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Título: Coded Diffraction Pattern Design Algorithm for Phase Retrieval in Optical Imaging *

Autor: Samuel Eduardo Pinilla Sánchez **

Palabras Clave: Recuperación de fase, zona de difracción, matriz de detección, apertura codificada.

Descripción: La recuperación de fase es un problema inverso que consiste en estimar una escena a partir de inten-

sidades de difracción. Este problema aparece en la formación de imágenes ópticas, que tiene tres zonas principales

de difracción donde se pueden adquirir medidas, cerca, media y lejos. Trabajos recientes han empleado algoritmos

de descenso de gradiente para resolver el problema de recuperación de fase relacionado con la zona lejana, creando

redundancia en el proceso de medición al incluir una apertura codificada, que permite modular la escena y adquirir

patrones de difracción codificados (CDP). Sin embargo, este problema no se ha estudiado teóricamente para CDP en

las zonas cercana y media. Además, la estructura de la apertura codificada se selecciona al azar, lo que conduce a

estimaciones subóptimas. Esta tesis proporciona garantías teóricas para la recuperación de una escena adquirida en las

tres zonas de difracción utilizando modulaciones admisibles. Con base en los resultados teóricos, se demostrará que la

calidad de reconstrucción de la imagen depende directamente de la estructura de apertura codificada; por lo tanto, el

diseño de la matriz de detección es fundamental para obtener una alta calidad de reconstrucción. Específicamente, las

aperturas codificadas se pueden diseñar para mejorar la calidad de la señal reconstruida. Además, cuando la escena se

puede representar escasamente de alguna manera, su soporte se puede estimar mejor para una elección cuidadosa de

los elementos de codificación. Los resultados numéricos muestran que la escena se recupera con éxito mediante el uso

de aperturas codificadas diseñadas con hasta 40% menos de medidas en comparación con conjuntos no diseñados.
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Abstract

Title: Coded Diffraction Pattern Design Algorithm for Phase Retrieval in Optical Imaging *

Author: Samuel Eduardo Pinilla Sánchez **

Keywords: Phase retrieval, diffraction zone, sensing matrix, coded aperture.

Description: Phase retrieval is an inverse problem that consists in estimating a scene from diffraction intensities. This

problem appears in optical imaging, which has three main diffraction zones where the measurements can be acquired,

i.e., near, middle and far. Recent works have employed gradient descent algorithms to solve the phase retrieval problem

related to the far zone, creating redundancy in the measurement process by including a coded aperture, which allows to

modulate the scene and acquire coded diffraction patterns (CDP). However, in the state-of-the-art, the PR problem has

not been theoretically studied for CDP at the near and middle zones. Moreover, the structure of the coded aperture is

selected at random, leading to suboptimal estimations. This thesis provides theoretical guarantees for the recovery of a

scene from CDP acquired at the three diffraction zones using admissible modulations. Based on the theoretical results,

it will be shown that the image reconstruction quality directly depends on the coded aperture structure; therefore,

designing the sensing matrix is critical to obtain high reconstruction quality. Specifically, the coded apertures can be

designed in order to boost the quality of the reconstructed signal. Moreover, when the scene can be sparsely represented

in some basis, its support can be better estimated for a carefully choice of the coding elements in the modulation

process. Numerical results show that the scene is successfully recovered by using designed coded apertures with up to

40% less measurements compared to non-designed ensembles.

* Ph.D Thesis
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Introduction

Phase retrieval (PR) is an inverse problem of considerable importance in several areas of science,

where measuring the phase information is hard or even infeasible. In particular, this problem ap-

pears in applications such as X-ray crystallography Millane (1990), astronomy Fienup and Dainty

(1987), and diffractive optical imaging (DOI) Shechtman et al. (2015), with the latter being the

object of study of this work. Exploring phase retrieval in optical settings, specifically, when the

light originates from a laser, is natural since optical detection devices (e.g., charge-coupled device

(CCD) cameras, photosensitive films, and the human eye) cannot measure the phase of a light wa-

ve Shechtman et al. (2015). This is because, generally, optical measurement devices that rely on

converting photons to electrons do not capture the phase directly since the electromagnetic field

oscillates at rates of ∼ 1015 Hz, and no electronic measurement device can work that fast.

Mainly, DOI has three diffraction zones where the data can be acquired depending on the

propagation distance, known as the near, middle and far zones Poon and Liu (2014). Important

imaging applications have been developed by taking advantage of the particular properties of each

diffraction zone. For instance, the near diffraction zone is considered in applications such as scan-

ning near-field optical microscopy Dürig et al. (1986), near-field Raman Imaging Jahncke et al.

(1995), and near-field spectroscopy Hess et al. (1994), since the spatial resolution for a nanostruc-

ture can be overcome if the sample is scanned at the near zone. This is possible because the optical

resolution of the transmitted light depends on the diameter of the sample instead of the wavelength

Pohl and Courjon (2012). On the other hand, applications such as Fresnel holography Poon and Liu
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(2014) and lens-less imaging Shimano et al. (2018) take advantage of the middle diffraction zo-

ne, also known as Fresnel diffraction, to develop new acquisition imaging devices Shimano et al.

(2018), and optical elements such as Fresnel lenses Sao et al. (2018). Finally, the far zone, also

known as Fraunhofer diffraction, is the most popular diffraction phenomenon in optics since it

allowed the development of applications such as crystallography, astronomical imaging, micros-

copy, among others Goodman (2005). In summary, all the aforementioned applications highlight

the importance of analytically studying all the diffraction zones.

Mathematically, PR for the k-th diffraction zone consists in solving quadratic equations of

the form yi,k = |〈ai,k,x〉|2, i = 1, · · · ,m, where ai,k ∈ Cn are the known sampling vectors, x ∈ Cn

is the unknown scene of interest, yi,k are the acquired diffraction patterns, and k = 1,2,3 indexes

the near, middle and far zones respectively. Recent works have theoretically solved this inverse

problem in the far zone (k = 3) Candes et al. (2015b); Gross et al. (2017); Candes et al. (2015c),

creating redundancy in the measurement process by including a coded aperture, which allows to

modulate the scene and acquire intensity measures known as coded diffraction patterns (CDP),

as illustrated in Fig. 1. Analytically, the effect of the coded aperture in the modulation process is

included in the sampling vectors, and has allowed to provide uniqueness guarantees (up to a uni-

modular constant) for a particular class of coded apertures Candes et al. (2015b). These theoretical

results were not possible a decade ago. More details about the history of this problem can be found

in Shechtman et al. (2015).

Several algorithms have been proposed to retrieve the phase by applying non-convex for-

mulations. To name a few, the wirtinger flow (WF) Candes et al. (2015c), truncated wirtinger
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Figura 1. Illustration of a coded optical imaging system. A coded aperture is introduced to modulate the scene in
order to acquire coded diffraction patterns.

flow (TWF) Chen and Candes (2015), truncated amplitude flow (TAF) Wang et al. (2018a), total-

variation-based methods Chang et al. (2018), PR via smoothing function (PRSF) Pinilla et al.

(2018a), and reweighted amplitude flow (RAF) Wang et al. (2018b). Additionally, in various appli-

cations the scene x is naturally sparse or admits a sparse representation on some basis Jaganathan

et al. (2015). Indeed, recent algorithms have been developed to solve the PR problem under spar-

sity assumptions. Some examples of these methods are, sparse wirtinger flow (SWF) Yuan et al.

(2017), sparse PR via truncated amplitude flow (SPARTA) Wang et al. (2016b) and sparse PR

algorithm via smoothing function (SPRSF) Pinilla et al. (2018b). It is worth to mention that the

sparse PR problem has been studied when the sampling vectors ai follow a Gaussian distribution,

implying that they do not model a realistic acquisition setup. Moreover, an important characteristic

of all the aforementioned recovery methods is that they require a properly designed initialization

strategy to guarantee convergence. In fact, different initialization methodologies have been propo-
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sed to obtain an initial guess from measurements at the far zone, such as, spectral Candes et al.

(2015c), orthogonality-promoting (OP) Wang et al. (2018a) and weighted maximal correlation

(WMC) Wang et al. (2018b) initializations.

To date, theoretical recovery guarantees from CDP acquired at the near and middle diffrac-

tion zones have not been established. For instance, in Shevkunov et al. (2018) CDP are captured

in the near zone with a lensless system, whereas, in Horisaki et al. (2017) CDP are captured in the

middle zone with a single pixel system using structured light. Nevertheless, the theoretical guaran-

tees in these cases are based on CDP acquired in the far zone Candes et al. (2015b), since it is the

most popular scenario for phase retrieval.

One of the drawbacks in CDP is that state-of-the-art coded apertures allow coding ele-

ments with absolute value greater than 1 Candes et al. (2015b); Gross et al. (2017); Candes et al.

(2015c), which is physically unfeasible because it increases the energy of the scene in the modula-

tion process. Moreover, their spatial structure is selected at random, which limits the reconstruction

quality, and also increases the required number of measurements to retrieve the phase. More pre-

cisely, the literature in areas such as compressive spectral imaging and computer tomography has

shown that designing the coded apertures yields to better reconstructions Correa et al. (2016); Mo-

jica et al. (2017). As a result, several coded aperture design strategies have been developed in the

state-of-the-art, to name a few, based on gradient descend method Mojica et al. (2017), and greedy

methodologies such as direct binary search (DBS) introduced in Chandu et al. (2013) and blue

noise patterns in Correa et al. (2016).
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Scope of the Thesis

Despite the satisfactory performance of reconstruction algorithms to solve the phase retrieval pro-

blem, a proper design of the sensing matrix is critical to obtain high image reconstruction quality

Arguello and Arce (2014); Pinilla et al. (2018d). However, previous works have not focused on

coding pattern designs, nor the developing of reconstruction algorithms that take into account the

structure of the coded measurements. Additionally, in the state-of-the-art, the PR problem has not

been theoretically studied for CDP at the near and middle zones.

Therefore, this thesis first proves that the phase of a scene can be recovered, with high pro-

bability, from CDP acquired at the three diffraction zones using feasible modulations. The recovery

conditions provided in this work establish that image reconstruction quality directly depends on

the coded aperture design. This theoretical analysis shows the crucial role of the coded aperture in

reconstructing an image from coded diffraction patterns. Therefore, a greedy design strategy based

on the theoretical result is also developed. This strategy consists in optimizing the concentration

of measure of the sensing matrix. The resultant structures allow uniform sensing across the spa-

tial dimensions of the scene and are physically implementable, improving image reconstruction

quality compared with non-designed ensembles. In fact, in the case when the scene is sparsely

represented in some basis, the support of the scene is better estimated for a suitable choice of the

coding elements in the modulation process. Further, given the importance of a proper initialization

to solve the PR problem, an extension of the Orthogonally-promoting initialization introduced in

Wang et al. (2018a) for CDP is developed. Numerical results, based on admissible modulations,
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show that using designed coded apertures the scene is successfully recovered using up to 40% less

measurements compared with non-designed ensembles. Further, the relative error in the initiali-

zation stage using designed coded apertures decreases up to 50% compared with non-designed

structures.

In summary, the contribution of this research includes the design, modeling, and testing, of

the optimal sensing matrix and the reconstruction method for phase retrieval from coded measure-

ments at the three diffraction zones.
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Structure of the Thesis

The document is organized as follows: Chapter 2 presents the fundamental theoretical background

including details of coded aperture designs. Chapter 3 develops theoretical recovery guarantees

from CDP acquired at the three diffraction zones. Chapter 4 contains the proposed phase recovery

procedure from CDP. Chapter 9 includes numerical results along with the analysis of attained

theoretical results. Finally, Chapter 10 contains analytical proofs of the results.
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1. Objectives

General objective

To design the sensing matrix and a recovery algorithm to reduce the number of measurements

to retrieve the phase from coded diffraction patterns in optical imaging .

Specific objectives

To establish a mathematical model of the acquisition process of coded diffraction patterns in

optical imaging.

To develop a computational algorithm to simulate the modeled coded measurements in opti-

cal imaging.

To derive analytical conditions to optimally design the sensing matrix to improve the phase

reconstruction quality in optical imaging.

To design a reconstruction algorithm that adjusts the acquisition process and the designed

optimal coding patterns to retrieve the phase from coded measurements.

To evaluate the performance retrieving the phase of the designed reconstruction algorithm

and the sensing matrix against non-designed of the state-of-the-art.
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2. Theoretical Background

In this chapter the phase retrieval problem for each diffraction zone is exposed. Additionally, some

details on optical setups to acquire coded diffraction patterns are provided.

2.1. Phase Retrieval from Coded diffraction patterns

In optical imaging, a coherent beam strikes the object and the phaseless measurements can be

acquired, at a specific propagation distance z, at three diffraction zones known as near, middle and

far zones Goodman (2005), as illustrated in Fig. 2. Specifically, Fig. 2(a) illustrates a lens-less

diffractive imaging system, which traditionally has three diffraction zones, that are determined by

Figura 2. Optical setups to obtained coded diffraction patterns. (a) Lens-less imaging and (b) 2 f -optical systems.
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the distance between the object and the sensor Goodman (2005). On the other hand, Fig. 2(b)

represents a 2 f -optical setup, in which, the lens generates the diffraction patterns that are then

recorded by the sensor. This system is equivalent to the first one when the detection distance

corresponds to the far field.

Observe that a coded aperture is introduced in the object plane to modulate the scene X ∈

CN×N and the CDP are acquired by the sensor. In fact, changing the spatial configuration of the

coded aperture allows the system to acquire multiple projections of the scene. Mathematically,

C` ∈ CN×N , in Fig. 2, models the coded aperture at the `-th projection where ` = 1, · · · ,L with

L the total number of projections. There are several ways of achieving modulations of this type:

using a phase mask, or using an optical grating to modulate the illumination beam as mentioned in

Loewen and Popov (2018), or even by techniques from ptychography which scan an illumination

patch on an extended specimen Rodenburg (2008); Thibault et al. (2009).

For ease of exposition, some definitions are considered through this chapter to facilitate

the mathematical derivations. Let, (C`)s,u, and (X)s,u be the (s,u)-th spatial index of the coded

aperture used for the `-th projection and the scene, respectively. Further, the vector representation

of the scene can be defined as (x)q = (X)q−vN,v+1, where x ∈ Cn, and one can take D` ∈ Cn×n

as the diagonal matrix whose entries are the elements of C` given by (D`)q,q = (C`)q−vN,v+1, for

v = bq−1
N c, q = 1, · · · ,n, and n = N2. It is worth to point out that to mathematically model the CDP

acquired at the three diffraction zones, and to establish the recovery guarantees the matrix D` will

be used, and the vector x. In addition, to easily describe the design strategy of the coded aperture

in Chapter 3 C` will be used .
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In order to state the mathematical model of the CDP acquired at the three diffraction zones,

define F = [f1, · · · , fn]
H ∈ Cn×n as the discrete Fourier transform matrix, where

fH
p =

1√
n
[ω−0(p−1),ω−1(p−1), · · · ,ω−(n−1)(p−1)], (1)

with p = 1, · · · ,n, and ω = e
2π j

n is the n-th root of unity. Further, to the near and middle zones one

have to consider two auxiliary orthogonal diagonal matrices T ∈ Cn×n, and Q ∈ Cn×n that depend

on the propagation distance z and the wavelength of the coherent beam, as shown in Fig. 1. The

discrete version of T and Q are modeled in Shechtman et al. (2015)(Poon and Liu, 2014, Chapter

4). Then, the acquired CDP at the three diffraction zones for the `-th projection are given by Poon

and Liu (2014)

g`,1 = |FTFHD`x|2 +ω`,1 (Near zone) ,

g`,2 = |FHQD`x|2 +ω`,2 (Middle zone) , (2)

g`,3 = |FD`x|2 +ω`,3 (Far zone) ,

for ` = 1, · · · ,L, with x ∈ Cn the desired unknown scene, and ω`,k is the observed additive noise.

Thus, from (2) the PR problem for the k-th diffraction zone consists in estimating x from the set of

phaseless measurements {g`,k}L
`=1.

It is worth noticing that the propagation matrices for the near and middle diffraction zones

significantly differ from the far zone which is the most studied scenario in the literature, therefore,
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the theoretical results from Candes et al. (2015b); Gross et al. (2017) cannot be directly applied. In

fact, the PR problem associated with the far zone (k = 3) as in (2) has been extensively analyzed

Wang et al. (2018b); Jaganathan et al. (2015); Candes et al. (2015a); Bandeira et al. (2014); Kolte

and Özgür (2016) assuming that the entries of C` are i.i.d copies of a random variable d ∈ C

satisfying the following condition

|d| ≤M, E[d] = 0, E[d2] = 0, E[|d|4] = 2E[|d|2]2, (3)

where E[·] represents the expected value. Some examples of coding elements that have been used

in the-state-of-the-art based on (3) are listed in Table 1.

Table 1
State-of-the-art coding elements

Random Variable Coding Probability Ref.
d = {1,

√
6} {4

5 ,
1
5} Candes et al. (2015b)

d = {
√

2,0,−
√

2} {1
4 ,

1
2 ,

1
4} Gross et al. (2017)

d = {
√

2
2 ,
√

3} {4
5 ,

1
5} Candes et al. (2015c)

In Table 1, only real numbers are included, however, in general the random variable d can

take complex values. Note that the coding elements
√

2,
√

6, and
√

3 in Table 1 are unfeasible

because their absolute value is greater than 1, which increases the power of the scene in the mo-

dulation process. Furthermore, even when M = 1 in (3), the three remaining conditions limit the

set of possible coding elements because these only allow random variables that have an expected

value equal to zero. Specifically, observe that d = {0,1}, which models blocking and unblocking

elements respectively, is the most natural coding variable for imaging applications, Correa et al.
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(2016); Mojica et al. (2017); Arguello and Arce (2014), however it is not considered in (3), since

its expected value is greater than zero. In addition to the limitations of the state-of-the-art theory of

the PR problem from CDP at the far zone, it is worth to highlight that at this point the PR problems

from CDP associated to the near and middle zones have not been theoretically established.

2.2. Motivation

State-of-the-art has successfully proved that the phase can be recovered from coded diffraction

measurements. Also, different algorithms have been developed to recover the phase from genera-

lized random quadratic projections, that is, assuming that the sampling vectors are normally distri-

buted. However, it was previously mentioned both the sensing and the reconstruction process have

been separately explored to retrieve the phase from coded measurements. Therefore, this disserta-

tion proposal aims to theoretically study how much the quality of the recovered signal improves

when the sensing matrix and the reconstruction strategy are jointly designed to recover the phase

in an optical imaging system. Specifically, this thesis proves that the reconstruction quality directly

depends on the coded aperture design. This analysis shows the crucial role of the coded aperture

in reconstructing an image from coded diffraction patterns.

In addition, to avoid the previously mentioned drawbacks of the state-of-the-art, this work

considers that a random variable d is admissible if the following definition is satisfied.

Definition 2.2.1. (Admissible Random Variable). A discrete random variable obeying |d| ≤ 1, is

said to be admissible.

It is important to remark that the inequality in Definition 2.2.1 imposes that d cannot in-
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crease the power of the scene. Also, notice that Definition 2.2.1 considers a larger set of coding

elements than (3). In addition, Chapter 3, in contrast to the state-of-the-art, theoretically establishes

that the PR problem can be solved from CDP acquired at the three diffraction zones considering d

as in Definition 2.2.1.
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3. Theoretical Recovery Guarantees

This chapter presents the theoretical conditions under the phase retrieval problem from coded dif-

fraction patterns at the different zones can be solved following Definition 2.2.1. As a result, a

greedy design strategy of the coded aperture is developed that pursuits to fulfill these theoretical

conditions.

3.1. Uniqueness Conditions

In order to provide theoretical guarantees for a scene x ∈ Cn to be recovered from CDP at the

three diffraction zones, we have to rewrite (2). Define the global noiseless measurement vectors

yk = [gT
1,k, · · · ,gT

L,k]
T ∈ Rm=nL for k = 1,2,3, and consider the matrices Ak given by

A1 =
[
D1FTFH , · · · ,DLFTFH]H (Near zone) ,

A2 =
[
D1QF, · · · ,DLQF

]H (Middle zone) ,

A3 =
[
D1FH , · · · ,DLFH]H (Far zone) . (4)

Observe that from (4), one has that (2) can be succinctly expressed as

yk = |Akx|2, (5)
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for k = 1,2,3. Now, putting (1) and (5) together it can be concluded that the i-th entry of the vector

yk, i.e. yi,k, is given by

yi,k = |aH
i,kx|2 = aH

i,kxxHai,k, (6)

where the vector ai,k is the i-th column of matrix Ak defined as

ai,1 = DriFTfui, (Near zone) ,

ai,2 = DriQfui, (Middle zone) , (7)

ai,3 = Drifui, (Far zone) ,

while ri = b(i−1)/nc+1, ui =((i−1) mód n)+1, for i= 1, · · · ,m with m= nL. Let Ak : S n×n→

Rm=nL, where S n×n is the space of self-adjoint matrices, be the linear mapping yielding the linear

equalities

Ak(W) =
[
aH

1,kWa1,k, · · · ,aH
m,kWam,k

]T
. (8)

Note that combining (5), (6), and (8), one can conclude that the phase retrieval problem from CDP

acquired in the different zones can be modeled as

yk = Ak(xxH), (9)
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for k = 1,2,3.

Taking the linear operators Ak in (8) into account, we have that the scene x can be recovered

from CDP if all Ak are injective Candes et al. (2015b). More precisely, this work follows the

strategy in Gross et al. (2017) that considers

Tx =
{

xwH +wxH |w ∈ Cn} , (10)

which is the tangent space of the manifold of all rank-1 Hermitian matrices at the point xxH . Thus,

if the operators Ak for k = 1,2,3 satisfy the Condition 10.0.5, which is proved in Theorem 3.1.1,

one can guarantee recovery Candes et al. (2015b). It is worth mentioning that a proof for Theo-

rem 3.1.1 is needed for two reasons. First, the coding random variable d assumed in this thesis

follows Definition 2.2.1 that differs from (3), which are the conditions imposed by previous theo-

retical works such as Candes et al. (2015b); Gross et al. (2017). Second, remark that at this point

in the literature the PR problems from CDP associated to the near and middle zones have not been

theoretically studied.

Assumption 1. For any δ ∈ (0,1), and some constant β > 0 the linear operator Ak satisfies

(1−δ )‖W‖1 ≤
1
β
‖Ak(W)‖1 ≤ (1+δ )‖W‖1, (11)

for all matrices W ∈Tx and for all k = 1,2,3.

Theorem 3.1.1. Fix any δ ∈ (0,1) and the set of coded apertures {D`|`= 1, ...,L}with i.i.d copies
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of an admissible random variable d according to Definition 2.2.1. If for some constant 0 < r ≤ L,

E

[
L

∑
`=1

D`D`

]
= rI, (12)

where L≥ c0n for some sufficiently large constant c0 > 0, with I as the identity matrix, then

P

(
1

rnL
‖Ak‖2

∞ ≤ 1+δ

)
≤ 1−2e−cnLε2

, (13)

for all k = 1,2,3 and some constant c > 0. Also, Condition 10.0.5 is satisfied with the same proba-

bility taking β = rnL. Each matrix Ak is given as in (4).

Demostración. See Appendix A (see Chapter 10).

Theorem 3.1.1 proves that a scene is uniquely determined from CDP acquired at the three

diffraction zones for all admissible variables if the set of coded apertures satisfies (12). We point

out that the importance of (12) is twofold. First, from a theoretical point of view, (12) does not limit

the admissible variable as previous works in the area Wang et al. (2018b); Jaganathan et al. (2015);

Candes et al. (2015a); Bandeira et al. (2014); Kolte and Özgür (2016) following (3), instead, (12)

establishes a condition for the coded apertures to be satisfied in order to uniquely determine (up to

a global unimodular constant) the image of interest. Second, since condition (12) is independent

of the diffraction zones, Theorem 3.1.1 also guarantees that satisfying (12) is enough to uniquely

determine an image from CDP regardless the diffraction zone. In fact, the ability of coded apertures

satisfying (12) to better estimate the image regardless the diffraction zone is numerically validated
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in Chapter 9.

Finally, since in general it is not expected that the coded apertures naturally satisfy (12), this

fact implies the need to design them. Furthermore, from the previous analysis of Theorem 3.1.1 it

is clear that a set of coded apertures that closely satisfies (12) is able to outperforms non-designed

ensembles because the ability of a recovery procedure to uniquely determine the image is directly

affected by the particular structure of the coded apertures. Thus, in Section 3.2 also introduces a

strategy to design the set of coded apertures in order to satisfy (12).

3.2. Coded Aperture Design

This section describes the design principles of coded apertures to better satisfy (12) for uniform

admissible random variable d, i.e. all the coding elements have the same probability. Further, even

considering the fact that this is a specific case, it is worth to remark that the proposed strategy

considers more possible coding variables than previous approaches based on (3), as it will be

discussed in Chapter 9. For ease of exposition, the strategy is presented considering an admissible

random variable d = {e1,e2,e3,e4} with probability {1
4 ,

1
4 ,

1
4 ,

1
4}, respectively, assuming that L =

Cdb for some integer b > 0, where Cd = 4 is the number of coding elements. This work follows

a greedy methodology to design the set of coded apertures where the following criteria are taken

into account:

(a) Temporal correlation: Notice that, the theoretical condition in (12) can be easily sa-

tisfied if the set of coded apertures is constrained to be complementary Pinilla et al. (2018c). In

practical terms, this is equivalent to having all the coding elements of d along the L-projections at

each particular spatial position of the ensemble. This guarantees that each pixel of the image is mo-
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dulated by all the coding elements of d; mathematically it means that the set {(C`)s,u|`= 1, · · · ,L},

contains b times each possible value of d for any s,u ∈ {1, · · · ,N}.

(b) Spatial separation: Remark that from (13), we can conclude that the set of coded aper-

tures defines the concentration of measure of the largest eigenvalue of the sensing matrices Ak

in (4) for k = 1,2,3. Recently, it has been shown that building a set of coded apertures with an

equi-spaced distribution of the coding elements optimizes the concentration of measure of Ak and

increases the image reconstruction quality Correa et al. (2016); Mejia and Arguello (2018). In mat-

hematical terms Mejia and Arguello (2018) minimizes the upper bounds of the Gershgorin theorem

of a given matrix, which in this case are Ak for k = 1,2,3. This minimization process leads to a

better condition number of Ak in order to satisfy (13).

Considering these design criteria, a strategy to build a complementary set of coded apertures

where all the coding elements of d are equi-spaced when d is any admissible random variable, is

described next. More precisely, it is worth to mention that Pinilla et al. (2018c); Correa et al. (2016);

Mejia and Arguello (2018) have only studied the case when d has just two coding elements, e.g.

d = {0,1}. Then, this thesis extends these works allowing to build a set of coded apertures where

all the coding elements of d are equi-spaced when d has more than two possible values. The design

strategy consists of five steps as shown in Fig. 3.

Step 1. The coded aperture C` is divided in cells of size γ × γ (green squares highligh-

ted) where γ is chosen as γ2 ≥ Cd . For the particular example in Fig. 3, Cd = 4 and γ = 2 be-

cause the chosen admissible random variable d has four coding elements. Then, the positions of

all ei of d in the first cell of C` are chosen uniformly at random as (C`)s,u ∼ U [{e1, · · · ,e4}−
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{(C1)s,u, · · · ,(C`−1)s,u}] for s,u ∈ {1, · · · ,γ}. Observe that the set subtraction

{e1, · · · ,e4}−{(C1)s,u, · · · ,(C`−1)s,u}

guarantees that one chooses a different coding element of d with respect to the first `− 1 coded

apertures.

