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Figure 41 Rearrangement of the matrix Ŷ such that the s-th row of Y contains the com- 
 

pressed measurements acquired with the s-th coding pattern φs. 145 

Figure 42 Quality of the reconstruction measured in PSNR vs total compression ratio 149 

Figure 43 Indian Pines in band 112 150 

Figure 44 Test-bed implementation of the fusion of SPC and 3D-CASSI scheme. 151 

Figure 45  a) RGB image b) False color obtained from the reconstructed spectral image. 153 

Figure 46 Spectral Signatures of P1, P2, P3 and P4 of the target with the spectrometer 

and the proposed method. 154 

Figure 47 Examples of coding patterns generated by the proposed (left) and random 

(right) design, respectively. 160 

Figure 48 Block diagonal structure of the matrix Φ̂ and the structure of the J matrix. 163 

Figure 49 Visual representation of the median filter step. 165 

Figure 50 Visual clustering results on AVIRIS Indian Pines image. 167 

Figure 51 Visual clustering results on ROSIS Pavia University image. 168 

Figure 52 Visual clustering results on a 64 ×  64 region of Pavia University. 170 

Figure 53 Proposed E2E Approach. (i) The sensing protocol is modeled as a learnable 

optical layer whose trainable parameter is the CA. 172 

Figure 54 Family of functions to regularize BCA along different values of the tuple p1, p2. 174 

Figure 55 RGB mapping comparison of the reviewed data-driven approaches, employing 

fixed and learned CA into the network. 182 

Figure 56 Testbed CASSI implementation 183 



LIST OF FIGURES 14 
 

Figure 57 (Top) RGB visual representation of the three evaluated methods (Net design, 

Blue-noise and random). (Bottom) Comparison of the normalized spectral signatures 

at three points in the recovered scenes. 184 

Figure 58 Quality behavior of adding various regularizers. 185 



SUPER RESOLUTION PHASE RETRIEVAL ALGORITHM 15 
 

 

 
List of Tables 

 

 
Table 1 State-of-the-art Super-resolution discrete Models 52 

 
Table 2 Value of δ using designed coded apertures for random variables d1,d2 and d3, 

when L = 4. 106 

Table 3 Quantitative assessment of the phase estimation quality in Fig. 32. In bold type- 
 

face the values where SPUD performance is superior. 127 
 

Table 4 Execution time comparison for different array sizes. Time measurements in se- 

conds. 128 

Table 5 Computational complexity of the deep learning and the proposed methods mea- 
 

sured as mean time in seconds of 5 trials. 137 
 

Table 6 Reconstruction time for different data sets and compression ratio. 150 
 

Table 7 Quantitative evaluation of the different clustering results for the AVIRIS Indian 
 

Pines Image. 167 
 

Table 8 Quantitative evaluation of the different clustering results with the AVIRIS Pavia 

University Image. 168 

Table 9 Time and classification accuracy when clustering the reconstructed spectral ima- 
 

ge and the CSI measurements 169 



SUPER RESOLUTION PHASE RETRIEVAL ALGORITHM 16 
 

 
 

 

Resumen 

Tı́tulo:  Algoritmo de recuperación de fase de súper resolución basada en información de escasas   * 

 
Autor: Jorge Luis Bacca Quintero ** 

Palabras Clave:  Super-resolución, Aperturas codificadas, Patrones difractivos codificados, Escases. 
 

Descripción:  La  recuperación  de  la  fase  de  alta  resolución  RFAR  es  un  problema  matemático  inverso  presente  en 

imágenes óptica difractivas, el cual consiste en estimar una imagen de alta resolución a partir de medidas sin fase de 

baja resolución. Esta tesis estudia RFAR en un sistema óptico de patrones difractivos codificados, el cual introduce una 

apertura codificada (AC) para modular la fase, permitiendo adquirir multiples proyecciones desde el mismo objeto.  

Esta tesis doctoral considera dos escenarios de superresolución (i) computacional, donde las caracterı́sticas del sensor 

determinan la resolución de la imagen recuperada, es decir, el tamaño de pı́xel del sensor es menor que el del AC, y 

(ii) fı́sico, donde la resolución de la imagen está  determinada por la resolución de la AC, asumiendo que el tamaño 

de pı́xel de AC es menor que la del sensor. Además, la estructura espacial de las AC puede diseñarse para mejorar 

la  calidad  de  la  estimación  por  lo  tanto  se  desarrollan  diferentes  estrategias  de  diseño.  Po  otro  lado,  la  literatura 

en  algoritmos  de  recuperación  han  demostrado  que  las  formulaciones  no  convexas  superan  los  métodos  convexos, 

requiriendo menos mediciones y complejidad computacional para recuperar la imagen. Sin embargo, la mayor´ıa de  

los métodos no convexos se basan en una función de pérdida no suave y no incluyen información previa sobre la señal, 

como los escases. Por lo tanto, esta tesis estudia una función objetivo de mı́nimos cuadrados no convexos suavizada, 

donde  se  incluye  algunos  conocimientos  previos  sobre  la  señal,  como  escases,  variación  total  y  aprendizaje  de  los 

datos.  Los  resultados  de  la  simulación  muestran  que  los  esquemas  propuestos  superan  los  métodos  más  avanzados 

 

 
* Tesis de doctorado 
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Director Henry Arguello Fuentes 
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en la reconstrucción de la imagen de alta resolución. Esta tesis también muestra que la calidad de la reconstrucción 

utilizando AC diseñada es superior a la de los conjuntos no diseñados. 



SUPER RESOLUTION PHASE RETRIEVAL ALGORITHM 18 
 

 
 
 

Abstract 

Title: Super resolution phase retrieval algorithm based on sparse priors. * 

 
Author: Jorge Luis Bacca Quintero ** 

 
Keywords: Super resolution phase retrieval, Coded diffraction patterns, Coded aperture, Sparsity priors. 

