solve are:

Pζ
1−loop(k) =

1

2
N ij

AAN
kl
AA

∫

d3pk3

4πp3|k+ p|3Tik(k+ p)Tjl(p) , (5.28)

Bζ
1−loop(k,k′,k′′) = N ij

AAN
kl
AAN

mn
AA

∫

d3pk3k′3

4πp3|k+ p|3|k′ − p|3 ×

×Til(p)Tkn(k+ p)Tjm(k′ − p) (5.29)

T 1−loop
ζA (k1,k2,k3,k4) = N ij

AAN
kl
AAN

mn
AANop

AA

∫

d3p k31k
3
3 |k3 + k4|3

4πp3|k1 − p|3|k3 + p|3|k3 + k4 + p|3 ×

×Tim(p)Tjk(k1 − p)Tnp(k3 + p)Tlo(k3 + k4 + p) .. (5.30)

The above integrals cannot be done analytically, but they can be estimated in the same
way as that presented in Refs.[31, 134, 138]. In Appendix B we show that the integrals are
proportional to ln(kL) where L is the box size. To evaluate them we take the spectrum to
be scale-invariant, which will be a good approximation if both scalar field φ and vector field
A are sufficiently light during inflation. The integrals are logarithmically divergent at the
zeros of the denominator and in each direction, but there is a cutoff at k ∼ L−1. We found
that in our case the integrals are also proportional to ln(kL) and that each singularity gives
equal contributions to the overall result. We find from Eqs. (5.28) and (5.29):

P1−loop
ζA (k) =

1

2
N ij

AAN
kl
AA(2P+ + Plong)δikTjl(k) ln(kL) , (5.31)

B1−loop
ζ (k,k′,k′′) = N ij

AAN
kl
AAN

mn
AA ln(kL)

(

2P+ + Plong)δil
[

Tkn(k)Tjm(k
′)
]

(5.32)

T 1−loop
ζA (k1,k2,k3,k4) = N ij

AAN
kl
AAN

mn
AAN

op
AA ln(kL)

(

2P+ + Plong)δimTjk(k1)

×Tnp(k3)Tlo(k4 + k3). (5.33)

SECTION 5.4

Calculation of the non-gaussianity parameter fNL

The non-gaussianity parameter in the biespectrum Bζ is defined by [148, 120]4:

fNL =
5

6

Bζ(k,k
′,k′′)

[

Pζ(k)Pζ(k′) + cyc. perm.
] . (5.34)

Since the isotropic contribution to the curvature perturbation is always dominant compared
to the anisotropic one, we can write in the above expression only the isotropic part of the
spectrum Pζ

iso(k):

fNL =
5

6

Bζ(k,k
′,k′′)

[

Pζ
iso(k)Pζ

iso(k′) + cyc. perm.
] . (5.35)

4We employ the WMAP sign convention.
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Keeping in mind the above expression, we will estimate the possible amount of non-
gaussianity fNL in the bispectrum Bζ , generated by the anisotropic part of the primordial
curvature perturbation. To do it we take into account the different possibilities mentioned
in the previous section, where the non-gaussianity is produced solely by vector field pertur-
bations.

5.4.1 Vector field spectrum (PζA) and bispectrum (BζA)

dominated by the tree-level terms

We start our analysis by considering the case studied in Ref. [103], where the authors assume
that the bispectrum is dominated by vector fields perturbations and that the higher order
contributions from the vector field are always sub-dominant, i.e N i

AδAi ≫ N ij
AAδAiδAj .

This means that both the spectrum and the bispectrum are dominated by the tree level
terms, i.e. Pζ

tree
A ≫ Pζ

1−loop
A and Bζ

tree
A ≫ Bζ

1−loop
A , so that the level of non-gaussianity fNL

is given by:

fNL =
5

6

Btree
ζ (k,k′,k′′)

[

Pζ
iso(k)Pζ

iso(k′) + cyc. perm.
] ≃ 5

6

Bζ
tree
A (k,k′,k′′)

[

Pζ
iso(k)Pζ

iso(k′) + cyc. perm.
] . (5.36)

Since the anisotropic contribution to the curvature perturbation is subdominant, we can
take Pζ ∼ Pζ

iso, so we may write:

fNL ≃ N i
AN

k
AN

mn
AA

[

Tim(k)Tkn(k
′) + cyc. perm.

]

[

Pζ(k)Pζ(k′) + cyc. perm.
] . (5.37)

Assuming that Plong, P+, and P− are all of the same order of magnitude, and that the
spectrum is scale invariant, we may write the above equation as:

fNL ≃ P2
AN

2
ANAA

Pζ
2 , (5.38)

where PA = 2P+ + Plong. Taking as a typical value for the vector field perturbation
δA =

√
PA and NAδA > NAAδA

2, the contribution of the vector field to ζ is given by
ζA ∼

√

PζA ∼ NA

√
PA. Thus, we may write an upper bound for fNL:

fNL <∼
Pζ

3/2
A

Pζ
2 . (5.39)

Since the level of statistical anisotropy in the power spectrum is of order gζ ∼ PζA/Pζ , and

since Pζ
1/2 ≃ 5× 10−5 [119], Eq. (5.38) yields [103]:

fNL <∼ 103
( gζ
0.1

)3/2

. (5.40)

The above expression gives an upper bound for the level of non-gaussianity fNL in terms of
the level of statistical anisotropy in the power spectrum gζ when the former is generated
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by the anisotropic contribution to the curvature perturbation. As we may see, the recent
observational bounds on fNL: −9 < fNL < 111 [119]5, may easily be exceeded.

