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RESUMEN

TITULO: CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON CONVOLUTIONAL NEU-

RAL NETWORKS AND SPECTRAL UNMIXING *

AUTOR: JHON EDWARD PINTO BARRERA **

PALABRAS CLAVES: Imágenes Hiperespectrales, Redes Neuronales Convolucionales, Desmez-

clado Espectral, Clasificación.

DESCRIPCIÓN:

Las imágenes hiperespectrales (HSIs) corresponden a cubos de datos que contienen información

espacial de una escena a lo largo del espectro electromagnético. En general, estas imágenes se han

usado para identificar diferentes características de las escenas gracias a su alto contenido espectral,

estas han favorecido el desarrollo de aplicaciones como, la detección de enfermedades en cultivos

y la discriminación de materiales presentes en una escena. En particular, el análisis de las firmas

espectrales de diversos tipos de vegetación ha permitido obtener información sobre el estado y el

crecimiento de los cultivos agrícolas. En este sentido, la clasificación de HSIs es una tarea desafian-

te, debido a que, las firmas adquiridas son afectadas por diversos factores, tales como, los cambios

en los niveles de iluminación e incertidumbres de los equipos de medición. Además, la mayoría de

los métodos de clasificación no consideran la mezcla del contenido espectral de múltiples materiales

en un único píxel. Para superar esta limitación, las técnicas de desmezclado espectral han emergido

para estimar la contribución de los diferentes materiales en un único píxel. Por otro lado, las redes

neuronales convolucionales (CNN) son estructuras de aprendizaje profundo que han demostrado un

notable rendimiento en tareas de clasificación de información visual. Estas arquitecturas típicamente

están conformadas por capas convolucionales, capa de funciones de activación no lineal, capa de

agrupamiento y una capa completamente conectada, que ejecuta la tarea de clasificación multiclase.

En este trabajo, se propone un enfoque de clasificación de HSIs mediante el uso de un método de

desmezclado espectral y CNN. Específicamente, el método propuesto utiliza los mapas de abundan-

* Trabajo de grado

** Facultad de Ingenierías Fisicomecánicas. Escuela de Ingeniería de Sistemas e Informática. Di-
rector: Ph.D Henry Arguello Fuentes, Co-director Ph.D Juan Marcos Ramírez Rondon
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cia extraídos de una HSI como entrada a una CNN. El propósito de este trabajo es aprovechar las

ventajas del desmezclado espectral, incluyendo la descomposición a nivel de sub-píxeles, la reduc-

ción de la dimensionalidad y el rendimiento notable de las CNN. El método propuesto se verificó

a través de cuatro conjuntos de datos de HSIs tradicionales, como Pavia University, Salinas Valley,

Indian y la Oil Palm. Asimismo, el método de clasificación propuesto presenta un mejor rendimiento

de clasificación en términos de precisión general comparado con diferentes métodos de clasificación

de la literatura, tales como, máquina de soporte vectorial (SVM, del inglés Support Vector Machine),

máquina de soporte vectorial con función de base radial (SVM-RBF, del inglés Support Vector Ma-

chine - Radial Basis Function) y por último el método de vecinos más cercanos (K-NN, del inglés

k-nearest neighbors algorithm).
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ABSTRACT

TITLE: CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON CONVOLUTIONAL NEU-

RAL NETWORKS AND SPECTRAL UNMIXING *

AUTHOR: JHON EDWARD PINTO BARRERA **

KEYWORDS: Hyperspectral images, convolutional neural networks, spectral unmixing, classifica-

tion.

DESCRIPTION:

Hyperspectral images (HSIs) correspond to data cubes that contain spatial information of a scene

along the electromagnetic spectrum. In general, these images have been used to identify different

characteristics of the scenes thanks to its high spectral content, these have favored the development

of applications such as, the detection of diseases in crops and the discrimination of materials present

in a scene. In particular, the analysis of the spectral signatures of various types of vegetation has

made it possible to obtain information on the state and growth of agricultural crops. In this sense, the

classification of HSIs is a challenging task, because the acquired signatures are affected by various

factors, such as changes in lighting levels and uncertainties of the measurement equipment. In addi-

tion, most classification methods do not consider mixing the spectral content of multiple materials into

a pixel. To overcome this limitation, spectral unmixing techniques have emerged to estimate the con-

tribution of different materials in a pixel. On the other hand, convolutional neural networks (CNN) have

shown a remarkable performance in visual information classification tasks. These architectures typi-

cally consist of convolutional layers, a nonlinear activation layer, a pooling layer, and a fully connected

layer, which performs the task of multi-class classification. In this paper, a classification approach to

HSIs is proposed using a spectral unmixing method and CNN. Specifically, the proposed method uses

the abundance maps extracted from an HSI as input to a CNN. The purpose of this work is to take

advantage of spectral unmixing, including sub-pixel level decomposition, reduced dimensionality, and

remarkable yield of CNNs.The proposed method was verified through four traditional HSI data sets,

* Trabajo de grado

** Facultad de Ingenierías Fisicomecánicas. Escuela de Ingeniería de Sistemas e Informática. Ad-
visor: Ph.D Henry Arguello Fuentes, Co-advisor Ph.D Juan Marcos Ramírez Rondon
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such as Pavia University, Salinas Valley, Indian and Oil Palm. In addition, the proposed classification

method presents a better classification performance in terms of overall accuracy compared to diffe-

rent classification methods in the literature, such as Support Vector Machine (SVM), Support Vector

Machine - Radial Basis Function (SVM-RBF) and finally the Nearest Neighbors Method (K-NN).
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INTRODUCTION

Hyperspectral imaging is a technique that allows the acquisition of information of ob-

jects on the Earth’s surface. Specifically, this technique acquires the spectral beha-

vior of each pixel within the observed scene at hundreds of wavelength bands1 range

from the visible zone (VIS, 0.4-0.8 um) to the near-infrared region (NIR, 0.8-2.4 um).

Furthermore, hyperspectral images (HSIs) have been widely used in several appli-

cations such as agriculture2, environment3, mining4, among others.

Nowadays, HSIs are used in classification or detection procedures in order to iden-

tify targets or materials in a scene exploiting the ability of the hyperspectral sensors

of acquiring spatial and spectral information in different wavelengths of the electro-

magnetic spectrum5. In particular, the HSI classification is one of the most important

technological advances at present, where its main aim is to assign a unique label to

each spectral pixel, where the selected label belongs to a previously known class6.

1 Gustavo Camps-Valls y col. “Remote sensing image processing”. En: Synthesis Lectures on Ima-
ge, Video, and Multimedia Processing 5.1 (2011), págs. 1-192.

2 Lankapalli Ravikanth y col. “Extraction of spectral information from hyperspectral data and ap-
plication of hyperspectral imaging for food and agricultural products”. En: Food and Bioprocess
Technology 10.1 (2017), págs. 1-33.