 
Description: Super-resolution phase retrieval (SRPR) is an inverse problem that appears in diffractive optical imaging 

and consists in estimating a high resolution image from low-resolution phaseless measurements. This thesis studies 

SRPR under a setup known as coded diffraction patterns, which introduces a coded aperture (CA) as a phase modulator  

encoding the diffraction patterns, allowing several projections from the same object. This doctoral thesis considers two  

super-resolution scenarios (i) computational, where the sensor characteristics mainly govern the attainable resolution 

of the recovered image, i.e., the pixel size of the sensor is smaller than that of the CA, and (ii) physical, the attainable 

resolution of the image is determined by the resolution of CA, assuming that the pixel size of CA is smaller than 

sensor pixel size. Additionally, the spatial structure of the CA can be designed to improve the quality of the estimation.  

Therefore, different strategies to design this spatial distribution are developed. From the recovery point of view, recent  

literature has shown that the non-convex formulations overcome the convex methods, requiring fewer measurements 

and less computational complexity to retrieve the phase image. However, most non-convex methods are based on non- 

smooth loss function, and they do not include prior information about the signal, such as sparsity. Therefore, this thesis 

studies a smoothed non-convex least-squares objective function, where some prior knowledge about the signal, such 

as sparsity, total-variation, and deep prior, is also included in the proposed formulation. Simulation results show that 

the proposed schemes overcome state-of-the-art methods in reconstructing the high-resolution image. This thesis also 
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shows that the reconstruction quality using designed CA is higher than that of the non-designed ensembles. 
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Introduction 

In many science and engineering applications, it is required to estimate the phase of a com- 

plex signal from a set of intensity measurements. This problem is known as phase retrieval (PR),  

and it occurs in crystallography Pinilla et al. (2018b), Fresnel holography Poon and Liu (2014), 

lens-less imaging Shimano et al. (2018), astronomical imaging Fienup and Dainty (1987), and mi- 

croscopy Dürig et al. (1986), among others. In particular, PR in optical imaging is needed since the 

electromagnetic diffracted field produced by an object when a laser beam illuminates it oscillates at  

rates of ∼ 1015 Hz, a rate which is impossible to be followed with current electronic measurement 

devices Shechtman et al. (2015). Indeed, traditional detectors (e.g., charge-coupled device (CCD) 

cameras, photosensitive films, and the human eye) measure the photon flux or irradiance, which 

are proportional to the magnitude squared of the field not the phase. 

Alternatively, different approaches have been proposed to encode and then, with compu- 

tation recovery algorithms, retrieve the phase, including holography Poon and Liu (2014), over- 

sampling Fourier Miao et al. (2000), short time Fourier Griffin and Lim (1984) and coded diffrac- 

tion patterns (CDP) Candes et al. (2015a), with the latter being the object of study of this work. 

CDP has attracted attention since it modifies traditional diffractive optical imaging by introducing 

an optical element known as a coded aperture which modulates the object diffracted field before 

the intensity of its diffraction pattern is sensed Pinilla et al. (2018b). 

Figure 1 illustrates the optical setup to acquire CDP. Changing the spatial configuration of 

the coded aperture allows capturing multiple coded versions of the diffracted field of the scene. 
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Furthermore, this modulation provides uniqueness guarantees (up to a uni-modular constant) for a 

particular class of coded apertures Candes et al. (2015b); Shechtman et al. (2015), which has not 

been possible with traditional sensing systems. In general, modulations of this type can be attained 

in numerous ways: using a phase mask or an optical grating to modulate the illumination beam 

as mentioned in Loewen and Popov (2018), even by techniques from ptychography which scan 

different illumination angles on an extended specimen Rodenburg (2008); Thibault et al. (2009). 

Usually, the CA spatial distribution is chosen randomly; however, some recent works in other areas 

as tomography Mojica et al. (2017), compressive spectral imaging Arguello and Arce (2014) have 

improved the reconstruction quality by designing the spatial distribution. Therefore, this is a topic 

of interest for phase retrieval, and it is addressed in this thesis. 

The main impediment to obtain a high-quality phase image from CDP measurements comes 

from the optics and the reconstruction algorithm. Notably, the optics impose physical constraints, 

Figure 1. Schematic representation of a system that acquires coded diffraction patterns. 
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Note: A coded aperture is located after the object to modulate the field. 
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which limit the spatial resolution of the complex object; for instance, the low-pass filtering imposed 

by the propagation operator and by the pixelated discrete sensor Katkovnik et al. (2017). Although 

the spatial resolution of the sensor can be physically improved, the number of photons per unit 

area must increase to provide a reasonable signal-to-noise ratio (SNR), which results in longer 

exposure time Shechtman et al. (2015). Therefore, the need arises to design methodologies that 

allow obtaining a high-resolution phase image. 

On the other hand, recently, phase retrieval algorithms with strong mathematical support 

have been proposed, which includes convex Candes et al. (2013, 2015a) and non-convex Chen and 

Candes (2015a) programming. Recent literature has shown that the non-convex formulations out- 

perform the convex methods, requiring fewer measurements and less computational complexity to 

retrieve an image Pinilla et al. (2018a); Wang et al. (2018a,b); Chen and Candes (2015a); Candes 

et al. (2015d); Zhang et al. (2017). Despite the satisfactory performance of reconstruction algo- 

rithms to solve the phase retrieval problem, most non-convex methods are based on non-smooth 

loss function and they are not able to efficiently exploit signal properties such as sparsity, which 

has proven to be a powerful tool to reduce the number of measurements required to obtain a suc- 

cessful recovery phase image and also to increase the spatial resolution, resolving features smaller 

than one-fifth of the wavelength Szameit et al. (2012). 

0.1. Scope of the Thesis 

 

Therefore, this thesis focuses on three main aspects: 

 

Obtain a high-resolution image from low-resolution CDP. For that, this thesis proposed a new 

super-resolution scenario that this thesis denominated as physical since the spatial resolution 
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of a diffractive object can be determined by the resolution of the coded aperture instead of the  

sensor characteristic. This thesis establishes that an image can be recovered (up to a global 

uni-modular constant) with a high probability for this model. 