As an example of this model, we apply the previous results to a specific model, e.g. the
vector curvaton scenario [49, 50, 51], where the N -derivatives are [103]:

NA =
2

3A
r , (5.41)

NAA =
2

A2
r , (5.42)

where A ≡ |A| is the value of vector field just before the vector curvaton field decays and
the parameter r is the ratio between the energy density of the vector curvaton field and
the total energy density of the Universe just before the vector curvaton decay. We begin
exploring the conditions under which the vector field spectrum and bispectrum are always
dominated by the tree-level terms. From Eqs. (5.7), (5.9), (5.31) and (5.32) our constraint
leads to:

PAN
2
A ≫ P2

AN
2
AA , (5.43)

P2
AN

2
ANAA ≫ P3

AN
3
AA . (5.44)

Thus, it follows that:

PA ≪
(

NA

NAA

)2

. (5.45)

We have to remember that in the present case the contribution of the vector field to ζ is
given by ζA ∼

√

PζA ∼ NA

√
PA. Then, the above equation combined with Eqs. (5.65) and

(5.66) leads to:

r ≫ 2.25× 10−4g
1/2
ζ . (5.46)

This is a lower bound on the r parameter we have to consider when building a realistic
particle physics model of the vector curvaton scenario.

Finally, from Eq. (5.38), the fNL parameter in this scenario is given by:

fNL ≃ 4.5× 10−2

r

( gζ
0.1

)2

. (5.47)

This is a consistency relation between fNL, gζ , and r which will help when confronting the
specific vector curvaton realisation against observation.

5The bispectrum (trispectrum) in this scenario might be either of the local, equilateral, or orthogonal
type. We are not interested in this thesis on the shape of the non-gaussianity but on its order of magnitude.
Being that the case, comparing with the expected bound on the local fNL [119] (τNL [112]) makes no sensible
difference under the assumption that the expected bounds on the equilateral and orthogonal fNL (τNL) are
of the same order of magnitude, as analogously happens in the fNL case for single-field inflation [193].
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5.4.2 Vector field spectrum (PζA) and bispectrum (BζA)

dominated by the 1-loop contributions

Since the bispectrum is dominated by 1-loop contributions and is given by Eq. (5.32), we
may write Eq. (5.35) as:

fNL ≃ N ij
AAN

kl
AAN

mn
AA ln(kL)

(

2P+ + Plong)δil
[

Tkn(k)Tjm(k
′) + cyc. perm.

]

[

Pζ(k)Pζ(k′) + cyc. perm.
] . (5.48)

Assuming again that Plong, P+, and P− are all of the same order of magnitude, and that
the spectrum is scale invariant, the above equation leads to:

fNL ≃ P3
AN

3
AA

Pζ
2 . (5.49)

Since the vector field spectrum is dominated by the 1-loop contribution, ζA ∼
√

PζA ∼
NAAPA. Thus, and taking into account that gζ ∼ PζA/Pζ and Pζ

1/2 ≃ 5 × 10−5 [119], we
find:

fNL ∼ 1
√

Pζ

(PζA

Pζ

)3/2

∼ 103
( gζ
0.1

)3/2

. (5.50)

The biggest difference between the result found in Ref. [103], given by Eq. (5.40), and the
result given by Eq. (5.50), is that the latter gives an equality relation between the non-
gaussianity parameter fNL and the level of statistical anisotropy in the power spectrum gζ .
Following the recent bounds for fNL: −9 < fNL < 111 [119], this scenario predicts an upper
bound for the gζ parameter:

gζ < 0.02 . (5.51)

This bound is stronger than that obtained from direct observations in Ref. [80].

Again we apply our result to the vector curvaton scenario. Since we are assuming that the
vector field spectrum and bispectrum are dominated by 1-loop contributions, we get from
Eqs. (5.7), (5.9), (5.31), and (5.32):

PA >

(

NA

NAA

)2

, (5.52)

which for the vector curvaton scenario becomes:

r < 2.25× 10−4g
1/2
ζ . (5.53)

This is an upper bound on the r parameter we have to consider when building a realistic
particle physics model of the vector curvaton scenario.
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5.4.3 Vector field spectrum (PζA) dominated by the tree-level

terms and bispectrum (BζA) dominated by the 1-loop
contributions

In order to check the viability of this case, we start studying the implications of the restric-
tions over the spectrum and the bispectrum, i.e. what happens when we assume that the
vector field spectrum is dominated by the tree-level terms and the bispectrum is dominated
by the 1-loop contributions. From Eqs. (5.7), (5.9), (5.31), and (5.32) it follows that:

PAN
2
A ≫ P2

AN
2
AA ⇒ PA ≪ N2

A

N2
AA

, (5.54)

P2
AN

2
ANAA ≪ P3

AN
3
AA ⇒ PA ≫ N2

A

N2
AA

. (5.55)

As we may see, it is impossible to satisfy simultaneously Eqs. (5.54) and (5.55). This is
perhaps related to the fact that we have taken into account only one vector field. Such a
conclusion may be relaxed if we take into account more than one vector field, as analogously
happens in the scalar multi-field case [43, 175].

5.4.4 Vector field spectrum (PζA) dominated by the 1-loop

contributions and bispectrum (BζA) dominated by the
tree-level terms

As in the previous case, it is impossible to satisfy the conditions under which the spectrum
is always dominated by the 1-loop contributions and the bispectrum is always dominated
by the tree-level terms:

PA ≫ N2
A

N2
AA

, (5.56)

PA ≪ N2
A

N2
AA

. (5.57)

Again, the conclusion may be relaxed if we take into account more than one vector field.
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SECTION 5.5

Calculation of the non-gaussianity parameter τNL

The non-gaussianity parameter τNL in the trispectrum Tζ is defined by [31]:

τNL =
2 Tζ(k1,k2,k3,k4)

[

Pζ(k1)Pζ(k2)Pζ(k1 + k4) + 23 perm.
] . (5.58)

Remember that the isotropic contribution in the Eq. (5.6) is always dominant compared to
the anisotropic one so that we may write in the above expression only the isotropic part of
the spectrum Pζ

iso(k):

τNL =
2Tζ(k1,k2,k3,k4)

[

Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.