3 Sabine Chabrillat y col. “Use of hyperspectral images in the identification and mapping of ex-
pansive clay soils and the role of spatial resolution”. En: Remote sensing of Environment 82.2-3
(2002), págs. 431-445.

4 Enton Bedini y Thorkild M Rasmussen. “Use of airborne hyperspectral and gamma-ray spectros-
copy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland”.
En: Geosciences Journal (2018), págs. 1-11.

5 Pedram Ghamisi y col. “Advances in hyperspectral image and signal processing: A comprehen-
sive overview of the state of the art”. En: IEEE Geoscience and Remote Sensing Magazine 5.4
(2017), págs. 37-78.

6 Gustavo Camps-Valls y col. “Advances in hyperspectral image classification: Earth monitoring

15



In general, traditional techniques consider every spectral pixel as a classification

feature. However, the combination of the spectral responses belonging to different

materials covered by a unique pixel, and the low spatial resolution of HSIs severely

degrade the performance of the classification methods. Therefore, a classification

approach that considers the contribution of the different materials in the formation of

the corresponding spectral signature is required.

Nevertheless, in the state-of-the-art, there are other techniques such as those based

on spectral unmixing (SU) that decomposes the HSI at sub-pixel level, which promi-

se better results in the classification performance. Specifically, SU is a procedure

by which the measured spectrum of a mixed pixel is decomposed into a collection

of known spectral signatures (endmembers) that correspond to different materials

in the scene, such as water, soil, metal, among others, and a set of corresponding

fractions (abundances) that indicate the endmembers proportion contributing to the

construction of each spectral pixel7. Furthermore, the SU technique significantly re-

duce the number of elements associated to each spatial coordinate, reducing in turn,

the dimensionality of the corresponding HSI feature. Since that the SU decompose

the spectral content and reduce the dimensionality of the pixels, we consider the

abundance map obtained by a SU technique as an input of the classifier that can

improve the labeling accuracy.

On the other hand, one of the most popular deep learning techniques with a high per-

formance in imaging classification tasks is the convolutional neural network (CNN)

approach, which consists of extracting deep features from the data under test. CNNs

are composed by a set of blocks that can be applied both across space and time sig-

nals e.g., images, audio and video signals. In essence, each block contain a set of

with statistical learning methods”. En: IEEE signal processing magazine 31.1 (2013), págs. 45-54.

7 Nirmal Keshava y John F Mustard. “Spectral unmixing”. En: IEEE signal processing magazine
19.1 (2002), págs. 44-57.
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filter masks that are applied to the input data8 followed by a nonlinear activation fun-

ction whose output typically serve as input to the next network block. These blocks

are part of feature extraction stages, which consist of three layers: 1) a convolutional

layer, 2) a non linearity layer and 3) a pooling layer9. CNN has achieved to impact in

different fields of science such as: human performance10, image classification11 12,

object detection13, scene labeling14, house numbers digit classification15, face recog-

nition16, among others. Therefore, we aim at combining the benefits of both the SU

techniques and the powerful and promising CNN tool in spectral image classification

8 ME Paoletti y col. “A new deep convolutional neural network for fast hyperspectral image classifi-
cation”. En: ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018), págs. 120-147.

9 Liangpei Zhang, Lefei Zhang y Bo Du. “Deep learning for remote sensing data: A technical tu-
torial on the state of the art”. En: IEEE Geoscience and Remote Sensing Magazine 4.2 (2016),
págs. 22-40.

10 Pierre Sermanet y Yann LeCun. “Traffic sign recognition with multi-scale convolutional net-
works”. En: Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE. 2011,
págs. 2809-2813.

11 Alex Krizhevsky, Ilya Sutskever y Geoffrey E Hinton. “Imagenet classification with deep con-
volutional neural networks”. En: Advances in neural information processing systems. 2012,
págs. 1097-1105.

12 Dan Cireşan, Ueli Meier y Jürgen Schmidhuber. “Multi-column deep neural networks for image
classification”. En: arXiv preprint arXiv:1202.2745 (2012).

13 Ross Girshick y col. “Rich feature hierarchies for accurate object detection and semantic seg-
mentation”. En: Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, págs. 580-587.

14 Clement Farabet y col. “Learning hierarchical features for scene labeling”. En: IEEE transactions
on pattern analysis and machine intelligence 35.8 (2013), págs. 1915-1929.

15 Pierre Sermanet, Soumith Chintala y Yann LeCun. “Convolutional neural networks applied to
house numbers digit classification”. En: Pattern Recognition (ICPR), 2012 21st International Con-
ference on. IEEE. 2012, págs. 3288-3291.

16 Yaniv Taigman y col. “Deepface: Closing the gap to human-level performance in face verifica-
tion”. En: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014,
págs. 1701-1708.
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tasks.

In this work, a hyperspectral image classification technique is proposed that exploits

the advantages of both the low-dimensional decomposition of the spectral pixels per-

formed by a SU technique and the representation power of the CNN. Basically, the

proposed approach implements the sparse unmixing method via variable splitting

augmented Lagrangian and total variation (SunSal-TV)17 to obtain the respective

HSI abundance map. Furthermore, the abundance map patches are considered as

data input of a supervised learning machine relied on CNN for performing a pixel-

based hyperspectral classification task. The proposed approach is evaluated for four

standard HSI databases: Pavia University, Salinas Valley, Indian Pines and Oil Palm.

In addition, the performance of the proposed classification method is compared to

similar approaches based on traditional machine learning techniques including the

nearest neighbor (KNN)18 method, the support vector machines with linear kernel

(SVM), and support vector machines with Gaussian kernel (SVM-RBF)19. Numeri-

cal simulations show that the proposed classification method outperforms the other

approaches based on traditional machines learning techniques in terms of overall

accuracy.

17 Marian-Daniel Iordache, José M Bioucas-Dias y Antonio Plaza. “Total variation spatial regulari-
zation for sparse hyperspectral unmixing”. En: IEEE Transactions on Geoscience and Remote
Sensing 50.11 (2012), págs. 4484-4502.

18 Michael Eismann. “Hyperspectral remote sensing”. En: Society of Photo-Optical Instrumentation
Engineers. 2012.

19 Farid Melgani y Lorenzo Bruzzone. “Classification of hyperspectral remote sensing images with
support vector machines”. En: IEEE Transactions on geoscience and remote sensing 42.8 (2004),
págs. 1778-1790.
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1. OBJETIVES

General Objetive

To design a classification approach for hyperspectral images based on convo-

lutional neural networks and spectral unmixing.

Specific objectives

To review of the state of the art of linear techniques for spectral unmixing of

hyperspectral images and classification methods based on convolutional neural

network.

To implement a convolutional neural network architecture that performs hypers-

pectral classification from the spectral unmixing.

To evaluate the proposed classification method using traditional spectral data

sets.

To compare the proposed classification approach with respect to classification

techniques in the state of the art.