Step 2. Move to the cell on the right to determine at random a proper position for each

coding element. These positions are determined by maximizing the distance between pixels given

Figura 3. Coded aperture design strategy using the admissible random variables d = {e1,e2,e3,e4} with probability
{ 1

4 ,
1
4 ,

1
4 ,

1
4}, respectively and Cd = 4.
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by

Pdist((C`)s1,u1 ,(C
`)s2,u2) = min{|s1− s2|, |u1−u2|}, (14)

where (C`)s1,u1 and (C`)s2,u2 are two pixels of the coded aperture at positions (s1,u1) in the first

cell and (s2,u2) in the cell on the right, respectively. For instance, the positions maximizing this

distance for the e2 element is one of the two highlighted yellow squares.

Step 3. Let Ωei = {Pdist((C`)s1,u1,(C`)s2,u2)|(C`)s1,u1 = ei} be the set of distances between

the pixel that contains the coding element ei in the first cell and the positions (s2,u2) of the next

right cell. Then, the positions Rei that maximize (14) can be defined as Rei = argmaxΩei . Define

the set

Bei = {(s,u) ∈Rei|(C
l)s,u = ei, for 1≤ l ≤ `−1}.

From Fei = Rei −Bei it can be randomly determined the position of the coding element ei in

the next cell as Pei ∼ U [Fei]. More precisely, the positions in Fei maximize (14), and guarantee

choosing a different coding element than the first `−1 projections. For instance, for e2 it would be

the blue square highlighted in the next right cell.

Step 4. Steps 2 and 3 are repeated for all coding elements ei of the admissible variable d.

Thus, the spatial distribution of the `-th coded aperture can be optimized.

Step 5. Note that the set of coded apertures is complementary until ` = Cd . Then, if ` =

Cd +1 a new coded aperture just optimizing the spatial distribution must be generated. Thus, from

the ` = Cd + 2 to ` = 2Cd , the temporal and spatial correlation must be exploited considering the

steps 1−4, until the L-projections are completed.
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In order to show an example of the outcome of the design procedure, Fig. 4 illustrates a

designed coded aperture for n = 16×16, L = 4 and Cd = 4 coding elements in a cell.

Figura 4. Comparison between a designed and non-designed coded apertures for d = {e1,e2,e3,e4} with
probability { 1

4 ,
1
4 ,

1
4 ,

1
4}, respectively.

Considering the above presented design strategy it is not intended to give the impression

that the present thesis solves the problem of designing coded apertures for any admissible random

variable. In fact, as mentioned before, this strategy is useful only for uniform admissible random

variables. However, this particular scenario fulfills the theoretical purposes of this work to illustrate

that instead of limiting the possible coding variables, as the current theory of the PR problem from

CDP states, a design strategy for coded apertures is required. Specifically, Chapter 9 numerically

validates that the design strategy enables phase retrieval using coding variables that cannot be

considered by the current literature. Thus, the extension of the proposed design strategy for a
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larger set of admissible random variables according to Definition 2.2.1 is relegated to future work.

4. Reconstruction Process

Considering that Chapter 3 established that a given scene x can be recovered from CDP acquired

at the three diffraction zones with high probability, and taking the mathematical model in (9) into

account, one can estimate the scene x by solving the following optimization problem

minimize
z∈Cn

f (z) = ‖yk−Ak(zzH)‖2
2. (15)

Observe that (15) is a non-convex problem. In fact, several algorithms have been developed to sol-

ve (15) such as WF Candès et al. (2015), TWF Chen and Candès (2015), TAF Wang et al. (2018a),

PRSF Pinilla et al. (2018a), and RAF Wang et al. (2018b), among others. In fact, this thesis de-

veloped the PRSF method to solve the phase retrieval that will be detailed analyzed in Chapter 5.

Further, these reconstruction algorithms require a proper initialization strategy to guarantee con-

vergence. Thus, this work extends the orthogonality-promoting initialization introduced in Wang

et al. (2018a), to CDP acquired at the three diffraction zones, as described in the following section.

4.1. Initialization procedure from CDP

According to Wang et al. (2018a), a motivating example that reveals the fundamental characte-

ristics of high-dimensional random vectors for the three diffraction zones is presented. Fix any

nonzero vector x ∈ Cn, and generate data as in (6) using the sampling vectors ai,k as in (7). It is

worth to remark that each vector ai,k depends on the designed coded apertures. Thus, the following
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squared normalized inner-product can be defined as

cos2(αi,k) =
|〈ai,k,x〉|2

‖ai,k‖2‖x‖2 i = 1, · · · ,m, (16)

where αi,k is the angle between vectors ai,k and x. Consider ordering all cos2(αi,k) in an ascending

order, such that cos2(α1,k)≥ ·· · ≥ cos2(αm,k).

Figura 5. Ordered squared normalized inner-product for pairs x and ai, with m/n varying from 2 to 8, and
n = 64×64.

In Fig. 5 the squared normalized inner-products, varying m/n from 2 to 8, are illustrated

for the three diffraction zones. Observe that all squared normalized inner-products are smaller than

10−2, which implies that x is nearly orthogonal to a large number of ai,k Wang et al. (2018a). Thus,

in order to approximate x by a vector that is mostly orthogonal to a subset of vectors {ai,k}, an I0

index set with cardinality card(I0)< m, that includes indices of the smallest squared normalized

inner-products cos2(αi,k), where i ∈I0, is introduced as follows. Define the set I0 ⊂ {1, · · · ,m}

as the collection of indices corresponding to the smallest values of {yi,k/‖ai,k‖2}. Thus, according
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to Wang et al. (2018a) the OP initialization can be formulated as

z0 = argmin
‖w‖2=1

wH

(
1

card(I0)
∑

i∈I0

ai,kaH
i,k

‖ai,k‖2
2

)
w. (17)

Notice that (17) implies finding the smallest eigenvalue, which calls for eigen-decomposition or

matrix inversion, each typically requiring computational complexity O(n3). However, we can avoid

this step if we manipulate (17) as follows

∑
i∈I0

ai,kaH
i,k

‖ai,k‖2
2
=

nL

∑
i=1

ai,kaH
i,k

‖ai,k‖2
2
− ∑

i∈I c
0

ai,kaH
i,k

‖ai,k‖2
2
, (18)

where I c
0 is the complement of I0. Further, in order to rewrite the term ∑

nL
i=1

ai,kaH
i,k

‖ai,k‖2
2

for each

diffraction zone, we proceed by cases as follows.

Near zone: First observe that ‖ai,1‖2
2 for this diffraction zone, according to (7), can be

rewritten as

‖ai,1‖2
2 = ‖DriFTfui‖

2
2

=
n

∑
p=1

∣∣(Dri)p,pfH
p Tfui

∣∣2
=

n

∑
p=1
|(Dri)p,p|2

∣∣fH
p Tfui

∣∣2 ≈ ‖Dri‖
2
F , (19)

where the third line comes from the fact that ‖fp‖2 = 1 for all p ∈ {1, · · · ,n} (see (1)),

and because T is an orthogonal diagonal matrix. Thus, considering (18) and (194) it can be
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obtained that

nL

∑
i=1

ai,1aH
i,1

‖ai,1‖2
2
≈

L

∑
`=1

n

∑
p=1

D`FTfpfH
p TFHD`

‖D`‖2
F

≈
L

∑
`=1

D`

‖D`‖F

(
n

∑
p=1

FTfpfH
p TFH

)
D`

‖D`‖F
≈

L

∑
`=1

D`D`

‖D`‖2
F
, (20)

since FHF = ∑
n
p=1 fpfH

p = I and T is an orthogonal matrix.

Middle zone: Notice that ‖ai,2‖2
2 for this diffraction zone, considering (7), can be rewritten

as

‖ai,2‖2
2 = ‖DriQfui‖

2
2

=
n

∑
p=1

∣∣(Dri)p,p(Q)p,p(fui)p
∣∣2 = 1

n

n

∑
p=1
|(Dri)p,p|2 =

1
n
‖Dri‖

2
F , (21)

where the second equality comes from the fact that Q is diagonal orthogonal matrix, and that

|(fui)p|= 1/
√

n according to (1). Thus, from (21) we have that

nL

∑
i=1

ai,2aH
i,2

‖ai,2‖2
2
= n

L

∑
`=1

n

∑
p=1

D`QfpfT
p QD`

‖Dri‖2
F

= n
L

∑
`=1

D`

‖D`‖F

(
n

∑
p=1

QfpfH
p Q

)
D`

‖D`‖F
= n

L

∑
`=1

D`D`

‖D`‖2
F
, (22)

where the third equality comes from the fact that Q and F are orthogonal matrices.
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Far zone: Finally, observe that for the far zone it can be obtained

‖ai,3‖2
2 = ‖Drifui‖2

2 =
n

∑
p=1

∣∣(Dri)p,p(fui)p
∣∣2 = 1

n
‖Dri‖2

F , (23)

because |(fui)p|= 1/
√

n. Thus, from (23) we have that

nL

∑
i=1

ai,3aH
i,3

‖ai,3‖2
2
= n

L

∑
`=1

n

∑
p=1

D`fpfH
p D`

‖D`‖2
F

= n
L

∑
`=1

D`

‖D`‖F

(
n

∑
p=1

fpfH
p

)
D`

‖D`‖F
= n

L

∑
`=1

D`D`

‖D`‖F
. (24)

Now, if the set of coded apertures satisfies (12), then from (20), (22), and (24), it can be

concluded that ∑
nL
i=1

ai,kaH
i,k

‖ai,k‖2
2
≈ ckI for some constants ck > 0 with k = 1,2,3. Considering this obser-

vation, (17) can be approximated as

z0 = argmax
‖w‖2=1

wH

 1
card(I c

0 )
∑

i∈I c
0

ai,kaH
i,k

‖ai,k‖2
2

w, (25)

which meets the numerical formulation in Wang et al. (2018a) for the OP initialization. Remark

that the imposed condition over the set of coded apertures meets the theoretical recovery conditions

of Theorem 3.1.1. This is an important result since for the first time the initialization procedure,

required to solve (15), meets the recovery conditions of the PR problem. Therefore, Theorem 8.1.2

theoretically establishes that (116) can approximate the scene of interest with high probability.

Theorem 4.1.1. Consider (noise-free) measurements yk as defined in (9). Then, with probability
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of at least 1−2e−Cn for some constant C > 0, the vector z0 returned by (116) satisfies that

dist(z0,x)≤ ρ‖x‖2, (26)

for some constant ρ ∈ (0,1), provided that L is sufficiently large.

Demostración. See Appendix B (see Chapter 10).

To solve (15), based on extended OP initialization, Algorithm 1 is presented. Line 2 estima-

tes the initial guess z0 in (116), which is the vector z̃0 scaled so that its norm matches approxima-

tely that of x based on the strong law of large numbers, where
(1

r ∑
m
i=1 yi,k

)1/2 ≈ ‖x‖2, assuming

that the coded apertures are properly designed, based on (12). Further, the solution to (116) can

be well approximated with a few power iterations at a much cheaper computational complexity

O(n card(I c
0 )) than O(n3) required for solving (17) Wang et al. (2018b), since it involves the es-

timation of the leading eigenvector of matrix Y0. Moreover, in Line 3 any reconstruction methods

proposed in the literature to solve (15) can be used, which refines the initial guess solution from

Line 2.
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Algorithm 1
1: Input: Acquired data {(ai,k;yi,k)}m

i=1 for k = 1,2,3.

2: Initial point z0 =
(1

r ∑
m
i=1 yi,k

)1/2 z̃0, where z̃0 is the leading eigenvector of

Y0 :=
1

card(I c
0 )

∑
i∈I c

0

ai,kaH
i,k

‖ai,k‖2
2

and the set I c
0 includes the indices of the bm

2 c largest values of yi,k/‖ai,k‖2.

3: z← reconstruction-algorithm(z0).

4: Output: z

In summary, considering Theorem 8.1.2, it is important to remark that the extended initia-

lization procedure is more general since, it does not limit the possible random coding variables;

moreover, it is able to initialize the PR problem for CDP acquired at the three diffraction zones, and

third, the numerical formulation in (116) links the theoretical assumption in (12) with the recovery

guarantees from CDP.

4.2. Sparsity Assumptions

Until now it have been analytically studied the role of the coded aperture to recover an image x

from CDP regardless the diffraction zone without any assumption over x. This theoretical analysis

has provided a coded aperture design strategy that pursuits to satisfy (12) to uniquely identify an

image from CDP. However, there are optical applications such as astronomy Fienup and Dainty

(1987) and microscopy Stephens and Allan (2003) where the scene x is naturally sparse in some
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representation basis. Up to date, the PR problem from CDP assuming prior information on x has

not been theoretically studied. Thus, this section provides some theoretical insights to successfully

recover a scene x from CDP, which is assumed to be sparse on some basis.

Consider that x∈Cn can be sparse in an orthogonal domain Ψ (i.e Ψ
H

Ψ= I) with a s-sparse

representation θ ∈ Cn, where s is the sparsity level and s� n. In particular, in optical imaging,

x can be sparsely represented in some domains such as Wavelet or Discrete Cosine Transform

(DCT), in the sense that ‖θ‖0� n, where x = Ψ
H

θ , and ‖ · ‖0 is the `0 pseudo-norm. Thus, the

acquisition process of CDP in (6) can be rewritten for each k-th diffraction zone under sparsity

assumption as follows

yi,k = |aH
i,kx|2 = |aH

i,kΨ
H

θ |2 = |bH
i,kθ |2, (27)

where bi,k = Ψai,k are the sparsity-based sampling vectors and the matrix which concatenates each

sparsity-based sampling vector can be defined as Bk =
[
b1,k, · · · ,bm,k

]H . Notice that the scene

under sparsity assumptions meets required conditions of Theorem 3.1.1 from the measurements in

(27), considering (12) and knowing that Ψ is orthogonal.

According to the measurements modeled in (27), the following optimization problem to

recover θ can be formulated

minimize
θ∈Cn

h(θ) =
1
m

m

∑
i=1

(√
yi,k−|bH

i,kθ |
)2
,

subject to ‖θ‖0 ≤ s. (28)
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Algorithm 2
1: Input: Data {(bi,k;yi,k)}m

i=1, for k = 1,2,3, and the sparsity level s.
2: Let S0 be the set of s largest indices of { 1

m ∑
m
q=1 yq,kbk

q,p}1≤p≤n.
3: Set: b̃i,k = (bi,k)S0

4: Initial point θ 0 =
(1

r ∑
m
i=1 yi,k

)1/2
θ̃ 0, where θ̃ 0 is the leading eigenvector of

Y0 :=
1

card(I c
0 )

∑
i∈I c

0

b̃i,kb̃H
i,k

‖b̃i,k‖2
2

and the set I c
0 includes the indices of the bm

2 c largest values of yi,k/‖ai,k‖2.

5: θ ← reconstruction-algorithm(θ 0).
6: z←Ψ

H
θ

7: Output: z

The method to solve (28), based on sparsity assumption, is summarized in Algorithm 2. This

procedure consists of three stages. First, in Lines 2-3, the non-zero coefficients are estimated,

procedure that will be explained in detail in the following section; second, in Line 4 the initial

guess of θ is estimated, which is then refined by some state-of-the-art sparse PR reconstruction

methods.

4.3. Non-zero Coefficients Estimation

In order to obtain the estimation of the non-zero coefficients of θ the strategy developed in Yuan

et al. (2017) is extended to CDP. Also, it is theoretically characterized the admissible random

variables that attain the best performance estimating the support of θ .

Define Zk
q,p := yq,k|bk

q,p|2, 1 ≤ q ≤ m, 1 ≤ p ≤ n, where bk
q,p is the element at row q and

column p of the matrix Bk for k = 1,2,3. Then, according to the random variable Zk
p,q, it can be
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obtained that

E[Zk
q,p]≥ c1‖x‖2

2 + c2|(θ)p|2 + c3, (29)

where c1,c2 and c3 are constants. Also, given the fact that θ is sparse, then (θ)p 6= 0 or (θ)p = 0.

It is clear that as long as the constant c2 is sufficiently large, the non-zero coefficients of θ can

be recovered exactly in this way. Specifically, the following lemma theoretically proves (114) and

establishes that an admissible random variable d satisfying E[d] 6= 0 attains a better performance

estimating the support of θ .

Lemma 4.3.1. An admissible random variable d satisfying E[d] 6= 0 attains a better performance

estimating the non-zero coefficients of θ .

Demostración. See Appendix C (see Chapter 10).

It is important noticing that Lemma 8.1.1 provides a valuable theoretical observation related

with the type of coding elements that improve the reconstruction performance when the image is

sparse in some basis, showing the crucial role that plays the coded aperture to uniquely identify x

from CDP.

5. Smoothing Gradient Algorithm

This thesis also develops the Phase Retrieval method via Smoothing function (PRSF) which uses an

auxiliary differentiable function to retrieve the signal. PRSF is based on the smoothing projected

gradient method which is useful for non-convex optimization problems. PRSF uses a nonlinear

conjugate gradient of the smoothing function as the search direction to accelerate the convergence,

as it will be explained in this chapter.
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5.1. Smooth Optimization Problem

Consider the system of m quadratic equations of the form

yk = |〈ak,x〉|2,k = 1, · · · ,m, (30)

where the data vector y := [y1, · · · ,ym]
T ∈ Rm represents the measurements, ak ∈ Rn/Cn are the

known sampling vectors and x∈Rn/Cn is the desired unknown signal. For ease of exposition con-

sider the complex-valued Gaussian design vectors as ak ∼C N (0,In) =N (0, 1
2In)+ jN (0, 1

2In),

assumed to be independently and identically distributed (i.i.d.), where j =
√
−1. For the real Gaus-

sian case the sampling vectors ak are given by ak ∼N (0,In), also assumed to be i.i.d.. Then, adop-

ting the least-squares criterion, the task of recovering a solution from the phaseless measurements

in (30) reduces to that of minimizing the amplitude-based loss function

mı́n
x∈Cn

f (x) =
1
m

m

∑
k=1

( fk(x)−qk)
2 , (31)

where fk(x) = |〈ak,x〉| and qk =
√

yk. Notice that the optimization problem in (31) is non-smooth

and non-convex Candès and Li (2014). Then, this thesis proposes an algorithm based on an auxi-

liary smoothing function g(·) to approximate the original objective function, in order to solve the

non-smooth and non-convex optimization problem. To do that, some conditions over the auxiliary

function g(·) are required, that will be discussed in brief. Specifically, it is necessary to prove that

the objective function f (x) in (31) is locally Lipschitz continuous.
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Definition 5.1.1. Lipschitz continuous under dist(·, ·): Let f : (Cn,dist(·, ·))→ R be a function.

The function f is called Lipschitz continuous if there exists a constant L > 0 such that, for all

w1,w2 ∈ Cn

| f (w1)− f (w2)| ≤ L dist(w1,w2). (32)

Definition 5.1.2. Locally Lipschitz continuous under dist(·, ·): Let f : (Cn,dist(·, ·))→ R be a

function. The function f (·) is called Locally Lipschitz continuous if for every w ∈ Cn exists a

neighborhood U , such that, f (·) restricted to U is Lipschitz continuous.

The following lemma shows that f (x) in (31) is locally Lipschitz according to Definition

5.1.2.

Lemma 5.1.1. The function f (x) in (31) is locally Lipschitz continuous under the distance dist(·, ·).

Demostración. To prove the lemma, it is shown that for all k ∈ {1, · · · ,m} the functions fk(·) in

(31) are Lipschitz continuous. Let w1,w2 ∈ Cn be two different vectors such that

| fk(w1)− fk(w2)|= ||〈ak,w1〉|− |〈ak,w2〉||. (33)

By using the triangle inequality on the right hand side term of (33), one can write

||〈ak,w1〉|− |〈ak,w2〉|| ≤ |〈e− jθ w1,ak〉−〈w2,ak〉|, (34)
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for any θ ∈ [0,2π). Using the fact that 〈w,ak〉= aH
k w and Eqs. (33), (34) yields

| fk(w1)− fk(w2)| ≤ |e− jθ (aH
k w1

)
−
(
aH

k w2
)
|= |aH

k

(
e− jθ w1−w2

)
|. (35)

By definition aH
k w = ∑

n
i=1 (ak)i (w)i, where (ak)i is the i-th conjugate component of ak and, (w)i is

the i-th element of w. Then, using the triangle inequality, (35) can be rewritten as

| fk(w1)− fk(w2)| ≤ |∑n
i=1 (ak)i

(
e− jθ w1−w2

)
i| ≤ ∑

n
i=1|(ak)i||

(
e− jθ w1−w2

)
i|

≤ ak
max ∑

n
i=1|
(
e− jθ w1−w2

)
i| ≤ ak

max‖e− jθ w1−w2‖1,

(36)

where ak
max = máx{|(ak)i| : i = 1, · · · ,n} and ‖·‖1 is the `1 norm. Since `1 and `2 are equivalent

norms, there exists a constant ρ ∈ R++ such that ‖w‖1 ≤ ρ‖w‖2 for all w ∈ Rn/Cn Candès and

Wakin (2008). Thus, (36) becomes

| fk(w1)− fk(w2)| ≤ ak
max‖e− jθ w1−w2‖1 ≤

(
ak

maxρ
)
‖e− jθ w1−w2‖2. (37)

Notice that, for the i.i.d. Gaussian vectors ak, ak
max = ‖ak‖∞≤

√
2.3n, holds with probability at least

1−me−n/2 Wang et al. (2016a). Taking the value of θ that minimizes the term ‖e− jθ w1−w2‖2,

(37) becomes

| fk(w1)− fk(w2)| ≤
(√

2.3nρ

)
dist(w1,w2). (38)

Therefore, it can be concluded that each fk(·) is a Lipschitz continuous function with constant
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Lk =
√

2.3nρ , with probability at least 1−me−n/2. Further, the function 1√
m ( fk(x)−qk) in (31) is

also Lipschitz continuous with constant
√

2.3n
m ρ , with probability exceeding 1−me−n/2, because

the term qk can be considered constant Eriksson et al. (2013).

On the other hand, take any w ∈ Cn and define U = {z ∈ Cn : dist(z,w) < ε} for ε > 0.

Note that U is the neighborhood of w and also U is a bounded set because ‖z‖2 ≤ ‖w‖2+ε < ∞,

for all z ∈ U . Thus, given the fact that U is a bounded set and each function 1√
m ( fk(x)−qk) is

Lipschitz continuous, then 1
m ( fk(x)−qk)

2 restricted to the set U is a Lipschitz continuous function

Eriksson et al. (2013) with probability at least 1−me−n/2. Hence, since f (x) defined in (31) is a

sum of Lipschitz continuous functions in the set U , then f (x) is a Lipschitz continuous function

in U . Thus, it can be concluded that f (x) is locally Lipschitz continuous according to Definition

5.1.2, with probability at least 1−me−n/2.

The concept of smoothing function was presented in Zhang and Chen (2009) as the follo-

wing definition:

Definition 5.1.3. Smoothing function: Let f : Cn→ R be a locally Lipschitz continuous function.

Then g : Cn×R+ → R is a smoothing function of f (·), if g(·,µ) is smooth in Cn for any fixed

µ ∈ R++ and

lı́m
µ↓0

g(w,µ) = f (w), (39)

for any fixed w ∈ Cn.
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According to the above definition, consider the function ϕµ : R→ R++ defined as

ϕµ(w) =
√

w2 +µ2, (40)

where µ ∈ R++. The following lemma shows that ϕµ(·) has important smooth properties to ap-

proximate the functions fk(·), given that ϕ0(|aH
k x|) = fk(x).

Lemma 5.1.2. The function ϕµ(w), defined in (40), has the following properties.

1. ϕµ(w) is Lipschitz continuous function.

2. ϕµ(w) converges uniformly to ϕ0(w) on R.

Demostración. 1. Since µ > 0 then ϕµ(w) is smooth on R, where ϕ ′µ(w) is given by

ϕ
′
µ(w) =

w√
w2 +µ2

. (41)

Notice that
√

w2 +µ2 ≥ w for all w ∈ R, then |ϕ ′µ(w)| ≤ 1. Therefore, ϕµ(w) is a Lipschitz

continuous function because its first derivative is bounded Eriksson et al. (2013). Further, the

Lipschitz constant for the function ϕµ(·) is Lϕµ
= 1.

2. According to the definition of the function ϕµ in (40), it can be obtained that

|ϕµ(w)−ϕ0(w)|= |
√

w2 +µ2−
√

w2|. (42)
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Note that by the Minkowski inequality Kreyszig (1989), it can be concluded that
√

w2 +µ2≤
√

w2 +µ , therefore

|ϕµ(w)−ϕ0(w)| ≤ |
√

w2 +µ−
√

w2| ≤ µ. (43)

The first result in Lemma 5.1.2 is used to guarantee the convergence of the proposed al-

gorithm in Subsection 5.2.1. Also, the second part of Lemma 5.1.2 establishes that the function

ϕµ(|aH
k x|) uniformly approximates fk(x), which is a desirable convergence, since it only depends

on the value of µ . Therefore, a smooth optimization problem to recover the unknown desired signal

x ∈ Rn/Cn from the measurements qk in (31) can be formulated as

mı́n
x∈Rn/Cn

g(x,µ) =
1
m

m

∑
k=1

(
ϕµ(|aH

k x|)−qk
)2
, (44)

where g(x,µ) is the smoothing function of f (x). Theorem 5.1.3 shows that the function g(·) is a

uniformly smooth approximation of the function f (·), which is a desired behavior in order to solve

the optimization problem in (31).

Theorem 5.1.3. Let f and g(·,µ) be defined as in (31) and (44), respectively. Then g(·,µ) is

smooth for any fixed µ > 0, and there exists a constant κ1 > 0 satisfying

|g(x,µ)− f (x)| ≤ µκ1. (45)
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Demostración. See Appendix D (see Chapter 10 ).

5.2. Gradient Update Step

This section introduces Algorithm 7 that summarizes the proposed method to recover the phase.

This algorithm is a descent gradient method. Following the algorithm in each iteration, a back-

tracking line search strategy is used to choose a correct step size of the conjugate gradient update

direction, which is calculated in Line 9. Further, the smoothing parameter µ is updated as in Zhang

and Chen (2009), to obtain a new point. That is, if ‖∂g(xi+1,µi)‖2≥ γµi in Line 10 is not satisfied,

then the smoothing parameter is updated using the new point in Line 13. Algorithm 7 calculates

the conjugate direction in Line 18. Each vector g̃i in Algorithm 7 is calculated using the Wirtin-

ger derivative as was introduced in Hunger (2007). The following lemma introduces the Wirtinger

derivative of the function g(x,µ).

Lemma 5.2.1. The Wirtinger derivative of a real-valued function h(z) : Cn → R with complex-

valued argument z ∈ Cn is obtained for

2
∂h(z)
∂z∗

=∆ 2
[

∂h(z)
∂ z∗1

, · · · , ∂h(z)
∂ z∗n

]T

, (46)

where the variable z∗i is the conjugate version of zi. The proof of this lemma can be found in

Corollary 5.0.1 in Hunger (2007). It is important to remark that this Wirtinger derivation has been

recently used by the state-of-the-art methods to solve the phase retrieval problem Candès et al.

(2015); Wang et al. (2016a); Chen and Candès (2015).

For simplicity, we denote the Wirtinger derivative of any function h(z) as ∂h(z), i.e. ∂h(z)=
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2∂h(z)
∂z∗ . Then, considering the result in Lemma 5.2.1, the Wirtinger derivative of g(x,µ) is given by

∂g(xi,µi) =
2
m

m

∑
k=1

(ϕµi(|a
H
k xi|)−qk)∂ϕµi(|a

H
k xi|), (47)

where

∂ϕµi(|a
H
k xi|) =

aH
k xi

ϕµi(|aH
k xi|)

ak. (48)

Notice that, in contrast to the gradient update steps for the TAF and TWF methods introdu-

ced in Wang et al. (2017a) and Chen and Candès (2015) respectively, ∂g(xi,µi) in (95) is always

continuous because ϕµ(|aH
k w|) 6= 0 for any w ∈ Cn. Therefore, the proposed PRSF method does

not require truncation parameters.

