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Resumen 

Título: Un modelo de optimización estocástica para la gestión eficiente del agua en el cultivo de 

cacao* 

Autor: Juan David Márquez González** 

Palabras clave: Programación Estocástica Bi-etapa, Incertidumbre climática, Generación de 

Escenarios, Gestión Hídrica Agrícola, Theobroma Cacao L 

Descripción:  

La producción agrícola desempeña un papel crucial en los países en desarrollo, especialmente a 

medida que los recursos se vuelven escasos, los hábitos alimentarios cambian y las poblaciones 

crecen. En Colombia, el cultivo de cacao se destaca como un producto principal, proporcionando 

una alternativa a los cultivos ilícitos y generando empleo para miles de familias. Sin embargo, 

soportar la producción de cacao en Colombia es desafiante debido a la incertidumbre asociada con 

diversos factores productivos, así como recursos naturales como el agua un recurso fundamental 

y limitado en la producción agrícola. La gestión adecuada del agua es esencial para garantizar la 

productividad del cultivo de cacao, pero la incertidumbre climática y los efectos del clima extremo 

plantean desafíos adicionales. Debido a lo anterior, es crucial desarrollar estudios que permitan 

apoyar la toma de decisiones en la gestión de recursos hídricos agrícolas. Estrategias como la 

programación matemática representan alternativas adecuadas para tomar la mejor decisión bajo 

restricciones. Por lo tanto, este estudio se centra en desarrollar un modelo de optimización 

estocástica para la gestión del agua en cultivos de cacao, considerando la incertidumbre climática. 

Se identifican brechas de investigación, incluida la falta de enfoque en la gestión del agua para 

cultivos específicos y la subutilización de técnicas de optimización. Se propone un marco 

metodológico para futuras investigaciones y se demuestra que los modelos estocásticos superan a 

los deterministas, proporcionando una base sólida para la toma de decisiones informadas en la 

gestión de recursos hídricos agrícolas, especialmente en el caso del cacao. 

 
* Trabajo de grado 
** Facultad de Ingenierías Fisicomecánicas. Escuela de Estudios Industriales y Empresariales (EEIE). Maestría en 

Ingeniería Industrial. Director: Leonardo Hernán Talero Sarmiento. Magister en Ingeniería Industrial. Codirector: 

Henry Lamos Diaz. Doctor en física y matemáticas. 
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Abstract 

Title: A stochastic optimization model for efficient water management in cocoa crop* 

Autor: Juan David Márquez González** 

Palabras clave: Two-stage Stochastic Programming, Climate Uncertainty, Scenario Generation, 

Agricultural Water Management, Theobroma Cacao L 

Description:  

Agricultural production plays a crucial role in developing countries, especially as resources 

become scarce, eating habits change, and populations grow. In Colombia, cocoa cultivation stands 

out as a primary product, providing an alternative to illicit crops and creating employment for 

thousands of families. However, supporting cocoa production in Colombia is challenging due to 

the uncertainty associated with various production factors, as well as natural resources like water, 

which is fundamental and limited in agricultural production. Proper water management is essential 

to ensure cocoa crop productivity, but climatic uncertainty and the effects of extreme weather pose 

additional challenges. Therefore, it is crucial to develop studies that support decision-making in 

agricultural water resource management. Strategies such as mathematical programming represent 

suitable alternatives for making the best decision under constraints. Thus, this study focuses on 

developing a stochastic optimization model for water management in cocoa crops, considering 

climatic uncertainty. Research gaps are identified, including the lack of focus on water 

management for specific crops and the underutilization of optimization techniques. A 

methodological framework for future research is proposed, demonstrating that stochastic models 

outperform deterministic ones, providing a solid foundation for informed decision-making in 

agricultural water resource management, especially in the case of cocoa.  

 
* Degree study 
** Facultad de Ingenierías Físicomecánicas. Escuela de Estudios Industriales y Empresariales (EEIE). Master in 

Industrial Engineering. First advisor: Leonardo Hernán Talero Sarmiento. Master in Industrial Engineering. Co-

advisor: Henry Lamos Diaz. Ph.D.in Physics and Mathematics. 
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Introduction 

Agricultural production satisfies several needs in developing countries and is essential as resources 

become scarce, eating habits change, and populations increase. In Colombia, the cocoa crop 

represents a major product because it represents an alternative to illicit crops (Fedecacao, 2021; 

Minagricultura, 2016). It generates around 165,000 jobs and allows 52,000 families employability 

improving farmers’ living conditions (Minagricultura, 2020). Furthermore, proper cocoa crop 

production meets several Agenda 2030 goals (United Nations, 2015). Nevertheless, improving 

cocoa crop production is complex due to multiple random processes related to productive factors. 

Within these factors, water represents a crucial production factor, limited and necessary to 

guarantee productivity in crop production (Ali & Talukder, 2008; Fedecacao, 2018; P. Guo et al., 

2010). It is additionally related to high levels of uncertainty due mainly to extreme weather effects 

that influence the availability increasing the level of risk in decision-making for proper crop water 

management (Fu, Li, Li, et al., 2018; Kang et al., 2004; Y. Wang et al., 2020). Consequently, the 

importance of developing studies to support appropriate decision-making on water resource 

management is evident, for several decades through various optimization approaches (Y. Y. Wang 

et al., 2017). 

Considering optimization approaches, Mathematical Programming (MP) offers a 

compilation of tools for agricultural water management. Such tools improve water management 

efficiency and irrigation activities, considering crop demands and resource availability constraints. 

In MP, deterministic modeling considers crisp parameters or invariant factors, which in most 

research areas (e.g., water management) is incorrect, providing improper decision-making in 

uncertain conditions (Muhammad & Pflug, 2014). Consequently, it is critical to integrate 

uncertainty analysis techniques into optimization methods (W. J. Zhang et al., 2021). Within these 
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techniques, Interval Parameter Programming (IPP) addresses uncertainty using possible parameter 

bounds where the phenomenon is likely to exist or to be realized with unknown distribution 

(Robers & Ben-Israel, 1969). Fuzzy Programming (FP)  supports uncertain optimization modeling 

regarding ambiguity or vagueness conditions, demanding expert contribution for defining 

parameters' behavior through fuzzy membership functions (Bellman & Zadeh, 1970). On the other 

hand, Stochastic Programming (SP), specifically multistage approaches, focuses on probability 

theory to model uncertain parameters as random variables setting probabilities considering the 

scenarios used (Dantzig, 1955). SP answers to more realistic situations and gives decision ability 

regarding the scenarios (Jamal et al., 2018). However, considering the mentioned advantages, the 

SP approach is not covered in the Cocoa Crop Water Management (CCWM) literature. Thus, it is 

pertinent to develop studies that use such techniques in agricultural water resource management to 

support a better-informed, well-structured, and data-driven decision process. 

This study aims to develop a two-stage stochastic optimization model under climatic 

uncertainty to support decision-making regarding proper water resource management in cocoa 

crops. In this sense, this research supports water management decision-making considering 

climatic uncertainty modeled through scenarios in a stochastic optimization framework, reducing 

water overuse and improving the farmers' benefit. This study outlines the following. Section 1 

presents the problem statement; later, Section 2 and Section 3 present the research objectives and 

hypothesis. Section 4 displays the study methodology. Section 5 relates the theoretical framework. 

Section 6 shows the developed literature review. Section 7 presents the case study addressed, 

displaying the related research results. Finally, Section 8 and Section 9 contain the discussion and 

conclusions of the study results, respectively. 
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1. Problem Statement 

Cocoa is one of Colombia’s most prominent agricultural products, also called “The Peace crop.” 

It represents a relevant product for the nation since it supports as a substitute alternative for illicit 

crops in the post-conflict era (Fedecacao, 2021; Minagricultura, 2016), enabling the creation of 

173,300 jobs, with the benefit and employment of around 65,341 families, and enhancing the 

overall quality of farmers life conditions (Organización Internacional del trabajo, 2023). Colombia 

is the fifth producer of cocoa in Latin America (CAF, 2020), going from producing 42,294 tons in 

2010 to 63,048 tons in 2020, which represents a significant result in crop production (Finagro, 

2020), where Santander is the highest productive department with 41% (26,315 tons) of the 

national production contribution (Fedecacao, 2020). Besides, cocoa allows for meeting the Agenda 

2030 goals considering its potential to end poverty, end hunger, achieve food security, conserve 

and use sustainable resources, and promote peace and inclusive societies to ensure sustainable 

development (United Nations, 2015). 

However, ensuring and improving cocoa crop production is increasingly complex due to 

several random factors and their interactions, causing high uncertainty, increasing the decision-

making complexity in cocoa crop production, and decreasing the crop yield (Carr & Lockwood, 

2011; Chapman et al., 2021a; Cilas & Bastide, 2020; Finagro, 2018; Plazas et al., 2017). Within 

these factors, natural resources play a central role in promoting sustainable agricultural 

development, in which water represents a renewable production factor, limited and necessary to 

guarantee productivity in crop production (Fedecacao, 2018; P. Guo et al., 2010). Nevertheless, 

water is related to high levels of uncertainty, considering the extreme weather effects that influence 

the availability of water resources, population growth, and the increase in human activities, which 

impacts the demand and supply relationship capacity of different users (Fu, Li, Li, et al., 2018; 
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Kang et al., 2004; Y. Wang et al., 2020). Such situations increase the level of risk in decision-

making for proper crop water management. 

In the last two decades, diverse irregular weather patterns, specifically extreme droughts, 

have affected cocoa crop production in Colombia (Caracol Radio, 2016, 2020; La opinión, 2015; 

Noticias Canal TRO, 2019; Portafolio, 2009; Semana, 2014) and internationally (Inter Press 

Service, 2020; Unión Europea, 2017). Such a situation worsens considering the change in the 

climatic conditions expected for future years, considering its direct relationship with the crop 

productivity (Agbenyo et al., 2022; Bomdzele & Molua, 2023; Caracol Radio, 2022; Ch & F, 

2021; EL TIEMPO, 2021). In Colombia, few studies relate the impact of water resources scarcity 

on crop yield or crop stability, with only Naranjo-Merino et al. (2017) developing a study that 

determines the cocoa crop water footprint, the crop's water dependency, and yield. Internationally, 

numerous studies focused on explaining the crop sensitivity to the lack of water resources or water 

stress, considering the "El Niño" phenomenon or regular drought periods. Several studies analyze 

the effects of climatic factors such as temperature and lack of precipitation (i.e., water stress) on 

crop yield, growth, and development (Amfo et al., 2021; Chapman et al., 2021b; Dos Santos et al., 

2014; Gateau-Rey et al., 2018; Läderach et al., 2013; Schwendenmann et al., 2010; Zuidema et 

al., 2005), indicating the significance of studying such parameters in cocoa crop production and 

resource management. Considering that agriculture is the primary user of water worldwide (FAO, 

2017) and Colombia (Agronet, 2020), it is crucial to enable studies aimed at supporting water 

management decision-making to answer to uncertainty, thus enabling higher water use efficiency 

(WUE), assuring crop productivity, the farmers’ benefit, and natural resources conservation. 

Therefore, various studies focus on agricultural water management using simulation-

optimization techniques. Specifically, such studies simulate parameters and subsequently use them 
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as inputs for the optimization model (Linker, 2021), defining how to allocate water to the end users 

at a specific time. Such researches include deterministic optimization and optimization under 

uncertainty; however, the deterministic-based approaches do not guarantee adequate decision-

making in uncertain and random climatic conditions (Pannell et al., 2000). As alternative, uncertain 

optimization approaches address weather randomness and related parameters based on IPP, FP, 

and SP frameworks. Under the SP, there are three main approaches. The approaches are the 

implicit stochastic approach (a solution for each considered scenario), the explicit one-stage 

approach (a solution considering all the scenarios at the same time), and the multistage stochastic 

approach (which includes uncertainty in the decision framework regarding the parameter future 

realization) that support facing more realistic problems and granting the decision adaptability 

regarding the scenario realization (Jamal et al., 2018). However, this research has not retrieved 

works in CCWM using uncertain optimization approaches. Therefore, if there is the availability of 

historical data related to the parameters, and if possible, to model the hydric factor in the cocoa 

production process, a stochastic programming model will lead to flexible and time-adjustable 

decision-making, allowing preserving and maintaining water resources, ensuring a proper 

development cocoa crop production. 

Consequently, this research aims to include uncertain precipitation patterns that affect the 

water balance and impacts support water management decision-making in cocoa crop production. 

This study addresses resource decision-making through a stochastic optimization model based on 

a multistage framework, answering the supply crop water requirement in the different production 

stages of the time considered. Thus, the research conducts efforts to guarantee the resource in the 

amount and at the right time for reducing the environmental impact, protecting the crop conditions 

from water stress scenarios due to improper use and uncertain climatic patterns, reducing the 
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associated costs, and consequently improving the farmers' benefit. Based on the implications of 

supporting water management decision-making, the proposed research question relates to How to 

allocate or supply limited water resources adequately under weather uncertainty in cocoa crops, 

considering stages in stochastic optimization approaches?  

2. Objectives 

2.1. Overall Objective 

To develop a stochastic base optimization model for water allocation considering weather 

uncertainty. 

2.2. Specific Objectives 

• To identify the main stochastic modeling strategies for agricultural water management 

under conditions of uncertainty through a literature review. 

• To build a dataset containing customs instances developed for the stochastic optimization 

model. 

• To formulate a mathematical programming model for cocoa crop irrigation management 

under weather uncertainty. 

• To evaluate the stochastic model performance (i.e., supply just the required quantity of 

water resources) against the deterministic equivalent model. 