19



2. PUBLICATIONS

Some results of this work were published in the papers shown as follows:

Pinto, Jhon E., Juan M. RamÃrez, and Henry Arguello. “Classification of oil

palm diseases via spectral unmixing and convolutional neural networks.“ Re-

mote Sensing for Agriculture, Ecosystems, and Hydrology XXI. Vol. 11149. In-

ternational Society for Optics and Photonics, 2019.

Pinto, Jhon, Hoover Rueda-Chacon, and Henry Arguello. “Classification of Hass

avocado (persea americana mill) in terms of its ripening via hyperspectral ima-

ges. “ TecnoLogicas 22.45 (2019): 111-130.
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3. ORGANIZATION OF THE MASTER THESIS

This master thesis is organized as follows:

A background review is included in Chapter 3. More precisely, an overview of the

hyperspectral imaging is introduced. Furthermore, the spectral unmixing problem in

hyperspectral imaging is developed. Since the proposed approach is compared to

traditional dimensionality reduction algorithms, thus, a brief description of the princi-

pal component analysis is included. Then, the main characteristics of convolutional

neural networks are exposed. Finally, traditional machine learning techniques used

in hyperspectral image classification are presented.

The description of the proposed classification approach based on convolutional neu-

ral networks is shown in Chapter 4. Specifically, the spectral unmixing technique im-

plemented in the proposed approach is described. Then, a comprehensive exposure

of the convolutional neural network architecture used to label hyperspectral images

is introduced.

The results of numerical simulations are displayed in Chapter 5. In particular, the

labeling maps obtained by the proposed classification approach are shown, as well

as the accuracy results obtained by the different classifiers under test. Finally, some

conclusions are summarized in Chapter 6.

21



4. THEORETICAL BACKGROUND

In this section, the relevant topics in the state of the art for this research work is

described, such as hyperspectral imaging (HSI), spectral unmixing (SU) and convo-

lutional neuronal networks (CNN).

4.1. HYPERSPECTRAL IMAGES

Hyperspectral remote sensing is focused on the extraction of information from ob-

jects or scenes on the Earth surface, based on their radiance acquired by airborne

or spaceborne sensors 20. Hyperspectral images (HSI) acquire spatial and spectral

information of a scene, obtaining a three dimensional (3D) data cube, where two di-

mensions correspond to spatial coordinates (x, y) and the other corresponds to the

spectral band (λ) (see figure 1). Moreover, HSI acquire from 50 to 100 bands per

scene between 400 to 2500 nanometers 21 including the range Visible (VIS), Near

Infrared (NIR) and Short Wave Infrared (SWIR) of the electromagnetic spectrum. HSI

allow the remote identification of materials of interest based on their spectral respon-

se called spectral signature, which is a unique correspondence between a material

and its reflectance spectrum 22. HSI have been applied to numerous applications

20 R Lennon. “Remote Sensing Digital Image Analysis: An Introduction”. En: United States:
Esa/Esrin (2002).

21 Ariolfo Camacho Velasco, César Augusto Vargas García y Henry Arguello Fuentes. “A compara-
tive study of target detection algorithms in hyperspectral imagery applied to agricultural crops in
Colombia”. En: Tecnura 20.49 (2016), págs. 86-99.

22 Gary A Shaw y Hsiaohua K Burke. “Spectral imaging for remote sensing”. En: Lincoln laboratory
journal 14.1 (2003), págs. 3-28.

22



including agriculture 23, 24, military defense 25, archeology 26, medical diagnosis 27,

analyses of crime scene details 28, food quality control 29, mineralogical mapping of

earth surface 30, among others.

4.2. SPECTRAL UNMIXING

Spectral Unmixing (SU) is a popular HSI processing technique which is used to ex-

tract land cover information and have a important use in environment, monitoring

and mineral exploration. SU is the procedure used to descompose a measure from

23 Megandhren Govender, K Chetty y Hartley Bulcock. “A review of hyperspectral remote sensing
and its application in vegetation and water resource studies”. En: Water Sa 33.2 (2007).

24 Elhadi Adam, Onisimo Mutanga y Denis Rugege. “Multispectral and hyperspectral remote sen-
sing for identification and mapping of wetland vegetation: a review”. En: Wetlands Ecology and
Management 18.3 (2010), págs. 281-296.

25 Jean-Pierre Ardouin, Josée Lévesque y Terry A Rea. “A demonstration of hyperspectral image
exploitation for military applications”. En: Information Fusion, 2007 10th International Conference
on. IEEE. 2007, págs. 1-8.

26 Haida Liang. “Advances in multispectral and hyperspectral imaging for archaeology and art con-
servation”. En: Applied Physics A 106.2 (2012), págs. 309-323.

27 Oscar Carrasco y col. “Hyperspectral imaging applied to medical diagnoses and food safety”. En:
Geo-Spatial and Temporal Image and Data Exploitation III. Vol. 5097. International Society for
Optics y Photonics. 2003, págs. 215-222.

28 Jaana Kuula y col. “Using VIS/NIR and IR spectral cameras for detecting and separating crime
scene details”. En: Sensors, and Command, Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security and Homeland Defense XI. Vol. 8359. International Society
for Optics y Photonics. 2012, 83590P.

29 Yao-Ze Feng y Da-Wen Sun. “Application of hyperspectral imaging in food safety inspec-
tion and control: a review”. En: Critical reviews in food science and nutrition 52.11 (2012),
págs. 1039-1058.

30 Roger N Clark y Gregg A Swayze. “Mapping minerals, amorphous materials, environmental ma-
terials, vegetation, water, ice and snow, and other materials: the USGS Tricorder algorithm”. En:
(1995).
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Figura 1. Representation of hyperspectral image from to remote sensing

a mixed pixel into a collection of previously known spectral signatures, or endmem-

bers, which generally corresponds to a specific material, and a set of corresponding

fractions, or abundances, that indicate the proportion of each endmember contained

in the pixel 7 (see figure 2). The endmembers represent the pure materials contained

in the image and the abundances represent the percentage of each endmember that

is in each the pixel 31. SU is divided into two categories, the Linear Spectral Mixtu-

re Model (LSMM) and Nonlinear Spectral Mixture Model (NLSMM). In this work, we

focus in the LSMM, which assumes that spectrum of a mixed pixel is represented

as a linear combination of endmembers and the abundance is proportional to the

fraction of the pixel area covered by the endmember 32. In this sense, exists a linear

31 José M Bioucas-Dias y col. “Hyperspectral unmixing overview: Geometrical, statistical, and spar-
se regression-based approaches”. En: IEEE journal of selected topics in applied earth observa-
tions and remote sensing 5.2 (2012), págs. 354-379.