5.2.1. Gradient Consistency Property and Converge Conditions. This section presents

the convergence of Algorithm 7, by proving that any stationary point x∗ of the sequence {xi} is a

Clarke stationary point, that is, 0 ∈ ∂ c f (x∗) Bagirov et al. (2014). To do that, we first introduce

the Clarke subdifferential definition. Specifically, the Clarke subdifferential of a locally Lipschitz

continuous function h : Cn→ R, at point x, denoted as ∂ ch(x), is defined as

∂
ch(x) = conv

{
lı́m
k→∞

∇h(xk) : xk→ x,xk 6∈ Dh

}
, (49)

where “conv"denotes the convex hull of a set and Dh is the set of points at which h fails to be

smooth Clarke (1990). Considering, the Clarke subdifferential definition, the Gradient consistency

property is introduced as follows, to prove the convergence of Algorithm 7.
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Algorithm 3

1: Input: Data {(ak;qk)}m
k=1 and ε0 = 10−10. Choose constants δ1 = 0.9,δ2 = 0.4,γ1 = 0.5,µ0 =

5×104/m,γ = 0.01 and T maximum number of iterations.

2: Initial point x0 =

√
∑

m
k=1 q2

k
m z̃0. where z̃0 is the leading eigenvector of Y0 := 1

|I0|∑k∈I0

akaH
k

‖ak‖2
2
.

3: Set d0 =−g̃0 =−∂g(x0,µ0).

4: for i = 0 : T −1 do
Compute the stepsize αi by backtracking

5: Set ρ = 1.
6: while g(xi +ρdi,µi)> g(xi,µi)+δ1ρR

(
g̃H

i di
)

do
7: ρ = δ2ρ

8: end while
9: αi = ρ and xi+1 = xi +αidi

10: if ‖∂g(xi+1,µi)‖2 ≥ γµi then
11: µi+1 = µi

12: else
13: µi+1 = γ1µi

14: end if
15: g̃i+1 = ∂g(xi+1,µi+1)
16: p̃i = g̃i+1− g̃i and si = xi+1−xi.

17: z̃i = p̃i +

(
ε0‖g̃i+1‖2

2 +máx{0,−R(sH
i p̃i)
‖si‖2

2
}
)

si.

18:

di+1 =−g̃i+1 +R

(
g̃H

i+1z̃i

dH
i z̃i
−

2‖z̃i‖2
2g̃H

i+1di

|dH
i z̃i|2

)
di

+R

(
g̃H

i+1di

dH
i z̃i

)
z̃i.

19: end for
20: return: xT

Notation: R(·) represents the real part function.
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Definition 5.2.1. Gradient consistency property Zhang and Chen (2009): The function g(·,µ)

satisfies the gradient consistency property if

{
lı́m

µ↓0,x→x∗
∂g(x,µ)

}
= ∂

c f (x∗). (50)

Given the fact that Algorithm 7 is a conjugate gradient method, two conditions are required

to guarantee its convergence. First, the function g(x,µ) must satisfy Assumption 10.0.5, which

will be introduced in shortly, and is used in the analysis of convergence for nonlinear conjugate

gradient methods. Second, the function g(x,µ) needs to satisfy the gradient consistency property,

which guarantees that any accumulation point of the sequence {xi} generated by Algorithm 7 is a

Clarke stationary point, as it is proven in Theorem 5.2.4

Assumption 2.

1. For any (w,µ) ∈ Cn×R++, the level set

Sµ(w) = {z ∈ Cn|g(z,µ)≤ g(w,µ)}, (51)

is bounded.

2. The Wirtinger derivative ∂g(x,µ) with respect to x is smooth and exists a constant Lg > 0,
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such that, for any w ∈ Cn and fixed µ ∈ R++

dist(∂g(z1,µ),∂g(z2,µ))≤ Lgdist(z1,z2), (52)

holds for all z1,z2 ∈ Sµ(w) with probability at least 1−me−n/2.

The following theorem, which uses the first result in Lemma 5.1.2, shows that the objective

function g defined in (44) satisfies the Assumption 10.0.5.

Theorem 5.2.2. Assuming that span(a1, · · · ,am) = {∑m
k=1 λkak : λk ∈ C} = Cn, then functions

ϕ ′µ(x), and g(x,µ) defined in (41) and (44) respectively, satisfy the following properties:

1. Assumption 1 is satisfied.

2. The function ϕ ′µ(|aH
k z|) is Lipschitz continuous on any level set Sµ(w), for a fixed µ ∈R++

with probability at least 1−me−n/2.

Demostración. Appendix E (See Chapter 10).

The following theorem shows that the sequence {xi} generated by Algorithm 7 converges

to a stationary point.

Theorem 5.2.3. In the setup of Theorem 5.2.2 the sequences {µi} and {xi} generated by Algorithm

7 satisfy

lı́m
i→∞

µi = 0, and lı́minf
i→∞

‖∂g(xi,µi−1)‖2 = 0. (53)
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Thus, there exists x∗ ∈ Cn such that lı́mi→∞ xi = x∗.

Demostración. Appendix F (See Chapter 10).

Theorem 5.2.4, which uses the result in Theorem 5.2.3, establishes that the function g(x,µ)

satisfies the gradient consistency property defined in (50). Theorem 5.2.4 also shows that any

stationary point of the sequence {xi} in Algorithm 7 is a Clarke stationary point.

Theorem 5.2.4. In the setup of Theorem 5.2.2, the function g(·,µ) defined in (44) satisfies the

gradient consistency property as introduced in Definition 5.2.1. Also, any limit point x∗ of the

sequence {xi} in Algorithm 7 is a Clarke stationary point, i.e. 0 ∈ ∂ c f (x∗).

Demostración. Appendix G (See Chapter 10).

Finally, it can be observed that Theorem 5.2.4 essentially proves that the Clarke derivative

notion can be viewed as a limit case of the Wirtinger derivate ∂g(z,µ). This theoretical result is

very interesting from an optimization point of view, because two completely different derivative

notions that have been used to solve the phase retrieval are compared, and it can be concluded that

one is a limit case of the other.

5.3. Theoretical Advantages of the Proposed Smoothing Approach

This section analyzes why the smooth cost function in (44) performs better in comparison with

its non-smooth counterparts TAF, STAF, TWF, RWF and RAF. To this end, the proposed descent

direction given in (95) is analyzed. Notice that the Wirtinger derivative defined in (95) for each
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iteration i in Algorithm 7 is given by

∂g(xi,µi) =
2
m

m

∑
k=1

aH
k xi−qk

aH
k xi√

|aH
k xi|2 +µ2

i

ak. (54)

Then, observe that (54) can be rewritten as

∂g(xi,µi) =
2
m

m

∑
k=1

1−
|aH

k x|√
|aH

k xi|2 +µ2
i

akaH
k xi. (55)

According to the update procedure of the variable µ in Algorithm 7 it can be observed

‖∂g(xi,µi−1)‖2 ≤ γµi ≤ µi, (56)

for some γ ∈ (0,1). Further, in Theorem 5.2.3 establishes that, considering (56), the Wirtinger

derivative in (55) tends to zero. Then, combining the result in Theorem 5.2.3 and inequality (56),

it can be concluded that

∣∣∣∣∣∣1− |aH
k x|√

|aH
k xi|2 +µ2

i

∣∣∣∣∣∣< 1, (57)

for all k ∈ {1, · · · ,m}, otherwise inequality (56) does not hold (see Appendix C in the Supplemen-

tary material). Considering this fact, the Wirtinger gradient in (55), used by the proposed method,

does not need truncation thresholds because |aH
k x|√

|aH
k xi|2+µ2

i
< 2 (it is bounded). Indeed, in the case of
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STAF and TAF, the variable µi = 0 for all i > 0, which implies that their gradients are given by

∂g(xi,0) =
2
m

m

∑
k=1

(
1−
|aH

k x|
|aH

k xi|

)
akaH

k xi. (58)

Notice that (58) could lead to excessively large size of the Wirtinger derivative because the term

|aH
k x|
|aH

k xi|
, introduces bias in the update direction Wang et al. (2016a). This fact is the main reason why

(58) (the Wirtinger gradient used in TAF and STAF) requires a truncation procedure in order to

avoid a deviation in the update direction Wang et al. (2016a); Chen and Candès (2015).

On the other hand, since the proposed update direction in (95) does not need truncation

thresholds, then the proposed cost function g(z,µ) is locally smooth. In fact, the following Theo-

rem 5.3.1 establishes that the whole Wirtinger derivative ∂g(z,µ) in (95) does not vary too much

around the curve of optimizers.

Theorem 5.3.1. (Local smoothness property Candès et al. (2015)) The Wirtinger gradient defined

in (95) satisfies the following property

‖∂g(z,µ)‖2 ≤ βdist(z,x)+
ρ

m

m

∑
k=1
|aH

k h|, (59)

where ρ,β ∈ R++ with probability at least 1−me−n/2 when m≥C(ε0)n for some constant C(ε0)

depending on ε0 > 0 and h = x− e− jθ(z)z with θ(z) = argminθ∈[0,2π)‖x− e− jθ z‖2.

Demostración. Appendix H (See Chapter 10).

Considering the result in Theorem 5.3.1 it can be obtained that the local smoothness pro-
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perty is preserved for the whole Wirtinger derivative ∂g(z,µ). In contrast, for methods such as

TAF, STAF, RAF, TWF and RWF, that truncate or have a non-smooth update direction, the local

smoothness property is preserved just for a piece of the update direction, thus introducing an im-

portant deviation of their search directions Wang et al. (2016a); Zhang and Liang (2016); Wang

et al. (2017a), which leads to a reduced performance to solve the phase retrieval problem as it will

be illustrated in Chapter 9.

6. Extension to Frequency-resolved optical gating

This chapter presents an extension of the theoretical results of this thesis to a real phase retrie-

val problem present in the Frequency-resolved optical gating (FROG) phenomenon. Specifically,

FROG is a popular technique for complete characterization of ultrashort laser pulses. The acquired

data in FROG, called FROG trace, is the Fourier magnitude of the product of the unknown pulse

with a time-shifted version of itself, for several different shifts. Figure illustrates the acquisition

system in FROG.

Figura 6. Illustration of the SHG FROG technique Bendory et al. (2017b).

To estimate the pulse from the FROG trace, this chapter introduces an algorithm that mini-
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mizes a smoothed non-convex least-squares objective function. The method consists of two steps.

First, the pulse is approximated by an iterative spectral algorithm. Then, the attained initialization

is refined based upon a sequence of block stochastic gradient iterations. The algorithm is theoreti-

cally simple, numerically scalable, and easy-to-implement. Empirically, our approach outperforms

the state-of-the-art when the FROG trace is incomplete, that is, when only few shifts are recorded.

Simulations also suggest that the proposed algorithm exhibits similar computational cost compared

to a state-of-the-art technique for both complete and incomplete data. In addition, we prove that in

the vicinity of the true solution, the algorithm converges to a critical point. A Matlab implementa-

tion is publicly available at 1.

6.1. FROG Phase Retrieval Problem

Mathematically, the FROG trace of a signal x ∈ CN is defined as

Z[p,k] :=

∣∣∣∣∣N−1

∑
n=0

x[n]x[n+ pL]e−2πink/N

∣∣∣∣∣
2

,

k = 0, · · · ,N−1, p = 0, · · · ,R−1, (60)

with R = dN/Le where L < N and i :=
√
−1. This work assumes that the signal x is periodic, that

is, x[n] = x[n+ lN] for any l ∈ Z.

The FROG trace defined in (60) can be considered as a map CN → RdN/Le
+ that has three

types of symmetry, usually called trivial ambiguities in the PR literature. These ambiguities are

1 https://github.com/samuelpinilla/FROG

https://github.com/samuelpinilla/FROG


ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 68

summarized in Proposition 3, using the following definition of a bandlimited signal.

Definition 6.1.1. We say that x ∈ CN is a B− bandlimited signal if its

Fourier transform x̃ ∈CN contains N−B consecutive zeros. That is, there exists k such that x̃[k] =

· · ·= x̃[N + k+B−1] = 0.

Proposition 1. (Bendory et al. (2018a)) Let x ∈ CN be the underlying signal and let x̃ ∈ CN be its

Fourier transform. Let Z[p,k] be the FROG trace of x defined as in (60) for some fixed L. Then,

the following signals have the same FROG trace as x:

1. the rotated signal xeiφ for some φ ∈ R;

2. the translated signal x` obeying x`[n] = x[n− `] for some ` ∈ Z (equivalently, a signal with

Fourier transform x̃` obeying x̃`[k] = x̃[k]e−2πi`k/N for some ` ∈ Z);

3. the reflected signal x̂ obeying x̂[n] := x[−n].

If x is a B-bandlimited signal for some B ≤ N/2, then the translation ambiguity is continuous.

Namely, any signal with a Fourier transform such that x̃ψ [k] := x̃[k]eiψk for some ψ ∈ R, has the

same FROG trace as x.

Our goal is to estimate the signal x, up to trivial ambiguities, from the FROG trace Z. The

work Bendory et al. (2018a) established that the pulse x can be uniquely identified (up to trivial

ambiguities) from the FROG trace under rather mild conditions as summarized in the following

proposition.
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Proposition 2. (Bendory et al. (2018a)) Let x ∈ CN be a B-bandlimited signal as in Definition

7.1.1 for some B ≤ N/2. If N/L ≥ 4, then almost all signals are determined uniquely from their

FROG trace Z[p,k], up to trivial ambiguities, from m ≥ 3B measurements. If in addition we have

access to the signal’s power spectrum and N/L≥ 3, then m≥ 2B measurements suffice.

Proposition 4 has been recently extended to the case of blind ptychography, or blind FROG,

in which the goal is to estimate two signals simultaneously Bendory et al. (2019a). Evidently,

Proposition 4 allows choices of L > 1 meaning that not all the delay steps are needed to recover

the pulse, and therefore a method that works in this regime as well is desired.

To take the ambiguities into account, we measure the relative error between the true signal

x and any w ∈ CN as

dist(x,w) :=

∥∥∥√Z−
√

W
∥∥∥

F∥∥∥√Z
∥∥∥

F

, (61)

where Z is the FROG trace of x according to (60),
√
· is the point-wise square root, W is the

FROG trace of w, and ‖·‖F denotes the Frobenius norm. Note that if dist(x,w) = 0, and the uni-

queness conditions of Proposition 4 are met, then for almost all signals w is equal to x up to trivial

ambiguities.

In recent years, many papers have examined the problem of recovering a signal from phase-

less quadratic random measurements. A popular approach is to minimize the intensity least-squares

objective; see for instance Candès et al. (2015). Recent works have shown that minimizing the am-

plitude least-squares objective leads to better reconstruction under noisy scenarios Pauwels et al.

(2018); Wang et al. (2016a); Zhang and Liang (2016). However, the latter cost function is non-
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smooth and thus may lead to a biased descent direction Pinilla et al. (2018a). To overcome the

non-smoothness of the objective function, we follow the smoothing strategy proposed in Pinilla

et al. (2018a).

The smooth objective to recover the underlying pulse considered in this work is

mı́n
z∈Cn

h(z,µ) = mı́n
z∈Cn

1
NR

N−1

∑
k=0

R−1

∑
p=0

`k,p(z,µ), (62)

where

`k,p(z,µ) :=

[
ϕµ

(∣∣∣∣∣N−1

∑
n=0

z[n]z[n+ pL]e−2πink/N

∣∣∣∣∣
)
−
√

Z[p,k]

]2

. (63)

The function ϕµ : R→ R++ in (88) is defined as ϕµ(w) :=
√

w2 +µ2, with µ ∈ R++ (a tunable

parameter). Notice that if µ = 0, then (88) reduces to the non-smooth formulation. In Wang et al.

(2016a), the authors addressed the non-smoothness by introducing truncation parameters into the

gradient step in order to eliminate the errors in the estimated descent direction. However, this

procedure can modify the search direction and increase the sample complexity of the phase retrieval

problem Pinilla et al. (2018a).

In this chapter a block stochastic gradient algorithm (BSGA) is presented to solve (87), that

is initialized by a spectral procedure which requires only a few iterations.

6.2. Reconstruction Algorithm

In order to solve the optimization problem in (87), we develop a gradient-based algorithm, called

BSGA. The algorithm is initialized by the outcome of a spectral method approximating the signal

x which will be explained in Section 7.3.
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To refine the initial estimate we use the Wirtinger derivatives as introduced in Hunger

(2007). Let us define the vector fH
k as

fH
k :=

[
ω
−0(k−1),ω−1(k−1), · · · ,ω−(n−1)(k−1)

]
, (64)

with ω = e
2πi
n the nth root of unity. Then, the Wirtinger derivative of h(z,µ) in (87) with respect to

z[`] is given by

∂h(z,µ)
∂z[`]

:=
1

NR

N−1

∑
k=0

R−1

∑
p=1

(
fH
k gp−υk,p

)
q`,pe2πi`k/N , (65)

where υk,p :=
√

Z[p,k] fH
k gp

ϕµ(|fH
k gp|) , and

q`,p :=z[`+ p]+ z[`− p]e−2πikp/N ,

gp :=[z[0]z[pL], · · · ,z[N−1]z[N−1+ pL]]T . (66)

The gradient of h(z,µ) is then

∂h(z,µ)
∂z

:=
[

∂h(z,µ)
∂z[0]

, · · · , ∂h(z,µ)
∂z[N−1]

]H

. (67)

Using (95), we define a standard gradient algorithm, taking the form of

x(t+1) := x(t)−α
∂h(x(t),µ(t))

∂z
, (68)
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where α is the step size.

To alleviate the memory requirements and computational complexity required for large N,

we suggest a block stochastic gradient descent strategy. Instead of calculating (93), we choose only

a random subset of the sum for each iteration t, that is,

dΓ(t)[`] = ∑
p,k∈Γ(t)

(
fH
k g(t)p −υk,p,t

)
q(t)`,pe2πi`k/N , (69)

where the set Γ(t) is chosen uniformly and independently at random at each iteration t from subsets

of {1, · · · ,N}×{1 · · · ,R}with cardinality Q. Specifically, the gradient in (95) is uniformly sampled

using a minibatch of data, in this case of size Q for each step update, such that in expectation is

(93) (Spall, 2005, page 130).

As mentioned in Chapter 5, choosing µ > 0 prevents bias in the update direction. Since the

function h is smooth, we are able to construct a descent rule for µ (Line 13 of Algorithm 4) in

order to guarantee convergence to a first-order optimal point, that is, a point with zero gradient, in

the vicinity of the solution.
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Algorithm 4
1: Input: Data {Z[p,k] : k = 0, · · · ,N−1, p = 0, · · · ,R−1}. Choose constants γ1,γ,α ∈ (0,1), µ(0) ≥ 0,

cardinality Q ∈ {1, · · · ,NR}, and tolerance ε > 0.

2: if L = 1 then

3: Initial point x(0)← Algorithm 2(Z[p,k],T ).

4: else

5: Initial point x(0)← Algorithm 3(Z[p,k],T ).

6: end if

7: while
∥∥∥dΓ(t)

∥∥∥
2
≥ ε do

Choose Γ(t) uniformly at random from the subsets of {1, · · · ,N}× {1 · · · ,R} with cardinality Q per

iteration t ≥ 0.

8: x(t+1) = x(t)−αdΓ(t) ,

where

9: dΓ(t) [`] = ∑
p,k∈Γ(t)

(
fH
k g(t)p −υk,p,t

)
q(t)`,pe2πi`k/N .

10: υk,p,t =
√

Z[p,k] fH
k g(t)p

ϕ
µ(t)

(∣∣∣fH
k g(t)p

∣∣∣) .

11: g(t)p =
[
x(t)[0]x(t)[pL], · · · ,x(t)[N−1]x(t)[N−1+ pL]

]T
.

12: q(t)`,p = x(t)[`+ p]+x(t)[`− p]e2πikp/N .

13: if
∥∥∥dΓ(t)

∥∥∥
2
≥ γµ

(t) then

14: µ(t+1) = µ(t).

15: else

16: µ(t+1) = γ1µ(t).

17: end if

18: end while

19: return: x(T ).



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 74

Theorem 6.2.1. Let x be B-bandlimited for some B ≤ N/2, satisfying dist(x,x(t)) ≤ ρ for some

sufficiently small constant ρ > 0. Suppose that L= 1 and Γ(t) is sampled uniformly at random from

all subsets of {1, · · · ,N}×{1 · · · ,R} with cardinality Q, independently for each iteration. Then for

almost all signals, Algorithm 4 with step size α ∈ (0, 2
U ] satisfies

lı́m
t→∞

µ
(t) = 0, and lı́m

t→∞

∥∥∥∥∥∂h(x(t),µ(t))

∂z

∥∥∥∥∥
2

= 0, (70)

for some constant U > 0 depending on ρ .

Demostración. See Chapter 8 (Appendix H).

6.3. Initialization Strategy

In this section we devise a method to initialize the gradient iterations. This strategy approximates

the signal x from the FROG trace as the leading eigenvector of a carefully designed matrix. We

divide the exposition of the initialization procedure into two cases, L = 1 and L > 1, explained in

Sections 6.3.1 and 6.3.2, respectively.

6.3.1. Initialization for L = 1. Instead of directly dealing with the FROG trace in (60),

we consider the acquired data in a transformed domain by taking its 1D DFT with respect to the

frequency variable (normalized by 1/N). Our measurement model is then

Y[p, `] =
1
N

N−1

∑
k=0

Z[p,k]e−2πik`/N =
1
N

N−1

∑
k,n,m=0

x[n]x[m]x[n+ pL]x[m+ pL]e−2πik (m−n−`)
N

=
N−1

∑
n=0

x[n]x[n+ `]x[n+ pL]x[n+ `+ pL], (71)
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where p, `= 0, · · · ,N−1. Observe that for fixed p, Y[p, `] is the autocorrelation of x�xpL, where

xpL[n] = x[n+ pL].

Let DpL ∈ CN×N be a diagonal matrix composed of the entries of xpL, and let C` be a

circulant matrix that shifts the entries of a vector by ` locations, namely, (C`x)[n] = x[n+`]. Then,

the matrix X := xxH is linearly mapped to Y[p, `] as follows:

Y[p, `] =
(
DpL+`DpLC`x

)H x = xHAp,`x

= tr(XAp,`), (72)

where Ap,` = C−`DpLDpL+`, and tr(·) denotes the trace function. Observe that CT
` = C−`. Thus,

we have that

y` = G`x`, (73)

for a fixed ` ∈ {0, · · · ,N−1}, where y`[n] = Y[n, `] and x` = diag(X, `). The (p,n)th entry of the

matrix G` ∈ CdN
L e×N is given by

G`[p,n] := xpL[n]xpL[n+ `]. (74)

Since L = 1, it follows from (101) that G` is a circulant matrix. Therefore, G` is invertible if and

only if the DFT of its first column, in this case x� (C`x), is non-vanishing.

Using (100), we propose a method to estimate the signal x from measurements (60) using
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an alternating scheme: fixing G`, solving for x`, updating G` and so forth. The new methodology

proposed in Bendory et al. (2018b) cannot be directly employed since here the matrices G` are also

unknown. Thus, our approach estimates the matrices G` together with x`.

We start the alternating scheme by the initialization suggested in Sidorenko et al. (2016)

xini_pty[r] := v[r]exp(iθ [r]), (75)

where θ [r] ∈ [0,2π) is chosen uniformly at random for all r ∈ {0, · · · ,N− 1}. The rth entry of v

corresponds to the summation of the measured FROG trace over the frequency axis:

v[r] :=
1
N

N−1

∑
k=0

Z[r,k] =
N−1

∑
k=0

∣∣∣∣∣N−1

∑
n=0

x[n]x[n+ rL]e−2πink/N

∣∣∣∣∣
2

:=
N−1

∑
n=0
|x[n]|2|x[n+ rL]|2. (76)

Once the vector xini_pty is constructed, the vectors x(t)` at t = 0 can be built as

x(0)` = diag(X(0)
0 , `), (77)

where

X(0)
0 = xini_ptyxH

ini_pty. (78)

Then, from (104) we proceed with an alternating procedure between estimating the matrix G`, and

updating the vector x` as follows.
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Update rule for G`: In order to update G`, we update the matrix X(t)
0 as

diag(X(t)
0 , `) = x(t)` . (79)

Observe that if x(t)` is close to x` for all `, then X(t)
0 is close to xxH . Letting w(t) be the leading

(unit-norm) eigenvector of the matrix X(t)
0 constructed in (106), from (101) each matrix G(t)

`

at iteration t is given by

G(t)
` [p,n] = x(t)pL[n]x

(t)
pL[n+ `], (80)

where x(t)pL[n] = w(t)[n+ pL].

Optimization with respect to x`: Fixing G(t−1)
` , one can estimate x(t)` at iteration t by solving

the linear least-squares (LS) problem

mı́n
p`∈CN

‖y`−G(t−1)
` p`‖2

2. (81)

The relationship between the vectors x(t)` is ignored at this stage. If G(t−1)
` is invertible, then

the solution to this problem is given by (G(t−1)
` )−1y`. Since G(t−1)

` is a circulant matrix, it

is invertible if and only if the DFT of x(t−1)� (C`x(t−1)) is non-vanishing. This condition

cannot be ensured in general. Thus, we propose a surrogate proximal optimization problem
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to estimate x(t)` by

mı́n
p`∈CN

‖y`−G(t−1)
` p`‖2

2 +
1

2λ
‖p`−x(t−1)

` ‖2
2, (82)

where λ > 0 is a regularization parameter. In practice λ is a tunable parameter Parikh and

Boyd (2014). In particular, for this work the value of λ was determined using a cross-

validation strategy such that each simulation uses the value that results in the smallest relative

error according to (86). The surrogate optimization problem in (109) is strongly convex Pa-

rikh and Boyd (2014), and admits the following closed form solution x(t)` = B−1
`,t e`,t , where

B`,t =
(

G(t−1)
`

)H (
G(t−1)

`

)
+

1
2λ

I,

e`,t =
(

G(t)
`

)H
y`+

1
2λ

x(t−1)
` , (83)

with I ∈RN×N the identity matrix. Clearly B`,t in (111) is always invertible. The update step

for each x(t)` is computed in Line 9 of Algorithm 9.

Finally, in order to estimate x, the (unit-norm) principal eigenvector of X(T )
0 is normalized

by

β =

√
∑

n∈S

(
B−1

0,T e0,T

)
[n], (84)

where S :=
{

n :
(

B−1
0,T e0,T

)
[n]> 0

}
. Observe that (112) results from the fact that ∑

N−1
n=0 diag(X,0)[n] =
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Algorithm 5
1: Input: The measurements Z[p,k], T the number of iterations, and λ > 0.
2: Output: x(0) (estimation of x).

3: Initialize: xini_pty[r] = v[r]exp(iθ [r]), and v[r] =
1
N

N−1

∑
k=0

Z[r,k], θ [r] ∈ [0,2π) is chosen uniformly and

independently at random.
4: Compute Y[p, `] the 1D inverse DFT with respect to k

of Z[p,k].
5: for t = 1 to T do
6: Construct G(t)

` according to (107).
7: Compute B`,t = (G(t)

` )H(G(t)
` )+ 1

2λ
I.

8: Compute e`,t = (G(t)
` )Hy`+ 1

2λ
x(t−1)
` .

9: Construct the matrix X(t)
0 such that

diag(X(t)
0 , `) = B−1

`,t e`,t , `= 0, · · · ,N−1.

10: Let w(t) be the leading (unit-norm) eigenvector of X(t)
0 .

11: Take x(t)pL[n] = w(t)[n+ pL].
12: end for
13: Compute vector x(0) as

x(0) :=

√
∑

n∈S

(
B−1

0,T e0,T

)
[n]w(T ),

where S :=
{

n :
(

B−1
0,T e0,T

)
[n]> 0

}
.

14: return: x(0).

‖x‖2
2.

After a few iterations of this two-step procedure, the output is used to initialize the gradient

algorithm described in Section 7.2. This alternating scheme is summarized in Algorithm 9.