3. Hypothesis 

A stochastic optimization model allows better performance than the equivalent expected model for 

farmer agricultural water resources management under uncertain weather. 
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4. Theoretical framework 

4.1. Two-Stage Stochastic Programming 

Two-stage Stochastic Programming (TSP) is a decision-making framework used to build 

optimization models that support situations where decision-makers face uncertain parameters 

(modeled through probability theory) and must make decisions in multiple stages or periods. TSP 

establishes an optimization model construction and solution into a two-stage fragmented decision 

scheme (Sahinidis, 2004). The first-stage decisions, commonly called “here and now” decisions, 

represent decisions made at the beginning of the planning horizon regarding the available 

information and assumptions of the input parameters. The second-stage decisions, usually called 

“wait and see,” are made after the uncertain parameter realizations, meaning their resolution is 

scenario dependent. Therefore, second-stage decisions represent corrective actions or recourse to 

adjust the problem solution according to the first-stage decisions (Huang & Loucks, 2000). A TSP 

model with two variables like 𝑥 (first-stage variable) and 𝑦 (second-stage variable), has the 

following resolution, according to Conejo et al. (2010): 

• In the first-stage, the decision 𝑥 is made. 

• Just after the decision 𝑥 is made, the uncertain parameter realized as 𝜔 

• Now, the second-stage decision that depends on the first-stage decision and the scenario 

realization must be made 𝑦(𝑥, 𝜔) 

A general TSP model has the following mathematical representation addressing both kinds 

of stage decisions (Beale, 1955; Dantzig, 1955): 

min z = 𝑐𝑇𝑥 + 𝐸𝜔[𝑄(𝑦, 𝜔)] 

Subject to: [1] 
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𝐴𝑥 = 𝑏 

𝑥 ∈ 𝑋 

Where: 

𝐸𝜀[𝑄(𝑦, 𝜔)] = min 𝑞(𝜔)𝑇 𝑦(𝜔) 

Subject to: 

𝑇(𝑤)𝑥 + 𝑊(𝜔)𝑦(𝜔) = ℎ(𝜔) 

𝑦(𝜔) ∈ 𝑌, ∀ 𝜔 ∈ 𝛺 

[2] 

In this mathematical representation, 𝑥 represents the first-stage decision and 𝑦 the second-

stage decision variables vector (a 𝜔-scenario dependent variable), where 𝐸𝜀[𝑄(𝑦, 𝜔)] relates a 

recourse problem containing the second-stage decisions. 𝑐, 𝑏, 𝐴, 𝑞(𝜔), ℎ(𝜔), 𝑇 (𝜔), and 𝑊(𝜔) 

are known vectors or estimated parameters. Considering a finite number of scenarios or well-

established parameter scenarios, the general representation of the model can be reformulated as 

follows: 

min𝑥,𝑦(𝜔) z = 𝑐𝑇𝑥 + ∑ 𝜋(𝜔)𝑞(𝜔)𝑇𝑦(𝜔)

𝜔∈𝛺

 

Subject to: 

𝐴𝑥 = 𝑏 

𝑇(𝑤)𝑥 + 𝑊(𝜔)𝑦(𝜔) = ℎ(𝜔) , ∀ 𝜔 ∈ 𝛺 

𝑥 ∈ 𝑋 

𝑥 ∈ 𝑋, 𝑦(𝜔) ∈ 𝑌, ∀𝜔 ∈ 𝛺 

[3] 

 

In this approximation, every scenario has a probability of occurrence represented by the 

𝜋(𝜔) component, meaning some scenarios are more likely to happen than others, and the 

optimization model integrates them based on their importance to make the best decision. Conejo 

et al. (2010) state that a scenario tree can easily represent a reduced TSP model (Figure 1) where 

the root indicates the time point for making the first-stage decision, each branch represents a 
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distinct realization of the uncertain parameter, and the leaves denote the second-stage decisions 

made per scenario, depending on the first-stage decision and parameter realization. 

Figure 1: TSP scenario tree representation 

TSP scenario tree representation 

 
 

4.2. Scenario generation 

Scenario generation strategies aim to build representative scenarios representing different 

parameter paths (represented by a scenario tree) in stochastic optimization models or decision-

making approaches under uncertainty. There are multiples strategies used for scenario generation, 

and every strategy relies on the characteristics of the specific problem, available data, and the 

precision required (Conejo et al., 2010; Jitka Dupačová et al., 2000; Jamal et al., 2018). In 

Stochastic optimization models’ uncertain parameters are usually modeled or represented by 

random variables, that is, a variable that takes on different values based on random events. The 

main strategies for modeling data under uncertainty through random variables are: 



 

STOCHASTIC MODEL FOR COCOA CROP WATER MANAGEMENT 22 

 

• Path-base methods: based on time-series modeling or econometric models that represent 

data behavior, this strategy uses past data to build a model that allows copying data patterns 

and using them to generate new paths called fan. 

• Moment matching: represents a strategy focused on the method of moments to determine 

the real moments of the parameter to generate scenarios using a specific probability 

distribution function (Xu et al., 2012). 

• Internal sampling: is a strategy that uses an iterative data sample selection (properly and 

strictly chosen) from the historical data as representations of the parameter (Høyland & 

Wallace, 2001). 

• Scenario reduction: these methods relate scenario fan reduction based on a specific metric 

that commonly represents the dissimilitude between scenarios. It looks to provide a final 

set that is close enough to the real scenarios set, considering the statistical characteristics 

of the original fan (J. Dupačová et al., 2003; Jitka Dupačová et al., 2000) 

It is worth remarking that the scenario generation process usually states two steps: (i) 

determining the first set of scenarios generated through the selected strategy and (ii) a scenario 

selection focusing on preserving most of the inherent statistical characteristics of the original 

scenario set. 

4.3. Path-base methods 

Path-based methods focus on fitting models based on evolving random variables (stochastic 

processes) over time. These methods aim to construct an appropriate model replicating the 

historical behavior using a simulation process, where each simulation represents an equiprobable 

and distinct scenario. 
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4.3.1. Autoregressive Integrated Moving Average (ARIMA). It is a time series 

forecasting model that analyzes and predicts data with a trend. It represents the combination of 

three components: autoregression (AR), representing the historical lag dependency relationship 

(autocorrelation); integration (I) which relates a differentiation factor determining how many times 

must be pulled out the mean from the series; and moving average (MA) establishing the 

relationship between observations and lagged residual errors (Cryer & Chan, 2008; Gujarati & 

Porter, 2013) The series data needs to meet the wide-sense stationary condition to fit an ARIMA 

model. Such conditions establish that the series mean and variance remain invariant in time 

(𝐸(𝑌𝑡) =  𝜇 and 𝑉𝑎𝑟(𝑌𝑡) = 𝜎2), and the covariance depends only on the realizations of the random 

variables or the distance between lags (𝐶𝑜𝑣(𝑌𝑡) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇)] = 𝛾𝑡). An ARIMA 

model usually has the following structure:

 𝑦𝑡 =  𝜃 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝛽0𝑢𝑡 +   𝛽1𝑢𝑡−1+… + 𝜑𝑛𝑦𝑡−𝑛 +  𝛽𝑛𝑢𝑡−𝑛 [4] 

Where 𝑦𝑡 is the variable in time 𝑡, 𝜃 regression constant, 𝜑1, 𝜑2, 𝜑𝑛 are autoregressive parameters 

associated with every significant lag: 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−𝑛, and 𝛽0, 𝛽1, 𝛽𝑛 moving average parameters 

related to the lagged errors 𝑢𝑡, 𝑢𝑡−1, 𝑢𝑡−𝑛. 

4.3.2. Backpropagation Artificial Neural Networks (ANN). It is a machine learning 

technique based on the structure and functioning of the human brain, with interconnected nodes, 

or neurons, that process and transmit information to generate desired outputs (Graupe, 2013). It 

allows modeling data and fit a non-parametric model that describes the series behavior by 

identifying patterns in data. Backpropagation is the type of training strategy used in the ANN 

learning process, representing a training process where the error is propagated backward through 

the network after the first epoch to adjust the weights of the connections between neurons. This 

adjustment usually follows the gradient descent optimization based on the partial derivatives of 
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the error concerning the weights, supporting a rapid convergence of the model by reducing the 

error in the direction of the derivatives (see Appendix A for a deeper review). The ANN can 

provide a good strategy for scenario generation, integrating a random variable that follows the 

series residuals pdf in every step simulation (Vagropoulos et al., 2016) as follows:

𝑦𝑡+1 = 𝐵𝑝𝐴𝑁𝑁𝑡 + 𝑢𝑡, 

𝑦𝑡+2 = 𝐵𝑝𝐴𝑁𝑁𝑡+1 + 𝑢𝑡, 

. 

. 

. 
𝑦𝑡+𝑛 = 𝐵𝑝𝐴𝑁𝑁𝑡+𝑛−1 + 𝑢𝑡 

𝑦𝑡 =  𝜃 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝛽0𝑢𝑡 +   𝛽1𝑢𝑡−1+… + 𝜑𝑛𝑦𝑡−𝑛 +  𝛽𝑛𝑢𝑡−𝑛 

[5] 

Where 𝑦𝑡+𝑛 is the future value of the uncertain parameter, 𝐵𝑝𝐴𝑁𝑁𝑡+𝑛−1 represents the 

ANN output in time 𝑡, and 𝑢𝑡 is a random variable generated by the residual’s series pdf. 

4.4. Moment Matching 

This method represents a strategy based on calculating a data series’ real moments (e.g., mean, 

variance, skewness, and kurtosis) to match its probability distribution with some theoretical 

distribution. Then, the main goal of the moment matching is to capture the series behavior using 

the method of moments to find a suitable distribution that closely approximates or matches the 

moments of a target distribution to generate uncertain parameter scenarios (Xu et al., 2012). The 

method of moments is a statistical technique used to estimate the parameters of a probability 

distribution by equating population moments with sample moments. 

4.5. Scenario reduction strategies 

Scenario reduction strategies, also known as scenario aggregation or scenario selection, are 

techniques used to reduce the number of scenarios in stochastic optimization problems while 

preserving key characteristics of the original set of scenarios. This strategy aims to balance 
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computational efficiency and accurately represent uncertainty, and it is mainly related to the 

second step of the scenario generation process. There are two classical scenario reduction paths, 

forward selection and backward reduction. The forward selection strategy is typically applied to 

reduce trees with few scenarios, presenting a better approach for scenario selection than the 

backward strategy in problems with small trees. This strategy focuses on selecting a set of 

scenarios that preserve the main characteristics of the original set, selecting one by one, and adding 

them to the new set (Conejo et al., 2010). Nevertheless, the greater the number of scenarios 

considered, the backward strategy states a better and faster scenario reduction strategy, which 

makes it a good technique for scenario reduction based on large decision trees (Heitsch & Römisch, 

2003). The backward reduction starts with a scenario set as large as the original and subtracts 

scenarios that, when removed, will remain a scenario set close to the original set (J. Dupačová et 

al., 2003). 

4.6. Scenario reduction using the Kantorovich distance 

The backward scenario reduction technique typically uses the Kantorovich probabilistic distance 

to determine a final set of scenarios similar to the original (Conejo et al., 2010). This strategy 

compares the entire set of original scenarios through a distance function (e.g., Euclidean), selecting 

the most similar pair of scenarios based on their probability distribution similarity. The technique 

drops the scenario that allows for preserving the characteristics of the original set, that is, the 

scenario that has the least impact on the set of scenarios or is easily replaced by another. Eq [6] 

shows the Kantorovich distance between a pair of distributions (or scenarios): 

𝐷𝐾(𝑃, 𝑄) = ∑ 𝜋𝜔 ×
min

𝜔′ ∈ ΩS
𝑣(𝜔, 𝜔′)

𝜔∈Ω\ΩS

 
[6] 
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Where 𝜔 and 𝜔′ represents the scenario from 𝑃 and 𝑄 probability distributions, 𝜋𝜔 is the 

probability of every scenario, and 𝑣(𝜔, 𝜔′) is the cost function or norm between 𝜔 and 𝜔′, which 

is nonnegative, continuous, and symmetric. See Appendix A for further details. 

4.7. Quality metrics 

The Expected Value of Perfect Information and the Value of stochastic solution are two metrics 

that allow for determining the importance and appraising the interest in applying stochastic models 

that integrate the analysis and modeling of uncertainty into an optimization framework. 

4.7.1. Expected Value of Perfect Information (EVPI). EVPI measures the maximum 

value a decision-maker could gain by having complete and perfect information about the future 

before deciding. It quantifies the potential benefit of eliminating all uncertainties and making 

decisions based on perfect knowledge. According to Conejo et al. (2010) and Birge & Louveaux 

(2011), EVPI represents how much the decision-maker is willing to pay to get a better parameter 

forecast, which means trying by external means (e.g., meteorological experts) to vanish the 

uncertainty present in parameter estimation. The difference between the optimal value of the Two-

Stage Stochastic model (𝑧𝑆∗) and the TSP with non-anticipativity constraints or relaxed TSP (𝑧𝑃∗) 

allows obtaining the EVPI metric: 

𝐸𝑉𝑃𝐼𝑚𝑖𝑛 = 𝑧S∗ − 𝑧P∗ 
[7] 

A relaxed TSP model represents a model where the first-stage decision can be made after 

uncertainty realization, assuming that decision-makers can postpone their initial choices until they 

have perfect information. This relaxation allows evaluation of the maximum potential benefit that 

could be achieved by eliminating all uncertainties and making decisions based on perfect 

knowledge. 
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4.7.2. Value of stochastic solution (VSS). In a deterministic approach, decision-makers 

base their decisions on fixed or single-point parameter estimation, assuming they know how the 

future will unfold in a known and predictable manner. On the other hand, in a stochastic approach, 

decision-makers consider multiple possible outcomes and their associated probabilities, 

considering the inherent uncertainty and variability of the system or problem under study. VSS 

metric is a metric used to assess the benefit, which means that a positive VSS indicates that using 

a stochastic approach or probabilistic approach in decision-making yields higher expected values 

compared to a deterministic approach. It implies that considering variability and uncertainty can 

lead to better decision outcomes, improved risk management, and enhanced resource management. 