] . (5.59)

Using the above expression, we will estimate the possible amount of non-gaussianity gener-
ated by the anisotropic part of the primordial curvature perturbation, taking into account
different possibilities and assuming that the non-gaussianity is produced solely by vector
field perturbations.

5.5.1 Vector field spectrum (PζA) and trispectrum (TζA)
dominated by the tree-level terms

In this first case, we assume that the trispectrum is dominated by vector field perturbations
and that the higher order terms in the δN expansion in Eq. (5.1) involving the vector field
are sub-dominant against the first-order term: N i

AδAi ≫ N ij
AAδAiδAj. The latter implies

that both the spectrum and the trispectrum are dominated by the tree-level terms, i.e.
Pζ

tree
A ≫ Pζ

1−loop
A and Tζ

tree
A ≫ Tζ

1−loop
A . Thus, we have from Eq. (5.59):

τNL =
2Tζ

tree
A (k1,k2,k3,k4)

[

Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.

] , (5.60)

which, in view of Eqs. (5.11) and (5.26), looks like:

τNL ≃
2N i

AN
j
AN

kl
AAN

mn
AA

[

Tik(k2)Tjm(k4)Tln(k1 + k2) + 11 perm.
]

[

Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.

] . (5.61)

We will just consider here the order of magnitude of τNL. Therefore, we will ignore the
specific k dependence of Tij . Instead, we will assume that Plong, P+, and P− are all of
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the same order of magnitude, which is a good approximation for some specific actions (see
for instance Ref. [52]), and take advantage of the fact that the spectrum is almost scale
invariant [119]. Thus, after getting rid of all the k dependences, the order of magnitude of
τNL looks like:

τNL ≃ P3
AN

2
AN

2
AA

(Pζ
iso)3

, (5.62)

where PA = 2P+ + Plong. Employing our assumption that NAδA > NAAδA
2, and since

the root mean squared value for the vector field perturbation δA is
√
PA, the contribution

of the vector field to ζ is given by ζA ∼
√

PζA ∼ NA

√
PA. An upper bound for τNL is

therefore given by:

τNL <∼
Pζ

2
A

(Pζ
iso)3

. (5.63)

Since the order of magnitude of gζ is PζA/Pζ
iso, under the assumptions made above we get:

τNL <∼ 8× 106
( gζ
0.1

)2

, (5.64)

where (Pζ
iso)1/2 ≃ 5 × 10−5 [119] has been used. Eq. (5.64) gives an upper bound for

the level of non-gaussianity τNL in terms of the level of statistical anisotropy in the power
spectrum gζ when the former is generated by the anisotropic contribution to the curvature
perturbation. Comparing with the expected observational limit on τNL coming from future
WMAP data releases, τNL ∼ 2 × 104 [112], we conclude that in this scenario a large level
of non-gaussianity in the trispectrum Tζ of ζ is possible, leaving some room for ruling out
this scenario if the current expected observational limit is overtaken.

As an example of this scenario, we apply the previous results to a specific model, e.g. the
vector curvaton model [49, 50, 51], where the N -derivatives are [103]:

NA =
2

3A
r , (5.65)

NAA =
2

A2
r , (5.66)

where A ≡ |A| is the value of vector field just before the vector curvaton field decays and
the parameter r is the ratio between the energy density of the vector curvaton field and the
total energy density of the Universe just before the vector curvaton decay.

First, we check if the conditions under which the vector field spectrum and trispectrum are
always dominated by the tree-level terms are fully satisfied. From Eqs. (5.7), (5.11), (5.31)
and (5.33) our constraint leads to:

PAN
2
A ≫ P2

AN
2
AA , (5.67)

P3
AN

2
AN

2
AA ≫ P4

AN
4
AA , (5.68)

which mean that the if the vector field spectrum is dominated by the tree-level terms so is
the vector field trispectrum. An analogous situation happens when the vector field spectrum
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is dominated by the one-loop terms: the vector field trispectrum is also dominated by this
kind of terms. As a result, it is impossible that simultaneously the vector field spectrum is
dominated by the tree-level (one-loop) terms and the vector field trispectrum is dominated
by the one-loop (tree-level) terms. Following Eq. (5.67), we get:

PA ≪
(

NA

NAA

)2

, (5.69)

which, in view of ζA ∼
√

PζA ∼ NA

√
PA and Eqs. (5.65) and (5.66), reduces to:

r ≫ 2.25× 10−4g
1/2
ζ . (5.70)

This lower bound on the r parameter has to be considered when building a realistic particle
physics model of the vector curvaton scenario.

Second, looking at Eq. (5.62), we obtain the level of non-gaussianity τNL for this scenario:

τNL ≃ 2× 10−2

r2

( gζ
0.1

)3

. (5.71)

This is a consistency relation between τNL, gζ, and r which will help when confronting
the specific vector curvaton realisation against observation. Indeed, a similar consistency
relation between fNL and gζ was derived for this scenario in 5.47 [210]:

fNL ≃ 4.5× 10−2

r

( gζ
0.1

)2

. (5.72)

Thus, in the framework of the vector curvaton scenario, the levels of non-gaussianity fNL

and τNL are related to each other via the r parameter in this way:

τNL ≃ 2.1

r1/2
f
3/2
NL , (5.73)

in contrast to the standard result

τNL =
36

25
f 2
NL , (5.74)

for the scalar field case (including the scalar curvaton scenario) found in Ref. [40].

