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RESUMEN 

TÍTULO: OPTIMIZACIÓN DE APLICADORES MICROONDAS, A TRAVÉS DE 

ALGORITMOS METAHEURÍSTICOS, PARA LA INDUSTRIA MINERA1. 

AUTOR: IVÁN MAURICIO AMAYA CONTRERAS2 

PALABRAS CLAVE: MICROONDAS, ANÁLISIS CIRCUITAL, OPTIMIZACIÓN 

MODERNA, MINERALES, PROPIEDADES DIELÉCTRICAS. 

DESCRIPCIÓN: 

Esta tesis se enfoca al desarrollo de una estrategia de optimización que permita encontrar las 

dimensiones y frecuencia de resonancia de un aplicador microondas, tal que su distribución 

de campo corresponda a una definida por el usuario. Se reservan tres capítulos a discutir los 

pilares principales para establecer dicha estrategia: el modelo matemático de resonadores 

microondas analizados a través de análisis circuital, las propiedades dieléctricas 

experimentales de diferentes muestras minerales que cambian con la temperatura, y la 

formulación de diferentes técnicas de optimización moderna. Luego, se realizó la sinergia de 

esta información (es decir, el modelo, las propiedades, y los algoritmos de optimización). Se 

inicia por ejecutar algunas pruebas simples con los algoritmos, para determinar la mejor 

combinación de ellos. Posteriormente, se abordan algunos escenarios de diseño que incluyen 

materiales con y sin pérdidas. Se encontraron varias cosas de interés. Pero, la más relevante 

se refiere a la factibilidad de utilizar la estrategia propuesta. En algunos escenarios 

(especialmente a altas frecuencias) fue posible lograr un nivel de ajuste mayor a 50 [dB]. Sin 

embargo, en otros escenarios este valor cayó hasta 20 [dB] (especialmente, cerca del modo 

fundamental del aplicador). Esto significa que el modelo matemático debe ser refinado. Aun 

así, luego de comparar los datos respecto a software comercial (CST), se encontró que incluso 

en los casos donde CST sobrepasó a la estrategia propuesta en esta tesis, la segunda generó 

una distribución de campo más uniforme. Por tanto, se considera como exitosa la propuesta, 

así que se recomienda su uso y se sugiere que se trabaje en expandir el modelo a las 

direcciones restantes y a otros sistemas de coordenadas. Además, se sugiere incluir una 

métrica que considere el factor de forma de las distribuciones de campo, quizás a través de 

una suma ponderada.  

                                                 
1 Trabajo de grado de doctorado. 
2 Facultad de ingenierías fisiscomecánicas. Escuela de ingenierías eléctrica, electrónica, y de 

telecomunicaciones (E3T). Director: Carlos Rodrigo Correa Cely, Ph.D. Ingeniero Químico.  
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DESCRIPTION: 

The current dissertation aims at developing an optimization strategy able to find the 

dimensions and resonant frequency of a microwave applicator, such that the field distribution 

matches a user-defined one. Three chapters are reserved to discuss the main pillars required 

for establishing such strategy: the Mathematical model of microwave resonators analyzed 

through circuital analysis, the experimental dielectric properties of different mineral samples 

that change with temperature, and the formulation of different modern optimization 

techniques. Afterwards, some design scenarios that include lossless and lossy materials were 

boarded. Several things of interest were found. But, the most relevant one relates to the 

feasibility of the proposed strategy. A level of agreement as good as over 50 [dB] was 

possible in some scenarios (especially for higher frequencies). However, in other scenarios 

this value dropped to 20 [dB] (especially near the fundamental mode of the applicator), 

meaning that the Mathematical model needs to be improved. Even so, after a comparison 

with commercial software (CST), it was found that even in those cases where CST 

outperformed the strategy proposed in this dissertation, the latter yielded more uniform field 

distribution. Hence, the approach is deemed as successful. So, its use is recommended, as 

well as suggestion is made to work on expanding the model to the remaining directions and 

to other coordinate systems. Also, the inclusion of a metric that considers the form factor of 

the field distributions, perhaps through a weighted sum approach, is suggested. 
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telecomunicaciones (E3T). Advisor: Carlos Rodrigo Correa Cely, Ph.D. Chemical engineer. 
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INTRODUCTION 

Within this document, the theoretical foundation of my dissertation is discussed. We delve 

into three cornerstones: the Mathematical model of microwave resonators analyzed through 

circuital analysis, the experimental dielectric properties of different mineral samples that 

change with temperature, and the formulation of different modern optimization techniques. 

But, for now, we summarize the main results. 

MAIN CONTRIBUTIONS OF THIS WORK 

Considering that the topic of this dissertation is interdisciplinary by nature, I strived to 

generate contributions on its different fields. Furthermore, and since it is a formative process, 

I deemed important to strengthen the formation of new potential researchers, especially those 

at the undergraduate level, and to disseminate the results of this work. Hence, the main 

contributions can be summarized as follows: 

 Regarding mineral samples and processing, we gathered and analyzed experimental 

data of dielectric properties as a function of temperature. This information was not 

previously available and we selected different Colombian pyritic and non-pyritic 

mineral ore samples. Also, we generated a set of correlations that can be used to easily 

calculate the dielectric properties at a given temperature.  

 Regarding the Mathematical model of circuital analysis, I proposed the use of the 

norm instead of the determinant, as a metric for identifying the resonant frequencies. 

By doing so, I was able to analyze the family of TEmnp modes given by m = 0, n =

1. This was impossible to calculate through the determinant because of the 

appearance of rows and columns completely filled with zeros. 

 Regarding optimization, I proposed a strategy that allows finding the optimum 

dimensions of a microwave resonator and its operating frequency. This strategy 

implies two optimization loops, one in charge of finding the dimensions, and one that 

finds the operating frequency for each test design.  

 Regarding modern optimization techniques, two new variants of the traditional 

Harmony Search (HS) algorithm were presented. The first one, called ABHS, 

proposed that one of the fixed parameters of HS became variable, and that it changed 

exponentially throughout the iterations. The second one, called SFHS, was a natural 

evolution of the first proposal, where the now varying parameter became self-tuned. 

 Regarding the formation of new researchers, we proposed and advised more than 30 

undergraduate theses (about 55 students), and one master thesis.  
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 Regarding dissemination of results, we published 17 articles in national and 

international peer-reviewed Journals, and recognized by COLCIENCIAS, and three 

international conference papers. Also, we submitted five articles and some more are 

currently in the works.  

MAIN CONCLUSION OF THIS WORK 

Several things can be concluded. The first one is that both of the proposed modifications for 

the Harmony Search algorithm (HS), represent good improvements. Through them, it was 

possible not only to enhance the precision, but also the convergence speed of the strategy. 

Nonetheless, and regarding the particular problem we boarded in this dissertation, we found 

that the Unified Particle Swarm Optimization algorithm (UPSO) was best suited to search 

for the optimum dimensions of a resonator. Our proposed modification of HS (SFHS), on the 

other hand, was best suited to identify the proper resonant frequency. Their combination led 

to a strategy able to find appropriate designs for different test scenarios.  

Dielectric properties of the mineral samples boarded in this dissertation also revealed 

important information. We found that gold ores with high sulfur content interact more easily 

with microwaves, due to their higher complex permittivity. Furthermore, and at least for one 

of the minerals considered in this study, microwave smelting seems feasible. On this regard, 

the required processing time was about only 8% of the required by a traditional furnace, with 

recovery margins between 95% and 100%. This could impact heavily on gold processing, as 

long as a vapor collection system is implemented, to avoid unloading sulfur-based vapors to 

the environment.  

In spite of the good results that our algorithm was able to achieve at some frequencies 

(especially high order modes), in some cases there was some error margin at the first modes. 

This level of error can be reduced to some extent by increasing the number of elements 

assumed for each of the incident fields. But, this also increases the computational cost of 

evaluating the objective function, so special care must be taken to find an appropriate 

balance.  

All of these features point at the same conclusion: it is possible to use a modern optimization 

technique to optimize the dimensions of a microwave resonator, such that the electric field 

distribution matches a desired one, and obtain results that, in some cases, surpass 50 [dB]. 

Hence, we recommend using this approach and expanding the Mathematical model of 

circuital analysis to the remaining directions, and to other coordinate systems.  

ACADEMIC PRODUCTION RELATED TO THIS WORK 
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FUTURE RESEARCH LINES 

Several research lines can be derived from this work. One of the most obvious ones could be 

to keep working on SFHS to improve its precision and convergence speed. But, this is not 

the only alternative. A really interesting approach implies delving further into the use of the 

norm to identify the resonant frequencies of circuital analysis, or, even, propose a new 

approach to identify them altogether. Also, working on circuital analysis to study the 

microwave resonator with ports entering and exiting along the other directions, is worth 

investing time and having dedication. This kind of commitment will allow for more complex 

designs that can be optimized through the proposed strategy. Moreover, the study shown in 

this dissertation can be extended to other coordinate systems, such as the cylindrical and 

spherical ones.  
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1. FUNDAMENTALS 

The current dissertation aims at developing an optimization approach able to design a 

microwave applicator with a desired field distribution. The process includes boarding the 

problem through modern optimization techniques, and the author hopes that the mining 

industry will be able to use said design in the near future, for processing gold ores with lower 

environmental impact. Even so, the application selected for this dissertation does not hinder 

the generality of the developed optimization approach. 

1.1 AN OVERVIEW OF THE RESEARCH PROBLEM 

Microwaves have multiple and varied uses. During this dissertation, microwave heating was 

of special interest, since it does not limit to the interaction between electromagnetic energy 

and food. In fact, microwaves can be used to assist several industrial processes, e.g. mineral 

processing [1–7], coal coking [8], and material manufacturing [9] and sintering [10,11]. The 

use of microwaves also expands to other fields, such as polymer curing [12], oil production 

[13,14], and agricultural product preservation [15], amongst others [16]. 

Incorporating microwaves in a given scenario is, alas, no easy task. The efficiency of the 

process is governed by the interaction between electromagnetic field and materials. The 

former requires the application of Maxwell equations and vary due to several factors [17,18]. 

The operating frequency of the electromagnetic source is, of course, a main variable since 

the number of solutions that can manifest depend upon it. Other relevant variables are those 

directly affecting the dielectric properties of the sample, as well as its spatial location inside 

the applicator. Some representative examples include humidity, chemical composition, and 

temperature. Moreover, the material can be highly anisotropic, exhibiting different values of 

permittivity in each direction, thus increasing the complexity of the mathematical model.  

Knowing the dielectric properties of a given material is not enough for properly 

implementing microwaves; knowing how to modify the process is also required. Traditional 

processing of gold incorporates several chemicals, most of which are hazardous to humans. 

Besides, some minerals do not yield high recovery margins, although heating the ore 

generally solves this problem (at least partly). In order to assess the grade of a mineral gold 

ore (i.e. the amount of gold it contains per ton of ore), several approaches can be used. These 

range from simple, experimental methods, to more complex, analytical tests. A fire assay is 

a rather simple technique that can quickly yield an estimate over a sample’s grade. The 

process involves grinding the ore, roasting it inside an electric furnace, mixing it with some 

reagents, smelting the mixture, and separating the gold with the help of an acid. The 

remaining gold lump is weighted and the grade is calculated via a linear relation.  
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In spite of the process being simple, stabilizing the electric furnace at the temperature 

required for roasting (about 700°C) and smelting (about 1000°C) may take up to two and 

four hours, respectively. Moreover, traditional heating transfers energy through conduction, 

convection, and radiation phenomena, thus creating a direct heating profile. Here, the surface 

of the heated sample is hotter than its core, so energy needs to travel inward.  

Microwaves can come in handy in this scenario, since the interaction between 

electromagnetic energy and matter is volumetric in nature, leading to an inverse heating 

profile where the core is hotter than the surface (as long as appropriate circumstances are 

present). Whenever a traveling wave makes contact with the surface of a sample, some 

energy is reflected, but the remaining one is transmitted and begins traveling throughout the 

object. Should there be no losses associated to this sample, the wave would travel all the way 

to the other side, generating new reflected and transmitted waves when it reaches the 

boundary. In the remaining case (i.e. lossy sample), the magnitude of the traveling wave 

would diminish as it travels, and it may or may not reach the other end. The energy lost is 

transformed into heat, and so the wave leaves a temperature rise in its wake.  

Mineral gold ores usually manifest a lossy behavior, so it is only natural to deem as worthy 

an exploration of microwave-assisted heating for fire assay. If successful, this scope could 

be broadened to include roasting of minerals prior to traditional processing, and, even, 

smelting. But, in order to make this process environmentally friendly, the microwave 

applicator must be optimized to minimize energy losses (i.e. energy wasted by not heating 

the sample). This optimization, however, needs to consider the factors that may alter the 

electromagnetic field distribution (as mentioned above). 

Traditional optimization techniques, such as Newton’s, base their strategy on a deterministic 

search, guided by the calculation of gradients, Jacobians, and/or Hessians, that ultimately 

become matrices with highly complicated operations. This increases the computational cost 

of the process and the time taken to implement the process.  

Modern optimization techniques, however, usually base their strategy on a stochastic search, 

where only simple calculations are required. They have been around for some time now, but 

their use escalated thanks to the proposal presented by Eberhart and Kennedy in 1995 [19,20]. 

Back then, they proposed an algorithm that strived to replicate the behavior of birds and fish 

when looking for sources of food. This strategy included the use of random numbers and was 

designed to use the information of all search agents for improving the objective function. 

Hence, it was a collaborative process that only required simple algebraic operations. The 

results were so outstanding that more and more people began using it, as well as designing 

new strategies inspired in nature. Nowadays, it is common to find optimization strategies 
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inspired on gravitational kinematics [21], on music composition [22], and on bee colonies 

[23], just to name a few.  

Based on the aforementioned paragraphs, this dissertation proposes the use of a modern 

optimization technique for optimizing a microwave applicator, specifically tailored for 

processing gold ores. In order to do so, a proper mathematical model must be derived, 

information about the dielectric properties of local mineral samples and about appropriate 

exposure conditions needs to be collected, and a study of different optimization techniques 

needs to be carried out.  

1.2 TYPES OF ORES 

Gold mineral ores can be divided, from a metallurgical point of view, into two big groups: 

free-milling and refractory. The latter can be further divided into three groups, depending on 

how difficult it is to separate gold particles from the ore. Hence, four groups appear (Figure 

1-1): free-milling (a.k.a. not refractory, recoveries over 95% can be easily achieved), mildly 

refractory (recovery between 80-95%), moderately refractory (recovery between 50-80%) 

and highly refractory (recovery below 50%). Some studies have been carried out to try and 

determine the causes for refractoriness, and Vaughan synthesized most of them [24]. He 

found that the main cause is submicroscopic gold, located especially inside pyrite and 

arsenopyrite, which increases an ore grade, but which is also hard to separate due to its small 

size. One solution for this case is to grind the ore to a finer size. However, this increases 

waste product due to slime generation. High levels of Au-Ag tellurides, which has poor 

solubility in cyanide, as well as very fine grained gold inside sulfides, also contribute to 

making the ore refractory. In these cases, it is said that the gold is "locked" because it cannot 

be accessed by cyanide. 

 
Figure 1-1. Classification of gold ores and typical recovery with traditional methods 
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Besides physical or chemical locking inside the ore, Vaughan also summarized two types of 

ores, difficult to treat, but due to the gangue minerals. They are known as carbonaceous and 

complex ores. Within these, gold particles are free and big enough to be easily recovered. 

However, in the first case, particles are re-adsorbed by the minerals that compose the gangue 

(process known as preg-robbing), thus reducing the recovery efficiency. In the second case, 

composites such as pyrrhotite, as well as some secondary copper sulfides, adsorbs the 

leaching solution (leach-robbers), thus increasing the consumption of reagents. This group 

generally contain elements such as Copper (Cu), Cobalt (Co), Bismuth (Bi) and Uranium 

(U). Copper is the most common and abundant element, so the ore is known as copper-gold 

ore [24]. Should both types of obstacles be present in the ore (i.e. locking and gangue related), 

it is catalogued as a double refractory ore, which is even harder to process [25]. This 

information is summarized in Figure 1-2. 

 
Figure 1-2. Most common causes for refractoriness and double refractory ore appearance 

1.3 OBJECTIVES 

1.3.1 General objective 

To design an optimum applicator through a metaheuristic algorithm, that can be later used 

by the mining industry, where electromagnetic energy provides an increased benefit 

(economical, environmental, or both).  

1.3.2 Specific objectives 

In order to accomplish this objective, several specific ones were proposed: 
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1. Determine, experimentally, the dielectric properties of some local mineral samples. 

2. Determine the conditions (exposure time, power, etc.) required so the microwaves are able 

to enhance processing of the mineral, through a statistically designed experiment. 

3. Model the applicator in simulation software, combining it with a metaheuristic algorithm 

that optimizes its dimensions. 

1.4 ORGANIZATION OF THE CURRENT DISSERTATION 

Striving to simplify things for the reader, we organized this dissertation into five chapters 

and one appendix. Each one of these units was written with a clear purpose in mind. 

Moreover, each chapter was structured considering the subject area they related to, as 

described below. 

Chapter 2 deals with the mathematical formulation of the electromagnetic problem, i.e. the 

objective function of this dissertation. We begin with Maxwell equations and end with a 

circuital analysis that allows interaction between network blocks of differing electromagnetic 

properties. These blocks can be either lossless or lossy. 

After having a general formulation, assessing the electromagnetic properties of the samples 

covered by this dissertation is required. Hence, Chapter 3 shows a general procedure for 

measuring dielectric properties of mineral ores as a function of temperature, as well as some 

of the most relevant data. We focus on samples with high concentration of sulphur-based 

compounds, and we also show that samples with low sulphur content fail to heat beyond a 

couple hundred Celsius degrees. Towards the end, general representations for the data are 

laid out. 

Chapter 4 assess different alternatives vastly available for modern numerical optimization. A 

summary of some of them is presented, and a special discussion is given about a couple 

variants we proposed to improve one of the algorithms. Striving not to make this chapter 

excessively long, only some of the most relevant results are shown. We focus on our data for 

standard test functions, as well as for two applications: optimization of electromagnetic 

absorbers, and solution of hybrid modes in a partially-filled waveguide. Even so, we also 

briefly discuss the solution of electronic circuits and mention other scenarios that we worked 

on. 

These three areas (i.e. the model, the application, and the algorithms) are merged during 

Chapter 5. We begin this chapter by analysing the performance of our approach for resonator 

uniformly filled with a material. Then, we study the effect of filling the resonator with 

different materials, including lossy ones. Towards the end of the chapter, we include the 
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dielectric properties of the samples and analyse the performance of our strategy under 

different conditions.  

The final chapter presents an appendix detailing the mineral composition of the samples 

considered throughout the dissertation. 
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2. DESCRIBING THE PROBLEM 

Solving an electromagnetic problem involves dealing with Maxwell equations. This, in turn, 

requires solving the wave equation, which can be dealt with through a separation of variables. 

The resulting wave function must comply with Helmholtz equation. Hence, these functions 

depend on geometry and boundary conditions. During this chapter, some basic resonant 

structures (networks) will be discussed, focusing on their solution and creating building 

blocks that can be used in forthcoming chapters (please refer to the appendix for details about 

the process). Also, the appendix shows a procedure for evaluating the fields inside these 

networks. Towards the end of this chapter, we will summarize the objective function that will 

be used in the next chapters, as well as the process associated to its evaluation.  

2.1  THE RECTANGULAR RESONATOR 

Solving Maxwell equations in rectangular coordinates is perhaps one of the simplest 

scenarios that can be found, since the solution can be separated into transversal electric (TE) 

and transversal magnetic (TM) modes [1]. This nullifies some field components and the 

analytic solution can be easily found. However, if the guide is partially filled with a given 

material, the problem becomes more complicated. This is due to the fact that each change of 

material implies continuity conditions that must be satisfied.  

Circuital analysis can be a useful tool in this kind of situations. Even though the segmentation 

technique has been around for some time (it was first attributed to Harrington in 1961), it has 

been widely used up to our days [1,2]. The idea behind this approach is to split the 

nonhomogeneous volume into homogeneous ones (called blocks or networks), calculate the 

admittance and scattering matrices, and then connect them through a series of ports. For 

example, consider the rectangular resonator shown in Figure 2-1. Here, the resonator has 

been split along the z-axis, into N blocks. The interface of each pair of blocks is located at a 

distance, di, from the origin. In the broadest scenario (under these conditions), each block 

would have different dielectric properties. Using circuital analysis, we are only required to 

analyze each type of block (or network), and not each independent block. This means that, 

based on our configuration, it is only necessary to analyze three structures: one with a port at 

the bottom, one with the port at the top, and one with one port at each end. Furthermore, this 

last kind of network shares some common calculations with the other two, so it is only 

necessary to analyze half of the elements (i.e. the cross-relations between the ports). 

The appendix details the calculations required to find the admittance matrix of each kind of 

network. Hence, this chapter will just summarize the expressions, for the sake of space. The 
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admittance matrix of the network at the bottom, i.e. the one with a port located at z = c, is 

made up of four items, as shown in eq. (2.1), where Yss, Ysc, Ycs, Ycc are submatrices 

composed by q,𝓂 elements, as shown by eq. (2.2).  

 [Y] = [
Yss Ysc

Ycs Ycc
] (2.1) 

 

Yq𝓂
ss =

−4γ

ωμb2
1

tan(jγc)
Iq
s I𝓂
s       Yq𝓂

sc =
−4γ

ωμb2
1

tan(jγc)
Iq
s I𝓂
c  

Yq𝓂
cs =

−4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
s     Yq𝓂

cc =
−4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
c  

(2.2) 

 
Figure 2-1. Rectangular resonator split into N blocks 

It is now important to observe the influence of the integrals over the results. For a given n, 

they can be calculated as shown in eq. (2.3). Hence, any cross product between sine and 

cosine components (i.e. Iq
s I𝓂
c  and Iq

cI𝓂
s ) yield zero, so Ysc = Ycs = 0 for all n. Moreover, 

[Y] = [Yss] if 2𝓂 = 2q = n and [Y] = [Ycc] if n is odd.  
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nπy
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) dy
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0
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−2bn

π(4q2 − n2)
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(2.3) 

 

The top network, i.e. the one with a port at z = 0, has an admittance matrix of the same form 

as its counterpart, but each element of the submatrices are given by eq. (2.4). The remaining 

network, i.e. the one with two ports, has an admittance matrix made of four sets of 

submatrices, one for each combination of ports. Hence, this network has 16 submatrices, as 

shown in eq. (2.5). The elements filling submatrices [Y11] and [Y22] represent the already 

discussed scenarios, so they not need to be reformulated. The remaining submatrices, on the 

other hand, are comprised of the elements given in eq. (2.6), [Y12], and in eq. (2.7), [Y21]. As 

it was mentioned above, please refer to the appendix in order to find details about the 

calculations required for arriving at the aforementioned equations. The calculations for 

transforming these matrices into the scattering ones, as well as the procedure for connecting 

them, are also discussed on the appendix.  

 

Yq𝓂
ss =

4γ

ωμb2
1

tan(jγc)
Iq
s I𝓂
s Yq𝓂

sc = 0

Yq𝓂
cs = 0 Yq𝓂

cc =
4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
c

 (2.4) 

 [Y] = [
[Y11] [Y12]

[Y21] [Y22]
] = [

[
Yss Ysc

Ycs Ycc
]
11

[
Yss Ysc

Ycs Ycc
]
12

[
Yss Ysc

Ycs Ycc
]
21

[
Yss Ysc

Ycs Ycc
]
22

] (2.5) 
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 (2.7) 

 

After connecting the networks, a system of two elements remains. In this sense, traditional 

circuital analysis theory dictates that the resonant frequency are calculated via eq. (2.8) [3]. 

Even so, matrix theory states that if all elements of at least one row or column are zero, then 

the determinant of a matrix becomes zero. This impacts directly our model, since there are 

always rows or columns full of zero elements for a given n (see the appendix). Hence, an 

alternative operation must be sought. 

 |det (S1̿S2̿̿̿ −  I)| = 0 (2.8) 

 

In this research work, we considered that the norm function may provide a valid approach at 

finding the resonant frequencies. Hence, we considered three types of matrix norms. The first 

one is the 1-norm, and it represents the maximum absolute column sum as shown in eq. (2.9). 

The second one is the 2-norm, or spectral norm, representing the square root of the maximum 

eigenvalue of the product of the matrix and its conjugate transpose, as shown in eq. (2.10). 

The final one is Inf-norm, and it represents the maximum absolute row sum as shown in eq. 

(2.11).  

 ‖A‖1 = max
j
(∑|aij|

n

i=1

) (2.9) 

 ‖A‖2 = √max(eig(AHA)) (2.10) 

 ‖A‖∞ = max
i
(∑|aij|

n

j=1

) (2.11) 

 

The process for evaluating the performance of the matrix norms is illustrated as follows. We 

analyzed the first ten TE01p modes, calculating the error between the analytic solution and 

the one yielded by different types of norms. We found that all norms allowed finding the 

resonant frequencies with error levels below 0.01% (Table 2-1). Even so, the 1-norm seems 

to perform better, though there is only a slight difference with respect to the other two. Still, 

the 1-norm will be used during the remainder of this dissertation. The frequency response of 

this approach is shown in Figure 2-2, where it can be seen that even if not all resonant 
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frequencies yield a value of zero norm, they do correspond with a local minima of the 

function and so, this approach can be used.  

Table 2-1. Resonant frequencies for the first ten 𝐓𝐄𝟎𝟏𝐩 modes, found through the analytic solution and through 

three different types of matrix norms 

p Analytical  1-Norm 2-Norm Inf-Norm 

  

Frequenc

y  

(GHz) 

Frequenc

y  

(GHz) 

Error  

(kHz) 

Error  

(%) 

Frequenc

y  

(GHz) 

Error  

(kHz) 

Error  

(%) 

Frequenc

y  

(GHz) 

Error  

(kHz) 

Error  

(%) 

1 0.7598 0.7599 28.5440 0.0038 0.7599 28.5450 0.0038 0.7599 28.5450 0.0038 

2 0.7900 0.7900 55.7820 0.0071 0.7900 55.7880 0.0071 0.7900 55.7860 0.0071 

3 0.8380 0.8380 14.1170 0.0017 0.8380 14.8290 0.0018 0.8380 16.6420 0.0020 

4 0.9008 0.9009 101.920

0 

0.0113 0.9009 101.920

0 

0.0113 0.9009 101.930

0 

0.0113 

5 0.9756 0.9755 120.900

0 

0.0124 0.9755 120.900

0 

0.0124 0.9755 120.890

0 

0.0124 

6 1.0599 1.0599 20.6650 0.0019 1.0599 20.9020 0.0020 1.0599 20.0300 0.0019 

7 1.1516 1.1518 146.520

0 

0.0127 1.1518 146.530

0 

0.0127 1.1518 146.520

0 

0.0127 

8 1.2491 1.2490 157.820

0 

0.0126 1.2490 157.820

0 

0.0126 1.2490 157.820

0 

0.0126 

9 1.3511 1.3512 43.8620 0.0032 1.3512 44.6950 0.0033 1.3512 44.8250 0.0033 

10 1.4567 1.4569 163.770

0 

0.0112 1.4569 163.780

0 

0.0112 1.4569 163.830

0 

0.0112 

Average: 85.3900 0.0078

0 

  85.5709 0.0078

2 

  85.6818 0.0078

3 

 
Figure 2-2. Frequency response of circuital analysis considering the 1-norm 
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Thus far, lossless materials have been considered. But, a broader scenario requires 

accommodating the effect of the conductivity that each block may have. The admittance 

matrices derived from circuital analysis are, hence, modified in the following way: the bottom 

network is now ruled by eq. (2.12), the top network is now ruled by eq. (2.13) and the middle 

networks are now ruled by eq. (2.14). The expressions for each integral remain, however, 

unchanged. It is important to note that eq. (2.14) only shows the formulae for A at each port, 

and that each one of them has a set of associated admittance matrices (i.e. there is a set of 

Yss, Ysc, Ycs, Ycc per each A) 

 

A = −
4γz

jωμb2 tanh(γzc)
 

 
Yss = AIq

s Im
s Ysc = 0

Ycs = 0 Ycc = AχqIq
cIm
c  

(2.12) 

 

A =
4γz

jωμb2 tanh(γzc)
 

 
Yss = AIq

s Im
s Ysc = 0

Ycs = 0 Ycc = AχqIq
cIm
c  

(2.13) 

 

A =
4γz
jωμb2

 

 

A11 = −
A

tanh(γzc)
A12 =

A

sinh(γzc)

A21 = −
A

sinh(γzc)
A22 =

A

tanh(γzc)

 

(2.14) 

2.2  FITNESS EVALUATION 

Every objective function needs the means for assessing its performance. In this case, efforts 

are focused on establishing a comparison between two field distributions. To achieve this, 

we used the Peak Signal-to-Noise Ratio (PSNR), which is a technique commonly used for 

the comparison of images [4]. PSNR is based on the mean squared error, and it can be easily 

calculated through eq. (2.15), where I is the reference image, i.e. the field distribution we 

desire to achieve, and K is the test image, i.e. the field distribution generated by the algorithm.  