Then, VSS provides insights into the worth of developing further studies, experiments, or data 

collection efforts to reduce uncertainty and enhance decision-making in stochastic base decision 

modeling. The difference between the optimal value of a TSP deterministic version (𝑧𝐷∗) and the 

TSP optimal value (𝑧𝑆∗) allows performing the metric estimation according to Birge & Louveaux 

(2011):

 𝑉𝑆𝑆𝑚𝑖𝑛 = 𝑧𝐷∗ − 𝑧𝑆∗ [8] 

The 𝑧𝐷∗ component states for the solution of a TSP using a fixed parameter configuration in the 

first-stage decision based on the value estimated through the multiplication of every scenario by 

its occurrence probability. 

4.8. Water balance in crops 

The water balance represents the equilibrium between the water losses and the water gaining in 

the plant root zone. In this relationship, the water inflow needs to be at least higher than the water 

outflow to support the minimum water requirements, considering the water loss rate (i.e., the 
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amount of water plants can extract) and water gaining rates based on external factors and 

management decisions. Various inflow and outflow parameters are related to the crop conditions 

to determine the water balance in the root zone Figure 2. Precipitation (𝑃), Capillary Rise (𝐶𝑅), 

and Irrigation (𝐼) are the typical inflow parameters and represent the main ways considered in the 

water-gaining process. Precipitation and capillary rise factors represent climatic and soil 

conditions, respectively; precipitation refers to water obtained by water falling in the form of rain 

from the atmosphere to the Earth's surface, while the capillary rise is the movement of water from 

deeper zones (i.e., water table or saturated zones below the soil surface) drawn upward through 

tiny spaces of the soil matrix (Allen et al., 2006). Irrigation is the only water inflow factor affecting 

the water balance under the farmer's management. 

On the other hand, there are the outflow parameters to complete the water balance components. 

Namely, Runoff (𝑅𝑂), Deep Percolation (𝐷𝑃), and Evapotranspiration (𝐸𝑇𝑐) represent the main 

forms of water-losses in the plant root zone. Runoff occurs when the frequency of irrigation and 

rainfall exceeds the soil's water absorption capacity, resulting in water loss due to surpassing the 

water holding capacity (Critchley & Siegert, 1991). Deep percolation describes the downward 

movement of water from the root zone to the water table when the soil becomes saturated (Bethune 

et al., 2008), representing the opposite of capillary rise (i.e., root zone water-gaining process 

considering non-saturated soils). Evapotranspiration encompasses the combined water loss 

through plant transpiration and soil evaporation (Allen et al., 2006). That relation supports 

estimating the soil's water depletion (i.e., water losses) and allows for determining the water 

required to restore moisture conditions regarding decision-makers considerations, such as water 

irrigation policies, management strategies, and technological irrigation systems. Figure 2 shows a 

simple relationship of the water balance process, where saturation is the maximum amount of water 
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the soil can retain, and the wilting point is where the crop suffers from water stress. Eq [9] relates 

the relationship between water inflows and outflows in the root zone water balance (Appendix B 

presents a better development and parameters definition involved in the water balance process): 

𝐼 + 𝑃 +  𝐶𝑅 = 𝐷𝑃 + 𝑅𝑂 + 𝐸𝑇𝑐 
[9] 

Figure 2: Water balance in the root zone. Adapted from Allen et al. (2006) 

Water balance in the root zone. Adapted from Allen et al. (2006) 

 
4.9. Yield response to water stress 

The response of crop yield to water stress is a critical factor in agricultural productivity and the 

overall success of farming systems. The extent of yield reduction under water stress depends on 

several factors, including the crop species, growth stage, severity, and duration of the stress. 

Steduto et al. (2012) developed an equation that allows estimating the yield response considering 

water limitations in the root zone: 

(1 −
𝑌𝑎

𝑌𝑚
) = 𝑘𝑦 (1 −

𝐸𝑇𝑎

𝐸𝑇𝑐
) 

[10] 

Where 𝑌𝑎 is the actual crop yield or crop yield under water stress conditions [𝑘𝑔/ℎ𝑎], 𝑌𝑚 is the 

maximum crop yield [𝑘𝑔/ℎ𝑎], 𝐸𝑇𝑎 represents the actual evapotranspiration [𝑚𝑚/𝑑𝑎𝑦], 𝐸𝑇𝑐 the 
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total maximum crop evapotranspiration [𝑚𝑚/𝑑𝑎𝑦], and 𝑘𝑦 is a dimensionless parameter that 

represents the crop yield response factor and relates the amount of yield reduction regarding the 

evapotranspiration reduction in water stress conditions. See Appendix C and D for an in-depth 

understanding. 

4.10. Evapotranspiration 

Evapotranspiration combines the processes of water evaporation from the soil surface and water 

transpiration from plants. Solar radiation and heat primarily supply the energy that converts water 

at the soil surface into water vapor during evaporation. On the other hand, plants absorb water 

through their roots and release it into the atmosphere through small openings on their leaves called 

stomata during transpiration. Transpiration plays a vital role in plant cooling, nutrient uptake, and 

the transport of water and minerals from the roots to the leaves, supporting the generation of crop 

biomass. The Penman-Monteith (Allen et al., 2006) formula is the most accepted way of estimating 

evapotranspiration: 

𝐸𝑇𝑜 =
0.408 ∗ ∆(𝑅𝑛 − 𝐺) + 𝛾 ∗

900
𝑇 + 273 𝑢2 ∗ (𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾 ∗ (1 + 0.34 ∗ 𝑢2)
 [11] 

Where, 𝐸𝑇𝑜 is the reference evapotranspiration [𝑚𝑚/𝑑𝑎𝑦], 𝑇 the air temperature at two meters 

height [°𝐶], ∆ slope vapor pressure curve [𝐾𝑃𝑎/°𝐶], 𝑅𝑛 is the net radiation at the crop surface 

[𝑀𝐽/𝑚2𝑑𝑎𝑦], 𝐺 represents the soil heat flux density [𝑀𝐽/𝑚2𝑑𝑎𝑦], 𝛾 the psychrometric constant 

[𝐾𝑃𝑎/°𝐶], 𝑢2 the wind speed at two meters height [𝑚/𝑠], 𝑒𝑠 the saturation vapor pressure [𝐾𝑃𝑎], 

and 𝑒𝑎 actual vapor pressure [𝐾𝑃𝑎]. See Appendix E and F for in-depth knowledge. 
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5. Methodology 

This study is objectivist since it addresses a theoretical study that models a real case situation that 

exists and is real Lewis-Beck et al. (2004), implying a quantitative methodology. This research 

applies a six-stage framework to build optimization models for agricultural water management 

supporting water decision-making in cocoa crops. (Figure 3). The first two stages cover the 

literature review process and focus on analyzing the available scientific studies oriented to water 

resources management in the agricultural sector based on an adaptation of the Kaur et al. method 

(2021). While the remaining stages adapt Hillier & Lieberman’s framework to formulate and solve 

optimization models (2010) (meeting the second, third, and fourth objectives). 

Figure 3: Operations research studies methodological steps. An adaptation from (Hillier & Lieberman, 2010) 

Operations research studies methodological steps. An adaptation from (Hillier & Lieberman, 

2010) 

 

Stage one: Literature review protocol (First objective) 

• The review process definition. 
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• The search equations construction. 

• The final retrieved articles using the PRISMA statement and the Backward Snowball 

methodology. 

Stage two: Literature review report (Second objective) 

• The analysis and synthesis of guiding questions defined. 

• The definition of emerging questions, future research and construction of methodological 

framework. 

Stage three: Define the problem of interest and gather relevant data (Second objective) 

This stage uses the literature review stages to support developing a well-defined statement 

of the study problem related to agricultural crop water management, thus defining the relevant 

data. 

• Setting the study problem assumptions related to the operational costs, cultivar conditions 

and management aspects. 

• Defining the study problem variables and parameters based on the water balance equation. 

• Collecting data of study problem parameters using the NASA-POWER, and FAO 

databases. 

• Univariate time-series analysis (i.e., correlation, stationary analysis, outliers’ treatment, 

and Box-Cox data transformation). 

• Time-series and pdf fitting process. 

• Data trajectories generation (i.e., simulation) through the ARIMA and ANN-Bp models, 

and the Beta pdf function. 

• Scenario reduction strategy implementation through the Kantorovich distance function. 

Stage four: Formulate a mathematical model to represent the problem (Third objective) 
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It includes formulating the problem and constructing the mathematical model (stochastic 

and deterministic) that represents the essence of decision-making related to water resources 

management in uncertain cocoa crop situations using the water balance equation in the root zone. 

• The objective function construction (stochastic model.) regarding the 𝑤 scenarios. 

• The objective function construction (deterministic model.) 

• The mathematical programming constraints construction (stochastic model.) regarding the 

𝑤 scenarios and the assumptions in the case study. 

• The mathematical programming constraints construction (deterministic model.) regarding 

the assumptions in the case study. 

Stage five: Develop a computer-based procedure for deriving solutions to the problem from 

the model (Third objective) 

The procedure contains the mathematical programming model solution proposed by: 

• Select an algorithm technique for large-scale linear programming problems decomposition 

for the stochastic model. 

• Apply the decomposition technique to solve the stochastic model if applicable. 

• Apply an exact method to solve the deterministic model. 

Stage six: Test and compare the model (Fourth objective) 

This stage aims to test the stochastic optimization model built using two metrics that show 

the model's relevance and applicability in cocoa crop water management. The stage also compares 

models’ performance concerning the equivalent deterministic model that uses the expected value 

of the uncertainty parameters.  

• Determine the Expected Value of Perfect Information (Raiffa, 1968) and the Value of the 

Stochastic Solution quality metrics (Birge, 1982).  
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• Compare the models’ performance using simulated climate scenarios. 

6. Literature Review 

This study developed a systematic literature review on water resources management (allocation 

and irrigation) focused on second-level (i.e., basin manager) and third-level (farmers) decision-

makers to provide a methodological framework for applying uncertainty optimization techniques 

on agricultural water management. This work applies the practical five-step framework proposed 

by (Arksey and O'Malley, 2005) for reviewing the scoping study to map the available literature, 

research gaps, and theories on the topic supported by the PRISMA statement (Liberati et al., 2009) 

and the Backward Snowball Sampling Methodology (Irshad et al., 2018). Such methodology 

guarantees a better-supported and detailed scoping and SLR study covering a more significant 

number of results through a retrospective review. The answer to the three following guiding 

questions supports the review, enabling the collection and establishment of essential points 

associated with various factors involved in Multistage stochastic programming modeling 

strategies: 

• Q1: Which are the main crops analyzed in selected studies?  

• Q2: What are the primary sources of uncertainty decision-makers face and the most 

suitable techniques for uncertain parameter modeling?  

• Q3: What main modeling strategies are related to MSP and the most common algorithms 

or solution methods?  

This research built a three-layer search query that focused on applying Multistage 

Stochastic Programming (MSP) to water management in agriculture (Figure 4). The first three 

layers relate MSP components (first layer: stochast*, second layer: two-stage OR multi-stage OR 
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multistage, third layer: programm* OR optim*) while the fourth and fifth allows filtering studies 

to water management activities (water OR irrigation OR allocate*) and agriculture domain (crop 

OR cultivation OR agricult*), respectively. This work applied the three layers into titles, 

keywords, and abstracts to acquire the articles. This study only uses Scopus and WOS databases 

considering the rigorous review and publication process of articles and scientific documents to 

support the retrieval of proper and pertinent studies. (Bakkalbasi et al., 2006; Falagas et al., 2008; 

Harzing & Alakangas, 2016). The PRISMA and Snowball hybrid methodology allows for 

retrieving 37 studies spread over 14 years (2005-2021), concentrating most of the studies in the 

2016-2021 period (62%). About 89% of the studies are applied case studies, with most studies 

related to China (87%). A low proportion of hypothetical case studies consider the research field 

performance. 

Figure 4: SLR flow chart based on the PRISMA statement (Liberati et al., 2009) 

SLR flow chart based on the PRISMA statement (Liberati et al., 2009) 
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6.1. Answer to the first guiding question:  Which are the main crops analyzed in selected 

studies? 

Agricultural water allocation is complex due to various uncertainties and factors impacting water 

system performance and agricultural productivity (Hou et al., 2016; Kang et al., 2017; Samian et 

al., 2015). Decision-makers must consider farming systems, crop types, and their sensitivity to 

water scarcity to support agricultural water productivity, reduce poverty, and meet food demand 

(Dai & Li, 2013; J. Zhao et al., 2017). The studies focus primarily on annual crops like wheat, 

corn, and rice, which are important for regions facing water scarcity and high demand (Ji et al., 

2020; Xiaoyun Li et al., 2016), with 70% of the crops studied. These crops are crucial in achieving 

global food security (Grote et al., 2021; Shiferaw et al., 2013). Jointly allocating water resources 

to annual and perennial crops is also a problem addressed in some studies establishing the 

importance of supporting every crop condition in agroforestry systems. However, the SLR results 

show a lack of study awareness of permanent crops such as fruits and berries (only four studies). 