6.3.2. FROG initialization step for L > 1. Until now we focused on the case L = 1. If

L > 1, then the linear system in (100) is underdetermined and y` can be viewed as a subsampled

version of (98) by a factor L. Therefore, in order to increase the number of equations when L > 1,

we up-sample y` by a factor L. Specifically, we follow the proposed scheme in Bendory et al.
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(2018b) that expands the measurement vector y` by low-pass interpolation. Once the measurements

are upsampled, we proceed as for L = 1. This initialization, for L > 1, is summarized in Algorithm

6. From Line 3 to Line 5 the low-pass interpolation by a factor L is computed, and then in Line 6,

Algorithm 9 generates the initial estimation of the underlying signal.

Algorithm 6
1: Input: The measurements Z[p,k], T the number of iterations, and a smooth interpolation filter sL that

approximates a lowpass filter with bandwidth dN/Le.

2: Output: x(0) (estimation of x).

3: Compute Y[p, `] as the 1D DFT with respect to k

of Z[p,k].

4:

Expansion:

ỳ`[n] =


y`[p] if n = pL

0 otherwise.

Interpolation:

y(I)` = ỳ` ∗ sL.

5: Compute Y(I)[p, `] = y(I)` [p].

6: Compute Z(I)[p,k] = |Ỹ(I)[p,k]|2 where Ỹ(I)[p,k] is the 1D inverse DFT with respect to ` of Y(I)[p, `].

7: Compute x(0)← Algorithm 2(Z(I),T )

8: return: x(0).
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7. Extension to Radar Waveform Design

This chapter presents an extension of the theoretical results of this thesis to a real phase retrie-

val problem present in radar. Specifically, radar signals play a central role in applications such as

wireless systems, surveillance and vehicle-to-vehicle communications. In these applications the

correlation between the signal emitted by the radar transmitter and its echo is analyzed by building

the radar ambiguity function. Mathematically, this function is the Fourier magnitude of the product

of the unknown signal with a conjugate time-shifted version of itself, for several different shifts.

To estimate a (time) band-limited signal from the radar ambiguity function, this chapter presents

a uniqueness theoretical result which states that the underlying signal can be recovered from at

least (3S) 3B measurements where (S) B is the (timewidth) bandwidth, respectively. Additionally,

a trust region algorithm that minimizes a smoothed non-convex least-squares objective function

is proposed to iteratively estimate the band-limited signal of interest. The method consists of two

steps. First, we approximate the signal by an iterative spectral algorithm. Then, the attained initia-

lization is refined based upon a sequence of gradient iterations. To the best of our knowledge this

work is seminal in the sense of solving the radar phase retrieval problem for both time-limited

and band-limited signals. Simulations results suggest that the proposed algorithm is able to esti-

mate time-limited and band-limited signal from the radar ambiguity function for both complete

and incomplete radar ambiguity function. The radar function is incomplete when only few shifts

or Fourier frequencies are considered.
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7.1. Radar Phase Retrieval Problem

Mathematically, the radar ambiguity function of a signal x ∈ CN is defined as

A[p,k] :=

∣∣∣∣∣N−1

∑
n=0

x[n]x[n− p]e2iπnk/N

∣∣∣∣∣
2

, (85)

where x is the conjugate of x, and i =
√
−1.

The ambiguity function defined in (85) can be considered as a map CN → RN×N
+ that has

four types of symmetry, usually called trivial ambiguities in the radar PR literature. These ambi-

guities are summarized in Proposition 3.

Proposition 3. (Jaming (2010)) Let x ∈ CN be the underlying signal and let x̃ ∈ CN be its Fourier

transform. Let A[p,k] be the ambiguity function of x defined as in (85). Then, the following signals

have the same ambiguity function as x:

1. the rotated signal xeiφ for some φ ∈ R;

2. the translated signal x` obeying x`[n] = x[n− `] for some ` ∈ Z (equivalently, a signal with

Fourier transform x̃` obeying x̃ψ [k] = x̃[k]eiψk for some ψ ∈ R);

3. the reflected signal x̂ obeying x̂[n] := x[−n].

4. the scaled signal x̀ obeying x̀[n] := eibnx[n] for some b ∈ R.

Our goal is to estimate the signal x, up to trivial ambiguities, from the ambiguity function A.

In this work it is established that the signal x can be uniquely identified (up to trivial ambiguities)
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from its ambiguity function under rather mild conditions as summarized in the Proposition 4 using

the following definition of a band-limited signal.

Definition 7.1.1. We say that x∈CN is a B−band− limited signal if its Fourier transform x̃∈CN

contains N−B consecutive zeros. That is, there exists k such that x̃[k] = · · ·= x̃[N+k+B−1] = 0.

Proposition 4. Let x ∈ CN be a B-band-limited signal as in Definition 7.1.1 for some B ≤ N/2.

Then almost all signals are uniquely determined from their ambiguity function A[p,k], up to tri-

vial ambiguities, from m ≥ 3B measurements. If in addition we have access to the signal’s power

spectrum and N ≥ 3, then m≥ 2B measurements suffice.

Demostración. See Appendix 9.

By almost all signals Theorem 4 means that the set of signals which cannot be uniquely

determined, up to trivial ambiguities, is contained in the vanishing locus of a nonzero polynomial

(see Appendix 9 for more details). Observe that evidently, Proposition 4 states that not all the

delay steps are needed to recover the signal, and therefore a method that works in this regime as

well is desired. Additionally, due the extension of the proof it is deferred to Appendix 9, however

there are two aspects that it is important mentioning. First, the proof of Theorem 4 is a construction

procedure that uses two classical results in phase retrieval, Corollary IV.3 in Bendory et al. (2019b),

and Corollary 2 in Beinert and Plonka (2018). Second, the proof reveals that the first and the

(B− 1)-th rows of the ambiguity function in (85) must be perfectly preserved in order to ensure

uniqueness (up to trivial ambiguities). Then, since the radar phase retrieval problem is a design
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approach these two mentioned rows cannot be discarded or corrupted by any distortion noise in the

design in order to guarantee uniqueness.

A direct consequence of Proposition 4 is the following corollary, under rather mild condi-

tions, states that for almost all time-limited signals as in Definition 2 can be recovered.

Definition 7.1.2. We say that x ∈ CN is a S− timelimited signal if x ∈ CN contains N−S conse-

cutive zeros. That is, there exists k such that x[k] = · · ·= x̃[N + k+S−1] = 0.

Corollary 1. Let x ∈CN be a S-band-limited signal as in Definition 7.1.1 for some S≤ N/2. Then

almost all signals are uniquely determined from their ambiguity function A[p,k], up to trivial am-

biguities, from m≥ 3S measurements. If in addition we have access to the signal’s power spectrum

and N ≥ 3, then m≥ 2S measurements suffice.

Demostración. See Appendix 10.

We remark here that the notion almost all signals is the same as in Theorem 4. Additionally,

the proof of Corollary 1 is also a construction procedure, and that the first and the (B−1)-th rows

of the ambiguity function in (85) must be perfectly preserved in order to ensure uniqueness (up to

trivial ambiguities).

To take the ambiguities into account, we measure the relative error between the true signal

x and any w ∈ CN as

dist(x,w) :=

∥∥∥√A−
√

W
∥∥∥

F∥∥∥√A
∥∥∥

F

, (86)

where A is the ambiguity function of x according to (85),
√
· is the point-wise square root, W is
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the ambiguity function of w, and ‖·‖F denotes the Frobenius norm. Note that if dist(x,w) = 0, and

the uniqueness conditions of Proposition 4 are met, then for almost all signals w is equal to x up to

trivial ambiguities.

In recent years, many papers have examined the problem of recovering a signal from phase-

less quadratic random measurements. A popular approach is to minimize the intensity least-squares

objective; see for instance Candès et al. (2015). Recent works have shown that minimizing the am-

plitude least-squares objective leads to better reconstruction under noisy scenarios Pauwels et al.

(2018); Wang et al. (2016a); Zhang and Liang (2016). However, the latter cost function is non-

smooth and thus may lead to a biased descent direction Pinilla et al. (2018a). To overcome the

non-smoothness of the objective function, we follow the smoothing strategy proposed in Pinilla

et al. (2018a).

The smooth objective to recover the underlying signal considered in this work is

mı́n
z∈CN

h(z,µ) = mı́n
z∈CN

1
N2

N−1

∑
k,p=0

`k,p(z,µ), (87)

where

`k,p(z,µ) :=

[
ϕµ

(∣∣∣∣∣N−1

∑
n=0

z[n]z[n− p]e−2πink/N

∣∣∣∣∣
)
−
√

A[p,k]

]2

. (88)

The function ϕµ : R→ R++ in (88) is defined as ϕµ(w) :=
√

w2 +µ2, with µ ∈ R++ (a tunable

parameter). Notice that if µ = 0, then (88) reduces to the non-smooth formulation. In Wang et al.

(2016a), the authors addressed the non-smoothness by introducing truncation parameters into the

gradient step in order to eliminate the errors in the estimated descent direction. However, this
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procedure can modify the search direction and increase the sample complexity of the phase retrieval

problem Pinilla et al. (2018a).

In this work we propose a trust region algorithm based on the Cauchy point to solve (87),

that is initialized by a spectral procedure which requires only a few iterations. Section 7.2 explains

in detail the proposed algorithm.

7.2. Reconstruction Algorithm

In order to solve the optimization problem in (87), we develop a trust region algorithm, based on

the Cauchy point, that is initialized by the outcome of a spectral method approximating the signal

x which will be explained in Section 7.3.

The standard update rule in this kind of methods takes the form of

x(t+1) := x(t)+α
(t)b(t), (89)

where α(t) is the step size at iteration t and the vector b(t) is chosen in this work as

b(t) := argmin
b∈Cn

h(x(t),µ(t))+2R
(

bHd(t)
)
,

s.t ‖b‖2 ≤ µ
(t) (90)

with R(·) as the real part function, and d(t) as the gradient of h(z,α) with respect to z at iteration
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t. The solution to (90) is given by (Nocedal and Wright, 2006, Chapter 4)

b(t) =− µ(t)

‖d(t)‖2
d(t). (91)

To mathematically compute d(t), the Wirtinger derivatives as introduced in Hunger (2007)

are employed. Let us define the vector fH
k as

fH
k :=

[
ω
−0(k−1),ω−1(k−1), · · · ,ω−(N−1)(k−1)

]
, (92)

with ω = e
2πi
n the nth root of unity. Then, the Wirtinger derivative of h(z,µ) in (87) with respect to

z[`] is given by

∂h(z,µ)
∂z[`]

:=
1

N2

N−1

∑
k,p=0

(
fH
k gp−υk,p

)
z[`− p]e2πi`k/N +

1
N2

N−1

∑
k,p=0

(
fT
k gp−υk,p

)
z[`+ p]e−2πi(`+p)k/N ,

(93)

where υk,p :=
√

A[p,k] fH
k gp

ϕµ(|fH
k gp|) , and

gp :=
[
z[0]z[p], · · · ,z[N−1]z[N−1+ p]

]T
. (94)

The gradient d(t) is then given by

d(t) :=

[
∂h(x(t),µ)

∂x(t)[0]
, · · · , ∂h(x(t),µ)

∂x(t)[N−1]

]T

. (95)
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To alleviate the memory requirements and computational complexity required for large N,

we suggest a block stochastic gradient descent strategy. Instead of calculating (93), we choose only

a random subset of the sum for each iteration t, that is,

dΓ(t)[`] = ∑
p,k∈Γ(t)

(
fH
k g(t)p −υk,p,t

)
z(t)[`− p]e2πi`k/N

+ ∑
p,k∈Γ(t)

(
fT
k gp

(t)−υk,p

)
z(t)[`+ p]e−2πi(`+p)k/N , (96)

where the set Γ(t) is chosen uniformly and independently at random at each iteration t from subsets

of {1, · · · ,N}2 with cardinality Q. Specifically, the gradient in (95) is uniformly sampled using a

minibatch of data, in this case of size Q for each step update, such that in expectation is (93) (Spall,

2005, page 130).

As mentioned in Section 7.2, choosing µ > 0 prevents bias in the update direction. Since

the function h is smooth, we are able to construct a descent rule for µ (Line 13 of Algorithm 7) in

order to guarantee convergence to a first-order optimal point, that is, a point with zero gradient, in

the vicinity of the solution.

Theorem 7.2.1. Let x be S-time-limited or B-band-limited for some S≤ N/2 or B≤ N/2, respec-

tively, satisfying dist(x,x(t)) ≤ ρ for some sufficiently small constant ρ > 0. Suppose that Γ(t) is

sampled uniformly at random from all subsets of {1, · · · ,N}2 with cardinality Q, independently



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 89

Algorithm 7
1: Input: Data {A[p,k] : k, p = 0, · · · ,N−1}. Choose constants γ1,γ,α ∈ (0,1), µ(0) ≥ 0, cardinality Q ∈
{1, · · · ,N2}, and tolerance ε > 0.

2: Initial point x(0)← Algorithm 2(A[p,k],T ).

3: while
∥∥∥bΓ(t)

∥∥∥
2
≥ ε do

Choose Γ(t) uniformly at random from the subsets of {1, · · · ,N}2 with cardinality Q per iteration t ≥ 0.

4: x(t+1) = x(t)+α
(t)bΓ(t) = x(t)−α

(t) µ(t)

‖dΓ(t)‖2
dΓ(t) ,

where
5:

dΓ(t) [`] = ∑
p,k∈Γ(t)

(
fH
k g(t)p −υk,p,t

)
x(t)[`− p]e2πi`k/N

+ ∑
p,k∈Γ(t)

(
fT
k gp

(t)−υk,p

)
x(t)[`+ p]e−2πi(`+p)k/N

6: υk,p,t =
√

A[p,k] fH
k g(t)p

ϕ
µ(t)

(∣∣∣fH
k g(t)p

∣∣∣) .

7: g(t)p =
[
x(t)[0]x[p]

(t)
, · · · ,x(t)[N−1]x[N−1+ p]

(t)
]T

.

8: if
∥∥∥dΓ(t)

∥∥∥
2
≥ γµ

(t) then

9: µ(t+1) = µ(t).
10: else
11: µ(t+1) = γ1µ(t).
12: end if
13: end while
14: return: x(T ).
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for each iteration. Then for almost all signals, Algorithm 7 with step size α ∈ (0, 2
U ] satisfies

lı́m
t→∞

µ
(t) = 0, and lı́m

t→∞

∥∥∥d(t)
∥∥∥

2
= 0, (97)

for some constant U > 0 depending on ρ .

Demostración. See Appendix 8.

7.3. Initialization Algorithm

In this section we devise a method to initialize the gradient iterations. This strategy approximates

the signal x from the ambiguity function as the leading eigenvector of a carefully designed matrix.

Instead of directly dealing with the ambiguity function in (85), we consider the acquired da-

ta in a transformed domain by taking its 1D DFT with respect to the frequency variable (normalized

by 1/N). Our measurement model is then

Y[p, `] =
1
N

N−1

∑
k=0

A[p,k]e−2πik`/N =
1
N

N−1

∑
k,n,m=0

x[n]x[n− p]x[m− p]x[m]e−2πik (m−n−`)
N

=
N−1

∑
n=0

x[n]x[n− p]x[n+ `− p]x[n+ `], (98)

where p, ` = 0, · · · ,N−1. Observe that for fixed p, Y[p, `] is the autocorrelation of x�xp, where

xp[n] = x[n− p].

Let Dp ∈CN×N be a diagonal matrix composed of the entries of xp, and let C` be a circulant

matrix that shifts the entries of a vector by ` locations, namely, (C`x)[n] = x[n+`]. Then, the matrix
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X := xxH is linearly mapped to Y[p, `] as follows:

Y[p, `] =
(
Dp+`DpC`x

)H x = xHAp,`x

= tr(XAp,`), (99)

where Ap,` = C−`DpDp+`, and tr(·) denotes the trace function. Observe that CT
` = C−`. Thus, we

have that

y` = G`x`, (100)

for a fixed ` ∈ {0, · · · ,N−1}, where y`[n] = Y[n, `] and x` = diag(X, `). The (p,n)th entry of the

matrix G` ∈ CdN
L e×N is given by

G`[p,n] := xp[n]xp[n+ `]. (101)

From (101) it follows that G` is a circulant matrix. Therefore, G` is invertible if and only if the

DFT of its first column, in this case x� (C`x), is non-vanishing.

Using (100), we propose a method to estimate the signal x from measurements (85) using

an alternating scheme: fixing G`, solving for x`, updating G` and so forth.
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We start the alternating scheme with the initial point

xinit [p] := v[p]exp(iθ [p]), (102)

where θ [r] ∈ [0,2π) is chosen uniformly at random for all r ∈ {0, · · · ,N− 1}. The rth entry of v

corresponds to the summation of the measured ambiguity function over the frequency axis:

v[p] :=
1
N

N−1

∑
k=0

A[p,k] =
N−1

∑
k=0

∣∣∣∣∣N−1

∑
n=0

x[n]x[n− p]e−2πink/N

∣∣∣∣∣
2

:=
N−1

∑
n=0
|x[n]|2|x[n− p]|2. (103)

Once the vector xinit is constructed, the vectors x(t)` at t = 0 can be built as

x(0)` = diag(X(0)
0 , `), (104)

where

X(0)
0 = xinitxH

init . (105)

Then, from (104) we proceed with an alternating procedure between estimating the matrix G`, and

updating the vector x` as follows.

Update rule for G`: In order to update G`, we update the matrix X(t)
0 as

diag(X(t)
0 , `) = x(t)` . (106)
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Observe that if x(t)` is close to x` for all `, then X(t)
0 is close to xxH . Letting w(t) be the leading

(unit-norm) eigenvector of the matrix X(t)
0 constructed in (106), from (101) each matrix G(t)

`

at iteration t is given by

G(t)
` [p,n] = xp

(t)[n]x(t)p [n+ `], (107)

where x(t)p [n] = w(t)[n− p].

Optimization with respect to x`: Fixing G(t−1)
` , one can estimate x(t)` at iteration t by solving

the linear least-squares (LS) problem

mı́n
p`∈CN

‖y`−G(t−1)
` p`‖2

2. (108)

The relationship between the vectors x(t)` is ignored at this stage. If G(t−1)
` is invertible, then

the solution to this problem is given by (G(t−1)
` )−1y`. Since G(t−1)

` is a circulant matrix, it

is invertible if and only if the DFT of x(t−1)� (C`x(t−1)) is non-vanishing. This condition

cannot be ensured in general. Thus, we propose a surrogate proximal optimization problem

to estimate x(t)` by

mı́n
p`∈CN

‖y`−G(t−1)
` p`‖2

2 +
1

2λ(t)
‖p`−x(t−1)

` ‖2
2, (109)

where λ(t) > 0 is a regularization parameter. In practice λ(t) is a tunable parameter Parikh
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and Boyd (2014). In particular, for this work the value of λ(t) was determined using a cross-

validation strategy such that each simulation uses the value that results in the smallest relative

error according to (86). The surrogate optimization problem in (109) is strongly convex Pa-

rikh and Boyd (2014), and admits the following closed form solution

x(t)` = B−1
`,t e`,t , (110)

where

B`,t =
(

G(t−1)
`

)H (
G(t−1)

`

)
+

1
2λ

I,

e`,t =
(

G(t)
`

)H
y`+

1
2λ(t)

x(t−1)
` , (111)

with I ∈RN×N the identity matrix. Clearly B`,t in (111) is always invertible. The update step

for each x(t)` is computed in Line 9 of Algorithm 9.

Finally, in order to estimate x, the (unit-norm) principal eigenvector of X(T )
0 is normalized

by

β = 4

√
∑

n∈S

(
B−1

0,T e0,T

)
[n], (112)

where S :=
{

n :
(

B−1
0,T e0,T

)
[n]> 0

}
. Observe that (112) results from the fact that ∑

N−1
n=0 diag(X,0)[n] =

‖x‖4
2.
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Algorithm 8
1: Input: The measurements A[p,k], T the number of iterations, and λ > 0.
2: Output: x(0) (estimation of x).

3: Initialize: xinit [p] = v[p]exp(iθ [p]), and v[p] =
1
N

N−1

∑
k=0

A[p,k], θ [p] ∈ [0,2π) is chosen uniformly and

independently at random.
4: Compute Y[p, `] the 1D inverse DFT with respect to k

of A[p,k].
5: for t = 1 to T do
6: Construct G(t)

` according to (107).
7: Compute B`,t = (G(t)

` )H(G(t)
` )+ 1

2λ
I.

8: Compute e`,t = (G(t)
` )Hy`+ 1

2λ
x(t−1)
` .

9: Construct the matrix X(t)
0 such that

diag(X(t)
0 , `) = B−1

`,t e`,t , `= 0, · · · ,N−1.

10: Let w(t) be the leading (unit-norm) eigenvector of X(t)
0 .

11: Take x(t)p [n] = w(t)[n− p].
12: end for
13: Compute vector x(0) as

x(0) := 4

√
∑

n∈S

(
B−1

0,T e0,T

)
[n]w(T ),

where S :=
{

n :
(

B−1
0,T e0,T

)
[n]> 0

}
.

14: return: x(0).

After a few iterations of this two-step procedure, the output is used to initialize the gradient

algorithm described in Section 7.2. This alternating scheme is summarized in Algorithm 9.

8. Extension to Detection Tasks

Template matching (TM) is a common methodology for target detection (TD) which allows de-

tecting a target based on cross-correlation analysis between a reference pattern and the scene.

State-of-the-art TD approaches do not consider the optical phase of the target as a discriminant

in the detection process, because to recover the phase involves solving a computationally deman-



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 96

ding inverse problem known as phase retrieval (PR). However, in applications such as microscopy

and optical imaging, the optical phase contains valuable information that describes the shape and

depth of the object. This work proposes a method for fast TD via TM, which considers the op-

tical phase of the object in the reference pattern as a discriminant in a setup that records coded

diffraction patterns (CDP). Specifically, the proposed TD methodology is established for far-field

imaging. This approach consists of two steps: (i) fast approximation of the optical field from CDP

based on compressive PR, including its optical phase information; (ii) cross-correlation analysis

to detect the target using its optical phase. The approximation of the optical field considering its

phase is performed by low-pass-filtering the leading eigenvector of a designed matrix, overcoming

traditional approaches in terms of relative error. Since no explicit TD methodology that includes

the optical phase as a discriminant exists in the literature, the proposed approach is compared to a

method that reconstructs the optical field and then performs the detection step. Numerical results

suggest that the proposed methodology detects a target under noisy scenarios using up to 75% fe-

wer measurements in the tested datasets. Also, the proposed TD using the filtered spectral method

reduces the detection time in up to 79% in the tested datasets, compared to a methodology that

requires the reconstruction of the phase.

8.1. Target Detection Methodology from CDP

This section describes the proposed TD methodology composed by two stages: (i) a fast optical

field approximation strategy of the phase from CDP based on compressive PR literature introduced

in Section 8.1.1, and (ii) a TD procedure via TM that includes the optical phase information, as

explained in Section 8.1.2. Fig. 7 summarizes the proposed TD approach.
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Figura 7. Flowchart of the proposed TD methodology using CDP. For the first step, the approximation is performed
by low-pass-filtering the leading eigenvector of a designed matrix. For the second step, cross-correlation analysis is
used to detect the target from its optical phase.

8.1.1. Step1: Fast Optical Field Approximation. In this section, the proposed phase ap-

proximation strategy is presented. It exploits the mathematical model of CDP in (2) and the sparsity

property of natural scenes in the Fourier domain. Specifically, from the compressive PR imaging

literature, it is known that an image can be accurately represented using a few coefficients in the

Fourier domain Jensen and Lulla (1987). This implies that ‖Fx−θ‖2 < ε for some small constant

ε > 0 where ‖θ‖0 = s� n and ‖·‖0 represents the `0 pseudo-norm that returns the number of non-

zero elements (support) of a given vector. Considering this sparsity prior over x, and the model in

(2), we know that from the compressive sensing theory, the support of θ can be estimated from the
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CDP Wang et al. (2017b). Specifically, define

υ̂p =
1
m

m

∑
i=1

(y)i|(B)i,p|2, 1≤ p≤ n, (113)

where B = AF, and the expected value of the random variable υ̂p is given by

E[υ̂p]≥ c1‖x‖2
2 + c2|(θ)p|2 + c3, (114)

where c1,c2 and c3 are constants. Then, given the fact that θ is sparse, it is clear that as long as

the constant c2 is sufficiently large, the non-zero coefficients of θ can be exactly recovered. In

fact, appealing to the strong law of large numbers, the sample average, namely υ̂p→ E[υ̂p] as m

increases, approaches the support of θ and is estimated as

S :=
{

1≤ p≤ n|indices of top-s intances in {υ̂p}n
p=1
}
. (115)

In summary, Lemma 8.1.1 in Wang et al. (2017b), theoretically states that (115) is able to recover

the support of θ with high probability.

Lemma 8.1.1. ((Wang et al., 2017b, Lemma 1)) Consider any signal x ∈Cn with a s-sparse repre-

sentation θ ∈ Cn in the Fourier domain. Then, (115) recovers the support of θ with probability at

least 1−6/m provided that m≥ κs2 log(mn) for some constant κ > 0.

Once the set S is estimated following (115), the non-zero entries of θ are approximated
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solving the following optimization problem Wang et al. (2017b)

θ̂S = argmax
‖θS ‖2=1

θH
S

(
1
|I0| ∑

i∈I0

bi,S bH
i,S

‖bi,S ‖2
2

)
θS , (116)

where bi,S is the i-th row of matrix B which includes the p-th entry (bi)p of bi if and only if

p ∈S . Likewise, for θS , θ̂S ∈ Cs, and I0 ⊂ {1, . . . ,nL} is the collection of indices correspon-

ding to the bm/6c largest values of {(y)i/‖ai‖2} Guerrero et al. (2020). The optimization pro-

blem in (116) mathematically involves the computation of the leading eigenvector of the matrix

G0 := 1
|I0|∑i∈I0

bi,S bH
i,S

‖bi,S ‖2
2

Wang et al. (2017b). Usually, (116) is numerically solved via the power

iteration method Saad (2003); Wang et al. (2018b,a). This method consists in recursively perfor-

ming a matrix-vector multiplication between G0 and the iterative approximation of the optical field

Wang et al. (2018b). Subsequently, a s-sparse n-dimensional approximation θ̂ is obtained by zero-

padding θ̂S at entries with indices not belonging to S . Thus, since θ̂ is a sparse approximation of

x in the Fourier domain, ẑ = FHθ̂ approximates the optical field x. It is worth mentioning that ẑ is

a complex vector that approximates both the magnitude and phase of the optical field x. Also, note

that sparse PR requires at least O(s log(n/s)) measurements as in compressive sensing literature

Wang et al. (2017b). In summary, Theorem 8.1.2 in Wang et al. (2017b), states that ẑ is a close

approximation of x with high probability.

Theorem 8.1.2. ((Wang et al., 2017b, Theorem 1)) Consider noisy measurements (y)i = |〈ai,x〉|2+

(ω)i such that ‖ω‖∞ ≤ c‖x‖∞ for some c > 0. If the set of coded apertures satisfies (12), then with



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 100

high probability the vector ẑ as the solution of (116) satisfies

dist(ẑ,x)≤ δ‖x‖2 +O(‖ω‖∞)
1, (117)

for some constant δ ∈ (0,1), provided that m≥ κs, for κ > 0.

Considering that a fast approximation of the optical field from CDP including its phase

information without full reconstruction time is desired, the main drawback of the above state-of-

the-art strategy is the computational complexity to perform (115). To alleviate this limitation, we

alternatively propose to solve the following optimization problem

θ̂= argmax
‖θ‖2=1

θH

(
1
|I0| ∑

i∈I0

bibH
i

‖bi‖2
2

)
θ

s.t ‖θ‖1 ≤ τ, (118)

for some τ > 0. Observe that (118) instead of hardly removing those zero-frequencies that can be

identified using (115) as (116) does, (118) relaxes the sparsity assumption introducing the `1-norm.