32 John B Adams, Milton O Smith y Paul E Johnson. “Spectral mixture modeling: A new analysis of
rock and soil types at the Viking Lander 1 site”. En: Journal of Geophysical Research: Solid Earth
91.B8 (1986), págs. 8098-8112.
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relationship between the fractional abundance of the substances covering the area

being imaged and the spectra in the reflected radiation 33. In this case, LSMM can

be represented mathematically as:

yi =

p∑
j=1

pjαij + wi (1)

where yi is the i− th acquired spectral signature, pj represents j − th endmember,

αij denotes the fractional abundance of the j − th endmember for building the i −

th measurement, and wi is the noise vector. The abundances are subject to the

following constraints:

Nonnegativity assumes that abundances must be greater than or equal to zero.

αij ≥ 0, j = 1, ..., p (2)

Sum-to-one assumes that the sum of the abundances are equal to one.

p∑
j=1

αij = 1 (3)

Finally, the expression (1) can be rewritten as

yi = Pα + w (4)

where p = [p1, p2, ..., pp] is the mixing matrix containing the signatures of the end-

members contained in the covered area.

33 Dimitris Manolakis, Christina Siracusa y Gary Shaw. “Hyperspectral subpixel target detection
using the linear mixing model”. En: IEEE Transactions on Geoscience and Remote Sensing 39.7
(2001), págs. 1392-1409.
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Figura 2. Representation of LSMM for three endmembers

4.3. PRINCIPAL COMPONENTS ANALYSIS

The principal component analysis (PCA) is based on the fact that neighboring bands

of hyperspectral images are highly correlated and often convey almost the same in-

formation about the object. The analysis is used to transform the original data for

removing the correlation among the bands. In the process, the optimum linear com-

bination of the original bands accounting for the variation of pixel values in an image

is identified.

The PCA employs the statistic properties of hyperspectral bands to examine band

dependency or correlation. This is based on the same mathematical principle known

as eigenvalue decomposition of the covariance matrix of the hyperspectral image
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bands to be analyzed 34.

4.4. CONVOLUTIONAL NEURAL NETWORKS

The CNN are a trainable multilayer architecture composed of multiple feature-extraction

stages. Each stage consists of three layers: 1) a convolutional layer, 2) a nonlinearity

layer and 3) a pooling layer 9. The role of the convolutional layer is to detect local

conjunctions of features from the previous layer. The input to the convolutional layer

is a three-dimensional array with r two-dimensional feature maps of size m x n. Each

component is denoted as xim,n and each feature map is denoted as xi. The output

is also a three dimensional array m1 x n1 x k, composed of k feature maps of size

m1 x n1. The convolutional layer has k trainable filters called the filter bank W, which

connects the input feature map to the output feature map. In the traditional CNN, the

nonlinearity layer simply consists of a pointwise nonlinearity function applied to each

component in a feature map. Finally, the role of the pooling layer is to merge seman-

tically similar features into one is due to the relative positions of the features can

vary 34. A typical pooling unit computes the maximum of a local patch of units in one

feature map or another approach is the average in the local patch. The main charac-

teristic of a CNN is the weight sharing, which can significantly reduce the number of

neural networks parameters, and thus prevent the emergence of over fitting, while

reducing the complexity of the neural network model. CNN models can potentially

lead to progressively more abstract and complex features at higher layers 35, in or-

der to improve the performance in the HSI classification. Nowadays, CNN has been

34 Yann LeCun, Yoshua Bengio y Geoffrey Hinton. “Deep learning”. En: nature 521.7553 (2015),
pág. 436.

35 Yushi Chen y col. “Deep learning-based classification of hyperspectral data”. En: IEEE Journal of
Selected topics in applied earth observations and remote sensing 7.6 (2014), págs. 2094-2107.
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applied in several applications such as: HSI classification 36, 37, face recognition 38,

handwritten character classification 39. In the figure 3 is a representation of a CNN,

we can observed the input data, the convolutional layer, the nonlinearity layer and

the pooling layer.

4.5. CLASSIFICATION ALGORITHMS

In this project, we use the following classifiers in order to compare our proposed

method. Next, we describe each one.

36 Yushi Chen y col. “Deep feature extraction and classification of hyperspectral images based
on convolutional neural networks”. En: IEEE Transactions on Geoscience and Remote Sensing
54.10 (2016), págs. 6232-6251.

37 Konstantinos Makantasis y col. “Deep supervised learning for hyperspectral data classifica-
tion through convolutional neural networks”. En: Geoscience and Remote Sensing Symposium
(IGARSS), 2015 IEEE International. IEEE. 2015, págs. 4959-4962.

38 Steve Lawrence y col. “Face recognition: A convolutional neural-network approach”. En: IEEE
transactions on neural networks 8.1 (1997), págs. 98-113.

39 Dan Claudiu Ciresan y col. “Convolutional neural network committees for handwritten character
classification”. En: Document Analysis and Recognition (ICDAR), 2011 International Conference
on. IEEE. 2011, págs. 1135-1139.
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4.5.1. Support vector machine (SVM) It is a classifier, originally proposed by

Vapnik, that finds a maximal margin separating hyperplane between two classes of

data 40. This avoid the “curse of dimensionality“ by placing an upper bound on the

margin between different classes. The classification problem is viewed as a quadratic

optimization problem. To classify data a set of support vectors, which are members

of the training data outlining the hyperplane in the feature space, is determined 41.

To describe the optimal separating hyperplane in the feature space and estimating

the corresponding coefficients of expansion of separating hyperplane, the inner pro-

duct of two vectors in the feature space is estimated as a function of two variables

in the input space 40. Such functions are known as kernel functions. SVMs are the

most well known class of algorithms, which use the idea of kernel substitution. With

suitable choice of kernel the data can become separable in the feature space despite

being non separable in the input space. Some popular kernel functions is radial basis

functions(RBF) 42.

4.5.2. Support vector machine-Radial Basis Function (SVM-RBF) It is one

of the most popular Kernel method used in SVM models. RBF kernel is a function

whose value depends on the distance from the origin or from some point. This is

another shape to represent of SVM, this classifier may use kernel functions which

replace the vector. In this case, the problem transforms into an equivalent linear

hyper plane problem of higher (sometimes infinite) dimensionality. Commonly used

40 Vladimir N Vapnik. “An overview of statistical learning theory”. En: IEEE transactions on neural
networks 10.5 (1999), págs. 988-999.

41 Christopher JC Burges. “A tutorial on support vector machines for pattern recognition”. En: Data
mining and knowledge discovery 2.2 (1998), págs. 121-167.

42 Tarun Ambwani. “Multi class support vector machine implementation to intrusion detection”. En:
Proceedings of the International Joint Conference on Neural Networks, 2003. Vol. 3. IEEE. 2003,
págs. 2300-2305.
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SVM kernels include linear, polynomial, gaussian also known as radial basis function

(RBF), sigmoid and normalized kernels 43.