Additionally, although the study focuses on the second and third levels of decision-makers, the 

results indicate a limited interest in the farmer's perspective and irrigation scheduling using MSP 

for water allocation. 

6.2. Answer to the second guiding question:  What are the primary sources of uncertainty 

decision-makers face and the most suitable techniques for uncertain parameter modeling? 

This study explores the sources of uncertainty in the agricultural water allocation problem and 

identifies four primary factors: socioeconomic, hydrological, climatic, and productive conditions. 

Hydrological parameters related to the water cycle and availability of water bodies are the most 

common source of uncertainty. Socioeconomic parameters, including market conditions, political 

regulations, and social context, are the second source of uncertainty, where economic benefits and 
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penalties play a significant role in this aspect. On the other hand, even though productive 

parameters and climatic conditions are important sources in modeling and managing water 

resources have not received adequate attention lately, which still presents a research gap. 

Nowadays, dealing with such uncertainties requires various strategies depending on data 

availability, quality, and reliability (Fu, Li, Li, et al., 2018; Y. Wang et al., 2020). When sufficient 

data is available, researchers commonly employ strategies based on Random Parameters (RP) 

using stochastic processes to represent uncertainty through parameter distribution (Marques et al., 

2010). Alternatively, the Interval Parameter (IP) strategy is more suitable when data is lacking, but 

establishing parameter bounds is reliable (Xiaoyan Li et al., 2014). On the other hand, Fuzzy 

Parameters (FPa) modeling based on membership functions is a good strategy when uncertainties 

involve ambiguity and vagueness (S. Guo et al., 2019). Nevertheless, some situations demand 

more than one data availability, quality, and uncertainty strategy. 

6.3. Answer to the third guiding question:  What main modeling strategies are related to MSP 

and the most common algorithms or solution methods? 

This study analyzed three main programming approaches that researchers use in agricultural water 

allocation problems under uncertainty: Multistage Stochastic Programming, Interval Parameter 

Programming, and Fuzzy Programming. MSP is a flexible decision-making framework that 

incorporates parameter uncertainty over time (C. Li & Grossmann, 2021), and TSP (a variant of 

MSP using only two-stage decisions) is the strategy most commonly implemented. However, MSP 

is less prevalent due to its mathematical complexity and computational cost. On the other hand, 

IPP, which represents uncertain parameters as intervals, is more widely used than FP, considering 

studies face more data limitations than ambiguous situations. Combining these programming 

approaches allows researchers to address multiple forms of uncertainty simultaneously. Including 
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risk control strategies such as Chance-Constraint Programming (CCP), Fuzzy-CCP, Conditional 

Value at Risk (CVaR), and Robust Optimization (RO) in the modeling process allow for providing 

better decision schemes (Fu, Li, Cui, et al., 2018; Sahinidis, 2004; Youzhi et al., 2021; W. J. Zhang 

et al., 2021). Such strategies help tackle resource planning issues and quantify and reduce 

economic risk from uncertainties. Several studies also include Multiobjective and Non-linear 

Programming (e.g., Quadratic Programming, Fractional Programming) to handle problems with 

conflicting objectives and non-linear relationships (Marques et al., 2010; F. Zhang et al., 2019). 

Depending on the modeling strategies implemented, there are three main solution techniques 

metaheuristics, exact methods, and model transformation. Model transformation with hybrid 

strategies is the most commonly used method for solving these mathematical problems: MSP-IPP 

and MSP-FP, among others. 

6.4. Framework 

This study proposes a framework based on the results acquired in the literature review. The 

proposed framework (Figure 5) presents a 6-step methodology exposed in two stages (i.e., context 

limitation decisions and modeling decisions), supporting the agricultural water allocation 

modeling process under uncertain conditions. This framework seeks to reduce efforts in identifying 

critical factors associated with multiple conditions of mathematical modeling under uncertainty, 

providing an overview of the main strategies used in the study field. Proposals of this type allow 

leading future research based on current and pertinent information associated with the existing 

difficulties in the problem-solving process while proposing a helpful path to face the agricultural 

water system's complexities. The review establishes the current research landscape, allows 

building research framework for future studies, and provides the following research critical topics 

that will contribute to understanding and facing difficulties in the agricultural water allocation 
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domain: (i) future studies focused on the third-level decision-maker to support regional water 

management from the lowest decision level; (ii) studies oriented to include different modeling 

strategies under uncertainty (e.g., stochastic programming) and (iii) a bigger spectrum of perennial 

crops considering their importance in the agricultural economy. Appendix G has additional 

detailed information on the review process, considering it is the article developed in this activity. 

In addition, regarding the knowledge gathered in the SLR, Marquez et al. (2022), and Talero et al. 

(2023) present preliminary results of water management in whole levels decisions and a 

complementary analysis addressing a cocoa crop optimization production considering selling price 

uncertainty (i.e., another type of uncertainty identified in the literature review). 

Figure 5: Framework for developing water allocation optimization models under uncertainty 

Framework for developing water allocation optimization models under uncertainty 

 

7. Case study 

7.1. Problem definition 

A decision-maker (DM) has a cocoa farm at Longitude: -73.4723, Latitude: 6.8773 with an altitude 

of 658 m.a.s.l. in San Vicente del Chucurí in Santander, Colombia. The DM faces adequately 
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managing the place's available water resources due to irregular precipitation periods and random 

weather patterns annually. Figure 6 presents a brief overview of the conditions associated with this 

study to support crop yield. The decisions related to the optimization models consist of two 

moments. At each moment, the DM must determine the amount of water he must reserve or 

contract to meet the crop's water needs. In this sense, the DM observes the current precipitation 

behavior and determines the feasibility of securing water resources now (first period) or waiting 

for the horizon to advance (second period) concerning every scenario realization. The decision 

models support annual water planning split into 26 decision periods comprised of 14 days each, 

which means this study iteratively solves 26 optimization models by strategy for annual water 

planning. This case study presents the following assumptions considering those mentioned above: 

• The planning period answers 14 days (2 weeks), corresponding to the number of days in 

which the crop reaches approximately the critical level of humidity  (45.92) with a mean 

evapotranspiration 𝐸𝑇𝑜 = 3.5. 

• This study establishes fixed costs through the whole horizon plan. 

• The two main water sources' associated cost is different, viewing that the first source relates 

to water resources collected from rainfall, and the second contracts with external entities 

to supply the resource in scarcity conditions. The study stablishes a 10% cost increase 

using water from the second source. 

• The DM knows that determining the amount of water to use by each source at the first 

moment relates to a lower cost, considering that planning the future allows for getting water 

properly. If the DM waits for the uncertainty realization, the associated costs are higher, 

and therefore there is a penalty for the delayed decision affecting the farmer's benefit (Liu 
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et al., 2017). The second stage cost increased by 4.5% from the second source regarding 

the first stage cost decisions. 

• This study ignores sloping plantations and only addresses models on flat landscapes. 

• This study addresses the cocoa Clon ICS 95 to support the case study (Cerón Salazar et al., 

2020). 

• The soil structure remains constant through the whole horizon plan. 

• This study addresses a crop monoculture system since it is the main cultivar system in San 

Vicente del Chucurí, with 98.8% of cocoa farms (DANE, 2016b). 

• The optimization models consist of supporting the water balance per plant, which means 

that each model represents management decisions focused on a single plant. 

• This study considers only healthy cocoa crop plantations older than four, as the early fourth 

years represent unproductive ages (De Almeida & Valle, 2008; Djuideu et al., 2021). 

• This study addresses a cocoa crop with two annual harvest periods (January-June and July-

December), considering that every harvest takes between 165 and 181 days (Romero 

Vergel et al., 2022). 

• Water availability based on rainwater reserves corresponds to 20%. 

Figure 6:Main decision models conditions 

Main decision models conditions 

 



 

STOCHASTIC MODEL FOR COCOA CROP WATER MANAGEMENT 42 

 

Figure 7: Decision modeling representation 

Decision modeling representation 

 
 

7.2. Data collection and parameter estimation 

Through Eq [12], this study first establishes the parameters associated with supporting the water 

balance in the plant's root zone. Of the six parameters related to the water balance equation, two 

are negligible (𝐶𝑅𝑡 y 𝐷𝑃𝑡) considering the distance from the water table to the ground surface 

(Somers & McKenzie, 2020), which interferes with a water supply in the root zone due to porous 

transport or loss by saturation. The 𝐼𝑡 and 𝑅𝑂𝑡 factors in the water balance represent the required 

irrigation and runoff produced after reaching soil holding capacity. These two parameters can be 

stated as managerial decisions in the optimization model as the need for irrigation (𝐼𝑡) and drainage 

needs (𝐷𝑡) in the field, respectively. The parameter 𝑃𝑡 is the precipitation (uncertain parameter) 

every period, and 𝐸𝑇𝑡
𝑐 is the main source of water extraction from the soil. Consequently, this 

study generates a statistical-descriptive analysis of the precipitation parameter to build future 

scenarios using multiple sources of information (Appendix H). 

𝐼𝑡 + 𝑃𝑡 +  𝐶𝑅𝑡 = 𝐷𝑃𝑡 + 𝑅𝑂𝑡 + 𝐸𝑇𝑡
𝑐 [12] 
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For this purpose, this study collects climatic data stored in the NASA databases (NASA, 

2021) in the 1981-2020 time window (Appendix I) which support an analysis of the precipitation 

behavior and subsequent estimation of the parameter in constructing optimization models under 

uncertainty. Figure 8 summarizes the tasks applied in the entire process of generating scenarios 

related to the modeling of precipitation from models based on time series and pdf fits. This study 

presents a detailed and more in-depth analysis of the results in Appendix A. 

Figure 8: Scenario generation and reduction methodology 

Scenario generation and reduction methodology 
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In the climatic parameters historical series, there are only missing data in the Radiation 

(RS) series, which has missing data corresponding to 3 years (Figure 9). Considering this lack of 

data, a listwise treatment is generated in the other parameters to perform a multivariate data 

analysis considering only the reported values. This study develops a simple correlation analysis to 

determine possible correlation between the parameter series. It is relevant to work with 

autoregressive univariate modeling processes considering the little correlation between parameters 

to explain the precipitation behavior, where relative humidity has the highest correlation (0.4). In 

the univariate modeling process, it is important to work with data series subsets that correspond to 

the most recent period of the parameter (2016-2020) since including prior periods can affect the 

model's fit and shift them from the current behaviors. Such a decision derives from the distribution 

shown in Figure 10, which presents four main periods with different behaviors: first (1984-2000), 

second (2001-2009), third (2010-2015), and fourth (2016-2020) being the most reasonable to work 

with last. 

Figure 9 Radiation (RS) parameter series 

Radiation (RS) parameter series 
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Figure 10: Precipitation year box-plot distribution 

Precipitation year box-plot distribution 

 
The main condition the series must meet to fit univariate autoregressive models is that the 

series must be stationary, meaning the mean and variance invariant behavior. This study applies 

the Augmented Dickey-Fuller (ADF) hypothesis tests with trend and drift, ADF without trend, 

ADF without trend and drift, and the Phillips-Perron (PP) test to validate the stationarity conditions 

(Dickey & Fuller, 1979; Phillips & Perron, 1986). For this purpose, the study performs seven 

partitions (with 261 data) of the historical series with the objective that the analysis guarantees 

stationarity in the complete series and its corresponding subsections. Table 1 presents the 𝑝 −

𝑣𝑎𝑙𝑢𝑒𝑠 of the contrast of the hypotheses where only the first and fourth range of data presents a 

non-stationary behavior according to the ADF test (𝑝 > 0.05). However, considering the rest of 

the tests' contrast with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 ≤ 0.05 there is enough evidence of stationarity conditions, 

then, this study defines the precipitation series as stationary. 

Table 1: 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of precipitation series stationary tests 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of precipitation series stationary tests 

Data subsets  ADF ADF no trend ADF no trend and no drift PP 

First range  (1-261) 0.2554 0 0 0.01 

Second range  (262-522) 0 0 0 0.01 

Third range  (523-783) 0 0 0 0.01 

Forth range  (784-1044) 0 0 0 0.01 

Fifth range  (1045-1305) 0.4552 0 0 0.01 

Sixth range  (1306-1566) 0.002 0 0 0.01 

Seventh range  (1567-1827) 0.0046 0 0 0.01 

2016-2020 
Series under 

study 
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Considering the stationarity condition of the series, it is possible to fit autoregressive 

models such as ARMA (i.e., no integration required). However, before fitting a model, a data 

preprocessing is first performed on the series to fix outliers and reduce the risk of fitting 

inappropriate models. In this case, the preprocessed data correspond to records that exceed the 

maximum and minimum boundaries in the whisker box plot, with the lower whisker: 0 [mm] and 

the upper whisker: 13.5125 [mm]. This study uses an imputation based on the average of the seven 

before and after historical data (k-Nearest Neighbor (Fix & Hodges, 1989))  to the outlier to 

produce a replacement driven by recent historical behavior. Additionally, a Box-Cox 

transformation based on the fourth root of the series allows for reducing the series’ variance and 

supports the model fitting properly (Box & Cox, 1964). Figure 11 shows the adjusted series' 

behavior from the outliers' imputation and the Box-Cox transformation. 