5.5.2 Vector field spectrum (PζA) and trispectrum (TζA)
dominated by the one-loop contributions

From Eqs. (5.33) and (5.59) we get

τNL ≃ N ij
AAN

kl
AAN

mn
AAN

op
AA ln(kL)

(

2P+ + Plong)δim
[

Tjk(k1)Tnp(k3)Tlo(|k4 + k3|)
]

[

Pζ
iso(k1)Pζ

iso(k2)Pζ
iso(|k1 + k4|) + 23 perm.

] . (5.75)
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Assuming again that Plong, P+, and P− are all of the same order of magnitude, and that
the spectrum is scale invariant, we end up with:

τNL ≃ P4
AN

4
AA

(Pζ
iso)3

. (5.76)

Performing a similar analysis as done in the previous subsection, but this time taking
into account that the vector field spectrum is dominated by the one-loop contribution and
therefore ζA ∼

√

PζA ∼ NAAPA, we arrive at:

τNL ∼ Pζ
2
A

(Pζ
iso)3

∼ 8× 106
( gζ
0.1

)2

. (5.77)

The above result gives a relation between the non-gaussianity parameter τNL and the level
of statistical anisotropy in the power spectrum gζ.

Now, we call a similar result that we found for the non-gaussianity parameter fNL in
Eq. (5.50), that is:

fNL ∼ 103
( gζ
0.1

)3/2

. (5.78)

By combining Eqs. (5.77) and (5.78) we get:

τNL ∼ 8× 102f
4/3
NL , (5.79)

which gives a consistency relation between the non-gaussianity parameters fNL and τNL for
this particular scenario. The consistency relations in Eqs. (5.77), (5.78), and (5.79) will put
under test this scenario against future observations. In particular, the consistency relation
in Eq. (5.79) differs significantly from those obtained when ζ is generated only by scalar
fields (see e.g. Eq. (5.74) and Ref. [40]).

Again when we apply our result to the vector curvaton scenario, we get from Eqs. (5.7),
(5.11), (5.31), (5.33), (5.65) and (5.66) :

r < 2.25× 10−4g
1/2
ζ , (5.80)

which is an upper bound on the r parameter that must be considered when building a
realistic particle physics model of the vector curvaton scenario.

As happens in Sections 5.4.3 and 5.4.4, the other two possibilities are not viable because it
is impossible to satisfy simultaneously that the vector field spectrum (PζA) is dominated by
the tree-level terms and the trispectrum (TζA) is dominated by the one-loop contributions,
or the vector field spectrum (PζA) is dominated by the one-loop contributions and the
trispectrum (TζA) is dominated by the tree-level terms.
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SECTION 5.6

Conclusions

We have studied in this chapter the order of magnitude of the levels of non-gaussianity
fNL and τNL in the bispectrum Bζ and in the trispectrum Tζ , respectively, when statistical
anisotropy is generated by the presence of one vector field. Particularly, we have shown
that it is possible to get an upper bound on the order of magnitude of fNL if we assume that
tree level contributions on PζA and BζA domiante over all other terms, this result given in
the Eq. (5.40). On the other hand if we assume that the 1-loop contributions dominate
over the tree-level terms in both the vector field spectrum (PζA) and the bispectrum (BζA) a
high level of non-gaussianity fNL is obtained. fNL is given in this case by Eq. (5.50), where
we may see that there is a consistency relation between fNL and the amount of statistical
anisotropy in the spectrum gζ . We also have shown that it is possible to get an upper bound
on the order of magnitude of τNL if we assume that the tree-level contributions dominate
over all higher order terms in both the vector field spectrum (PζA) and the trispectrum
(TζA); this bound is given in Eq. (5.64). We also found that it is possible to get a high level
of non-gaussianity τNL, easyly exceeding the expected observational bound from WMAP,
if we assume that the one-loop contributions dominate over the tree-level terms in both
the vector field spectrum (PζA) and the trispectrum (TζA). τNL is given in this case by
Eq. (5.77), where we may see that there is a consistency relation between the order of
magnitude of τNL and the amount of statistical anisotropy in the spectrum gζ. Two other
consistency relations are given by Eqs. (5.78) and (5.79), this time relating the order of
magnitude of the non-gaussianity parameter fNL in the bispectrum Bζ with the amount of
statistical anisotropy gζ and the order of magnitude of the level of non-gaussianity τNL in
the trispectrum Tζ . Such consistency relations let us fix two of the three parameters by
knowing about the other one, i.e. if the non-gaussianity in the bispectrum (or trispectrum)
is detected and our scenario is appropriate, the amount of statistical anisotropy in the
power spectrum and the order of magnitude of the non-gaussianity parameter τNL (or fNL)
must have specific values, which are given by Eqs. (5.78) (or (5.77)) and (5.79). A similar
conclusion is reached if the statistical anisotropy in the power spectrum is detected before
the non-gaussianity in the bispectrum or the trispectrum is.
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CONCLUSIONS

Observational cosmology is in its golden age: current satellite and balloon experiments are
working extremely well [90, 159], dramatically improving the quality of data [119]. More-
over, foreseen experiments [59, 206] will take the field to a state of unprecedent precission
where theoretical models will be subjected to the most demanding tests. Given such a
state of affairs, it is essential to study the higher order statistical descriptors for cosmolog-
ical quantities such as the primordial curvature perturbation ζ , which give us information
about the non-gaussianity and about the possible violations of statistical isotropy in their
corresponding probability distribution functions.

The slow-roll class of inflationary models with canonical kinetic terms are the most popular
and studied to date. Inflationary models of the slow-roll variety predict very well the
spectral index in the spectrum Pζ of ζ but, if the kinetic terms are canonical, they seem to
generate unobservable levels of non-gaussianity in the bispectrum Bζ and the trispectrum
Tζ of ζ making them impossible to test against the astonishing forthcoming data. Where
does this conclusion come from? The answer relies on careful calculations of the levels of
non-gaussianity fNL and τNL by making use of the δN formalism [22, 188, 211, 226]. In this
framework, ζ is given in terms of the perturbation δN in the amount of expansion from the
time the cosmologically relevant scales exit the horizon until the time at which one wishes
to calculate ζ .