This alternative optimization problem is motivated by the fact that the complexity to estimate the

non-zero frequencies in (115) is O(n2), since υ̂p in (113) is obtained performing matrix-vector

multiplications. Also, solving the `1 constraint in (118) is less computationally expensive than

computing (115) as it will be discussed in brief. To numerically solve (118), the spectral filtered

1 The notation ϕ(w) = O(g(w)) means there exists a numerical constant c > 0 such that ϕ(w)≤ cg(w).
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Algorithm 9
1: Input: Acquired data {(ai;(y)i)}m

i=1, maximum number of iterations T , and low-pass filter G .
2: z̃(0)← Chosen randomly.
3: Set I0 as the set of indices corresponding to the bm/6c largest values of {(y)i/‖ai‖2}.
4:

Y0 :=
1
|I0| ∑

i∈I0

aiaH
i

‖ai‖2
2

5: for t = 0 : T −1 do
6: z̀(t+1)← G

(
Y0z̃(t)

)
7: z̃(t+1)← z̀(t+1)

‖z̀(t+1)‖2
8: end forend for
9: Compute ẑ =

√
∑

m
i=1(y)i

m z̃(T )
10: Return: ẑ

method is introduced as summarized in Algorithm 9. This algorithm follows a power iteration

methodology and reduces the computational complexity of estimating (115), employing a low-pass

filter which allows to solve the inequality constraint in (118). Mathematically, the effect of this filter

is the attenuation of the high-frequencies of the optical field in the Fourier domain. Additionally, it

is well-known that the filtering process can be rapidly performed through the fast Fourier transform

ILPF GLPF BLPF CLPF Filter cross-section

ILPF

GLPF

BLPF

CLPF

0

0.5

1

0

0.5

1

Figura 8. Sketch of different low-pass filters with cutoff frequency ω0 ∈ {15,30}[pixels].
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with a computational complexity O(n log(n)) Gonzalez and Wintz (1977), which is substantially

lower than O(n2). Notice that Algorithm 9 requires the sampling vectors, the acquired CDP and a

low-pass filter G . Among different filter types, e.g., ideal low-pass filter (ILPF), gaussian low-pass

filter (GLPF), butterworth low-pass filter (BLPF), and chebyshev low-pass filter (CLPF) Gonzalez

and Wintz (1977), this work employs a Gaussian filter with cutoff frequency ω0 = 15[pixels] to

illustrate the effectiveness of Algorithm 9. Nevertheless, any other filter could be used. Fig. 8

illustrates the perspective plot of different low-pass filters using two different cutoff frequencies.

Following the iteration process, the characteristic matrix-vector multiplication of the power

iteration method Y0z̃(t) is performed in line 6. The result of this product is considered the current

approximation of both the magnitude and phase of the optical field. Also, in line 6 a low-pass fil-

tering process over Y0z̃(t) is accomplished, where G represents the filter. The effect of iteratively

applying G over the approximation of the image is the selection of those low-frequencies that spar-

sely represent the image in the Fourier domain. Observe that this selection is rapidly performed in

comparison with (115) Gonzalez and Wintz (1977). Finally, Algorithm 9 returns the scaled com-

plex vector ẑ, which according to Theorem 8.1.2 is a close approximation of both the magnitude

and phase of x. The scaling factor
√

∑
m
i=1(y)i

m in line 8 is a close approximation of ‖x‖2 Wang et al.

(2018b) and it has to be calculated because z̃ is a unitary image.

To mathematically summarize the advantages of solving (118) compared to (116) to appro-

ximate the optical field x, Theorem 8.1.3 is presented.

Theorem 8.1.3. Consider noisy measurements (y)i = |〈ai,x〉|2 +(ω)i, and a low-pass filter G ,

such that ‖ω‖∞ ≤ c‖x‖∞ for some c > 0. If the set of coded apertures satisfies (12), then with high
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probability the vector ẑ returned by Algorithm 9 satisfies

dist(ẑ,x)≤ δG ‖x‖2 +O(‖ω‖∞), (119)

for some constant δG ≤ δ < 1 with δ as in (117), provided that m≥ κs, for κ > 0.

Demostración. See Appendix A in the supplementary material.

Notice that Theorem 8.1.3 guarantees that solving (118) via Algorithm 9 returns a more

accurate approximation of x than that obtained by solving (116), since δG ≤ δ , for both noisy and

noiseless scenarios. This advantage comes from the fact that the low-pass filter promotes a more

accurate representation of x in the Fourier domain because it does not hardly remove any frequency.

Additionally, since δG depends on the chosen low-pass filter G , it means that the accuracy of the

approximation returned by Algorithm 9 is determined by G . In fact, a filter G1 is able to better

approximate the complex signal x compared to G2 if δG1 < δG2 . More details about how numerically

compute δG for a given filter G can be found in Appendix A in the supplementary material. Finally,

note that (119) reveals that the amount of noise of the measurements (y)i is not affected by the

low-pass filter. This is an expected result since (y)i does not intervene in the computation of the

low-pass filtering step in Line 6 of Algorithm 9.

8.1.2. Step 2: Target Detection Procedure. This section describes a TD procedure fo-

llowing a template matching strategy that employs a circular harmonic filter (CHF) Prémont and

Sheng (1993) to perform the detection. It is worth mentioning that the TM technique is invariant to

rotations and scale-changes. In detail, the detection step is divided into two stages: (i) correlation
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Magnitude Phase Magnitude

(a) (b)

Figura 9. Example of two reference patterns. (a) Using both phase and magnitude information. (b) Using only
magnitude information.

analysis based on CHF, and (ii) decision considering a thresholding procedure.

8.1.2.1. Cross-correlation Analysis. A circular filter using a reference pattern has to be

designed to detect a target through cross-correlation. Cross-correlation is a metric commonly used

in TM, which calculates the similarity between a CHF and a scene. Figure 9 illustrates two re-

ference patterns, first using both phase and magnitude information, and second, magnitude-only

information. It is worth mentioning that the magnitude-only reference pattern physically models a

flat object, while a reference pattern as in Fig. 9(a) models a three-dimensional (3D) object. This

implies that a TD methodology equipped with a complex reference pattern is able to differentiate

between a flat and a 3D object.

In order to perform the detection, a CHF H ∈Cn×n, based on a reference pattern G ∈Cn×n

as in Fig. 9(a) is mathematically designed in polar coordinates on the Fourier domain Gualdron

and Arsenault (1993). This system of coordinates is preferred in order to make the CHF invariant

to rotations, such that, H is able to detect the object regardless any rotated version of it Prémont

and Sheng (1993). Additionally, in order to build a filter H to be invariant to scale-changes sup-
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pose that there are V different scale-changing patterns of one standard reference pattern Zi-Liang

and Dalsgaard (1995), as in Fig. 9(a). Considering (ρ,φ) as the indexing variables of the polar

coordinates, H is modeled as Prémont and Sheng (1993)

(H)ρ,φ = e2 jφ
V

∑
i=1

n

∑
l=1

(Ei)ρ,(l−1)∆φ∣∣(Ei)ρ,(l−1)∆φ

∣∣e−2 j(l−1)∆φ , (120)

where Ei ∈ Cn×n is given by

Ei = F (Gi), (121)

while Gi is a different scaled version of the standard reference pattern G. We remark that (120)

is a well-known model in the CHF literature where more details can be found in Zi-Liang and

Dalsgaard (1995). In (120), the size constant ∆φ allows to range the angular dimension of the

polar coordinates Prémont and Sheng (1993) to make the CHF invariant to rotations. In practice,

the value for ∆φ is fixed as ∆φ = π

n . Thus, in order to accomplish the detection of the object, the

correlation matrix C ∈ Cn×n is calculated between the CHF, H, and the Fourier transform of the

approximated optical field Ẑ ∈ Cn×n, which is given by

C = F−1 (H◦ Ẑ
)
, (122)

where Ẑ ∈ Cn×n is the Fourier transform of Z̃, which is the matrix version of ẑ that represents the

approximation of x obtained from Algorithm 9. The resultant matrix (122) is used in the following
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section to determine the spatial location of the 3D object of interest.

8.1.2.2. Decision Process. Once the correlation matrix is calculated following (122), the

target can be detected using a thresholding approach. Precisely, the threshold is defined as the

maximum absolute value of the correlation matrix multiplied by a tolerance parameter ε > 0.

Mathematically, the decision rule for a TD is given by

(R)u,v =


1, if |(C)u,v| ≥ ε ·máx(C)

0, otherwise

, (123)

where (R)u,v ∈ {0,1} represents the elements of the decision matrix, ε ∈ (0,1] is a tolerance pa-

rameter and max(·) is an operator that returns the element of a matrix with the largest magnitude

value. In practice, ε is a tunable constant, which in this work is fixed as ε = 0.9. Thus, the object

of interest is spatially located at an entry (u,v) if (R)u,v = 1.

Algorithm 10
1: Input: data {(ai;(y)i)}m

i=1, the tolerance ε > 0, compute ∆φ = π

n , and the reference pattern G.
2: ẑ←Algorithm 9(ai;y).
3: E = F (G)

4: (H)ρ,φ = e2 jφ
∑

n
l=1

(E)ρ,(l−1)∆φ

|(E)ρ,(l−1)∆φ |e
−2 j(l−1)∆φ .

5: Z̃←Matrix version of ẑ.
6: Compute Ẑ = F{Z̃}.
7: Compute C = F−1{H◦ Ẑ}.

8: Compute (R)u,v =

{
1, if |(C)u,v| ≥ ε ·máx(C)

0, otherwise
9: Return: R

To summarize the two-steps procedure, Algorithm 10 is introduced, which requires the ac-
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quired CDP and the tolerance ε > 0. In line 2, the optical field is estimated from the phaseless

measurements using Algorithm 9. Then, in line 3 the circular filter H is constructed from a refe-

rence pattern G following (120). The Fourier transform of the estimated optical field is calculated

in line 4. In line 5, the correlation matrix is computed using (122). In line 6, a target is detected

using the decision matrix described in Eq (123). Finally, the decision matrix is returned in line 7.

The computational complexity of the detection procedure is O(n log(n)) according to the computed

correlation in the Fourier domain.

It is worth highlighting that the above described detection algorithm is not able to detect a

complex object (3D object) with its magnitude-only reference pattern. Mathematically, this issue

is explained in the following. Suppose that in the pixels (u1,v1) and (u2,v2) of X, a 3D object and

its flat version are located, respectively. Define the correlation matrix Ca ∈ Cn×n as

Ca = F−1 (Ha ◦ Ẑ
)
, (124)

where the CHF, Ha, of the magnitude-only reference pattern is constructed, according to (120), as

(Ha)ρ,φ = e2 jφ
V

∑
i=1

n

∑
l=1

(Ea
i )ρ,(l−1)∆φ∣∣(Ea
i )ρ,(l−1)∆φ

∣∣e−2 j(l−1)∆φ , (125)

with Ea
i = F (|Gi|). Then, if the decision rule in (123) is applied over Ca the 3D object would not

be detected, due to this object contains both phase and magnitude information. In mathematical
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terms, the previous fact means that

|(Ca)u2,v2 |> |(Ca)u1,v1|. (126)

In fact, (126) is always valid since the cross-correlation between the CHF filter Ha and the ẑ, will

produce a higher magnitude at (u2,v2) Prémont and Sheng (1993), as it is theoretically stated in

the following Lemma 8.1.4.

Lemma 8.1.4. Consider the CHF’s H and Ha as modeled in (120), and (125), respectively. Suppose

that a 3D object is located in the pixel (u1,v1) of the complex optical field. Then, |(C)u1,v1| >

|(Ca)u1,v1| holds.

Demostración. See Appendix B in the supplementary material.

Observe that Lemma 8.1.4 theoretically guarantees that the magnitude-only decision rule in

(123) is enough to detect a 3D object. Finally, to complement the mathematical property in (126),

and the result of Lemma 8.1.4, Section 9 numerically validates that Algorithm 10 effectively uses

the optical phase as discriminant.

9. Numerical Results with Synthetic Data

In this chapter, the performance of the designed coded apertures for the three diffraction zones,

and Algorithm 7 are evaluated. The used performance metric is

relative error :=
dist(z,x)
‖x‖2
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where dist(z,x) is defined as

dist(z,x) = min
θ∈[0,2π)

‖xe− jθ − z‖2, j =
√
−1. (127)

Five different tests are performed to analyze the effect of the coded apertures in the recons-

truction quality. First, the initialization methodology is evaluated for designed and non-designed

coded apertures. Second, some examples of reconstructed images using designed and non-designed

coded apertures, based on admissible random variables, are shown. Third, the empirical suc-

cess rate of some state-of-the-art reconstruction algorithms using designed and non-designed co-

ded apertures is analyzed. The fourth experiment determines the robustness of designed coded

apertures under noisy scenarios for different values of Signal-to-Noise-Ratio (SNR), defined as

SNR= 20log10(‖yk‖2/‖ζ‖2), where ζ is the variance of the noise. Finally, under sparsity assum-

ptions, the performance of different admissible random variables to estimate the non-zero coeffi-

cients of θ and to solve (28) is evaluated. Particularly, for this test, the average error over 100 tests

was calculated. The admissible random variables tested are shown in Table 2.

Table 2
Admissible random variables used for simulations

Random Variable Coding Probability Expected Value Cardinality
d1 = {1,0} {1

2 ,
1
2} E[d1] =

1
2 γ2 = 16

d2 = {1,0, j} {1
3 ,

1
3 ,

1
3} E[d2] =

1
3 +

1
3 j γ2 = 9

d3 = {1, j,− j,−1} {1
4 ,

1
4 ,

1
4 ,

1
4} E[d3] = 0 γ2 = 16

Note that the expected values of d1, d2 in Table 2 are non-zero. Specifically, these tested

coding variables do not satisfy (3) and, in contrast to Table 1, these variables do not increase the
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Figura 10. Performance of different initialization methods using designed coded apertures in terms of the relative
error vs the number of projections. Rows: Diffraction zones, columns: admissible random variables.

power of the scene during the modulation process.

9.1. Designed Coded Aperture Analysis

9.1.1. Initialization Stage Performance. In order to evaluate the performance of designed

coded apertures at the initialization stage, different state-of-the-art initializations, such as spectral,

extended OPI and WMC are here employed the attained relative error is shown in Fig. 10. For this

test card(I c
0 ) = dnL/2e, while the number of projections is varied from L = 2 to L = 12. The

scene is generated as a complex Gaussian random vector x∼N (0, 1
2In)+ jN (0, 1

2In). Figure 10
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Figura 11. Reconstructed phase from CDP acquired at the different diffraction zones using the admissible random
variables in Table 2 and L = 4 for designed and non-designed coded apertures.

shows that the designed coded apertures exhibit better performance for all the diffraction zones

and all the initialization methodologies when compared to non-designed ensembles.

9.1.2. Reconstructions. To illustrate the attained reconstructions for each diffraction zone,

using the admissible random variables listed in Table 2, the complex image of size n = 100×100,

illustrated in Fig. 11, was used as the ground truth. All the reconstructions are performed using

the PRSF method in Pinilla et al. (2018a), with designed and non-designed coded apertures, fixing

L= 4. Note that the designed coded apertures are able to better estimate the image for all diffraction

zones than non-designed structures. This experiment corresponds to the reconstructed phase of the

image for the three diffraction zones.

9.1.3. Sampling Complexity. Experiments are conducted to determine the empirical suc-

cess rate of the TWF, PRSF and RAF reconstruction methods, using designed and non-designed

coded apertures, as shown in Fig. 12. The scene is generated as a complex Gaussian random vector

x∼N (0, 1
2In)+ jN (0, 1

2In) where n = 100×100. In addition, it is established that a trial is suc-

cessful when the returned relative error is less than 10−5. The tested methods require up to 40%

less number of measurements to recover the image using designed coded apertures for the three
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diffraction zones, attaining a success rate of 100% when m/n = 4 using the PRSF reconstruction

algorithm. Also, combining Theorem 3.1.1 and the attained results in Fig. 12 the constant c0 for

these experiments is on the order of 10−3, meaning that the number of projections L required to

retrieve the phase is limited.

Figura 12. Empirical success rate of different reconstruction methods using designed coded apertures vs the
number of projections. Rows: Diffraction zones, columns: admissible random variables.
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9.1.4. Noise Robustness. This section characterizes the robustness of designed coded

apertures to recover an image from CDP when the measurements are corrupted by additive Gaus-

sian noise for different values of SNR and for the three diffraction zones. Figure 13 presents the

attained relative error using the PRSF method in Pinilla et al. (2018a) for L = 4, when the SNR

is varied from 5 to 50 dB. Figure 13 suggests the effectiveness of the designed coded apertures to

better estimate the image from noisy CDP with a gain of up to 0.4 of relative error compared with

non-designed ensembles.

Figura 13. Recovery performance of designed coded apertures from noisy coded diffraction patterns when SNR is
varied from 5 to 50dB. Rows: Diffraction zones. Columns: admissible random variables.
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9.1.5. Support Estimation. This section presents the performance of the admissible ran-

dom variables in Table 2 to estimate the non-zero coefficients of θ for each diffraction zone. The

numerical results are summarized in Fig. 14. The color bar represents the support estimation per-

centage for the different admissible random variables over 100 trials, where 1 represents the best

support that can be obtained. For each admissible random variable the sparsity is varied from

s = 0.1n to s = 0.5n as shown in Fig. 14. Note that the admissible random variables d1 and d2 in

Table 2 attain the highest performance compared with d3. In fact, this observation validates the

Figura 14. Empirical success rate estimating the non-zero coefficients of θ varying the image size from n = 8×8
to n = 64×64 and level sparsity from s = 0.1n to s = 0.5n. Rows: Diffraction zones, columns: admissible random
variables.
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theoretical result established in Lemma 8.1.1, because E[d1] 6= 0 and E[d2] 6= 0 while E[d3] = 0.

To complement the results in Fig. 14, Table 3 reports the performance of the admissible

random variables d1 and d3 to recover an image from CDP at the middle zone using Algorithm 2,

assuming sparsity constrains for L = 1, s = 0.1n and n = 64×64. The average error over 100 tests

was calculated. Note that Algorithm 2 requires fewer iterations to converge when a designed coded

aperture is employed. In addition, it can be seen that d1 (E[d1] 6= 0) achieves better reconstruction

performance than d3 (E[d3] = 0), fact that validates the theoretical result in Lemma 8.1.1.

Table 3
Recovery Performance of two Admissible Random Variables from Sparsity Constraints

Relative Error # Iterations

Designed No-designed Designed No-designed

d1 2.33e−16 2.26e−16 100 173

d3 0.53 0.79 14 96

9.2. Analysis of the Proposed Phase Retrieval Algorithm

9.2.1. Sampling Complexity and Speed of Convergence. These experiments are per-

formed for the noiseless real/complex Gaussian model as shown in Figs. 15 and 16, using the

Truncated Spectral initialization proposed in Chen and Candes (2015) for all the algorithms under

analysis, i.e. TAF, RWF, TWF, and PRSF in order to analyze the sampling complexity and the

speed of convergence of those methods.
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Figura 15. Relative error versus iteration for m/n = 8. (b) Empirical success rate versus number of measurements
with m/n varying 0.1 from 0 to 5 under their own initialization.

These results suggest that PRSF exhibits a higher performance compared with TAF, TWF

and RWF for both real and complex cases, in terms of sampling complexity and speed of conver-

gence.

9.3. Numerical Results for FROG

This section evaluates the numerical performance of BSGA and compares the results with the

stochastic gradient algorithm Ptych proposed in Sidorenko et al. (2016). We used the following

parameters for Algorithm 4: γ1 = 0.1, γ = 0.1, α = 0.6, µ0 = 65, and ε = 1×10−10. The number

of indices that are chosen uniformly at random is fixed as Q = N. A cubic interpolation was used

in Algorithm 6 (see Line 4), and the regularization parameter was fixed to λ = 0.5.

Five tests were conducted to evaluate the performance of the proposed method under noisy
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Figura 16. (a) Relative error versus iteration for m/n = 8. (b) Empirical success rate versus number of
measurements with m/n varying 0.1 from 0 to 5 under their own initialization.

and noiseless scenarios at different values of signal-to-noise-ratio (SNR), defined as

SNR = 10log10(‖Z‖2
F/‖σ‖2

2)

, where σ is the variance of the noise. First, we examine the empirical success rate of BSGA for

different values of L. The second experiment assesses the performance of the initialization techni-

que and its impact on the reconstruction quality. Third, we show several examples of reconstructed

pulses attained with BSGA and Ptych under noisy and noiseless scenarios, when the complete

FROG trace is used. The fourth experiment investigates the performance of the proposed method

and Ptych in reconstructing the pulses when L > 1 and the FROG trace is corrupted by noise. The

last test compares the computational complexity between the reconstruction methods in terms of

their running time to reach a given relative error.
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The signals used in the simulations were constructed as follows. For all tests, we built a

set of
⌈N−1

2

⌉
-bandlimited pulses that conform to a Gaussian power spectrum centered at 800 nm.

Specifically, each pulse (N = 128 grid points) is produced via the Fourier transform of a complex

vector with a Gaussian-shaped amplitude with a cutoff frequency of 150 femtoseconds−1 (fsec−1).

Next, we multiply the obtained power spectrum by a uniformly distributed random phase. In the

experiments we used the inverse Fourier of this signal as the underlying pulse.

9.3.1. Empirical Probability of Success. This section numerically evaluates the success

rate of BSGA. To this end, BSGA and Ptych are initialized at x(0) = x+ δζ , where δ is a fixed

constant and ζ takes values on {−1,1} with equal probability, while L ranges from 1 to 6. A trial is

declared successful when the returned estimate attains a relative error as in (86) that is smaller than

10−6. We numerically determine the empirical success rate among 100 trials. Fig. 30 summarizes

these results, and shows that BSGA performs better than Ptych, since it is able to retrieve the signal

for larger values of L.

Figura 17. Empirical success rate comparison between BSGA and Ptych as a function of L and δ in the absence of
noise.
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Figura 18. Relative error comparison between the initial vector xini_pty as defined in (102), and the returned initial
guess x(0) for different values of L in the absence of noise. For each value of L, an average of the relative error was
computed among 100 trials.

9.3.2. Relative Error of the Initialization Procedure. This section examines the impact

of the designed initialization described in Algorithms 9 and 6, under noisy and noiseless scenarios.

We compare the relative error between the starting vector in (102), and the returned solution x(0)

Figura 19. Reconstructed pulses from the FROG trace with L = 4 using Algorithm 7 initialized by xini_pty and the
returned vector x(0) using Algorithm 6.
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Figura 20. Performance of the proposed initialization described in Algorithms 9 and 6 at different SNR levels, with
L ranging from 1 to 8. For each value of L, the relative error was averaged over 100 trials.

of the proposed initialization procedure. The number of iterations to attain the vector x(0) using

the designed initialization was fixed as T = 2, and we numerically determine the relative error

averaged over 100 trials. These numerical results are summarized in Fig. 18, and indicate that the

proposed initialization algorithm outperforms xini_pty.

In order to illustrate the effect of the initial guesses, we ran Algorithm 7 initialized by

xini_pty and x(0) with L = 4. Fig. 19 shows the attained reconstructions. Notice that the proposed

reconstruction algorithm fails in estimating the input pulse when it was initialized by xini_pty.

We numerically determine the performance of the proposed initialization at different SNR

levels, with L ranging from 1 to 8. Specifically, we added white noise to the FROG measurements

at different SNR levels: SNR = 8dB, 12dB, 16dB and 20dB. Fig. 20 displays the relative error

attained by the proposed initialization for different SNR and L values.

From Fig. 20 it can be seen that the returned initialization at levels of SNR ≤ 16dB is,
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approximately, independent of the value of L when L ≤ 6. Combining these numerical results

with Fig. 30, we conclude that BSGA is able to better estimate the underlying pulse (up to trivial

ambiguities) if L≤ 4 for both noiseless and noisy scenarios compared to Ptych.

Finally, we numerically determine the empirical success rate of BSGA with increasing L,

in the absence of noise, when Algorithm 7 is initialized with xini_pty, a random vector and x(0).

A trial is declared successful when the returned estimate attains a relative error as in (86) that is

smaller than 1×10−6. The results are summarized in Fig. 21, where the number of iterations that

BSGA requires to reach the given relative error for L = 1 is also presented. The success rate and

the number of iterations are averaged over 100 pulses. The reported results show the effectiveness

of Algorithm 7 when it is initialized by x(0) for L > 1.

Figura 21. Empirical success rate of Algorithm 7 when it is initialized by x(0), xini_pty and a random vector as a
function of L in the absence of noise.
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9.3.3. Pulse Reconstruction Examples for L = 1. In this section we show the performan-

ce of BSGA in recovering two pulses under noiseless and noisy scenarios for L = 1. The results are

presented in Figs. 22, and 23, respectively, where the attained relative errors by BSGA and Ptych

are included. For the second scenario, the FROG trace is corrupted by Gaussian noise with SNR =

20dB.

Figura 22. Reconstructed pulses from complete FROG data (L = 1), in the absence of noise. The attained error for
both BSGA and Ptych was 1×10−6.

From the results in Fig. 22 it can be observed that both methods, BSGA and Ptych, are able

to estimate the pulses and provide similar results for the noiseless case.

On the other hand, in Fig. 23, the attained reconstructions, for the noisy scenario, indicate

that BSGA is able to better estimate the pulse compared to Ptych. This advantage is obtained
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because of the effectiveness of the proposed smoothing update step and initialization strategy from

complete data as reported in Fig. 30, and Figs. 18, 10, respectively.

Figura 23. Reconstructed pulses from complete noisy FROG data (L = 1), with SNR = 20dB. The attained relative
error for the top pulse for both BSGA and Ptych was 5×10−2. For the bottom pulse the attained errors were 5×10−2

and 2×10−1 for BSGA and Ptych respectively.

9.3.4. Pulse Reconstruction Examples for L > 1. Next, we examine the recovery per-

formance of BSGA from noisy incomplete data by adding Gaussian noise with SNR = 20dB, for

L ∈ {2,4,8}. Figs. 24 and 25 illustrate the attained reconstructions for BSGA and Ptych; their

attained relative errors are also reported in Fig. 25. These figures suggest that BSGA better esti-

mates the pulse and its FROG trace compared to Ptych over a range of values of L. This advantage

is obtained because of the effectiveness of the proposed smoothing update step and initialization
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Figura 24. Reconstructed pulses from incomplete noisy FROG traces (SNR = 20dB), for different values of L. (a)
L = 2, (b) L = 4, and (c) L = 8.

strategy from incomplete data as reported in Fig. 30, and Figs. 18, 10, respectively.
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Figura 25. Reconstruction of full FROG traces from incomplete noisy data for all methods. Top row shows the
desirable full FROG trace without and with noise of SNR = 20dB. (a) L = 2, (b) L = 4, and (c) L = 8. The attained
errors for BSGA and Ptych were 5×10−2 and 2×10−1, respectively, for all the reconstructed FROG traces.

9.3.5. Computational Complexity. Simulations were conducted to compare the speed of

convergence of the algorithms in the absence of noise, for L = 1,2 and 4. Table 4 reports the

number of iterations and running time required by BSGA and Ptych to achieve a relative error

of 1× 10−6, averaged over 100 pulses. The experiment shows that BSGA is similar in time and

number of iterations compared to Ptych for a range of values of L.
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Table 4
Comparison of iteration count and time cost

Algorithms Iterations Time (s)

L = 1
BSGA 60 1.451
Ptych 36 1.325

L = 2
BSGA 111 1.567
Ptych 125 1.954

L = 4
BSGA 265 1.772
Ptych 300 2.013

9.4. Numerical Results for Radar

This section evaluates the numerical performance of the proposed method. We used the following

parameters for Algorithm 7: γ1 = 0.1, γ = 0.1, α = 0.6, µ0 = 65, and ε = 1×10−10. The number

of indices that are chosen uniformly at random is fixed as Q = N.

