ANÁLISIS DE COSTOS DE CONSTRUCCIÓN DE SISTEMAS DE ALMACENAMIENTO SEGURO DE PRODUCTOS REFINADOS (Diésel y Naftas).

JUAN ANIBAL DE LEON CARO

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERÍAS FISICOQUÍMICAS
ESCUELA DE INGENIERÍA DE PETRÓLEOS
ESPECIALIZACIÓN EN GERENCIA DE HIDROCARBUROS

BUCARAMANGA

2016

ANÁLISIS DE COSTOS DE CONSTRUCCIÓN DE SISTEMAS DE ALMACENAMIENTO SEGURO DE PRODUCTOS REFINADOS (Diésel y Naftas).

JUAN ANIBAL DE LEON CARO

Monografía para obtener el Título de Especialista en Gerencia de Hidrocarburos

ING. FRANCISCO PRIETO AGUILERA DIRECTOR.

UNIVERSIDAD INDUSTRIAL DE SANTANDER
FACULTAD DE INGENIERÍAS FISICOQUÍMICAS
ESCUELA DE INGENIERÍA DE PETRÓLEOS
ESPECIALIZACIÓN EN GERENCIA DE HIDROCARBUROS
BUCARAMANGA
2016

AGRADECIMIENTOS.

A Dios toda la gloria y agradecimiento por permitirme este espacio lleno de conocimiento y crecimiento profesional, a mi Esposa e Hijas por su apoyo incondicional por ese sacrificio que juntos hicimos para sacar este proyecto adelante, a mi familia que siempre estuvo presta para ayudarme cuando lo necesitamos, a mi empresa REFICAR por creer en mí, por brindarme la oportunidad de seguir creciendo personal y profesionalmente, por su apoyo absoluto en este proyecto porque sin su ayuda esto no hubiera sido posible y a todas las personas que de una u otra manera contribuyeron a que esto hoy fuera una realidad.

Contenido

NTRODUCCIÓN	13
LCANCE	. 14
BJETIVO	. 14
. Sistemas de Almacenamiento de Hidrocarburos	15
.1 Tipos de Almacenamientos (Tanques)	15
.2 Tanques	. 16
.2.1 Techo Fijo	. 16
.2.2 Techo Flotante	. 18
. El Petróleo y sus Derivados.	. 20
.1 Características de Los Productos Refinados (Diésel y Naftas)	. 21
.1.1 Diésel	. 21
.1.1.1 Características Típicas de Calidad del Diésel	. 22
.1.1.2 Grado Combustible	. 22
.1.1.3 Número Cetano.	. 23
.1.1.4 Índice Cetano	. 24
.1.1.5 Grado oAPI	. 24
.1.1.6 Destilación	. 24
.1.1.7 Viscosidad	. 24
.1.1.8 Calor de Combustión	. 25
.1.1.9 Punto de Congelación	. 25
.1.1.10 Punto de Fluidez	. 25
.1.1.11 Punto de Llama (Flash Point)	. 26
.1.1.12 Nivel de Azufre	. 26
.1.1.13 Carbón Residual	. 26
.1.1.14 Contenido Ash	. 27
.1.1.15 Número de Neutralización.	. 27
.1.1.16 Estabilidad	. 27
.1.1.17 Agua y Sedimento	. 27
.1.2 Naftas / Gasolinas	. 28
.1.2.1 Características típicas de Calidad de la Gasolina	28

2.1.2.2	Desempeño Antiknok	28
2.1.2.3	Volatilidad	29
2.1.2.4	Contenido de Fosfatos.	30
2.1.2.5	Contenido de Sulfuros.	30
2.1.2.6	Estabilidad y Gum Existente	30
2.1.2.7	Gravedad API.	31
2.1.2.8	Corrosión y Rust	31
2.1.2.9	Composición de Hidrocarburos.	31
2.1.2.10	Aditivos.	32
	ión Entre el Producto a Almacenar (Gasolinas y Diésel) y el Tipo de miento	33
3.1 Cor	nsideraciones de Diseño de Acuerdo con el API 650	34
3.1.1 C	argas	34
3.1.2 C	apacidad del Tanque	35
3.1.3 C	onsideraciones Especiales	35
4. Costo	s De Construcción Para Tanques de Techo Cónico Y Techo Flotante	37
5. Relaci	ión Producto / Sistema de Almacenamiento / Costo de Construcción	43
6. CONC	CLUSIONES	48
BIBLIOGR	ΔΕΙΔ	19

Lista de Tablas.

	Página.
Tabla 2-1 Grado del Combustible Diésel	23
Tabla 2-2 Presión de Vapor y Número de Octanos de la Gasolina Común	30
Tabla 2-3 Aditivos para la Gasolina de Automóviles	32
Tabla 3-1 Relación Producto Vs Tipo de Tanque	33
Tabla 4-1 Volumen de Tanque Vs Costo de Construcción	39
Tabla 4-2 Índice de Construcción Pesada	37
Tabla 4-3 Tasa de Cambio	38
Tabla 4-4 Costo de Construcción Vs. Volumen de Tanque de Techo Flotante	40
Tabla 4-5 Costo de Construcción Vs. Volumen de Tanque de Techo Fijo	41
Tabla 5-1 Matriz de Correlación	45
Tabla 5-2 Clasificación de Estimados	46

Lista de Gráficas.

	Página.
Gráfica 5-1 Costo de Construcción Vs. Volumen de Tanque de Techo Flotante	43
Gráfica 5-2 Costo de Construcción Vs. Volumen de Tanque de Techo Fijo	44

Lista de Fotos.

	Página.
Foto No. 1 Tanque de –Techo Fijo	17
Foto No. 1 Tanque de –Techo Flotante	18

TÍTULO: ANÁLISIS DE COSTOS DE CONSTRUCCIÓN DE SISTEMAS DE ALMACENAMIENTO SEGURO DE PRODUCTOS REFINADOS (Diésel y Naftas).1

AUTOR: JUAN ANIBAL DE LEON CARO²

Palabras Claves: Costos de Tanques de Almacenamiento de Hidrocarburos, Tanques, Costo de Construcción de Tanques, Tanques de Techo Fijo, Tanques de Techo Flotante.

RESUMEN.