CA design to improve the quality of the reconstruction. As is shown in this thesis, the theore- 

tical result states that the recovery probability from CDP directly depends on the CA, which 

can be increased by designing the CA. Therefore, a greedy strategy that designs the CA 

spatial distribution to maximize this probability is developed here. In addition, other design 

strategies are studied, such as end-to-end formulations that fit the network weights and the 

CA in a coupled manner. 

Development of new recovery algorithms. This thesis studies a new non-convex formulation 

based on the smoothing function, which overcomes the traditional non-smooth formulation. 

Additionally, sparse priors in the optimization algorithm and the initialization are explored 

to enhance the resolution and decrease the number of measurements necessary to retrieve the 

phase from CDP. Finally, recent deep priors are also studied to improve the reconstruction 

quality. 
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cas, 24(50), e1654-e1654(2021). 

4. Jorge Bacca, Henry Arguello. “Sparse Subspace Clustering for Hyperspectral Images using 

Incomplete Pixels”. TecnoLogicas (2019) 

5. Emmanuel Mart´ınez, Santiago Castro, Jorge Bacca, J., and Henry. Transfer Learning for 

Spectral Image Reconstruction from RGB Images...Applications of Computational Intelli- 

gence: Third IEEE Colombian Conference, ColCACI 2020, Cali, Colombia, August 7-8, 

2020, Revised Selected Papers 3. Springer International Publishing, (2021). 



SUPER RESOLUTION PHASE RETRIEVAL ALGORITHM 27 
 

 
 

 

1. Objectives 

 
General objective 

 

To design and implement an algorithm to reconstruct a high-resolution phase image from 

low-resolution quadratic measurements based on sparse representations. 

 
Specific objectives 

 

To mathematically derive the super-resolution models in the phase retrieval problem to va- 

lidate the assumption that a high-resolution phase can be recovered from low-resolution 

phaseless measurements. 

 

To establish a super-resolution discrete sensing model of the phase retrieval acquisition pro- 

cess from coded diffraction patterns. 

 

To develop a computational algorithm to simulate the super-resolution model from coded 

diffraction patterns. 

 

To derive theoretical guarantees to recover a high-resolution image from low-resolution mea- 

surements using approximate isometry properties. 

 

To formulate and design a numerical optimization problem which in- cludes the sparsity 

regularization term to reduce the number of measurements needed in the phase retrieval 

inverse problem. 
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To evaluate the performance of retrieving the phase which the de- signed reconstruction 

algorithm compared with state-of-the-art methods. 
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2. Theoretical Background 

Generally, the PR problem is formulated as recovering a signal x ∈  Cn from a set of m 

quadratic equations of the form 

 

 
yk = |⟨ak, x⟩|2, k = 1, · · · , m, (1) 

 

where ak ∈  Cn are the known sensing vectors and y = [y1, · · · ym]T is the phaseless measure- ment 

vector. For instance, the well-known Fourier phase retrieval, which corresponds to reco- ver a 

signal from the modulus of its Fourier transform Candes et al. (2015a), occurs when ak = [1, e
− 

j2πk/m, · · · , e− j2πk(n−1)/m], with j = 
√
− 1. PR is inherently an ill-posed problem, where due to the 

quadratic form, many signals may share the same magnitude measurements Shechtman et al. 

(2015). For mathematical analysis, ak are often treated as random vectors, which under this 

assumption, the well-known trivial ambiguities are outperformed and uniqueness guarantees can 

be proven (up to a global constant), that are otherwise difficult to obtain Candes et al. (2015a); 

Gross et al. (2017); Candes et al. (2013). Specifically, any feasible solutions are given by x̂ = e jθ x, 

for some θ ∈  [0, 2π). In consequence, the euclidean distance between two complex vectors w1, w2 

∈  Cn, on this phase retrieval problem is invariant to a global constant expressed as 
 

 

dist(w1, w2) = min 
θ ∈ [0,2π) 

ǁw1e
− jθ − w2ǁ2. (2) 
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One way to achieve the mathematical advantages provided by random sensing variables is 

by using a random coded aperture placed after the object to modulate its diffraction pattern and 

generate now a coded diffraction pattern that can be captured by a detector array. 

2.1. Coded diffraction patterns (CDP) 

 
Figure 2. Optical setups to obtained coded diffraction patterns. 

 

 

Note: (a) Lens-less imaging and (b) 2 f -optical systems. 

 
 

Several optical setups can be built to acquire CDP; for instance, two configurations are 
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yl(k  , k ) = .A 
 

Ml(x, y)o(x, y)
 

.2 
, l = 1, · · · , L, (3) 

 

illustrated in Fig. 2, where it can be noted that the introduced coded aperture allows acquiring of 

multiple projections of the object. In fact, these acquisition systems allow the acquisition of dis - 

tinct measurements of the same scene by changing the spatial configuration of the coded aperture. 

Specifically, Fig. 2(a) illustrates a lens-less diffractive imaging system Goodman (2005). On the 

other hand, Fig. 2(b) represents a 2 f -optical setup, in which the lens adds phase to the diffraction 

patterns that are then recorded by the sensor. The standard formalization of the phase retrieval 

problem from coded diffraction patterns is of the form 

 
 

x y . 
 
 

where o(x, y) represents the object of interest, Ml(x, y) models the l-th configuration of the coded 

aperture, A is the complex-valued wavefront propagation operator from the target to the sensor 

plane which depending on the distance can be modeled as near, middle and far zone as described 

below,  yl(kx, ky) are  the  phaseless  measurements,  L is  the  number  of  snapshots/projections,  and 

(x, y), (kx, ky) the spatial and frequency coordinates, respectively. 