 

PSNR(I, K) = 10 log10 (
max (I2)

SE
 )  

SE =
1

M ⋅ N
∑ ∑[I(i, j) − K(i, j)]2

N−1

j=0

M−1

i=0

 

(2.15) 
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We now comment on how the PSNR can be used for comparison purposes. Consider a 

rectangular resonant cavity with a volume of 0.1 × 0.2 × 1.2 [m3]. This resonator is first 

analyzed assuming that it is uniformly filled with air, i.e. the resonator is empty. Afterwards, 

the effect of filling it with different materials is boarded, whose relative permittivity are 10, 

50, and 100, and focusing on modes TE01𝟏, TE01𝟑, TE01𝟔, TE01𝟏𝟎. Finding the resonant 

frequencies of these modes through commercial software yields valid answers and field 

distributions that can be easily related to what is expected. But, when the PSNR is calculated 

against the analytical solution, it is found that the quality of the solutions diminishes for 

higher modes (Figure 2-3). The cause of this lowered PSNR is shown in Figure 2-4, where a 

distortion in the field distribution yielded by the commercial software (left) can be easily 

observed, when compared to the analytic solution (center). The solution provided by the 

model developed throughout this chapter is plotted in the right. For this example, the TE01𝟏𝟎 

mode is plotted for an empty resonator, and the commercial solution has a PSNR of 21 [dB], 

whilst the solution found with the model of the dissertation has a PSNR of 50 [dB].  

 
Figure 2-3. PSNR of the solutions provided by commercial software against the analytical solutions, for four 

different 𝐓𝐄𝟎𝟏𝐩 modes and considering four different values of relative permittivity 
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Figure 2-4. Field distribution yielded by commercial software (left, PSNR=21 dB), by the analytic solution (center), 

and by the model developed throughout this chapter (right, PSNR=50 dB). 

2.3  THE OBJECTIVE FUNCTION 

As a summary of this chapter, it can be said that the objective function for this dissertation is 

the one given by eq. (2.16), that depends on the operating frequency (f), and on the height of 

each one of the N blocks (di, see Figure 2-1),  

 
Maximize: Fobj(f, di) 

Fobj(f, di) = PSNR(Edesired, Etest);  i = 1,2, … , N 
(2.16) 

 

Moreover, Edesired represents the desired electric field distribution, which must comply with 

boundary conditions, whilst Etest is the electric field distribution of a given test design (i.e. 

a given configuration of frequency and block heights). The former, is an input given by the 

user, and it represents the optimum field distribution. The latter, corresponds to the field 

distribution inside a test resonator, i.e. inside a design with a given frequency (f) and block 

heights (ci), and in order to calculate it the process discussed in the appendix must be 

followed. It is worth remarking that each one of these blocks require an amplitude parameter 

whose definition varies according to the number of blocks. The separation equation implies 

that kzi depends on the operating frequency and on the mode number considered in the x and 

y direction. Nonetheless, the latter are the same for all blocks, so kzi only depends on the 

operating frequency (f) for a given resonator. 

Finding the appropriate operating frequency for a given resonance is rather easy if the 

resonator is uniformly filled with the same material. However, as discussed in the appendix, 

whenever it is partially filled, the resonant frequency shifts. Hence, it must be found by other 



50 

means, e.g. circuital analysis. The appendix presents details about the stages that must be 

carried out in order to do so. Nevertheless, this kind of analysis provides multiple solutions, 

each one of which represents a different resonant mode. So, a strategy must be set into place, 

such that for any given design, it is able to find as many solutions as possible, generating 

multiple Etest that must be compared against the desired solution (Edesired). Figure 2-5 shows 

an overview of the process that must be followed in order to evaluate the objective function 

for a particular resonator.  

 
Figure 2-5. Overview of the process required for evaluating the objective function for a given set of network 

heights (𝐜𝐢). 𝐟𝐫𝐞𝐬 is a vector containing all resonant frequencies found for the resonator, 𝐄𝐭𝐞𝐬𝐭 contains the 

information of the electric field distribution at each resonant frequency, and 𝐟𝐫𝐞𝐬𝐛𝐞𝐬𝐭 is the resonant frequency that 

yields the electric field with the highest PSNR 

2.4  FINAL COMMENTS 

Throughout this chapter, the mathematical models related to the dissertation were discussed. 

An overview of the problem was given, and it was mentioned that more detail can be found 

in the appendix. We used circuital analysis to study the electromagnetic problem, taking 

advantage of the segmentation already present in the structure. Furthermore, we established 

the mathematical model of the admittance matrix for networks with one port at the top face, 

one at the bottom face, and one at each of them, considering a given transversal mode (i.e. 

for a fixed value of m and n). The appendix shows the way in which this admittance matrices 

can be transformed into scattering matrices, and details how to connect them.  



51 

We showed that traditional determination of the resonant frequencies was not valid for our 

case, since it yielded zero for all frequency values (due to rows and columns of the matrix 

being zero). Hence, we explored an alternative for determining the resonant frequencies 

through different types of norms, and we found that the 1-norm can be regarded as a valid 

approach.  

Afterwards, we mentioned a strategy for estimating the agreement between the desired 

electric field distribution, which must comply with boundary conditions, and the electric field 

distribution of a test design. We selected an approach based on the Peak Signal-to-Noise 

Ratio (PSNR), since it is traditionally used in imaging. A comparison of the analytic field 

distribution with the one yielded by commercial software and by the model developed 

throughout this chapter showed that our approach seems to perform better, reaching a PSNR 

29 [dB] higher. Finally, we laid out the objective function that will be used in this dissertation, 

and summarized the overall process for evaluating it.  

The tools for estimating the field distribution for a given scenario have been laid out, and 

now it is deemed necessary to identify the dielectric properties and the optimization strategy 

that will be used. This is done in forthcoming chapters. 
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3. KNOWING THE SAMPLES 

This chapter deals with the experimental component of the dissertation. It relates to the 

mineral samples (i.e. ores) we considered throughout our research work. Whether it is general 

information, dielectric properties or exploratory results, it can be found here. The results 

herein, as well as in most sections of the document, were obtained through a joint work with 

undergraduate students, who carried out their research under our advisory, so the respective 

citations are included when appropriate. Moreover, these studies were supported by 

Vicerrectoría de Investigación y Extensión-UIS, in the framework of Project 5551. 

Microwaves can enhance a given process [1–15]. However, their modelling requires solving 

Maxwell's Equations, which depend on the dielectric properties of the media. Moreover, 

these properties are not static, so they can vary depending on humidity levels, composition, 

operating frequency, and temperature [16,17]. This chapter summarizes the evolution of 

dielectric properties as a function of temperature, for several Colombian samples, so that they 

can be easily included in simulations. Also, we present data about conditions required for 

interaction between microwaves and ores, focusing on variables such as exposure time, 

microwave power, and sieve size. These data were acquired through statistically designed 

experiments, whose goal was to analyze the effect of different factors (and levels) on gold 

recovery.  

During this chapter, and pursuing a well-defined objectives that are part of the main research 

objectives described in this dissertation, we selected the following students to join our group 

as research assistants and complete their undergraduate theses: 

Juan Abril and Julián Gómez [18] Roy Aguirre and William Botero 

[19] 

Danilo Bernal, Sergio Garnica and Yamit Reslen 

[20] 

Manuel Díaz and Marcelo Rueda 

[22] 

Marly Ortiz and Dirney Jurado [21]  

 

We want to declare our deepest appreciation to them, for their dedication and effort in 

contributing to some of the results discussed in this chapter. Also, to Professor Dr. Felipe 

Peñaranda, for his help and guidance during the internship, and to Mr. Ambrosio Carrillo, 

for all his help regarding traditional processing of the samples.  



54 

3.1  SAMPLES CONSIDERED DURING THE RESEARCH 

Before delving into any details, it is important to summarize the minerals we used. We 

created one group for measuring dielectric properties (Table 3-1) and one for experimental 

testing (Table 3-2). The former consisted of six different samples, and one of them was 

analyzed for three different sieves since they were visually different (please refer to Appendix 

A for a full description of the samples, including X-ray diffraction and fluorescence). The 

latter considered minerals from southern Bolivar (“Juan Blanco”) and from Santander (the 

remaining ones), and it was done to obtain exploratory results about the feasibility of using 

microwaves for treating local samples. It was supported by undergraduate students whose 

research was advised, and included a research about conceptual engineering [18]. 

Table 3-1. Summary of samples used during the research, including their starting (St.) and ending (En.) dielectric 

properties at room temperature 

# Sample's Name Sieve 
Grade  

[g/ton] 

Iron 

[%] 

Sulfur 

[%] 

St. 

ε' 
St. ε'' 

En. 

ε' 
En. ε'' 

1 Juan Blanco 100 0 18.35 10.72 5.19 0.8818 7.92 1.0925 

    200 -- 14.03 6.57 2.61 0.0512 2.46 0.0298 

    -200 1 9.17 4.27 2.11 0.0239 1.83 0.0117 

2 M9 100 4 30.67 23.51 6.97 1.4388 7.77 1.6692 

3 Ismael -170 3 13.09 0.01 2.19 0.0405 1.99 0.0303 

4 Carlos Arias 100 17 24.09 17.11 4.46 0.4068 5.37 0.5499 

5 Core from El Volcán -120 3 8.37 0.45 2.78 0.0345 2.50 0.0266 

6 
Rock from Segovia, 

Antioquia 
-120 1 2.06 0.95 2.81 0.0272 2.54 0.0190 

 

Table 3-2. Summary of mineral samples used in experiments with undergraduate students 

# Name Sieve Grade [g/ton] Students Reference 

7 Juan Blanco 170 5.0 Bernal, D.; Garnica, S.; Reslen, Y. [20] 

8 Reina de Oro 100 46.0 Diaz, M; Rueda, M. [22] 

9 Tajo Abierto 100 3.3 Aguirre, R; Botero, W. [19] 

3.2  METHODOLOGY 

3.2.1 Experimental testing 

We began by running these experiments, based on the equipment and funding available at 

the moment (internal project 5551). We performed three different trials to observe the 

feasibility of using microwaves for treating local minerals, as well as for identifying the effect 

of certain factors on gold recovery. In all cases, the general procedure was: determine 
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appropriate levels for each factor (through preliminary tests), run the experiments (using 

domestic microwave ovens), and analyze the resulting data. 

Factorial design of experiments was carried out for all minerals, considering the grade of the 

ore (i.e. the amount of gold recovered per ton of ore) as the response variable. Samples seven 

and nine considered three factors and two levels. Additionally, sample eight considered a 

multilevel design, comprised of two factors with two levels and a factor with four levels. 

Each study was carried out for mineral samples of different mines, using three replicates. 

They considered diverse factors, but they all included exposure time. Data were then 

analyzed using an evaluation license of Statgraphics.  

3.2.1.1 Mine “Juan Blanco” (Assigned to: Bernal, D.; Garnica, S. and Reslen, Y.) [20]  

Samples from a mine known as “Juan Blanco”, were considered during this DOE. Three 

replicates of a 23 factorial experiment, with three factors and two levels, was carried out 

(Table 3-3). It is worth mentioning that the levels shown for the second factor (i.e. grade) 

correspond to the gold concentration at the outer zone (low level) and at the vein (high level). 

Also, microwaves were applied in intervals of seven minutes, allowing an extra minute for 

manual mixing in order to avoid sintering, and striving to oxygenate the sample while 

avoiding hot spots. Each test was run with 40 grams of mineral and in random order.  

Table 3-3. Factors and levels used with Bernal et al. Exposure time was split into seven minutes intervals, with one 

additional minute for manual mixing 

Factor Low Level High Level 

Exposure Time [min] 28 42 

Grade [g/ton] 3 5 

Sieve 50 170 

3.2.1.2 Mine “Reina de Oro” (Assigned to: Diaz, M. and Rueda, M.) [22] 

A concentrated ore from a mine known as "Reina de Oro", with a grade of 46 grams of gold 

per ton of ore, was used during this research. Again, we considered three factors, but this 

time one of them had four levels (Table 3-4), so we considered a multilevel factorial DOE 

(with tests ran in random order). Microwaves were applied in intervals of six minutes, with 

three additional minutes for manual mixing, and a firebrick was included to reduce heat losses 

on the sample. Moreover, a preliminary smelting test was carried out, using one sample 

roasted traditionally, and two samples roasted by microwaves.  

Table 3-4. Factors and levels used with Diaz et al. Exposure time was split into six minutes intervals, with three 

additional minute for manual mixing 

Factor Level 1 Level 2 Level 3 Level 4 

SiC [g] 0 12  -- -- 

Exposure Time [min] 24 36 -- -- 

Sample Holder Clay 1 Clay 2 SiC Graphite 
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3.2.1.3 Mine  “Tajo Abierto”, (Assigned to: Aguirre, R. and Botero, W.) [19] 

In a similar fashion as with Bernal et al., three replicates of a 23 factorial experiment, with 

three factors and two levels per factor, was used in this research (Table 3-5). Tests were run 

randomly and microwaves were applied, in five minutes intervals, to a sample from a mine 

known as “Tajo Abierto”. The output power of the microwave oven was varied using its 

internal controller. 

Table 3-5. Factors and levels used with Aguirre et al. Exposure time was split into five minutes intervals, with one 

additional minute for manual mixing 

Factor Low Level High Level 

Sample’s Mass [g] 30 60 

Output Power [W] 600 1000 

Exposure Time [min] 25 40 

 

3.2.2 Dielectric properties 

Based on the good results achieved during the prior stage, it was required to analyze the 

evolution of the complex permittivity as temperature increased. For this, and considering that 

the University  does not have the required labs for this task, we did a joint work at the ITACA 

institute (Universitat Politècnica de València, Spain) through an internship and under the 

guidance of Professor Dr. Felipe Peñaranda. We followed the procedure laid out in Figure 

3-1 to obtain values for the complex permittivity as a function of temperature, using a 

dielectric kit (DK) and a cylindrical cavity (CC), both developed at the ITACA institute. The 

first one is able to calculate the complex permittivity of a sample located inside a vial, at a 

given temperature, and can be used for measuring powders, liquids and solids (provided they 

are machined to match the vial's shape) [23]. The second one is able to measure the resonant 

frequency (f) and the quality factor (Q) of a cylindrical cavity in real time, while heating the 

sample, and it is similar to the one developed in [24]. Combining this information, and using 

resonant frequency and quality factor readings for air, interpolations can be calculated and 

plots can be generated for each mineral. But, for the sake of space we only report the final 

plots and the frequency and quality factor regression models. 
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Figure 3-1. General procedure for obtaining dielectric properties as a function of temperature. 𝝐′ and 𝝐′′ are the 

real and imaginary part of the complex permittivity (respectively); CC means cylindrical cavity; f means 

frequency; Q is the quality factor of the resonator; DK stands for dielectric kit. 

Different models with variable orders were tested for each data set (Table 3-6). We looked 

for the order where the R-Square (R2), sum of squares due to error (SSE), and the root mean 

squared error (RMSE) values stabilized. As an example consider the data shown from Figure 

3-2 to Figure 3-4. In the case of the Fourier fit all responses tend to stabilize at the sixth and 

fifth orders (for heating and cooling, respectively) while the Gaussian fit stabilizes at the fifth 

and fourth ones. Small improvements could be obtained by increasing the orders further, but 

we decided to discard them in order to keep the fits as simple as possible.  

Table 3-6. Regression models, order 𝑵, used during the research. 

Fit Name General Expression  

Fourier 𝑎0 +∑𝑎𝑖 ⋅ cos(𝑖 ⋅ 𝑥 ⋅ 𝑤) + 𝑏𝑖 ⋅ sin (𝑖 ⋅ 𝑥 ⋅ 𝑤)

𝑁

𝑖=1

 (1) 

Gaussian ∑𝑎𝑖 ⋅ 𝑒
−(
𝑥−𝑏𝑖
𝑐𝑖

)
2𝑁

𝑖=1

  (2) 

Polynomial ∑𝑝𝑖 ⋅ 𝑥
𝑁+1−𝑖

𝑁+1

𝑖=1

  (3) 

Exponential ∑𝑎𝑖 ⋅ 𝑒
𝑏𝑖⋅𝑥

𝑁

𝑖=1

 (4) 
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Fit Name General Expression  

Sum of Sin ∑ai ⋅ sin(𝑏𝑖 ⋅ 𝑥 + 𝑐𝑖)

N

i=1

 (5) 

 
Figure 3-2. R2 as a function of the order used for the fitting model 

 
Figure 3-3. SSE as a function of the order used for the fitting model 
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Figure 3-4. RMSE as a function of the order used for the fitting model 

3.3  RESULTS 

3.3.1 Experimental testing 

A brief comment is now made about the experiments carried out with each mineral sample. 

In a general sense, data report interesting information. In all cases, exposure time had a 

positive effect on gold recovery. Likewise, the remaining factors also affected the 

experiments positively (i.e. more gold was recovered when using the high levels of the 

factors). Furthermore, normal probability and residual plots revealed no problems with 

normality assumption or with residuals variance (Figure 3-5 – Figure 3-7). The appendix 

shows the aforementioned information, as well as detailed plots of the main effects and of 

those due to the interaction between factors. Also, the reader will find ANOVA tables of the 

data.  

Regarding “Juan Blanco”, we found that all three factors significantly affect gold recovery 

(Figure 3-5). Moreover, there is an important interaction between the type of mineral and 

sieve size. The remaining two-factor interactions do not yield enough information as to 

consider their effect significant. The three factor interaction can be safely disregarded for this 

mineral. Data reveal that the mean absolute error (MAE), i.e. the average value of the 

residuals, was 0.32. Moreover, the P-value of the Durbin-Watson (DW) statistic test was of 

22.6%, indicating no significant correlation of the residuals, at the 5% significance level.  

In the case of “Reina de Oro”, we found that all factors and their interactions exhibit a 

significant effect on gold recovery. Still, the one that yielded the highest relation, by far, was 

the interaction between Silicon Carbide and the Sample Holder used (Figure 3-6). For these 
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tests, MAE was 3.11 and the DW statistic test reported a P-value of 73%. Hence, there is no 

significant correlation of the residuals, at the 5% significance level.  

The final mineral sample, “Tajo Abierto”, revealed that the chosen factors affect gold 

recovery almost independently, for a significance level of 5% (Figure 3-7). Nonetheless, 

mass yielded the highest effect, while microwave power yielded the lowest one. This time, 

MAE was 0.46. Once again, the DW statistic test was way above (80.7%) the limit of the 

significance level. Hence, there is no significant correlation of the residuals, for the tested 

minerals, at the 5% significance level. 

 
Figure 3-5. Pareto chart (a) and normal probability plot (b) for mine “Juan Blanco” 

 

Figure 3-6. Pareto chart (a) and residuals plot (b) for mine “Reina de Oro” 
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Figure 3-7. Pareto chart (a) and normal probability plot (b) for mine “Tajo Abierto” 

Microwaves hold a great potential in terms of processing time and energy consumption, since 

reductions over 68% (for time) and over 81% (for energy) were always possible (Table 3-7).  

It is worth noting that during the work with Diaz and Rueda, a recovery margin of 119% was 

achieved, but this simply means that the sample was better roasted by microwaves than by 

the traditional approach. An additional argument for this is the fact that during this work we 

used silicon carbide as a thermal enhancer, thus making it easier to increase the temperature 

in the sample. Moreover, we verified that microwaves successfully roasted the mineral, 

removing all the pyrite and allowing the formation of hematite (Table 3-8). 

Table 3-7. Resulting data for the traditional approach and the three experiments carried out. TR stands for time 

reduction, ER stands for energy reduction, and MR is the maximum gold recovery achieved. The high percentage 

of the second experiment means that the sample was better roasted by microwaves than through the traditional 

approach 

Approach Time [min] Energy [kWh] TR ER MR 

Traditional 160 5.20 -- -- -- 

Bernal et al. 47 0.62 71% 88% 90% 

Diaz and Rueda 51 1.00 68% 81% 119% 

Aguirre and Botero 47 0.95 71% 82% 90% 

 

Table 3-8. Mineral composition before and after roasting for “Juan Blanco”, sieve: 170 

Compound Before After 

Quartz (SiO2) 41.9% 24.6% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 15.9% -- 

Pyrite (FeS2) 29.1% -- 

Diaoyudaoite (Na2Al22O34) 3.8% 3.0% 

Magnetite (Fe3O4) 0.3% -- 

Erdite (NaFeS2. H2O) 0.2% -- 

Arsenolite (As4O6) 0.6% -- 

Hematite (Fe2O3) -- 47.7% 

Others 8.2% 24.7% 
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3.3.2 Dielectric properties 

The grade (i.e. gold concentration), the iron and sulfur content, and the dielectric properties 

(at room temperature) of each sample are given in Table 3-1. Please note that sample three 

has virtually no sulfur, and that samples five and six have low sulfur content compared to the 

others. As an additional detail, and striving to establish differences between the minerals, we 

show the five most abundant elements for each sample (Table 3-9). Here, it is worth noting 

too that iron, silicon and aluminum are present in all the samples, and that the sulfur content 

in samples three, five and six is so low that it is not among the top five elements (this also 

applies to sieve: -200 of sample number one, and in the case of sieve: 200 it is the least 

abundant of the five elements).  

Table 3-9. Five most abundant elements for each sample, where JB: Juan Blanco; IS: Ismael; CA: Carlos Arias; 

CV: Core from El Volcán; RS: Rock from Segovia, Antioquia. The sieve size is given by the letter S and the 

number next to it 

Element JB S100 JB S200 JB S-200 M9 S100 IS S-170 CA S100 CV S-120 RS S-120 

Fe 18.35% 14.03% 9.17% 30.67% 13.09% 24.09% 8.37% 2.06% 

Si 14.87% 18.57% 17.98% 14.29% 20.26% 23.43% 22.03% 22.56% 

Al 11.02% 14.38% 13.69% 0.60% 11.15% 2.84% 8.56% 9.10% 

S 10.72% 6.57% -- 23.51% -- 17.11% -- -- 

Pb 6.50% -- 5.72% -- -- -- -- -- 

K -- 7.87% 8.94% -- 4.75% 2.04% 7.29% 5.06% 

Cu -- -- -- 0.48% -- -- -- -- 

As -- -- -- -- 1.55% -- -- -- 

Ti -- -- -- -- -- -- -- -- 

Mg -- -- -- -- -- -- 1.04% -- 

Ca -- -- -- -- -- -- -- 6.46% 

Na -- -- -- -- -- -- -- -- 

Zn -- -- -- -- -- -- -- -- 

 

We measured the complex permittivity of the three sieves of sample number one, using 

ITACA's dielectric kit. The dielectric constant decreased about 80% and the loss factor did 

so in about 97% (Figure 3-8). This relates to the change in composition (Table 3-9), which 

in turn affects heating (see below).  
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Figure 3-8. Effect of sieve size on the complex permittivity for mineral “Juan Blanco” at room temperature 

At some temperatures, complex permittivity remain stable (e.g. between 500 °C and 600 °C) 

unless the applied power is increased, so it actually depends on time and temperature (Figure 

3-9). However, this kind of plot can become awkward and perspective can be easily lost. 

Nevertheless, the information can be projected into a 2D view without loss of generality, 

where only the variation as a function of temperature is shown (Figure 3-10). So, from this 

point onwards, that will be the kind of plot used.  
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Figure 3-9. Real (left) and imaginary (right) components of the complex permittivity for "Juan Blanco" sieve: 100, 

as a function of temperature and time 

 
Figure 3-10. Dielectric properties as a function of temperature for "Juan Blanco", sieve: 100 

A visual inspection of the three sieves from "Juan Blanco" revealed that the first one (sieve: 

100) successfully roasted during the test and varied with temperature in a direct manner. Its 

dielectric constant and loss factor increased by 52% and 24%, respectively. Moreover, there 

was a boom for dielectric constant around 350°C and for loss factor around 120°C (Figure 

3-10). The second one (sieve: 200), however, slightly changed color and its dielectric 

constant and loss factor decreased by 6% and 42%, respectively (Figure 3-11). The final one 

(sieve: -200), remained almost the same (the only change was due to evaporation of the 

sample's humidity) and the dielectric constant and loss factor decreased by 13% and 51%, 

respectively (Figure 3-12). Thus, and considering the data given in Table 3-1, we think this 

reduction in the affinity of the sample to microwaves may be associated with the decreasing 

concentration of sulfur as the mineral is ground more finely.  
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Figure 3-11. Dielectric properties as a function of temperature for "Juan Blanco", sieve: 200 

 
Figure 3-12. Dielectric properties as a function of temperature for "Juan Blanco", sieve: -200 

Samples two and four (i.e. "M9" and "Carlos Arias", respectively) successfully roasted, and 

their dielectric constants and loss factors increased by 12% and 16%, and by 21% and 35%, 

respectively. However, in the first case roasting occurred around 400°C and in the second 

case it was around 500°C. After the temperature increased further, the properties of the 

remaining compounds in both samples changed behavior, quickly decaying and thus reducing 

the affinity to microwaves (Figure 3-13 and Figure 3-14). A comparison of the compounds 

in the sample verified that these three minerals roasted to some extent, as can be seen from 

the comparison shown in Table 3-10, Table 3-11, and Table 3-12, where in all cases the 

sulfur-based compounds diminished. 
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Figure 3-13. Dielectric properties as a function of temperature for "M9", sieve: 100 

 
Figure 3-14. Dielectric properties as a function of temperature for "Carlos Arias", sieve: 100 

Table 3-10. Mineral composition before and after roasting for “Juan Blanco”, sieve: 100. N.Q.: Not Quantifiable 

Compound Before After 

Quartz (SiO2) 18.1% 14.0% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 17.5% 20.1% 

Pyrite (FeS2) 26.7% 12.8% 

Mackinawita (FeS) 2.2% 1.5% 

Galena (PbS) <1.0% <1.0% 

Arsenopyrite (FeAsS) N.Q. -- 

Anglesite (Pb(SO4)) 3.1% -- 

Sphalerite (ZnO) -- <1.0% 
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Pyrrhotite (Fe0.95S1.05) -- 1.4% 

Spinel (Mg1.01Fe1.77Al.22O4) -- 1.9% 

Melanterite ((Fe, Cu, Zn)SO4 ⋅ 7H2O) -- 1.9% 

Zincocopiapite (ZnFe4(SO4)6(OH)2 ⋅ 18H2O) -- N.Q. 

Anatase (TiO2) -- <1.0% 

Others 31.6% 44.3% 

 

Table 3-11. Mineral composition before and after roasting for “M9”, 100. N.Q.: Not Quantifiable 

Compound Before After 

Quartz (SiO2) 38.7% 27.1% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 9.8% -- 

Pyrite (FeS2) 31.2% 25.0% 

Sphalerite (ZnO) N.Q. -- 

Pyrrhotite (Fe7S8) -- 16.0% 

Others 20.3% 31.9% 

 

Table 3-12. Mineral composition before and after roasting for “Carlos Arias”, sieve: 100 

Compound Before After 

Quartz (SiO2) 46.1% 47.0% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 10.9% 6.8% 

Pyrite (FeS2) 17.2% 13.9% 

Calcite (Ca(CO3)) 1.3% 2.0% 

Microcline (KAlSi3O8) 2.1% 6.9% 

Pyrrhotite (Fe0.95S1.05) -- 9.1% 

Others 22.4% 14.3% 

 

The remaining samples have lower dielectric properties and, thus, temperature did not 

increase over 230°C, so they did not roast. The dielectric constants and the loss factors 

respectively decreased by 9% and 25% ("Ismael", Figure 3-15), by 10% and 23% ("Core 

from El Volcán", Figure 3-16), and by 10% and 30% ("Rock from Segovia, Antioquia", 

Figure 3-17). 
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Figure 3-15. Dielectric properties as a function of temperature for "Ismael", sieve: -170 

 
Figure 3-16. Dielectric properties as a function of temperature for "Core from El Volcán", sieve: -120 
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Figure 3-17. Dielectric properties as a function of temperature for "Rock from Segovia, Antioquia", sieve: -120 

3.3.3 Further results 

Besides the basic feasibility experiments shown above, we analyzed different aspects of 

microwave processing. Here, only some of the most relevant data is shown, for the sake of 

space, but the reader is encouraged to consult the full reports of each undergraduate 

experimental research. Bernal et al. explored the effect of reducing the microwave applicator, 

on the maximum temperature achieved by a water load. We found temperature increments 

of up to 12°C after an exposure of 1 minute, but reductions over 18 cm led to a quick decrease 

in maximum temperature, mainly due to the electromagnetic field being unable to propagate 

at those dimensions (Figure 3-18). Moreover, care must be taken when diminishing an 

applicator, since the higher energy concentration facilitate the formation of electric arcs [20].  
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Figure 3-18. Effect of cavity reduction on maximum temperature for a water load. Based on [20] 

Diaz and Rueda focused on measuring the temperature inside the sample, and on exploring 

the feasibility of smelting the sample with microwaves [22]. On the first regard, we 

considered a setup using a firebrick and the temperature system of a standard electric furnace 

(Figure 3-19), and we analyzed the effect of adding silicon carbide (SiC) to the sample. We 

observed that if no carbide is added, the sample holders made of graphite and SiC allow for 

higher temperatures inside the ore (Figure 3-20). But, if added, the carbide begins competing 

with the sample holders, neglecting any improvement. However, this hindrance was not 

present for the clay-based sample holders, due to their lesser natural affinity to microwaves, 

and thus temperature increased almost twice (Figure 3-21).  

 
Figure 3-19. Experimental setup for temperature measurement. Based on [22] 
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Figure 3-20. Temperature [°C] evolution for different sample holders, with no silicon carbide. Based on [22] 

 
Figure 3-21. Temperature ratio evolution for two sample holders, considering silicon carbide. Based on [22] 

An exploratory test was carried out regarding microwave smelting. We chose three samples, 

one roasted by traditional means and two by microwaves, and at least for this mineral, results 

were satisfactory (Table 3-13). Two things are worth mentioning here. The first one is that 

reagents are still used to facilitate the smelting process, so there is not really a gain in this 

sense. However, the second remark is that the whole smelting process (starting at room 

temperature) only took 20 minutes, as opposed to 240 minutes required in an electric furnace, 

so a processing time reduction of about 92% can be easily achieved, thus leading to possible 

economic and environmental benefits. Even though an energy reading was not registered for 

the smelting (mainly due to the exploratory mean of the tests), it is fairly obvious that an 
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energy reduction in the order of the one achieved for roasting (or even greater) can be easily 

achieved.  