En la industria del Oil & Gas, y en la industria en general, actualmente no existe una guía de consulta a nivel gerencial que permita agilizar o facilitar la toma de decisiones y que relacione el tipo o clase de almacenamiento de productos refinados y sus costos de construcción asociados. Los gerentes de las empresas no tienen necesariamente los conocimientos técnicos referentes al almacenamiento de productos refinados, lo cual implica la solicitud de mayor información para la toma de decisiones o la evaluación de costos de alternativas para almacenamiento seguro. Con este trabajo se elaboró una herramienta que permite establecer por medio de estimaciones paramétricas el costo de un sistema de almacenamiento de hidrocarburos relacionando el tipo de tanque y el volumen a almacenar y ser utilizada como herramienta que permita la toma de decisiones para la selección del sistema almacenamiento, para diferentes tipos de productos refinados (Diesel y Naftas o Gasolinas). Este documento es de utilidad para los gerentes de empresas de la industria petrolera e ingenieros encargados de la formulación de proyectos, ya que permitiría de una manera rápida estimar el costo de las diferentes alternativas de almacenamiento de productos, evaluar económicamente los mismos y tomar decisiones en menor tiempo.

¹ Trabajo de grado.

² Facultad de Ingenierías Físico-Químicas. Escuela de ingeniería de Petróleos. Director: Francisco Prieto Aguilera, Ingeniero Civil.

TITLE: COST ANALYSIS OF CONSTRUCTION OF STORAGE SYSTEMS SAFE REFINED PRODUCTS (diesel and gasolines).³

AUTHOR: JUAN ANIBAL DE LEON CARO4

Keywords: Cost of oil storage tanks, tanks, tank construction cost, fixed roof tanks, floating roof tanks.

ABSTRACT

On the Oil and Gas Industries and in general Industries, At present there isn't a reference guide to the management level that allows expedite or facilitate decision-making, and linking the type or class of storage of refined products and associated construction costs. Managers of companies do not necessarily have regarding storage of refined products expertise, which implies the request for more information for decision-making or cost assessment of alternatives for safe storage. With this work a tool that allows you to set through parameter estimates the cost of a hydrocarbon storage system linking the tank type and volume to be stored and used as a tool to enable decision-making for the selection system was developed storage for different types of refined products (diesel and gasolines or naftas). This document is very useful for managers of companies in the oil industry, engineers responsible for project development, as it would allow for a quick way to estimate the cost of different storage alternatives products, economically evaluate them and make decisions in less time. Managers of companies do not necessarily have regarding storage of refined products expertise, which implies the request for more information for decision-making or cost assessment of alternatives for safe storage.

³ Monography

⁴ Physico-chemical Engenier Faculty. Petroleum Engenier School. Director: Eng. Francisco Prieto Aguilera.

INTRODUCCIÓN

En la industria del petróleo, los sistemas de almacenamiento de hidrocarburos crudos o refinados, son una necesidad en todos los procesos de la cadena de producción y refinación, ya que es en estos equipos donde se almacenan estos productos para su tratamiento, acopio, y posterior distribución.

En ese orden de ideas la elección y construcción de estos sistemas de almacenamiento se hace relevante ya que por lo general están asociados con la ejecución de proyectos, los cuales deben surtir unas etapas de maduración previas a su posterior ejecución. Es en estas etapas previas en donde se hacen todos los estudios de factibilidades técnicas y económicas, estimación de costos, flujos de caja, y demás elementos de orden financiero, con su respectivo análisis, que dan como resultado la viabilidad o no para el desarrollo de estos proyectos.

Con la presente monografía se pretende dotar al personal encargado de las estimaciones de costos de una herramienta que permita, mediante una estimación paramétrica, y de manera ágil los costos asociados con los sistemas de almacenamiento de productos refinados del petróleo.

ALCANCE

El presente trabajo de monografía se realizará para permitir de forma ágil, la toma de decisiones gerenciales, mediante la elaboración de una herramienta que permita determinar, desde la fase temprana de los proyectos, los costos estimados a los sistemas de almacenamiento de productos refinados.

OBJETIVO

Elaborar una herramienta que permita establecer por medio de estimaciones paramétricas, el costo de un sistema de almacenamiento de hidrocarburos relacionando el tipo de tanque y el volumen a almacenar y ser utilizada como herramienta que permita la toma de decisiones para la selección del sistema de almacenamiento, más eficiente, para los diferentes tipos de productos refinados (Diesel y Naftas).

1. Sistemas de Almacenamiento de Hidrocarburos.

El almacenamiento de Hidrocarburos constituye un elemento de mucha importancia en la industria del petróleo, en toda la cadena de producción su utilización es fundamental por las siguientes razones:

- Es utilizado como almacenamiento temporal entre las etapas de explotación y transporte.
- Como almacenamiento de los diferentes productos (Gasolina, Nafta,
 Diésel, Keroseno, Jet, etc.) luego de refinar el crudo.

Se define como tanque de almacenamiento a cualquier recipiente con una capacidad para contener líquidos que exceda los 227 litros (60 galones US), utilizado en instalaciones industriales fijas y que no es utilizado para procesamiento⁵.

1.1 Tipos de Almacenamientos (Tanques) 6.

Para efectos de diseño de un sistema de almacenamiento, uno de los primeros pasos es la selección de la cantidad y clase de tanque. El primer aspecto está relacionado con la modalidad de la operación y los volúmenes del producto a

⁵ **Gómez Hernandez Adriana / Castillo Julie Ximena**. Definición de Estándares Operativos para Tanques Atmosféricos y Vasijas de Almacenamiento de Líquidos a Presión. Trabajo de Grado. UIS 2007

⁶ **Humberto Fernandez Faccini**. Ejecución de Proyectos de Ingeniería. Empresa Colombia de Petróleos. Imprenta Nacional. 1983

almacenar mientras que el segundo depende básicamente de las características del producto.

En una planta de proceso, que normalmente forma parte de una refinería, se requieren diferentes instalaciones para el almacenamiento de hidrocarburos tales como: petróleo crudo, destilados intermedios y destilados terminados como gasolina, diésel, combustóleo, LPG, etc. Algunos hidrocarburos deben ser almacenados a altas temperaturas para mantenerlos fluidos y otros a bajas temperaturas o altas presiones. Esto se traduce en que un solo tipo de tanque no es apropiado para almacenar todos los productos.

1.2 Tanques.

Existen dos tipos básicos de tanques de almacenamiento a presión atmosférica que son los de mayor utilización en la industria:

1.2.1 Techo Fijo.

Estos tanques son casi siempre de techo cónico, los cuales poseen una estructura interna o autosoportado cuando se trata de tanques pequeños (hasta 50 pies de diámetro). Estos tanque son los mas usados en especial en la industria del petroleo; a su vez son los mas baratos y de diseño más simple.