4.5.3. K-nearest neighbors (KNN) It is one of the most fundamental and sim-

ple classification methods and should be one of the first choices for a classification

study when there is little or no prior knowledge about the distribution of the data. K-

nearest-neighbor classification was developed from the need to perform discriminant

analysis when reliable parametric estimates of probability densities are unknown or

difficult to determine. The KNN rule classifies each unlabeled example by the ma-

jority label among its k-nearest neighbors in the training set. Its performance thus

depends crucially on the distance metric used to identify nearest neighbors 44.

43 J Yuhendra, Hiroake Kuze y J Sri Sumantyo. “Performance analyzing of high resolution pan-
sharpening techniques: increasing image quality for classification using supervised kernel support
vector machine”. En: Research Journal of Information Technology 3.1 (2011), págs. 12-23.

44 Kilian Q Weinberger, John Blitzer y Lawrence K Saul. “Distance metric learning for large margin
nearest neighbor classification”. En: Advances in neural information processing systems. 2006,
págs. 1473-1480.
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5. CLASSIFICATION METHODOLOGY
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Figura 4. Proposed CNN architecture

In this chapter, the methodology to classify hyperspectral images using both a spec-

tral unmixing (SU) method and a convolutional neural network (CNN) is introduced.

Figure 4 shows the flowchart of the proposed classification method. As can be seen

in this figure, both the set of endmembers and the set of abundance maps are obtai-

ned by implementing a SU method. More precisely, the sparse unmixing method via

variable splitting augmented Lagrangian and total variation (SunSal-TV) is applied to

the input hyperspectral image 17. Since the SU method decomposes the hyperspec-

tral image as a linear combination of 2-D images (abundance maps) whose spatial

structure depends on a set of predefined spectral signatures (endmembers), the pro-

posed classification approach considers both the spectral and spatial properties of

the hyperspectral image under test. The principal component analysis (PCA) de-

composition 45 is then applied to the set of abundance maps in order to obtain the

relevant information of the hyperspectral image at sub-pixel levels. Afterward, a patch

extraction procedure is performed over the set of principal components. Specifically,

45 DF Frey y RA Pimentel. “Principal component analysis and factor analysis”. En: (1978).
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for every image pixel, a cubic patch of size 5× 5×Le centered at each pixel is used,

where Le denotes the number of endmembers. It is worth noting that the extracted

patches contain the neighboring spatial information of each pixel, in other words, the

proposed classification methodology considers the spatial-contextual information of

the scene to improve the classification performance. Next, these patches are con-

sidered as the input attributes of a CNN classification architecture 46. To be more

precise, the CNN architecture comprises two convolutional layers, two nonlinear ac-

tivation function layers, one max-pooling layer, and a fully-connected layer.

This chapter is organized as follows. First, the SunSal-TV algorithm and the corres-

ponding implementation details are described. Then, the characteristics of the the

implemented classification CNN architecture are shown.

5.0.1. The SunSal-TV algorithm In essence, the sparse unmixing method via va-

riable splitting augmented Lagrangian and total variation (SunSal-TV) is an algorithm

based on the sparse unmixing formulation. Notice that the sparse unmixing model

describes every spectral signature as a linear combination of pure material spectra.

In addition, the SunSal-TV method includes a total variation (TV) regularization to

the classical sparse unmixing formulation in order to consider the spatial-contextual

information embedded in hyperspectral images 17. Hence, the SunSal-TV unmixing

algorithm attempts to solve the following nonsmooth convex optimization problem

mı́n
X

1

2
‖AX−Y‖2F + λ‖X‖1,1 + λTV ‖X‖TV , subject to X ≥ 0 (5)

where Y ∈ RL×n is the input hyperspectral image in matrix form (where each column

contains the spectral signature of the corresponding spatial coordinate) with L as the

46 Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

32



number of spectral bands and n as the number of pixels of the input hyperspectral

image; X ∈ Rm×n contains the information of the abundance maps in matrix form

with m denoting the number of endmembers; and A ∈ RL×m is the endmember

matrix. Note that ‖ X ‖F≡
√
trace {XXT} represents the Frobenius norm of X and

‖X‖1,1 ≡
∑n

i=1 ‖xi‖1 and xi denotes the i-th column of X. Finally λ ≥ 0 and λTV ≥ 0

are the parameters that controls the influence of the regularization terms also known

as regularization parameters. On the other hand, the total variation norm is given by

‖X‖TV ≡
∑
{i,j}εε

‖ xi − xj ‖ (6)

that can be considered as an extension of the nonisotropic TV 47. In general, the

TV-norm induces regular piece-wise regions in the abundance maps, preserving in

turn, the edges of the scene. This is, this norm includes the information of the set

of neighboring pixels, where ε denotes the set of horizontal and vertical neighbors

included in the TV-norm expression. Note also that the minimization (5) without the

TV-norm term (λTV = 0) reduces to the constrained basis pursuit denoising (CBPDN)

problem. In this regard, the technical documentation of the CBPDN method and other

constrained sparse regression algorithms in the hyperspectral unmixing context are

extensively analyzed in 48. Furthermore, the implementation details of the SunSal-TV

algorithm are comprehensively included in 17.

In particular, the SunSal-TV algorithm is selected because this method induces

piece-wise smoothing regions in the obtained abundance maps. Specifically, this

property considers the spatial-contextual information of the hyperspectral image that

47 Leonid I Rudin, Stanley Osher y Emad Fatemi. “Nonlinear total variation based noise removal
algorithms”. En: Physica D: nonlinear phenomena 60.1-4 (1992), págs. 259-268.

48 Marian-Daniel Iordache, José M Bioucas-Dias y Antonio Plaza. “Sparse unmixing of hyperspectral
data”. En: IEEE Transactions on Geoscience and Remote Sensing 49.6 (2011), págs. 2014-2039.
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is relied on the assumption that neighboring pixels exhibit similar fractional abunda-

ces. Additionally, this characteristic also allows to improve the performance of the

pixel-based classification techniques. In this regard, we use the matlab code of the

SunSal-TV unmixing algorithm available in 49. For each input hyperspectral image

database, the SunSal-TV algorithm is executed, where the number of endmembers

is set same as the number of classes of the ground-truth labelling map. Further-

more, for each hyperspectral image database, the best regularization parameters is

selected by cross-validation whose selection criterion was the Frobenious norm of

the representation error. Finally, the set of abundance maps of the corresponding

hyperspectral image is stored in .MAT format in order to use this information in a

Python programming environment.

5.0.2. The implemented CNN architecture The MAT file that contains the set

of abundance maps obtained by the SunSal-TV algorithm is loaded to implement

the spectral image classification approach. Specifically, this spectral image classifi-

cation approach is implemented in the Jupyter Notebook framework. Afterward, the

abundance map datacube X ∈ RM×N×Le is considered as the input of a PCA de-

composition function, where M × N is the number of pixels and Le is the number

of endmembers. This decomposition generates a datacube XPCA ∈ RM×N×Le. Note

that the PCA decomposition is typically implemented in spectral image classification

problems to improve the labelling accuracy. Then, a patch extraction procedure is

applied to each spatial coordinate of the PCA decomposition. To be more precise,

for each spatial coordinate, a patch with size 5×5×Le centered at the corresponding

pixel is obtained. Every patch is then used as the input of a CNN architecture that

implements a pixel-based classification.