Due to the functional dependence of the amount of expansion, ζ is usually Taylor-expanded
(see Eq. (3.3)) and truncated up to some desired order so that fNL and τNL are easily
calculated (see for instance Eq. (3.7)). Two key questions arise when noting that it is
impossible to extract general and useful information from the ζ series expansion in Eq. (3.3)
until one chooses a definite inflationary model and calculates explicitly the N derivatives.
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First of all, when writing a general expression for fNL or τNL in terms of the N derivatives,
how do we know that such an expression is correct if the series convergence has not been
examined? Moreover, if the convergence radius of the ζ series is already known, why is each
term is the ζ series supposed to be smaller than the previous one so that cutting the series
at any desired order is thought to be enough to keep the leading terms? Nobody seems to
have formulated these questions before and, by following a naive line of thinking, fNL and
τNL were calculated for slow-roll inflationary models with canonical kinetic terms without
checking the ζ series convergence and keeping only the presumably leading tree-level terms
[22, 148, 188, 191, 211, 226].

These two questions have been addressed in this thesis (see Chapt. 3 and 4) by paying
attention to a particular quadratic small-field slow-roll model of inflation with two com-
ponents and canonical kinetic terms (see Eq. (3.17)). Although the non-diagrammatic
approach followed in Section 3.7 to find the necessary condition for the convergence of the
ζ series in our model might not be applicable to all the cases, we have been able to show
that not being careful enough when choosing the right available parameter space could
make the ζ series, and therefore the calculation of fNL and τNL from the truncated series
(e.g. Eq. (3.7)), meaningless. We also have been able to show in our model that the
one-loop terms in the spectrum Pζ , the bispectrum Bζ and trispectrum Tζ of ζ could be
bigger or lower than the corresponding tree-level terms, but are always much bigger than
the corresponding terms whose order is higher than the one-loop order. If Bζ is dominated
by the one-loop correction but Pζ is dominated by the tree-level term, sizeable and observ-
able values for fNL are generated, so they can be tested against present and forthcoming
observational data, a similar conclusion was reached when the trispectrum is dominated by
one-loop corrections and the Pζ is dominated by the tree- level term. Finally, if both Pζ

and Bζ or Tζ are dominated by the tree-level terms, fNL or τNL are slow-roll suppressed (see
Eqs. 3.63 and 4.33) as was originally predicted in Refs. [22, 211, 226]. What these results
teach us is that the issue of the ζ series convergence and loop corrections is essential for
making correct predictions about the statistical descriptors of ζ in the framework of the δN
formalism, and promising for finding high levels of non-gaussianity that can be compared
with observations.

The above disccusion about ζ was made assuming that the n-point correlators of ζ are tran-
lationally and rotationally invariant. However as we could see in the section 2.4.2, violations
of the translational (rotational) invariance (i.e. violations of the statistical homogeneity
(isotropy)) seem to be present in the data [62, 63, 85, 86, 91, 92] ([14, 79, 80, 88, 178]);
therefore it is pertinent to study theoretical models that include those violations. This
is the reason why in the chapter 5 we studied the statistical descriptors for ζ for models
with vector field perturbations, which are responsible of violations of statistcal isotropy.
We studied in that chapter the order of magnitude of the levels of non-gaussianity fNL

and τNL in the bispectrum Bζ and in the trispectrum Tζ , when statistical anisotropy is
generated by the presence of one massive vector field. We have shown that it is possible
to get an upper bound on the order of magnitude of fNL (see Eq. (5.40)) and τNL (see
Eq. (5.64)) if we assume that the tree-level contributions dominate over all higher order
terms in both the vector field spectrum (PζA), the bispectrum (BζA) and trispectrum (TζA).
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We also show that it is possible to get high levels of non-gaussianity fNL and τNL, easily
exceeding the expected observational bounds from WMAP, if we assume that the one-loop
contributions dominate over the tree-level terms in both the vector field spectrum (PζA)
and the bispectrum (BζA) or in both the vector field spectrum (PζA) and the trispectrum
(TζA). We could see that there are a consistency relations between the order of magnitude
of fNL and the amount of statistical anisotropy in the spectrum gζ [Eq. (5.50)] and between
the order of magnitude τNL and gζ [Eq. (5.77)]. Two other consistency relations are given
by Eqs. (5.78) and (5.79), this time relating the order of magnitude of the non-gaussianity
parameter fNL in the bispectrum Bζ with the amount of statistical anisotropy gζ and the
order of magnitude of the level of non-gaussianity τNL in the trispectrum Tζ . Such consis-
tency relations let us fix two of the three parameters by knowing about the other one, i.e.
if the non-gaussianity in the bispectrum (or trispectrum) is detected and our scenario is
appropriate, the amount of statistical anisotropy in the power spectrum and the order of
magnitude of the non-gaussianity parameter τNL (or fNL) must have specific values, which
are given by Eqs. (5.78) (or (5.77)) and (5.79). A similar conclusion is reached if the
statistical anisotropy in the power spectrum is detected before the non-gaussianity in the
bispectrum or the trispectrum is.
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A
TREE-LEVEL AND ONE-LOOP DIAGRAMS FOR

Pζ, Bζ AND Tζ : SCALAR FIELDS

We show in this appendix the mathematical expressions for the tree-level and one-loop
Feynman-like diagrams associated with the spectrum Pζ , the bispectrum Bζ an trispectrum
of ζ , following the set of rules presented in Ref. [39]. To this end we have taken into account
the N derivatives for our small-field slow-roll model given in Eqs. (3.24), (3.25), and (3.26).
After presenting the mathematical expressions, we will estimate the order of magnitude of
each diagram in order to determine the respective leading terms at tree-level and one-loop
for both Pζ and Bζ .