Se destaca sin embargo, una desventaja de este tipo de tanques es la perdida de producto por evaporación que sale por los venteos del tanque ocasionada por la respiración del mismo. Cuando el tanque se llena, el vapor sobre el líquido es desplazado a la atmósfera o condensado en un sistema de recolección de vapores.

Así mismo, cuando se esta vaciando el tanque, entra aire por los venteos y se origina una evaporación posterior que puede llegar a ser explosiva, dependiendo del producto almacenado.

Otros tanques tambien frecuentemente usados son el tipo domo o tipo sombrilla.

Foto No. 1 Tanque de techo Fijo

https://www.google.com.co/search?q=tanques+de+almacenamiento+de+combustibles+de+techo+fijo&biw=13 66&bih=599&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjZ7MmZ18LKAhVFWSYKHbLvCd0QsAQII w#imgrc=1asKmYVs4EK7HM%3A

1.2.2 Techo Flotante

Estos tanques se utilizan cuando se desea reducir a un mínimo las perdidas por evaporacion en servicios tales como crudo y otros productos de bajo punto de inflamación (Flash point). En estos tanques el techo flota sobre el liquido. Son algo más complicados de construir y mantener y pueden resultar mas costosos que los de techo fijo. Un sistema en combinado utilizado en los ultimos consiste en utilizar tanques de techo fijo con membranas flotantes internas, con lo que se aprovechan las bondades de los dos metodos. Solo se recomienda esta clase de construcción de esta clase de tanques, cuando el incentivo económico por reducción de perdidas es considerable frente a la alternativa de instalacion de un techo flotante.

Foto No. 2 Tanque de Techo Flotante

https://www.google.com.co/search?q=tanques+de+almacenamiento+de+combustibles+de+techo+fijo&biw =1366&bih=599&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjZ7MmZ18LKAhVFWSYKHbLvCd0 QsAQIIw#imgrc=61NcNID-Ezr1oM%3A

Los techos flotantes son básicamente de tres tipos:

- Tipo bandeja (Pan Type). Fue el primer tipo de construccion
- Tipo Pontón (Pontoon Type).
- Tipo de Cubierta Doble (Double Deck Type).

2. El Petróleo y sus Derivados.

Los derivados del petróleo son productos procesados en una refinería, usando como materia prima el petróleo. Según la composición del crudo y la demanda, las refinerías pueden producir distintos productos derivados del petróleo.

La mayor parte del crudo es usado como materia prima para obtener energía, por ejemplo la gasolina y el diésel. También se producen sustancias químicas, que se puede utilizar en procesos químicos para producir plásticos y/o otros materiales útiles⁷.

Aunque los derivados del petróleo forman una gama muy variada, el 90% de ellos se destinan a satisfacer las necesidades energéticas del mundo.

Entre los principales productos derivados del petróleo se tienen:

- Gases del petróleo (butano, propano),
- Gasolinas para automóviles,
- Combustibles para aviones (alto octanaje),

⁷Colaboradores Wikipedia. Derivados Del Petróleo. [En Línea] [Fecha de consulta 21 de marzo de 2015] http://es.wikipedia.org/wiki/Derivado_del_petr%C3%B3leo.

- Gasóleos (para aviones (JP), para automóviles (ACPM), para calefacción (querosene),
- Fuelóleos (combustible para buques, para la industria),
- Aceites (lubricantes, grasas, ceras),
- Asfaltos (para carreteras, pistas deportivas),
- Aditivos (para mejorar combustibles líquidos y lubricantes.⁸

Para los efectos de esta monografía se tomarán como referencia el almacenamiento de los productos Diésel y Naftas o Gasolinas

2.1 Características de Los Productos Refinados (Diésel y Naftas)9.

2.1.1 Diésel

Los combustibles utilizados para motores diésel industriales, marinos, camiones, automóviles, ferrocarriles, están clasificados en la categoría general de combustible diésel.

El combustible diésel es una mezcla que contiene hidrocarburos de destilación directa, aceites cíclicos, gasóleo y destilados craqueados pesados.

⁸Ministerio de Minas, Preguntas Frecuentes, Derivados del Petróleo [En Línea],

 [Citado en 21 de marzo de 2015].

⁹ Kim B. Peyton. Ondeo / Nalco Fuel Field Manual Revised Edition McGraw-Hill New York. 2002. Traducción por el autor.

El Kerosene o el Jet pueden estar mezclados para mejorar la viscosidad a baja temperatura y las características de manejo en el combustible.

En Colombia y otras partes del mundo ambos, el diésel de bajo azufre y el de alto contenido de azufre son refinados. Esto debido a que el nivel de azufre en el combustible ha sido identificado como el componente primario de las partículas emitidas y de la lluvia ácida, por lo tanto la remoción de este ha sido implementada.

El Diésel se puede clasificar de acuerdo con su contenido de azufre en:

- Diésel de alto contenido de azufre, con un contenido de 5000 ppm de azufre
- Diésel de bajo contenido de azufre, con un contenido de 500 ppm y
- Diésel de Ultra bajo contenido de azufre, con valores de 15 ppm o menos de contenido de azufre.

2.1.1.1 Características Típicas de Calidad del Diésel.

2.1.1.2 Grado Combustible.

El grado de combustible Diésel se basa principalmente en la viscosidad y la aplicación que se tenga para este.

El Grado de combustible Diésel y sus aplicaciones previstas se resumen en la **Tabla 2-1.**

ASTM D-975 GRADO DE DIESEL Y SUS APLICACIONES						
GRADO	APLICACIÓN					
#1-D Low Sulfur	Very low pour point fuel for use in high-speed engines requiring low-sulfur fuel; also, for low-sulfure kerosene applications					
#2-D Low Sulfur	High-speed engines requiring low-sulfur fuel					
#1-D	Very low pour point fuel for use in high-speed engines utilzing higher-sulfur-content fuel; also, for higher-sulfure kerosene applications					
#2-D	High-speed engines utilizing higher-sulfur content fuel					
#4-D	High-viscosity fuel for use in mediun and low- speed engines utilized in sustained load, constat- speed applications					
TABLA 2-1 Grado del Combustible Diesel						

El Grado # 1-D y #2-D son los comúnmente usados en los camiones, trenes y algunos motores estacionarios, el Grado # 4-D son usados en motores marinos y aplicaciones industriales.