49 http://www.lx.it.pt/ bioucas/publications.html.
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Figure 5 illustrates a schematic of the implemented CNN architecture for hypers-

pectral image classification. As can be seen in this figure, each input patch feeds a

convolutional layer that consists of Le filters of size 3 × 3, the stride is set to 1, and

there is no padding. Then, the output of the convolutional layer is activated with a rec-

tified linear unit (ReLU) which is defined as f(u) = max(u, 0). The dimensions of the

features are reduced by implementing a max-pooling function with kernel stride of 2.

Afterward, a convolutional layer with 3Le filters with dimensions 3×3 with stride fixed

to one, and no padding. A ReLU activation function and a max-pooling layer are also

included. Finally, a fully-connected multilayer perceptron neural network (MLPNN) is

aggregated.

To be more precise, three fully-connected layers were added at the output end of

the CNN. Specifically, the output of the j-th node at the k-th layer outputs can be

expressed as

ζkj = ReLU

(
Nn∑
i=1

Υk−1
i,j ζ

k−1
i,j + ξk−1j

)
(7)

where Υk−1
i,j is the coefficient that connects the i-th node at the k − 1 layer with the

j-th node in layer k, and ξk−1j is the bias term of the j-th node in layer k. In this work,

we select number of hidden layers by implementing a classification performance
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search. The output layer size depends on the number of the classes and the network

parameters are updated by using the back-propagation algorithm with the binary

cross-entropy loss function.

Basically, the fully-connected structure attempts to learn the network parameter set

Θ = {Υ, ξ} that basically contains the connection weight matrix Υ and the bias

vector ξ. Under the multiclass classification framework, consider zn ∈ {0, 1}Nc as

the n-th ground truth label vector with Nc as the number of output classes, and let

sn be the corresponding input vector, therefore, the training set can be represented

as Γ = {zn, sn}Nt
n=1 with Nt as the number of training samples. Hence, the training

stage attempts learn the network parameters Θ that minimize the cross-entropy loss

function given by

E(Θ) = −
Nt∑
n=1

Nc∑
c=1

(zn)c log ((pn(Θ, sn))c) (8)

where (zn)c is the c-th element of the ground truth label vector and (pn(Θ, sn))c is

the probability predicted by the network at the c-th output layer node. Notice that the

network parameters are randomly initialized.

Algorithm 1 illustrates the steps of the proposed hyperspectral image classification

method.
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Algorithm 1 Proposed classification approach
1: procedure Class_HS(Y → input hyperspectral image)
2: [A,X] = SunSal− TV(Y)
3: XPCA = PCA(X)
4: PATCH_SIZE→ 5× 5× Le
5: Xpatch = Patch_Extraction(XPCA)
6: MAX_EPOCHS→ Set the number of epochs
7: MAX_ITER→ Set the number of iterations
8: BATCH_SIZE→ Set the batch size
9: Γ = {zn, sn}Nt

n=1 → Training set
10: G = Batch_Building(Γ,BATCH_SIZE)
11: for e < MAX_EPOCHS do
12: for it < MAX_ITER do
13: G′ = get_next_batch(G)
14: forward_pass(G’)
15: E(Θ) = −

∑Nt

n=1

∑Nc

c=1(zn)c log ((pn(Θ, sn))c)
16: CNNparameters = optimize(E(Θ))

end for
end for

17: end procedure
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6. EXPERIMENTAL RESULTS

In this section, it presents the experimental results of the final stage of the methodo-

logy proposed on different datasets, also, we add a brief description of each one.

6.1. DATASET

Next, each of the datasets used in the research work is described.

6.1.1. Indian Pine This scene was gathered by AVIRIS sensor over the Indian

Pines test site in North-western Indiana and consists of 145*145 pixels and 224

spectral reflectance bands in the wavelength range 0.4−2.5 10(−6) meters. This scene

is a subset of a larger one. The Indian Pines scene contains two-thirds agriculture,

and one-third forest or other natural perennial vegetation. There are two major dual

lane highways, a rail line, as well as some low density housing, other built structures,

and smaller roads. Since the scene is taken in June some of the crops present, corn,

soybeans, are in early stages of growth with less than 5 % coverage. The ground

truth available is designated into sixteen classes and is not all mutually exclusive.

We have also reduced the number of bands to 200 by removing bands covering the

region of water absorption: [104-108], [150-163], 220.

6.1.2. Pavia University This scene was acquired by the ROSIS sensor during

a flight campaign over Pavia, nothern Italy. The number of spectral bands is 103

for Pavia University. Pavia University is 610 × 610 pixels, but some of the samples

contain no information and have to be discarded before the analysis. The geometric

resolution is 1.3 meters. The groundtruth differenciate 9 classes each. It can be

seen the discarded samples in the figures as abroad black strips. Pavia scene were
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provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing

Laboratory, Pavia university (Italy).

6.1.3. Salinas Valley This scene was collected by the 224-band AVIRIS sensor

over Salinas Valley, California, and is characterized by high spatial resolution (3.7-

meter pixels). The area covered comprises 512 lines by 217 samples. As with Indian

Pines scene, we discarded the 20 water absorption bands, in this case bands: [108-

112], [154-167], 224. This image was available only as at-sensor radiance data. It

includes vegetables, bare soils, and vineyard fields. Salinas groundtruth contains 16

classes.

6.1.4. Oil Palm The data set Oil Palm was collected in 2017 by HySpex VNIR-

1600 hyperspectral camera which recorded the remote sensing images in eastern

region Caqueta, Colombia. The hyperspectral image of the oil palm crop was got

thanks to a Colombian company called Quimbaya Aerial Services, this image con-

tains 299× 294 pixels in spatial dimensions and 160 hyperspectral bands which have

a range spectral from 400 nanometers to 1000 nanometers, the study area is a crop

of 130 hectares, the hyperspectral image was acquired through nine flight lines and

430 meters of flight altitude. On the other hand, the ground truth was manually crea-

ted with 3 classes such as, diseased plants in color red, healthy plants in color green,

and background in color blue, where the location of diseased oil palm plants were

taking control points with a GPS.

6.2. SIMULATIONS RESULTS

Several simulations were performed to test the performance of the proposed method

using traditional hyperspectral datasets available on the web. The numerical results

and simulations were performed in Python using Tensor Flow with the library Keras;
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a)

b)

c) d)

Figura 6. Spectral images dataset used a) Indian Pine, b) Pavia University, c)
Salinas Valley, d) Oil Palm Crop

and MatLab. These experiments were carried out on a computer with a processor

Intel(R) core (TM) i7-6700 CPU @ 3.40GHz and the 16 GB of RAM memory.