Table 3-13. Grade [g/ton] and recovery margin (RM) of microwave (MS) and traditionally (TS) smelted 

samples, using ores with different roasting conditions. Based on [22] 

Sample MS [g/ton] TS [g/ton] RM 

Traditionally roasted 43.7 46.0 95% 

Roasted using SiC sample-holder and thermal enhancer 36.7 36.7 100% 

Roasted using graphite sample-holder and no thermal enhancer 40.0 40.0 100% 

 

Aguirre and Botero strived to improve a temperature measurement system that allowed 

readings at five different points in the sample [19], whose block diagram is shown in Figure 

3-22. The PC runs a graphical user interface (GUI), that allows modification of the 

parameters (e.g. heating cycle, sensing time, etc.), and that is also in charge of controlling 

the system. The information goes through a DAQ and some protections for keeping out any 

current that could be induced during the process. Finally, the PCB enables the magnetron or 

the thermocouples (but never both, for safety reasons). Thus, temperature is read only when 

the magnetron is disabled and the data go to a signal conditioning stage, that defines the 

sensing range and that also filters noise. This information is then gathered by the PCB and 

sent to the computer via the DAQ. A visualization stage shows the current thermocouple, and 

indicates if there is an error on the device. The system was calibrated using a hot plate, with 

a maximum temperature of 300 °C (Figure 3-23), and it was used to register the temperature 

evolution at five different points during the tests (Figure 3-24). 

 
Figure 3-22. Block diagram of the multi-point temperature measurement system. Based on [19] 
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Figure 3-23. Temperature readings of a hot plate after calibration. Based on [19] 

 
Figure 3-24. Temperature readings of 60 g of mineral sample, heated at 1000 W for 40 min. Based on [19] 

3.4  DISCUSSION 

Along the lines of this chapter, we have shown two approaches for identifying the mineral 

samples, both of them important for successfully creating an algorithm able to optimize a 

waveguide for this particular application. Moreover, we summarized some of the key extra 

results achieved with each undergraduate experimental research, mainly focused on reducing 

the microwave applicator, on measuring the temperature in the sample (adapting a standard 

temperature system and creating one), and on exploring the feasibility of microwave 

smelting.  
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We found that microwaves are a good choice for mineral roasting (at least at lab level), since 

processing time can be reduced between 68% and 71%, and energy consumption between 

81% and 88%, while achieving recovery margins of at least 90% of the traditional approach. 

Even more, one of the studies boasted a recovery of 119%, meaning that the sample was 

better roasted by microwaves than with the electric furnace. The exposure conditions for this 

process imply: a mass between 30 and 60 grams, enough for not modifying the following 

steps of traditional recovery; an exposure between 36 and 42 minutes, split in intervals for 

allowing oxygenation of the sample; a clay sample holder; a mixture of ore and some silicon 

carbide; a sieve size between 100 and 170; and a magnetron with one kilowatt of power. Note 

that since a domestic oven was used during these studies, it is possible to reduce the amount 

of power required, by designing an appropriate applicator (in a similar way to the equipment 

used for measuring dielectric properties). 

In a similar fashion, measuring the complex permittivity of mineral samples through a 

resonance-based method yielded good results. The rapid temperature increase, the uniformity 

of microwave heating, and the equipment's speed, allowed tracking the changes in resonant 

frequency and quality factor, even when the sample began roasting—changing its internal 

structure and compounds. However, we also found that variables such as particle size (sieve) 

must be chosen carefully, since they can drastically alter the complex permittivity of a 

mineral, as shown for "Juan Blanco" (see Figure 3-8). 

Table 3-14 summarizes the best models found for all six minerals (including the three 

different sieves of "Juan Blanco"), as well as their order and coefficients (please refer to 

Table 3-6 for the general expressions). In some cases, properties vary so much that a single 

model cannot be used to properly represent the data and thus it needs to be split into ranges 

(see, for example, "El Volcán"). Also, please note that the data is given for resonant 

frequency and quality factor, so different types of interpolations can be easily implemented 

by the reader (if desired), and that a measurement of air returned a resonant frequency of 

2124.9 MHz and a quality factor of 10076. In any case, please refer to Table 3-1 for the 

starting and ending dielectric properties of each sample at room temperature. 

Further studies showed that it is possible to adapt the temperature measurement system of an 

electric furnace, or even create one from scratch, to simultaneously heat the sample and read 

its temperature at different locations. This opens the possibility for a more controlled 

environment, and the eventual economic and environmental benefits of using microwaves at 

this scale are evident. Thus, their study should be extended, but bear in mind that due to the 

sulfur vapors released during roasting, a research at pilot plant level must incorporate an 

additional stage for disposing them (e.g. collecting them as sulfur). Finally, we observed that, 

at least for one sample, microwave smelting is possible with processing time reductions of 

about 92%, so we also recommend further exploration of this alternative.  
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Table 3-14. Summary of best fits for the mineral samples. The general expression of each model is shown in Table 

3-6 and the starting and ending values of permittivity is given in Table 3-1. 

Sample Sieve Process Suggested Fit Coefficients 

Juan Blanco 100 Heating Frequency: ai = [2137, -9.92, -91632.63, 91623.18, -2.84] 

        Gaussian N=5 bi = [-6074, 647, 525.30, 525.30, 409.90] 

        ci = [54221.56, 49.13, 69.19, 69.19, 39.37] 

    Cooling   Gaussian N=5 ai = [2100, 40611.59, 4.96, 0.74] 

        bi = [-7.17, 1272, 578.20, 458] 

        ci = [6733, 216.20, 90.81, 458] 

    Heating Quality Factor: ai = [1956, 2116, -224.20, 541.90] 

        Gaussian N=4 bi = [10.83, 121.80, 135, 355.40] 

        ci = [51.03, 89.29, 25.28, 713.90] 

    Cooling   Gaussian N=5 ai = [-96.23, -41157.72, 41281.25, -93.43, 1568] 

        bi = [-10.24, 168.90, 168.90, 456.90, -587.80] 

        ci = [115.60, 74.05, 74.24, 83.89, 1040] 

Juan Blanco 200 Heating Frequency: ai = [2115, 1.90, 1.82] 

        Gaussian N=3 bi = [19.33, 263.60, 224.40] 

        ci = [5801, 27.54, 46.92] 

    Hold   Gaussian N=2 ai = [2115, 0.39] 

        bi = [238.60, 246.40] 

        ci = [437.40, 3.31] 

    Cooling   Gaussian N=1 ai = 2158 

        bi = -6.22E+04 

        ci = 4.42E+05 

    Heating Quality Factor: a0 = 4023 

        Fourier N=4 ai = [-288.60, -59.13, 253.30, 162] 

        bi = [324.20, 397.50, 400, -34.56] 

        w = 0.01989 

    Hold   Gaussian N=4 ai = [6228, 3189, 1379, 772.70] 

        bi = [229.90, 241.60, 245, 246.20] 

        ci = [10.08, 5.76, 2.60, 1.16] 

    Cooling   Fourier N=1 a0 = 5588 

        ai = -88.31 

        bi = -32.16 

        w = 0.02851 

Juan Blanco -200 Heating Frequency: ai = [2239, 3.54e-02, 0.45, 3.33e-02, 0.84, 0.20] 

        Gaussian N=6 
bi = 

[-2.06e+04, 157.8, 163.4, 148.2, 140.6, 

74.56] 

        ci = [8.77e+04, 1.53, 16.37, 2.22, 53.11, 26.99] 

    Hold   Gaussian N=2 a0 = 2118 

        ai = -0.01488 
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Sample Sieve Process Suggested Fit Coefficients 

        bi = -0.03218 

        w = 1.51310 

    Cooling   Gaussian N=2 ai = [2125, 2.44] 

        bi = [-1573, 300.60] 

        ci = [2.65e+04, 236] 

    Heating Quality Factor: 
ai = 

[1339, 5187, -117.80, 2.67e+04, 49.71, 2414, 

573.1] 

        Gaussian N=7 
bi = 

[158, 119.60, 24.24, -38.78, 28.96, 47.73, 

73.47] 

        
ci = 

[15.04, 67.54, 1.53, 44.09, 0.42, 22.50, 

13.42] 

    Cooling   Polynomial N=2 pi = [-3.54E-02, 8.07, 4795] 

M9 100 Heating Frequency: a0 = 2098 

        Fourier N=5 ai = [1.32, 2.55, 1.85, 0.14, 0.38] 

        bi = [9.93, 1.18, 0.21, -0.29, 0.04] 

        w = 0.00779 

    Cooling   Fourier N=3 a0 = 2090 

        ai = [3.53, 0.88, 0.16] 

        bi = [3.48, -0.55, -0.60] 

        w = 0.00798 

    Heating Quality Factor: a0 = 652.3 

        Fourier N=5 ai = [124.50, 26.52, 42.23, 22.91, -12.64] 

        bi = [440.10, 55.03, 30.57, 44.64, 16.73] 

        w = 0.00925 

    Cooling   Exponential N=2 ai = [336.40, 1.84e-04] 

        bi = [-1.33e-03, 2.29e-02] 

Ismael -170 Heating Frequency: ai = [2115, 1.03, 1.35] 

        Gaussian N=3 bi = [-20.84, 238.40, 208.30] 

        ci = [7966, 22.85, 43.04] 

    Hold   Gaussian N=1 ai = 2115 

        bi = 222.60 

        ci = 191.60 

    Cooling   Polynomial N=1 pi = [-1.46e-03, 2116] 

    Heating Quality Factor: a0 = 5122 

        Fourier N=3 ai = [-908.50, -96.17, -79.89] 

        bi = [-2318, -162.60, 252.30] 

        w = 0.01538 

    Hold   Gaussian N=1 ai = 7089 

        bi = 222.50 

        ci = 7.90 

    Cooling   Gaussian N=3 ai = [2138, 5242, 6856] 



77 

Sample Sieve Process Suggested Fit Coefficients 

        bi = [17.49, 64.71, 215.40] 

        ci = [44.17, 91.28, 131.10] 

Carlos Arias 100 Heating Frequency: ai = [2068, 3.56, 730.5] 

        Gaussian N=3 bi = [-632.10, 599.70, 1098] 

        ci = [2237, 30.81, 965] 

    Hold   Fourier N=2 a0 = 2088 

        ai = [-8.56e-02, 5.52e-02] 

        bi = [0.15, 0.12] 

        w = 0.27120 

    Cooling   Fourier N=6 a0 = 2091 

        ai = [5.63, 1.38, 0.83, -0.69, -0.59, -0.17] 

        bi = [2.57, -1.62, -1.40, -0.84, -0.24, 0.34] 

        w = 0.00862 

    Heating Quality Factor: a0 = 642.4 

        Fourier N=6 
ai = 

[165, -107.20, 102.50, 96.01, 172, 124.10, 

66.14] 

        
bi = 

[779.70, 358.90, 362.40, 171, 67.52, 20.01, 

15.75] 

        w = 0.00820 

    Hold   Polynomial N=2 pi = [-5.42e-02, 61.97, -1.73e+04] 

    Cooling   Fourier N=3 a0 = 224.4 

        ai = [47.49, -5.01, 1.75] 

        bi = [10.56, -16.74, 2.21] 

        w = 0.00920 

Core from El 

Volcán 
-120 Heating Frequency: ai = [2112, 65.35, 5.24] 

  (T≤80)   Gaussian N=3 bi = [92.33, -20.75, 40.27] 

      ci = [552.70, 49.70, 32.04] 

    Heating   Gaussian N=6 ai = [2114, -7534, -5.31, -0.45, -210.20, 7714] 

    

(82≤T≤14

0)   
bi = [131.80, 90.32, 83.20, 102.10, 93.43, 90.40] 

        ci = [1660, 7.77, 5.95, 5.12, 7.43, 7.80] 

    Heating   Fourier N=3 a0 = -5.00E+04 

    (T≥140)   ai = [6.39e+04, -1.05e+04, -1416] 

        bi = [-4.51e+04, 2.95e+04, -5031] 

        w = -0.00306 

    Hold   Gaussian N=3 ai = [2114, 0.14, 0.02] 

        bi = [223, 208, 214.10] 

        ci = [1657, 4.50, 2.16] 

    Cooling   Gaussian N=3 ai = [2114, 2.55e+10, 0.40] 

        bi = [-364.10, 575.60, 312.90] 

        ci = [2.98e+04, 71.18, 158.30] 
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Sample Sieve Process Suggested Fit Coefficients 

    Heating Quality Factor: ai = [89.40, 707.90, 3.96e+14, 42.62] 

        Fourier N=6 bi = [128.70, 290.70, -1.02e+04, 162.30] 

        ci = [19.62, 219.10, 1965, 21.43] 

    Hold   Sum of Sin N=4 ai = [1392, 599.70, 32.20, 64.77] 

        bi = [0.27, 0.52, 1.05, 1.20] 

        ci = [12.83, 32.20, 64.77, 181.20] 

    Cooling   Fourier N=3 a0 = 3.60E+09 

        ai = [-5.38e+09, 2.13e+09, -3.47e+08] 

        bi = [-5.00e+08, 3.99e+08-9.91e+07] 

        w = 0.00082 

Rock from 

Segovia 
-120 Heating Frequency: ai = [2012, 92.11, 1608, 1] 

  (T≤120)   Gaussian N=4 bi = [175.30, 59.46, -69.65, 93.37] 

        ci = [186.80, 68.26, 136.10, 26.58] 

    Heating   Gaussian N=2 ai = [2116, 1.31] 

    (T≥120)   bi = [102.70, 223.60] 

        ci = [3899, 60.39] 

    Cooling   Gaussian N=2 ai = [2168, 11.07] 

        bi = [-6842, 570.60] 

        ci = [4.23e+04, 619] 

    Heating Quality Factor: ai = [247.80, 3664, 1430, 116.20] 

        Gaussian N=4 bi = [123, 175.40, -1.36, 87.06] 

        ci = [17.01, 207.50, 41.63, 16.59] 

    Cooling   Gaussian N=2 ai = [3859, 178.80] 

        bi = [44.09, 203.60] 

        ci = [463.30, 52.02] 

 

3.5  FINAL COMMENTS 

In this chapter we developed the first two specific objectives of the dissertation, i.e. 

determination of the dielectric properties and of the exposure conditions of the gold ore 

samples selected from the beginning. We found that gold ores with high sulfur content 

interact more easily with microwaves, due to their higher complex permittivity. Using 

equipment developed at the ITACA institute (Universitat Politècnica de València, Spain), we 

were able to interpolate the complex permittivity as temperature increased and, even, during 

the roasting phase. Based on our data, a Gaussian fit was better 59.1% of the time, followed 

by a Fourier fit in 29.5% of the cases, and scarcely using polynomial, exponential and 

sinusoidal fits (the remaining 11.4%).  
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The exposure conditions studied here reported that a mass between 30 and 60 grams, an 

exposure time between 36 and 42 minutes, a clay sample holder, a mixture of ore and silicon 

carbide, a sieve size between 100 and 170, and a magnetron with one kilowatt of power, were 

appropriate conditions for microwave interaction. The amount of power, however, can be 

reduced if the field distribution is optimized. Furthermore, an exploratory experiment showed 

that, at least for one type of ore, microwave smelting is possible in a fraction of the time 

(about 8%), with recovery margins between 95% and 100%. A more extensive research work 

is needed due to the novelty of this application. 

Furthermore, our findings mean that, for the studied minerals, temperature-dependence of 

the complex permittivity can be now included in simulations, allowing better prediction of 

internal field distribution or better simulation of heating profiles. Now, the discussion 

migrates to the third specific objective, related to the use of modern optimization algorithms 

(also known as metaheuristic algorithms), so the data reported here can be used to design an 

optimal microwave applicator. 
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4. KNOWING THE ALGORITHMS 

Modern optimization algorithms can be used in a wide array of situations. Since they are not 

hindered by complex mathematics, they are quite straightforward to implement. During this 

dissertation, we tested several algorithms under different scenarios that can be broadly 

classified into optimization problems per se, and solution problems, where the objective 

function is built from a system of equations (including nonlinear elements).  

This kind of optimization strategies have become quite popular during the last couple decades 

and there currently are a vast number of options available. This chapter is devoted to 

assessing some of these options and selecting two of them. They will be used in the following 

chapters, for the development of an optimization strategy for microwave applicators.  

Similarly as it was stated in the last chapter, and in pursuing a well-defined objectives that 

are part of the main research objectives described in this dissertation, we selected a new group 

of students to join our group as research assistants and complete their undergraduate theses: 

Jhonatan Contreras and Carlos Villanueva 

[1] 

Jorge González and Carlos Bayona [2]  

Rafael Ortiz and Edgar García [3] Alejandro Miranda and Juan Ruiz [4] 

Alberto Hinojosa and Katherine Espinosa 

[5] 

Julián Ávila and Orlando Navarro [6] 

Juan Arias and Moisés Mogollón [7] Andrés Rodríguez and Kildar Gaona [8] 

Héctor Castro and Marco Otero [9] Marisol Hernandez [10] 

Jorge Portilla [11] Francisco Ramírez and Oscar Roa [12] 

Jorge Cruz [13] Saúl González and Oscar Trasladino [14] 

José García and Diego Corredor [15] Kristian Barreto [16] 

Carlos Gómez and Oscar Pérez [17] Jonathan Ramírez and Fausto Osorio [18] 

Julieth Celis and Francis Rincón [19] Camilo Pinzón and Edwin Ardila [20] 

Elkin Petro and Rafael Fuentes [21] Daniel Dávila and Alejandro Rutto [22] 

Edwin Farfán and Jimmy Fontecha [23] Jhon Suarez and Jorge Romero [24] 
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We want to declare our deepest appreciation to them, for their dedication and effort in 

contributing to some of the results discussed in this chapter.  

4.1  HOW DO ALGORITHMS WORK?  

Throughout this phase of the dissertation, 12 different algorithms were studied. They 

represent nature-inspired iterative strategies to improve a solution during a number of 

iterations. But, due to space restrictions, only the six most important approaches will be 

discussed below. Still, an extended list of the algorithms can be found in the appendices, 

where each strategy is explained. 

The easiest and most simple logic for improving a solution using this kind of algorithms is 

to keep iterating for a fixed number of cycles. However, most often than not, one of two 

things happen: a valid answer is not found, or it was found a long time ago. In the first case, 

the process would have to begin anew allowing for more iterations, while in the second 

scenario the answer could have been achieved with fewer iterations. In both cases, precious 

computational resources are wasted. Even so, the algorithms are described as originally 

conceived, but in this dissertation some convergence criteria are implemented, basically 

analyzing if the error at a given stage is within a tolerable range. Next, a description of the 

most relevant strategies is provided.  

4.1.1 Original approaches 

4.1.1.1 Central Force Optimization (CFO) 

CFO was proposed by Formato in 2007 [25], and it was inspired by gravitational kinematics. 

As opposed to other approaches, the inner logic of CFO is deterministic in nature. This means 

that if the same starting points and parameters are used, the algorithm will always find the 

same answer. However, Formato also shows that random starting points can be used. In a 

general sense, CFO creates a set of probes that fly throughout the search domain, constantly 

attracting themselves while looking for a maximum. Some of the works related to this 

algorithm can be found in [26–38]. 

In CFO, the mass (M) represents the fitness, and the gravitational pull (G) is one of the 

parameters that, as with other metaheuristics, varies for each problem. However, and as posed 

by Formato, a value of two seems to provide good results. CFO’s evolution is governed by 

eq. (4.1) and eq. (4.2), where the velocity (V) and the time difference (Δt) can be arbitrarily 

set to zero and one, respectively, in order to simplify calculations (this also following 

Formato's suggestion). Therefore, the only two relevant parameters that remain from the 
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physical domain are the position (R) and acceleration (a) of each probe. There are a couple 

more parameters, i.e. exponents α and β, that usually take a value of two and that do not 

relate to any physical parameters [39].   

 aj−1
p

= G∑U(Mj−1
k −Mj−1

p
) ⋅ (Mj−1

k −Mj−1
p
)
α Rj−1

k − Rj−1
p

|Rj−1
k − Rj−1

p
|
β
 

Np

k=1
k≠p

 (4.1) 

 Rj
p
= Rj−1

p
+ Vj−1

p
Δt +

1

2
aj−1
p
Δt2, j ≥ 1 (4.2) 

It is important to note that CFO maximizes a problem, as opposed to other metaheuristics. It 

also forces the probes to remain inside the search domain, using a factor (Frep) that indicates 

the loss of energy against the boundary. A general algorithm can be written as: 

Algorithm I: Original Central Force Optimization  

1. Define an initial position, and zero acceleration, for each probe.  

2. Calculate the mass (M) for each probe, and choose the position with the highest M. 

3. Calculate the new position of the probes, Rj
p
, using eq. (4.2), and adjust the ones outside the search 

domain through Frep.  

4. Update M and find the probe with maximum value.  

5. Update the acceleration of each probe, using eq. (4.1). 

6. Evaluate the convergence criteria. If it does not comply, return to 3. 

4.1.1.2 Firefly Algorithm (FA) 

FA was proposed by Yang in 2010 [40,41], and it is based on the attraction of artificial 

fireflies via the light they emit. Yang considers that any artificial firefly can attract, or be 

attracted, to any other one (i.e. they are unisex). Also, that the attractiveness is proportional 

to the brightness, where the latter is affected by the landscape of the objective function [42]. 

This implies, however, that the only function of light-emission in fireflies is mating, while it 

could also be used for attracting preys or for intimidating foes, as appears to be the case for 

real fireflies.  

Regarding the algorithm itself, Yang proposes the use of a fixed pair of constants, α and γ. 

The former relates to the randomness in the movement of an artificial firefly (between zero 

and one), while the latter relates to the dimming of emitted light as it travels through the 

search domain (usually between 0.01 and 100). The algorithm can be briefly described as: 

Algorithm II: Original Firefly  

1. Initialize fireflies. 

2. Calculate the light emitted by each firefly (i.e. evaluate the objective function for each firefly). 

3. Sort fireflies by light intensity (in ascending order). 

4. Update the position of each firefly (i.e. adjust each firefly according to eq. (4.3) and to the light 

intensity). 

5. Check for convergence. If it complies, exit. If not, go to step 2. 

 



87 

 
xi
k+1 = xi

k(1 − β) + xj
kβ + α(R1 − 0.5) 

β = β0e
−γrij

2

 
(4.3) 

It is important to point out that in eq. (4.3), subscripts i, j relate to the firefly under analysis, 

and to the other fireflies, respectively. Also, superscript k relates to the time lapse, β0 to the 

attractiveness at distance zero, R1 is a random number such that R1 ∈ [0,1], α and γ are the 

previously mentioned constants and rij is the Cartesian distance between fireflies. 

4.1.1.3 Harmony Search (HS) 

HS was proposed by Geem et al. in 2001, and it is the first approach based on the process 

that musicians carry out when composing music [43]. The general idea is that in a similar 

fashion that a musician uses his knowledge of music for composing melodies, HS uses the 

knowledge of solutions stored in its memory in tandem with some random alterations (akin 

to improvisation), to find a good solution. One of the special things about HS is that it 

improves the candidate solution (x′) one coordinate at a time (xi
′), using a rather simple 

equation. Since its creation, HS has been continuously used by its creators [43–49] as well 

as by other authors [50–64]. The procedure can be described as follows: 

Algorithm III: Original Harmony Search (HS) 

6. Define the execution parameters: memory size (HMS), memory considering rate (HMCR, usually 

performs better for values between 0.8 and 0.9), pitch adjusting rate (PAR, usually performs better for 

values around 0.1), and maximum number of iterations (NI). 
7. Generate a random initial matrix, HM, of size HMS × N, where N represents the number of dimensions. 

8. Generate a random number. If it is lower than HMCR, go to step 4. Otherwise, take a random value 

from the search domain and go to step 6. 

9. Pick the value located at a random row of HM, and at the column corresponding to the component 

being updated.  

10. Generate a random number. If it is lower than PAR, adjust the pitch using eq. (4.4), where r is a random 

number in the interval [−1,1]. 
11. Repeat steps 3 to 5 for the remaining dimensions.  

12. Evaluate the new candidate solution. If it is better than the worst solution stored in HM, replace it and 

discard the worst.  

13. Repeat for NI iterations.  

14. Report results and end the process.  

 

 xi
′ = xi

′ + r ⋅ BW (4.4) 

4.1.1.4 Particle Swarm Optimization (PSO) 

PSO may have been the strategy that revolutionized optimization approaches and that ignited 

the spark in bio-inspired computation developments. This technique, proposed by Eberhart 

and Kennedy almost two decades ago, mimics the collaborative intelligence exhibited by 

swarms when looking for sources of food [65,66]. PSO was not the first approach based on 

naturally occurring processes, but it has certainly inspired a great deal of work throughout 

the years  [54,67–83]. Broadly speaking, PSO generates a swarm that transverse the search 
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domain, communicating the best solutions found by each particle and working together to 

find a minimum. A general layout of its algorithm can be given as: 

Algorithm IV: Original Particle Swarm Optimization 

1. Assign a random initial position and zero speed for each particle. 

2. Evaluate the objective function, f, and calculate the best position each particle has found, PBesti, and the 

best position of all the swarm GBest. 
3. Update position and speed for each particle with eq. (4.5) and (4.6), where i, j represent pointers for each 

position and time step, respectively; X is a particle’s position, V its speed, w an inertia factor to limit the 

effect of its previous speed, C1, C2 are the self and swarm trust factors (default value: C1, C2 = 2.05), and 

R1, R2 are random numbers (uniformly distributed) between zero and one. 

4. Evaluate the objective function. 

5. Compare, for each particle, the evaluated value and PBesti. If it is lower, then update PBesti. 

6. Select the best particle and compare it to GBest. If it is lower, then update GBest. 
7. Compare GBest with convergence criteria. If it does not comply, return to 3. 

 

 Xi
j+1

= Xi
j
+ Vi

j+1
 (4.5) 

 Vi
j+1

= wVi
j
+ C1R1(PBesti − Xi

j
) + C2R2(GBest − Xi

j
) (4.6) 

4.1.1.5 Spiral Optimization (SO) 

SO was proposed by Tamura and Yasuda in 2011, mimicking the path followed by a given 

number of logarithmic spirals [84,85]. Akin to an eagle stalking a prey, each spiral closes in 

on the minimum through inward traveling loops, changing their target (convergence point) 

each time a spiral detects a better solution. SO requires defining the rotation angle, θ (default 

value: π/2 ), and the distance rate, r (default value can be either 0.95 or 0.99), at each step. 

The combination of these two effects (i.e. changing the convergence point and the free 

definition of rotation angle and distances) may generate paths that resemble anything but a 

logarithmic spiral, even though the mathematical model is appropriate. Some of the recent 

work related to SO can be found in [86,87] and a general algorithm can be defined as: 

Algorithm V: Original Spiral Optimization 

1. Define the number of spirals, m, as well as r and θ. 

2. Assign a random initial position inside the search domain. 

3. Find the starting convergence point, x∗, such as f(x∗) = min (f(x1), f(x2), … , f(xm)).  
4. Update position of each spiral, xk, using eq. (4.7) and eq. (4.8), where t indicates the current iteration, In 

is the identity matrix, and the index n represents the number of dimensions of the problem. Each element 

of the rotation matrix, Rn(θ), is given by eq. (4.9), where ai,j is the corresponding element of the identity 

matrix. 

5. Evaluate the objective function. 

6. Update the convergence point, x∗. 
7. Compare with convergence criteria. If it does not comply, return to 4. 

 

 xk(t + 1) = Sn(r, θ) ⋅ x
k(t) − (Sn(r, θ) − In) ⋅ x

∗ (4.7) 
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 Sn(r, θ) = r ⋅ R
n(θ) = r∏∏Rn−i,n+1−j

n (θn−i,n+1−j)

i

j=1

n−1

i=1

 (4.8) 

 γp,q =

{
 
 

 
 
cos θi,j p = i ∧ q = i

− sin θi,j p = i ∧ q = j

sin θi,j p = j ∧ q = i

cos θi,j p = j ∧ q = j

ai,j otherwise

 (4.9) 

4.1.1.6 Unified Particle Swarm Optimization (UPSO) 

UPSO was proposed by Parsopoulos and Vrahatis in 2004 and appeared as a strain of PSO 

variants [88]. However, we include it in this section since we are leaving the next one just 

for the modifications proposed during this dissertation. This modification defines a local and 

global behavior for each particle of the swarm (Lp, Gp respectively), calculated through eq. 

(4.10) and eq. (4.11), where χ stands for the constriction factor. Default values of cp = cg =

2.05 are commonly used. Afterwards, the data is merged into a single update of velocity—

eq. (4.12)—via the unification factor (default value: u = 0.5). The position of each particle, 

however, is updated in the same fashion as in PSO, i.e. through eq. (4.13). 

 Lp
t+1 = χ ⋅ [Vp

t + cpr3(Pp − Xp
t ) + cgr4(Pgp − Xp

t )] (4.10) 

 Gp
t+1 = χ ⋅ [Vp

t + cpr1(Pp − Xp
t ) + cgr2(Pg − Xp

t )] (4.11) 

 Vp
t+1 = (1 − u) ⋅ Lp

t+1 + u ⋅ Gp
t+1 (4.12) 

 Xp
t+1 = Xp

t+1 + Vp
t+1 (4.13) 

A general algorithm can be laid out as: 

Algorithm VI: Unified Particle Swarm Optimization 

15. Define UPSO parameters, including the size of the swarm (Ψ). 

16. Randomly initialize the position of each particle and their speed. 

17. Evaluate each candidate solution, and determine the best coordinate of each particle (Pp), of each 

neighbourhood (Pgp), and of all the swarm (Pg). 