2.1.1.3 Número Cetano.

El número Cetano es una medida de la combustibilidad, utilizando una relación de compresión variable del Cetano en un motor. Un combustible con alto número Cetano generalmente permite un fácil arranque en climas fríos, permite

una combustión más completa y sobre todo incrementa la eficiencia primaria del motor.

2.1.1.4 Índice Cetano.

El índice Cetano es número calculado a partir de la densidad oAPI y punto de ebullición del combustible.

2.1.1.5 Grado oAPI.

El combustible Diésel usualmente tiene un Grado API entre 23 y 49.

2.1.1.6 Destilación.

El perfil de destilación puede ser usado para predecir lo siguiente:

Capacidad de Arranque, Tiempo de Calentamiento, Humo y Olor y Carbón Residual.

2.1.1.7 Viscosidad.

La forma de la atomización del combustible está relacionada con la viscosidad.

Altas viscosidades causan mala atomización y patrón de aspersión de chorro corriente sólida.

Esto da como resultado una pobre combustión y baja potencia. Una baja viscosidad da como resultado una suave, no penetrante atomización del combustible, fugas de combustible más allá del émbolo de inyección, y el posible desgaste de los componentes del sistema de combustible.

2.1.1.8 Calor de Combustión.

El calor de combustión puede ser determinado del grado API. Un combustible de bajo API tiene altos BTU comparado con un combustible de bajo API.

2.1.1.9 Punto de Congelación.

La medida del punto de congelación es usada para predecir la temperatura en la cual el aceite contenido en el combustible empieza a causar problemas operacionales como el taponamiento de filtros y el bloqueo de líneas del sistema. Por ejemplo en la gasolina utilizada por los aviones

2.1.1.10 Punto de Fluidez.

El punto de fluidez es usado para predecir la temperatura en la cual el combustible se convierte en un gel y no puede fluir.

2.1.1.11 Punto de Llama (Flash Point).

Esta es una propiedad importante para el manejo, transporte y almacenamiento del combustible. Este puede también ser usado para ayudar a predecir contaminación con otros componentes volátiles como la gasolina.

2.1.1.12 Nivel de Azufre.

Hay mucha preocupación por las emisiones que resultan cuando se quema el azufre por el tema de la emisión de H₂S, estos productos gaseosos reaccionan para formar contaminantes ambientales tales como sulfatos y ácido sulfúrico.

El Azufre activo y ciertos compuestos de azufre pueden corroer sistemas de inyección y contribuir a la formación de depósitos en la cámara de combustión. A baja temperatura de funcionamiento, la humedad puede condensarse dentro del motor y los compuestos de azufre se pueden combinarse con agua para formar compuestos ácidos corrosivos.

2.1.1.13 Carbón Residual.

Este valor ayuda a predecir la tendencia del combustible a la formación de depósitos en los motores. Estos depósitos pueden dañar componentes de los sistemas que hacen parte de los motores.

2.1.1.14 Contenido Ash.

Estos son los componentes no combustibles del Diésel, típicamente son los metales y metaloides que se encuentran mezclados con el hidrocarburo. Dependiendo del tamaño, estas partículas contribuyen al desgaste de los sistemas y filtros. Sodio, potasio, plomo y vanadio pueden causar corrosión en diferentes aleaciones de las diferentes partes de los motores.

2.1.1.15 Número de Neutralización.

Este valor es la medida de la acidez o basicidad del combustible, la presencia de componentes ácidos puede indicar problemas de estabilidad y degradación del combustible.

2.1.1.16 Estabilidad.

La estabilidad del combustible es un indicador de la tendencia a la sedimentación y la formación de goma que pueden causar problemas como taponamientos de sistemas y formación de depósitos en los motores.

2.1.1.17 Agua y Sedimento.

La formación de agua y sedimentos, usualmente se da por un pobre manejo y almacenamiento del combustible; agua y sedimento pueden entrar con el aire a través de los sistemas de transporte y los sistemas de mezclado.

Corrosión, bloqueo de filtros, desgaste de sistemas de inyección, y formación de depósitos pueden ser el resultado de la presencia de agua y sedimentos.

2.1.2 Naftas / Gasolinas.

La gasolina es esencialmente una mezcla de hidrocarburos derivados del petróleo y es usado en los motores de combustión interna. La gasolina contiene cientos de hidrocarburos individuales en rango que va desde el n-butano al hidrocarburo C11 como el metilnaftaleno.

2.1.2.1 Características típicas de Calidad de la Gasolina.

El rango del punto de ebullición de la gasolina esta entre 85F y 440F (29,4 C a 226,7 C). Las propiedades de la gasolina comercial están influenciadas por las prácticas de refinación y la naturaleza del crudo. La gasolina normalmente tiene un bajo peso molecular, contiene parafinas, naftenos y aromáticos. El contenido de olefinas de la gasolina, comúnmente se mueve en rangos que van de un 5% a un 20% pero puede variar dependiendo de la naturaleza y la cantidad de material almacenado utilizado.

2.1.2.2 Desempeño Antiknok.

Esto es un fenómeno de combustión físico y químico de la gasolina en la condiciones de diseño y operación de motores.

Esto es usado para evaluar la gasolina como Regular o Premium, los componentes aromáticos e isoparfínicos ayudan a limitar el knock.

El knock es medido por dos métodos ASTM, el ASTM D 2699 y ASTM D 2700.

Los cuales identifican el Número de Reserva de Octano (RON) y Número de Motor de Octanos (MON), por sus siglas en ingles.

El Índice Antikonck, resulta del promedio aritmético de estos dos valores.

2.1.2.3 Volatilidad.

La volatilidad de la gasolina es medida por el método de la Presión de Vapor Reid (RVP) o por el método de la Presión de Vapor Seco. Esto es utilizado para predecir la estabilidad de la gasolina fría, si la estabilidad de la gasolina es muy baja los motores tienen dificultad para encender, también si la temperatura de destilación es 10% alta, el inicio y el calentamiento pueden verse afectados.

La presión de vapor de Reid y el Número de Octano de los componentes de la mezcla de gasolina se pueden ver en la **Tabla 2-2.**

TABLA 2-2 PRESION DE VAPOR Y NUMERO DE OCTANO **DE LA GASOLINA COMUN** COMPONENTE RVP, psi MON RON n-Butano 59 89 93 Isopentano 20 87 92 n-Pentano 18 77 80 Nafta Virgen 74 8 78 Nafta Craqueada Liviana 4 79 93 Nafta Craqueada Pesada 3 81 93 Alkilato Liviano 3 93 95 Alkilato Pesado 1 90 90 Reformado 93 101

2.1.2.4 Contenido de Fosfatos.

La gasolina no debe contener fosfatos porque este puede degradar el catalizador del convertidor catalítico.