Figure 11: Precipitation distribution before (a) and after (b) data transformation 

Precipitation distribution before (a) and after (b) data transformation 

Figure 12: Precipitation (a) and Box-Cox precipitation 

Precipitation and Box-Cox precipitation 
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7.2.1. ARIMA model. This study builds or fits different models based on time series to 

reproduce the historical behavior of precipitation and support the scenario generation. The first 

model built is an ARIMA model developed using the Box-Jenkins four-step methodology (Geurts 

et al., 1977): (i) selection of 𝑝 (autoregressive component), 𝑑 (integration component), 𝑞 (moving-

average component); (ii) ARIMA parameter estimation; (iii) white-noise residuals behavior (i.e., 

𝐼𝐼𝐷𝑁(0, 𝜎2)); (iv) forecast. In the ARIMA model, the d component is zero, considering the series 

is stationary, so there is no differentiation process. This study applies an exhaustive method based 

on a ten-step iterative process to determine the best combination of components varying 𝑝, 𝑑, 𝑞 in 

the range (0-9) to obtain a proper available model based on the Akaike criterion (i.e., quality 

measure relative) regarding lower AIC values indicates a better fit (Weng et al., 2019). From this 

iterative process, the best model option is an 𝐴𝑅𝐼𝑀𝐴(6,0,3), which has the best-fit value of 𝐴𝐼𝐶 =

1933.254. The model proposed from the adjustment process is the following, in which all the 

coefficients are significant in the explanation of the series (Table 2):

 𝑦𝑡 = 2.1743𝑦𝑡−1 − 2.3710𝑦𝑡−2 + 1.7724𝑦𝑡−3 − 0.7637𝑦𝑡−4 + 0.3327𝑦𝑡−5

− 0.1451𝑦𝑡−6 − 1.6177𝑢𝑡−1 + 1.3778𝑢𝑡−2 − 0.7143𝑢𝑡−3 
[13] 

Table 2: 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of precipitation series stationary tests 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of precipitation series stationary tests 

Coefficients Estimate Std. Error Z value Pr(> |𝑧|) Significance 

Ar1  2.1743 0.1264 17.1913 2.2e-16 *** 

Ar2 -2.3710 0.2428 -9.7629 2.2e-16 *** 

Ar3 1.7724 0.1941 9.1297 2.2e-16 *** 

Ar4 -0.7637 0.0976 -7.8239 5.120e-15 *** 

Ar5 0.3327 0.0579 5.7441 9.242e-09 *** 

Ar6 -0.1451 0.0260 -5.5730 2.503e-08 *** 

Ma1 -1.6177 0.1266 -12.7776 2.2e-16 *** 

Ma2 1.3778 0.1780 7.7389 1.003e-14 *** 

Ma3 -0.7143 0.0891 -8.0161 1.091e-15 *** 

***: represents that under 99.999% confidence interval ARIMA coefficients are statistically significant 

A white noise behavior in the residuals allows for validating the relevance of the generated 

model, considering that the model could capture all the autocorrelation behavior of the series. For 
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this purpose, the LJung-Box hypothesis test and the graphical analysis support the validation of a 

white noise behavior in the model's residuals. The LJung-Box test allows us to confirm the non-

existence of correlation (null hypothesis (𝐻𝑜)) in the lags of the time series where the model 

presents a p-value=0.993, which shows that the residuals are not correlated. The graphical analysis 

of the residuals in Figure 5 makes it possible to demonstrate the result obtained by the statistical 

test where the values of the autoregressive function do not exceed the significance bands 

(Hyndman & Athanasopoulos, 2014). The residuals are white noise with behavior defined by 

𝐼𝐼𝐷𝑁(0, 𝜎 ^2). Therefore, this study establishes that the model appropriately captures the series' 

historical behavior and fulfills the right conditions. Thus, the 𝐴𝑅𝐼𝑀𝐴(6,0,3) model is relevant to 

support the generation of precipitation scenarios. 

Figure 13: Residuals ACF and series behavior 

Residuals ACF and series behavior 

 

7.2.2. ANN model. A model based on Artificial Neural Networks with backpropagation 

learning supports this study's second scenario generation strategy. Considering that it is an ANN 

model based on lags, the modeling must identify the significant lags for building the model. The 

partial autocorrelation function (PACF) allows defining the series lags with correlation. The model 

works only with the first significant lags (regarding significance bands), considering that the series 
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has no long-term memory. Figure 14 (a) shows the series' most important lags: Lag 1, Lag 3, Lag 

5, and Lag 6. After identifying the major lags, this study restructures the data producing a new 

matrix. The first column represents the independent value (value to predict), followed by the 

variables collected based on the lags order. A transformation [0 − 1] suits the data to the range 

supported by the sigmoid logistic activation function. The training process follows the structure 

shown in Figure 14 (b), assuming a roll-window prediction (Ahumada & Cornejo, 2016) scheme 

where the value predicted in the previous stage (Orange) enters as the first lag for predicting the 

following period dropping the last lag in the process. Table 3 presents the hyperparameters list 

used to fit the model. 

Figure 14: Main lags in ANN-bp training (a) and training process (b) 

Main lags in ANN-bp training (a) and training process (b) 

 
Table 3: ANN-bp hyperparameter list 

ANN-bp hyperparameter list 

Hyperparameter Value/Description 

Formula 𝑦𝑡 = 𝑓(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑙𝑎𝑔𝑠) 

Data Precipitation data scaled and transformed. 

Threshold 0.01 

Output type Numeric output 

Learning rate 0.005 

Activation function Logistic Sigmoid 

Hidden layers 2 

Hidden neurons 5 (in each layer) 

Learning algorithm Backpropagation 

Maximum number of steps 100.000 
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7.2.3. BETA Probability Distribution Fit. This study fits a Probability Distribution 

Function (pdf) to the series providing the compendium of strategies developed for generating 

scenarios. The BETA pdf selection derives from the evidence that according to the series kurtosis, 

skewness, and using a thousand resamples of the previously imputed data series (procedure applied 

in ARIMA and ANN models), data fall in the area of the pdf distribution (a grey area in Figure 15) 

according to Cullen and Frey graph (Bailer, 2001). A data transformation into the [0,1] range 

allows for adjusting the pdf parameters considering the distribution's range of the BETA function. 

This study shows that the Beta pdf with shape 1: 0.3785048 and shape 2: 1.5828210 is a good 

option to reflect the data distribution regarding 5 simulations of the fitted distribution and the real 

series (Table 4). This study ran 5 data simulations based on the fitted pdf to compare with the 

original series moments to support the BETA pdf selection. Table 4 presents the results reached in 

the simulations, which imply that the pdf is suitable to represent the distribution of the historical 

data: 

Figure 15: Cullen and Frey series pdf estimation retrieved from Colab 

Cullen and Frey series pdf estimation retrieved from Colab 
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Table 4: BETA simulations moments comparison 

BETA simulations moments comparison 

Moments Series Second Simulation Third Simulation Fourth Simulation Fifth Simulation 

First moment 0.1929 0.1922 0.1954 0.1868 0.1909 

Second moment 0.0526 0.0505 0.053 0.0528 0.0534 

Third moment 1.4703 1.305 1.4273 1.3719 1.4205 

Fourth moment 4.5340 4.1092 4.0433 3.9667 4.1680 

7.2.4. Scenario generation. This study generates a thousand scenarios fan as a means to 

represent a large number of equiprobable future paths using the previously constructed models 

(see Appendix J). A simulation allows for generating scenarios based on a random variable that 

follows a pdf using the ARIMA and ANN models fitting and training errors. The Cullen and Frey 

graph (Figure 16) shows that a normal-type pdf could support the residual distribution of both 

models considering the proximity of the real-series and the thousand resampling’s (blue dot and 

yellow dots) with a normal theoretical pdf (asterisk). The Kolmogorov-Smirnov (1951) hypothesis 

test supports and guarantees this assumption by comparing the distribution of the residuals of both 

models concerning a normal theoretical pdf obtaining p-values greater than 0.05, and accepting 

the null hypothesis (Ho: there is no significant difference between both distributions). Therefore, 

this study uses a normally distributed random variable to develop the 1000 scenarios fan using the 

first two strategies. The fitted normal pdf for each model's residuals and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 obtained 

in the hypothesis test are: 

Table 5: Residuals pdf fit and KS test result 

Residuals pdf fit and KS test result 

Moments ARIMA residuals ANN residuals 

Mean 0.007849776 -4.181425e-06 

Variance 0.408044721 2.053083e-01 

KS test 𝑝 − 𝑣𝑎𝑙𝑢𝑒 0.2252 0.4286 
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Figure 16: Cullen and Frey residuals pdf definition retrieved from Colab 

Cullen and Frey residuals pdf definition retrieved from Colab 

 

7.2.5. Scenario Reduction. This technique allows building a scenario set with the most 

relevant scenarios in the generated fan. The preceding pursues identifying scenarios that will 

enable an adequate representation of the possible future paths of precipitation, reducing the 

subsequent computational cost. The Euclidean distance function (1951) allows for scenario 

reduction considering the similarity (distance) between pairs of scenarios (considering historical 

data), providing a merge of the most identical. The reduction process in each iteration determines 

the most similar scenarios and drops the scenario that generally produces the lowest cost regarding 

the rest of the set. Subsequently, the remaining scenario inherits the probability of the removed 

scenario. This process continues until the required number of scenarios are obtained, fulfilling the 

merging tolerance representing the maximum possible scenarios merging in each iteration (see 

Appendix A for more detailed information on the reduction process). Furthermore, a data 

aggregation processes every 14 days (based on the models' decision periods) allowed for reducing 

the scenarios and decreasing the computational cost, considering the aggregated method only runs 

26 comparisons (i.e., 364/14) per pair of scenarios instead of 364 comparisons in each iteration 

(Appendix K and Appendix L relates the aggregated data and the notebook built). Figure 17 
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presents the original scenarios fans, and Figure 18 shows the reduced fan (5 scenarios) of the 

ARIMA, ANN models, and BETA pdf, respectively. It is important to state that this study uses 1, 

3, 5, and 10 scenarios for model building by each strategy. 

Figure 17: 250 scenarios of the original fan 

Scenarios of the original fan 
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Figure 18: 5-scenarios reduction 

5-scenarios reduction 
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7.2.6. Evapotranspiration parameter definition. This step relates to the 

evapotranspiration parameter estimation considering its critical contribution to the water balance 

equation for supporting the cocoa crop model-building process. This study first estimates the 

reference evapotranspiration values for the five years (2016-2020) before the study period (2021) 

based on the Penman-Monteith formula to build possible future evapotranspiration values (Allen 

et al., 2006). Secondly, it fits a pdf to evapotranspiration values according to the Cullen and Frey 

plot and validates the selected and fitted pdf through the Kolmogorov-Smirnov hypothesis test. 

This study defines a normal pdf with 𝜇 = 3.5962403 and 𝜎 = 0.5430954, which enables the 

generation of 1000 ETo simulations. The simulations' average supports producing a single path 

line representing the future evapotranspiration trend. Figure 11 allows us to observe the behavior 

of the scenario considered in constructing the models.  

Figure 19: ETo 
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7.3. Mathematical model formulation 

7.3.1. Maximum holding water capacity. The DM must only provide irrigation until the 

water in the root zone does not exceed the holding capacity. Such an assumption means water is 

only released while the soil water content is under the maximum amount of water the soil can 

retain. If the water balance surpasses the holding capacity, it is necessary to drain the water. This 

decision represents the cost of overusing the available water resource. This study starts by defining 

that water released and water drained must always be lower than the holding capacity in the water 

balance process (Q. Li & Hu, 2020), following the next equation: 

(𝐻 − 𝐴𝐶𝐶𝐷𝑟𝑡−1) + 𝐼𝑖𝑡
∗ 𝐼𝐸 − 𝐷𝑡 + 𝑃𝑡 − 𝐸𝑇𝑐𝑡 − 0.2 ∗ 𝐸𝑇𝑡

𝑜 ≤ 𝐻  ∀ 𝑡 [14] 

The expression 𝐻 − 𝐴𝐶𝐶𝐷𝑟𝑡−1 relates the water reaming in the root zone in time 𝑡, where 

𝐻 represents the water holding capacity estimated by the Total Available Water (TAW) parameter, 

which is the maximum amount of water present in the plant root zone (see Appendix D Sheet 

TAW-Kc) and 𝐴𝐶𝐶𝐷𝑟𝑡−1 the amount of water depleted in the root zone in the last period. 𝐼𝑖𝑡
 and 

𝐷𝑡 irrigating and draining decision variables, 𝐼𝐸 the irrigation efficiency of drip irrigation (i.e., 0.9 

according to Yang et al. (2023)) 𝑃𝑡 the estimated precipitation, 𝐸𝑇𝑐𝑡 the evapotranspiration value 

in the planning horizon estimated by the 𝐸𝑇𝑜 simulation process. The expression 0.2 ∗ 𝐸𝑇𝑜𝑡 

represents an estimated amount of water evaporated daily regarding rainfall and irrigation 

processes (Allen et al., 2006). This study establishes the first constraint by rearranging the Eq [15]: 

𝐼𝑖𝑡
∗ 𝐼𝐸 − 𝐷𝑡 ≤ −𝑃𝑡 + 𝐸𝑇𝑡

𝑐 + 0.2 ∗ 𝐸𝑇𝑡
𝑜 + 𝐴𝐶𝐶𝐷𝑟𝑡−1 

Considering: 

𝐷𝑟𝑡 = −𝑃𝑡 + 𝐸𝑇𝑡
𝑐 + 0.2 ∗ 𝐸𝑇𝑡

𝑜 

Then: 

[15] 
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𝐼𝑖𝑡
∗ 𝐼𝐸 − 𝐷𝑡 ≤ 𝐷𝑟𝑡 + 𝐴𝐶𝐶𝐷𝑟𝑡−1 

Where 𝐷𝑟𝑡 represents the amount of water depleted in the time 𝑡. 