The signals used in the simulations were constructed as follows. For all tests, we built a

set of
⌈N−1

2

⌉
-band-limited and time-limited signals that conform to a Gaussian power spectrum

centered at 800 nm. Specifically, each signal (N = 128 grid points) is produced via the Fourier

transform of a complex vector with a Gaussian-shaped amplitude with a cutoff frequency of 150

microseconds−1 (usec−1). Next, we multiply the obtained power spectrum by a uniformly distribu-

ted random phase. In the experiments we used the inverse Fourier of this signal as the underlying

signal.2

2 All simulations were implemented in Matlab R2019a on an Intel Core i7 3.41Ghz CPU with 32 GB RAM.
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Figura 26. Reconstructed time and band-limited signals with their ambiguity functions in the absent of noise. The
attained relative error as in (86) was 1×10−6 for both signals. (a), (c) and (b), (d) are the original and recovered
ambiguity functions, respectively. (e), (g), and (f), (h) are 1D slices of the ambiguity functions for the time and
Doppler dimensions, respectively. (i), (k) and (j), (l) correspond to the recovered magnitude and phase of the
estimated signals, respectively.

The tests are divided in three sections to study the performance of Algorithm 7 for complete

and incomplete AF, and additional type of time, band limited signals under noisy and noiseless sce-

narios at different values of signal-to-noise-ratio (SNR), defined as SNR= 10log10(‖A‖2
F/‖σ‖2

2),

where σ is the variance of the noise. The radar function is incomplete when only few shifts or

Fourier frequencies are considered. In the first section we examine the ability of Algorithm 7 to

recover the signal from complete data. The second section assesses the performance of Algorithm

7 to recover the underlying signal when the AF is incomplete. The last test studies the ability of

the proposed method to estimate different type of radar signals than the described above.

9.4.1. Signal Reconstruction from Complete Data. The performance of Algorithm 7 is

presented to recover time and band-limited signals under noiseless and noisy scenarios using the
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complete radar ambiguity function. The results are presented in Figs. 27, 28, where the attained

relative errors by the proposed algorithm are included. For the second scenario, the radar ambiguity

function trace is corrupted by Gaussian noise with SNR = 20dB. Specifically, in the noisy case

we are assuming that ambiguity function is not perfectly designed which allows to evaluate the

robustness of Algorithm 7. The results in Figs. 27 and 28 suggest that the proposed method is able

to estimate the signals.

9.4.2. Signal Reconstruction from Incomplete Data. The success rate of Algorithm 7

is evaluated when the ambiguity function is incomplete. To this end, Algorithm 7 is initialized at

x(0) = x+ δζ , where δ is a fixed constant and ζ takes values on {−1,1} with equal probability,

while a percentage of the delays are set to zero. A trial is declared successful when the returned

Figura 27. Reconstructed time and band-limited signals with their ambiguity functions in the present of noise with
SNR = 20dB. The attained relative error as in (86) was 5×10−2 for both signals. (a), (c) and (b), (d) are the noiseless
(ideal) and recovered ambiguity functions, respectively. (e), (g), and (f), (h) are 1D slices of the ambiguity functions
for the time and Doppler dimensions, respectively. (i), (k) and (j), (l) correspond to the recovered magnitude and
phase of the estimated signals, respectively.
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Figura 28. Reconstructed time and band-limited signals when a 50% of the delays of their ambiguity functions are
uniformly removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained relative error as in
(86) was 5×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and recovered ambiguity
functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time and Doppler
dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the estimated
signals, respectively.

estimate attains a relative error as in (86) that is smaller than 10−6. We numerically determine

the empirical success rate among 100 trials. Fig. 30 summarizes these results, and shows that

Algorithm 7 is able to estimate the pulse when the AF is incomplete.

In Fig. 30 the% of removed delays are performed uniformly, which means for instance

in the case of 50% every two delays, starting from the first one, are preserved. Additionally, in

the case of 75% means every three delays, starting from the first one, are preserved. From these

results it is numerically validate Proposition 4 (in consequence Corollary 1) that not all the delays

are need to estimate the underlying signal. To illustrate this, Figs. 27 and 29 show the estimated

time and band-limited signals from noisy incomplete AF (50% and 75% of the delays are removed

respectively). Observe that Algorithm 7 is able to return a close estimation of the signal even when

the incomplete AF is assumed imperfectly designed, suggesting the effectiveness of Algorithm 7.
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Figura 29. Reconstructed time and band-limited signals when a 75% of the delays of their ambiguity functions are
uniformly removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained relative error as in
(86) was 5×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and recovered ambiguity
functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time and Doppler
dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the estimated
signals, respectively.

Figura 30. Empirical success rate of Algorithm 7 as a function of% removed delays (uniformly) and δ in the
absence of noise.

To complement the results in Figs. 30, 28 and 29, here is also presented the performance

of Algorithm 7 when a percentage of the delays and the Fourier frequencies of the AF are non-
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Figura 31. Reconstructed time and band-limited signals when a 57% of the delays of their ambiguity functions are
non-uniformly removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained relative error
as in (86) was 9×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and recovered
ambiguity functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time and
Doppler dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the
estimated signals, respectively.

Figura 32. Reconstructed time and band-limited signals when a 57% of the Fourier frequencies of their ambiguity
functions are non-uniformly removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained
relative error as in (86) was 6×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and
recovered ambiguity functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time
and Doppler dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the
estimated signals, respectively.
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Figura 33. Reconstructed time and band-limited signals when a 50% of the delays of their ambiguity functions are
uniformly removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained relative error as in
(86) was 6×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and recovered ambiguity
functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time and Doppler
dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the estimated
signals, respectively.

uniformly removed, illustrated in Figs. 31 and 32. Specifically, 28% of the first and last delays/

frequencies of the AF were set to zero in Fig. 31/32, respectively. These results suggest that a

non-uniform selection of the delays to be removed reduces the ability of Algorithm 7 to estimate

the analyzed pulse compared with a uniform strategy. In contrast, in the case of a non-uniform

modality to remove frequencies it can be concluded that the performance of Algorithm 7 is close

to the uniform selection of the delays to be removed.

9.4.3. Additional Type of Signals. In this section we investigate the performance of Al-

gorithm 7 to estimate Linear/Non-linear Frequency Modulated (LFM/NLFM) pulses from its in-

complete noisy ambiguity function. These kind of signals are modeled as

x[n] = a[n]e jπϕ[n], (128)
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Figura 34. Reconstructed time and band-limited signals when a 19% of the first and last Fourier frequencies of
their ambiguity functions are removed. The incomplete AFs’ were corrupted by noise with SNR = 20dB. The attained
relative error as in (86) was 9×10−2 for both signals. (a),(d); (b),(e); and (c),(f) are the original, sub-sampled and
recovered ambiguity functions, respectively. (g), (h), and (i), (j) are 1D slices of the ambiguity functions for the time
and Doppler dimensions, respectively. (k), (m) and (j), (l) correspond to the recovered magnitude and phase of the
estimated signals, respectively.

where ϕ[n] is given by

ϕ[n] = πk(∆tn)2, (LFM)

ϕ[n] = πkt2 +
L

∑
l=1

αl cos(2πl∆tn/T ) (NLFM), (129)

with T as the duration of the pulse, ∆t as the sampling size in time, k = ∆ f
T such that ∆ f is the swept

bandwidth, and L > 0 is an integer. The values for αl are given by αl =
0.4T

l . For this experiment

∆ f = 128×103, and ∆t = 0.4×10−6. The values of a[n] for both kind of pulses model a rectangular

envelope which is given by

a[n] =


1 0≤ ∆tn≤ T

0 otherwise

. (130)
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In this experiment two noisy scenarios are considered: first, the 50% of the delays are

uniformly removed from the the AF, second, 19% of the first and last Fourier frequencies of the

AF are removed. The results are summarized in Fig. 33, and 34, where SNR = 20dB, and the

attained relative error is also presented. These results suggest that Algorithm 7 is able to estimate

accurately the phase of the pulses, while the reconstructed magnitudes present some artifacts. This

limitation comes from the fact that their AF is significantly wide such that the removed information

is enough to limit the reconstruction quality.

9.5. Numerical Results for Target Detection

In this section, the performance of Algorithm 10 to correctly detect a target is analyzed when

its line 2 is replaced by the output of Algorithm 9 and the alternatives OPI, WMCI and TSI.

This analysis is carried out for noiseless and noisy measurements, under three different scenarios,

as illustrated in Fig. 35. The first scenario employs four objects (toys) with the same magnitude

information, two of them containing non-constant phase information. The second scenario uses

four objects (two pears and two apples), three of them containing non-constant phase information.

The third scenario combines three different objects (toy, apple and pear), with non-constant phase

information. In particular, the purpose of this experiment is to detect the toy, and the apple with

non-constant phase information, respectively, which are highlighted as illustrated in Fig. 35.

From the results shown in Fig. 35, it can be concluded that the proposed TD methodology

is able to detect a target using Algorithm 9 with a single snapshot, while using WMCI requires

at least four snapshots to correctly detect the target. Here, only WMCI results are shown since

this procedure returns a closer approximation of the optical field compared to OPI and TSI. These
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Figura 35. Performance of the proposed TD methodology using Algorithm 9 and WMCI approach for L ∈ {1,4}
and SNR = 30[dB], under three different scenarios.

results show the effectiveness of Algorithm 9 with noisy data. To complement the results in Fig. 35,

Fig. 36 presents the detection rate, from noiseless measurements, of Algorithm 10 when its line 2 is

replaced by the output of Algorithm 9 and the alternatives OPI, WMCI and TSI, varying the number

of snapshots. The proposed TD methodology using the filtered spectral method achieves better

performance using less than four snapshots compared to traditional approximation procedures.
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Figura 36. Detection rate of the proposed TD methodology through different approximation procedures varying the
number of snapshots and using noiseless measurements.

Finally, Fig. 37 displays the detection rate in grayscale color of Algorithm 10 for the dif-

ferent analyzed approximation methods, where a lighter color indicates superior detection rate.

These experiments assume that the measurements are corrupted by Gaussian noise, at different

noise levels and number of snapshots. Observe that these numerical results suggest that a single
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noise levels and number of snapshots.
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snapshot is enough to detect a target with a detection rate of up to 84% using Algorithm 9 in the

tested datasets, even when the noise level increases. Further, the proposed TD methodology using

traditional approximation procedures with a single snapshot cannot detect the target of interest,

and the detection rate is significantly low.

10. Conclusions and future directions

This thesis presented theoretical recovery guarantees of a scene from coded diffraction patterns

acquired at the near, middle and far zones. In addition, a strategy to design the set of coded apertu-

res under admissible coding variables was introduced. In particular, three different coding random

variables were used to modulate complex scenes. Numerical experiments were conducted to eva-

luate the performance of the proposed design methodology in terms of the initialization, successful

recovery and reconstruction quality of the phase from CDP. Specifically, simulations show that the

designed coded apertures attain a reduction in terms of the relative error of up to 50% in the

initialization compared with non-designed ensembles. Further, by using designed coded apertures

the scene is successfully recovered employing up to 40% less measurements compared with non-

designed ensembles. The effectiveness of the proposed method to recover the phase from CDP

under additive Gaussian noise using the designed coded apertures was numerically verified. Fi-

nally, under sparsity assumptions it was validated that an admissible random variable d satisfying

E[d] 6= 0 attains a better performance estimating the non-zero coefficients of θ .

Additionally, the smoothing gradient method, result of this thesis, was extended to the phase

retrieval problem in Frequency Resolver Optical Gating (FROG). The results show improvements

in recovering the pulse for both magnitude and phase, from noisy incomplete data. Additionally,
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the numerical results suggest the effectiveness of the proposed initialization under both noiseless

and noisy scenarios with incomplete data. Future work should include implementing BSGA on real

data to further validate its performance. Another interesting research direction is to examine similar

strategies for blind FROG in which two signals are estimated simultaneously Trebino (2012).

This thesis also analytically demonstrates that time and band-limited signals can be esti-

mated (up to trivial ambiguities) from its ambiguity function. We explore a trust region gradient

method to estimate these kind of signals under complete/incomplete noisy and noiseless scenarios,

and we verify that these signals can be estimated in a polynomial time with enough accuracy when

the data is complete. In the case of incomplete data, we found that although Proposition 4, and

Corollary 1 suggest that the full AF is not required to guarantee uniqueness much more work can

be done here in order to better estimate the pulses from incomplete data. In fact, numerical results

suggest that pulses producing wide AF are not desire in order to reduce the required data to be

analyzed. Additionally, these result also validated Proposition 4, and Corollary 1 for three kind of

signals.

There are several limitations of our current reconstruction algorithm. First, the initialization

strategy employed is simple and can be improve in several ways. The optimization problem that

our initialization pursuits to solve is highly non-convex, and since we use an alternating approach

the present of saddle points and local minimum should be avoided. Second, we currently fix the

parameters by simply cross-validation, however they can be learned from the kind of signals.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 139

Bibliography

Arguello, H. and Arce, G. R. (2014). Colored coded aperture design by concentration of measure

in compressive spectral imaging. IEEE Transactions on Image Processing, 23(4):1896–1908.

Bagirov, A., Karmitsa, N., and Mäkelä, M. M. (2014). Introduction to Nonsmooth Optimization:

theory, practice and software. Springer.

Bandeira, A. S., Chen, Y., and Mixon, D. G. (2014). Phase retrieval from power spectra of masked

signals. Information and Inference: a Journal of the IMA, 3(2):83–102.

Beinert, R. and Plonka, G. (2018). Enforcing uniqueness in one-dimensional phase retrieval by

additional signal information in time domain. Applied and Computational Harmonic Analysis,

45(3):505–525.

Bendory, T., Beinert, R., and Eldar, Y. C. (2017a). Fourier phase retrieval: Uniqueness and algo-

rithms. In Compressed Sensing and its Applications, pages 55–91. Springer.

Bendory, T., Edidin, D., and Eldar, Y. C. (2018a). On signal reconstruction from FROG measure-

ments. Appl. and Compu. Harmon. Anal.

Bendory, T., Edidin, D., and Eldar, Y. C. (2019a). Blind phaseless short-time fourier transform

recovery. IEEE Transactions on Information Theory.

Bendory, T., Edidin, D., and Eldar, Y. C. (2019b). Blind phaseless short-time fourier transform

recovery. IEEE Transactions on Information Theory.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 140

Bendory, T., Eldar, Y. C., and Boumal, N. (2018b). Non-convex phase retrieval from STFT mea-

surements. IEEE Trans. on Inf. Theory, 64(1):467–484.

Bendory, T., Sidorenko, P., and Eldar, Y. C. (2017b). On the uniqueness of frog methods. IEEE

Signal Processing Letters, 24(5):722–726.

Candes, E. J., Eldar, Y. C., Strohmer, T., and Voroninski, V. (2015a). Phase retrieval via matrix

completion. SIAM review, 57(2):225–251.

Candès, E. J. and Li, X. (2014). Solving quadratic equations via phaselift when there are about as

many equations as unknowns. Foundations of Computational Mathematics, 14(5):1017–1026.

Candes, E. J., Li, X., and Soltanolkotabi, M. (2015b). Phase retrieval from coded diffraction

patterns. Applied and Computational Harmonic Analysis, 39(2):277–299.

Candes, E. J., Li, X., and Soltanolkotabi, M. (2015c). Phase retrieval via wirtinger flow: Theory

and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007.

Candès, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval via wirtinger flow: Theory and

algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007.

Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal

Processing Magazine, 25(2):21–30.

Chandu, K., Stanich, M., Wu, C. W., and Trager, B. (2013). Direct binary search (dbs) algorithm



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 141

with constraints. In Color Imaging XVIII: Displaying, Processing, Hardcopy, and Applications,

volume 8652, page 86520K. International Society for Optics and Photonics.

Chang, H., Lou, Y., Duan, Y., and Marchesini, S. (2018). Total variation–based phase retrieval for

poisson noise removal. SIAM Journal on Imaging Sciences, 11(1):24–55.

Chen, Y. and Candes, E. (2015). Solving random quadratic systems of equations is nearly as easy as

solving linear systems. In Advances in Neural Information Processing Systems, pages 739–747.

Chen, Y. and Candès, E. (2015). Solving random quadratic systems of equations is nearly as easy as

solving linear systems. In Advances in Neural Information Processing Systems, pages 739–747.

Clarke, F. H. (1990). Optimization and nonsmooth analysis. SIAM.

Correa, C. V., Arguello, H., and Arce, G. R. (2016). Spatiotemporal blue noise coded aperture

design for multi-shot compressive spectral imaging. JOSA A, 33(12):2312–2322.

Dürig, U., Pohl, D. W., and Rohner, F. (1986). Near-field optical-scanning microscopy. Journal of

applied physics, 59(10):3318–3327.

Eriksson, K., Estep, D., and Johnson, C. (2013). Applied mathematics: Body and soul: Volume 1:

Derivatives and geometry in IR3. Springer Science & Business Media.

Fienup, C. and Dainty, J. (1987). Phase retrieval and image reconstruction for astronomy. Image

Recovery: Theory and Application, 231.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 142

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochas-

tic programming. SIAM J. on Opti., 23(4):2341–2368.

Gonzalez, R. C. and Wintz, P. (1977). Digital image processing(book). Reading, Mass., Addison-

Wesley Publishing Co., Inc.(Applied Mathematics and Computation, (13):451.

Goodman, J. W. (2005). Introduction to fourier optics. Introduction to Fourier optics, 3rd ed., by

JW Goodman. Englewood, CO: Roberts & Co. Publishers, 2005, 1.

Gross, D., Krahmer, F., and Kueng, R. (2017). Improved recovery guarantees for phase retrieval

from coded diffraction patterns. Applied and Computational Harmonic Analysis, 42(1):37–64.

Gualdron, O. and Arsenault, H. H. (1993). Phase derived circular harmonic filter. Opt. Comm.,

104(1-3):32–34.

Guerrero, A., Pinilla, S., and Arguello, H. (2020). Phase recovery guarantees from designed coded

diffraction patterns in optical imaging. IEEE Trans. on Image Proc, 29:5687–5697.

Hess, H., Betzig, E., Harris, T., Pfeiffer, L., and West, K. (1994). Near-field spectroscopy of the

quantum constituents of a luminescent system. Science, 264(5166):1740–1745.

Horisaki, R., Matsui, H., and Tanida, J. (2017). Single-pixel compressive diffractive imaging with

structured illumination. Applied optics, 56(14):4085–4089.

Hunger, R. (2007). An introduction to complex differentials and complex differentiability. Munich

University of Technology, Inst. for Circuit Theory and Signal Processing.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 143

Jaganathan, K., Eldar, Y. C., and Hassibi, B. (2015). Phase retrieval: An overview of recent deve-

lopments. arXiv preprint arXiv:1510.07713.

Jahncke, C., Paesler, M., and Hallen, H. (1995). Raman imaging with near-field scanning optical

microscopy. Applied physics letters, 67(17):2483–2485.

Jaming, P. (2010). The phase retrieval problem for the radar ambiguity function and vice versa. In

2010 IEEE Radar Conference, pages 230–235. IEEE.

Jensen, J. R. and Lulla, K. (1987). Introductory digital image processing: a remote sensing pers-

pective.

Kolte, R. and Özgür, A. (2016). Phase retrieval via incremental truncated wirtinger flow. arXiv

preprint arXiv:1606.03196.

Kreyszig, E. (1989). Introductory functional analysis with applications, volume 1. wiley New

York.

Loewen, E. G. and Popov, E. (2018). Diffraction gratings and applications. CRC Press.

Mejia, Y. and Arguello, H. (2018). Binary codification design for compressive imaging by uniform

sensing. IEEE Transactions on Image Processing.

Millane, R. P. (1990). Phase retrieval in crystallography and optics. JOSA A, 7(3):394–411.

Mojica, E., Pertuz, S., and Arguello, H. (2017). High-resolution coded-aperture design for com-



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 144

pressive x-ray tomography using low resolution detectors. Optics Communications, 404:103–

109.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Parikh, N. and Boyd, S. (2014). Proximal algorithms. Foundat. and TrendsÂ® in Optim., 1(3):127–

239.

Pauwels, E. J. R., Beck, A., Eldar, Y. C., and Sabach, S. (2018). On Fienup methods for sparse

phase retrieval. IEEE Trans. on Signal Process., 66(4):982–991.

Pinilla, S., Bacca, J., and Arguello, H. (2018a). Phase retrieval algorithm via nonconvex minimiza-

tion using a smoothing function. IEEE Transactions on Signal Processing, 66(17):4574–4584.

Pinilla, S., Bacca, J., and Arguello, H. (2018b). Sprsf: Sparse phase retrieval via smoothing fun-

ction. arXiv preprint arXiv:1807.09703.

Pinilla, S., García, H., Díaz, L., Poveda, J., and Arguello, H. (2018c). Coded aperture design for

solving the phase retrieval problem in x-ray crystallography. Journal of Computational and

Applied Mathematics, 338:111–128.

Pinilla, S., Poveda, J., and Arguello, H. (2018d). Coded diffraction system in x-ray crystallography

using a boolean phase coded aperture approximation. Optics Communications, 410:707–716.

Pohl, D. W. and Courjon, D. (2012). Near field optics, volume 242. Springer Science & Business

Media.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 145

Poon, T.-C. and Liu, J.-P. (2014). Introduction to modern digital holography: with MATLAB.

Cambridge University Press.

Prémont, G. and Sheng, Y. (1993). Fast design of circular-harmonic filters using simulated annea-

ling. App. Opt., 32(17):3116–3121.

Rodenburg, J. M. (2008). Ptychography and related diffractive imaging methods. Advances in

imaging and electron physics, 150:87–184.

Saad, Y. (2003). Iterative methods for sparse linear systems, volume 82. siam.

Sao, M., Nakamura, Y., Tajima, K., and Shimano, T. (2018). Lensless close-up imaging with

fresnel zone aperture. Japanese Journal of Applied Physics, 57(9S1):09SB05.

Shechtman, Y., Eldar, Y. C., Cohen, O., Chapman, H. N., Miao, J., and Segev, M. (2015). Phase

retrieval with application to optical imaging: a contemporary overview. IEEE signal processing

magazine, 32(3):87–109.

Shevkunov, I., Katkovnik, V., Petrov, N., and Egiazarian, K. (2018). Super-resolution microscopy

for biological specimens: lensless phase retrieval in noisy conditions. Biomedical optics express,

9(11):5511–5523.

Shimano, T., Nakamura, Y., Tajima, K., Sao, M., and Hoshizawa, T. (2018). Lensless light-field

imaging with fresnel zone aperture: quasi-coherent coding. Applied optics, 57(11):2841–2850.

Sidorenko, P., Lahav, O., Avnat, Z., and Cohen, O. (2016). Ptychographic reconstruction algo-



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 146

rithm for frequency-resolved optical gating: super-resolution and supreme robustness. Optica,

3(12):1320–1330.

Spall, J. C. (2005). Introduction to stochastic search and optimization: estimation, simulation, and

control, volume 65. John Wiley & Sons.

Stephens, D. J. and Allan, V. J. (2003). Light microscopy techniques for live cell imaging. science,

300(5616):82–86.

Thibault, P., Dierolf, M., Bunk, O., Menzel, A., and Pfeiffer, F. (2009). Probe retrieval in ptycho-

graphic coherent diffractive imaging. Ultramicroscopy, 109(4):338–343.

Trebino, R. (2012). Frequency-resolved optical gating: the measurement of ultrashort laser pulses.

Springer Science & Business Media.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv

preprint arXiv:1011.3027.

Wang, G., Giannakis, G. B., and Chen, J. (2017a). Scalable solvers of random quadratic equations

via stochastic truncated amplitude flow. IEEE Transactions on Signal Processing, 65(8):1961–

1974.

Wang, G., Giannakis, G. B., and Eldar, Y. C. (2016a). Solving systems of random quadratic equa-

tions via truncated amplitude flow. arXiv preprint arXiv:1605.08285.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 147

Wang, G., Giannakis, G. B., and Eldar, Y. C. (2018a). Solving systems of random quadratic equa-

tions via truncated amplitude flow. IEEE Transactions on Information Theory, 64(2):773–794.

Wang, G., Giannakis, G. B., Saad, Y., and Chen, J. (2018b). Phase retrieval via reweighted ampli-

tude flow. IEEE Transactions on Signal Processing, 66(11):2818–2833.

Wang, G., Zhang, L., Giannakis, G. B., Akçakaya, M., and Chen, J. (2016b). Sparse phase retrieval

via truncated amplitude flow. arXiv preprint arXiv:1611.07641.

Wang, G., Zhang, L., Giannakis, G. B., Akçakaya, M., and Chen, J. (2017b). Sparse phase retrieval

via truncated amplitude flow. IEEE Trans. on Signal Proc., 66(2):479–491.

Wright, S. J. and Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67-68):7.

Yuan, Z., Wang, Q., and Wang, H. (2017). Phase retrieval via sparse wirtinger flow. arXiv preprint

arXiv:1704.03286.

Zhang, C. and Chen, X. (2009). Smoothing projected gradient method and its application to sto-

chastic linear complementarity problems. SIAM Journal on Optimization, 20(2):627–649.

Zhang, H. and Liang, Y. (2016). Reshaped wirtinger flow for solving quadratic system of equations.

In Advances in Neural Information Processing Systems, pages 2622–2630.

Zi-Liang, P. and Dalsgaard, E. (1995). Synthetic circular-harmonic phase-only filter for shift,

rotation, and scaling-invariant correlation. App. Opt., 34(32):7527–7531.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 148

Appendices

Appendix A. Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 is divided into two parts. First, the right inequality in (11) is proved,

and then, as a second part, the left inequality is proved. As W ∈ Tx has rank at most two, we can

choose normalized vectors u,v ∈ Cn such that W = λ1uuH +λ2vvH .

Then, considering the definition of the linear maps Ak in (8) it can be obtained

‖Ak(W)‖1 =
m

∑
i=1

∣∣λ1|〈ai,k,u〉|2 +λ2|〈ai,k,v〉|2
∣∣

≤ |λ1|‖Aku‖2
2 + |λ2|‖Akv‖2

2

≤ (|λ1|+ |λ2|)‖Ak‖2
2 = ‖W‖1‖Ak‖2

∞, (131)

in which the first and second inequalities are obtained using the triangular inequality, and matrices

Ak as was defined in (4). Also, |λ1|+ |λ2|= ‖W‖1. Further, considering the definition of matrices

Ak in (4) and the sampling vectors in (7) one can find that

AH
k Ak =

L

∑
`=1

D`D`, (132)

Remark that given the fact that any admissible random variable is bounded, then it is sub-Gaussian

Vershynin (2010). Further, considering condition (132) it can be obtained that 1√
r Ak is an isotropic

sub-Gaussian matrix, since E[AH
k Ak] = rI, with L≥ c0n for some sufficiently large constant c0 > 0.
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Then, from Theorem 5.39 in Vershynin (2010) it can be obtained

P

(∥∥∥∥ 1√
r

Ak

∥∥∥∥
∞

≥
√

m+C
√

n+ t
)
≤ 2e−ct2

, (133)

for constants c,C > 0 and any t > 0. Then, taking L≥C2ε−2n and t =
√

nLε for any ε ∈ (0,1/2),

it can be found from (133) that

P

(
1

rnL
‖Ak‖2

∞ ≤ 1+δ

)
≤ 1−2e−cnLε2

, (134)

for δ = 2ε . Thus, combining (131) and (134) yields

1
rnL
‖Ak(W)‖1 ≤ (1+δ )‖W‖1, (135)

for any δ ∈ (0,1).

On the other hand, from (131) it can also concluded that

‖Ak(W)‖1 ≥
m

∑
i=1

λ1|〈ai,k,u〉|2 +λ2|〈ai,k,v〉|2

= λ1‖Aku‖2
2 +λ2‖Akv‖2

2

= (λ1 +λ2)r = r‖W‖1, (136)

in which the second equality comes from observation in (132), also using that |λ1|+ |λ2| = λ1 +
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λ2 = ‖W‖1 because W is assumed positive semidefinite. Further, if r ≤ L, then from (136)

1
rnL
‖Ak(W)‖1 ≥

1
nL

(1−δ )‖W‖1, (137)

for any δ ∈ (0,1). Thus, combining (135) and (137) the result holds.
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Appendix B. Proof of Theorem 8.1.2

Due to homogeneity in (26), it suffices to work with the case where ‖x‖ = 1. Instrumental in

proving Theorem 8.1.2 is the following result.