2.1.2.5 Contenido de Sulfuros.

La corrosión de los metales se ve impactada por el contenido de azufre, así como también la contaminación del aire por la combustión de combustible con sulfuro. Una tasa de sulfuro >0,15% wt% son considerados altos.

2.1.2.6 Estabilidad y Gum Existente.

Este valor predice la tendencia de la gasolina almacenada a formar residuos y productos de oxidación indeseables. Gums y residuos se depositan en las

partes de los motores como manifols, válvulas y puertos. Esto produce un pobre desempeño de los motores.

2.1.2.7 Gravedad API.

El ^oAPI está usualmente entre 480 API y 690 API.

2.1.2.8 Corrosión y Rust.

La corrosión interna en tanques de almacenamiento, líneas de transferencia y tuberías bajo subterráneas pueden ocurrir si el combustible ataca corroe el metal. También puede resultar, la formación de depósitos en los motores.

2.1.2.9 Composición de Hidrocarburos.

Esta es la distribución del porcentaje de contenido de parafinas, olefinas, naftenos y aromáticos en la gasolina. El contenido olefínico el monitoreado muy de cerca. Una gasolina con alto contenido olefínico es inestable y puede llevar a problemas en el combustible como formación de depósitos y degradación del color.

2.1.2.10 Aditivos.

Revisando las Tablas 2-3, están listados los aditivos comerciales que típicamente se le adicionan a la gasolina.

TABLA 2-3 ADITIVOS PARA LA GASOLINA DE AUTOMOVILES						
ADITIVO	FUNCION					
Antioxidante	Ayuda a prevenir la degradacion por oxidacion y la forma de sedimento en el combustible					
Inhibidor de Corrosion	Previenen ataque de sulfuros, hidrogeno, sulfitos, y mercaptanos. Asi como tambien iniben la corrosion por agua y oxigeno a los componenetes metalicos.					
Desemulsificador	ayuda a prevenir la emulsificacion con agua debido al detergente adicionado al combustible.					
Controlador de depositos / Depositos.	Ayuda a prevenir la formacion de depositos en las partes de los sistemas y algunos ayudan a la remosion de los mismos.					
Dyes	Identificadores de gasolinas y tipos de la misma.					
Control de knock	Ayuda a controla retardo de la ignicion.					

•

3. Relación Entre el Producto a Almacenar (Gasolinas y Diésel) y el Tipo de Almacenamiento.

De acuerdo con diferentes diseñadores consultados y con lo indicado por el autor Fernandez Faccini, en su libro "Ejecución de Proyectos de Ingeniería", los almacenamientos típicos para esta clase de productos son los tanques de techo fijo en sus diferentes formas como puede ser los de techo cónico o tipo domo o los de techo flotante para evitar o reducir las pérdidas por evaporación de los productos.

De estos los más usados para Gasolinas son los Tanques de Techo Flotante o de Techo Fijo con Membrana Flotante, para almacenamiento de Diésel se utilizan los de Techo Fijo debido a su baja volatilidad.

	TIPO DE TANQUE					
PRODUCTO	TECHO FIJO TECHO C		TECHO FIJO CON MEMBRANA			
GASOLINA		X	X			
DIESEL	X					

Tabla 3 - 1 Relacion Producto Tipo de Tanque

Fuente: Autor de la Monografía

3.1 Consideraciones de Diseño de Acuerdo con el API 650.

De acuerdo con el Instituto Americano del Petróleo (API por sus siglas en inglés) ha desarrollado una serie de normas o estándares utilizados entre otros como normas para el diseño de tanques metálicos atmosféricos, API 650, y el API 655 para las reparaciones y mantenimiento delos mismos, de acuerdo con el API 650, de deben tener en cuenta los siguientes parámetros a la hora de diseñar estos recipientes:

3.1.1 Cargas.

Las diferentes cargas que se deben considerar son:

- Carga muerta.
- Presión externa.
- Presión Interna.
- Prueba Hidrostática.
- Carga del Techo Flotante.
- Carga viva en el techo.
- Sismo.
- Nieve.
- Líquido almacenado.
- Prueba de Presión
- Viento.

3.1.2 Capacidad del Tanque.

El dueño debe especificar la capacidad máxima del tanque y el requerimiento de volumen extra por seguridad.

La capacidad máxima es el volumen de producto en el tanque cuando este está lleno, el rango o capacidad de trabajo está definida como el volumen disponible entre la capacidad máxima del tanque y la capacidad mínima o volumen remante.

3.1.3 Consideraciones Especiales.

Dentro de las consideraciones especiales que se deben tener a la hora del diseño podemos mencionar las siguientes:

 Fundaciones. Esto dependerá del sitio y del tipo de suelo que se tenga, estas consideraciones están indicadas en el Apéndice
 B Recomendaciones para el Diseño y Construcción de Fundaciones Superficiales para Tanques de Almacenamiento, de la Norma API 650.

- Corrosión. Este es un punto muy importante dadas las características de medio ambiente y de los productos a almacenar, todos los elementos que componen un sistema de almacenamiento deben estar protegidos de alguna manera para evitar los efectos de la corrosión.
- Servicio. Siempre el dueño deberá especificar las condiciones en las que debe operar el tanque consideraciones como presencia de hidrogeno, sulfuros, u otros elementos o componentes debes ser especificados, para tomar las consideraciones del caso bien sea desde el punto de vista de seguridad o de materiales a emplear.

4. Costos De Construcción Para Tanques de Techo Cónico Y Techo Flotante.

De acuerdo con la recopilación de información realizada, a continuación en la **Tabla 4-1 Volúmenes de los Tanques Vs. Costo de Construcción**, relacionamos el uso o servicio para el cual fueron construidos, su costo de construcción, Capacidad, y su año de fabricación.

Teniendo en cuenta que las fechas o años en los cuales estos fueron construidos son diferentes y algunos el valor que se dispone de construcción está dólares, se procede de acuerdo con las tablas 4-2 Índice de Construcción Pesada, elaborado por el DANE y Tabla 4-3 Tasa de Cambio, del Banco de la Republica a realizar la respectiva indexación de los mismos.