According to the classical diffraction theory Poon and Liu (2014), the wavefront propaga- 

tion from the object to a distance z, just before being measured, is modeled using three diffraction 

zones, known as near, middle and far fields, that are determined according to the distance between 

the object and the sensor Goodman (2008). Figure 2(a) shows a lensless diffractive imaging system 

that illustrates the three traditional diffraction zones. Mathematically, the coded diffraction patterns 

measured by the sensor at the different zones are as follows: 
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x y λ x y 

x y λ 2 

x 

λz 
y 

λz 

 

(a) Near zone: 

 
yl(x, y) = F 

−1 
,

T (kx, ky; z) · F {Ml(x, y)o(x, y)}
, 

, (4) 
 

where T (kx, ky; z) denotes the spatial frequency transfer function defined as 

 

T (k , k ; z) = e 
j2πz 
√

1− λ 2(k2+k2), (5) 

 

 

assuming k2 + k2 ≤ 1 
 Poon and Liu (2014). This zone is considered in applications such as 

 

optical microscopy Dürig et al. (1986), near-field raman imaging Jahncke et al. (1995), and near- 

field spectroscopy Hess et al. (1994). 

 

(b) Middle zone : 

  
jπ(k2+k2)

 ( 
 

 

 

  
jπ(x2+y2) 

 )
 

 

 
 
 
 

Applications such as Fresnel holography Poon and Liu (2014) and lens-less imaging Shimano et al. 

(2018) are based on the middle diffraction zone to develop new acquisition imaging devices Shi- 

mano et al. (2018). 

 

(c) Far zone:  
yl(kx, ky) ∝ F {Ml(x, y)o(x, y)}. (7) 

. (6) F yl(kx, ky) ∝ e Ml(x, y)o(x, y)e 
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x,y 

λ M2∆s (8) 

 

The far diffraction zone has allowed the development of applications such as crystallography, as- 

tronomical imaging and microscopy Goodman (2008). Indeed, the system in Fig.2(b) is modeled 

with the far field. 

For all the cases yl(kx, ky) = A (Ml(x, y)o(x, y)), λ  is the wavelength of the incident light 

and F (·), and F 
−1(·) are the Fourier and the inverse Fourier transform, respectively Goodman 

(2008). 

2.1.1. Forward matrix model. Since the sensor is a finite two-dimensional pixel 

array, as illustrated in Fig. 2, the model should be discretized. Conventionally, the object, sensor, 

and coded aperture are assumed to have the same pixel size (∆). So, it is convenient to introduce 

the following matrices X, Q, Ml ∈  CN× N where N2 stands for the number of pixels, which is given 

as follows: 

 
X[x, y] = ox,y, 

 

Ml[x, y] = Ml  , 
 

  jπzλ (x2+y2) 

Q[x, y] = e (N∆)2 , 

— j2π z 

r

1− λ 2(s2+r2) 

 

 

 

where X[x, y], Ml[x, y] represent the 2D discretization of the object and the coded aperture, respec- 

tively, T[x, y] and Q[x, y] are orthogonal diagonal matrices that model the discrete spatial frequency 

transfer function for the near and middle zone, respectively Goodman (2008); Poon and Liu (2014). 

Also, taking x as a column-wise vectorization of the matrix X, and defining F ∈  CN× N as the dis- 

T[x, y] = e 
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ω 

 

crete Fourier transform matrix with entries 
 
 

H 1   
 

 

− 0(i− 1) − 1(i− 1) − (n− 1)(i− 1) 

fi = √
N 

[ω , ω , · · · , ω ], (9) 
 

 
2π j 

such that i = 1, · · · , N and = e N  is the N-th root of unity; the acquired CDP at the three diffrac- 

tion zones are given by 
 
 

 

yl = |FTFHMlx|2 + ηl (Near zone) ,  

yl = |FHQMlx|2 + ηl (Middle zone) , (10) 

yl = |FMlx|2 + ηl (Far zone) , 
 

 
 

where ηl is the observation additive noise, for l-th measurement. 

2.2. Traditional Phase Retrieval Recovery Methods 

 

This chapter section introduces some state-of-the-art algorithms developed to solve the pha- 

se retrieval problem. Traditional methods can be traced back to the 1070s, where Error-Reduction 

methods Fienup (1982) were proposed. These empirical methods iteratively apply projections bet- 

ween the signal and the phaseless measurements, where some prior knowledge about its structure 

is incorporated. However, these algorithms do not have theoretical guarantees of convergence Can- 

des et al. (2015e); Fienup (1982). In recent years, modern convex and non-convex optimization 

approaches with theoretical guarantees of convergence and recovery have been proposed. All of  

them solve (1), which is the generalized phase retrieval problem. This thesis is focused on the 
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k 

1 

 

non-convex formulation where some recovery algorithms are developed, of which it is worth high- 

lighting, the smoothing phase retrieval, where some variants based on sparsity are also proposed, 

and the E2E approach based on deep learning decoders which is present in Section 5. 

2.2.1. Convex Approaches. Using the lifting trick, the complex signal can be ex- 

pressed as a rank-one matrix and retrieved from quadratic measurements by solving semidefinite 

programming (SDP). Some algorithms under this approach are described below. 

2.2.1.1. PhaseLift Candes et al. (2013). The phase retrieval problem can be seen 

as a problem to recover a low-rank matrix X = xxH . This problem was first addressed by the 

PhaseLift method in Candes et al. (2013), where it is shown that it is possible to recover exactly 

one signal from phaseless measurements contaminated with additive noise, solving the following 

optimization problem 

 
 

argminX∈ Sn× n Tr(X) 

 

subject to 
X ≥ 0

 

ǁTr(akaH X) − ykǁ2 = ǁA (X) − yǁ2 ≤ ε, k = 1, · · · , m. 

 

 

(11) 

 
 

where A (·) : Rn → Rm is a linear operator, X = xxH  and ǁ·ǁ2 is the euclidean norm. This problem is 

relaxed by following a minimization problem of the form 

 
 

argmin 
X∈ Sn× n 2 

ǁA (X) − yǁ2 + τ ǁXǁ∗, (12) 
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k 

k 

2 

k= σk 

 

known as Regularized Nuclear Norm, in the standard theory of optimization Ekeland and Temam 
 

(1999). 
 