Figure A.1: Tree-level Feynman-like diagram for Pζ . The internal dashed line corresponds
to a two-point correlator of field perturbations.
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SECTION A.1

Tree-level diagram for Pζ

Looking at Fig. A.1, we see that P tree
ζ is given by

P tree
ζ = N2

φ Pδφ(k)

=
2π2

k3
1

η2φφ
2
⋆

(

H⋆

2π

)2

. (A.1)

Of course, there is only one tree-level diagram for Pζ and therefore Eq. (A.1) is the associ-
ated leading tree- level term.

Our calculation in this appendix goes up to the one-loop diagrams so, in order to have
complete consistency in the calculation [186], we should also take into account the one-
loop correction to the two-point correlator in the field perturbations when calculating the
diagram in Fig. A.1. Such a correction has been studied in Refs. [185, 196, 197, 221, 222]
where the most general result for single-field slow-roll inflation with Ntotal not very much
bigger than 62 is [185]

P 1−loop
δφ =

2π2

k3

(

H⋆

2π

)2
{

1 +

(

H⋆

2πmP

)2 [
35

6
ln(kL) + β

]

}

, (A.2)

where L is the infrared cutoff for a minimal box [27, 138], and β is a renormalisation
scheme-dependent constant that is expected to be negligible on large scales compared to
ln(kL) ∼ O(1). The one-loop correction to the field perturbation spectrum in Eq. (A.2)
is, therefore, negligible compared to the tree-level contribution P tree

δφ = (2π2/k3)(H⋆/2π)
2

if H⋆ ≪ mP as usually required. In our model H⋆ ≪ mP is indeed given but, since we
are dealing with a two-component model, the result in Eq. (A.2) may not be applicable.
Anyway, we feel quite confident that the (up to now unknown) extension of Eq. (A.2) to
the multiple-field case will yield similar results, so we will keep the expression in Eq. (A.1)
as the leading tree-level contribution to Pζ .
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(a) (b)

Figure A.2: One-loop Feynman-like diagrams for Pζ. (a). The two internal dashed lines
correspond to two-point correlators of field perturbations. (b). The internal dashed lines
correspond to a three-point correlator of field perturbations.

SECTION A.2

One-loop diagrams for Pζ

Looking at Figs. A.2a and A.2b, we see that P 1−loop
ζ is given by two contributions P 1−loop a

ζ

and P 1−loop b
ζ :

P 1−loop a
ζ =

1

2

[

N2
φφ +N2

σσ

]

∫

d3q

(2π)3
Pδφ(q)Pδφ(|k+ q|)

=
1

2

[

1

η2φφ
4
⋆

+
η2σ

η4φφ
4
⋆

exp [4N(ηφ − ησ)]

]

4π2

k3
ln(kL)

(

H⋆

2π

)4

, (A.3)

P 1−loop b
ζ = NφNφφ

∫

d3q

(2π)3
Bδφ δφ δφ(k, q, |k + q|) +

+NφNσσ

∫

d3q

(2π)3
Bδφ δσ δσ(k, q, |k + q|)

= − 1

η2φφ
3
⋆





∫

d3q

(2π)3
4π4

∑

perm

(

H⋆

2π

)4 ǫ
1/2
φ

2
√
2mP

M3(k, q, |k + q|)
k3q3|k+ q|3



+

+
ησ

η3φφ
3
⋆

exp [2N(ηφ − ησ)]





∫

d3q

(2π)3
4π4

∑

perm. l2a.

(

H⋆

2π

)4 ǫ
1/2
φ

2
√
2mP

M3(k, q, |k + q|)
k3q3|k+ q|3



 ,

(A.4)

where the ln(kL) ∼ O(1) factor comes from the evaluation of the momentum integrals in
a minimal box [27, 114, 138], the M3(k1, k2, k3) function is defined by [189]

M3(k1, k2, k3) = −k1k22 − 4
k32k

3
3

kt
+

1

2
k31 +

k22k
2
3

k2t
(k2 − k3) , (A.5)

with kt = k1+ k2 + k3, and the subindex perm. l2a. means a permutation over the last two
arguments in M3.

A quick glance reveals that the first term in Eq. (A.3) is subleading with respect to the
second one because |ησ| > |ηφ| and exp[4N(ηφ − ησ)] ≫ 1. The same is true for Eq. (A.4)
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where exp[2N(ηφ − ησ)] ≫ 1. Now, by comparing the orders of magnitude of the leading
terms in Eqs. (A.3) and (A.4), we conclude that:

P 1−loop a
ζ

P 1−loop b
ζ

∼
η2σ

η4φφ
4
⋆
exp [4N(ηφ − ησ)]

(

H⋆

2π

)4 2π2

k3

ησ
η3φφ

3
⋆
exp [2N(ηφ − ησ)]

(

H⋆

2π

)4 ǫ
1/2
φ

mP

2π2

k3

=
ησ
ηφ

mP

φ⋆
exp [2N(ηφ − ησ)]

1

ǫ
1/2
φ

≫ 1 , (A.6)

where mP ≫ φ⋆ and ǫφ ≪ 1. Thus, the one-loop leading term for Pζ in our model is given
by

P 1−loop
ζ =

2π2

k3
η2σ
η4φφ

4
⋆

exp [4N(ηφ − ησ)]

(

H⋆

2π

)4

ln(kL) . (A.7)