Lemma 10.0.1. Consider the noiseless data |aH
i,kx|. For any unit vector x∈Cn, there exists a vector

u ∈ Cn with uHx = 0 and ‖u‖= 1, such that

1
2
‖xxH− z0zH

0 ‖2
F ≤
‖Sku‖2

2
‖Skx‖2

2
, (138)

where Sk =
[ ai1,k
‖ai1,k‖2

, · · · , aiJ ,k
‖aiJ ,k‖2

]H
for ip ∈I c

0 , where J = card(I c
0 ).

Demostración. Notice that

1
2
‖xxH− z0zH

0 ‖2
F =

1
2
‖x‖4

2 +
1
2
‖z0‖4

2−|xHz0|2

= 1−|xHz0|2 = 1− cos2(θ), (139)

where θ ∈ [0,π/2] is the angle between the spaces spanned by x and z0. Then one can write

x = cos(θ)z0 + sin(θ)z⊥0 , (140)

where z⊥0 ∈ Cn is a unit vector orthogonal to z0 and the real part of its inner product with x is
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non-negative. Then from (140) one can find

x⊥ =−sin(θ)z0 + cos(θ)z⊥0 , (141)

in which x⊥ ∈Cn is a unit vector orthogonal to x. Thus, considering (140) and (141), then appealing

to Lemma 1 in Wang et al. (2018a)

1
2
‖xxH− z0zH

0 ‖2
F ≤
‖Skx⊥‖2

2
‖Skx‖2

2
. (142)

Then, taking u = x⊥ the result holds.

Turning out to prove Theorem 8.1.2. The first step consists in upper-bounding the term

on the right hand-side of (142). Specifically, its numerator term will be upper bounded, and the

denominator term lower bounded, which are summarized in the following lemmas.

Lemma 10.0.2. In the setup of Lemma 10.0.1, if card(I c
0 )≥CIn, then the next

‖Sku‖2
2 ≤ (1+δ −ζ )ckcard(I c

0 ) (143)

holds for δ ,ζ ∈ (0,1) with probability at least 1−2e−Cn provided that L is sufficiently large.

Demostración. The proof this lemma proceeds by cases. Also, remark that it is assumed that the

set of coded apertures satisfy ∑
L
`=1 DH

` D` = rI for some r > 0, with L ≥ c0n for some sufficiently

large constant c0 > 0.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 153

As was discussed in Section 4.1, if the assumption over the set of coded apertures is assu-

med, then

Ek =
nL

∑
i=1

ai,kaH
i,k

‖ai,k‖2
2
≈ ckI,

for the three diffraction zones, for some constants ck > 0. Then, from standard concentration

inequality on the sum of random positive semi-definite matrices with sub-Gaussian rows Vershynin

(2010), it can be obtained that

(1−δ )≤ σmin

(
1
ck

Ek

)
≤ σmax

(
1
ck

Ek

)
≤ (1+δ ), (144)

with probability at least 1− 2e−Cn as long as L is sufficiently large, for some constant δ ∈ (0,1)

and C > 0, where σmax(·) and σmin(·) denote the largest and smallest singular value, respectively.

Given the fact that Sk is a sub-matrix of Ek for each k = 1,2,3, from (220)

σmax

(
1

ck card(I c
0 )

Sk

)
≤ σmax

(
1

ck card(I c
0 )

Ek

)
−ζ

≤ 1+δ −ζ , (145)

for some constant ζ ∈ (0,1), and some δ ∈ (0,1). Thus, from (221)

‖Sku‖2
2 =

∣∣uHSH
k Sku

∣∣≤ (1+δ −ζ )ckcard(I c
0 ), (146)

holds with probability at least 1−2e−Cn, provided that L is sufficiently large. Considering the fact
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that x⊥ = u, then

‖Skx⊥‖2
2 ≤ (1+δ −ζ )ckcard(I c

0 ), (147)

with high probability. Thus, the result holds.

Lemma 10.0.3. In the setup of Lemma 10.0.1, the following holds with probability at least 1−

2e−Cn

‖Skx‖2
2 ≥ (1−δ )ckcard(I c

0 ), (148)

with δ ∈ (0,1) provided that L is sufficiently large.

Demostración. Notice that the left side term in (148) can be seen as

‖Skx‖2
2 = ∑

i∈I c
0

|aH
i,kx|2

‖ai,k‖2
2
. (149)

Given the fact that Sk is a sub-matrix of Ek for each k = 1,2,3, from (220) it can be obtained

σmin

(
1

ck card(I c
0 )

Sk

)
≥ σmin

(
1

ck card(I c
0 )

Ek

)
≥ 1−δ , (150)

for some constant δ ∈ (0,1) with probability at least 1− 2e−Cn as long as L is sufficiently large,
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for some constant C > 0. Thus, from (150) it can be concluded that

∑
i∈I c

0

|aH
i,kx|2

‖ai,k‖2
2
≥ (1−δ )ckcard(I c

0 ), (151)

with probability at least 1−2e−Cn as long as L is sufficiently large. Thus, from (151)

‖Skx‖2
2 ≥ (1−δ )ckcard(I c

0 ), (152)

holds with probability at least 1−2e−Cn, provided that L is sufficiently large. Therefore, from (152)

the result holds.

Hence, putting together (139) and (152) it can be concluded that

‖Sku‖2
2

‖Skx‖2
2
≤ 1+δ −ζ

1−δ
=∆ κ < 1, (153)

by taking δ < ζ/2. Thus, putting together (138) and (153) it can be obtained that

sin2(θ) = 1− cos2(θ)≤ κ. (154)
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On the other hand, notice that

dist2(x,z0) = ‖x‖2
2 +‖z0‖2

2−2|xHz0|

= ‖x‖2
2 +‖z0‖2

2−2cos(θ)

≤ 2(1−
√

1−κ). (155)

Then, combining (237) and (236) it can be finally concluded that

dist2(x,z0)< 1. (156)

Thus, in (156) the result holds.
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Appendix C. Proof of Lemma 8.1.1

Let consider some notation before proving Lemma 8.1.1. For two integers a and b we use a
n≡ b to

denote congruence of a and b modulo n (n divides a−b). Define z(k)p = 1
n ∑

n
q=1 Zk

q,p, and without of

loss of generality assume that L = 1. Further, to develop this analysis, take µ = E[d], w = d− µ ,

E
[
|w|2

]
= ρ1, and E

[
|w|4

]
= ρ2.

For simplicity xa, da, and qa refer as the a-th entry of vector x, the diagonal matrices D, and

Q, respectively. Also, Ψa,b is the element at row a and column b of the matrix Ψ. Also, define ρ3

as

ρ3 = (ρ2−ρ
2
1 )

(
mı́n

c∈{1,··· ,n}
|Ψp,c|2

)
,

and ρ4 as

ρ4 = ρ
2
1

(
mı́n

i∈{1,··· ,n}

n

∑
h6=i
|Ψp,h|2

)
.

The proof of this Lemma 8.1.1 proceeds by cases as follow.

Near-zone: Considering the case when k = 1, then from (7) and (27) we have z(1)p is given

by

1
n5

n

∑
q=1
|fH

q TFHDx|2|(ΨDFTfq)p|2

=
1
n3

n

∑
c,e,h,t=1

dcdedhdtΨp,hΨp,txcxe1{e+h
n≡c+t}+υ

(1)
1 , (157)

where υ
(1)
1 can be considered as a constant for this analysis. Considering the definition of w, then
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from (157) it can be obtained that E[z(1)p ] can be written as

1
n3

n

∑
c,e,h,t=1

E [wcwewhwt ]Ψp,hΨp,txcxe1{e+h
n≡c+t}

+
|µ|4

n3

n

∑
c,e,h,t=1

xcxeΨp,tΨp,h1{e+h
n≡c+t}+υ

(1)
2 ,

(158)

where υ
(1)
2 can be considered as a constant for this analysis. Observe that E [wcwewtwh] = 0 unless

(c = e,h = t), or (e = t,h = c,e 6= c), where these two conditions also satisfy that e+ h
n≡ c+ t.

Thus

(e = t,h = c): Then, the first term in (158) can be expressed as

ρ2

n3

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n3

n

∑
c=1

n

∑
e6=c

xcxeΨp,cΨp,e

=
(ρ2−ρ2

1 )

n3

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n2 |(θ)p|2

≥ ρ3

n3 ‖x‖
2
2 +

ρ2
1

n2 |(θ)p|2, (159)

Observe that by the Jensen’s inequality ρ2−ρ2
1 ≥ 0.

(c = e,h = t,c 6= h): Thus, the first term in (158) can be rewritten as

ρ2
1

n3

n

∑
c=1

n

∑
h6=c
|xc|2|Ψp,h|2 ≥

ρ4

n3 ‖x‖
2
2, (160)
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Thus, combining (159), and (160) it can be concluded that

E[zp]≥
(ρ3 +ρ4)

n3 ‖x‖2
2 +

(ρ2
1 + |µ|4)

n3 |(θ)p|2 +υ
(1)
2 . (161)

Middle-zone: Considering the case when k = 2, then from (7) and (27) it can be obtained

that z(2)p is given by

1
n3

n

∑
q=1
|fT

q QDx|2|(ΨDQfq)p|2

=
1
n2

n

∑
c,e,h,t=1

qcqeqhqtdcdedhdtΨp,hΨp,txcxe1{e+h
n≡c+t}, (162)

where the notation 1{e+h
n≡c+t} is equal to one if condition e + h

n≡ c + t is satisfied, and zero

otherwise. Considering the definition of w, then from (162), E[z(2)p ] can be written as

1
n2

n

∑
c,e,h,t=1

E [wcwewtwh]qcqeqhqtxcxeΨp,tΨp,h1{e+h
n≡c+t}

+
|µ|4

n2

n

∑
c,e,h,t=1

qcqeqhqtxcxeΨp,tΨp,h1{e+h
n≡c+t}+υ

(2)
1

=
1
n2

n

∑
c,e,h,t=1

E [wcwewtwh]qcqeqhqtxcxeΨp,tΨp,h1{e+h
n≡c+t}

+
|µ|4

n2 |(θ)p|2 +υ
(2)
2 , (163)

where υ
(2)
1 in the first line can be considered as a constant for this analysis, and υ

(2)
2 in the second
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line is given by

υ
(2)
1 +

|µ|4

n2

n

∑
c=1

n

∑
t 6=c

n

∑
e=1

n

∑
h6=e

qcqeqhqtxcxeΨp,tΨp,h1{e+h
n≡c+t}. (164)

Observe that E [wcwewtwh] = 0 unless (c = e,h = t), or (e = t,h = c,e 6= c), where these

two conditions also satisfy that e+h
n≡ c+ t. Thus

(e = t,h = c): Then, the first term in (169) can be expressed as

ρ2

n2

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n2

n

∑
c=1

n

∑
e6=c

xcxeΨp,cΨp,e

=
(ρ2−ρ2

1 )

n2

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n2 |(θ)p|2

≥ ρ3

n2 ‖x‖
2
2 +

ρ2
1

n2 |(θ)p|2. (165)

Observe that by the Jensen’s inequality ρ2−ρ2
1 ≥ 0.

(c = e,h = t,c 6= h): Thus, the first term in (169) can be rewritten as

ρ2
1

n2

n

∑
c=1

n

∑
h6=c
|xc|2|Ψp,h|2 ≥

ρ4

n2 ‖x‖
2
2, (166)

Thus, combining (169), and (166) it can be concluded that

E[zp]≥
(ρ3 +ρ4)

n2 ‖x‖2
2 +

(ρ2
1 + |µ|4)

n2 |(θ)p|2 +υ
(2)
2 . (167)
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Far-zone: Considering the case when k = 3, then from (7) and (27), z(3)p is given by

1
n3

n

∑
q=1
|fH

q Dx|2|(ΨDfq)p|2

=
1
n2

n

∑
c,e,h,t=1

dcdedtdhxcxeΨp,tΨp,h1{e+h
n≡c+t}, (168)

Therefore, from (168), E[z(3)p ] can be written as

1
n2

n

∑
c,e,h,t=1

E [wcwewtwh]xcxeΨp,tΨp,h1{e+h
n≡c+t}

+
|µ|4

n2

n

∑
c,e,h,t=1

xcxeΨp,tΨp,h1{e+h
n≡c+t}+υ

(3)
1

=
1
n2

n

∑
c,e,h,t=1

E [wcwewtwh]xcxeΨp,tΨp,h1{e+h
n≡c+t}

+
|µ|4

n2 |(θ)p|2 +υ
(3)
2 , (169)

where υ
(3)
1 in the first can be considered as a constant for this analysis, and υ

(3)
2 in the second line

is given by

υ
(3)
2 +

|µ|4

n2

n

∑
c=1

n

∑
t 6=c

n

∑
e=1

n

∑
h6=e

xcxeΨp,tΨp,h1{e+h
n≡c+t}. (170)

Observe that E [wcwewtwh] = 0 unless (c = e,h = t), or (e = t,h = c,e 6= c), where these

two conditions also satisfy that e+h
n≡ c+ t. Thus
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(e = t,h = c): Then, the first term in (169) can be expressed as

ρ2

n2

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n2

n

∑
c=1

n

∑
e6=c

xcxeΨp,cΨp,e

=
(ρ2−ρ2

1 )

n2

n

∑
c=1
|xc|2|Ψp,c|2 +

ρ2
1

n2 |(θ)p|2

≥ ρ3

n2 ‖x‖
2
2 +

ρ2
1

n2 |(θ)p|2, (171)

(c = e,h = t,c 6= h): Thus, the first term in (169) can be rewritten as

ρ2
1

n2

n

∑
c=1

n

∑
h6=c
|xc|2|Ψp,h|2 ≥

ρ4

n2 ‖x‖
2
2, (172)

Thus, combining (169), and (172) it can be concluded that

E[zp]≥
(ρ3 +ρ4)

n2 ‖x‖2
2 +

(ρ2
1 + |µ|4)

n2 |(θ)p|2 +υ
(3)
2 . (173)

Then, since ρ1, and ρ2 are always greater than zero, it is clear from (161), (167), and (173)

that when E[d] 6= 0, then the non-zero coefficients can be better estimated.
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Appendix D. Proof of Theorem 5.1.3

Demostración. From (31) and (44) it can be obtained that

|K(x,µ)|= 1
m

∣∣∣∣∣ m

∑
k=1

(
ϕµ(|aH

k x|)−qk
)2−

(
ϕ0(|aH

k x|)−qk
)2

∣∣∣∣∣ , (174)

where K(x,µ) = g(x,µ)− f (x). Note that the right hand side of the equality in (174) can be

rewritten as

1
m

∣∣∣∣∣ m

∑
k=1

ϕ
2
µ(|aH

k x|)−ϕ
2
0 (|aH

k x|)−2qk
(
ϕµ(|aH

k x|)−ϕ0(|aH
k x|)

)∣∣∣∣∣ . (175)

By definition of the function ϕµ(·) in (40), and from (175) it can be concluded that

ϕ
2
µ(|aH

k x|)−ϕ
2
0 (|aH

k x|) = µ
2. (176)

By combining (175) and (176), and applying the triangular inequality, it can be obtained that

|g(x,µ)− f (x)| ≤ 1
m

m

∑
k=1

µ
2 +2qk

∣∣ϕµ(|aH
k x|)−ϕ0(|aH

k x|)
∣∣ . (177)

Using the fact that the function ϕµ(·) uniformly approximates the function ϕ0(·) as was proved in

Lemma 5.1.2, the above inequality can be expressed as

|g(x,µ)− f (x)| ≤ 1
m

m

∑
k=1

µ
2 +2qkµ. (178)
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Therefore by taking qmax = máx{qk|k = 1, · · · ,m}, from (178) it can be obtained that

|g(x,µ)− f (x)| ≤ 1
m

(
m

∑
k=1

µ
2 +2µqmax

)
= µκ1, (179)

where κ1 = (µ +2qmax). Thus, the result holds.

On the other hand, given the fact that for a fixed µ > 0, the Wirtinger derivative ∂g(z,µ)

in (95) is continuous in z. In fact, if µ = 0, then (95) becomes the update direction in Wang et al.

(2016a) which is non-continuous. Then, the function g in (44) is smooth in z because ∂g(z,µ) is

continuous in z.



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 165

Appendix E. Proof of Theorem 5.2.2

To prove Theorem 5.2.2, the following Lemma 10.0.4 is introduced, which is useful to prove item

2).

Lemma 10.0.4. Assume that f1 and f2 are Lipschitz continuous functions on a bounded set I with

constants L1 and L2, and there is a constant v > 0 such that f2(x) ≥ v for all x ∈ I. Then f1/ f2 is

Lipschitz continuous on I. (The proof of Lemma 10.0.4 can be found in Chapter 12 in Eriksson

et al. (2013)).

Demostración. 1) Suppose that Sµ(w) in (51) is unbounded, then there exists a sequence {x`} ⊆

Sµ(w) such that ‖x`‖2→ ∞. From the definition of the level set Sµ(w), it can be obtained that

g(x`,µ)≤ g(w,µ)< ∞,∀` ∈ N. (180)

However, if span(a1, · · · ,am)=Cn, then the fact that ‖x`‖2→∞ implies that the sequence g(x`,µ)→

∞ according to the definition of function g. Then g(x`,µ)→∞ is a contradiction, because g(x`,µ)<

∞, ∀` ∈ N. Thus, Sµ(w) is a bounded set.

2) To prove the second part of Assumption 1, we proceed to show that for each function

hk,µ(x) =
(
ϕµ(|aH

k x|)−qk
)2 its Wirtinger derivative is Lipschitz. Thus, since g(x,µ) is the sum of

the functions hk,µ(x), then the Writinger derivative of g(x,µ) is Lipschitz as it is proven in Chapter

12 in Eriksson et al. (2013).
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Notice that, Wirtinger derivative of hk,µ at point w ∈ Cn is given by

∂hk,µ(w) = 2
(
ϕµ

(
|aH

k w|
)
−qk

) aH
k w

ϕµ(|aH
k w|)

ak

= 2
(
(aH

k w)ak−qk
aH

k w
ϕµ(|aH

k w|)
ak

)
. (181)

By definition of dr(·, ·) in Eq.(3), it can be obtained that

dr(∂hk,µ(w1),∂hk,µ(w2))≤ ‖e− jθ
∂hk,µ(w1)−∂hk,µ(w2)‖2, (182)

for any w1,w2 ∈ Sµ(w) and θ ∈ [0,2π). Then, combining (181) and (182), one can write that

dr(∂hk,µ(w1),∂hk,µ(w2))≤ 2‖ak‖2
∣∣e− jθ (aH

k w1)−aH
k w2

∣∣
+2qk‖ak‖2

∣∣∣∣e− jθ (aH
k w1)

ϕµ(|aH
k w1|)

−
aH

k w2

ϕµ(|aH
k w2|)

∣∣∣∣
≤ 2‖ak‖2

2‖e− jθ w1−w2‖2

+
2qk‖ak‖2

µ2

∣∣e− jθ (aH
k w1)ϕµ(|aH

k w2|)− (aH
k w2)ϕµ(|aH

k w1|)
∣∣ , (183)

where the first inequality is obtained using the triangular inequality and the second comes from the

fact that ϕµ(t)≥ µ > 0 for all t ∈ R, and using the Cauchy-Schwarz inequality. Then, from (183)
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it can be obtained that

∣∣∣e− jθ (aH
k w1)ϕµ(|aH

k w2|)− (aH
k w2)ϕµ(|aH

k w1|)
∣∣∣

≤
∣∣∣ϕµ(|aH

k w2|)
[
e− jθ (aH

k w1)−aH
k w2

]∣∣∣
+
∣∣(aH

k w2)
[
ϕµ(|aH

k w1|)−ϕµ(|aH
k w2|)

]∣∣
≤Mϕµ

‖ak‖2‖e− jθ w1−w2‖2

+MSµ
‖ak‖2

∣∣ϕµ(|aH
k w1|)−ϕµ(|aH

k w2|)
∣∣ , (184)

where the second inequality is obtained using the triangular inequality and the following two

reasons. First, ϕµ(|aH
k z|) is a bounded function in Sµ(w) for any z ∈ Sµ(w), since Sµ(w) is a

closed and bounded set as was established in the previous item and ϕµ(·) is a continuous fun-

ction, i.e. ϕµ(|aH
k z|) ≤ Mϕµ

for some constant Mϕµ
∈ R+. Second, Sµ(w) is a bounded set, then

‖z‖2 ≤MSµ
,∀z∈ Sµ(w) for some constant MSµ

∈R+. Hence, considering that ϕµ(·) is a Lipschitz

function with constant Lϕµ
= 1, then from (184)

∣∣ϕµ(|aH
k w1|)−ϕµ(|aH

k w2|)
∣∣≤ ∣∣|aH

k w1|− |aH
k w2|

∣∣
≤
∣∣∣e− jθ (aH

k w1)−aH
k w2

∣∣∣
≤ ‖ak‖2‖e− jθ w1−w2‖2, (185)

where the second and third lines come from the triangular and Cauchy-Schwarz inequality, respec-
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tively, and it is valid for all θ ∈ [0,2π). Therefore, combining (183), (184) and (185) yields

dr(∂hk,µ(w1),∂hk,µ(w2))≤ L̃hk,µ

∥∥∥e− jθ w1−w2

∥∥∥
2
, (186)

with L̃hk,µ = 2‖ak‖2
2 +

2qkMϕµ ‖ak‖2
2

µ2 +
2qkMSµ

‖ak‖3
2

µ2 . Notice that, for the i.i.d. Gaussian vectors ak,

‖ak‖2
2 ≤ 2.3n holds with probability at least 1−me−n/2 Wang et al. (2016a). Then, L̃hk,µ ≤ 4.6n+

4.6qkn
µ2 +

13n3/2MSµ

µ2 = Lhk,µ with probability exceeding 1−me−n/2. Further, taking the value of θ that

minimizes the term ‖e− jθ w1−w2‖2, from (186), it can be concluded that

dr(∂hk,µ(w1),∂hk,µ(w2))≤ Lhk,µ dr(w1,w2), (187)

with probability at least 1−me−n/2. Thus, from (187) the result holds.

2) Note that, the function ϕ ′µ(|aH
k z|) can be expressed as ϕ ′µ(|aH

k z|) = f1(|aH
k z|)

f2(|aH
k z|) , where

f1(|aH
k z|) = |aH

k z| and f2(|aH
k z|) =

√
|aH

k z|2 +µ2. Notice that, by definition of f1 and using (185)

one can write that

∣∣ f1(|aH
k z1|)− f1(|aH

k z2|)
∣∣≤ ‖ak‖2dr(z1,z2)

≤
√

2.3ndr(z1,z2), (188)

taking the value of θ that minimizes the term ‖e− jθ z1− z2‖2 with probability at least 1−me−n/2.

Then, from (188), f1(|aH
k z|) is Lipschitz continuous with probability exceeding 1−me−n/2. Also, it

was previously established that f2(|aH
k z|) are Lipschitz continuous functions with high probability.
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Notice that, f2(|aH
k z|) =

√
|aH

k z|2 +µ2 ≥ µ > 0, for any fixed µ . Now, considering the fact that

Sµ(w) is a bounded set from item 1) and the previous conditions over functions f1(|aH
k z|) and

f2(|aH
k z|), it can be obtained that ϕ ′µ(|aH

k z|) is a Lipschitz continuous function on Sµ(w) with

probability at least 1−me−n/2, because the hypotheses in Lemma 10.0.4 are satisfied.

Appendix F. Proof of Theorem 5.2.2

Denote K := {k|µk+1 = γ1µk} with γ1 ∈ (0,1). If K is finite, then according to Lines 10-12 in

Algorithm 1 there exists an integer k such that for all i> k it can be obtained that ‖∂g(xi,µi−1)‖2≥

γµi−1, where µi = µk and γ ∈ (0,1). Taking µ = µk, the optimization problem solved by Algorithm

1, reduces to solve

mı́n
x∈Rn/Cn

g(x,µ). (189)

Hence, assuming the setup of Theorem 2, the function g(·,µ) satisfies Assumption 1. Further, since

Algorithm 1 implements a backtracking strategy and the Assumption 1 is satisfied, by Theorem 5.7

in Wright and Nocedal (1999) it can be obtained that

lı́minf
i→∞

‖∂g(xi,µi−1)‖2 = 0. (190)

Notice that, (190) contradicts the fact that ‖∂g(xi,µi−1)‖2 ≥ γµi−1 for all i > k. This shows that

K must be infinite and lı́mi→∞ µi = 0. Given that K is infinite, then K = {k0,k1, · · · ,} with
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k0 < k1 < · · · . Thus

lı́minf
i→∞

‖∂g(xi,µi−1)‖2 ≤ γ lı́m
i→∞

µi = 0. (191)

Therefore, from (191) the result holds.

Appendix G. Proof of Theorem 5.2.3

To prove Theorem 4, we need to introduce the following Definition 5 and Lemma 6, to

determine ∂ c f (x).

Definition 5. Regular function (Definition 3.5 in Clarke (1990)): A function h is said to be regular

at x provided that

1. For all w ∈ Rn, the usual one-sided directional derivative h′(x;w) exists.

2. For all w ∈ Rn, h′(x;w) = lı́msup y→x
t↓0

h(y+tw)−h(y)
t .

Lemma 6. The items of this lemma are proved in Theorems 3.13, 3.16 and 3.19 in Clarke (1990),

respectively.

1. A Lipschitz continuous function h : Rn→ R is regular at x if h is convex or smooth at x.

2. Suppose that hi : Rn→ R, i = 1, · · · ,m are Lipschitz continuous near x. Then their sum h =

∑
n
i=1 λihi is also Lipschitz continuous near x and

∂
ch(x) = ∂

c

(
n

∑
i=1

λihi

)
(x)⊆

n

∑
i=1

λi∂
chi(x), (192)
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where ∑
n
i=1 λi∂

chi(x) = {∑n
i=1 λiwi : wi ∈ ∂ chi(x)}. If h is regular at x, equality holds.

3. Let G(x) = h(P(x)), where P : Rn→ Rm is Lipschitz continuous near x and h : Rm→ R is

Lipschitz continuous near P(x). Then G is Lipschitz continuous near x and

∂
cG(x)⊂ conv

{ m

∑
i=1

αiζ i|ζ i ∈ ∂
cP(x),

α = (α1, · · · ,αm)
T ∈ ∂

ch(P(x))
}
. (193)

If h is regular at P(x) and P is smooth at x, equality holds.

Remark that, any complex vector w∈Cn can be uniquely identified with an element [wR,wI]
T ∈

R2n, i.e w ≡ [w] =
[

wR
wI

]
. Now, define F : R2→ R+ as F(z) = ‖z‖2. Then, by definition of F , it

can be obtained that |aH
k x| ≡ F([aH

k x]). Notice that for any z1,z2 ∈ R2 it can be obtained that

|F(z1)−F(z2)| ≤ ‖z1− z2‖2. (194)

Then, from (194) it can be concluded that F is a Lipschitz continuous function. Further, given the

fact that F is a convex function, by item 1) in Lemma 6, F is a regular function. Thus, using the

result 3) in Lemma 6, it can be concluded that ∂ cϕ0(|aH
k x|) ≡ ∂ cF([aH

k x]), where from Theorem

3.9 in Clarke (1990) it can be found

∂
cF([aH

k x]) =
{[

ak,R

ak,I

−ak,I

ak,R

]
z : z ∈ [−1,1]2

}
, (195)
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with ak,R,ak,I ∈Rn are the real and imaginary parts of vector ak, respectively, i.e. ak = ak,R+ jak,I .

Therefore, given the fact that F is a regular function, from 2) in Lemma 6 one can write that

∂
c f (x)≡ 2

m

m

∑
k=1

(ϕ0(|aH
k x|)−qk)∂

cF([aH
k x]), (196)

where the sum is calculated as defined in 2) in Lemma 6. Now, we prove Theorem 4.