2.2.1.2. Normally Distributed Candes et al. (2015c). Assuming that the measure- 
 

ments are a sequence of independent samples of the Gaussian distribution with mean uk and varian- 

ce σ 2, the optimization problem minimizing the log-likelihood function for independent Gaussian 

samples is given by 

 
argminX∈ Sn× n ∑m 1 2

1 
2 (yk −  uk)2 + τTr(X) 

 

subject to u = A (X) 

X ≥ 0 

. (13) 

 

Further if Σ is a diagonal matrix with diagonal elements σ 2, the optimization problem in (13) can 
 

be rewritten as 
 

 

argminX∈ Sn× n 
1 (y −  A (X))HΣ

−1(y −  A (X)) + τTr(X) 

subject to X ≥ 0 

 
, (14) 

 
 

where τ is a regularization parameter. 
 

However, the lifting trick methods are not widely used because they are impractically expen- 

sive other than for small-scale problems. Therefore, some non-convex approaches are developed. 
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    2
|

 | − 

 

2.2.2. Non-Convex Approaches. Conventionally, the least-squares criterion has been 

adopted to recover x, by minimizing the intensity-based empirical loss 

 

 
m ı́n 
x∈ Cn 

m 

h(x) = ∑ akx 2 yk . (15) 
k=1 

 

Due to the absolute value, (15) is highly non-convex. Fig. 3 plots the landscape of (15) for x = 

[0, 1]T , and it can be seen that ± x are global minimizers located inside the dashed circles. In other 

words, (15) is convex near to the global minimizers. Additionally, the dashed rectangle contains 

two saddle points that interfere with the convergence of any phase retrieval iterative process. Then, 

any algorithm that solves (15) can recover x if it can reach these convexity zones. In the literature, 

these regions are reached by performing a carefully statistical initialization of x, which is then 

refined based on gradient-based methods using the Wirtinger derivativeCandes et al. (2015d). This 

 

Figure 3. Landscape of (15) for x = [0, 1]T and L = 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: There are two saddle points inside of the dashed rectangle. (Left) The function graph; 
(Right) The same function visualized as a color image. The coded apertures take values in 

d[t] ∈  {1, − 1, j, −  j}. The dashed circles are the convexity regions of (15). 
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13 
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    k=1   k 
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thesis is focused on the refinement step. 
 

2.2.3. Initialization. 

2.2.3.1. Weighted Maximal Correlation initialization. The Weighted Maximal Co- 

rrelation initialization proposed in Wang et al. (2017b) is based on exploiting the orthogonality 

characteristics of the high-dimensional signal, which is assumed to be orthogonal with the random 

sampling vector. Specifically, the initialization consists in the weighted maximal correlation initia- 

lization proposed in Wang et al. (2017b), is based on exploiting the orthogonality characteristics of 

the high-dimensional signal, which is assumed to be orthogonal with the random sampling vector. 

Precisely, The initialization consists in calculating the vector x0, which is the leading eigenvector 

z̃0 of the matrix 

 

Y0 := 
  1  

∑ 
√

qk
 

|I0| k∈ I0
 

aka
H

 
, 

ǁak ǁ2 

 
(16) 

scaled  by  the  quantity  λ  := 

q
∑m     q2 

,  i.e, x   = λ z̃  .  The  set  I   is  the  collection  of  indices  co- 
 

rresponding to the largest values of {|⟨ak, x⟩|/ǁakǁ2}. The notation |I0| is the cardinality of the set I0  

which are usually chosen as [ 3m ♩ , where [w♩  denotes the largest integer number less than w. 

Moreover, in Wang et al. (2016a) it was established that the distance between the initial guess x0 

and the true signal x is given by 

dr(x0, x) ≤ 
 1  

ǁxǁ2, (17) 

with probability exceeding 1− c3e
−c4m, providing that m ≥ c1|I0| ≥ c2n for some constants c1, c2, c3, c4 > 

0 and sufficiently large n. 
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q 
y∑  k(0)  (R)         1  

  8̃:   Compute x = 

 x . 

k 

2 

x̀(r+1) = G Y0x̃(r) 

0 
    k=  

m 0 0 

∑ 

 
 

 

Algorithm 1 Filtered Spectral Initialization (FSI) 
 

1: Input: Acquired data {ak; yk}, maximum number of iterations T , and a low pass filter G . 

2:   x̃(0) ← Chosen randomly. 
3: Set I 0 as the set of indices corresponding to the I 0 largest values of yk/ ak 2 , and build 

matrix Y0. 

4: for r = 0 : R − 1 do 

  
 

6: x̃(r+1) = 
x̀(r+1)    

.
 

ǁx̀(r+1)ǁ2 

7: end for    
m 
k=  
m 

9: Return: x(0)
 

 

2.2.3.2. Filtered Spectral Initialization. Considering that the scene initial estima- 

tion plays a vital role in solving the phase retrieval problem, this section presents one of the availa- 

ble initialization, the called filtered spectral initialization (FSI). This procedure takes advantage of 

the extension to CDP of the orthogonality-promoting initialization in Jerez et al. (2020). Roughly 

speaking, FSI calculates an estimate of the scene, x(0), computing a low-pass version of the leading 

eigenvector x̃(0) of the matrix 
 
 

Y0 := 
1

 aka
H

 

2 , (18) 
 

|I0| 
(l,k)∈ I0  

ǁakǁ2 

scaled by the quantity λ  := 

q
∑m  

1 yk , i.e, x(0) = λ x̃(0), where the set I  contains the values of s 
 

associated with the [ m ♩  largest values of {yk/ǁakǁ2}. The notation |I0| represents the cardinality of 

the set I0, and (·) is the complex conjugate operation. The low-pass constraint of FSI comes 

from the fact that an image is mostly composed of low frequencies Jerez et al. (2020). Since 

FSI requires the estimation of the leading eigenvector of Y0, the simplest way to achieve it is 