18. Update the velocity and position of each particle, using eq. (4.12) and eq. (4.13), respectively. 

19. Evaluate each new position and update Pp, Pgp, Pg. 

20. Check convergence criteria. If it complies, stop the process. Otherwise, return to step 4. 

4.1.2 Modifications proposed by our group  

During some of the studies with our undergraduate students, we made an extra effort to 

propose improvements, and the most important ones relate to CFO and to HS. In the first 

case, we implemented a mapping stage to identify a good search zone, and a normal 

distribution of probes around the best point to improve exploitation of the solution. In the 

second case, we established two possible behaviors for updating the fretwidth (previously 

known as bandwidth). Similarly, and after the work with our undergraduate students was 

finished, we proposed some new elements. This time, we kept improving HS and began 

experimenting with FA. 
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4.1.2.1 CFO 

During 2010, Formato proposed three modifications for improving the original CFO 

algorithm [39]. One of them is the adjustment of the search domain, whilst the other one 

relates to the initial probe distribution and the way the repetition factor, Frep, is handled. The 

first one strives to achieve quicker convergence, while the second one is used to reduce the 

risk of converging to a local optimum and the latter is used to avoid trapping of the probes. 

Formato proposes to adjust the search domain every 20 iterations, even though it is an 

arbitrarily chosen value. Also, he proposes to reduce the search domain around the best probe, 

creating a new one whose boundaries are located halfway between the best particle's position, 

and the initial boundary. This can be more easily seen in Figure 4-1, where the best probe is 

represented by the dot, and 𝑗 relates to the current time step. In order to keep the figure as 

simple as possible, only one dimension is labeled, but the other one must be adjusted in the 

same manner. 

 
Figure 4-1. Adjustment of the search domain. For clarity, only one dimension is labeled 

Another way in which the original algorithm has been modified is by using a variable 

repetition factor. For the case of antenna optimization, Formato proposes a saw tooth 

behavior, that is restarted to the value of the increment (ΔFrep) when Frep > 1. During this 

research, we proposed to use a different change for the reposition factor. This was based on 

results delivered by some preliminary tests, where it was observed that a smaller Frep 

provided a more accurate answer. This variable also follows a linear behavior, being different 

to Formato's in the sense that this one is decreasing. After reaching a given value, the 

behavior changes to an exponentially decaying one, allowing the probes to intensify their 

search.  

As Formato states, the initial distribution is quite important for CFO, and considering the 

drawback of deterministic algorithms that he comments, it was decided to incorporate a 

couple modifications to CFO. The first one is an initial, random mapping of the search 

domain, so CFO is able to begin in a region where it is less likely to converge to a local 

optimum. The second one is to initialize the probes following a normal probability 
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distribution, centered around the best point found by the mapping stage. The first process can 

be seen in Figure 4-2, whilst the initial distribution is shown in Figure 4-3, assuming that the 

best fitness of the mapping stage was found at (5,5). 

 
Figure 4-2. Mapping stage for avoiding convergence to local optima, allowing for a bigger initial search domain 

 
Figure 4-3. Initial distribution of probes, following a normal distribution centered on the best coordinates found by 

the mapping stage 

4.1.2.2 ABHS 

With the support yielded by the work of Contreras and Villanueva [1], we noticed that a lot 

of effort was being put into improving HS’s performance and decided that perhaps we could 

arrive at a worthwhile idea. We focused on IHS, an approach proposed by Mahdavi et al. in 

2007 [57], and determined that its drawback was that it required knowing, or at least having 

an idea, of the total number of iterations that the algorithm was going to execute. Now, this 
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may not seem detrimental during controlled testing, but in a standalone scenario, where the 

algorithm should be able to determine when to stop, it becomes paramount. Moreover, the 

authors assumed that the parameter should always decrease, but this may not always be true 

since each optimization problem is different. Thus, we decided to adapt the idea and tweak 

it so the algorithm uses information from its improvement.  

We came up with two enticing ideas, ABHSv1 and ABHSv2, and similarly to IHS, our 

approach does not represent a big overhaul of HS. In fact, it only adds an updating stage for 

the fretwidth that resets after several non-successful iterations (SatLim). Both approaches 

decrease exponentially as iterations progress, but after finding a better solution ABHSv1 

resets to the original fretwidth (FW), whilst ABHSv2 fixates at the last value. A general flow 

diagram of these proposals is shown in Figure 4-4, assuming that point one begins after 

updating the harmony memory (HM) in the original algorithm (i.e. HS), and that point two 

leads to the next iteration. Also, in Figure 4-5 we present a sample variation of the fretwidth 

with both proposals, assuming that a better solution is found at iterations 24 and 45.  

 
Figure 4-4. General overview of the modifications proposed with ABHS, where 𝐃𝐂 is the decay counter, j is the 

current iteration, SatCt is the saturation counter, and SatLim is the saturation limit 

 
FW = FWmax ⋅ e

(
DC

DCmax
⋅log(

FWmin
FWmax

))
 

(4.14) 
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Figure 4-5. Fretwidth behavior for the ABHSv1 (up) and ABHSv2 (down) modifications, considering that a better 

answer is found at iterations 24 and 45 

4.1.2.3 SFHS 

Based on the good results achieved with ABHS [52], we strived to improve the results even 

further. To do so, we designed an approach able to self-adapt as the problem evolved. The 

general idea is the same: decrease exponentially, but now whenever a new solution is found, 

the fretwidth updates to a random value around the current one. Again, a general diagram is 

shown in Figure 4-6, and Figure 4-7 shows a sample variation assuming improvements at 

iterations 5, 24 and 27. 

 
Figure 4-6.  General overview of the modifications proposed with SFHS, , where 𝐃𝐂 is the decay counter, j is the 

current iteration, SatCt is the saturation counter, and 𝐅𝐖𝐬𝐚𝐭 is the saturation limit 
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 FW = Aj + (rFW − 0.5) ⋅ CFW ⋅ Aj (4.15) 

 
Figure 4-7. Fretwidth behavior for SFHS, considering that a better answer is found at iterations 5, 24, and 27 

4.1.2.4 FA 

Considering that FA is able to provide good results for test functions [40], but only when α 

and γ are chosen properly, we decided to explore the behavior of the algorithm after 

implementing some modifications. The first one allows the constants to vary as the search 

progresses, and we chose a stochastic behavior that decreases as iterations go by, since a 

smaller α allows random movement in a smaller area, and because a smaller γ avoids trapping 

of artificial fireflies in local optima. The behavior is given by eq. (4.16), where Var represents 

each factor (α, γ), kVar is a proportionality constant that defines how much can α or γ be 

reduced in one iteration, and R is a random number (uniformly distributed between zero and 

one). Should any factor decrease below a given limit, it is restarted to a random number (also 

uniformly distributed) between zero and a maximum value, so the procedure begins at 

different points, thus making it more stochastic. During this research, an inferior limit of 

10−10 and 10−7 was used for α and γ, respectively. 

 Var = Var ⋅ (1 − kVar ⋅ R) (4.16) 

The second modification alters the way in which artificial fireflies travel through the search 

domain. We propose that a firefly (xi) is automatically attracted to the vicinity of another one 

(xj), by means of eq. (4.17), striving to speed up the optimization process.  

 xi
k+1 = xj

k + α(R1 − 0.5) (4.17) 

The last change consists of dividing α by the index of the attracting firefly, as shown by eq. 

(4.18). Since the information of xj is sorted in an ascending order of f(xj), then the best 

fireflies (i.e. the ones with higher light emission) have a higher j index. This means that the 

fireflies attracted to the best solution found so far, would be located in a smaller region, thus 

favoring intensification of the search.  
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 xi
k+1 = xj

k +
α

j
(R1 − 0.5) (4.18) 

 

4.2  WHAT WERE ALGORITHMS USED FOR IN THIS DISSERTATION? 

During this dissertation, we analyzed two types of problems: optimization and solution of a 

system of equations. The first one, i.e. optimization, represents the classical application of 

both, traditional and modern optimization algorithms. A direct example is the design of an 

optimum multilayered electromagnetic absorber, Figure 4-8, that should have minimum 

thickness and reflection [2–4]. In this case, factors such as the number of layers, as well as 

their materials and thickness, became design variables for the problem. Other scenarios for 

the use of optimization algorithms were found in the design of microchannel heat sinks [5,6], 

route planning [7], filter design [8,9], and oil production [10]. 

Awareness about the usage of optimization algorithms in the second kind of situations is, 

alas, less widespread (to our knowledge), and so, we briefly explain the process here. Imagine 

there is a system of two equations, f1(x) and f2(x), and that you need to calculate its solution, 

x∗. If we analyze each equation separately, we notice there is a total of three different points 

where at least one equation becomes zero. But, there is only one at which both equations 

nullify, and that is at the solution to our problem (Figure 4-9). Now, if we build a new 

equation, made up of the summation of each equation in the system, squared, we only get 

one point where the equation nullifies, and that is at x∗ (again, our solution). This equation 

can be used as an objective function and thus optimization algorithms can be applied 

straightaway. In our work, we used this strategy to solve nonlinear equations and circuits 

[1,11–16], discrete systems [17], and linear Diophantine systems [18]. Also, we used it in the 

analysis of electrical power flowing throughout a loaded network [19,20], in the 

identification of nonlinear systems [21,22], and in the solution of the hybrid modes in a 

partially filled waveguide [23,24]. A more detailed description of the aforementioned process 

can be found in [69], and a full description of each situation (optimization or solution) is 

given in their respective reports [1–24].  
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Figure 4-8. General scheme of an optimization problem, where it is required to minimize the total thickness and 

the reflection coefficient 

 
Figure 4-9. Graphical representation of the approach for solving a system of equations through an optimization 

algorithm 

4.3  METHODOLOGY 

A straightforward scheme was followed with each undergraduate study (Figure 4-10): define 

an algorithm, its variant (if possible) and an optimization problem; run some standard tests; 

apply the algorithm to the research problem; compare and analyze the data against previously 

reported one; and draw conclusions. Even so, we decided for each group to be free enough 

as to define the standard test functions they were going to use. More often than not, this 

decision was based on the test functions used by the creators of the optimization strategy.  



97 

 
Figure 4-10. General scheme of the methodology used with each undergraduate study 

This freedom, however, generated a wide diversity of results, and it would be impractical to 

include them all in this dissertation. Thus, Table 4-1 presents a summary of the standard test 

functions used during the different studies, and more information can be found in the 

respective reports [1–24] and articles [52,67–73,89–94]. Please bear in mind that this list is, 

by no means, exhaustive since this kind of functions is continuously growing.  

Table 4-1. List of standard test functions used during the research 

Name Function  

Test 

Function 1 
F(x1, x2) = x1

2 + 2x2
2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7  (4.19) 

Test 

Function 2 F(x1, x2) = e
−0.1√x1

2+x2
2

 
(4.20) 

Booth F(x1, x2) = (x1 + 2x2 − 7)
2 + (2x1 + x2 − 5)

2 (4.21) 

Himmelblau F(x1, x2) = (x1
2 + x2 − 11)

2 + (x1 + x2
2 − 7)2 (4.22) 

Schubert F(x1, x2) = ∑icos(i + x1(i + 1))

5

i=1

∑icos(i + x2(i + 1))

5

i=1

 (4.23) 

Branin 

F(x1, x2) = a(x2 − bx1
2 + cx1 − d)

2 + e(1 − f) cos(x1) + e 

a = 1; b =
5.1

4π2
; c =

5

π
; d = 6; e = 10; f =

1

8π
 

(4.24) 

Six Hump 

Camel Back 
F(x1, x2) = (4 − 2.1x1

2 +
x1
4

3
) x1

2 + x1x2 + (−4 + 4x2
2)x2

2 (4.25) 

Dropwave F(x) = −
1 + cos 12√x1

2 + x2
2

0.5(x1
2 + x2

2) + 2
 (4.26) 
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Name Function  

Wood 

F(x1, x2, x3, x4) = (10(x2 − x1
2))

2
+ (1 − x1)

2 + (√90 ⋅ (x4 − x3
2))

2

+ (1 − x3)
2 + (√10 ⋅ (x2 + x4 − 2))

2

+ (
x2 − x4

√10
)
2

 
(4.27) 

Jong 

(Sphere) 
F(x) =∑xi

2

N

i=1

 (4.28) 

Rastrigin F(x) =∑xi
2 − 10 cos(2πxi) + 10

N

i=1

 (4.29) 

Rosenbrock F(x) = ∑ 100(xi+1 − xi
2)2 + (1 − xi)

2

N−1

i=1

 (4.30) 

Griewank F(x) = 1 +
1

4000
∑xi

2

N

i=1

−∏cos (
xi

√i
)

N

i=1

 (4.31) 

Schwefel 2 F(x) =∑(∑xj

i

j=1

)

2
N

i=1

 (4.32) 

Schwefel 26 F(x) = −∑xi sin (√|xi|)

N

i=1

 (4.33) 

2n minima F(x) =∑xi
4 − 16xi

2 + 5xi

N

i=1

 (4.34) 

Ackley F(x) = 20 + e − 20e
−0.2√

1
N
∑ xi

2N
i=1 − e

1
N
∑ cos(2πxi)
N
i=1  

(4.35) 

Michalewicz F(x) = −∑sin(xi) sin
2m (

ixi
2

π
)

N

i=1

 (4.36) 

Schaffer F(x) = ∑(xi
2 + xi+1

2 )0.25(sin2(50(xi
2 + xi+1

2 )0.10) + 1)

N−1

i=1

 (4.37) 

Sum of 

Powers 
F(x) =∑|xi

2|i+1
N

i=1

 (4.38) 

Axis Parallel 

Hyper-

ellipsoid 
F(x) =∑i ⋅ xi

2

N

i=1

 (4.39) 

Rotated 

Hyper-

ellipsoid 
F(x) = ∑∑ xj

2

i

j=1

N

i=1

 (4.40) 

Steps F(x) =∑⌊(xi + 0.5)⌋
2

N

i=1

 (4.41) 
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4.4  RESULTS 

4.4.1 Standard test functions 

Table 4-2 summarizes some of the results achieved with four original optimization strategies 

(CFO, HS, SO, and UPSO). Considering space restrictions, please refer to the undergraduate 

reports [1–24] and to the articles [52,67–73,89–94] for more data regarding optimization 

strategies and test functions. 

Table 4-2. Average number of iterations (Iter.) and fitness, for different algorithms and standard test functions. 

Global optimum is 837.9658 for Schwefel 26 and 0 for the others 

Test Function CFO   HS   SO   UPSO   

  Iter. Fitness Iter. Fitness Iter. Fitness Iter. Fitness 

Jong 2D 334 4.81E-06 32849 4.59E-08 667 9.47E-08 24 4.74E-07 

Schwefel 26 2D 276 7.98E+0

2 

11554 8.38E+0

2 

334 8.38E+0

2 

91 8.38E+0

2 

Rastrigin 2D 97 2.11E-06 61965 3.71E-08 420 0.00E+0

0 

44 4.53E-07 

Rastrigin 30D 20210

0 

3.13E-03 169737

9 

1.54E+0

2 

336 3.97E+0

1 

969 4.73E+0

1 

Rosenbrock 2D 410 7.55E-05 44833 3.43E-07 272 9.56E-11 51 4.14E-07 

Rosenbrock 3D -- -- 189771 9.88E-05 188 9.88E-07 384 8.84E-07 

Rosenbrock 4D -- -- 563178 9.84E-05 2000

0 

5.75E-17 733 9.80E-07 

Rosenbrock 

10D 

20130

0 

4.75E-04 897653 1.00E-04 -- -- 936600 9.95E-11 

Rosenbrock 

30D 

20120

0 

4.73E+0

1 

146541

0 

1.00E-04 -- -- 122370

0 

9.92E-11 

 

Some things are worth mentioning from Table 4-2. The first one is that HS required the 

highest number of iterations, even though it yielded good results, so we decided to explore 

the effect of adding some improvements (please refer to items 4.1.2.2 and 4.1.2.3 in section 

4.1.2 for information on how the improvements work). We analyzed the modification known 

as ABHS and found that the second version (i.e. ABHSv2) performed better than the first 

one. Moreover, ABHSv2 greatly improved the performance of the original strategy, reducing 

the number of iterations up to 92.13% (Table 4-3). Then, we tested the second modification 

(i.e. SFHS) and found that it further improved ABHSv2 achievements. This time, reductions 

ranging from 34.41% to 91.19% were possible ( 

Table 4-4). 

Table 4-3. Average results of ABHSv2 for three standard test functions, and their respective reduction of iterations 

[%] when compared to the best results yielded by HS 

Test Function HS   ABHSv2   Reduction 
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  Iterations Fitness Iterations Fitness   

Test Function 1 421454 2.24E-01 33166 4.35E-11 92.13% 

Jong 6D 193002 3.65E+00 34304 8.38E-11 82.23% 

Rastrigin 10D 649627 9.14E-10 143705 6.86E-10 77.88% 

 

Table 4-4. Average results of SFHS for nine standard test functions in 2D, and their respective reduction of 

iterations [%] when compared to the best results yielded by ABHSv2 

Test Function HMCR Fitness Iterations Reduction 

Axis Parallel Hyper-ellipsoid 0.80 5.37E-11 2.79E+03 53.85% 

  0.90 5.33E-11 2.28E+03 62.31% 

Rotated Hyper-ellipsoid 0.80 5.39E-11 3.79E+03 39.47% 

  0.90 5.35E-11 3.20E+03 48.91% 

Rastrigin 0.80 5.32E-11 2.83E+03 79.09% 

  0.90 5.32E-11 2.64E+03 80.49% 

Schwefel 0.80 7.12E-12 3.84E+03 73.24% 

  0.90 6.75E-12 3.64E+03 74.64% 

Sum of Powers 0.80 4.36E-11 2.51E+03 34.41% 

  0.90 4.31E-11 2.07E+03 45.85% 

Ackley 0.80 7.03E-11 4.86E+03 66.83% 

  0.90 6.92E-11 4.26E+03 70.90% 

Langermann 0.80 5.22E-11 3.27E+03 90.98% 

  0.90 5.13E-11 3.19E+03 91.19% 

Six Hump Camel Back 0.80 5.42E-11 2.25E+03 80.41% 

  0.90 5.35E-11 1.90E+03 83.44% 

Dropwave 0.80 5.31E-11 4.01E+03 68.46% 

  0.90 5.31E-11 3.74E+03 70.52% 

 

The second important fact about Table 4-2 is that CFO is easily trapped by local optima 

geometrically distant from the optimum, even though they have similar fitness. For example, 

Schwefel’s function in 2D has a global optimum of 837 located at (421, 421), and several 

local optimum throughout the search domain, one of which has a value of 719 and is located 

at (421, -302). Data for this function shows an average fitness of 798, meaning that some of 

the runs effectively converged to the global optimum but others were trapped by local optima. 

As a final remark, Table 4-2 shows, in general, that CFO was unable to find an answer as 

good as the one found by HS, SO, and UPSO. In fact, CFO was only able to find a better 

answer for Rastrigin’s function in 30D. 

4.4.2 Further testing with SFHS 

Since SHFS yielded good results, and considering that  

Table 4-4 only shows information for standard search domains in 2D, we studied the effect 

of widening the domain and increasing the number of dimensions.  



101 

In the first case, we found some differences depending on the type of test function. For 

example, monomode functions (Figure 4-11 and Figure 4-12), or multimode functions with 

a defined global behavior (Figure 4-13), tended to stabilize for wider ranges per dimension. 

But, functions with planar regions (Figure 4-14, Figure 4-15 and Figure 4-16) tended to 

increase linearly as the range per dimension went up. Even so, in all cases, the increment for 

iterations and run time was virtually the same.  

 
Figure 4-11. Normalized increment of iterations and run time for Sum of powers function, as a function of the 

range per dimension 

 
Figure 4-12. Normalized increment of iterations and run time for Axis parallel hyper-ellipsoid function, as a 

function of the range per dimension  
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Figure 4-13. Normalized increment of iterations and run time for Dropwave function, as a function of the range 

per dimension  

 
Figure 4-14. Normalized increment of iterations and run time for Ackley function, as a function of the range per 

dimension  
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Figure 4-15. Normalized increment of iterations and run time for Rosenbrock function, as a function of the range 

per dimension  

 
Figure 4-16. Normalized increment of iterations and run time for Six hump camel back function, as a function of 

the range per dimension  

Pushing the algorithm further, we tested the scalability of SFHS with the following functions 

in up to 50D: Jong, Axis Parallel Hyper-ellipsoid, Rotated Hyper-ellipsoid, Sum of Powers, 

and Steps. SFHS was able to converge with better precision than 1e−7, and a 100% rate in 

virtually all cases (the only difficulty was in 50D for the Steps and Axis Parallel Hyper-

ellipsoid functions with convergence rates of 96.97% and 9.09%, respectively). As expected, 

convergence time and iterations escalate exponentially, so we analyzed the increment 

normalized to the values required for two dimensions. This way, values tended to stabilize, 

but in some cases they required almost 100 times of those in two dimensions (Figure 4-17), 

while in others required more than 10000 (Figure 4-18). Even so, our data shows that the 

increment in the relation between normalized time and normalized iterations is linear for all 

tested functions (Figure 4-19).  
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Figure 4-17. Time and iterations increase (normalized to 2D) as a function of the problem dimensions, for function 

Sum of Powers 

 
Figure 4-18. Time and iterations increase (normalized to 2D) as a function of the problem dimensions, for function 

Axis Parallel Hyper-ellipsoid 

 
Figure 4-19. Increase Ratio (Normalized Time / Normalized Iterations) up to 50 dimensions for five functions: 

Jong, Axis Parallel Hyper-ellipsoid (APH), Rotated Hyper-ellipsoid (RH), Sum of Powers (SP), and Steps 

4.4.3 Optimization of electromagnetic absorbers 

We focused three undergraduate studies on solving this optimization problem through CFO, 

SO, and GSA [2–4]. In all cases, we considered the materials database shown in Table 4-5, 

widely available in literature [95].  

Table 4-5. Materials database. Based on [95] 

Lossless dielectric materials (𝛍𝐫 = 𝟏) Relaxed magnetic materials (𝛜𝐫 = 𝟏𝟓) 

  𝛍𝐫 = 𝛍′ − 𝐣𝛍′′ 𝛍′(𝐟) =
𝛍𝐦𝐟𝐦

𝟐

𝐟𝟐 + 𝐟𝐦
𝟐
 𝛍′′(𝐟) =

𝛍𝐦𝐟𝐦𝐟

𝐟𝟐 + 𝐟𝐦
𝟐
 

Id 𝛜𝐫 Id 𝛍𝐦 𝐟𝐦 
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1 10 9 35 0.8 

2 50 10 35 0.5 

Lossy magnetic materials (𝛜𝐫 = 𝟏𝟓) 11 30 1.0 

𝛍𝐫 = 𝛍′ − 𝐣𝛍′′ 𝛍′(𝐟) =
𝛍′

𝐟𝐚
 𝛍′′(𝐟) =

𝛍′′

𝐟𝐛
 

12 18 0.5 

13 20 1.5 

Id 𝛍′ 𝐚 𝛍′′ 𝐛 14 30 2.5 

3 5 0.974 10 0.961 15 30 2.0 

4 3 1.000 15 0.957 16 25 3.5 

5 7 1.000 12 1.000    

Lossy dielectric materials (𝛍𝐫 = 𝟏)    

𝛜𝐫 = 𝛜
′ − 𝐣𝛜′′ 𝛜′(𝐟) =

𝛜′

𝐟𝐚
 𝛜′′(𝐟) =

𝛜′′

𝐟𝐛
    

Id 𝛜′ 𝐚 𝛜′′ 𝐛    

6 5 0.861 8 0.569    

7 8 0.778 10 0.682    

8 10 0.778 6 0.861    

As an example, we delve into different designs achieved by [2]. González and Bayona used 

a variant of CFO, known as acceleration clipping (AC) that limits the maximum acceleration 

of a probe. After some testing, it was found that a variable AC improved the results, so we 

used a maximum acceleration as shown by eq. (4.42).  

 Amax =  0.49e
−0.003t + 0.01 (4.42) 

Moreover, and considering that the material of each layer is a discrete variable, we explored 

the effect of using a totally random initial distribution, a totally uniform one, and a mixed 

one (with uniformly distributed materials and randomly distributed thicknesses). We also 

implemented a two-stage process, striving to simplify the optimization problem. In the first 

stage, CFO optimizes the whole problem (i.e. materials and thicknesses) and returns the best 

solution. In the second stage, materials are fixed to the best ones previously found, and CFO 

only improves the thickness of each layer. A totally random initial distribution performs 

better, and the benefit of including the second stage is evident, since in all cases the maximum 

reflection coefficient improved while finding a thinner absorber (Table 4-6). Also, a 

frequency sweep (Figure 4-20) shows that this benefit extends along the operating range, and 

that a variable AC makes the response more stable (homogeneous).  

Table 4-6. Results of the one-stage (1-St) and two-stage (2-St) processes when using CFO with AC for three 

different initial distributions, for the frequency range 0.8-1.9 GHz. Based on [91] 

Initial Distribution First Layer Second Layer Third Layer Total Max Γ [dB] 

Random Material 16 4 4     
  1-St Thickness [mm] 0.85 1.75 1.30 3.90 -27.11 

 2-St Thickness [mm] 0.76 1.52 1.46 3.74 -28.76 

Uniform Material 4 5 1     

  1-St Thickness [mm] 1.53 1.34 1.59 4.46 -21.75 

 2-St Thickness [mm] 1.65 1.17 1.53 4.36 -21.94 
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Mixed Material 4 5 8     

  1-St Thickness [mm] 1.76 1.02 1.68 4.46 -22.00 

  2-St Thickness [mm] 1.79 0.98 1.59 4.36 -22.01 

 
Figure 4-20. Frequency response of the best results found by [2] and of those reported by [96] 

As a quick glance at the studies carried out, we present the final designs achieved with 

CFO+AC (2-Stages) [2], SO [3], and GSA [4], for an electromagnetic absorber in the 

frequency range between 2-8 GHz. These data do not cover the full scope of each 

undergraduate study, so please refer to each report if desired. We found that SO yielded the 

best results (Table 4-7), improving over previously reported data with a slightly thicker 

absorber (0.17 mm more than the best result). Also, we found that the two-stage CFO 

considering AC provided a good result in spite of having been designed with three layers. In 

fact, it performed better than the design previously reported with GSA, and it was also 0.62 

mm thinner.  

Table 4-7. Summary of designs found with CFO+AC, SO, and GSA, for the frequency range 2-8 GHz, and 

previously reported data 

Algorithm L1 L2 L3 L4 L5 Total Max Γ [dB] 

2-Stages CFO+AC [2]  Material 16 6 9 -- --     

  Thickness [mm] 0.39 1.96 1.87 -- -- 4.23 -22.54 

SO [3] Material 16 6 6 14 11     

  Thickness [mm] 0.36 1.13 1.93 1.11 0.46 4.94 -25.94 

GSA [4] Material 16 6 6 16 5     

  Thickness [mm] 0.37 1.92 1.39 1.13 1.14 5.94 -25.20 

CFO [34] Material 16 6 6 6 15     

  Thickness [mm] 0.38 1.57 0.99 0.38 1.43 4.77 -25.70 

SADE [34] Material 16 6 6 6 15     

  Thickness [mm] 0.38 0.43 1.14 1.45 1.45 4.86 -25.49 

GSA [34] Material 16 6 8 13 4     
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Algorithm L1 L2 L3 L4 L5 Total Max Γ [dB] 

  Thickness [mm] 0.42 1.59 0.49 1.37 0.99 4.85 -21.96 

PSO [34] Material 14 6 8 5 11     

  Thickness [mm] 0.46 2.00 0.32 0.99 1.13 4.89 -23.89 

 

4.4.4 Solution of system of equations and other scenarios 

A second application tackled through modern optimization algorithms related to solving 

electronic circuits. We carried out four undergraduate studies directly related to this 

application [11–14], but we only show some of the results, for the sake of brevity. The studies 

began by analyzing the rather simple circuit shown in Figure 4-21, with only one non-linear 

element. We found that UPSO was able to solve the model appropriately, but PSO was not 

(Table 4-8) [13].  