DANE INFORMACIÓN ESTADÍSTICA										
-										
Colombia, Indice de Costos de la Construcción Pesada (ICCP) Variaciones porcentuales 1990 - 2015										
Mes	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Enero	2.27	0.89	2.75	0.82	0,68	1.16	1.70	0,71	0.61	0,85
Febrero	0,87	0,32	1,79	-0,16	0,87	2,08	1,26	0,62	0,95	0,93
Marzo	0,73	1,02	0,77	-0,21	0,43	0,94	0,49	0,01	0,45	0,54
Abril	0,60	0,57	0,61	-0,17	0,20	0,48	0,18	-0,07	0,02	0,33
Mayo	0,75	0,50	0,58	-0,34	0,57	0,67	0,02	-0,09	0,04	0,10
Junio	1,13	-0,42	1,65	-0,42	0,21	0,36	-0,11	-0,05	-0,03	0,18
Julio	2,06	-0,26	0,56	-0,16	-0,04	0,47	0,09	0,01	0,02	0,02
Agosto	0,77	0,00	0,58	-0,35	-0,81	0,53	-0,05	0,00	-0,05	0,22
Septiembre	0,35	0,21	0,31	-0,05	-0,51	0,17	-0,13	0,54	-0,06	0,53
Octubre	0,08	0,34	-0,41	-0,37	-0,10	0,37	-0,13	0,22	-0,12	0,12
Noviembre	-0,22	0,15	-0,43	-0,62	-0,17	0,38	-0,04	0,20	0,07	0,15
Diciembre	-0,31	0,55	-0,29	-0,35	0,24	0,13	0,02	0,06	0,11	0,07
Año Corrido	9,44	3,94	8,74	-2,36	1,57	8,00	3,32	2,18	2,01	4,10
Fuente : DANE-ICCP										
15/01/2016										

Tipo de Cambio								
	Tasa de	cambio y de	valuación					
Período	TRM	Devaluació n nominal	Devaluació n real 2/					
2010	1.913,98	-6,37	-3,93					
2011	1.942,70	1,50	-1,08					
2012	1.768,23	-8,98	-2,74					
2013	1.926,83	8,97	6,17					
2014	2.392,46	24,17	7,67					
2015	3.149,47	31,64	13,94					

http://www.banrep.gov.co/es/economia/tasas_col

	Tabla 4-1. VOLUMEN DE LOS TANQUES VS	S. COSTO DE	CONSTRUCCI	ON	-
No.	Tipo	Volumen	Costo (Dolares)	Costo (Pesos)	Año Fabricación
1	Tanque API 650 de 10000 barriels de capacidad techo cónico	10.000		525.000.000	2007
2	Tanque API 650 de 5000 barriels de capacidad techo cónico	5.000		294.000.000	2007
3	Tanque API 650 de 3000 barriels de capacidad techo cónico	3.000		180.000.000	2007
4	Tanque API 650 de 10000 barriels de capacidad techo cónico	10.000		448.581.581	2007
5	Tanque API 650 de 5000 barriels de capacidad techo cónico	5.000		332.080.196	2007
6	Tanque API 650 de 3000 barriels de capacidad techo cónico	3.000		242.900.625	2007
7	Tanque API 650 de 10000 barriels de capacidad techo cónico	10.000		600.000.000	2007
8	Tanque API 650 de 5000 barriels de capacidad techo cónico	5.000		320.000.000	2007
9	Tanque API 650 de 3000 barriels de capacidad techo cónico	3.000		192.000.000	
10	Tanque de Free Water Knockout	67.000		836.119.162	2008
11	Tanque de Succión	2.000		396.983.126	2008
12	Tanque de Almacenamiento de Crudo	110.000		1.542.380.249	2008
13	Tanque de Almacenamiento de Crudo	115.000		1.542.380.249	2008
14	Tanque Skim	100.000		1.697.064.328	2008
15	Tanque Almacenamiento de Agua Filtrada	100.000		1.172.434.129	2008
16	Tanque de Agua Contra Incendio	27.000		446.858.333	2008
17	Tanque API 650 de 5000 barriels de capacidad techo cónico	5.000		420.906.359	2009
18	Suministro e instalacion Tanque vertical 1200 bbls	1.200		235.360.000	2010
19	Suministro Tanque vertical 500 bbls	500		63.595.000	2010
20	Tanque Skim	1.050		161.748.776	2011
21	Tanque Gun Barrel	1.050		201.727.888	2011
22	Tnaque API 650 - Lifting tank	5.000		751.930.502	2011
23	Tnaque API 650	5.000		769.536.733	2011
24	Tanques almacenamieto - TOPEN	780		159.127.997	2012
25	Tanques almacenamieto - WTF	780		159.127.997	2012
26	Tanques almacenamiento	1.050		180.822.263	2012
27	Tanque Gun Barrel	1.050		211.814.282	2012
28	Tanque Skim	1.050		169.836.215	2012
29	Tanque API 650 de techo flotante	333.000		20.599.643.959	2012
30	Coker FEED	125.000	2.590.666	4.955.944.938	2010
31	Sour Naphtha Export	100.000	1.752.020	3.351.615.178	2010
32	DHTB Diesel Component	230.000	2.204.470	4.217.151.225	2010
33	DHTB Diesel Component	230.000	2.204.470	4.217.151.225	2010
34	DHTA Diesel Component	230.000	2.204.470	4.217.151.225	2010
35	DHTA Diesel Component	140.000	1.550.069	2.965.281.155	2010
36	FCC NHT LN	50.000	2.066.706	3.953.608.578	2010
37	HC Kerosene	130.000	2.166.238	4.144.014.231	2010
38	Sour Naphtha Export	135.000	1.536.891	2.940.072.636	2010
39	Finished Diesel (Jet, HC Kero, DHT Comp. Spare)	130.000	3.167.380	6.059.198.303	2010
40	Slop Oil (Cracked Material)	71.000	2.122.015	4.059.414.695	2010
41	Sweet Light Naphtha	10.000	624.920	1.195.472.553	
42	Neutralization Storage Tank	3.082	431.168	824.824.001	2010
43	Clear Water Tank	14.548	632.693	1.210.340.791	2010
44	Amine Storage Tank	4.136	477.231	912.943.649	
45	Fresh Amine Storage Tank	1.574	330.587	632.413.352	2010
46	Sulfur Storage Tank	9.141	714.826	1.367.462.521	2010
47	Sour Water Storage Tank	54.390	2.460.864	4.707.633.310	
48	Diesel Daily Tank	5.774	313.940	600.567.870	2010
49	Solid Contact Clarifier Tanks	18.571	855.672	1.636.900.536	2010
50	Gravity Sludge Thickener Tank	1.399	174.231	333.304.783	2010
51	Reclaimed Water Collection Tank	1.548	310.723	594.413.864	
52	Filtered Water Storage Tanks	47.388	2.601.601	4.976.863.096	2010
53	Potable Water Storage Tank	5.483	316.865	606.163.223	2010
54	Demineralized Water Storage Tank	39.762	1.236.101	2.364.660.257	2010
55	Recovered Condensate Storage Tank	13.810	540.995	1.034.924.200	2010
56	Deaeator FEED Tank	92.619	2.316.644	4.431.740.890	
57	Sequencing Batch Reactor Tanks	30.593	1.300.032	2.486.961.254	2010
58	Phenolic Sour Water Equalization Tank	54.383	1.914.422	3.662.290.051	2010