In this simulations, we classify the different class by each dataset, we use the abun-

dances maps of each dataset as input to CNN, also, we choose randomly the pi-

xels for training (10 %, 15 % and 20 %) and validation ( 90 %, 85 % and 80 %). The

abundances maps were generated using the algorithm of spectral unmixing called

SUn-SAL TV 17 where estimated different endmembers with its respective abundan-
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ces maps according to the dataset, these endmembers were verified with the pure

spectral signature in the hyperspectral image.

Next, we have visual maps of the proposed method and the other traditional methods

that we used to compare our approach such as support vector machine (SVM), SVM-

Radial Basis Function (RBF) and K-nearest neighbors (KNN), also, we can see dif-

ferent visual maps where we alter different training data, and on the other hand, we

can see the quantitative results of each dataset with its different varying.
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University dataset with training data 10 %, 15 %, and 20 % and its ground truth.
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The quantitative results are shown in table 1 which presents the classification ac-

curacy percentage of our experiments. Notice that the proposed method presents

better accuracy at each training data distribution than traditional classification ap-

proaches. To 20 % training, we got 98.9967 percentage accuracy. To 15 % training,

we got 98.8544 percentage accuracy and finally, to 10 % training, we got 98.6013

percentage accuracy.

Pavia
University

Accuracy
10 % Training 15 % Training 20 % Training

Proposed Method 98.6013 98.8544 98.9667
SVM 93.5835 94.2703 94.684

SVM-RBF 93.7732 94.1273 94.2106
KNN 91.6378 92.0643 92.6851

Tabla 1. Quantitative results on Pavia University dataset

The quantitative results are shown in table 2 which present the classification accu-

racy of our experiments. Notice that the proposed method presents better accuracy

at each training data distribution than traditional classification approaches.To 20 %

training, we got 99.2402 percentage accuracy. To 15 % training, we got 98.9893 per-

centage accuracy and finally, to 10 % training, we got 98.5795 percentage accuracy.

Salinas
Valley

Accuracy
10 % Training 15 % Training 20 % Training

Proposed Method 98.5795 98.9893 99.2402
SVM 98.1069 98.463 98.5334

SVM-RBF 98.0556 98.2793 98.3391
KNN 98.1706 98.3326 98.5311

Tabla 2. Quantitative results on Salinas Valley dataset

The quantitative results are shown in table 3 which present the classification accu-

racy of our experiments. Notice that the proposed method presents better accuracy

at each training data distribution than traditional classification approaches. To 20 %
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Figura 8. Visual maps with classification results using the abundances of Salinas
dataset with training data 10 %, 15 %, and 20 % and its ground truth.

training, we got 94.4257 percentage accuracy. To 15 % training, we got 93.1367 per-

centage accuracy and finally, to 10 % training, we got 91.4102 percentage accuracy.

Finally, we used our proposed method using data of Oil Palm, in this experiment, we

classified diseases and healthy plants.

The quantitative results are shown in table 4 which present the classification accu-

racy of our experiment. Notice that the proposed method presents better accuracy

at each training data distribution than traditional classification approaches. To 20 %
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Figura 9. Visual maps with classification results using the abundances of Indian
Pine dataset with training data 10 %, 15 %, and 20 % and its ground truth.

Indian
Pine

Accuracy
10 % Training 15 % Training 20 % Training

Proposed Method 91.4102 93.1367 94.4257
SVM 90.8136 89.7978 90.782

SVM-RBF 84.2023 87.9878 93.2852
KNN 87.6933 92.7966 93.5325

Tabla 3. Quantitative results on Indian Pine dataset

training, we got 88.7861 percentage accuracy. To 15 % training, we got 87.1479 per-

centage accuracy and finally, to 10 % training, we got 84.5312 percentage accuracy.

Oil Palm Accuracy
10 % Training 15 % Training 20 % Training

Proposed Method 84.5312 87.1479 88.7861
SVM 77.1572 77.2696 77.4516

SVM-RBF 78.3314 78.4755 78.5848
KNN 70.4633 70.5281 70.7016

Tabla 4. Quantitative results on Oil Palm dataset
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Figura 10. Visual maps with classification results using the abundances of Oil Palm
dataset with training data 10 %, 15 %, and 20 % and its ground truth.
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7. CONCLUSIONS

A classification approach using a convolutional neural network that includes the

abundances maps of hyperspectral images as input is proposed. Simulation

results show that is possible to classify different traditional datasets and experi-

mental dataset, for instance, a palm oil crop dataset. Additionally, the classifica-

tion results obtained by the proposed method, achieve better overall accuracy

than traditional approaches. In particular, to the Indian Pine, Pavia University,

Salinas Vally, and Oil palm datasets, the proposed method obtains 94.4257,

98.9667, 99.2402, and 88.7861 percent of accuracy, respectively, when the 20

percent of the data is used for the training stage. Finally, one of the advantages

the most important of spectral image classification is that it allows the characte-

rization of different types of crops, therefore, the proposed convolutional neural

network approach can be used to monitor and manage the plantations of the

farmers in Colombia and in other countries in order to control the disease or

plagues.
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Cireşan, Dan, Ueli Meier y Jürgen Schmidhuber. “Multi-column deep neural networks

for image classification”. En: arXiv preprint arXiv:1202.2745 (2012) (vid. pág. 17).

Ciresan, Dan Claudiu y col. “Convolutional neural network committees for handwrit-

ten character classification”. En: Document Analysis and Recognition (ICDAR),

2011 International Conference on. IEEE. 2011, págs. 1135-1139 (vid. pág. 28).

Clark, Roger N y Gregg A Swayze. “Mapping minerals, amorphous materials, en-

vironmental materials, vegetation, water, ice and snow, and other materials: the

USGS Tricorder algorithm”. En: (1995) (vid. pág. 23).

Eismann, Michael. “Hyperspectral remote sensing”. En: Society of Photo-Optical Ins-

trumentation Engineers. 2012 (vid. pág. 18).

Farabet, Clement y col. “Learning hierarchical features for scene labeling”. En: IEEE

transactions on pattern analysis and machine intelligence 35.8 (2013), págs. 1915-1929

(vid. pág. 17).

Feng, Yao-Ze y Da-Wen Sun. “Application of hyperspectral imaging in food safety

inspection and control: a review”. En: Critical reviews in food science and nutrition

52.11 (2012), págs. 1039-1058 (vid. pág. 23).

Frey, DF y RA Pimentel. “Principal component analysis and factor analysis”. En:

(1978) (vid. pág. 31).

49



Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-

Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media,

2019 (vid. pág. 32).

Ghamisi, Pedram y col. “Advances in hyperspectral image and signal processing:

A comprehensive overview of the state of the art”. En: IEEE Geoscience and

Remote Sensing Magazine 5.4 (2017), págs. 37-78 (vid. pág. 15).