 
Figure 4-21. Simple circuit with one non-linear element 

Table 4-8. Solutions obtained with PSO and UPSO for a circuit with one non-linear element, considering a swarm 

size of 10 partilces. Theoretical solution: 𝐕𝟏 = 𝟗. 𝟗𝟎𝟖𝟎 𝐕 and 𝐕𝟐 = 𝟎. 𝟕𝟏𝟐𝟓 𝐕  

  PSO UPSO 

V1  [V] 10.0000 9.9080 

V2  [V] 0.0000 0.7128 

Fitness 2.00E-06 7.61E-22 

Time [s] 0.28 0.06 

Iterations 433 98 

A more complex circuit is shown in Figure 4-22, inspired on a Buck converter. We defined 

a load represented by a number of identical additional loops so the performance of UPSO 

could be addressed (PSO results are not shown since it was already established that it did not 

perform well). During the tests, we considered Vin = Vpwm = 5 V, R1 = 10 Ω, R2 =

0.1 Ω, and R3 = R(i + 1) = 500 kΩ. Table 4-9 shows the solution found with simulation 

software up to 10 additional loops. We found that UPSO was able to get close to the answer 

(Table 4-10), but still had an average error of 0.42 V for 5 and 10 additional loops. 
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Figure 4-22. General scheme of the scalable circuit used for testing 

Table 4-9. Solutions of each node [V] for the scalable circuit with different number of additional loops. For 10 

additional loops, read the first column as FirstNode; SecondNode  

Additional Loops 0 1 5 10   

Nodes 1 - 3 1 - 5 1 - 13 1 - 13 … 14 - 23 

1; 14 4.9999 4.9999 4.9999 4.9999 3.2382 

2; 15 3.3675 3.3037 3.3054 3.3620 3.1889 

3; 16 3.3675 3.3037 3.3054 3.3620 3.1889 

4; 17   3.3036 3.3053 3.3619 3.1844 

5; 18   3.2532 3.2556 3.3519 3.1844 

6; 19     3.2556 3.3519 3.1351 

7; 20     3.2510 3.3025 3.1351 

8; 21     3.2510 3.3025 3.1328 

9; 22     3.2012 3.2941 3.1327 

10; 23     3.2012 3.2941 3.0835 

11     3.1989 3.2448   

12     3.1988 3.2448   

13     3.1491 3.2383   

 

Table 4-10. Solutions [V] found by UPSO for different number of additional loops in the scalable circuit. For 10 

additional loops, read the first column as FirstNode; SecondNode 

Additional Loops 0 1 5 10   

Nodes 1 - 3 1 - 5 1 - 13 1 - 13 … 14 - 23 

1; 14 4.9999 5.0000 5.0000 5.0000 3.6665 

2; 15 3.4227 3.8168 3.6492 3.4796 3.5591 

3; 16 3.4227 3.8168 3.6492 3.4796 3.5595 

4; 17   3.8168 3.6490 3.4793 3.9556 

5; 18   3.7637 3.5692 3.3838 3.9549 

6; 19     3.5693 3.3838 3.8333 

7; 20     3.6747 3.2958 3.8337 

8; 21     3.6747 3.2959 3.7632 

9; 22     3.8814 3.6039 3.7633 

10; 23     3.8812 3.6039 4.9572 

11     3.7887 3.7729   

12     3.7889 3.7725   

13     3.8121 3.6666   

As a third example, consider the solution of hybrid modes within a waveguide. 

Homogeneously filled rectangular waveguides can be easily studied by analytical means, 
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since the problem can be decoupled into modes where one component in the travelling 

direction is zero. However, if there is a discontinuity (i.e. change of material), perpendicular 

to wave propagation, the solution cannot be decoupled and hybrid modes appear. This leads 

to a nonlinear system of equations whose analytic solution is difficult to achieve. 

Furthermore, as the number of materials (and hence, discontinuities) increase, the 

electromagnetic problem becomes more complex. Because of that, and considering that the 

optimization problem of this dissertation is also of the electromagnetic kind, we decided to 

assess the feasibility of using modern techniques to find some frequency responses of the 

waveguide. Striving not to expand too much, it will only be said that the data can be found 

in the appendix.  

So far, we have commented on three applications more closely related to the objectives laid 

out in this dissertation: optimization of electromagnetic absorbers, solution of electronic 

circuits, and analysis of hybrid modes. As was mentioned in section 4.2 there are other 

applications, but in order to keep this section as brief as possible, they will not be commented, 

so we invite the reader to consult the appropriate references (see section 4.2 for more 

information).  

4.5  DISCUSSION 

Modern optimization algorithms are almost as diverse as test functions. Similarly, each one 

has its pros and cons. It is possible to tune a given algorithm to perform well under some 

scenario, but as Wolpert and Macready concluded, there is no algorithm that will be the best 

for every situation [97]. Thus, there is a need to rank them. 

Several metrics can be carried out to determine if an algorithm will work under given 

circumstances. One of the more direct approaches is to run tests and compare the convergence 

rate of a set of algorithms for different test functions (e.g. monomode functions and 

multimode functions). Additional information can also be compared, such as the number of 

iterations, the run time, or the number of function evaluations.  

We have shown some of the results that were achieved during this dissertation and, in some 

cases, with the assistance of undergraduate students. Most often than not, it was possible to 

adapt any given strategy for a particular problem, but their performance varied. For example, 

based on the work carried out with Cruz [13], we found that UPSO can solve the nonlinear 

mathematical model of an electronic circuit far more precisely than PSO. On the other hand, 

work carried out with Ramírez and Roa showed that CFO does not seem good for solving 

this type of problem [12], even though it worked well with standard test functions and in 

other applications (e.g. optimization of multilayered electromagnetic absorbers). 
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As examples of the improvements that can be made to an algorithm, consider the ABHS 

(both v1 and v2) and SFHS variants. In both cases, we were able to improve the performance 

of the original idea (i.e. HS), reducing the number of required iterations (up to 92.13% for 

ABHS, with an additional 91.19% for SFHS) while enhancing the fitness level of the 

answers. Regarding the latter, consider the plots shown in Figure 4-23, where a steep descent 

can be observed after 1000 iterations. Even if there is a region, roughly between 10 and 1000, 

where HS outperforms SFHS, we found that its effect diminishes for higher dimensions 

(Figure 4-24). 

 
Figure 4-23. Average function evaluation as iterations progress (15 runs), for Test Function 1 (left) and Jong (right), 

both in 2D 

 
Figure 4-24. Function evaluation ratio as iterations progress, between HS and SFHS, for Jong’s function in 2D, 6D, 

and 10D 

After analyzing our data, we preselected four algorithms: CFO, HS, SO, and UPSO. We 

ranked them using the properties given in Table 4-11, and considering our prior experiences. 

We found that the best options came to be UPSO and HS. However, one of the main 
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drawbacks of HS is the elevated number of iterations (and thus, function evaluations) it 

requires, so we also included SFHS into the ranking. As a result, we obtained the matrix 

given in Table 4-11, and it is clear that SFHS and UPSO are the best options, so they will be 

used in the following chapters. 

Table 4-11. Ranking of the preselected algorithms, including SFHS, where one is the worst score and five is the 

best one 

Property CFO HS SO UPSO SFHS 

1. Simple to program 1 5 2 3 4 

2. Required iterations 2 1 3 5 4 

3. Extra calculations per iteration 1 5 2 3 4 

4. Local trapping avoidance 1 2 3 5 4 

5. Fitness improvement 1 2 3 4 5 

6. Easy to parallelize 1 5 2 3 4 

Total 7 20 15 23 25 

 

4.6  FINAL COMMENTS 

Throughout this chapter we focused on different modern optimization techniques used in the 

dissertation (including the undergraduate studies). We explained the general idea behind each 

approach, as well as a couple modifications made to some of the algorithms. We then 

commented on different scenarios the algorithms were used in (both, to optimize and to solve 

a system of nonlinear equations), and on the general methodology used with each 

undergraduate study. Regarding results, we summarized some of the most relevant data. We 

found that, in general, each algorithm can be tuned up to a given fitness value for a particular 

situation and that there is no particular approach that would be the best option for every single 

case. Moreover, we observed some of the drawbacks that a fixed optimization strategy may 

have for some kind of functions. For example, at 30 dimensions, CFO performed better than 

HS, SO, and UPSO for Rastrigin’s function, while UPSO outperformed CFO for 

Rosenbrock’s function. This chapter also condensed relevant performance data for SFHS. 

This modification (derived from ABHS, another modification we proposed), enhanced the 

fitness level and the required iterations of HS, without increasing the number of function 

evaluations. 

From the vast amount of modern optimization techniques available, we conclude that Self-

regulated Fretwidth Harmony Search (SFHS) and Unified Particle Swarm Optimization 

(UPSO) are the best candidates to keep working with. This decision is supported on a ranking 

according to six characteristics, for four algorithms that were preselected based on our 

experiences during the development of this doctoral thesis (see Table 4-12).  
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Thus, we will use SFHS and UPSO in the following chapters, to develop an optimization 

strategy for microwave applicators as laid out in the objectives of this dissertation.  
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5. SOLVING THE PROBLEM 

Throughout earlier chapters we developed a mathematical model for estimating the field 

distribution of a test resonator, and for evaluating its similarity to a desired field (Chapter 2). 

Such procedure was based on the general formulation shown in [1,2], and was applied to 

circuital analysis following [3]. We also measured the dielectric properties of different 

mineral ores as a function of temperature (Chapter 3). Finally, we assessed different modern 

optimization strategies, based on different approaches (Chapter 4). Now, we have the tools 

for establishing an optimization strategy that finds the dimensions and operating frequency 

of a microwave resonator, such that the field distribution matches a desired one, for a given 

load. Hence, in this chapter we present a general layout of said strategy, and evaluate its 

validity.   

5.1  AN OVERVIEW OF THE OPTIMIZATION STRATEGY 

Towards the end of Chapter 2, an overview of the process required for evaluating the 

objective function was laid out. This included the definition and calculation of the PSNR, 

which is based on the mean squared error between the images representing the desired and 

test field distributions.  

Figure 5-1 shows a similar layout, but this time it spans to the interaction between the 

optimization algorithm and the objective function. Briefly speaking, the algorithm (UPSO or 

SFHS for this dissertation) generates a set of possible solutions (particles for UPSO, and 

harmonies for SFHS) that must be evaluated in the objective function. This information is 

used to update the position of each solution. The whole process must be repeated until a 

solution (i.e. a design) that complies with the convergence criteria is found (i.e. a minimum 

value of PSNR must be reached before the algorithm stops).  
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Figure 5-1. Overview of the procedure for merging objective function and optimization algorithm 

Nevertheless, and as was mentioned in Chapter 2, each possible design has multiple resonant 

frequencies, so every evaluation of the objective function requires an internal optimization 

cycle that finds them. An alternative for doing so, is the procedure followed in [4], where 

each solution found was added as a penalty factor to the objective function. During this cycle, 

each frequency must be evaluated in order to estimate the electric field distribution. Then, it 

must be compared against the desired field distribution, calculating the PSNR between the 

fields. The best solution (i.e. the frequency that yields the highest PSNR) is selected and sent 

to the main loop.  

5.2  METHODOLOGY 

According to the discussion given in Chapter 4, UPSO and SFHS were selected as feasible 

algorithms for this chapter. Since it was already proved that they perform well, data for 

standard test functions is not shown. Moreover, there are two optimization loops (i.e. the 

external one, in charge of optimizing the dimensions; and the internal one, in charge of 

finding the resonant frequencies of a given test design), and so there appears four possible 

combinations of algorithms. Moreover, each optimization loop represents an independent 

problem, so run parameters need not be equal for both of them. Nevertheless, we selected the 

following common parameters for UPSO: cp = 2.05, cg = 2.05, and u = 0.5; and these for 

SFHS: HMS = 5, HMCR = 0.95, PAR = 0.8, FWsat = 100, FWmin = 10−12, and CFW = 1. 

The remaining parameter of UPSO, i.e. the swarm size, was set to 5 for the external loop and 

to 15 for the internal one. For SFHS, the particular parameters of the internal loop were: 

FWmax = 108, and FWini = 0.5 × 108; whilst for the external loop were: FWmax =

1, and FWini = 0.5. 
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Figure 5-2. Methodology followed throughout this chapter 

Figure 5-2 shows an overview of the methodology followed during this chapter. As a first 

approach, and striving to verify that the optimization algorithms are able to find an 

appropriate design, simple tests were run, considering only one material. Nonetheless, we 

split the resonator into three blocks, in order to consider all types of building blocks. Four 

materials were selected, with ϵr = 1, 10, 50, and 100. Also, four different TE01p resonating 

modes were analyzed, with p = 1, 3, 6, and 10. All combinations of algorithms were tested 

and their average performance (based on 30 runs) was compared against commercial 

software (CST). Since there are two optimization loops that must be addressed, it is necessary 

to establish both search domains. The outer loop (i.e. the length of each block) ranged 

between 0.2 and 0.6 [m], whilst the inner loop (i.e. the frequency) spanned from 0.05 [GHz], 

and up to a maximum frequency that depended on the load. This was done to avoid having 

too many resonant frequencies in some scenarios, and too few in others. Hence, for the first 

case, i.e. ϵr = 1, the maximum frequency was set to 1.5 [GHz]. For ϵr = 10, ϵr =

50, and ϵr = 100, it was set to 1.0, 0.5, and 0.15 [GHz], respectively. 

The second phase of testing dealt with a partially filled cavity of volume 0.1 × 0.2 ×

1.0 [m3]. This means that the resonator was split into two blocks, one with ϵr = 1 (i.e. air) 

and one with a given ϵrload. In order to generate the desired field distributions, we considered 

four different sets of relative permittivity (i.e. ϵrload) and fill percentage. Moreover, we 

analyzed two different resonant frequencies of the first set. This information is summarized 

in Table 5-1. 
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Table 5-1. Scenarios for the second battery of tests 

Scenario 𝛜𝐫𝐥𝐨𝐚𝐝  Filling [%] Frequency [GHz] 

1 10 25 0.72 

2 10 25 0.89 

3 10 50 0.75 

4 50 50 0.75 

5 100 25 0.81 

 

The third phase of testing related to resonators split into three blocks. The total volume was 

preserved, and the ideal fields correspond to blocks with the same length. Table 5-2 shows 

the selected scenarios and it can be seen that the first three are different resonances of the 

same design. This was done to observe the evolution of the algorithm at different frequencies. 

All algorithms were tested for the first three scenarios, and the best configuration was defined 

based on the results reached so far. The selected combination of algorithms was used from 

this point onward.  

Table 5-2. Scenarios for the third battery of tests  

Scenario 𝛜𝐫𝟏 𝛜𝐫𝟐 𝛜𝐫𝟑 Frequency [GHz] 

1 1 10 1 0.63 

2 1 10 1 0.75 

3 1 10 1 1.02 

4 10 1 10 1.94 

5 1 10 20 0.76 

 

The fourth phase of testing referred to resonators split in more than three blocks. The testing 

scenarios are laid out in Table 5-3. Again, the total volume of the resonator is preserved and 

all blocks are assumed of the same length. Two frequencies were considered for the first two 

configurations, striving to observe a change in the precision of our approach. 

Table 5-3. Scenarios for resonators split into five blocks 

Scenario 𝛜𝐫𝟏 𝛜𝐫𝟐 𝛜𝐫𝟑 𝛜𝐫𝟒 𝛜𝐫𝟓 Frequency [GHz] 

1 1 10 20 10 1 0.24 

2 1 10 20 10 1 0.86 

3 10 1 20 10 1 0.26 

4 10 1 20 10 1 0.90 

5 10 20 1 10 20 0.26 

6 10 20 1 10 1 0.26 

 

Afterwards, we move on to the testing lossy materials in a three block resonator. Both of the 

extreme blocks were made of air and the mid one was made of a material with ϵr = 10 and 

conductivity σ = 0.1. The selected complex frequency was f = 0.75 + j0.081 [GHz]. Then, 
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we analyzed three of the minerals discussed in Chapter 3, and observed the electric field 

distribution at five different temperatures (Table 5-4). This time we considered a resonator 

with a volume of 0.1 × 0.2 × 0.5 [m3], split into three networks with identical length. Also, 

two of the minerals represent samples that reacted strongly under the influence of 

microwaves (i.e. they roasted), whilst the remaining one represents a sample that exhibited 

weak interaction.  

Table 5-4. Scenarios considered for simulations including minerals 

Juan Blanco - S100 T [°C] 24 100 350 640 50 

(JB-S100) 𝛜𝐫
′  5.20 5.40 6.10 10.10 7.90 

0 𝛔 [S/m] 0.10 0.11 0.13 0.14 0.13 

M9 - S100 T [°C] 24 100 420 627 50 

(M9-S100) 𝛜𝐫
′  6.97 7.05 7.80 6.40 7.77 

0 𝛔 [S/m] 0.17 0.17 0.19 0.18 0.19 

Juan Blanco - S200 T [°C] 24 100 160 246 50 

(JB-S200) 𝛜𝐫
′  2.51 3.15 4.30 3.40 2.50 

0 𝛔 [S/m] 0.01 0.01 0.01 0.01 0.00 

5.3  RESULTS 

5.3.1 Resonator uniformly filled with a material 

According to the methodology discussed in the previous section, the first approach was 

verifying that the optimization algorithms were able to find appropriate designs. Hence, 

Figure 5-3 shows the average performance achieved with each combination of UPSO and 

SFHS, compared against the data yielded by commercial software. It is clear that the 

commercial software exhibited a decaying performance, achieving PSNR values in the range 

from about 50 [dB] to almost 20 [dB]. However, all the selected combinations of algorithms 

exhibited a more stable behavior, with PSNR values above 60 [dB], and in some cases, 

around 80 [dB]. 
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Figure 5-3. Quality of the answers found with all combinations of UPSO and SFHS (average data for 30 runs), 

compared against the quality of solutions yielded by commercial software   

Since all algorithms had a stable performance for different modes, we decided to analyze the 

influence of the search domain on the quality of the results. Hence, we ran some tests, striving 

to find an appropriate width for all blocks, such that the dominant mode is excited in the 

resulting cavity. For starters, we considered that each block could have a length of, 

maximum, 0.1 [m]. Then, we progressively increased this value up to 1 [m]. As expected, we 

found that smaller values of the search domain allow higher values of PSNR to be found, 

even above 100 [dB] (first case). After that, the PSNR begins decaying, reaching values 

around 80 [dB] for the widest scenario (Figure 5-4). 
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Figure 5-4. Comparison of all algorithms for different widths of search domain, and two scenarios with different 

relative permittivity (𝛜𝐫). Average data for 30 runs 

5.3.2 Resonator filled with multiple lossless materials 

We now migrate to more complex scenarios that include different combinations of materials. 

We begin by showing the performance of the algorithm when the resonator contains two 

materials with different dielectric properties. Then, we explore what happens when the 

number of materials increases to three. At the end of this subsection, we show data for 

resonators that contain more than three blocks.  

5.3.2.1 Resonator with two materials 

The first test considered two different resonant frequencies for a resonator 25% filled with a 

material having ϵr = 10. The first frequency is located at 0.72 [GHz], whilst the second one 

is located at 0.89 [GHz]. Figure 5-5 shows the field distribution for both cases, as reported 

by the commercial software, by the analytic solution, and by the model used during this 

dissertation. A comparison of the fields at each frequency reveals that the commercial 

software yields a PSNR of 33 [dB] and 28 [dB], whilst the model of this dissertation reports 

values of 27 [dB] and 26 [dB], respectively. Even so, a visual inspection of the fields reveals 

that the contours yielded by the commercial software are less uniform than those reported by 

the model we used. 
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Figure 5-5. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 25% filled 

with 𝛜𝐫 = 𝟏𝟎. Resonant frequency: (a) 0.72 [GHz] (b) 0.89 [GHz] 

Increasing the filling to 50% shifts the resonant frequency to 0.75 [GHz]. We also inverted 

the order of the materials and verified that our algorithm responds appropriately. Figure 5-6 

shows the field distribution under these conditions, where the commercial software reached 

a PSNR of 28 [dB] whilst our model achieved 24 [dB]. A closer look at the field distributions 

reveal that the commercial software fails to report most of the highest intensity zones (i.e. 

the center of each loop), but our algorithm does not. Even so, the PSNR value is lower due 

to the error in the lower half, where ϵr = 1.  

 
Figure 5-6. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 50% filled 

with 𝛜𝐫 = 𝟏𝟎 

When analyzing the effect of materials with higher permittivity, we found that both, 

commercial software and our model, are able to find similar values of PSNR, but ours yield 
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a more uniform field distribution. For example, consider a material with ϵr = 100 that is 

used to fill 25% of a resonator. In this case, the commercial software yields a PSNR of 37 

[dB] and our model yields 32 [dB]. But, the field distribution of the commercial software is 

not as uniform as ours (Figure 5-7). Another example is a resonator half-filled with a material 

having ϵr = 50. Here, the nonuniform field distribution is more notorious, but still, the 

commercial software reports a PSNR of 24 [dB] whilst our model reports a PSNR of 21 [dB] 

(Figure 5-8). 

 
Figure 5-7. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 25% filled 

with 𝛜𝐫 = 𝟏𝟎𝟎 

 
Figure 5-8. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 50% filled 

with 𝛜𝐫 = 𝟓𝟎 
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Figure 5-9 shows the average ± standard deviation of running our algorithm 30 times, for 

each one of the previously mentioned scenarios, and demanding a minimum PSNR of 20 

[dB]. In all cases, our algorithm performed appropriately, and sometimes the dispersion was 

significantly smaller than others. This is due to the fact that the current model (i.e. using the 

norm) does not provide the same level of accuracy for all resonant frequencies, although it 

seems that this effect is lessened at higher frequencies.  

 
Figure 5-9. PSNR (average ± standard deviation) found by all algorithms for different scenarios and 30 runs. A 

minimum PSNR of 20 dB was demanded in all cases 

5.3.2.2 Resonator with three materials 

We now analyze the performance of the algorithm for configurations with three different 

materials. Also, throughout this item we select a combination of algorithms that will be used 

for the remainder of the chapter. It is worth mentioning that even if we show data for 

symmetric designs, the process followed during the dissertation, and the models provided, 

can be used for non-symmetric designs.  

In order to select the best pair of algorithms, we focus on three different resonant frequencies 

of a given configuration. In this case, the outer blocks are empty (i.e. ϵr = 1 in blocks one 

and three) and the middle one is made of a material with ϵr = 10. We consider the resonances 

located at 0.63 [GHz], 0.75 [GHz], and 1.02 [GHz], because our model reports different 

levels of precision at each one of them, and because we want to observe a wider frequency 

range. Figure 5-10 shows the electric field distribution of the first resonant frequency, and it 

is clear that our model is not able to fully replicate it, thus reporting a PSNR of just 19 [dB]. 

Even so, the field distribution in the loaded block is more uniform than that yielded by the 

commercial software, who reported a PSNR of 34 [dB].  
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Similarly, Figure 5-11 shows the field distribution for the remaining scenarios, and it is 

evident that our algorithm outperforms the commercial alternative. In the first case, i.e. at a 

resonant frequency of 0.75 [GHz], the commercial alternative provides a nonuniform field 

distribution, and this reflects on a diminished PSNR of 22 [dB]. Our model, on the other 

hand, reports a more stable field distribution, thus increasing its PSNR up to 23 [dB]. In the 

remaining case, i.e. at a resonant frequency of 1.02 [GHz], the commercial software preserves 

its behavior (i.e. nonuniform field distribution), reaching a PSNR of 23 [dB], whilst our 

alternative is able to increase its PSNR up to 51 [dB]. 

 
Figure 5-10. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 33% filled 

with 𝛜𝐫 = 𝟏𝟎. Resonant frequency: 0.63 [GHz] 

 
Figure 5-11. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 33% filled 

with 𝛜𝐫 = 𝟏𝟎. Resonant frequency: (a) 0.75 [GHz] (b) 1.02 [GHz] 
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Based on these three scenarios, we ran tests with all combinations of the algorithms, striving 

to detect which one of them performed better. Table 5-5 summarizes the average data of 10 

runs. During the first two scenarios, UPSO/UPSO and UPSO/SFHS performed similarly, but 

they both outperformed SFHS/UPSO and SFHS/SFHS. So, the latter two were not tested 

under the third scenario. The remaining combinations were compared under the more 

demanding third scenario, requesting a minimum PSNR of 51 [dB]. Both combinations still 

performed similarly well, but UPSO/SFHS required, in average, 50 less evaluations of the 

objective function (Table 5-5). As a complimentary test, we calculated the average PSNR of 

all alternatives, for 10 runs, and across the first 250 function evaluations. It is clear that the 

evolution of SFHS/UPSO and SFHS/SFHS is slower than that of UPSO/UPSO and 

UPSO/SFHS (Figure 5-12). Hence, we selected UPSO/SFHS as the best combination of 

algorithms and as the one that will be used for the remainder of this chapter.  

Table 5-5. Statistical data for all combinations of algorithms and the three scenarios of the first design. Average 

data for 10 runs. Tests for the third scenario were not run with SFHS/UPSO and SFHS/SFHS since the other 

alternatives outperformed them in the previous stages 

Algorithm First scenario Second scenario Third scenario 

  PSNR 

[dB] 

Evaluation

s 

PSNR 

[dB] 

Evaluation

s 

PSNR 

[dB] 

Evaluation

s 

UPSO/UPS

O 

Avg 21.9 9.0 21.9 32.0 51.6 400.0 

  SD 2.5 14.7 0.9 26.5 0.8 138.2 

  Ma

x 

26.2 45.0 23.5 80.0 53.1 585.0 

  Min 19.2 0.0 21.1 5.0 51.0 200.0 

UPSO/SFH

S 

Avg 20.5 10.0 22.6 76.5 52.3 350.0 

  SD 1.2 16.7 1.9 71.8 2.0 153.0 

  Ma

x 

22.5 55.0 26.1 185.0 56.1 595.0 

  Min 19.1 0.0 21.1 0.0 51.0 220.0 

SFHS/UPS

O 

Avg 20.4 18.5 21.6 63.0 -- -- 

  SD 1.4 26.9 0.6 77.9 -- -- 

  Ma

x 

23.8 80.0 23.2 277.0 -- -- 

  Min 19.1 0.0 21.0 8.0 -- -- 

SFHS/SFHS Avg 20.3 46.3 21.7 107.1 -- -- 

  SD 2.1 49.0 0.7 108.4 -- -- 

  Ma

x 

25.8 122.0 23.5 369.0 -- -- 

  Min 19.0 0.0 21.0 0.0 -- -- 
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Figure 5-12. First 250 function evaluations for the third scenario, using all combinations of the algorithms. Average 

data for 10 runs 

For the remaining tests we considered a scenario where the outer blocks were made of a 

material with ϵr = 10, whilst the inner one was empty (i.e. ϵr = 1), and a scenario with 

progressively increasing permittivity, such that ϵr = [1, 10, 20]. Again, we observe that the 

field distribution yielded by the commercial software is distorted (Figure 5-13), generating a 

PSNR of 28 [dB] and 20 [dB] for each scenario. Our model, however, was more stable and 

reached PSNR values of 31 [dB] and 54 [dB], respectively.  

 
Figure 5-13. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], split into 

three blocks of the same length. Dielectric properties and resonant frequency: (a) 𝛜𝐫 = [𝟏𝟎 𝟏 𝟏𝟎], 𝐟 = 𝟎. 𝟕𝟓 [GHz] 

(b) 𝛜𝐫 = [𝟏 𝟏𝟎 𝟐𝟎], 𝐟 = 𝟏. 𝟎𝟐 [GHz] 
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Table 5-6 shows the designs found by the selected combination of algorithms, i.e. 

UPSO/SFHS, and its comparison against the theoretical data. It is clear that whenever the 

PSNR is above 50 [dB], the design found by the algorithm has virtually no error. Even so, 

the worst case of the designs shown in Table 5-6 has an error of only a few centimeters.  

Table 5-6. Designs found by UPSO/SFHS for each one of the scenarios considered during this testing phase, 

including the length of each block (𝐋𝐢), the resonant frequency, and the PSNR. In all cases, a theoretical value of 

0.33 [m] was assumed for each block 

Relative 

Permittivity 

Theoretical 

Values 

Found Values 

𝛜𝐫𝟏 𝛜𝐫𝟐 𝛜𝐫𝟑 Frequency [GHz] 𝐋𝟏 

[m] 

𝐋𝟐 

[m] 

𝐋𝟑 

[m] 

Frequency 

[GHz] 

PSNR 

[dB] 

1 10 1 0.63 0.36 0.36 0.32 0.64 20.50 

1 10 1 0.75 0.36 0.31 0.33 0.76 22.58 

1 10 1 1.02 0.33 0.33 0.33 1.02 52.32 

10 1 10 1.94 0.32 0.32 0.32 2.00 32.90 

1 10 20 0.76 0.33 0.33 0.33 0.76 61.85 

5.3.2.3 Resonator with more than three blocks 

Consider a test design comprised of five blocks of the same length (0.2 [m]), with relative 

permittivity of 1, 10, 20, 10, and 1, respectively. Figure 5-14 shows the electric field 

distribution at two different resonant frequencies (0.24 [GHz] and 0.86 [GHz]). In the first 

case, our model is unable to provide a field distribution as good as the one yielded by 

commercial software (PSNR of 23 [dB] and 51 [dB], respectively). But, at higher frequencies 

the opposite happens, and our model yields a field distribution quite similar to the analytical, 

reaching a PSNR of 31 [dB] as opposed to 19 [dB] yielded by the commercial solution.  

 
Figure 5-14. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], split into five 

blocks of the same length. Dielectric properties: 𝛜𝐫 = [𝟏 𝟏𝟎 𝟐𝟎 𝟏𝟎 𝟏]. Resonant frequency: (a) 𝐟 = 𝟎. 𝟐𝟒 [GHz] (b) 

𝐟 = 𝟎. 𝟖𝟔 [GHz] 
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If the order of materials one and two is exchanged, the resulting resonator is formed by blocks 

with relative permittivity of 10, 1, 20, 10, and 1, respectively. Using similar resonant 

frequencies, one arrives at the field distributions shown in Figure 5-15. In this case, the first 

resonant frequency is located at 0.26 [GHz], and the commercial solution yields a PSNR of 

51 [dB] whilst our model yields 34 [dB]. The second resonant frequency shifts to 0.90 [GHz] 

and the commercial solution is hindered down to 27 [dB] whilst our model improves to 35 

[dB]. Moreover, the field distribution provided by the commercial solution is distorted.  