Fuente Confidencial de la Tabla 4-1. Contratos entre firmas Operadoras de Campos y Empresas de servicios, Contratos entre Puertos y Empresas Constructoras de Tanques en Cartagena*.

Para el tratamiento estadístico de los datos, se eliminó la información de tanques que no está relacionado con el contexto del análisis., haciendo la salvedad que los tanques de almacenamiento de crudo han sido considerados ya que estos pueden ser utilizados para el almacenamiento de diésel. Lo anterior se puede observar en las tablas Tabla4-5. Costo de Construcción vs Volumen de Tanque de Techo Fijo y la Tabla 4-4 Costos de Construcción Vs Volumen de Tanques de Techo Flotante y Tanques con Membranas.

COSTO DE	O DE CONSTRUCCION PARA TANQUES DE TECHO FLOTANTE Y CON MEMBRANA		
No.	Тіро	Volumen (KBLS)	COSTO (MCOP)
29	Tanques API techo Flotante	333	22.352
31	Sour Naphtha Export	100	4.060
38	Sour Naphtha Export	135	3.562
41	Sweet Light Naphtha	10	1.448

TABLA 4-4. COSTO DE CONSTRUCCION VS VOLUMEN DE TANQUE DE TECHO FLOTANTE Y TANQUE CON MEMBRANA

^{*}Por restricciones por asuntos de confidencialidad de la información no se citan con nombre propio las empresas constructoras ni las firmas operadoras de los campos.

	COSOTS DE CONSTRUCCION DE TANQUES DE TECH	O FIJO	
No.	Tipo	Volumen	COSTO
	·	(KBLS)	(MCOP)
1	Tanque API 650 de 10000 barriels de capacidad techo cónico	10	686
2	Tanque API 650 de 5000 barriels de capacidad techo cónico	5	384
3	Tanque API 650 de 3000 barriels de capacidad techo cónico	3	235
4	Tanque API 650 de 10000 barriels de capacidad techo cónico	10	586
5	Tanque API 650 de 5000 barriels de capacidad techo cónico	5	434
6	Tanque API 650 de 3000 barriels de capacidad techo cónico	3	317
7	Tanque API 650 de 10000 barriels de capacidad techo cónico	10	783
8	Tanque API 650 de 5000 barriels de capacidad techo cónico	5	418
9	Tanque API 650 de 3000 barriels de capacidad techo cónico	3	251
12	TANQUE ALMACENAMIENTO DE CRUDO	110	1.852
13	TANQUE ALMACENAMIENTO DE CRUDO	115	1.852
17	TANQUES CAPACIDAD 5000 BLS, BAJO NORMA API 650	5	518
18	Suministro e instalacion Tanque vertical 1200 bbls	1	285
19	Suministro Tanque vertical 500 bbls	1	77
22	Tanque API 650 - Lifting tank	5	843
23	Tanque API 650	5	863
24	Tanques almacenamieto - TOPEN	1	173
25	Tanques almacenamieto - WTF	1	173
26	Tanques almacenamiento	1	196
30	Coker FEED	125	6.004
32	DHTB Diesel Component	230	5.109
33	DHTB Diesel Component	230	5.109
34	DHTA Diesel Component	230	5.109
35	DHTA Diesel Component	140	3.592
36	FCC NHT LN	50	4.789
37	HC Kerosene	130	5.020
39	Finished Diesel (Jet, HC Kero, DHT Comp. Spare)	130	7.340
40	Slop Oil (Cracked Material)	71	4.918
48	Diesel Daily Tank	6	728
55	Recovered Condensate Storage Tank	14	1.254
56	Deaeator FEED Tank	93	5.369
57	Sequencing Batch Reactor Tanks	31	3.013
TABLA	4-5. COSTO DE CONSTRUCCION Vs VOLUMEN DE TANQU	E DE TECH	IO FIJO

5. Relación Producto / Sistema de Almacenamiento / Costo de

Construcción.

En particular para la Tabla 4-4 Costo de Construcción vs Volumen de Tanque de

Techo Flotante y con Membrana, el tratamiento de los datos se realizó utilizando la

facilidad que la herramienta Excel tiene para correlacionar los datos de una

muestra. Al graficar los puntos de la información obtenida se infirió que su

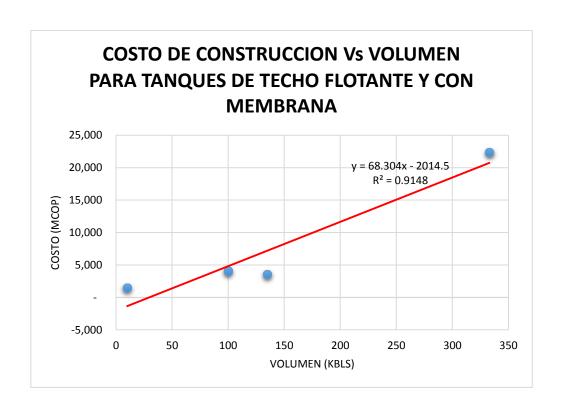
comportamiento podría asociarse a una regresión de tipo Lineal con un coeficiente

de Correlación R² de **0.9148** que de acuerdo a los análisis estadísticos nos indica

que hay un buen nivel de confiabilidad entre los datos y la curva ajustada.

En el Gráfico 5-1 se relaciona el volumen del tanque y su costo de construcción de

acuerdo con la fórmula:


$$y = 68,304x - 2014,5$$

En la cual:

X sería el volumen del tanque a construir en miles de barriles, y

Y es el costo de construcción expresado en Millones de pesos Colombianos.