. 5: 
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k= 

 

following a power iteration strategy Wang et al. (2018a). In plain words, this strategy consists in 

recursively performing a matrix-vector multiplication between Y0 and the current estimation of 

the scene, as summarized in Algorithm 1. Precisely, in line 5, a low-pass filter G is applied to 

the  current  estimation  of  x,  Y0x̃(t),  to  preserve  the  low  frequency  information.  Here,  it  is  worth 

mentioning that this filtering process is the crucial step of the initialization and the main difference 

with the orthogonality-promoting initialization (OPI), as illustrated in Fig. 2. In fact, Fig. 2 shows 

that performing the filtering step provides a closer estimation of the scene using fewer phaseless 

measurements. For this particular experiment, G was fixed as the Gaussian filter. Finally, algorithm 

1 returns the scaled vector x(0) as the estimation of the scene, in line 9. Given the initialization 

returned by Algorithm 1, it has been recently used to develop a rapid target detection method from 

CDP achieving high detection rates using the minimal number of measurements Jerez et al. (2020). 

2.2.4. Refinement Step. 

2.2.4.1. Truncated Wirtinger Flow (TWF) Chen and Candes (2015a). Suppose 

that the measurements are a sequence of independent samples of the Poisson distributions, i.e 

yk ∼ Poisson(|⟨ak, x⟩|2).  Calculating  the  log-Likelihood  for  independent  samples,  has  the  form 
 

m 
k=1 yklog(uk) −  uk, where u = A (X), then the optimization problem to recover the phase can be 

 

written as  
argminX∈ Sn× n ∑m 1 yklog(uk) −  uk + τTr(X) 

subject to u = A (X) 

X ≥ 0 

 
 
 

, (19) 

∑ 
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|⟨
m

 

 

where τ is a regularization parameter. 
 

2.2.4.2. Truncated Amplitude Flow (TAF) Wang et al. (2018a). Adopting the least- 

squares criterion, the task of recovering a solution from the phaseless measurements reduces to that 

of minimizing the amplitude-based loss function 

 

m ı́n f (x 
1   m 

a   x q 2 (20) 

x∈ Cn 
) = ∑ ( 

k=1 

k, ⟩| − k) , 

 

where and qk = 
√

yk. Notice that the optimization problem in (20) is non-smooth and non-convex. 

To solve these issues a smoothing phase retrieval algorithm has been developed; it will be introdu- 

ced in the following. 
 

2.2.4.3. Sparse priors. Some prior knowledge of the object can be incorporated 

into the phase retrieval problem to help regularize, which is the case of a real-space object that is 

sparse in some known representation Baraniuk (2007). Mathematically, this means that an object 

is represented as a sparse linear combination on a basis as 

 
x = Ψθ, (21) 

 

where Ψ ∈  Cn× n stands for the sparsity basis and θ is a sparse vector, i.e., ||θ ||0 = k << n, where 

vector contains a small number of non-zero coefficients. This constraint can be practically incor- 

porated into convex and non-convex optimization problems. 
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H , (22) 

 

2.2.4.4. SDP-Based Methods with sparsity prior. Since the result outer product 

X = xxH of a sparse signal is a sparse matrix as well Ohlsson et al. (2011), SDP methods can 

incorporate this prior information by minimizing the l1 norm of the matrix X. This formulation 

yields 
 

arg min Tr(X) + τ ǁXǁ1 

.Tr(akak X) −  y. ≤ ε, k = 1, · · · , m 

 

subject to X ≥ 0, 

where the solution of (22) is shown in Ohlsson et al. (2011) to be unique in the noiseless cases. 

Further, in Li and Voroninski (2013) it was shown that for independent zero-mean sensing vectors, 

on the order of O(k2 log(n)) measurements are needed to recover a k-sparse vector. However, 

as explained in the previous section, the SDP methods are expensive to real problems where the 

dimensions of the data increase. 

2.2.4.5. Wirtinger-Based Methods with sparsity prior. Recently, Wirtinger-based 

methods have been extended to PR with sparse inputs. Sparse WF (SWF) Yuan et al. (2019), 

and the sparse truncated amplitude flow (SPARTA) Wang et al. (2017c),use different initialization 

strategies to guarantee exact recovery of the true signal. In particular, SPARTA introduces the 

sparse orthogonality promoting initialization in Wang et al. (2017c), and SWF proposes a variant of 

the spectral initialization developed in Yuan et al. (2019). The initialization for the SWF algorithm 

returns a more accurate estimate of the true signal than the SPARTA initialization. On the other 

hand, to exploit the sparsity prior, in the refinement step, a k-sparse hard threshold operator Hk(·)is 
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iteratively applied in the gradient descent direction as 

 

 
x(t+1) = Hk

 
x(t) −  τ∂ f 

 
x(t)

  
, t = 1, 2 · · · (23) 

where Hk(u)sets all the entries in the vector u ∈  Cn to zero, except for its k largest absolute 

values.This procedure can decrease the freedom of dimensions, constraining the searching do- 

main and converges linearly for any k-sparse n-long signal (k n) with sampling complexity 

O(k2 log(n)) Wang et al. (2017c); Yuan et al. (2019). 
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3. Super resolution phase retrieval problem 

Before showing the super-resolution scenarios, it is worth describing the mathematical mo- 

del of the coded aperture since it is an important optical element that allows obtaining the proposed 

super-resolution scenario that this thesis denominated as physical. This optical element is a two- 

dimensional array of square hardware pixels, as illustrated in Fig 4. Defining ∆m as the pixel size 

of the coded aperture, its transmittance function can be expressed as 

 

M(x, y) = ∑ Mk ′ l ′ rect

 
  x   

− k ′
, 

  y  
− l ′

  

, (24) 

 

 

where  Ml represents  the  value  at  the  pixel  indexed  by  k ′
, l

′ .  Notice  that  the  coded  aperture  is 
 

described as a continuous model, but it has the same spatial value in an area of∆m ×  ∆m given by 

the pixels of the coded aperture. The spatial resolution in phase retrieval is limited by two princi- 

pal factors: low-pass filtering by the propagation operators and by the pixel size in the pixelated 

discrete sensor and the coded aperture Katkovnik et al. (2017), being the last one the case of study 

of this thesis. 
 