 
Figure 5-15. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], split into five 

blocks of the same length. Dielectric properties: 𝛜𝐫 = [𝟏𝟎 𝟏 𝟐𝟎 𝟏𝟎 𝟏]. Resonant frequency: (a) 𝐟 = 𝟎. 𝟐𝟔 [GHz] (b) 

𝐟 = 𝟎. 𝟗𝟎 [GHz] 

Finally, we strived to observe the way in which our model behaved under a slight change in 

the permittivity. Hence, we chose two resonators with common materials for the four first 

blocks, and a different material for the final blocks. So, the first case is a resonator with 

relative permittivity of 10, 20, 1, 10, and 20, whilst the second one is a resonator with relative 

permittivity of 10, 20, 1, 10, and 1. Furthermore, we selected a resonant frequency with weak 

interaction at this final block (0.26 [GHz]). Figure 5-16 shows the field distribution for both 

scenarios, where the commercial software was able to achieve a PSNR of 50 [dB]. Our model 

yielded a PSNR of 36 [dB] in the first case, and of 32 [dB] in the second one. A visual 

inspection of the field distributions reveal that our model is able to detect the change in 

permittivity, but it is unable to completely adapt to it. Table 5-7 summarizes the results found 

with the selected algorithm (i.e. UPSO/SFHS). Even if there is some degree of error, the 

algorithm was always able to find the length of each block and the resonant frequency for the 

desired field distributions, with PSNR values over 30 [dB].  
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Figure 5-16. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], split into five 

blocks of the same length. Dielectric properties and resonant frequency: (a) 𝛜𝐫 = [𝟏𝟎 𝟐𝟎 𝟏 𝟏𝟎 𝟐𝟎], 𝐟 = 𝟎. 𝟐𝟔 [GHz] 

(b) 𝛜𝐫 = [𝟏𝟎 𝟐𝟎 𝟏 𝟏𝟎 𝟏], 𝐟 = 𝟎. 𝟐𝟔 [GHz] 

Table 5-7. Designs found by UPSO/SFHS for each one of the scenarios considered during this testing phase, 

including the length of each block (𝐋𝐢), the resonant frequency, and the PSNR. In all cases, a theoretical value of 

0.20 [m] was assumed for each block 

Relative 

Permittivity 

Theoretical 

Values 

Found Values 

𝛜𝐫𝟏 𝛜𝐫𝟐 𝛜𝐫𝟑 𝛜𝐫𝟒 𝛜𝐫𝟓  Frequency [GHz] 𝐋𝟏 

[m] 

𝐋𝟐 

[m] 

𝐋𝟑 

[m] 

𝐋𝟒 

[m] 

𝐋𝟓 

[m] 

Frequency 

[GHz] 

PSNR 

[dB] 

1 10 20 10 1 0.24 0.217 0.186 0.211 0.183 0.218 0.24 32.03 

1 10 20 10 1 0.86 0.206 0.204 0.208 0.209 0.207 0.84 32.40 

10 1 20 10 1 0.26 0.211 0.205 0.204 0.203 0.214 0.26 41.77 

10 1 20 10 1 0.90 0.201 0.194 0.201 0.199 0.196 0.90 35.11 

10 20 1 10 20 0.26 0.194 0.194 0.186 0.180 0.220 0.27 39.42 

10 20 1 10 1 0.26 0.188 0.199 0.186 0.202 0.203 0.26 32.69 

5.3.3 Resonator filled with lossy materials 

Figure 5-17 shows the electric field distribution of a sample design, used to verify the proper 

behavior of the algorithm. In this case, the resonator is 33% filled with a material that has a 

relative permittivity of 10, and a conductivity of 0.1 [S/m]. Analyzing the solution located at 

the complex frequency of 0.75+j0.08 [GHz] reveals that our model is able to provide a better 

solution than the commercial software, since the former achieved a PSNR of 25 [dB] and the 

latter only reached 18 [dB]. Running a test with the combined algorithm provided a resonator 

with block lengths of 0.343 [m], 0.347 [m], and 0.327 [m]. Also, it returned a complex 

frequency of 0.74+j0.09 [GHz]. Hence, our algorithm performs satisfactorily, so we move 

on to analyzing the field distributions of mineral samples at given temperatures.  
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Figure 5-17. Electric field distribution (normalized) for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟎 [𝐦𝟑], 33% filled 

with 𝛜𝐫 = 𝟏𝟎 and 𝛔 = 𝟎. 𝟏. Complex frequency: 0.75+j0.08 [GHz] 

Table 5-8 summarizes the designs found by our algorithm, for three samples of minerals at 

five different temperatures. During this scenario, the complex frequency was selected 

striving to preserve the same field distribution, i.e. to excite the same resonant mode inside 

the cavity. Even so, and due to the wide range of complex permittivity that appears inside the 

resonator, some values of temperature inhibit the appearance of a given mode. For example, 

consider Figure 5-18, where the field distribution for each temperature has been plotted and 

normalized to the maximum of all electric field intensities. Throughout the first three plots, 

temperature goes from 24 [°C] to 350 [°C] and the relative permittivity and conductivity 

increase from 5.20 to 6.10, and from 0.10 [S/m] to 0.13 [S/m], respectively (Table 5-8). 

However, the temperature at the fourth plot increases all the way to 640 [°C], shifting the 

relative permittivity to 10.10 and the conductivity to 0.14 [S/m]. This makes it impossible to 

sustain the same field distribution as in the previous plots, and the closest one is shown in the 

figure. When the temperature drops all the way back to 50 [°C] (fifth plot) the mineral sample 

has changed internally (i.e. it roasted), and so the dielectric properties are different from the 

starting ones, making it impossible to sustain the desired field distribution. A comparison 

between the fields obtained through our algorithm and the ones yielded by the analytical 

mode, reveal that even if the shape of the field distribution is properly identified, the field 

intensities is not always obtained properly. This is due to the error level associated to the 

model, and in some cases is more critical than in others. Also, the PSNR values shown in 

Figure 5-18 are lower than those shown in Table 5-8, because the field distributions have 

been normalized to a single value (i.e. the maximum field intensity of all temperatures), 

instead of normalizing each distribution separately (i.e. using the maximum field intensity at 

each temperature).  
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Table 5-8. Designs found by UPSO/SFHS for three mineral samples at different temperatures, including the length 

of each block (𝐋𝐢), the real (𝐟') and imaginary (𝐟'') parts of the complex frequency, and the PSNR. In all cases, a 

theoretical value of 0.166 [m] was assumed for each block 

        Theoretical Values Found Values 

Sample T [°C] 𝛜𝐫
′  𝛔 [𝐒/𝐦] 𝐟'[𝐆𝐇𝐳] 𝐟''[𝐆𝐇𝐳] 𝐋𝟏 [m] 𝐋𝟐 [m] 𝐋𝟑 [m] 𝐟'[𝐆𝐇𝐳] 𝐟''[𝐆𝐇𝐳] PSNR [dB] 

JB-S100 24 5.20 0.10 2.380 0.127 0.168 0.170 0.173 2.334 0.173 26.09 

  100 5.40 0.11 2.350 0.136 0.142 0.140 0.141 2.802 0.183 21.32 

  350 6.10 0.13 2.240 0.144 0.168 0.162 0.165 2.309 0.192 24.62 

  640 10.10 0.14 1.690 0.098 0.166 0.174 0.167 1.605 0.125 25.31 

  50 7.90 0.13 2.270 0.118 0.166 0.165 0.165 2.316 0.148 32.10 

M9-S100 24 6.97 0.17 2.390 0.174 0.165 0.177 0.162 2.316 0.219 20.18 

  100 7.05 0.17 2.380 0.173 0.164 0.172 0.164 2.345 0.217 24.06 

  420 7.80 0.19 2.280 0.178 0.164 0.167 0.164 2.318 0.219 29.74 

  627 6.40 0.18 2.480 0.192 0.169 0.174 0.170 2.513 0.259 18.11 

  50 7.77 0.19 2.280 0.178 0.167 0.166 0.167 2.314 0.220 29.13 

JB-S200 24 2.51 0.01 2.340 0.020 0.167 0.166 0.169 2.344 0.036 50.72 

  100 3.15 0.01 2.190 0.016 0.168 0.155 0.156 2.335 0.029 22.34 

  160 4.30 0.01 2.030 0.008 0.174 0.151 0.173 2.126 0.021 15.75 

  246 3.40 0.01 2.150 0.014 0.146 0.148 0.144 2.473 0.026 21.16 

  50 2.50 0.00 2.340 0.000 0.180 0.180 0.178 2.194 0.000 46.01 

 
Figure 5-18. Electric field distribution for a resonator of volume 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟎. 𝟓 [𝐦𝟑], 33% filled with a mineral 

sample of Juan Blanco (Sieve 100) at different temperatures. Values are normalized to the maximum field intensity 

of all five cases 
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5.4  FINAL COMMENTS 

We have shown different design scenarios throughout this chapter. They spanned from 

simple resonators, uniformly filled with a given lossless material, up to more complex 

resonators partially filled with lossy minerals, who alter their dielectric properties with 

temperature. We used the main results of earlier chapters to find the optimum design under 

these scenarios. Mathematical models (and, thus, the objective functions) were derived along 

the lines of Chapter 2 (based on circuital analysis). Dielectric properties of the minerals were 

extracted from Chapter 3 (based on experimental data). Optimization algorithms were 

selected from Chapter 4 (based on tests with different strategies). Synergy of this information 

leads to an automatic design strategy, able to find the optimum length of each material inside 

a resonator and the operating frequency, such that the electric field distribution matches the 

one desired by the designer. For lossy materials, this operating frequency becomes complex.  

Out of the four possible combinations of algorithms, UPSO/SFHS is best suited to these 

optimization tasks. This does not imply that the other combinations could not find good 

answers (Table 5-5), but that UPSO/SFHS did it with less function evaluations (Figure 5-12). 

We recommend using few particles for UPSO since additional ones imply evaluating the 

objective function more times per iteration. This requires solving the internal optimization 

problem (i.e. finding the multiple resonant frequencies) more often, increasing the 

computational cost. 

Alas, not everything is perfect. As such, the precision of the mathematical model needs to be 

improved. Sometimes, our algorithm found answers that agreed outstandingly with the 

desired field distribution (PSNR values over 50 [dB]). These answers were even better than 

those yielded by the commercial software (PSNR values around 20 [dB]), especially at higher 

frequencies. But, in other cases our algorithm found answers that did not agree so well with 

the analytic ones (PSNR values around 20 [dB]). They were outperformed by the commercial 

solution (PSNR values around 30 [dB]), especially at lower frequencies. Still, and even when 

both PSNR values (i.e. commercial and ours) are similar, our field distributions are more 

uniform, representing a better solution. So, we recommend using the proposed algorithm for 

optimizing the design of microwave resonators, and including a metric that takes into account 

the similarity between the form factors of the fields. 
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APPENDIX 

A. ELECTROMAGNETIC MODELLING OF THE RESONATOR 

A.1.  COMPLETELY FILLED RECTANGULAR RESONATOR 

Solving Maxwell equations in rectangular coordinates is perhaps one of the simplest 

scenarios that can be found. In this sense, the wave function must be of the form Ψ(x, y, z) =

X(x)Y(y)Z(z) and the mathematical functions best suited under these conditions are of the 

form sin(kii) , cos(kii) for stationary waves, or of the phasor form ejkii, e−jkii for traveling 

waves [1]. Here, i can be any of the problem dimensions and each ki is a separation parameter 

that must comply with the separation equation kx
2 + ky

2 + kz
2 = k2. Moreover, most problems 

can be easily separated into a pair of independent solutions along a given axis. For example, 

an empty waveguide (extending over the z-axis) can be analyzed through a family of 

electromagnetic modes whose transverse electric field is zero (TE modes) and a family of 

electromagnetic modes whose transverse magnetic field is zero (TM modes). Should this 

waveguide be partially filled with a dielectric, the problem would have to be solved through 

a similar couple of family modes, but this time they would have to be transverse to an 

appropriate axis (i.e. they should be TEx and TMx modes, or TEy and TMy modes, 

depending on the material’s location).   

The particular case of a rectangular resonator completely filled with a given load (Figure 

A1-1) implies that the wave is confined to the volume of the resonator. Hence, a standing 

wave behavior can be assumed along each axis, so the wave function of the TM and TE 

modes become ΨTM = sin(kxx) sin(kyy) cos(kzz) and ΨTE =

cos(kxx) cos(kyy) sin(kzz), respectively.  

Now, in order to find the separation parameters, boundary conditions must be accounted for. 

Even so, it is important to first analyze the relation between the electromagnetic field inside 

the resonator and the elemental wave function. In the case of TM modes, the relation is shown 

in eq. (A1.1), whilst eq. (A1.2) shows the relation for TE modes. 
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Figure A1-1. General layout of a rectangular resonator 

 
Ex =

1

jωϵ

∂2ΨTM

∂x ∂z
, Ey =

1

jωϵ

∂2ΨTM

∂y ∂z
, Ez =

1

jωϵ
(
∂2

∂z2
+ k2)ΨTM 

Hx =
∂ΨTM

∂y
, Hy = −

∂ΨTM

∂x
, Hz = 0 

(A1.1) 

 
Ex = −

∂ΨTE

∂y
, Ey =

∂ΨTE

∂x
, Ez = 0 

Hx =
1

jωμ

∂2ΨTE

∂x ∂z
, Hy =

1

jωμ

∂2ΨTE

∂y ∂z
, Hz =

1

jωμ
(
∂2

∂z2
+ k2)ΨTE 

(A1.2) 

 

Boundary conditions require that the tangential field at each wall nullifies. Hence, applying 

this criteria to eqs. (A1.1) and (A1.2) leads to eq. (A1.3), where m, n start at zero for TE 

modes (m = n = 0 excluded), and at one for TM modes. The remaining index, i.e. p, starts 

at one for TE modes and at zero for TM modes. 

 kx =
mπ

a
, ky =

nπ

b
, kz =

pπ

c
 (A1.3) 

 

Using eq. (A1.3) and taking into account that k2 = ω2μϵ, the separation equation can be 

solved to find the resonant frequency of each mode, arriving at eq. (A1.4). From this 

equation, it is evident that the resonant frequencies of a homogenously filled rectangular 

resonator depend on the geometry, as well as on the electromagnetic properties of the filling. 

Moreover, materials with higher dielectric constant (and thus, higher ϵ) will exhibit lower 

resonant frequencies.  

 frmnp =
1

2√μϵ
 √(

m

a
)
2

+ (
n

b
)
2

+ (
p

c
)
2

 (A1.4) 
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A.2.  FIELD VISUALIZATION 

Plotting the electromagnetic field inside the previously analyzed resonator (Figure A1-1) is 

a rather simple task. The process can be summarized as defining the index of the mode and 

whether it is TE or TM. Afterwards, the resonant frequency is calculated through eq. (A1.4) 

and the fields are plotted using eq. (A1.1) and (A1.2) accordingly. However, a more general 

design scenario implies different materials inside the resonator. Even so, before delving into 

the electromagnetic analysis of a partially filled resonator, it is convenient to first analyze the 

way in which the internal fields can be plotted. In the most general case, the resonator can be 

split into N different blocks (or networks, Figure 2-1), giving rise to different configurations.  

 
Figure A1-2. Rectangular resonator split into N blocks 

A.2.1. Resonator split into two blocks 

Assuming there is only one change of material inside the applicator, the total number of 

blocks equals two. The elemental equations for each region of this scenario are given by eq. 

(A1.5), and the x-component of the electric field corresponds to eq. (A1.6).  

 
Ψ1
TE = A1 cos(kxx) cos(kyy) sin(kz1z) 

Ψ2
TE = A2 cos(kxx) cos(kyy) sin(kz2(c − z)) 

(A1.5) 

 
Ex1
TE = A1ky cos(kxx) sin(kyy) sin(kz1z) 

Ex2
TE = A2ky cos(kxx) sin(kyy) sin(kz2(c − z)) 

(A1.6) 

 

These equations comply with the boundary conditions on the walls of the cavity. However, 

continuity of tangential fields at the interface of both materials must be guaranteed, so: 
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Ex1
TE(d1) = Ex2

TE(d1) 

A2 =
A1 sin(kz1d1)

sin (kz2(c − d1))
 

(A1.7) 

 

Hence, in order to plot the electric field distribution inside the cavity, eq. (A1.6) can be used, 

assuming any given value for A1 (e.g. A1 = 1) and calculating A2 through eq. (A1.7).  

A.2.2. Cavity with three blocks 

When considering three blocks, the z-component of the wave functions for the first and last 

block remain the same as in the previous case (since they must comply with boundary 

conditions). However, the middle block has no restriction of zero field at any of the 

interfaces, so it is chosen as a sum of a component nullified at the beginning of block one 

and a component nullified at the end of the last block. Thus, the wave functions are written 

as shown by eq. (A1.8), and the electric and magnetic fields are as shown by eq. (A1.9) and 

eq. (A1.10), respectively.  

 

Ψ1
TE = A1 cos(kxx) cos(kyy) sin(kz1z) 

Ψ2
TE = cos(kxx) cos(kyy) (A2a sin(kz2z) + A2b sin (kz2(c − z))) 

Ψ3
TE = A3 cos(kxx) cos(kyy) sin (kz3(c − z)) 

(A1.8) 

 

Ex1
TE = A1ky cos(kxx) sin(kyy) sin(kz1z) 

Ex2
TE = ky cos(kxx) sin(kyy) (A2a sin(kz2z) + A2b sin (kz2(c − z))) 

Ex3
TE = A3ky cos(kxx) sin(kyy) sin (kz3(c − z)) 

(A1.9) 

 

Hy1
TE = −

A1kykz1
jωμ1

cos(kxx) sin(kyy) cos(kz1z) 

Hy2
TE = −

kykz2
jωμ2

cos(kxx) sin(kyy) (A2a cos(kz2z) + A2b cos (kz2(c − z))) 

Hy3
TE =

A3kykz3
jωμ3

cos(kxx) sin(kyy) cos (kz3(c − z)) 

(A1.10) 

 

Applying continuity of tangential fields at the interface yields: 

 A1 sin(kz1d1) = A2a sin(kz2d1) + A2b sin (kz2(c − d1)) (A1.11) 

 A2a sin(kz2d2) + A2b sin (kz2(c − d2)) = A3 sin (kz3(c − d2)) (A1.12) 

 
A1kz1
μ1

cos(kz1d1) =
kz2
μ2
(A2a cos(kz2d1) + A2b cos (kz2(c − d1))) (A1.13) 

 −
kz2
μ2
(A2a cos(kz2d2) + A2b cos (kz2(c − d2))) =

A3kz3
μ3

cos (kz3(c − d3)) (A1.14) 
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Solving eq. (A1.11) and eq. (A1.13) for A2a, and after equating, the expression for A2b shown 

in eq. (A1.15) is obtained. Hence, A2a and A3 can be calculated trough eq. (A1.16) and eq. 

(A1.17), respectively.  

 

A2b =
A1 sin(kz1d1) − kkA1 cos(kz1d1) tan(kz2d1)

sin (kz2(c − d1)) + cos (kz2(c − d1)) tan(kz2d1)
 

kk =
μ2kz1
μ1kz2

 

(A1.15) 

 A2a =
A1 sin(kz1d1) − A2b sin (kz2(c − d1))

sin(kz2d1)
 (A1.16) 

 A3 =
A2a sin(kz2d2) + A2b sin (kz2(c − d2))

sin (kz3(c − d2))
 (A1.17) 

A.2.3. Cavity with more than three blocks 

Assume a resonant cavity split into N blocks, as shown by Figure 2-1, where index i indicates 

all internal blocks, i.e. i = [2, N − 1]. Following the same rationale of the previous case, the 

wave functions, electric fields, and magnetic fields of the blocks, are given by eqs. (A1.18), 

(A1.19), and (A1.20), respectively.  

 

Ψ1
TE = A1 cos(kxx) cos(kyy) sin(kz1z) 

Ψi
TE = cos(kxx) cos(kyy) (Aia sin(kziz) + Aib sin (kzi(c − z))) 

ΨN
TE = AN cos(kxx) cos(kyy) sin (kzN(c − z)) 

(A1.18) 

 

Ex1
TE = A1ky cos(kxx) sin(kyy) sin(kz1z) 

Exi
TE = ky cos(kxx) sin(kyy) (Aia sin(kziz) + Aib sin (kzi(c − z))) 

ExN
TE = ANky cos(kxx) sin(kyy) sin (kzN(c − z)) 

(A1.19) 

 

Hy1
TE = −

A1kykz1
jωμ1

cos(kxx) sin(kyy) cos(kz1z) 

Hyi
TE = −

kykzi
jωμi

cos(kxx) sin(kyy) (Aia cos(kziz) + Aib cos (kzi(c − z))) 

HyN
TE =

ANkykzN
jωμN

cos(kxx) sin(kyy) cos (kzN(c − z)) 

(A1.20) 

 

After solving the system of equations, the amplitude coefficients are found to be: 
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A2b =
A1 sin(kz1d1) − kkA1 cos(kz1d1) tan(kz2d1)

sin (kz2(c − d1)) + cos (kz2(c − d1)) tan(kz2d1)
 

A2a =
A1 sin(kz1d1) − A2b sin (kz2(c − d1))

sin(kz2d1)
 

kk =
μ2kz1
μ1kz2

 

(A1.21) 

 

Aib

=
A(i−1)a sin(k1i) + A(i−1)b sin(k4i) − kki tan(k2i) (A(i−1)a cos(k1i) − A(i−1)b cos(k4i))

sin(k3i) + cos(k3i) tan(k2i)
  

Aia =
A(i−1)a sin(k1i) + A(i−1)b sin(k4i) − Aib sin(k3i)

sin(k2i)
 

kki =
μikzi−1
μi−1kzi

, k1i = kzi−1di−1, k2i = kzidi−1, k3i = kzi(c − di−1), k4i = kzi−1(c − di−1) 

(A1.22) 

 AN =
A(N−1)a sin (kz(N−1)d(N−1)) + A(N−1)b sin (kz(N−1)(c − d(N−1)))

sin (kzN(c − d(N−1)))
 (A1.23) 

 

A.3.  PARTIALLY FILLED RECTANGULAR RESONATOR 

The inclusion of a material (homogeneous and isotropic) with a given permittivity inside the 

resonator perturbs the resonant frequencies. As an example, consider the plot given in Figure 

A1-3 where three different materials were selected. It is easily seen that as the layer of 

material grows thicker, the resonant frequency of a given mode diminishes. The electric field 

distribution is also affected by this mix of materials inside the resonator, as can be seen in 

Figure A1-4 and in Figure A1-5, where the electric field distribution of the first and second 

modes (respectively) is shown for different fill percentages. It is clear that the electric field 

tends to concentrate on the layer of material with the higher dielectric constant (ϵr). However, 

under this condition (i.e. partial filling) the resonant frequency can no longer be calculated 

through eq. (A1.4), so a new alternative must be implemented.  
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Figure A1-3. Resonant frequency of a partially filled resonator as a function of the fill percentage, for two modes 

and three different materials. The dotted line represents the standard frequency of 2.45 [GHz] and the volume of 

the resonator is 𝟎. 𝟏 × 𝟎. 𝟐 × 𝟏. 𝟐 [𝐦𝟑] 

 
Figure A1-4. Electric field distribution for the dominant mode of a partially filled rectangular resonator. The load 

is located so symmetry is preserved, i.e. the load is centered about 𝐳 = 𝟎. 𝟔 
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Figure A1-5. Electric field distribution for the second mode of a partially filled rectangular resonator. The load is 

located so symmetry is preserved, i.e. the load is centered about 𝐳 = 𝟎. 𝟔 

Circuital analysis is an approach that can be used for solving an electromagnetic problem by 

separating it into smaller and easier to analyze structures. Afterwards, these simple networks 

can be connected and a global behavior can be obtained, which is usually given by its general 

impedance, admittance or scattering matrices (GIM, GAM and GSM, respectively). Even 

though the segmentation technique has been around for some time (it was first attributed to 

Harrington in 1961), it has been widely used up to our days [1,2]. Hence, some comments 

will be made in the next section regarding circuital analysis and its relation with this 

dissertation. 

A.4.  CIRCUITAL ANALYSIS 

Following is a brief analysis, through circuit theory, of different networks (or blocks), so they 

can be used as building blocks in the analysis of a multi-layered resonator.  

A.4.1. Admittance Matrix of the Rectangular resonator 

A.4.1.1. Bottom network 

Figure A1-6 shows the general layout of a rectangular network with a port located on its top 

face, i.e. at z = c. Hence, this block can be used as the bottom network of a multi-layered 

design. Since this is not a closed structure (there is one port) the wave function in the z-axis 

should be assumed as a traveling wave. Thus, ΨTE = cos(kxx) cos(kyy) (A
+e−γz + A−eγz) 

can be selected. Moreover, boundary conditions along the x-axis and y-axis imply that kx =

mπ/a and ky = nπ/b.  
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Figure A1-6. General layout of the rectangular network with one port located on its top face (𝐳 = 𝐜) 

Applying eq. (A1.2) to the wave function reveals that the electric field along the x-axis is of 

the form shown by eq. (A1.24), whilst the magnetic field along the y-axis is of the form 

shown by eq. (A1.25). Now, the boundary condition at the wall in the z-axis, i.e. the wall 

located at z = 0 require that the tangential electric field becomes zero. From eq. (A1.24) it 

follows that A+ = A−, so the fields can be rewritten as shown in eq. (A1.26). 

 Ex = ky cos(kxx) sin(kyy) (A
+e−γz + A−eγz) (A1.24) 

 Hy =
kyγ

jωμ
cos(kxx) sin(kyy) (A

+e−γz − A−eγz) (A1.25) 

 
Ex = −2A

+ky cos(kxx) sin(kyy) sinh(γz) 

Hy = 2A
+
kyγ

jωμ
cos(kxx) sin(kyy) cosh(γz) 

(A1.26) 

 

The internal electric field at the port, i.e. at z = c must be the same as the incident field at the 

port, so: 

 −2A+ky cos(kxx) sin(kyy) sinh(γc) = ∑ α𝓂 sin (
2π𝓂y

b
) + β𝓂 cos (

2π𝓂y

b
)

∞

𝓂=0

 (A1.27) 

 

Multiplying both sides by sin(kyy) and integrating between zero and b leads to eq. (A1.28), 

where I𝓂
s = ∫ sin(kyy) sin (

2π𝓂y

b
) dy

b

0
 and I𝓂

c = ∫ sin(kyy) cos (
2π𝓂y

b
) dy

b

0
. Because of 

orthogonality, ∫ sin(kyy) sin(kyy) dy
b

0
= b/2, so eq. (A1.28) can be solved in terms of A+, 

yielding eq. (A1.29). 
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 −2A+ky cos(kxx) sinh(γc)∫ sin(kyy) sin(kyy) dy
b

0

= ∑ α𝓂I𝓂
s + β𝓂

∞

𝓂=0

I𝓂
c  (A1.28) 

 A+ = −
1

bky cos(kxx) sinh(γc)
∑ α𝓂I𝓂

s + β𝓂

∞

𝓂=0

I𝓂
c  (A1.29) 

 

The magnetic field must also be continuous at the port, so this means that at z = c the internal 

magnetic field must equal the incident magnetic field, as shown in eq. (A1.30). As in the 

previous case, this equation can be solved via the orthogonality of trigonometric functions.  

 2A+
kyγ

jωμ
cos(kxx) sin(kyy) cosh(γc) = ∑cq sin (

2πqy

b
) + dq cos (

2πqy

b
)

∞

q=0

 (A1.30) 

 

In order to obtain cq, both sides of the equation can be multiplied by sin (
2πry

b
) and then 

integrated between zero and b, yielding eq. (A1.31), where Iq
s = ∫ sin(kyy) sin (

2πqy

b
) dy

b

0
. 

For obtaining dq it is necessary to multiply eq. (A1.30) by cos (
2πry

b
) and integrate over the 

same domain, yielding eq. (A1.32), where Iq
c = ∫ sin(kyy) cos (

2πqy

b
) dy

b

0
. Thus, after 

replacing A+ from eq. (A1.29) the values for cq, dq shown in eq. (A1.33) are obtained.  

 4A+
kyγ

jωμb
cos(kxx) cosh(γc) Iq

s = cq (A1.31) 

 
4A+

kyγχq

jωμb
cos(kxx) cosh(γc) Iq

c = dq  

χq = {
1/2 q = 0
1 q > 0

 

(A1.32) 

 

cq =
−4γ

ωμb2
1

tan(jγc)
Iq
s ∑ α𝓂I𝓂

s + β𝓂

∞

𝓂=0

I𝓂
c  

dq =
−4γχq

ωμb2
1

tan(jγc)
Iq
c ∑ α𝓂I𝓂

s + β𝓂

∞

𝓂=0

I𝓂
c  

(A1.33) 

 

Equation (A1.33) can be expressed in matrix form as shown in eq. (2.1), where 

Yss, Ysc, Ycs, Ycc are submatrices composed by q,m elements, as shown by eq. (2.2). 

 [
c
d
] = [Y] [

α
β] = [

Yss Ysc

Ycs Ycc
] [
α
β] (A1.34) 

 
Yqm
ss =

−4γ

ωμb2
1

tan(jγc)
Iq
sI𝓂
s       Yqm

sc =
−4γ

ωμb2
1

tan(jγc)
Iq
sI𝓂
c  

Yqm
cs =

−4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
s     Yqm

cc =
−4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
c  

(A1.35) 
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It is important to now observe the influence of the integrals over the results. For a given n, 

they can be calculated as shown in eq. (2.3). Hence, any cross product between sine and 

cosine components (i.e. Iq
s I𝓂
c  and Iq

cI𝓂
s ) yield zero, so Ysc = Ycs = 0 for all n. Moreover, 

[Y] = [Yss] if 2𝓂 = 2q = n and [Y] = [Ycc] if n is odd.  