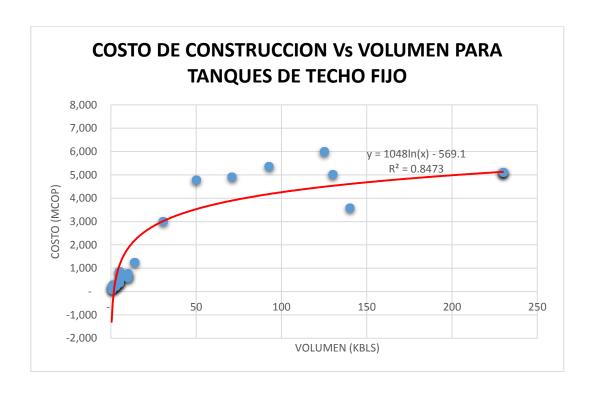
43

Grafica 5-1 Costo de Construcción Vs Volumen para Tanques de Techo Flotante y con Membrana.

Para la Tabla 4-5 Costo de Construcción vs Volumen de Tanque de Techo Fijo, el tratamiento de los datos fue realizado de forma similar al anterior, utilizando la facilidad de la herramienta Excel para correlacionar los datos de una muestra. Al observar el grafico los puntos de la información obtenida se infirió que su comportamiento podría asociarse a una regresión de tipo Logarítmica. Teniendo en cuanta que el Coeficiente de Correlación R² de 0.8473 con lo que podemos decir que la curva obtenida es confiable.

En el Gráfico 5-2 se relaciona el volumen del tanque y su costo de construcción de acuerdo con la fórmula:

$$y = 1048ln(x) - 569,1$$


En la cual:

X es el volumen del tanque a construir en miles de barriles,

Y es el costo de construcción expresado en Millones de pesos colombianos.

El coeficiente de correlación R2 de esta grafica es:

$$R^2 = 0.8473$$

Grafica 5-2 Costo de Construcción Vs Volumen para Tanques de Techo Fijo.

De acuerdo con las anteriores gráficas podemos establecer la Tabla 4-6 una matriz de correlación en la cual tenemos para cada producto el tipo de almacenamiento a utilizar y su costo de construcción.

TABLA DE CORRELACION DE TIPO DE PRODUCTO REFINADO VS TIPO DE ALMACENAMIENTO A UTILIZAR Y SU COSTO DE CONSTRUCCION ASOCIADO

TIPO DE PRODUCTO		DIESEL	GASOLINAS Y NAFTAS	
TIPO DE TANQUE		TECHO FIJO	TECHO FLOTANTE Y CON MEMBRANA	
_	RMULA DE RRELACION	y = 1048ln(x) - 569,1	y = 68,304x - 2014,5	
S)	40	\$ 717,66	\$ 3.296,85	
VOLUMEN DE TANQUE (KBLS)	50	\$ 3.530,70	\$ 1.400,70	
)E(70	\$ 3.883,32	\$ 2.766,78	
gN	100	\$ 4.257,12	\$ 4.815,90	
T.	110	\$ 4.357,00	\$ 5.498,94	
Z DE	130	\$ 4.532,08	\$ 6.865,02	
ME	150	\$ 4.682,05	\$ 8.231,10	
)LU	200	\$ 4.983,54	\$ 11.646,30	
>	220	\$ 5.083,42	\$ 13.012,38	
	250	\$ 5.217,39	\$ 15.061,50	

TABLA 5-1 Matriz de Correlacion entre Tipo de Producto Tipo Sistema de Almacenamiento y su Costo de Construcción.

Según la Clasificación sugerida por la AACE (Asociación para el Avance de la Ingeniería de Costos) existen diferentes tipos de estimados para las diferentes

estadios o etapas de un proyectos tal y como se puede observar en la tabla adjunta.

Tipo de Estimado	Utilidad/Concepto	Nivel de Precisión	Probabilidad
Clase V	Estudios de factibilidad/ Orden de magnitud	- 25% a +75%	22222
Clase IV	Estudios de alternativas/ Grandes procesos.	- 20% a +60%	33%
Clase III	Definición del presupuesto/ Definición de componentes.	- 10% a 25%	60%
Clase II	Control de Proyectos/ Semi- detallado.	- 10% a +10%	80%
Clase I	Contratacion/ Detallado.	- 5% a +5%	90%

Tabla 5-2 Calificación de Estimados. Tomado de AACE (Asociación para el Avance de la Ingeniería de Costos)

De acuerdo con esta clasificación es posible clasificar el estimado de costos calculado utilizando las curvas obtenidas.

6. **CONCLUSIONES**

- Los estimados que se podrían inferir con las fórmulas de correlación obtenidas con la ayuda de la herramienta Excel, son según la Clasificación sugerida por la AACE son Clase V y corresponden a Estudios de Factibilidad en proyectos u Orden de Magnitud que según la clasificación pueden variar de -25% a +75% y con una probabilidad no muy alta. Esta es la primera aproximación en precio que se realiza cuando el proyecto está en su etapa temprana de planeación
- Entre más pequeño es el tanque % es más costos que un tanque más grande, esto debido a la incidencia que pueden tener los costos administrativos
- Los parámetros de diseño según el API 650, van más orientados a la estructura misma del tanque, su dimensionamiento, materiales, etc., que a las características del producto a almacenar como tal.

BIBLIOGRAFIA

- Colaboradores Wikipedia. Derivados Del Petróleo. [En Línea] [Fecha de consulta 21 de marzo de 2015]
 http://es.wikipedia.org/wiki/Derivado_del_petr%C3%B3leo.
- Gómez Hernandez Adriana / Castillo Julie Ximena. Definición de Estándares Operativos para Tanques Atmosféricos y Vasijas de Almacenamiento de Líquidos a Presión. Trabajo de Grado. UIS 2007.
- Humberto Fernandez Faccini. Ejecución de Proyectos de Ingeniería.
 Empresa colombiana de Petróleos. Imprenta Nacional. 1983.
- Kim B. Peyton. Ondeo / Nalco Fuel Field Manual Revised Edition McGraw-Hill New York. 2002.
- Ministerio de Minas, Preguntas Frecuentes, Derivados del Petróleo [En Línea],

http://www.minminas.gov.co/minminas/kernel/usuario_externo_faq/faq_hid
rocarburos.jsp?cabecera=¿Cuáles son los derivados del
petróleo?&optionSelected=consultar&codigo_categoria=568&id=570&flag=1
&clasePanel=FilaC > [Citado en 21 de marzo de 2015]

• Reporte de costos de diferentes proyectos.