7.3.2. Minimum water available in the root zone. The DM comprises the minimum 

amount of water needed in the plant root zone to prevent yield detriment in the crop (Q. Li & Hu, 

2020). Then decision-maker must provide the resource once water depletion reaches this threshold. 

Through the Steduto et al. (2012) equation, the model can represent the cocoa crop yield losses 

regarding water stress levels: 

(1 −
𝑌𝑡

𝑎

𝑌𝑡
𝑚) = 𝑘𝑦 (1 −

𝐸𝑇𝑡
𝑎

𝐸𝑇𝑡
𝑐 ) [16] 

where 𝑌𝑡
𝑎 is the actual crop yield or crop yield under water stress conditions [𝑘𝑔/ℎ𝑎], 𝑌𝑡

𝑚 is the 

maximum crop yield [𝐾𝑔/ℎ𝑎], 𝐸𝑇𝑡
𝑎 represents the actual evapotranspiration [𝑚𝑚/𝑑𝑎𝑦], 𝐸𝑇𝑡

𝑐 the 

total maximum crop evapotranspiration [𝑚𝑚/𝑑𝑎𝑦], and 𝑘𝑦 is a dimensionless parameter that 

represents the crop yield reduction regarding water stress. This study allows a 1% yield reduction 

as the maximum regarding the absence of water resources. Therefore, the expression is as follows: 

(1 − 0.99) = 𝑘𝑦 (1 −
𝐸𝑇𝑡

𝑎

𝐸𝑇𝑡
𝑐 ) 

Or:  

0.01 = 𝑘𝑦 (1 −
𝐸𝑇𝑡

𝑎

𝐸𝑇𝑡
𝑐 ) 

This expression represents that DM only endures yield reduction up to a maximum of 1%, 

which means the water soil content in any period must be enough to reach a 99% yield. 

Consequently, the equation now is: 
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0.01 ≥ 𝑘𝑦 (1 −
𝐸𝑇𝑡

𝑎

𝐸𝑇𝑡
𝑐 ) 

Where 𝐸𝑇𝑡
𝑎 relies on: 

𝐸𝑇𝑡
𝑎 = 𝑘𝑠𝑘𝑐𝐸𝑇𝑡

𝑜 

Where 𝑘𝑠 describes the effect of water stress on crop transpiration, 𝑘𝑐 the crop 

evapotranspiration coefficient and 𝐸𝑇𝑡
𝑜 the grass reference evapotranspiration. Now regarding 

𝐸𝑇𝑡
𝑎 the expression is as follows: 

0.01 ≥ 𝑘𝑦 (1 −
𝑘𝑠𝑘𝑐𝐸𝑇𝑡

𝑜

𝐸𝑇𝑡
𝑐 ) 

0.01

𝑘𝑦
≥ (1 −

𝑘𝑠𝑘𝑐𝐸𝑇𝑡
𝑜

𝐸𝑇𝑡
𝑐 ) 

Where 𝐸𝑇𝑐 = 𝑘𝑐𝐸𝑇𝑜, so: 

0.01

𝑘𝑦
≥ (1 −

𝑘𝑠𝐸𝑇𝑡
𝑐

𝐸𝑇𝑡
𝑐 ) 

Therefore:  

0.01

𝑘𝑦
≥ (1 − 𝑘𝑠) [17] 

Now, considering 𝑘𝑠 relies on: 

𝑘𝑠 =
𝑇𝐴𝑊 − 𝐷𝑟

𝑇𝐴𝑊 − 𝑅𝐴𝑊
 [18] 

 

Where 𝑅𝐴𝑊 represents the Readily Available Water and represents the amount of water 

crop can deplete by evapotranspiration way just before suffering water stress and yield reduction. 

Now the expression is:  
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0.01

𝑘𝑦
≥ (1 −

𝑇𝐴𝑊 − 𝐷𝑟

𝑇𝐴𝑊 − 𝑅𝐴𝑊
) [19] 

Where 𝐷𝑟 the water depleted. Through the last expression, this study can determine the 

maximum amount of water depleted allowed in the root zone or the minimum amount of water 

that needs to exist in the root zone to guarantee the expected yield. In this study, 𝑇𝐴𝑊 = 140, 

𝑅𝐴𝑊 = 42 regarding 𝑅𝐴𝑊 = 𝑐𝑑 ∗ 𝑇𝐴𝑊 where 𝑐𝑑 is 0.3 for the cocoa crop (see Appendix D). 

This work implements a cocoa crop yield response factor of 0.25 based on a fit generated from a 

simulation analysis using the Simple model (C. Zhao et al., 2019). Such an analysis allows for 

determining the value of 𝑘𝑦 that produces a reduction in cocoa yield considering 

evapotranspiration using an irrigation lack yield estimation and a fully irrigated yield estimation 

in 2020 (see Appendix D for further details). Then the equation is as follows: 

0.01

0.25
≥ (1 −

140 − 𝐷𝑟

140 − 42
) 

Now isolating 𝐷𝑟 this study determines that the amount of water to support that yield 

reduction at maximum needs to be: 

𝐷𝑟 = 45.92 

Then the minimum amount of water that always needs to be in the root zone is: 

𝑊𝑃 = 𝑇𝐴𝑊 − 𝐷𝑟 

𝑊𝑃 = 140 − 45.92 = 94.08 

[20] 

Where 𝑊𝑃 is the wilting point represents the minimum amount of water in the root zone 

to prevent water stress and yield reduction. Nevertheless, this value means a moment in which if 

the irrigation planning fails, the crop will suffer water stress quickly, producing a loss yield; 

therefore, we define a middle point that allows irrigation actions without incurring risks due to 

irrigation failures as follows: 
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𝑊𝑃 = 𝑇𝐴𝑊 −
𝐷𝑟

2
= 140 −

45.92

2
= 117.04 

Then, the second constraint relates to the following expression: 

𝑊𝑃 = 𝐻 − 𝐷𝑟 

Now, regarding 𝐷𝑟 is the water depleted every day, following the next expression: 

𝐷𝑟𝑡 = 𝐴𝐶𝐶𝐷𝑟𝑡−1 − 𝑃𝑡 − 𝐼𝑖𝑡 ∗ 𝐼𝐸 + 𝐸𝑇𝑡
𝑐 + 0.2 ∗ 𝐸𝑇𝑡

𝑜 [21] 

The expression is as follows: 

𝑊𝑃 = 𝐻 − 𝐷𝑟𝑡  

𝑊𝑃 = 𝐻 − 𝐴𝐶𝐶𝐷𝑟𝑡−1 + 𝑃𝑡 + 𝐼𝑖𝑡 ∗ 𝐼𝐸 − 𝐸𝑇𝑡
𝑐 − 0.2 ∗ 𝐸𝑇𝑡

𝑜 

Rearranging the equation: 

𝐼𝑖𝑡 ∗ 𝐼𝐸 ≥ 𝑊𝑃 − 𝐻 + 𝐴𝐶𝐶𝐷𝑟𝑡−1 − 𝑃𝑡 + 𝐸𝑇𝑡
𝑐 + 0.2 ∗ 𝐸𝑇𝑡

𝑜 

Considering: 

𝐷𝑟𝑡 = −𝑃𝑡 + 𝐸𝑇𝑡
𝑐 + 0.2 ∗ 𝐸𝑇𝑡

𝑜 

Then the second constraint is: 

𝐼𝑖𝑡 ∗ 𝐼𝐸 ≥ 𝑊𝑃 − 𝐻 + 𝐴𝐶𝐶𝐷𝑟𝑡−1 + 𝐷𝑟𝑡 [22] 

7.3.3. Water availability in every period. The water availability constraint describes a 

maximum irrigation water use restriction (Fu, Li, Cui, et al., 2018; Q. Li & Hu, 2020)  related to 

two sources to water the cocoa crop. The first relates to the amount of water DM can recollect 

from rainfall, and the second refers to a contract with another supplier to provide the water needs 

whenever the farmer requires it. The first one relates to no cost since it derives from rainfall 

capture. The second refers to the cost of acquiring the resource elsewhere (e.g., manager basin, 

river, government contract). In this sense, the water supported by the second alternative is 
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unlimited, while the rainfall water stored water is limited in every period. This study establishes 

that the farmer can only store around 20% of the rainfall in every period, then: 

 𝑊𝐴𝑡 = 𝑃𝑡 ∗ 0.2 [23] 

Where 𝑊𝐴𝑡 is the water availability in every period regarding rainfall periods. Therefore, 

the constraint that relates to the usable water from the first source is as follows: 

∑ 𝐼1𝑡 ≤ 𝑊𝐴𝑡

2

𝑡=1

 [24] 

7.3.4. Nonnegative variables. The final model assumptions regarding decision variables 

relate to their nonnegative properties in the model. 

𝐼𝑖𝑡 , 𝐷𝑡 ≥ 0 [25] 

 

7.3.5. Objective function. The decision model seeks to produce an optimal water 

management scheme considering the costs associated with irrigating or draining the crop. In this 

sense, the objective function of a generic model relates to the following equation: 

 min 𝑧 = ∑ ∑ 𝐶𝑖 ∗ 𝐼𝑖𝑡

2

𝑖=1

2

𝑡=1

+ ∑ 𝐷𝐶 ∗ 𝐷𝑡

2

𝑡=1

 [26] 

Where 𝐶𝑖 is the cost of water from the 𝑖 source, 𝐼𝑖𝑡 the irrigation water required from the 𝑖 

source in time 𝑡, 𝐷𝐶 the draining cost and 𝐷𝑡 the amount of water drained in time 𝑡. Then, the 

deterministic and stochastic models in this study are: 

7.3.6. Cocoa crop water management Deterministic Model. 

Indexes 

𝑖 the different types of water sources available to supply the resource {1,2}. 
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𝑡 the unit time where every decision is made {1,2}. 

Parameters 

𝐶𝑖𝑗 cost of 𝑖 source of water [$ 𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑈𝑛𝑖𝑡𝑠 − 𝐶𝑈]. 

𝐷𝐶 draining cost [$ 𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑈𝑛𝑖𝑡𝑠 − 𝐶𝑈]. 

𝐻 the soil water holding capacity [𝑚𝑚]. 

𝐼𝐸 the irrigation efficiency of the drip water irrigation system [%]. 

𝐷𝑟2 water depletion at the end of the second period [𝑚𝑚]. 

𝐴𝐶𝐶𝐷𝑟2 the cumulated water depletion in the root zone at the end of the first period in the second 

period [𝑚𝑚]. 

𝑊𝑃 the minimum required amount of water in the root zone [𝑚𝑚]. 

𝑊𝐴2 represents the amount of water the DM can store from the first source at the end of the second 

period [𝑚𝑚]. 

Variables 

𝐼𝑖𝑡 the amount of water required to support productivity. 

𝐷𝑡 is the draining needs once the water content in the root zone is higher than 𝐻. 

Objective function 

min 𝑧 → ∑ ∑ 𝐶𝑖𝑡 ∗ 𝐼𝑖𝑡

2

𝑖=1

2

𝑡=1

+ ∑ 𝐷𝐶 ∗ 𝐷𝑡

2

𝑡=1

 [27] 

Subject to 

∑ ∑ 𝐼𝑖𝑡 ∗ 𝐼𝐸 − ∑ 𝐷𝑡

2

𝑡=1

2

𝑖=1

2

𝑡=1

≤ 𝐷𝑟2 + 𝐴𝐶𝐶𝐷𝑟2  

∑ ∑ 𝐼𝑖𝑡 ∗ 𝐼𝐸

2

𝑖=1

2

𝑡=1

≥ 𝑊𝑃 − 𝐻 + 𝐷𝑟2 + 𝐴𝐶𝐶𝐷𝑟2 

∑ 𝐼1𝑡 ≤ 𝑊𝐴2

2

𝑡=1

 

𝐼𝑖𝑡 , 𝐷𝑡 ≥ 0     ∀𝑖 

[28] 
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Therefore, the model disclosed in equations 27 and 28 presents a two-period decision 

scheme to minimize irrigation operating costs. The objective function resembles the irrigating and 

draining costs. On the other hand, the constraints relate to requirements associated with supporting 

the minimum water crop conditions and the cultivar system capacities. The first constraint relates 

to the maximum limit of soil water retention conditioned by the irrigation system; the second 

constraint is the minimum level needed to avoid a yield loss in the crop; the third constraint is the 

available water capacities, and the last constraint is non-negativity conditions of the decision 

variables. The decisions relate mainly to the second period considering that the conditions are 

established for the end of the planning horizon (i.e., the end of the second period). 

7.3.7. Cocoa crop water management Two-stage Stochastic Model. 

Indexes 

𝑖 the different types of water sources available to supply the recourse {1,2}. 

𝑡 the unit time where every decision is made {1,2}. 

𝑤 every scenario related {3 𝑠𝑐𝑒𝑛: 1 − 3; 5 𝑠𝑐𝑒𝑛 𝑚𝑜𝑑𝑒𝑙: 1 − 5; 10 𝑠𝑐𝑒𝑛 𝑚𝑜𝑑𝑒𝑙: 1 − 10}. 

Parameters 

𝐶𝑖1 cost of every source in the first period [$ 𝐶𝑈]. 

𝐶𝑖2𝑤 cost of every source in the second period regarding the scenario 𝑤 [$ 𝐶𝑈]. 

𝐷𝐶 draining cost [$ 𝐶𝑈]. 

𝑝𝑤 is the probability of each scenario 𝑤 considered [%]. 

𝐻 the soil water holding capacity [𝑚𝑚]. 

𝐼𝐸 the irrigation efficiency of the drip water irrigation system [%]. 