Girshick, Ross y col. “Rich feature hierarchies for accurate object detection and se-

mantic segmentation”. En: Proceedings of the IEEE conference on computer vi-

sion and pattern recognition. 2014, págs. 580-587 (vid. pág. 17).

Govender, Megandhren, K Chetty y Hartley Bulcock. “A review of hyperspectral re-

mote sensing and its application in vegetation and water resource studies”. En:

Water Sa 33.2 (2007) (vid. pág. 23).

Iordache, Marian-Daniel, José M Bioucas-Dias y Antonio Plaza. “Sparse unmixing of

hyperspectral data”. En: IEEE Transactions on Geoscience and Remote Sensing

49.6 (2011), págs. 2014-2039 (vid. pág. 33).

— “Total variation spatial regularization for sparse hyperspectral unmixing”. En: IEEE

Transactions on Geoscience and Remote Sensing 50.11 (2012), págs. 4484-4502

(vid. págs. 18, 31-33, 40).

Keshava, Nirmal y John F Mustard. “Spectral unmixing”. En: IEEE signal processing

magazine 19.1 (2002), págs. 44-57 (vid. págs. 16, 24).

Krizhevsky, Alex, Ilya Sutskever y Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. En: Advances in neural information proces-

sing systems. 2012, págs. 1097-1105 (vid. pág. 17).

50



Kuula, Jaana y col. “Using VIS/NIR and IR spectral cameras for detecting and sepa-

rating crime scene details”. En: Sensors, and Command, Control, Communica-

tions, and Intelligence (C3I) Technologies for Homeland Security and Homeland

Defense XI. Vol. 8359. International Society for Optics y Photonics. 2012, 83590P

(vid. pág. 23).

Lawrence, Steve y col. “Face recognition: A convolutional neural-network approach”.

En: IEEE transactions on neural networks 8.1 (1997), págs. 98-113 (vid. pág. 28).

LeCun, Yann, Yoshua Bengio y Geoffrey Hinton. “Deep learning”. En: nature 521.7553

(2015), pág. 436 (vid. pág. 27).

Lennon, R. “Remote Sensing Digital Image Analysis: An Introduction”. En: United

States: Esa/Esrin (2002) (vid. pág. 22).

Liang, Haida. “Advances in multispectral and hyperspectral imaging for archaeology

and art conservation”. En: Applied Physics A 106.2 (2012), págs. 309-323 (vid.

pág. 23).

Makantasis, Konstantinos y col. “Deep supervised learning for hyperspectral data

classification through convolutional neural networks”. En: Geoscience and Remo-

te Sensing Symposium (IGARSS), 2015 IEEE International. IEEE. 2015, págs. 4959-4962

(vid. pág. 28).

Manolakis, Dimitris, Christina Siracusa y Gary Shaw. “Hyperspectral subpixel target

detection using the linear mixing model”. En: IEEE Transactions on Geoscience

and Remote Sensing 39.7 (2001), págs. 1392-1409 (vid. pág. 25).

51



Melgani, Farid y Lorenzo Bruzzone. “Classification of hyperspectral remote sensing

images with support vector machines”. En: IEEE Transactions on geoscience and

remote sensing 42.8 (2004), págs. 1778-1790 (vid. pág. 18).

Paoletti, ME y col. “A new deep convolutional neural network for fast hyperspectral

image classification”. En: ISPRS Journal of Photogrammetry and Remote Sen-

sing 145 (2018), págs. 120-147 (vid. pág. 17).

Ravikanth, Lankapalli y col. “Extraction of spectral information from hyperspectral

data and application of hyperspectral imaging for food and agricultural products”.

En: Food and Bioprocess Technology 10.1 (2017), págs. 1-33 (vid. pág. 15).

Rudin, Leonid I, Stanley Osher y Emad Fatemi. “Nonlinear total variation based

noise removal algorithms”. En: Physica D: nonlinear phenomena 60.1-4 (1992),

págs. 259-268 (vid. pág. 33).

Sermanet, Pierre, Soumith Chintala y Yann LeCun. “Convolutional neural networks

applied to house numbers digit classification”. En: Pattern Recognition (ICPR),

2012 21st International Conference on. IEEE. 2012, págs. 3288-3291 (vid. pág. 17).

Sermanet, Pierre y Yann LeCun. “Traffic sign recognition with multi-scale convolutio-

nal networks”. En: Neural Networks (IJCNN), The 2011 International Joint Con-

ference on. IEEE. 2011, págs. 2809-2813 (vid. pág. 17).

Shaw, Gary A y Hsiaohua K Burke. “Spectral imaging for remote sensing”. En: Lin-

coln laboratory journal 14.1 (2003), págs. 3-28 (vid. pág. 22).

Taigman, Yaniv y col. “Deepface: Closing the gap to human-level performance in

face verification”. En: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2014, págs. 1701-1708 (vid. pág. 17).

52



Vapnik, Vladimir N. “An overview of statistical learning theory”. En: IEEE transactions

on neural networks 10.5 (1999), págs. 988-999 (vid. pág. 29).

Weinberger, Kilian Q, John Blitzer y Lawrence K Saul. “Distance metric learning for

large margin nearest neighbor classification”. En: Advances in neural information

processing systems. 2006, págs. 1473-1480 (vid. pág. 30).

Yuhendra, J, Hiroake Kuze y J Sri Sumantyo. “Performance analyzing of high resolu-

tion pan-sharpening techniques: increasing image quality for classification using

supervised kernel support vector machine”. En: Research Journal of Information

Technology 3.1 (2011), págs. 12-23 (vid. pág. 30).

Zhang, Liangpei, Lefei Zhang y Bo Du. “Deep learning for remote sensing data:

A technical tutorial on the state of the art”. En: IEEE Geoscience and Remote

Sensing Magazine 4.2 (2016), págs. 22-40 (vid. págs. 17, 27).

53


	INTRODUCTION
	OBJETIVES
	PUBLICATIONS
	ORGANIZATION OF THE MASTER THESIS
	THEORETICAL BACKGROUND
	HYPERSPECTRAL IMAGES
	SPECTRAL UNMIXING
	PRINCIPAL COMPONENTS ANALYSIS
	CONVOLUTIONAL NEURAL NETWORKS
	CLASSIFICATION ALGORITHMS
	Support vector machine (SVM)
	Support vector machine-Radial Basis Function (SVM-RBF)
	K-nearest neighbors (KNN)


	CLASSIFICATION METHODOLOGY
	The SunSal-TV algorithm
	The implemented CNN architecture


	EXPERIMENTAL RESULTS
	DATASET
	Indian Pine
	Pavia University
	Salinas Valley
	Oil Palm

	SIMULATIONS RESULTS

	CONCLUSIONS
	BIBLIOGRAPHY