 

I𝓂
s = ∫ sin (

2π𝓂y

b
) sin (

nπy

b
) dy

b

0

= {
b/2 2𝓂 = n
0 2𝓂 ≠ n

 

I𝓂
c = ∫ cos (

2π𝓂y

b
) sin (

nπy

b
) dy

b

0

= {

0 2𝓂 = n OR n = even
−2bn

π(4𝓂2 − n2)
n = odd

 

Iq
s = ∫ sin (

2πqy

b
) sin (

nπy

b
) dy

b

0

= {
b/2 2q = n
0 2q ≠ n

 

Iq
c = ∫ cos (

2πqy

b
) sin (

nπy

b
) dy

b

0

= {

0 2q = n OR n = even
−2bn

π(4q2 − n2)
n = odd

 

(A1.36) 

 

A.4.1.2. Top network 

Figure A1-7 shows the dual case of the previously discussed network. This time, the port is 

located at z = 0 and the electric wall is located at z = c. Hence, this network can be used as 

the top element of a multi-layered design. Following the same procedure as in the previous 

case, the wave function is ΨTE = cos(kxx) cos(kyy) (A
+e−γz + A−eγz), with kx = mπ/a 

and ky = nπ/b. Applying boundary conditions at the wall, leads to A− = −A+e−2γc so the 

fields can be rewritten as in eq. (A1.37). Applying equivalence of the internal and incident 

electric fields at the port, eq. (A1.38), and solving for A+, leads to eq. (A1.39). Similarly, 

using the equivalence of the magnetic fields, solving for cq, dq and replacing A+, leads to eq. 

(A1.40), where Iq
s , Iq

c , I𝓂
s , I𝓂

c  are given in eq. (2.3). 

 

Figure A1-7. General layout of the rectangular network with one port located on its bottom face (𝐳 = 𝟎) 
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Ex = −2A+kye

−γc cos(kxx) sin(kyy) sinh(γ(z − c)) 

Hy = 2A
+
kyγ

jωμ
e−γc cos(kxx) sin(kyy) cosh(γ(z − c)) 

(A1.37) 

 −2A+kye
−γc cos(kxx) sinh(−γc)∫ sin(kyy) sin(kyy) dy

b

0

= ∑ α𝓂I𝓂
s + β𝓂

∞

𝓂=0

I𝓂
c  (A1.38) 

 A+ = −
1

bkye
−γc cos(kxx) sinh(−γc)

∑ α𝓂I𝓂
s + β𝓂

∞

𝓂=0

I𝓂
c  (A1.39) 

 

cq =
4γ

ωμb2
1

tan(jγc)
Iq
s ∑ α𝓂I𝓂

s + β𝓂

∞

𝓂=0

I𝓂
c  

dq =
4γχq

ωμb2
1

tan(jγc)
Iq
c ∑ α𝓂I𝓂

s + β𝓂

∞

𝓂=0

I𝓂
c  

(A1.40) 

 

Hence, the elements that compose the admittance matrix of the top network are: 

 

Yqm
ss =

4γ

ωμb2
1

tan(jγc)
Iq
s I𝓂
s Yqm

sc = 0

Yqm
cs = 0 Yqm

cc =
4γχq

ωμb2
1

tan(jγc)
Iq
cI𝓂
c

 (A1.41) 

A.4.1.3. Middle network 

Figure A1-8 shows the case where the network has two ports, one at z = 0 and one at z = c. 

This type of network can be used as an intermediate network, and several of them can be 

used to allow for more complex designs. Since this network is comprised of two ports, its 

admittance matrix, [Y], is made up of four submatrices, and each one of them contains the 

four submatrices already discussed, see eq. (2.5).  

 

Figure A1-8. General layout of the rectangular network with one port located on its top face (𝐳 = 𝐜) and one port on 

its bottom face (𝐳 = 𝟎) 
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 [Y] = [
[Y11] [Y12]

[Y21] [Y22]
] = [

[
Yss Ysc

Ycs Ycc
]
11

[
Yss Ysc

Ycs Ycc
]
12

[
Yss Ysc

Ycs Ycc
]
21

[
Yss Ysc

Ycs Ycc
]
22

] (A1.42) 

 

The admittance submatrix of elements [Y11] and [Y22] are the same as for the one port 

networks, see eq. (2.2) and eq. (2.4), respectively, so it is only required to calculate [Y12] and 

[Y21]. Since the admittance matrix relates the interaction between magnetic and electric field 

at a given port, each of the remaining submatrices can be calculated in the same fashion as 

previously discussed. Though, caution must be taken to include the appropriate conditions 

when equating the internal and incident fields. This means that, for example, calculation of 

[Y12] implies assuming an incident electric field at port 2 (with port 1 acting as a short circuit) 

and then including the effect of port 1 via the equivalence of incident and internal magnetic 

fields. Hence, A+ is readily available from eq. (A1.39). Specializing the magnetic field from 

eq. (A1.37) at port 1 (z = c), and equating it with an incident magnetic field, yields eq. 

(A1.43). Solving this equation for cq, dq leads to the admittance elements shown in eq. (2.6). 

 2A+
kyγ

jωμ
e−γc cos(kxx) sin(kyy) = ∑cq sin (

2πqy

b
) + dq cos (

2πqy

b
)

∞

q=0

 (A1.43) 

 

[
 
 
 Yqm
ss =

4γ

ωμb2
1

sin(jγc)
Iq
sI𝓂
s Yqm

sc = 0

Yqm
cs = 0 Yqm

cc =
4γχq

ωμb2
1

sin(jγc)
Iq
cI𝓂
c

]
 
 
 

12

 (A1.44) 

 

A similar procedure for [Y21] leads to eq. (2.7), where A+ is given by eq. (A1.29) and the 

incident magnetic field is analyzed at port 2 (i.e. at z = 0).  

 

[
 
 
 Yqm

ss =
−4γ

ωμb2
1

sin(jγc)
Iq
sI𝓂
s Yqm

sc = 0

Yqm
cs = 0 Yqm

cc =
−4γχq

ωμb2
1

sin(jγc)
Iq
cI𝓂
c

]
 
 
 

21

 (A1.45) 

A.4.2. Transformation of the Admittance Matrix into the Scattering Matrix 

The admittance matrix, Y̿, of a given network represents the ratio between magnetic and 

electric fields. The scattering matrix, S̿, relates the behavior of a given electromagnetic wave 

at each port inside a specific network. Moreover, knowing one of these representations allows 

mapping the other one. The mathematical procedure is widely explained in literature [2,3], 

so here it will be just enough to mention that eq. (A1.46) shows how this transformation can 

be carried out, considering that Y0̿̿̿
(r)

 and Y0̿̿̿
(i)

 are the reflected and incident components of 
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the characteristic impedance (eq. (A1.47) and (A1.48), respectively) [1]. This notation 

assumes that the incident wave travels along the +z-axis, so it is appropriate for the top 

network (i.e. the one with the port located at z = 0). However, in the case of the bottom 

network (i.e. the one with the port located at z = c) the incident wave travels along the –z-

axis, so both terms of the characteristic admittance must be multiplied by minus one.  

 
S̿ = (Y̿ + Y0̿

(r)
)
−1

⋅ (Y0̿
(i)
− Y̿) 

Y̿ = (Y̿(i) − Y0̿
(r)
⋅ S̿)

−1

⋅ (I̿ + S̿) 
(A1.46) 

 Y0̿
(r)
= diag (

kz
ωμ
) (A1.47) 

 Y0̿
(i)
= diag (−

kz
ωμ
) (A1.48) 

A.4.3. Connecting Networks 

This process implies two stages: joining the networks and connecting them. The first one 

creates a matrix with the information from the networks that are being connected. For 

example, if a two-port network and a one-port network are being connected, the resulting 

matrix would be of size 3 × 3 as shown in eq. (A1.49), where [S]N1̿̿ ̿̿ ̿̿ ̿ is the scattering matrix 

of the first network, composed of its corresponding four sub matrices, and SN2̿̿ ̿̿̿ is the 

scattering matrix of the one-port network.  

 SN12
̿̿ ̿̿ ̿̿ = [

[
S11̿̿ ̿̿ S21̿̿ ̿̿

S12̿̿ ̿̿ S22̿̿ ̿̿
]
N1

0
0

0 0 SN2̿̿ ̿̿ ̿

] (A1.49) 

 

The second stage, i.e. connecting the networks, operates over the ports and returns a matrix 

with the equivalent scattering parameters. This new network has two ports less than SN12
̿̿ ̿̿ ̿̿  and 

each one of its elements is obtained through eq. (A1.50), where SpqN12
̿̿ ̿̿ ̿̿ ̿̿  represents each 

element of SN12
̿̿ ̿̿ ̿̿ , k, l are the port numbers that are being connected, and p, q are the indexes 

of SN12
̿̿ ̿̿ ̿̿ . Here it is worth mentioning that care must be taken as to avoid the operations where 

p, q = k, l, since these are the ports being connected and thus must not be operated. 

 

Spq̿̿ ̿̿ = SpqN12
̿̿ ̿̿ ̿̿ ̿̿

+  Spl̿̿ ̿̿ ⋅ Δ1 ⋅ Δkl ⋅ (Skq̿̿ ̿̿ + Skk̿̿ ̿̿ ⋅ Δlk ⋅ Slq̿̿ ̿̿ )

+ Spk̿̿ ̿̿ ⋅ Δ2 ⋅ Δlk ⋅ (Slq̿̿ ̿̿ + Sll̿̿ ̿ ⋅ Δkl ⋅ Skq̿̿ ̿̿ ) 

Δ1 = (1 − Δkl ⋅ Skk̿̿ ̿̿ ⋅ Δlk ⋅ Sll̿̿ ̿)
−1
, Δ2 = (1 − Δlk ⋅ Sll̿̿ ̿ ⋅ Δkl ⋅ Skk̿̿ ̿̿ )

−1
 

Δkl = (1 − Skl̿̿̿̿ )
−1
, Δlk = (1 − Slk̿̿̿̿ )

−1
 

(A1.50) 
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A.4.4. Resonant Frequencies 

Traditional circuital analysis theory conveys that the resonant frequencies of a given setup 

are those for which eq. (2.8) is satisfied [3]. This, however, does not require S1̿ or S2̿̿̿ to be 

the scattering matrix of a single network, so either one of them (or even both) can be the 

result of connecting several networks. Even so, matrix theory states that if all elements of at 

least one row or column are zero, then the determinant of a matrix becomes zero. This impacts 

directly our model, since as will be shown now, for a given n there are always rows or 

columns full of zero elements.  

 |det (S1̿S2̿ −  I)| = 0 (A1.51) 

 

Assume we want to analyze the TE01p modes of a given resonator split into two networks. 

Hence, m = 0 and n = 1, and the problem is composed of a bottom network (network 1) and 

a top network (network 2). Based on eq. (2.2) and eq. (2.4), and using the results shown in 

eq. (2.3), the admittance matrices of both networks become: 

 [Ynet1] = [
[0] [0]

[0] [Ynet1
cc ]

] ;  [Ynet2] = [
[0] [0]

[0] [Ynet2
cc ]

] (A1.52) 

 

Hence, there is at least one row and one column where all the elements are zero. If we change 

the mode being analyzed to, e.g. n = 2, then the admittance matrices become: 

 [Ynet1] = [
[Ynet1

ss ] [0]

[0] [0]
] ;  [Ynet2] = [

[Ynet2
ss ] [0]

[0] [0]
] (A1.53) 

 

Again, there are rows and columns filled with zero elements. This behavior repeats itself for 

the remaining modes, yielding eq. (A1.52) whenever n is odd, and yielding eq. (A1.53) 

whenever n is even. Hence, eq. (2.8) cannot be used under the scenario we are analyzing in 

this dissertation (i.e. a single value of n) and another alternative must be sought.  

In this research work, we considered that the norm function may provide a valid approach at 

finding the resonant frequencies. It is illustrated as follows. We analyzed the first ten TE01p 

modes, calculating the error between the analytic solution and the one yielded by different 

types of norms. We found that all norms allowed finding the resonant frequencies with error 

levels below 0.01% (Table 2-1). Even so, the norm that performed better was the 1-norm, so 

it is the one that will be used during the remainder of this dissertation. The frequency response 

of this approach is shown in Figure 2-2, where it can be seen that even if not all resonant 



177 

frequencies yield a value of zero norm, they do correspond with a local minima of the 

function and so, this approach can be used.  

Table A1-1. Resonant frequencies for the first ten 𝐓𝐄𝟎𝟏𝐩 modes, found through the analytic solution and through 

three different types of matrix norms 

p Analytical  1-Norm 2-Norm Inf-Norm 

  
Frequency  

(GHz) 

Frequency  

(GHz) 

Error  

(kHz) 

Error  

(%) 

Frequency  

(GHz) 

Error  

(kHz) 

Error  

(%) 

Frequency  

(GHz) 

Error  

(kHz) 

Error  

(%) 

1 0.7598 0.7599 28.5440 0.0038 0.7599 28.5450 0.0038 0.7599 28.5450 0.0038 

2 0.7900 0.7900 55.7820 0.0071 0.7900 55.7880 0.0071 0.7900 55.7860 0.0071 

3 0.8380 0.8380 14.1170 0.0017 0.8380 14.8290 0.0018 0.8380 16.6420 0.0020 

4 0.9008 0.9009 101.9200 0.0113 0.9009 101.9200 0.0113 0.9009 101.9300 0.0113 

5 0.9756 0.9755 120.9000 0.0124 0.9755 120.9000 0.0124 0.9755 120.8900 0.0124 

6 1.0599 1.0599 20.6650 0.0019 1.0599 20.9020 0.0020 1.0599 20.0300 0.0019 

7 1.1516 1.1518 146.5200 0.0127 1.1518 146.5300 0.0127 1.1518 146.5200 0.0127 

8 1.2491 1.2490 157.8200 0.0126 1.2490 157.8200 0.0126 1.2490 157.8200 0.0126 

9 1.3511 1.3512 43.8620 0.0032 1.3512 44.6950 0.0033 1.3512 44.8250 0.0033 

10 1.4567 1.4569 163.7700 0.0112 1.4569 163.7800 0.0112 1.4569 163.8300 0.0112 

Average: 85.3900 0.00780   85.5709 0.00782   85.6818 0.00783 

 
Figure A1-9. Frequency response of circuital analysis considering the 1-norm 

A.5.  ANALYSIS INVOLVING LOSSY MATERIALS 

So far, our analysis has only considered lossless materials. However, a more general case 

implies that this material may have a complex permittivity, given by ϵ∗ = ϵ′ − jσ/ω. This is 

reflected in the conductivity (σ) of the sample and the equations must be slightly modified. 
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These include changing the trigonometric functions of the wave function into their hyperbolic 

counterparts. Also, now kx = jmπ/a, ky = jnπ/b and k = jωμ(σ + jωϵ′).  

The admittance matrices derived from circuital analysis are then modified in the following 

way: the bottom network is now ruled by eq. (2.12), the top network is now ruled by eq. 

(2.13) and the middle networks are now ruled by eq. (2.14). The expressions for each integral 

are, however, not modified. It is important to note that eq. (2.14) only shows the formulae 

for A at each port, and that each one of them has a set of associated admittance matrices (i.e. 

there is a set of Yss, Ysc, Ycs, Ycc per each A) 

 

A = −
4γz

jωμb2 tanh(γzc)
 

 
Yss = AIq

sIm
s Ysc = 0

Ycs = 0 Ycc = AχqIq
cIm
c                 

(A1.54) 

 

A =
4γz

jωμb2 tanh(γzc)
 

 
Yss = AIq

sIm
s Ysc = 0

Ycs = 0 Ycc = AχqIq
cIm
c                 

(A1.55) 

 

A =
4γz
jωμb2

 

 

A11 = −
A

tanh(γzc)
A12 =

A

sinh(γzc)

A21 = −
A

sinh(γzc)
A22 =

A

tanh(γzc)

                

(A1.56) 

 

The field distribution is also affected by the inclusion of the conductivity. If the resonator is 

split into two blocks, the amplitude of the second one is given by eq. (A1.57). If it is split 

into three or more, the amplitude at the second block is given by eq. (A1.58), while the 

amplitude at the remaining blocks is given by eq. (A1.59) and eq. (A1.60).  

 A2 =
A1ϵ2

∗ sinh(kz1d1)

ϵ1
∗ sinh (kz2(c − d1))

 
(A1.57

) 

 

A2b =
A1ϵ2

∗(kz2 sinh(k1) − kz1 tanh(k2) cosh (k1))

ϵ1
∗kz2(sinh(k3) + tanh(k2) cosh(k3))

 

A2a =
A1ϵ2

∗ sinh(k1) − ϵ1
∗A2bsinh (k3)

ϵ1
∗sinh (k2)

 

 
k1 = kz1d1 k2 = kz2d1 k3 = kz2(c − d1) 

(A1.58

) 
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Aib =
ϵi
∗(𝑘𝑧𝑖Ast1i − kzi−1 tanh(k2i) 𝐴𝑠𝑡2𝑖)

ϵi−1
∗ kzi(sinh(k3i) + tanh(k2i) cosh(k3i))

 

Aia =
ϵi
∗Ast1i − ϵi−1

∗ Aibsinh (k3i)

ϵi−1
∗ sinh(k2i)

 

 
k1i = kzi−1di−1 k2i = kzidi−1 k3i = kzi(c − di−1) k4i = kzi−1(c − di−1) 

 

Ast1i = A(i−1)a sinh(k1i) + A(i−1)bsinh (k4i) Ast2i = A(i−1)a cosh(k1i) − A(i−1)bcosh (k4i) 

(A1.59

) 

 AN =
ϵN
∗ (A(N−1)a sinh (kz(N−1)d(N−1)) + A(N−1)b sinh (kz(N−1)(c − d(N−1))))

ϵN−1
∗ sinh (kzN(c − d(N−1)))

 
(A1.60

) 
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B. ANALYTIC RESULTS OF THE SAMPLES 

This appendix includes the data gathered from the analytic testing of minerals with X-ray 

diffraction and/or X-ray fluorescence. Only the most significant minerals were analyzed due 

to budgetary limitations, and fluorescence was only carried out for the as received samples 

because this test required more ore than it was available after microwave roasting. We begin 

by showing a comparison of the elemental analysis of the as received samples used for 

dielectric properties measurement, sorted by atomic number (Table A2.1). Then, we contrast 

their diffraction results, before and after roasting (Table A2.2 to Table A2.7). Finally, we 

show the diffraction results for a mineral used during the experimental testing stage, i.e. Juan 

Blanco sieve: 170 (Table A2.8). 

Table A2.1. Elemental analysis of the as received samples used for measuring dielectric properties, sorted by 

atomic number (Z). JB stands for “Juan Blanco”, IS stands for “Ismael”, CA stands for “Carlos Arias”, CV stands 

for “Core from El Volcán”, and RS stands for “Rock from Segovia”. The sieve size is given by the letter S and the 

number next to it 

Elemen

t 
Z 

JB 

S100 

JB 

S200 

JB S-

200 

M9 

S100 

IS S-

170 

CA 

S100 

CV S-

120 

RS S-

120 

Na 

1

1 
-- -- N.Q. -- -- 0.08% 0.10% -- 

Mg 

1

2 
0.29% 0.32% 0.40% 0.03% 0.48% 0.20% 1.04% 1.90% 

Al 

1

3 
11.02% 14.38% 13.69% 0.60% 11.15% 2.84% 8.56% 9.10% 

Si 

1

4 
14.87% 18.57% 17.98% 14.29% 20.26% 23.43% 22.03% 22.56% 

P 

1

5 
0.09% 0.10% 0.07% -- 0.06% 0.06% 0.04% 0.08% 

S 

1

6 
10.72% 6.57% 4.27% 23.51% 0.01% 17.11% 0.45% 0.95% 

Cl 

1

7 
-- -- -- -- -- 0.01% 0.02% 0.02% 

K 

1

9 
5.54% 7.87% 8.94% 0.21% 4.75% 2.04% 7.29% 5.06% 

Ca 

2

0 
0.08% 0.07% 0.06% 86 ppm 0.03% 0.23% 0.26% 6.46% 

Sc 

2

1 
-- -- N.Q. -- -- -- -- -- 

Ti 

2

2 
0.83% 0.83% 0.44% 0.02% 0.20% 0.24% 0.79% 0.42% 

V 

2

3 
-- -- 0.03% -- -- -- -- -- 

Cr 

2

4 
72 ppm -- 20 ppm N.Q. 49 ppm 0.01% 0.02% 0.01% 

Mn 

2

5 
0.06% 0.06% 0.07% -- 0.02% 0.02% 0.47% 0.68% 

Fe 

2

6 
18.35% 14.03% 9.17% 30.67% 13.09% 24.09% 8.37% 2.06% 
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Ni 

2

8 
53 ppm 44 ppm 39 ppm 35 ppm 21 ppm 50 ppm 0.01% 27 ppm 

Cu 

2

9 
0.91% 0.47% 0.96% 0.48% 0.06% 0.21% 0.04% 0.02% 

Zn 

3

0 
3.68% 1.92% 1.89% 0.01% 0.02% 0.54% 0.02% 95 ppm 

Ga 

3

1 
-- -- -- -- -- -- 47 ppm 22 ppm 

As 

3

3 
5.33% 5.28% 3.59% 0.01% 1.55% 0.06% 0.01% 0.03% 

Se 

3

4 
-- -- -- N.Q. -- 28 ppm -- -- 

Rb 

3

7 
0.02% 0.03% 0.05% -- 0.02% 65 ppm 0.04% 0.02% 

Sr 

3

8 
72 ppm 76 ppm N.Q. -- 26 ppm 9 ppm 0.01% 0.01% 

Y 

3

9 
-- -- -- -- -- -- N.Q. -- 

Zr 

4

0 
0.03% 0.05% 0.07% 11 ppm 0.03% 0.02% 0.08% 0.01% 

Nb 

4

1 
20 ppm 21 ppm -- -- -- -- 58 ppm 11 ppm 

Mo 

4

2 
-- -- -- -- -- 26 ppm -- -- 

Ag 

4

7 
0.03% 0.02% 0.03% 85 ppm -- 0.02% -- -- 

Cd 

4

8 
0.05% 0.03% 0.04% -- -- -- -- -- 

Sb 

5

1 
0.06% 0.04% N.Q. -- 0.15% -- -- -- 

Te 

5

2 
-- -- -- -- -- N.Q. -- -- 

Ba 

5

6 
0.07% 0.12% 0.14% -- 0.10% N.Q. 0.17% 0.02% 

Hg 

8

0 
-- 83 ppm 0.01% -- -- 0.08% -- -- 

Pb 

8

2 
6.50% 5.33% 5.72% -- 0.25% 0.06% -- 39 ppm 

 

Table A2.2. Mineral composition before and after roasting for “Juan Blanco”, sieve: 100 . N.Q.: Not Quantifiable 

Compound Before After 

Quartz (SiO2) 18.1% 14.0% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 17.5% 20.1% 

Pyrite (FeS2) 26.7% 12.8% 

Galena (PbS) <1.0% <1.0% 

Anglesite (Pb(SO4)) 3.1% -- 

Mackinawite (FeS) 2.2% 1.5% 

Sphalerite (ZnO) -- <1.0% 

Arsenopyrite (FeAsS) N.Q. -- 
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Pyrrhotite (Fe0.95S1.05) -- 1.4% 

Spinel (Mg1.01Fe1.77Al.22O4) -- 1.9% 

Melanterite ((Fe, Cu, Zn)SO4 ⋅ 7H2O) -- 1.9% 

Zincocopiatite (ZnFe4(SO4)6(OH)2 ⋅ 18H2O) -- N.Q. 

Anatase (TiO2) -- <1.0% 

Others 31.6% 44.3% 

 

Table A2.3. Mineral composition before and after roasting for “Juan Blanco”, sieve: 200 . N.Q.: Not Quantifiable 

Compound Before After 

Quartz (SiO2) 13.0% 13.4% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 20.0% 18.0% 

Pyrite (FeS2) 14.2% 11.8% 

Galena (PbS) <1.0% <1.0% 

Anglesite (Pb(SO4)) -- <1.0% 

Hematite (Fe2O3) -- 1.8% 

Sphalerite (ZnO) 1.4% 1.6% 

Arsenopyrite (FeAsS) N.Q. N.Q. 

Alunite (K(Al3(SO4)2(OH)6)) -- 2.4% 

Others 51.1% 49.8% 

 

Table A2.4. Mineral composition before and after roasting for “Juan Blanco”, sieve: -200. N.Q.: Not Quantifiable; 

N.Q.O.: Not Quantified due to preferential orientation of the reflections 

Compound Before After 

Quartz (SiO2) 3.2% 3.6% 

Moscovite (KAl2(Si, Al)4O10(OH)2) N.Q.O. N.Q.O. 

Pyrite (FeS2) 3.0% 3.0% 

Galena (PbS) <1.0% <1.0% 

Anglesite (Pb(SO4)) 2.2% 2.3% 

Troilite (Fe0.94S) -- N.Q. 

Cuprite (Cu2O) N.Q. N.Q. 

Arsenopyrite (FeAsS) N.Q. N.Q. 

Jarosite ((K0.87(H3O)0.13)Fe2.58(SO4)2 

((OH)4.74(H2O)1.26)) 

4.7% 4.9% 

Others 86.9% 86.2% 

 

Table A2.5. Mineral composition before and after roasting for “M9”, sieve: 100 . N.Q.: Not Quantifiable 

Compound Before After 

Quartz (SiO2) 38.7% 27.1% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 9.8% -- 

Pyrite (FeS2) 31.2% 25.0% 

Pyrrhotite (Fe7S8) -- 16.0% 
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Compound Before After 

Sphalerite (ZnO) N.Q. -- 

Others 20.3% 31.9% 

 

Table A2.6. Mineral composition before and after roasting for “Carlos Arias”, sieve: 100 

Compound Before After 

Quartz (SiO2) 46.1% 47.0% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 10.9% 6.8% 

Pyrite (FeS2) 17.2% 13.9% 

Calcite (Ca(CO3)) 1.3% 2.0% 

Microcline (KAlSi3O8) 2.1% 6.9% 

Pyrrhotite (Fe0.95S1.05) -- 9.1% 

Others 22.4% 14.3% 

 

Table A2.7. Mineral composition before and after roasting for “Core from El Volcán”, sieve: -120 

Compound Before After 

Quartz (SiO2) 42.0% 41.8% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 20.4% 20.3% 

Pyrite (FeS2) <1.0% -- 

Orthoclase (K(AlSi3.02O8)) 8.7% 9.2% 

Phlogopite (K(Mg2.18Fe0.82)(Al1.29Si2.71O10(OH)2)) 14.5% 14.7% 

Others 13.9% 14.0% 

 

Table A2.8. Mineral composition before and after roasting for “Juan Blanco”, sieve: 170 

Compound Before After 

Diaoyudaoite (Na2Al22O34) 3.8% 3.0% 

Quartz (SiO2) 41.9% 24.6% 

Moscovite (KAl2(Si, Al)4O10(OH)2) 15.9% -- 

Pyrite (FeS2) 29.1% -- 

Magnetite (Fe3O4) 0.3% -- 

Erdite (NaFeS2. H2O) 0.2% -- 

Arsenolite (As4O6) 0.6% -- 

Hematite (Fe2O3) -- 47.7% 

Others 8.2% 24.7% 
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C. RESULTS OF THE DESIGN OF EXPERIMENTS 

Following, four plots and a table are shown for each mineral. These data refer to the results 

of the design of experiments and to the ANOVA table.  

C.1.  MINE “JUAN BLANCO” (ASSIGNED TO: BERNAL, D; GARNICA, S; 

RESLEN, Y) 

 
Figure A3-1. Data interpretation for the design of experiments with mine “Juan Blanco”. The following plots are 

presented: main effects (a), interactions (b), Pareto (c), and normal probability (d)  

Table A3.1. ANOVA results for mine “Juan Blanco” 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

A:Time 10.01 1 10.01 35.93 0.0000 

B:Mineral 4.59 1 4.59 16.49 0.0009 

C:Sieve 5.04 1 5.04 18.09 0.0006 

AB 0.51 1 0.51 1.83 0.1947 

AC 0.38 1 0.38 1.35 0.2630 

BC 2.04 1 2.04 7.33 0.0156 

ABC 0.00 1 0.00 0.00 1.0000 

Total error 4.46 16 0.28     

Total (corr.) 27.03 23       
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C.2.  MINE “REINA DE ORO” (ASSIGNED TO: DIAZ, M; RUEDA, M) 

 
Figure A3-2. Data interpretation for the design of experiments with mine “Reina de Oro”. The following plots are 

presented: main effects (a), interactions (b), Pareto (c), and residuals (d)  

Table A3.2. ANOVA results for mine “Reina de Oro” 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Blocks 22.23 2 11.11 0.57 0.5735 

A:Time (min) 1334.58 1 1334.58 67.89 0.0000 

B:SiC (g) 1806.88 1 1806.88 91.92 0.0000 

C:Sample Holder 1044.18 3 348.06 17.71 0.0000 

AB 209.59 1 209.59 10.66 0.0026 

AC 382.23 3 127.41 6.48 0.0014 

BC 7371.48 3 2457.16 125.00 0.0000 

 



186 

C.3.  MINE “TAJO ABIERTO” (ASSIGNED TO: AGUIRRE, R; BOTERO, W) 

 
Figure A3-3. Data interpretation for the design of experiments with mine “Tajo Abierto”. The following plots are 

presented: main effects (a), interactions (b), Pareto (c), and normal probability (d)  

Table A3.3. ANOVA results for mine “Tajo Abierto” 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

A:Power 2.67 1 2.67 5.67 0.0310 

B:Mass 5.35 1 5.35 11.34 0.0042 

C:Time 3.13 1 3.13 6.64 0.0210 

AB 0.46 1 0.46 0.98 0.3380 

AC 0.17 1 0.17 0.36 0.5591 

BC 0.30 1 0.30 0.63 0.4398 

ABC 0.00 1 0.00 0.00 0.9979 

Total error 7.07 15 0.47     

Total (corr.) 21.09 23       
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D. ALGORITHMS BOARDED THROUGHOUT THE DISSERTATION 

The algorithms shown below represent nature-inspired iterative strategies to improve a 

solution during a number of iterations. An extended list is presented here, and it includes all 

the algorithms tested throughout the dissertation. The easiest and most simple logic for 

improving a solution through these algorithms is to keep iterating for a fixed number of 

cycles. However, most often than not, one of two things happen: a valid answer is not found, 

or it was found a long time ago. In the first case, the process would have to begin anew 

allowing for more iterations, while in the second scenario the answer could have been 

achieved with fewer iterations. In both cases, precious computational resources are wasted. 