𝐷𝑟2𝑤 water depletion at the end of the second period considering every scenario 𝑤 [𝑚𝑚]. 
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𝐴𝐶𝐶𝐷𝑟2𝑤 the cumulated water depletion in the root zone at the end of the first period in the second 

period considering every scenario 𝑤 [𝑚𝑚]. 

𝑊𝑃 the minimum required amount of water in the root zone [𝑚𝑚]. 

𝑊𝐴2𝑤 represents the amount of water the DM can store from the first source at the end of the 

second period regarding every scenario 𝑤 [𝑚𝑚]. 

Variables 

𝐼𝑖1 the amount of water required from any source to support productivity in the first period. 

𝐼𝑖2𝑤 the amount of water required from any source to support productivity in the second period 

regarding every scenario 𝑤. 

𝐷1 a variable that represents the cost production of extracting water once the water content in the 

root zone is higher than 𝐻 in the first period. 

𝐷2𝑤 a variable that represents the cost production of extracting water once the water content in the 

root zone is higher than 𝐻 in the second period and regarding every scenario 𝑤. 

Objective function 

min 𝑧 → ∑ 𝐶𝑖1 ∗ 𝐼𝑖1

2

𝑖=1

+ 𝐷𝐶 ∗ 𝐷1 + ∑ ∑ 𝑝𝑤 ∗ (𝐶𝑖2𝑤 ∗ 𝐼𝑖2𝑤

2

𝑖=1

+ 𝐷𝐶 ∗ 𝐷2𝑤)

𝑤

𝑤=1

 [29] 

Subject to 

∑ 𝐼𝑖1
∗ 𝐼𝐸

2

𝑖=1

+ ∑ 𝐼𝑖2𝑤
∗ 𝐼𝐸

2

𝑖=1

− 𝐷1 − 𝐷2𝑤 ≤ 𝐷𝑟2𝑤 + 𝐴𝐶𝐶𝐷𝑟2𝑤 ∀ 𝑤 

∑ 𝐼𝑖1
∗ 𝐼𝐸 + ∑ 𝐼𝑖2𝑤

2

𝑖=1

2

𝑖=1

∗ 𝐼𝐸 ≥ 𝑊𝑃 − 𝐻 + 𝐷𝑟2𝑤 + 𝐴𝐶𝐶𝐷𝑟2𝑤 ∀ 𝑤 

𝐼11 + 𝐼12𝑤 ≤ 𝑊𝐴2𝑤     ∀𝑤 

𝐼𝑖1, 𝐷1, 𝐼𝑖2𝑤 , 𝐷2𝑤 ≥ 0     ∀𝑤, ∀𝑖 

∑ 𝑝𝑤 = 1

𝑤

𝑤=1

 

[30] 
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In this sense, the model exposed in equations 29 and 30 presents a two-stage decision 

scheme for irrigation cost minimization under uncertain conditions. In this model, the objective 

function seeks to reduce the average costs associated with irrigation by considering multiple 

uncertain scenarios. The objective function relates to two parts: the first describes the irrigation 

and draining costs in the first stage, and the second relates the irrigation and draining costs 

weighted by an occurrence probability (P) regarding each precipitation scenario. Hence, this 

model's constraints have the same essence as the previous model but connect a constraint for each 

scenario. Then, if the model integrates three uncertain scenarios, each constraint relates three 

constraints of the same type: one constraint for each scenario considered. Therefore, the model 

must determine the irrigating and draining decisions in both stages, simultaneously considering all 

the scenarios of the second period and thus supporting a robust decision in the face of different 

future scenarios. The decisions relate mainly to the second period considering that the conditions 

are established for the end of the planning horizon (i.e., the end of the second period).  

7.4. Computer-based solution procedure 

Programming the models in the Google Colab environment using Python's Pyomo library allows 

this study to solve the formulated cocoa decision models (see Appendix M for every model result). 

Considering that the formulated models integrate reduced precipitation fans (i.e., 1, 3, 5, and 10 

instead of 1000), solution strategies to solve large-scale problems are irrelevant, regarding that the 

complex model (i.e., any strategy of 10 scenarios) takes around 0.18 seconds to provide a solution. 

Such a situation is supported considering that the mathematical models are linear with continuous 

variables and the model constraints have a matrix full of zeros since each constraint relates a 

maximum of two variables (i.e., corresponding to an identity matrix). The CPLEX solver 

integrated into the Colab environment using the Pyomo library allows for obtaining 



 

STOCHASTIC MODEL FOR COCOA CROP WATER MANAGEMENT 66 

 

computationally efficient and optimal solutions for the developed models. This study builds an 

online repository that hosts all programmed models to support further analysis of decision 

processes, the importance of integrating parameter modeling strategies under uncertainty, and the 

appropriate use of these strategies (see Appendix N). Appendix O relates the data used for the 

optimization models. 

7.5. Optimization model results and models comparison 

This study addresses the optimization of water resources using deterministic and Two-stage 

Stochastic optimization models.  Figure 20 presents all the models built in this research (six 

deterministic and nine stochastic-based models). 

Figure 20: Study optimization models 

Study optimization models 

 

Figure 21 presents the monetary cost of the deterministic decision models (orange bars) 

and stochastic models (blue bars) contrasted against a deterministic optimization model that uses 

the real value of precipitation during the study period, which reflects the optimal and real decision 
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of the decision (green bar) allows this study to establish that the decision models that support a 

reduction in costs are predominantly the deterministic model that uses the expected precipitation 

value for the 2016-2020 period, followed by decision models based on the BETA pdf. However, 

although these strategies provide an optimal decision process in economic terms, they reflect a 

non-veridical reality compared to the real precipitation model (data in Appendix P). This situation 

derives from the deterministic method (2016-2020 average precipitation), and the models based 

on BETA tend to overestimate rainfall, which leads to making wrong decisions considering that, 

in reality, the water supply regarding rainfall periods is less. Under such a premise, the 

deterministic models that use the expected value and the BETA strategies represent 

counterproductive approaches to replicate the parameter behavior, promoting incorrect decisions 

derived from the crop water balance. 

Figure 21: Irrigation cost of every strategy 

Irrigation cost of every strategy 

 
Figure 22 supports the statement above by displaying that the water volume determined for 

annual planning is zero in the expected value deterministic strategies followed by BETA models. 

In this way, it is clear that using average precipitation values does not represent an acceptable 

procedure to support the water management process. Additionally, strategies based on probability 
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function fits, such as the BETA pdf, are equally unsuitable alternatives to support the decision 

process. Of the models built, the best techniques derive from autoregressive or machine learning 

models. Of the TSP models based on ARIMA parameter modeling, the model that allows the 

lowest cost and provides a water management scheme similar to the real one is the ARIMA with 

five scenarios with a cost of 420.8 [𝑐𝑢] and a use of 373 [𝑚𝑚]. On the other hand, the best ANN-

based TSP strategy is not clear, considering that the 5-scenario ANN model has the lowest cost 

(279.9 [𝑐𝑢]) while the 10-scenario ANN model is the best water management strategy 

(280 [𝑚𝑚]). Considering that the 10-scenario ANN model is closer to the real plan in irrigation 

terms, this study determines the TSP model based on 10-scenario ANN as the optimal one within 

the compendium of ANN strategies. 

Figure 22: Used irrigation water 

Used irrigation water 

 
This study considers that the TSP strategy based on the ARIMA 5-scenarios model 

represents the best option to solve water management problems under conditions of uncertainty in 

the cocoa crops case study. Although the ARIMA-based TSP model presents a higher irrigation 
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amount of planned water resource represents the smallest deviation in most periods and the year. 

Similarly, both strategies present optimization schemes that reduce irrigation costs concerning the 

real scheme. Figure 23 presents both models' absolute deviations regarding the real irrigation 

scheme. It is important to state that the higher value in the irrigation cost of the real strategy in 

Figure 21 concerning the TSP-ARIMA 5 scenarios model (from now on) derives from a drainage 

process in the last period due to atypical rainfall. 

Figure 23: TSP ARIMA 5 scenarios and TSP ANN 10 scenarios used irrigation water 

TSP ARIMA 5 scenarios and TSP ANN 10 scenarios used irrigation water 

 

7.5.1. ARIMA 5 scenarios expected value deterministic model and TSP-ARIMA 5 

scenarios comparison. This study develops a last deterministic model built from the TSP-ARIMA 

5 scenarios model to expand the analysis of the performance of models under uncertainty against 

deterministic models. The optimization model takes the precipitation values as the expected value 

of the five scenarios generated from the ARIMA model and the reduction of scenarios. Figure 24 

compares the models based on the irrigation cost in the annual planning and the water resource 

optimization. Figure 24 allows this study to show a superior performance of the TSP-ARIMA 5 

scenarios model even against its deterministic counterpart (i.e., the expected value of the TSP-
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modeling techniques and optimization techniques under uncertainty, such as TSP, are relevant 

alternatives to support cocoa crops water management (i.e., per plant), reducing the associated risk 

and incorrect decisions. 

Figure 24 Cost and used irrigation water of Expected Value deterministic and TSP ARIMA 5 scenarios model 

Cost and used irrigation water of Expected Value deterministic and TSP ARIMA 5 scenarios model 

 

The previous results represent the cost reduction and water irrigation use per cocoa plant 

in one year. Regarding the size of the cocoa plantations in the San Vicente del Chucurí region and 

the distance from plant to plant, this study can determine approximately how much water resources 

the models allow to save annually. Note that in a typical cocoa plantation, the trees are 

approximately 3 m apart (PNUD, 2014), and around 1111 plants fit in one hectare 

(10000 𝑚2/9𝑚2 −per plant (assuming square plantation)) if the land use is appropriate. 

According to the 2014 national agricultural census (DANE, 2016a) in San Vicente, by 2013, the 

largest small farmers had farms of 2 hectares maximum (Figure 25) (Appendix Q). Considering 

that the study focuses mainly on the small farmers and the number of possible cultivable plants in 

one hectare, this study determines that the water saved in a 2 ℎ𝑎 farm per year is 73.326 𝑙𝑖𝑡𝑒𝑟𝑠 

(Eq [31]), which represents a significant result in the process of water management in agriculture. 
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𝑊𝑎𝑡𝑒𝑟 𝑠𝑎𝑣𝑖𝑛𝑔 = 𝑝𝑙𝑎𝑛𝑡𝑠 𝑖𝑛 2 ℎ𝑎 ∗ 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑣𝑒𝑑 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 

𝑊𝑎𝑡𝑒𝑟 𝑠𝑎𝑣𝑖𝑛𝑔 = 2222 ∗ 33 = 73.326 𝑙𝑖𝑡𝑒𝑟𝑠 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦 
[31] 

Figure 25: Cocoa farm size distribution in San Vicente del Chucurí, Santander 

Cocoa farm size distribution in San Vicente del Chucurí, Santander 

 

7.5.2. Quality metrics performance. Additionally, two metrics widely discussed in the 

literature allow determining the use of TSP strategies' significance in solving problems under 

uncertain conditions. The EVPI and VSS metrics establish what a DM will pay for real process 

information and the value of developing optimization models compared to deterministic models. 

Each metric is applied to the first iteration of the TSP-ARIMA model of 5 (see Appendix R), 

regarding the model is the same applied repeatedly (only changing the water balance in the rest of 

the iterations). The EVPI metric in this case study shows that a decision maker would be willing 

to pay 6.42 [𝑐𝑢] or 1.53% of the annual planning cost per plant to improve the decision 

considering that 𝐸𝑉𝑃𝐼 = 0.24 [𝑐𝑢]. The value of EVPI supports stating that concerning the TSP-

ARIMA 5 scenarios model, paying for more accurate information does not significantly improve 

the decision. On the other hand, the VSS metric exposes the value of implementing TSP strategies 

in water resource optimization, considering that the annual cost reduction concerning a 

deterministic approach based on the parameters defined in the same model is 15.81% considering 
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that in the first planning period the 𝑉𝑆𝑆 = 2.56 [𝑐𝑢]. The metric value supports and guarantees a 

better performance of TSP models over deterministic ones in the cocoa case study.  

8. Discussion 

In Colombia, cocoa has gained significant importance as one of the key crops, with the government 

making efforts to boost national production since it supports as a substitute alternative for illicit 

crops (Fedecacao, 2021; Minagricultura, 2016). However, cocoa crops face difficulties in ensuring 

optimal conditions affecting crop yield (Carr & Lockwood, 2011; Chapman et al., 2021a; Cilas & 

Bastide, 2020; Finagro, 2018; Plazas et al., 2017). These challenges primarily stem from weather 

factors, especially precipitation, which restricts water availability and impacts irrigation, 

eventually affecting biomass production and cocoa crop yield (Fedecacao, 2018; P. Guo et al., 

2010). Thus, it is essential to develop and apply strategies that enable effective water resource 

management under climate variability. The MSP and TSP strategies represent flexible 

optimization schemes that generate a decision process composed of multiple stages where 

uncertainty is present in future periods of the planning horizon. Such strategies denote appropriate 

alternatives to support water management problems in cocoa crops, considering the technological 

advance and the adoption of data collection and processing technologies. Regarding such 

situations, this study's main objective was to develop TSP models supporting decision-making 

focused on optimizing water resources in cocoa crops while providing an updated panorama of the 

cocoa crop challenges regarding uncertain conditions and climate change. 