Discretization of the encoded object. In CDP, the object and the CA are placed 
 

in the same plane, i.e., the wavefront just before the coded aperture, which is called the encoded 
 

object is described as 
 

õl(x, y) = Ml(x, y)o(x, y) (25) 
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S∆ 

 

Figure 4. Visual representation of the coded aperture 
 

Note: The pixel size is denoted as (∆m ×  ∆m) 

 
where l stands for the number of projections of the same object with the different spatial dis- 

tribution of the CA. It is worth noting that the encoded object is continuous (although it passes  

through the CA that has discrete pixels), and the sensor is responsible for the discretization of the 

wavefront. 

Therefore, assuming ∆s as the pixel size of the sensor, the sampling period of the encoded 

object must satisfy the following equality Goodman (2005); Poon and Liu (2014) 

 
 

∆o˜ =
 λz 

, (26) 
s 

 

 

where S ×  S is the square-support of the sensor, λ is the wavelength, and z is the propagation 
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q 

k,l ∆õ ∆õ 

∆õ ∆õ 

∑M l rect
  x 

−  t,
 y 

−  q

  

o(x, y)dxdy, 

 

distance. Moreover, as the object and the CA are in the same plane, considering (26) and (24), the 

discrete value of the encoded object õl(x, y) is modeled as 

 

o˜l =

∫∫  

rect

 
 x  

− k, 
 y  

− l

  

õl(x, y)dxdy 

=

∫∫ 

rect

 
 x 

−  k,
 y 

−  l

 

×  
 
 

t, 
t,q 

` 
∆m ∆m 

Ml

˛
(

¸
x,y)   

x
 

 

for k, l = 1, · · · , S. Considering this setup, and assuming the pixel size of the coded aperture (∆m 

×  ∆m) and the sensor (∆s ×  ∆s) as is shown in Fig. 5, some scenarios of the discretization of the 

continuous object1 o(x, y) can be considered: 

 

∆o = ∆o˜ = ∆m = ∆s, which corresponds to the traditional phase retrieval problem. 

 

∆o = ∆s = ∆o˜ and ∆m > ∆s, can be treated as the traditional phase retrieval problem with 

super-pixel in the coded aperture. 

 

∆o < ∆s = ∆o˜ = ∆m, this setup, is considered as a computational super resolution scena- 

rio Katkovnik et al. (2017), since according with the pixel size ∆s it is not physically possible 

to reconstruct an image with higher spatial resolution. However, only a pure computational 

 

 
1 It is important to highlight that this discretization is computational and is necessary to perform employed phase al - 

gorithms. The computational pixel value can be as small as desired; however, different small features are achieved  
due to the optical elements. 

(27) 
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Figure 5. Coded Aperture and Sensor 
 

Note: Pixel size of the coded aperture (∆m ×  ∆m) and the sensor (∆s ×  ∆s) 

 
model with a computation sampling period of ∆o can be used in the recovery algorithm, and 

then decimated into the sensor. 

 

∆o = ∆m < ∆o˜ < ∆s, this setup considers a pixel size of the coded aperture ∆m smaller than 

∆o˜ which is the pixel size of the target image that the sensor allows. Therefore, the spatial  

resolution of the image depends on ∆m instead of the pixel size of the sensor ∆s, leading to 

a physical super-resolution scenario; for this reason ∆m should be smaller than ∆o˜. Addi- 

tionally, this setup is of high interest because it corresponds to a hardware super-resolution 

scenario. 

 
3.1. Physical super resolution phase retrieval 

This thesis focuses in the case when ∆m < ∆o˜, which is the scenario showed in Fig 6. In 

order to simplify (27), assume that ∆o˜ = rm∆m, where rm ≥ 1 is an integer up-sampling factor, 



3.1.  PHYSICAL SUPER RESOLUTION PHASE RETRIEVAL 48 
 

of size ∆m ×  ∆m as illustrated in Fig 5. This fact implies that the effect of rect
 

 x −  k, y −  l
 

in 

l 

 

which means that within the squared section ∆o˜ ×  ∆o˜ there are rm ×  rm pixels of the coded aperture 
 

 

(27) can be equivalently expressed by limiting the indexing variables t, q as 

∆õ  ∆o˜ 

 
 

1 + (k −  1)rm ≤ t ≤ krm 

1 + (l −  1)rm ≤ q ≤ lrm. (28) 

 
In consequence, (27) can be rewritten as 

 

 
k,l = 

 
krm 

∑ 

 
lrm 

∑ 
 

l 
t,q 

 
ot,q (29) 

 
 

Figure 6. Super-resolution scenario. 

t=1+(k− 1)rm q=1+(l− 1)rm 

coded aperture sensor 
 
 
 
 
 

 

 
 

 

 
Note: Pixel size of the coded aperture (∆m ×  ∆m), and sensor pixel size (∆s ×  ∆s). 

õ M 
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y ∑ õ 

.s,r 

. z 

. . 

where ot,q = 
∫∫ 

rect  x −  t, y −  q
 

o(x, y)dxdy models the discrete values of the target image, for 

l 
k,l = .∑ e2 jπ(M + M ) 

T e− 2 jπ(M + M ) 

õ 2S∆ 

y 

 

∆m ∆m 

t, q = 1, · · · , rmS. 

Thus, from (29), and the relationship z ≥ 

 

 

 

 

 
2 

λ , presented in Poon and Liu (2014); Goodman 
 

(2005) to avoid signal aliasing at a distance z, the discrete version of the measurements for the 

three main zones can be written as 

(a) Near zone: 

 

. 
  

M M 
 

 

ks   lr   

! 
ks   lr   

. 
  