Even so, the algorithms are described as originally conceived, but in this dissertation some 

convergence criteria are implemented, basically analyzing if the error at a given stage is 

within a tolerable range. Following, a description of all the strategies used during this 

dissertation is provided:  

D.1. ARTIFICIAL BEE COLONY (ABC) 

ABC was first proposed in a technical report by Karaboga during 2005 [4], but it was not 

until 2007 that it was officially presented, when he teamed up with Basturk and published 

their article in the Journal of Global Optimization [5]. After that, important work has been 

carried out by these authors [6–8] as well as by others [9–12]. ABC follows the metaphor of 

honey bees looking for food sources (nectar), and considers three types of bees: onlookers, 

scouts, and employees (slaves). The first one represents bees currently on hold, waiting to 

choose a food source. The second one, corresponds to bees randomly navigating the search 

domain. The final one, relates to bees that are currently exploiting a food source.  

The idea behind ABC is that each food source represents a possible (candidate) solution, with 

a given amount of nectar that depends on its fitness (objective function evaluated at the food 

source). In each iteration, ABC offers different options to improve a solution, but after a fixed 

number of iterations without improvement (called “limit”), the source is considered to be 

exhausted and a scout replaces it with a randomly generated candidate. Improvements can be 

found by either, the employees or the onlookers, via modification of a candidate using eq. 

(A4.1), where vij is the modified solution, xij is the source position, ϕij is a random number 

between -1 and 1, and where the index j represent a coordinate (dimension) of the solution, 

while the index k relates to a randomly chosen candidate. This means that each bee searches 

in the direction of an employee. 

 vij = xij +ϕij(xij − xkj) (A4.1) 



188 

Broadly speaking, an iteration of ABC requires that each employed bee perturbs its position, 

that each onlooker bee positions near a source, and that the employed bee chooses the best 

coordinates. Thus, a general algorithm can be laid out as: 

Algorithm I: Original Artificial Bee Colony  

1. Define execution parameters: number of food sources (NS), limit, and maximum number of iterations 

(NI). 
2. Assign each employed bee to a randomly generated source. 

3. For each employed bee, perturb the source location, following eq. (A4.1) and evaluate its nectar 

(fitness). 

4. Assign each onlooker bee to a source, based on the probability pi given in eq. (A4.2), where fit is the 

fitness. 

5. Repeat step 3 for the onlooker bees.  

6. Check the fitness of the sources and their perturbations. If a source was improved, modify its 

coordinates and go to step 8. Otherwise, increase the saturation counter of that source and go to step 7. 

7. If the saturation counter exceeds the value in the limit, abandon that source and take one from a scout 

bee (random generation). 

8. Repeat for NI iterations. 

9. Report results and end the process. 

 

 pi =
fiti

∑ fitn
NS
n=1

 (A4.2) 

D.2. BAT-INSPIRED ALGORITHM (BA) 

BA was proposed by Yang in 2010, and it draws on concepts from Particle Swarm 

Optimization (PSO) and from Simulated Annealing (SA) [13]. BA strives to replicate the 

behavior of simplified microbats, assuming they only use echolocation to catch a prey, and 

considering that they can adjust the frequency and loudness of pulse emission in relation to 

their distance to prey. At each iteration, BA adjusts the velocity and position of each bat, 

using the random frequencies given by eq. (A4.3), where β is a uniformly distributed random 

vector between zero and one. Velocity is updated according to eq. (A4.4), where x∗ is the 

best solution that has been found so far and the index t relates to the current iteration. Position 

is updated as in PSO, and it is shown in eq. (A4.5). 

 fi = fmin + β(fmax − fmin) (A4.3) 

 vi
t = vi

t−1 + fi(xi
t − x∗) (A4.4) 

 xi
t = xi

t−1 + vi
t (A4.5) 

After all bats have relocated, one of them is randomly selected for local improvement. This 

is achieved through eq. (A4.6), where ϵ is a random number such that ϵ ∈ [−1,1], and where 

At is the average loudness of all the bats at the current iteration.  

 xnew = xold + ϵA
t (A4.6) 

Finally, all that remains is to update the loudness and the pulse emission rate, so a new 

iteration may begin. As shown in eq. (A4.7), this process requires two constants, α and γ, 

and it is quite straightforward.  
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 Ai
t+1 = αAi

t   ;   ri
t+1 = ri

0(1 − e−γt) (A4.7) 

When Yang presented BA, he considered the following parameters: fmin = 0, fmax =

100, and  α = γ = 0.9. The general algorithm, thus, can be laid out as: 

Algorithm II: Original Bat-Inspired Algorithm 

1. Define BA parameters, including the frequency range (fmin, fmax), the pulse rate (ri), the loudness (Ai) 
and the constants α, γ. 

2. Randomly initialize the position of each bat and their speed. 

3. Adjust the frequency vector, using eq. (A4.3). 

4. Update the velocity and position of each bat, using eq. (A4.4) and (A4.5) respectively.  

5. Generate a random number. If it is higher than ri, select a random bat and do a local search using eq. 

(A4.6). 

6. Generate a new random solution. 

7. Generate a random number. If it is lower than Ai, and the function evaluated at that point, i.e. f(xi), is 
better than the current best solution, i.e. f(x∗), store the solution and update ri and Ai with eq. (A4.7). 

8. Sort the bats and update the current best solution. 

9. Check convergence criteria. If it complies, stop the process. Otherwise, return to step 3. 

D.3. CENTRAL FORCE OPTIMIZATION (CFO) 

CFO was proposed by Formato in 2007 [14], and it was inspired by gravitational kinematics. 

As opposed to other approaches, the inner logic of CFO is deterministic in nature. This means 

that if the same starting points and parameters are used, the algorithm will always find the 

same answer. However, Formato also shows that random starting points can be used. In a 

general sense, CFO creates a set of probes that fly throughout the search domain, constantly 

attracting themselves while looking for a maximum. Some of the works related to this 

algorithm can be found in [15–27]. 

In CFO, the mass (M) represents the fitness, and the gravitational pull (G) is one of the 

parameters that, as with other metaheuristics, varies for each problem. However, and as posed 

by Formato, a value of two seems to provide good results. CFO’s evolution is governed by 

eq. (4.1) and eq. (4.2), where the velocity (V) and the time difference (Δt) can be arbitrarily 

set to zero and one, respectively, in order to simplify calculations (this also following 

Formato's suggestion). Therefore, the only two relevant parameters that remain from the 

physical domain are the position (R) and acceleration (a) of each probe. There are a couple 

more parameters, i.e. exponents α and β, that usually take a value of two and that do not 

relate to any physical parameters [28].   

 aj−1
p

= G∑U(Mj−1
k −Mj−1

p
) ⋅ (Mj−1

k −Mj−1
p
)
α Rj−1

k − Rj−1
p

|Rj−1
k − Rj−1

p
|
β
 

Np

k=1
k≠p

 (A4.8) 

 Rj
p
= Rj−1

p
+ Vj−1

p
Δt +

1

2
aj−1
p
Δt2, j ≥ 1 (A4.9) 

It is important to note that CFO maximizes a problem, as opposed to other metaheuristics. It 

also forces the probes to remain inside the search domain, using a factor (Frep) that indicates 

the loss of energy against the boundary. A general algorithm can be written as: 
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Algorithm III: Original Central Force Optimization  

1. Define an initial position, and zero acceleration, for each probe.  

2. Calculate the mass (M) for each probe, and choose the position with the highest M. 

3. Calculate the new position of the probes, Rj
p
, using eq. (4.2), and adjust the ones outside the search 

domain through Frep.  

4. Update M and find the probe with maximum value.  

5. Update the acceleration of each probe, using eq. (4.1). 

6. Evaluate the convergence criteria. If it does not comply, return to 3. 

D.4. FIREFLY ALGORITHM (FA) 

FA was proposed by Yang in 2010 [29,30], and it is based on the attraction of artificial 

fireflies via the light they emit. Yang considers that any artificial firefly can attract, or be 

attracted, to any other one (i.e. they are unisex). Also, that the attractiveness is proportional 

to the brightness, where the latter is affected by the landscape of the objective function [31]. 

This implies, however, that the only function of light-emission in fireflies is mating, while it 

could also be used for attracting preys or for intimidating foes, as appears to be the case for 

real fireflies.  

Regarding the algorithm itself, Yang proposes the use of a fixed pair of constants, α and γ. 

The former relates to the randomness in the movement of an artificial firefly (between zero 

and one), while the latter relates to the dimming of emitted light as it travels through the 

search domain (usually between 0.01 and 100). The algorithm can be briefly described as: 

Algorithm IV: Original Firefly  

1. Initialize fireflies. 

2. Calculate the light emitted by each firefly (i.e. evaluate the objective function for each firefly). 

3. Sort fireflies by light intensity (in ascending order). 

4. Update the position of each firefly (i.e. adjust each firefly according to eq. (4.3) and to the light 

intensity). 

5. Check for convergence. If it complies, exit. If not, go to step 2. 

 

 
xi
k+1 = xi

k(1 − β) + xj
kβ + α(R1 − 0.5) 

β = β0e
−γrij

2

 
(A4.10) 

It is important to point out that in eq. (4.3), subscripts i, j relate to the firefly under analysis, 

and to the other fireflies, respectively. Also, superscript k relates to the time lapse, β0 to the 

attractiveness at distance zero, R1 is a random number such that R1 ∈ [0,1], α and γ are the 

previously mentioned constants and rij is the Cartesian distance between fireflies. 

D.5. GRAVITATIONAL SEARCH ALGORITHM (GSA) 

GSA first appeared in a paper published by Rashedi et al. during 2009, and it is based on the 

attracting force of masses separated by a distance [32]. GSA revolves around the law of 

gravitational attraction, assuming a continually evolving universe (i.e. the gravitational 

constant begins at a given valued and then decays). The underlying modeling allows for GSA 
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to change between exploration and exploitation as the search progresses. At the beginning of 

the search all masses (i.e. the agents) attract each other, but at the end only one mass attracts 

the others. In a broad sense, GSA can be described with the following algorithm: 

Algorithm V: Original Gravitational Search Algorithm 

1. Define GSA parameters: Initial gravitational constant, G(t0), decrease factor for the gravitational 

constant, β, force constant, ϵ, and number of agents, N. 

2. Randomly initialize the position of each agent and evaluate their fitness, fitj(t). 

3. Update the gravitational constant using eq. (A4.11). 

4. Identify the best and worst agents through eq. (A4.12). 

5. Update the mass of all agents, Mi(t), using eq. (A4.13). 

6. Calculate the total force on each direction, Fi
d(t), using eq. (A4.14), where randj is a random number 

between zero and one, and Rij(t) is the Euclidean distance between agents i and j. 

7. Update the acceleration, ai
d(t), and velocity, vi

d(t), of each agent using eq. (A4.15), where randi is a 

random number between zero and one. 

8. Update the position of each agent through eq. (A4.16). 

9. Check for convergence. If it complies, exit. If not, go to step 3. 

 

 G(t) = G(t0) ⋅ (
t0
t
)
β

 (A4.11) 

 
best(t) = min

j∈{1,…,N}
fitj(t) 

worst(t) = max
j∈{1,…,N}

fitj(t) 
(A4.12) 

 

Mi(t) =
mi(t)

∑ mj(t)
N
j=1

  

mi(t) =
fiti(t) − worst(t)

best(t) − worst(t)
 

(A4.13) 

 

Fi
d(t) = ∑ randj ⋅ Fij

d(t)

N

j=1,j≠i

 

Fij
d(t) = G(t)

Mi(t)Mj(t)

Rij(t) + ϵ
(xj

d(t) − xi
d(t)) 

(A4.14) 

 
ai
d(t) =

Fi
d(t)

Mi(t)
 

vi
d(t + 1) = randi ⋅ vi

d(t) + ai
d(t) 

(A4.15) 

 xi
d(t + 1) = xi

d(t) + vi
d(t + 1) (A4.16) 

D.6. HARMONY SEARCH (HS) 

HS was proposed by Geem et al. in 2001, and it is the first approach based on the process 

that musicians carry out when composing music [33]. The general idea is that in a similar 

fashion that a musician uses his knowledge of music for composing melodies, HS uses the 

knowledge of solutions stored in its memory in tandem with some random alterations (akin 

to improvisation), to find a good solution. One of the special things about HS is that it 

improves the candidate solution (x′) one coordinate at a time (xi
′), using a rather simple 

equation. Since its creation, HS has been continuously used by its creators [33–39] as well 

as by other authors [40–54]. The procedure can be described as follows: 
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Algorithm VI: Original Harmony Search (HS) 

1. Define the execution parameters: memory size (HMS), memory considering rate (HMCR, usually 

performs better for values between 0.8 and 0.9), pitch adjusting rate (PAR, usually performs better for 

values around 0.1), and maximum number of iterations (NI). 
2. Generate a random initial matrix, HM, of size HMS × N, where N represents the number of dimensions. 

3. Generate a random number. If it is lower than HMCR, go to step 4. Otherwise, take a random value 

from the search domain and go to step 6. 

4. Pick the value located at a random row of HM, and at the column corresponding to the component 

being updated.  

5. Generate a random number. If it is lower than PAR, adjust the pitch using eq. (4.4), where r is a random 

number in the interval [−1,1]. 
6. Repeat steps 3 to 5 for the remaining dimensions.  

7. Evaluate the new candidate solution. If it is better than the worst solution stored in HM, replace it and 

discard the worst.  

8. Repeat for NI iterations.  

9. Report results and end the process.  

 

 xi
′ = xi

′ + r ⋅ BW (A4.17) 

D.7. INTELLIGENT WATER DROPS (IWD) 

IWD was first presented by Shah-Hosseini during an IEEE congress in 2007 and it followed 

the logic of water drops flowing through a river while dragging the underlying soil [55]. IWD 

was meant, however, for combinatorial optimization problems, such as the traveling 

salesman problem (TSP), so in 2012 Shah-Hosseini presented a continuous version [56]. This 

time, each component of the search domain is discretized into a number of valid points (bits) 

that allow for a given precision. The original approach (i.e. discrete solution) is then used to 

assign a value to each bit, and a normalization from the resulting binary number to the search 

domain is carried out. The algorithm treats each possible value of the bits, k, as a different 

path with its own soil values. A general algorithm can be laid out as:  

Algorithm VII: Original Intelligent Water Drops (IWD) 

1. Define the execution parameters: number of IWDs (NIWD), number of bits (default value: Nbit = 32), 

initial soil (default value: 5000), minimum and maximum soil (default values: soilmin = 2000 and 

soilmax = 1000), number of mutations (default value: Nmut = 100), and maximum number of 

iterations (NI). 
2. Generate an empty matrix for each IWD, of size M× Nbit, where M represents the number of 

dimensions. 

3. Select an edge for the first bit of each IWD, i.e. assign the bit a value of zero or one, based on the 

probability given by eq. (A4.18), where f (soil (ei,i+1(k))) is given by eq. (A4.19), g (soil (ei,i+1(k))) 

is given by eq. (A4.20), and k is zero or one and represents an independent path for each possible 

solution.  

4. Update the local soil of the edges, through eq. (A4.21), and of the IWD, through eq. (A4.22), where 

Δsoil = 0.001. 

5. Repeat steps 3 and 4 for the remaining bits.  

6. Transform each generated solution into their decimal equivalent, and evaluate them. 

7. Apply mutation-based local search Nmut times for each solution, i.e. randomly select an edge and 

replace it by its opposite if it improves the solution. 
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8. Identify the best solution of the current iteration, TIB. 

9. Update the global soil, using eq. (A4.23), where T_soil (ei,i+1(k)) is given by eq. (A4.24). 

10. Go to step 2 and repeat for NI iterations.  

11. Report results and end the process.  

 

 PIWD (ei,i+1(k)) =
f (soil (ei,i+1(k)))

∑ f (soil (ei,i+1(l)))
1
l=0  

 (A4.18) 

 
f (soil (ei,i+1(k))) =

1

0.0001 + g (soil (ei,i+1(k)))
 (A4.19) 

 

g (soil (ei,i+1(k)))

= {
soil(ei,i+1(k)) min soil(ei,i+1(0: 1)) ≥ 0

soil (ei,i+1(k)) − min soil(ei,i+1(0: 1)) otherwise
 

(A4.20) 

 soil (ei,i+1(k)) = 1.1 ⋅ soil (ei,i+1(k)) − 0.01 ⋅ Δsoil (A4.21) 

 soilIWD = soilIWD + Δsoil (A4.22) 

 soil (ei,i+1(k)) = min (max (Tsoil (ei,i+1(k)) , soilmin) , soilmax) (A4.23) 

 Tsoil (ei,i+1(k)) = 1.1 ⋅ soil (ei,i+1(k)) − 0.01 ⋅
soilIB

IWD

M ⋅ Nbit
 (A4.24) 

D.8. PARTICLE SWARM OPTIMIZATION (PSO) 

PSO may have been the strategy that revolutionized optimization approaches and that ignited 

the spark in bio-inspired computation developments. This technique, proposed by Eberhart 

and Kennedy almost two decades ago, mimics the collaborative intelligence exhibited by 

swarms when looking for sources of food [57,58]. PSO was not the first approach based on 

naturally occurring processes, but it has certainly inspired a great deal of work throughout 

the years  [44,59–75]. Broadly speaking, PSO generates a swarm that transverse the search 

domain, communicating the best solutions found by each particle and working together to 

find a minimum. A general layout of its algorithm can be given as: 

Algorithm VIII: Original Particle Swarm Optimization 

1. Assign a random initial position and zero speed for each particle. 

2. Evaluate the objective function, f, and calculate the best position each particle has found, PBesti, and 

the best position of all the swarm GBest. 
3. Update position and speed for each particle with eq. (4.5) and (4.6), where i, j represent pointers for 

each position and time step, respectively; X is a particle’s position, V its speed, w an inertia factor to 

limit the effect of its previous speed, C1, C2 are the self and swarm trust factors (default value: C1, C2 =
2.05), and R1, R2 are random numbers (uniformly distributed) between zero and one. 

4. Evaluate the objective function. 

5. Compare, for each particle, the evaluated value and PBesti. If it is lower, then update PBesti. 

6. Select the best particle and compare it to GBest. If it is lower, then update GBest. 
7. Compare GBest with convergence criteria. If it does not comply, return to 3. 

 



194 

 Xi
j+1

= Xi
j
+ Vi

j+1
 (A4.25) 

 Vi
j+1

= wVi
j
+ C1R1(PBesti − Xi

j
) + C2R2(GBest − Xi

j
) (A4.26) 

D.9. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM (QEA) 

QEA was proposed by Han and Kim in 2002, and it is based on concepts from quantum 

computation [76]. QEA uses a search agent based on a probabilistic representation, known 

as a Q-bit, composed of a string of Q-bits representing a binary solution. Thus, each element 

of the string has a probability αi
2 of being zero and a probability βi

2 of being one. In this 

strategy, a Q-gate guides the solution towards a single state, and it represents a rotation 

matrix. A general algorithm can be laid out as:  

Algorithm IX: Original Quantum-Inspired Evolutionary Algorithm 

1. Define the number of search agents, n, and the length of each string, m. 

2. Initialize each Q-bit: assign αi = βi = 1/√2 for each qj, where i = 1,2, … ,m and j = 1,2, … , n. 

3. Generate the n binary solutions and store them in P: for each solution, generate m random numbers 

and assign a value of zero if the number is lower than αi (otherwise assign a value of one). 

4. Copy the solutions stored in P to B. 

5. Calculate the fitness of each solution stored in P. 

6. Generate a new set of n binary solutions, as in step 3. 

7. Calculate the fitness of each solution stored in P. 

8. Update the probabilities of each Q-bit, using eq. (A4.27), where the angle is given by eq. (A4.28). 

9. Compare each solution stored in P with the ones stored in B. If one solution in P is better, move it to 

B. 

10. Find the best solution stored in B and copy it to b if it is better than the one already there. 

11. If migration is enabled, copy b into all solutions of B (global migration) or just into some (local 

migration). 

12. Return to step 6 and repeat until convergence criteria is achieved. 

 

 [
αi
βi
] = [

cos(Δθi) − sin(Δθi)

sin(Δθi) cos(Δθi)
] [
αi
βi
] (A4.27) 

 Δθi = {
0.01π xi = 0 ∧ bi = 1 ∧ f(x) < f(b)

−0.01π xi = 1 ∧ bi = 0 ∧ f(x) < f(b)
0 otherwise

 (A4.28) 

D.10. SIMULATED ANNEALING (SA) 

SA was presented by Kirkpatrick et al. back in 1983, and it is one of the oldest modern 

optimization techniques [77]. An interesting fact about SA is that proofs of convergence have 

been published, such as the one by Granville et al. [78]. Unfortunately, SA only deals with 

one solution at the time (i.e. one agent) and that could be considered as a disadvantage.  

SA mimics the cooling process of a hot metal, from a high temperature and up to a thermal 

equilibrium with the environment. The fitness of the objective function represents the energy 

level of a solution, so Ei = f(xi), and the probability of accepting a new solution follows 

Metropolis criterion, eq. (A4.29), where T is the current temperature, and k is Boltzmann’s 

constant.  
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P(Ei+1) = min (1, e

−
ΔE
kT) 

ΔE = Ei+1 − Ei 
(A4.29) 

A general algorithm can be described as: 

Algorithm X: Original Simulated Annealing 

1. Define starting temperature, T0, the number of design points, n, and the temperature reduction factor, 

c. 
2. Choose a random starting solution, x1, and calculate its energy, E1. 

3. Choose a random point near the solution, xi+1, and calculate its energy, Ei+1. 

4. Determine whether or not to accept the new solution, based on the probability given in eq. (A4.29). 

5. Repeat steps 3 and 4 for n iterations. 

6. Decrease temperature using c. 
7. Return to step 3 and repeat until convergence criteria is achieved. 

D.11. SPIRAL OPTIMIZATION (SO) 

SO was proposed by Tamura and Yasuda in 2011, mimicking the path followed by a given 

number of logarithmic spirals [79,80]. Akin to an eagle stalking a prey, each spiral closes in 

on the minimum through inward traveling loops, changing their target (convergence point) 

each time a spiral detects a better solution. SO requires defining the rotation angle, θ (default 

value: π/2 ), and the distance rate, r (default value can be either 0.95 or 0.99), at each step. 

The combination of these two effects (i.e. changing the convergence point and the free 

definition of rotation angle and distances) may generate paths that resemble anything but a 

logarithmic spiral, even though the mathematical model is appropriate. Some of the recent 

work related to SO can be found in [81,82] and a general algorithm can be defined as: 

Algorithm XI: Original Spiral Optimization 

1. Define the number of spirals, m, as well as r and θ. 

2. Assign a random initial position inside the search domain. 

3. Find the starting convergence point, x∗, such as f(x∗) = min (f(x1), f(x2), … , f(xm)).  
4. Update position of each spiral, xk, using eq. (4.7) and eq. (4.8), where t indicates the current iteration, 

In is the identity matrix, and the index n represents the number of dimensions of the problem. Each 

element of the rotation matrix, Rn(θ), is given by eq. (4.9), where ai,j is the corresponding element of 

the identity matrix. 

5. Evaluate the objective function. 

6. Update the convergence point, x∗. 
7. Compare with convergence criteria. If it does not comply, return to 4. 

 

 xk(t + 1) = Sn(r, θ) ⋅ x
k(t) − (Sn(r, θ) − In) ⋅ x

∗ (A4.30) 

 Sn(r, θ) = r ⋅ Rn(θ) = r∏∏Rn−i,n+1−j
n (θn−i,n+1−j)

i

j=1

n−1

i=1

 (A4.31) 

 γp,q =

{
 
 

 
 
cos θi,j p = i ∧ q = i

− sin θi,j p = i ∧ q = j

sin θi,j p = j ∧ q = i

cos θi,j p = j ∧ q = j

ai,j otherwise

 (A4.32) 
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D.12. UNIFIED PARTICLE SWARM OPTIMIZATION (UPSO) 

UPSO was proposed by Parsopoulos and Vrahatis in 2004 and appeared as a strain of PSO 

variants [83]. However, we include it in this section since we are leaving the next one just 

for the modifications proposed during this dissertation. This modification defines a local and 

global behavior for each particle of the swarm (Lp, Gp respectively), calculated through eq. 

(4.10) and eq. (4.11), where χ stands for the constriction factor. Default values of cp = cg =

2.05 are commonly used. Afterwards, the data is merged into a single update of velocity—

eq. (4.12)—via the unification factor (default value: u = 0.5). The position of each particle, 

however, is updated in the same fashion as in PSO, i.e. through eq. (4.13). 

 Lp
t+1 = χ ⋅ [Vp

t + cpr3(Pp − Xp
t ) + cgr4(Pgp − Xp

t )] (A4.33) 

 Gp
t+1 = χ ⋅ [Vp

t + cpr1(Pp − Xp
t ) + cgr2(Pg − Xp

t )] (A4.34) 

 Vp
t+1 = (1 − u) ⋅ Lp

t+1 + u ⋅ Gp
t+1 (A4.35) 

 Xp
t+1 = Xp

t+1 + Vp
t+1 (A4.36) 

A general algorithm can be laid out as: 

Algorithm XII: Unified Particle Swarm Optimization 

1. Define UPSO parameters, including the size of the swarm (Ψ). 

2. Randomly initialize the position of each particle and their speed. 

3. Evaluate each candidate solution, and determine the best coordinate of each particle (Pp), of each 

neighbourhood (Pgp), and of all the swarm (Pg). 

4. Update the velocity and position of each particle, using eq. (4.12) and eq. (4.13), respectively. 

5. Evaluate each new position and update Pp, Pgp, Pg. 

6. Check convergence criteria. If it complies, stop the process. Otherwise, return to step 4. 
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E. ANALYSIS OF HYBRID MODES IN A PARTIALLY-FILLED 

WAVEGUIDE 

Homogeneously filled rectangular waveguides can be easily studied by analytical means, 

since the problem can be decoupled into transverse electric (TE) and transverse magnetic 

(TM) modes, where the electric or magnetic fields are zero in the traveling direction, 

respectively. However, if there is a discontinuity (i.e. change of material), perpendicular to 

wave propagation, the solution cannot be decoupled and both, electric and magnetic field in 

the traveling direction, become non-zero. Therefore, hybrid modes appear. They are known 

as HE and EH modes, depending on whether the magnetic or electric field dominates near 

cutoff, respectively [84]. Solving Maxwell’s equations for EH and HE modes now imply 

finding roots for eq. (A5.1) and eq. (A5.2), respectively. 

 

μ1
k1y

tan(k1yh) = −
μ2
k2y

 tan (k2y(b − h)) 

kx
2 + k1y

2 + kz
2 = k1

2 = ω2μ1ε1 

kx
2 + k2y

2 + kz
2 = k2

2 = ω2μ2ε2 

(A5.1) 

 

k1y

ε1
tan(k1yh) = −

k2y

ε2
 tan (k2y(b − h)) 

kx
2 + k1y

2 + kz
2 = k1

2 = ω2μ1ε1 

kx
2 + k2y

2 + kz
2 = k2

2 = ω2μ2ε2 

(A5.2) 

Two studies were carried out on this regard: the one of Farfán and Fontecha [85], and the one 

of Suarez and Romero [86]. The first team used UPSO and the second one used SA, but both 

focused on replicating the dispersion curves in a half-filled rectangular waveguide. The 

general procedure followed in both cases was: 

1. Define an operating mode: choose indices m and n and whether it is HE or EH. 

2. Find the cutoff frequency of the chosen mode: use the optimization algorithm to solve 

either eq. (A5.1) or eq. (A5.2), with kz = 0 and kx =
mπ

a
, where a is the length in the 

x-direction. 

3. Make a frequency sweep and preserve the mode: increase the frequency, use the 

optimization algorithm to find a similar propagation constant, and repeat until all 

frequencies are done. 

4. Repeat for the remaining modes. 

Table A5-1 shows sample data for finding a propagation constant above the resonant 

frequency, focusing on the required number of iterations and possible fitness with UPSO and 

SA. For more details, please refer to the full reports of each study. Both strategies allowed 

for good results, but UPSO only required a small fraction of iterations. Moreover, SA and 

UPSO allowed an appropriate reconstruction of the dispersion curves (Figure A5-1). 
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Table A5-1. Sample data of the required number of iterations and fitness yielded by UPSO and SA 

Mode 

  

Iterations   Fitness   

UPSO SA UPSO SA 

EH01 72 1067 4.50E-15 1.65E-24 

EH11 107 1669 4.97E-15 3.26E-26 

EH21 49 2270 1.13E-15 8.96E-24 

EH31 4 2247 2.34E-15 8.97E-26 

 
Figure A5-1. Dispersion curves generated by UPSO and SA for the half-filled rectangular waveguide 
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