Having presented the leading tree-level and one-loop contributions to Pζ in Eqs. (A.1) and
(A.7), a consistency issue to think about is the dependence of the expression in Eq. (A.2)
on the infrared cutoff L. This quantity is in principle an artefact of the series expansion,
and the final series result should in principle be independent on the chosen value for L (see
for instance Ref. [170]). In fact, by assuming that this is the case, Refs. [21, 60, 138] have
shown that there is a running on the N derivatives with respect to L so that changes in
the ln(kL) factors are compensated by the running of the N derivatives. This is similar to
what happens in Quantum Field Theory where physical results independent on the energy
scale must be independent of the chosen value for the renormalisation scale Q. Changing
Q only modifies the relative weight of the tree-level and loop contributions, usually making
the tree- level terms dominate over the loop corrections if Q is chosen around the relevant
energy scale of the process studied. Nevertheless, we see that the ln(kL) term in Eq. (A.2)
does not compensate for the ln(kL) term in Eq. (A.7), which is a real concern as we could
expect since ζ and its spectral functions are a set of observables. The solution to this
paradox relies on the fact that the observed ζ depends on L as the stochastic properties
of the distributions depend on the size of the available region in which we are actually
able to perform observations. In this regard ζ is analogous to for instance the fine structure
constant in Quantum Field Theory which, being an observable, depends on the energy scale
for which experiments are done and, therefore, on Q. Likewise, ζ and its spectral functions,
though being observables, depend on the size of the regions where observations are done
and, therefore, on L. Having this in mind it is essential to work in a minimal box [21], i.e.
with L a bit bigger than H−1

0 (with the subscript 0 meaning today), so that ln(kL) ∼ O(1)
as has been done throughout this thesis.
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(a) (b)

Figure A.3: Tree-level Feynman-like diagrams for Bζ . (a). The two internal dashed lines
correspond to two-point correlators of field perturbations. (b). The internal dashed lines
correspond to a three-point correlator of field perturbations.

SECTION A.3

Tree-level diagrams for Bζ

Looking at Figs. A.3a and A.3b, we see that Btree
ζ is given by two contributions Btree a

ζ and

Btree b
ζ :

Btree a
ζ = N2

φNφφ [Pδφ(k1) Pδφ(k2) + 2 permutations]

= − 1

η3φφ
4
⋆

(∑

i k
3
i

∏

i k
3
i

)

4π4

(

H⋆

2π

)4

. (A.8)

Btree b
ζ = N3

φBδφ δφ δφ(k1, k2, k3)

=
1

η3φφ
3
⋆

4π4
∑

perm

(

H⋆

2π

)4 ǫ
1/2
φ

2
√
2mP

M3(k1, k2, k3)
∏

i k
3
i

. (A.9)

Now, from comparing the order of magnitude of the expressions in Eqs. (A.8) and (A.9),
we conclude that:

Btree a
ζ

Btree b
ζ

∼
1

η3φφ
4
⋆

(∑
i k

3

i∏
i k

3

i

)

4π4
(

H⋆

2π

)4

1
η3φφ

3
⋆
4π4

∑

perm

(

H⋆

2π

)4 ǫ
1/2
φ

mP

(∑
i k

3

i∏
i k

3

i

)

=
mP

φ⋆

1

ǫ
1/2
φ

≫ 1 , (A.10)

which in fact is usual as demonstrated in Refs. [147, 211]. Thus, the tree-level leading term
for Bζ in our model is given by:

Btree
ζ = − 1

η3φφ
4
⋆

(

H⋆

2π

)4

4π4

(∑

i k
3
i

∏

i k
3
i

)

. (A.11)
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As was done for Pζ in Subsection A.1, the one-loop correction to the spectrum of the field
perturbations must be taken into account for the sake of consistency when calculating the
contribution associated to the diagram in Fig. A.3a. The discussion about the relevance of
this quantum one-loop correction is actually the same as in Subsection A.1 and, therefore,
we may conclude with some confidence that the expression in Eq. (A.8) is reliable. As
regards the diagram in Fig. A.3b, it is necessary to include the one-loop correction the three-
point correlator of the field perturbations in Eq. (A.9), which in fact nobody has calculated
yet even for the single-field case. Nevertheless we might conjecture that, analogously to
that for the Pζ case, such a correction is negligible compared to the tree-level contribution
to Bζ and, therefore, the expression in Eq. (A.9) will also be reliable.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: One-loop Feynman-like diagrams for Bζ . (a) and (b). The three internal
dashed lines correspond to two-point correlators of field perturbations. (c), (d), and (e).
The internal dashed lines correspond to a two-point and a three-point correlator of field
perturbations. (f). The internal dashed lines correspond to a four-point correlator of field
perturbations.



One-loop diagrams for Bζ 120

SECTION A.4

One-loop diagrams for Bζ

Looking at Figs. A.4a, A.4b, A.4c, A.4d, A.4e, and A.4f, we see that Btree
ζ is given by six

contributions B1−loop a
ζ , B1−loop b

ζ , B1−loop c
ζ , B1−loop d

ζ , B1−loop e
ζ , and B1−loop f

ζ :

B1−loop a
ζ =

[

N3
φφ +N3

σσ

]

∫

d3q

(2π)3
Pδφ(q)Pδφ(|k1 + q|)Pδφ(|k3 − q|)

=
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η3φφ
6
⋆
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η3σ
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6
⋆

exp [6N(ηφ − ησ)]

]
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i k
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∏

i k
3
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)

ln(kL)
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H⋆

2π

)6

4π4 . (A.12)

B1−loop b
ζ =

1

2
[NφNφφNφφφ +NφNσσNσσφ]×

×
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d3q
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6
⋆
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6
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. (A.13)

B1−loop c
ζ = NφN

2
φφ
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(2π)3
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. (A.14)
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B1−loop d
ζ =