The SLR allows for defining research gaps about optimal schemes in cocoa crop water 

management under climatic uncertainty regarding the following findings: (i) the significant studies 

focused on the farmer or final decision-maker support decisions based on water requirements 
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simulation, with a lack of studies based on agricultural optimization strategies. (ii) there is an 

inequality favoring research supporting the first and second decision levels (i.e., government and 

basin manager) concerning the last decision level (i.e., farmer), which represents a 

counterproductive approach considering that farmers are the most significant proportion of water 

resource demands among the industrial, municipal, and ecological sectors (iii) there is a 

predominance of studies focused on annual crops relating cereals primarily with few studies 

focused on perennial crops. However, the SLR establishes that supporting water management 

processes under multiple types and forms of uncertainty with uncertain optimization models at the 

first and second decision levels represents an acceptable strategy to face water management 

problems under uncertainty in several crops. 

The main alternatives developed established using the MSP and TSP model, Interval 

Programming, Fuzzy Programming, and various hybrid strategies derived from integrating these 

techniques to answer the problem's uncertainty adequately. Each technique has specific 

characteristics allowing more suitable than others for uncertain situations. Interval programming 

is a strategy that allows appropriate optimization schemes in situations of a lack of data associated 

with the uncertain parameter (Xiaoyan Li et al., 2014). Fuzzy programming is appropriate for 

facing uncertainties in the form of ambiguity or vagueness, requiring experts' knowledge (S. Guo 

et al., 2019). On the other hand, strategies based on stochastic techniques (i.e., MSP or TSP) 

represent relevant alternatives when the uncertainty derives from random processes, and there is 

sufficient available data to model the variability of the parameter (Marques et al., 2010). 

Among every uncertain optimization modeling strategy, TSP represents a well-structured 

and flexible technique to support cocoa crop water management representing a lower cost decision 

modeling compared to MSP (Liu et al., 2017). Then, this research builds different deterministic 
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and TSP models supported by different fitted models based on time series to provide a contrast 

about using both strategies. Such contrasts between the results of the models allow for highlighting 

the significance of modeling under uncertainty and the impact on cocoa crop water decision-

making. This research builds five deterministic models using approaches based on one path and 

nine TSP models that integrate precipitation uncertainty using scenarios in model formulation and 

solution. Optimization results allow concluding that, in general, the strategies that integrate 

uncertainty in the decision model promote adequate water management considering precipitation 

variability. Of the multiple modeling strategies applied, the ARIMA model presented the best 

alternatives to support appropriate water management in its different versions (i.e., 1, 3, 5, and 10) 

scenarios. Although ANN-based strategies allow a better approach decision than traditional 

strategies, they also present significant deviations from the real scenario. On the other hand, 

optimization strategies based on BETA pdf settings are just not good. This situation results from 

generating possible precipitation values independently using the pdf instead of strategies that 

reflect the data's historical behavior.  

In this sense, the results of the optimization model under uncertainty TSP-ARIMA 5 

scenarios model (i.e., the best TSP model) compared to the deterministic version using the 

expected value of the five scenarios (equivalent expected model) allow this study to establish that 

the stochastic model performs better in managing water resources under uncertain conditions. Such 

a statement answers the study hypothesis that a stochastic optimization model integrated with a 

good parameter modeling technique allows a water optimization scheme under conditions of 

climatic uncertainty superior to the equivalent expected model. Additionally, the EVPI metric 

demonstrates that, based on the TSP-ARIMA 5 scenarios model, paying for more accurate 

information on precipitation does not substantially improve the current decision, which makes it 
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possible to confirm that the model built adequately responds to the problem. On the other hand, 

the VSS metric shows that the optimization model under uncertainty represents a proper strategy 

to improve water management in cocoa cultivation by reducing annual costs by approximately 

15% compared to the equivalent expected model. 

This study condensed a significant effort into supporting parameter definition associated 

with the optimization models. Promoting relevant parameter estimation strategies means that 

decisions are appropriate and similar to reality when formulating and solving different 

mathematical models. Nevertheless, establishing the proper related parameters in the cocoa crop 

context denotes a difficult task based on the little information available in the literature. Therefore, 

although the optimization models represent straightforward decision schemes, the previous work 

to define and estimate the model factors entails a significant effort as it allows defining parameters 

not available in the literature, such as 𝑆𝑤𝑎𝑡𝑒𝑟or the 𝑘𝑦factor. Then, this study defines a promising 

first approach to establishing the relationship between water stress and crop yield, considering the 

existing literature does not fully define such a relationship (Zuidema et al., 2005). Following the 

Simple study (C. Zhao et al., 2019), a crop 𝑆𝑤𝑎𝑡𝑒𝑟 factor of 0.65  represents a reasonable 

approximation of biomass sensitivity to water stress conditions since it falls into a specific range 

of other known crop species (0.4 − 2.5). Additionally, a crop yield response factor to water stress 

conditions (𝑘𝑦) of 0.25  reflects a proper assessment since the cocoa crop is a perennial crop with 

some resilience to water stress conditions but is sensitive to long-term drought periods reflecting 

a low but existing yield detriment depending on the cocoa genotype (Lahive et al., 2019; Steduto 

et al., 2012; Zuidema et al., 2005). 

Considering the little research on optimization schemes for the allocation and optimal use 

of resources in cocoa crops (Tosto et al., 2023), the results of this research establish a first effort 
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in modeling cocoa crop water management under uncertainty. The optimization models focus on 

supporting the minimum conditions required by the cocoa, allowing the plant not to reach yield 

detriment. Such conditions derive from keeping soil moisture within limits that allow the proper 

growth and plant production while including system constraints. Regarding the almost null 

research associated with cocoa crops, the proposed models are supported primarily on parameters 

defined by the FAO (Allen et al., 2006; Steduto et al., 2012) and related studies (León-Moreno et 

al., 2019; Romero Vergel et al., 2022), deriving modeling decisions from similar studies (Fu, Li, 

Cui, et al., 2018; Jamal et al., 2018; Q. Li & Hu, 2020) Therefore, this study allows formulation 

and solving optimization models that represent the crop water problem supported by accurate and 

reliable data exhibited in several studies and different exponents of the research field. 

This study reveals that the selection and application of the scenario generation techniques 

are equally crucial to the optimization model selection. The modeling technique, coupled with the 

scenario reduction strategy, provides a reasonable estimate of the actual future behavior of the 

uncertain parameter through a proper scenario fan. In this sense, the findings of this study support 

the hypothesis that stochastic optimization models integrated with parameter modeling techniques 

perform better in water resource management; however, it is essential to note that most results 

drive a robust based on actual data into a theoretical approach. Such a situation states that the 

parameter estimation process for the optimization models requires significant effort due to their 

significance in model solutions and the limited information available in the literature about cocoa 

crops. Then, defining parameters properly still represents significant limitations requiring proper 

addressing when developing optimization models to reflect real-world decisions. The optimization 

models might provide wrong results if they relate wrong or improper assumptions (e.g., invariant 

irrigation cost, stable soil conditions, crop age, cocoa type, and healthy conditions) which can 
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severely impact the optimal solution and decision risk reduction in cocoa crop management 

considering that such parameters fluctuate over time, leading to more complex decision scenarios. 

Therefore, establishing adequate parameters defines an essential and critical point for the problem 

solution, which can lead to inappropriate decisions and produce inaccurate decision schemes. 

Since this study only relies on data-driven optimization models and historical data, there 

are still approaches that may provide better results regarding additional types of uncertainty than 

randomness (Fu, Li, Cui, et al., 2018; S. Guo et al., 2019; Y. P. Li & Huang, 2011; Youzhi et al., 

2021; W. J. Zhang et al., 2021). Hybrid strategies can provide suitable alternatives to model 

uncertain conditions in cocoa crop water by integrating randomness processes, ambiguous 

situations in establishing parameters behavior, and not representing constant behavior in 

parameters while providing risk-aware decision-making. Therefore, future studies incorporating 

advanced modeling techniques to improve data collection methods, integrating a more 

comprehensive range of system components variability and the multiple forms of uncertainty 

during the planning period can enhance this study's findings' accuracy, robustness, and 

applicability. In this sense, such studies should integrate simulation strategies (i.e., AquaCrop (Y. 

Wang & Guo, 2021), DSSAT (Linker, 2021), CropWat 8 (Gabr & Fattouh, 2021), Case-2 

(Zuidema et al., 2005) among others) considering the plant's physiological and phenological 

characteristics while considering system uncertainty derived from climatic scenarios and market 

and population irregular behaviors in the market, among others. Additionally, this research 

established a first approach to cocoa crop water management under uncertain conditions based on 

parameter definitions related to cocoa crop yield and water conditions. However, future studies in 

situ will make it possible to validate these estimates and adjust the value considering a parameter 

definition process when analyzing the daily variation. Research with this approach would allow 
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better-defined and robust parameters to be integrated into decision schemes under uncertainty, 

presenting more complete decision processes. 

9. Conclusions 

 

Planning the available natural resources in the agricultural sector represents one of the main axes 

to support agricultural development and meet global food needs by reacting to the multiple 

conditions demanded by climate change. In Colombia, one of the crops with the most significant 

importance in recent years is cocoa, considering the effort made by the government to boost 

national production and the position of the crop internationally. At the national level, Santander is 

the leading cocoa producer, with a total production of 40% of the national production. However, 

this crop presents difficulties with guaranteeing the minimum conditions required to avoid 

affecting yield. This situation derives from the effect of weather factors such as precipitation, 

which restricts water availability and conditions irrigation, which is a factor that directly impacts 

biomass production and, therefore, plant yield. Hence, strategies that allow facing water resources 

management under climate variability are currently relevant to reduce the decision-maker risk, 

manage the resource properly, and influence the economy of those involved. 

This study supports establishing three primary research gaps related to the research field 

based on the systematic literature review. 1. The largest proportion of studies associated with 

government and reservoir managers (first decision levels) regarding they face the highest risk in 

the water allocation process. 2. There is a global hurry to develop studies that support decisions on 

specifically annual crops over perennial ones, considering the risk of the crop and the significance 

of this crop for food security. 3. Most studies primarily focus on strategies based on production 

process simulation to support DM, wasting the benefits of optimization techniques to support 
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optimal resource management. Therefore, this study developed a framework to provide a 

methodological structure supporting future research on optimal agricultural water resources. The 

framework describes six detailed steps relating to the main aspects of answering water 

management problems in multiple forms of uncertainty. However, the SLR clearly defines a lack 

of studies based on optimization strategies that allow proper water resource management and the 

minimum conditions for cocoa crops. 

Therefore, supporting the appropriate use of water resources in cocoa crops through 

optimization schemes under uncertainty represents a pertinent and essential issue to guarantee crop 

yield while preserving currently available resources. However, building appropriate optimization 

models entails a demanding parameter estimation process and complex modeling strategies 

selection to reproduce the behavior of the uncertain parameter. The parameters definition related 

to the cocoa crop presents challenges, considering that despite the extensive research associated 

with the crop, the studies still dismiss the impact of water stress on the crop. Most studies establish 

a relationship between the lack of water resources and crop yield, but such a relationship is still 

unknown. This research results allow for defining this relationship from a simulation process 

considering the productivity of a type of cocoa clone (ICS 95) and the lack of water resources. The 

simulation process allows defining a yield factor 𝑘𝑦 = 0.25 and biomass growth 𝑆𝑤𝑎𝑡𝑒𝑟 = 0.65 

regarding the crop water stress. Such estimations agree with the literature presenting a moderate 

relationship between crop yield and drought conditions. 

Then, based on an appropriate definition of parameters related to cocoa crop conditions, 

different optimization strategies support crop water conditions, properly manage resources, and 

guarantee crop yield. Such strategies must allow the integration of uncertainty in the decision 

process to constitute robust and appropriate strategies that support decisions at all decision levels 
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and reduce the associated risk. Hence, this study developed multiple TSP models to compare the 

uncertain strategies performance concerning deterministic models in cocoa crop water 

management, addressing a case study focused on the San Vicente del Chucuri area in Santander, 

Colombia. Additionally, the proposed models present a decision scheme for using water resources 

supported by an exhaustive and detailed definition of parameters to lay the foundations for future 

optimization models derived from this study. The uncertain models developed in this study derive 

from integrating the precipitation uncertainty into a TSP framework using scenario representations 

built from time series and pdf-based models. On the other hand, deterministic model approaches 

derive from approximations based on the expected value and the complete reduction of the 

scenarios. 

The optimization models present a scheme that covers 14 days horizon decision, 

considering that this period relates to a time window where the crop begins to suffer stress due to 

lack of soil moisture. The TSP optimization model (TSP-ARIMA 5 scenarios) allows an adequate 

representation of reality, considering that the use of water resources per plant presents a deviation 

of 29 [mm] concerning the real scenario, producing a better result than the developed deterministic 

versions. In this sense, the TSP models developed represent adequate alternatives to respond to the 

water management problem, producing superior decision schemes considering the model results. 

The superior performance of the TSP strategies over the deterministic models derives from 

considering multiple possible realizations of the uncertain parameter, allowing a decision with 

more information and robustness regarding several scenarios and reducing the error incurred when 

defining a crisp value. Therefore, this study's results establish that data modeling techniques based 

on time series for scenario generation and using a technique to reduce the fan integrated with the 
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application of TSP models provide appropriate water management schemes under climatic 

uncertainty in the case of cocoa study performing better results than deterministic approaches. 

Consequently, this study's results contribute to the research panorama on managing water 

resources in conditions of climatic uncertainty in cocoa crops. The study lists significant gaps in 

agricultural water management in uncertain conditions. It also provides a well-structured TSP 

model-building methodological approach based on available scientific literature related to cocoa 

modeling, offering a synthetic and precise decision scheme on the major problem-associated 

factors. Regarding the research results, it is pertinent to establish that in the cocoa case study, an 

optimization model based on TSP combined with proper scenario generation and reduction 

techniques enables better water resource management than a traditional strategy providing a good 

base for answering the hypothesis stated in this research. 
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