Demostración. We proceed by proving that each function ϕµ(|aH
k x|) satisfies the gradient consis-

tency property. Notice that ∂ϕµ(|aH
k x|) is given by

∂ϕµ(|aH
k x|) =

 aH
k x√

|aH
k x|2 +µ2

ak. (197)

Then, (197) can be equivalently expressed as ∂ϕµ(|aH
k x|)≡ ϕ ′µ(‖[aH

k x]‖2), where

ϕ
′
µ(‖[aH

k x]‖2) =

[
ak,R

ak,I

−ak,I

ak,R

]
[aH

k x]√
‖[aH

k x]‖2
2 +µ2

. (198)

Considering (198), the gradient consistency property for ϕµ(|aH
k x|) can be equivalently formulated

as  lı́m
x→x∗
µ↓0

∂ϕµ(|aH
k x|)

≡
 lı́m

x→x∗
µ↓0

ϕ
′
µ(‖[aH

k x]‖2)

 . (199)
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Therefore, from (195) and (198), the gradient consistency property for ϕµ(|aH
k x|) holds if

 lı́m
x→x∗
µ↓0

[aH
k x]√

‖[aH
k x]‖2

2 +µ2

= [−1,1]2. (200)

Notice that, we need to establish that all limit points of the left hand side term in (200)

belong to the set [−1,1]2. To do that, we proceed by cases. First considering x∗ 6= 0 from (200) we

have that

lı́m
µ↓0,x→x∗

[aH
k x]√

‖[aH
k x]‖2

2 +µ2
=

[aH
k x∗]

‖[aH
k x∗]‖2

, (201)

where [aH
k x∗]

‖[aH
k x∗]‖2

∈ [−1,1]2 for any x∗ 6= 0. Now, for x∗ = 0, we can rewrite (201) as

lı́m
x→0
µ↓0

[aH
k x]√

‖[aH
k x]‖2

2 +µ2

(
1/µ

1/µ

)
= lı́m

x→0
µ↓0

[aH
k x]/µ√

‖[aH
k x]‖2

2/µ2 +1
. (202)

Then, from (202) we have that

lı́m
x→0
µ↓0

[aH
k x]/µ√

‖[aH
k x]‖2

2/µ2 +1

= lı́m
x→0
µ↓0

 zR
µ√

( zR
µ
)2 +( zI

µ
)2 +1

,

zI
µ√

( zR
µ
)2 +( zI

µ
)2 +1

T

=



1, if zR
µ
, zI

µ
→ ∞

α, if
(
| zR

µ
| → ∞∨| zR

µ
|< ∞

)
∧
(
| zI

µ
| → ∞∨| zI

µ
|< ∞

)
,

−1, if zR
µ
, zI

µ
→−∞

(203)



ALGORITHM FOR PHASE RETRIEVAL IN OPTICAL IMAGING 174

where the vector α ∈ [−1,1]2 since ‖ϕ ′µ(‖[aH
k x]‖2)‖2 ≤ 1 from (198), ∨/∧ are the or/and logic

operations respectively, 1= [1,1]T , and [aH
k x] = [zR,zI]

T . Further, given that ϕ ′µ(|aH
k z|) and ‖·‖2 are

Lipschitz continuous function on any Sµ(w) according to Theorem 5.2.2 and (194), respectively,

then the composed function ϕ ′µ(‖[aH
k x]‖2) is Lipschitz continuous as it is shown in Chapter 12

in Eriksson et al. (2013). Hence, considering that ϕ ′µ(‖[aH
k x]‖2) is Lipschitz continuous, from

Theorem 3.9 in Clarke (1990) and (201) and (203), it can be concluded that

 lı́m
x→x∗
µ↓0

[aH
k x]√

‖[aH
k x]‖2

2 +µ2

= [−1,1]2. (204)

In order to prove the gradient consistency property of the function g(x,µ), then consider

the Wirtinger derivative of g(x,µ). From (204) we have that ϕµ(|aH
k x|) satisfies the gradient con-

sistency property, then one can write

=

 lı́m
x→x∗
µ↓0

∂g(x,µ)

=

 lı́m
x→x∗
µ↓0

2
m

m

∑
k=1

(ϕµ(|aH
k x|)−qk)∂ϕµ(|aH

k x|)


≡

 lı́m
x→x∗
µ↓0

2
m

m

∑
k=1

(ϕµ(|aH
k x|)−qk)

[
ak,R

ak,I

−ak,I

ak,R

]
[aH

k x]√
‖[aH

k x]‖2
2 +µ2


=

2
m

m

∑
k=1

(ϕ0(|aH
k x∗|)−qk)∂

cF([aH
k x∗])

≡ ∂
c f (x∗), (205)

where the third equality comes from (195). This shows that the gradient consistency property holds

for the smoothing function g(x,µ).
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On the other hand, considering the result in Theorem 5.2.2 we have that

lı́minf
i→∞

‖∂g(xi,µi−1)‖2 = 0

for the sequences {µi} and {xi} generated by Algorithm 7. This means that there exist x∗ such that

lı́mi→∞ xi = x∗. Given the fact that g(x,µ) satisfies the gradient consistency property according to

(205), then one can conclude that 0 ∈ ∂ c f (x∗).
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Appendix H. Proof of Theorem 7.2.1

Let us define the search set as

J := {z ∈ CN ,B-bandlimited : dist(x,z)≤ ρ,B≤ N/2}, (206)

for some small constant ρ > 0. Recall that z is a B-bandlimited signal if there exists k such that

z̃[k] = · · · = z̃[N + k+B− 1] = 0, where z̃ is the Fourier transform of z. The bandlimit condition

guarantees that we have unique solution, according to Proposition 4.

In order to prove Theorem 7.2.1, the function h(z,µ) in (87) needs to satisfy the four requi-

rements stated in the following lemma, which are used in the analysis of convergence for stochastic

gradient methods Ghadimi and Lan (2013).

Lemma 10.0.5. The function h(z,µ) in (87) and its Wirtinger derivative in (95) satisfy the follo-

wing properties.

1. The cost function h(z,µ) in (87) is bounded below.

2. The set J as defined in (206) is closed and bounded.

3. There exists a constant U > 0, such that

∥∥∥∥∂h(z1,µ)

∂z
− ∂h(z2,µ)

∂z

∥∥∥∥
2
≤U ‖z1− z2‖2 , (207)

holds for all z1,z2 ∈J .
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4. For all z ∈J

EΓ(t)

[∥∥∥∥dΓ(t)−
∂h(z,µ)

∂z

∥∥∥∥2

2

]
≤ ζ

2, (208)

for some ζ > 0, where dΓ(t) is as in Line 9 of Algorithm 7.

Demostración. See Appendix 8.

To prove Theorem 7.2.1, denote the set K1 := {t|µ(t+1) = γ1µ(t)} with γ1 ∈ (0,1), which is

a tunable parameter Zhang and Chen (2009). If the set K1 is finite, then according to Lines 13-16

in Algorithm 7 there exists an integer t̀, such that, for all t > t̀

∥∥∥dΓ(t)

∥∥∥
2
≥ γµ

(t̀), (209)

with γ ∈ (0,1). Taking µ̀ = µ(t̀), the optimization problem (87) reduces to

mı́n
z∈CN

h(z, µ̀). (210)

Now, considering the properties stated in Lemma 10.0.5, from (Ghadimi and Lan, 2013, Theorem

2.1) we get

lı́m
t→∞

∥∥∥∥∥∂h(x(t),µ(t))

∂z

∥∥∥∥∥
2

= lı́m
t→∞

∥∥∥EΓ(t)

[
dΓ(t)

]∥∥∥
2
= 0. (211)

It can be readily seen that (211) contradicts the assumption
∥∥∥dΓ(t)

∥∥∥
2
≥ γµ(t̀), for all t > t̀. This
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shows that K1 must be infinite and lı́m
t→∞

µ
(t) = 0.

Given that K1 is infinite, we deduce that

lı́m
t→∞

∥∥∥∥∥∂h(x(t),µ(t))

∂z

∥∥∥∥∥
2

= lı́m
t→∞

∥∥∥EΓ(t)

[
dΓ(t)

]∥∥∥
2

≤ lı́m
t→∞

EΓ(t)

[∥∥∥dΓ(t)

∥∥∥
2

]
≤ γ lı́m

t→∞
µ
(t) = 0, (212)

where the second line follows from the Jensen inequality. Therefore, from (212) the result of Theo-

rem 7.2.1 holds.

Proof of Lemma 10.0.5. The proof of Lemma 10.0.5 is obtained by individually proving

the following four requirements.

1) Following from the definition of h(z,µ) in (87) it is clear that h(z,µ) ≥ 0 and thus

bounded below.

2) This holds by definition.

3) From (93) it follows that the `-th entry of ∂h(z,µ)
∂z is given by

∂h(z,µ)
∂z

[`] =
1

N2

N−1

∑
k,p=0

(
fH
k gp(z)−υk,p

)
q`,pe2πi`k/N , (213)
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where υk,p =
√

Z[p,k] fH
k gp(z)

ϕµ(|fH
k gp(z)|) , and

q`,p = z[`+ p]+ z[`− p]e−2πikp/N ,

gp(z) = [z[0]z[pL], · · · ,z[N−1]z[N−1+ pL]]T .

Let Dp(z) be a diagonal matrix composed of the entries of zpL[n] = z[n+ pL]. Using (92), the term

q`,pe2πi`k/N can be rewritten as

q`,pe2πi`k/N = (Dp(z)fk) [`]+ω
−kp (D−p(z)fk) [`]. (214)

Thus,

∂h(z,µ)
∂z

=
1

N2

N−1

∑
p,k=0

fk,p(z)+gk,p(z), (215)

where

fk,p(z) = ρk,p(z)Dp(z)fk,

gk,p(z) = ω
−kp

ρk,p(z)D−p(z)fk, (216)
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and

ρk,p(z) = fH
k gp(z)−

√
Z[p,k]

fH
k gp(z)

ϕµ

(∣∣fH
k gp(z)

∣∣) . (217)

To prove 3) we establish that any fk,p(z) and gk,p(z) satisfy

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2 ≤ rk,p‖z1− z2‖2, (218)

and

∥∥gk,p(z1)−gk,p(z2)
∥∥

2 ≤ sk,p‖z1− z2‖2, (219)

for all z1,z2 ∈J and some constants rk,p,sk,p > 0. In fact, once we prove (218), it can be perfor-

med a similar analysis for gk,p(z), and thus the result of this third part holds.

From the definition of fk,p(z), for any z1,z2 ∈J we have that

1√
N

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2 ≤
∥∥ρk,p(z1)z1−ρk,p(z2)z2

∥∥
2 , (220)

considering that Dp(z1) and Dp(z2) are diagonal matrices, and ‖fk‖2 =
√

N. Observe that from
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(217) and (220) it can be obtained that

1√
N

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2

≤
∣∣fH

k gp(z1)
∣∣

µ

(
ϕµ

(∣∣fH
k gp(z1)

∣∣)+√Z[p,k]
)
‖z1− z2‖2

+‖z2‖2

∣∣ρk,p(z1)−ρk,p(z2)
∣∣︸ ︷︷ ︸

p1

, (221)

where the second inequality comes from the fact that ϕµ

(∣∣fH
k gp(z1)

∣∣) ≥ µ . The term p1 in (221)

can be upper bounded as

p1 ≤
∣∣fH

k gp(z1)− fH
k gp(z2)

∣∣+√Z[p,k]

∣∣∣∣∣ fH
k gp(z1)

ϕµ

(∣∣fH
k gp(z1)

∣∣) − fH
k gp(z2)

ϕµ

(∣∣fH
k gp(z2)

∣∣)
∣∣∣∣∣

≤
∣∣fH

k gp(z1)− fH
k gp(z2)

∣∣+√Z[p,k]
µ2 ϕµ

(∣∣fH
k gp(z2)

∣∣) ∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣

+

√
Z[p,k]
µ2

∣∣fH
k gp(z2)

∣∣ ∣∣ϕµ

(∣∣fH
k gp(z1)

∣∣)−ϕµ

(∣∣fH
k gp(z2)

∣∣)∣∣ . (222)

Recall that J is a closed bounded set, and thus compact. Since ϕµ(·) is a continuous

function, there exists a constant Mϕµ
such that ϕµ

(∣∣fH
k gp(z)

∣∣) ≤ Mϕµ
for all z ∈J . Also, from

Lemma 2 in Pinilla et al. (2018a) we have that ϕµ(·) is a 1-Lipschitz function. Combining this with

(222) we get

p1 ≤
∣∣fH

k gp(z1)− fH
k gp(z2)

∣∣+√Z[p,k]Mϕµ

µ2

∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣

+

√
Z[p,k]
µ2

∣∣fH
k gp(z2)

∣∣ ∣∣∣∣fH
k gp(z1)

∣∣− ∣∣fH
k gp(z2)

∣∣∣∣ , (223)
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and thus

p1 ≤

(√
Z[p,k]Mϕµ

µ2 +1

)∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣

+

√
Z[p,k]
µ2

∣∣fH
k gp(z2)

∣∣ ∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣ , (224)

where (224) results from applying the triangular inequality. Putting together (221) and (224) we

obtain that

1√
N

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2 ≤
∣∣fH

k gp(z1)
∣∣

µ

(
Mϕµ

+
√

Z[p,k]
)
‖z1− z2‖2

+‖z2‖2

(√
Z[p,k]Mϕµ

µ2 +1

)∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣

+
‖z2‖2

√
Z[p,k]

µ2

∣∣fH
k gp(z2)

∣∣ ∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣ . (225)

Observe that the upper bound in (225) directly depends on a term of the form fH
k gp(z)

for some z ∈J , which might be zero. However, Lemma 10.0.6 proves that
∣∣fH

k gp(z)
∣∣ > 0 or

equivalently fH
k gp(z) 6= 0, for almost all z ∈J .

Lemma 10.0.6. Let z∈J where J as defined in (206). Then, for almost all z∈J the following

holds

∣∣fH
k gp(z)

∣∣> 0, (226)

for all k, p ∈ {0, · · · ,N−1}, with gp(z) as in (214).
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Demostración. We prove this lemma by contradiction. Suppose that
∣∣fH

k gp(z)
∣∣ = 0. Then, from

(60) we have that

∣∣fH
k gp(z)

∣∣2 = ∣∣∣∣∣N−1

∑
n=0

z[n]z[n+ pL]e−2πink/N

∣∣∣∣∣
2

=
N−1

∑
n,m=0

(z[n]z[m]z[n+ pL]z[m+ pL])e
2πi(m−n)k

N = 0. (227)

Observe that (227) is a quartic polynomial equation with respect to the entries of z. However, for

almost all signals z ∈J the left hand side of (227) will not be equal to zero which leads to a

contradiction Bendory et al. (2018a).

Then, proceeding to bound the term
∣∣fH

k gp(z)
∣∣, notice that from (60) we have that

∣∣fH
k gp(z)

∣∣= ∣∣∣∣∣N−1

∑
n=0

z[n]z[n+ pL]e−2πink/N

∣∣∣∣∣
≤

N−1

∑
n=0
|z[n]z[n+ pL]| ≤ N‖z‖2, (228)

in which the second inequality arises from ‖z‖2≤
√

N‖z‖∞ and ‖z‖1≤
√

N‖z‖2. Combining (225)

and (228) we get

1√
N

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2 ≤
N‖z1‖2

µ

(
Mϕµ

+
√

Z[p,k]
)
‖z1− z2‖2

+‖z2‖2

(√
Z[p,k]Mϕµ

µ2 +1

)∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣

+
N‖z2‖2

2

√
Z[p,k]

µ2

∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣ . (229)
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Now, we have to analyze the term
∣∣fH

k gp(z1)− fH
k gp(z2)

∣∣ in (229). Specifically, from (60) it

can be obtained that

∣∣fH
k gp(z1)− fH

k gp(z2)
∣∣≤ N−1

∑
n=0
|z1[n]z1[n+ pL]− z2[n]z2[n+ pL]|

≤ N (‖z1‖2 +‖z2‖2)‖z1− z2‖2, (230)

where the second inequality results from ‖z‖2 ≤
√

N‖z‖∞ and ‖z‖1 ≤
√

N‖z‖2. Combining (229)

and (230) we obtain that

∥∥ fk,p(z1)− fk,p(z2)
∥∥

2 ≤ rk,p‖z1− z2‖2, (231)

where rk,p is given by

rk,p =
N
√

N‖z1‖2

µ

(
Mϕµ

+
√

Z[p,k]
)
+N2

√
N (‖z1‖2 +‖z2‖2)

‖z2‖2
2

√
Z[p,k]

µ2

+N
√

N (‖z1‖2 +‖z2‖2)‖z2‖2

(√
Z[p,k]Mϕµ

µ2 +1

)
. (232)

Since the set J is bounded, then ‖z‖2 < ∞ for all z∈J . Therefore, 0 < rk,p < ∞, and from (231)

the result holds.
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4) We proceed to prove (208). Observe that

EΓ(t)

[∥∥∥∥dΓ(t)−
∂h(z,µ)

∂z

∥∥∥∥2

2

]
≤ EΓ(t)

[
2
∥∥∥dΓ(t)

∥∥∥2

2

]
+2
∥∥∥∥∂h(z,µ)

∂z

∥∥∥∥2

2
, (233)

in which the inequality comes from the fact that ‖w1 +w2‖2
2≤ 2

(
‖w1‖2

2 +‖w2‖2
2

)
for any w1,w2 ∈

CN . Combining (207) and (233) we have that

EΓ(t)

[∥∥∥∥dΓ(t)−
∂h(z,µ)

∂z

∥∥∥∥2

2

]
≤ EΓ(t)

[
2
∥∥∥dΓ(t)

∥∥∥2

2

]
+2U ‖z‖2

2 , (234)

for some U > 0. Recall that Γ(t) is sampled uniformly at random from all subsets of {1, · · · ,N}×

{1 · · · ,R} with cardinality Q. From the definition of dΓ(t) in Line 9 of Algorithm 7, it can be

concluded that

EΓ(t)

[
2
∥∥∥dΓ(t)

∥∥∥2

2

]
≤ 4Q

N2

N−1

∑
p,k=0

∥∥ fk,p(z)+gk,p(z)
∥∥2

2

≤ 8Q
N2

N−1

∑
p,k=0

∥∥ fk,p(z)
∥∥2

2 +
∥∥gk,p(z)

∥∥2
2 , (235)

using the fact that ‖w1 +w2‖2
2 ≤ 2

(
‖w1‖2

2 +‖w2‖2
2

)
for any w1,w2 ∈ CN . Furthermore, since

fk,p(z) and gk,p(z) satisfy (218) and (219), respectively, we conclude that

EΓ(t)

[
2
∥∥∥dΓ(t)

∥∥∥2

2

]
≤ 8Q‖z‖2

2
N2

N−1

∑
p,k=0

r2
k,p + s2

k,p, (236)
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for some constants rk,p,sk,p > 0. Thus, combining (234) and (236) we obtain that

EΓ(t)

[∥∥∥∥dΓ(t)−
∂h(z,µ)

∂z

∥∥∥∥2

2

]
≤ ζ

2, (237)

where ζ is defined as

ζ = ‖z‖2

√√√√8Q
N2

N−1

∑
p,k=0

r2
k,p + s2

k,p +2U . (238)

Notice ζ < ∞ because the set J is bounded. Thus, from (237) the result holds.

Appendix I. Proof of Proposition 4

We begin the proof by reformulating the measurement model to a more convenient structure.

Applying the inverse Fourier transform we write x[n] = 1
N ∑

N−1
k=0 x̃[k]e2πikn/N . Then, according to

(85), we have

A[p,k] = |S[p,k]|2, (239)

where S[p,k] is defined as

S[p,k] =
N−1

∑
n=0

x[n]x[n− p]e−2iπnk/N

=
1

N2

N−1

∑
n=0

(
N−1

∑
`1=0

x̃[`1]e2πi`1n/N

)
×

(
N−1

∑
`2=0

x̃[`2]e−2πi`2n/Ne2πi`2 p/N

)
e−2πikn/N

=
1

N2

N−1

∑
`1,`2=0

x̃[`1]x̃[`2]e2πi`2 p/N
N−1

∑
n=0

e2πin(`1−`2−k)/N =
1
N

N−1

∑
`=0

x̃[`+ k]x̃[`]e2πi`p/N , (240)
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since the later sum is equal to N if `1 = k+ `2 and zero otherwise.

Assume that B = N/2, N is even, that x̃[n] 6= 0 for k = 0 . . . ,B− 1, and that x̃[n] = 0 for

k =N/2, . . . ,N−1. If the signal’s nonzero Fourier coefficients are not in the interval 0, . . . ,N/2−1,

then we can cyclically reindex the signal without affecting the proof. If N is odd, then one should

replace N/2 by bN/2c everywhere in the sequel. Clearly, the proof carries through for any B≤N/2.

Considering (240), the band-limit assumption on the signal forms a “inverted pyramid"structure.

Here, each row represents fixed k and varying ` of x̃[`+ k]x̃[`] for k = 0, . . . ,N/2−1

|x̃[0]|2, |x̃[1]|2, . . . , |x̃[B−1]|2,0, . . . ,0

x̃[0]x̃[1], x̃[1]x̃[2], . . . , x̃[B−2]x̃[B−1],0, . . . ,0

...

x̃[0]x̃[B−1],0, . . . ,0,0, . . . ,0

0,0, . . . , x̃[0]x̃[B−1],0, . . . ,0

...

0,x[0]x̃[1], x̃[1]x̃[2], . . . , x̃[B−2]x̃[B−1],0, . . . ,0. (241)

Then, S[p,k] as in (240) is a subsample of the Fourier transform of each one of the pyramid’s rows.

Step 0: From the (B−1)-th row of (241), we see that

|S[p,B]|= |x̃[0]||x̃[B−1]|,∀p = 0, . . . ,N−1. (242)
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Considering that in the radar phase retrieval problem the translation ambiguity is continuous (se-

cond ambiguity in Proposition 3), we can set x̃[0] to be real and, without loss of generality it can

be assumed that x̃[0] = 1 Bendory et al. (2018a). Note that in contrast to the FROG phase retrieval

problem, this continuity property in the radar scenario is satisfied for general signals. Then, from

(242) we obtain that

|S[p,B−1]|= |x̃[B−1]|,∀p = 0, . . . ,N−1. (243)

Step 1: From the first row of (241), we conclude the following system of equations

|S[p,0]|= 1
N

∣∣∣∣∣B−1

∑
`=0
|x̃[`]|2e2πi`p/N

∣∣∣∣∣ , p = 0, . . . ,N−1. (244)

Given the fact that from the Step 0 the entries |x̃[0]|, |x̃[B−1]|, and {|S[p,0]|}N−1
p=0 are known, then

appealing to Lemma 10.0.7 for almost all signals we have that |x̃[1]|, . . . , |x̃[B− 2]| are uniquely

determined. It is worth mentioning that this previous argument does not imply that x̃[1], . . . , x̃[B−1]

are uniquely determined. In fact there are up to 2B−1 vectors, modulo global phase, reflection and

conjugation that satisfy the constraints in (242), and (244) (Bendory et al., 2017a, Section 3.1).

Step 2: Moving to analyze the second row of (241) we obtain the following system of
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equations

|S[p,1]|= 1
N

∣∣∣∣∣B−2

∑
`=0

x̃[`+1]x̃[`]e2πi`p/N

∣∣∣∣∣ , p = 0, . . . ,N−1. (245)

Fix one of the possible solutions for x̃[1] from Step 1. Then, since x̃[0] is known, Lemma 10.0.7

states that for almost all signals x̃[1]x̃[2], . . . , x̃[B−1]x̃[B−2] are uniquely determined.

Step 3: Considering the fact that x̃[0], and x̃[1] are known, from Step 2 we can es-

timate x̃[2]. Thus, since x̃[0]x̃[2] is known, appealing to Lemma 10.0.7 for almost all signals

x̃[1]x̃[3], . . . , x̃[B−3]x̃[B−1] are uniquely determined. However, remark that at this stage the 2B−1

possible solutions from Step 2 remains.

Despite the large amount of possible solutions, we can prove that at this step there is only

one vector (up to trivial ambiguities) out of the 2B−1 possibilities of Step 2, that is consistent with

the constraints in (242), (244), and (245). To see this, from Step 1 we have that |x̃[0]|, . . . , |x̃[B−1]|

are uniquely determined. Therefore, from the knowledge of {|x̃[`]|}B−1
`=0 , and {|S[p,0]|}N−1

p=0 , from

Lemma 10.0.8 we have that x̃[1]x̃[2], . . . , x̃[B− 1]x̃[B−2] are uniquely determined for almost all

signals. This previous fact leads to a unique selection (up to trivial ambiguities) of x̃[1] in Step 2,

and in consequence a unique selection of x̃[2] in this step.

Step B− 1: Considering that from the B− 2 previous steps the entries x̃[0], . . . , x̃[B− 2]

were uniquely determined (up to trivial ambiguities), appealing again to Lemma 10.0.7 we have

that x̃[B−1] can be also uniquely determined.
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Finally, analyzing the construction process described above we have that at Step 2, the

signal x̃ can be uniquely determined, which means that m ≥ 3B measurements are need to solve

the radar phase retrieval problem for band-limited signals. If in addition, we have access to the

spectrum signal |x̃|, at Step 1 we can uniquely determined x̃ if N ≥ 3, implying that under this

scenario only m≥ 2B measurements are needed.

Lemma 10.0.7. ((Bendory et al., 2019b, Corollary IV.3)) If m≥ 2|J −J |−1+2|J | and N >

|J | (that is, at least one signal entry is known), then almost every w ∈CN is determined uniquely

by {|w̃[k]|}m−1
k=0 . Here, J is the set of indices of the unknowns, |J | represents its cardinality, and

J −J = {n1−n2|n1,n2 ∈J }.

Lemma 10.0.8. ((Beinert and Plonka, 2018, Corollary 2)) Almost every complex-valued signal

w ∈ CN can be uniquely recovered from {|w̃[k]|}N−1
k=0 and {|w[n]|}N−1

n=0 up to rotations.
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Appendix J. Proof of Corollary 1

Recall that according to (85), we have

A[p,k] =

∣∣∣∣∣N−1

∑
n=0

x[n]x[n− p]e−2iπnk/N

∣∣∣∣∣
2

. (246)

Assume that S = N/2, N is even, that x[n] 6= 0 for n = 0 . . . ,S− 1, and that x[n] = 0 for n =

N/2, . . . ,N− 1. If the signal’s nonzero coefficients are not in the interval 0, . . . ,N/2− 1, then we

can cyclically reindex the signal without affecting the proof. If N is odd, then one should replace

N/2 by bN/2c everywhere in the sequel. Clearly, the proof carries through for any S≤ N/2.

Considering (240), the band-limit assumption on the signal forms a “inverted pyramid"structure.

Here, each row represents fixed p and varying n of x[n− p]x[n] for p = 0, . . . ,N/2−1

|x[0]|2, |x[1]|2, . . . , |x[S−1]|2,0, . . . ,0

0,x[0]x[1],x[1]x[2], . . . ,x[S−2]x[S−1],0, . . . ,0

...

0,0, . . . ,0,x[0]x[S−1],0, . . . ,0,0, . . . ,0

x[0]x[S−1],0,0, . . . ,0

x[0]x[S−2],x[1]x[S−1],0,0, . . . ,0

...

x[0]x[1],x[1]x[2], . . .x[S−2]x[S−1],0,0, . . . ,0. (247)
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Then, A[p,k] as in (246) is a subsample of the Fourier transform of each one of the pyramid’s rows.

Therefore, performing an analogous construction procedure as in Appendix 9 over (247)

we have that the signal x̃ can be uniquely determined from m ≥ 3S measurements. If in addition,

we have access to the spectrum signal |x̃|, we can uniquely determined x̃ if N ≥ 3, implying that

under this scenario only m≥ 2S measurements are needed.
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