1

2
NφN

2
φφ
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B1−loop e
ζ =

1
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. (A.16)
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B1−loop f
ζ =
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, (A.17)

where the subindex perm. f2a. l2a. means a permutation over the first two arguments and
simultaneously over the last two arguments in M4(k1,k2,k3,k4) defined by [190]

M4(k1,k2,k3,k4) = −2
k21k

2
3

k212k
2
34

W24

kt

[

Z12 · Z34

k234
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4
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W124 +
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k3t

(

2 + 6
k4
kt

)]

, (A.18)

with kij = ki + kj , kt = k1 + k2 + k3 + k4, and

σij = ki · kj + k2j , (A.19)

Zij = σijki − σjikj , (A.20)

Wij = 1 +
ki + kj
kt

+
2kikj
k2t

, (A.21)

Wlmn = 1 +
kl + km + kn

kt
+

2(klkm + klkn + kmkn)

k2t
+

6klkmkn
k3t

. (A.22)

Following the same kind of analysis as we carried out for the one-loop diagrams of Pζ and
the tree-level terms for Bζ we conclude the following:
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≫ 1 , (A.24)
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B1−loop a
ζ
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Thus, the one-loop leading term for Bζ in our model is given by:

B1−loop
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. (A.28)

Once again, the ln(kL) dependence in Eq. (A.28) does not look like that obtained from
introducing Eq. (A.2) into Eq. (A.11). However the situation here is the same as that
discussed at the end of Subsection A.2, leading us to identical conclusions.

SECTION A.5

Tree-level and one-loop diagrams for Tζ

Taking into account the last two Sections, the existence of a perturbative regime and the
truncation of the series in Eq. (3.75) at second-order, we can see that just one Feynman-like
diagram per spectral function of ζ is necessary to study the tree or loop corrections to these
spectral functions. In theses cases, just one leading diagram for the one-loop correction to
Pζ Fig. A.2a, as well as one leading diagram for the one-loop correction to Bζ Fig. A.4a
are necessary. When applied to Tζ , this analysis shows that the only diagrams to consider
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(a) (b)

Figure A.5: (a). Tree-level Feynman-like diagram for Tζ . (b). One-loop Feynman-like
diagram for Tζ . The internal dashed lines correspond to two-point correlators of field
perturbations.

are the one in Fig. A.5a for the tree-level terms, and the one in Fig. A.5b for the loop
corrections. Such diagrams lead to for T tree

ζ and T 1−loop
ζ .

T tree
ζ = N2

φφN
2
φ [Pδφ(k2) Pδφ(k4)Pδφ(|k3 + k4|) + 11 permutations]

=
1

η4φφ
6
⋆

(

H⋆

2π

)6 [
2π2

k32

2π2

k34

2π2

|k3 + k4|3
+ 11 permutations

]

. (A.29)

T 1−loop
ζ =

[

N4
φφ +N4

σσ

]

∫

d3q

(2π)3
[Pδφ(q)Pδφ(|k1 − q|)Pδφ(|k3 + q|)Pδφ(|k1 + k2 + q|)

+ 11 permutations]

=

[

1

η4φφ
8
⋆

+
η4σ
η8φφ

8
⋆

exp [8N(ηφ − ησ)]

]

(

H⋆

2π

)8

ln(kL) 4
[2π2

k32

2π2

k34

2π2

|k3 + k4|3
+

+11 permutations
]

=
η4σ
η8φφ

8
⋆

exp[8N(ηφ − ησ)]

(

H⋆

2π

)8

ln(kL) 4
[2π2

k32

2π2

k34

2π2

|k3 + k4|3
+

+11 permutations
]

. (A.30)



B
THE ONE-LOOP INTEGRAL FOR Pζ

We sketch in this appendix the mathematical procedure to estimate the integrals that
appear when we consider the loop corrections. We only work one integral since the other
ones are estimated in a similar way.

The one-loop contribution to the spectrum is:

P1−loop
ζ (k) =

∫

d3p k3

4π|k+ p|3p3
[

1

2
N2

φφPδφ(|k+ p|)Pδφ(p) +N i
φAN

j
φAPδφ(|k+ p|)Tij(p)

+
1

2
N ij

AAN
kl
AATik(k+ p)Tjl(p)

]

. (B.1)

As we can see, the total contribution to P1−loop
ζ corresponds to three integrals, each one

having two singularities: one in p = 0 and the other one in p = −k. If the fields spectra
are scale invariant, the first integral may be written as:

P1−loop(a)
ζ (k) =

1

8π
P2

δφN
2
φφ

∫

d3p k3

4π|k+ p|3p3 , (B.2)

so the actual integral to estimate is:

I =

∫

L−1

d3p k3

|k+ p|3p3 . (B.3)

This integral is logaritmically divergent at the zeros in the denominator, but there is a
cutoff at k = L−1. The subscript L−1 indicates that the integrand is set equal to zero in
a sphere of radius L−1 around each singularity, and the discussion makes sense only for
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L−1 ≪ k ≪ kmax. If we consider the infrared divergences, that means p ≪ k, we may
write:

I =

∫ k

L−1

d3p

p3
∼ 4π ln(kL). (B.4)

To calculate the contribution coming from the other singularity we can make the substitu-
tion q = k + p. After evaluating this latter integral, we find that the contibution is again
4π ln(kL). The integral in Eq. (B.3) may be finally estimated by adding the contibutions
of the two singularities:

I =

∫

d3p k3

|k+ p|3p3 = 8π ln(kL). (B.5)

More details to evaluate these integrals may be found in Refs. [31, 134, 138].

The technique to evaluate this kind of integrals when considering vector fields is the same,
although the procedure is algebraically more tedious. Nevertheless, one can finally arrive
to the same conclusion. A more detailed discussion about this issue will be found in a
forthcoming publication [208].