. s,r 

— j2π z 

r

1− λ 2(s2+r2) 

k,l 
. 

where Ts,r = e λ 
M2∆2

s , is the discrete version of T (kx, ky; z). 
 

(b) Middle zone: 
 

 

 

 

 
 

jπ∆2    2 2   
S 

  

 

 

 

 
  jπzλ  2 2 

 

 

 
  

k̃k 

 
l˜l

 . 

(c) Far zone: 
l 
k̃,l̃  

= cλ e 

. 

zλ 
s (k̃  +l̃   ) ∑ õl 

k,l 

e (S∆s)2 (k +l )
e
− 2 jπ 

S + S 

. 
(31) 

∆4  . M  
 
(k+1)rm (l+1)rm 

 

  

! 
ks 

 
 

 

lr   
. 

 

l s,r λ o˜ 2z2 
∑ 

. 
k,l 

∑ 
s=krm 

∑ 
r=lrm 

Ml os,r e2 jπ(M + M ) 
. 

. (32) 

 
 

3.1.1. General Forward Matrix Model . From the discrete model previously de- 

veloped, a matrix representation of the diffraction process is presented. Let X, Ml ∈  CN× N with 

N = rmS and Q1 ∈  CS× S be matrices whose entries are given by 

s,r y = 

k,l 
. 

   

2 

2 

2 

l 
k,l 

, (30) 
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t,q 

2 (k +l ) 

+ 

 
m 

m 

 

λ M2∆s (33) 

 

X[t, q] = ot,q, 
 

Ml[t, q] = Ml , 

jπzλ 2 2 
 

Q1[k, l] = e (M∆s) . 

— j2π z 

r

1− λ 2(s2+r2) 

 

 

 

Considering (33), an expression in vector form of measurements in each zone can be obtained. Spe- 
 

cifically, taking x ∈  Cn as a column-wise vectorization of the matrix X, and the diagonal matrices 
 

M̃ l ∈  C
n× n  and Q̃  ∈  Cm× m, whose elements are the entries of the matrix Ml and Q, respectively, 

 

the discrete versions can be modeled as 

 

 
yl = |FTFHDMlx|2 (Near zone) , 

yl = |FHQDMlx|2 (Middle zone) , (34) 

yl = |FDMlx|2 (Far zone) , 

 
where n = N2, m = S2, yl ∈  Rm , and D ∈  Rm× n represents a down-sampling matrix defined as 

 

 
 1 , if ĩ = [ b̃(modN) 

♩  + 1  and 
r2 

 

(D)i,b = 
 

rm 

 

(ĩ − i)r2  = (b̃ − b). 

 
(35) 

 

0, otherwise, 

T[x, y] = e 
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2π j 

∆2 

λz 

rm N Nrm 

i √ 

 

where ĩ = i −  N [ (i−1)rm ♩  and b̃ = b − Nrm[
(b−1) 

♩ , such that DM̃ lx models (29), and F ∈  Cm× m  is 
 

the discrete Fourier transform matrix with entries 
 
 

fH =
 1 

[ω 
m 

− 0(i− 1) , ω
−1(i−1), · · · , ω − (n− 1)(i− 1) 

], (36) 

 

 

such that i = 1, · · · , m and ω = e m   is the m-th root of unity. Moreover, if g2 = [y1, · · · , yL] is defined 

as the global measurement vector at the middle zone, we have 

 

g2 = |A2x|2, (37) 

 
where the matrix A2 is the vertical concatenation of the matrices FQ̃ 

1DM̃ l given by 

 
A2 =    õ 

 
(FQ̃ 

1DM̃ 1)
H , · · · , (FQ̃ 

1DM̃ L)
H
 H 

. (38) 

Additionally, the low-resolution sensing models for the other diffraction zones are summarized in 

Table 1. Specifically, for the near zone the matrix A1 is defined as 

 

A1 = 
 
(FTFHDM̃ 1)

H , · · · , (FTFHDM̃ L)
H
 H 

, (39) 

where T represents the discrete spatial frequency transfer function. Similarly, the sensing matrix 
 

A3 corresponding to the far field can be modeled as 
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∆2 

λz 

    

    

u,i u,i 

 

Table 1. State-of-the-art Super-resolution discrete Models 
 

Discrete Model Near zone Middle zone Far zone 

Proposed g1 = |A1x|2 g2 = |A2x|2 g3 = |A3x|2 

Katkovnik et al. (2017) D|G1x|2 - - 

Katkovnik and Egiazarian (2017) - - D|G2x|2
 

Jaganathan et al. (2016) - - |G3x|2
 

A3 =    õ 
 
(FDM̃ 1)

H , · · · , (FDM̃ L)
H
 H 

. (40) 

To compare the derived matrix models in (38), (39) and (40) with those from the state-of-the- 

art. Table 1 summarizes the different super-resolution phase retrieval models for coded diffraction 

patterns. In particular, the matrices G1 and G2 are given by G1 = 
 
(FTFH M̃ 1)

H , · · · , (FTFH M̃ L)
H
 

and  G2  =  (FH M̃ 1)
H , · · · , (FH M̃ L)

H    from  Katkovnik  et  al.  (2017);  Katkovnik  and  Egiazarian 

(2017), respectively. On the other hand, Jaganathan et al. (2016) assumes that the measurements 

are low-frequencies, i.e. matrix G3 is modeled as G3 =  (SFHM̃ 1)
H , · · · , (SFHM̃ L)

H  , where S is a 

diagonal selection matrix that only chooses the low frequencies. Under the derived models in  

(38), (39), and (40), the next section provides uniqueness guarantees for the super-resolution phase 

retrieval problem from CDP. 

3.2. Uniqueness guarantees for physical super resolution phase retrieval 

 

From the vector form of the proposed super-resolution models in Table 1, each measurement 
 

(gu)i is modeled as 
 

(gu)i = |aH x|2  = aH xxH au,i, (41) 
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+ 

u,1 u,mL 

+ 

 

where au,i is the i-th row of the matrix Au, for the u-th diffraction zone, with u = 1, 2, 3. Let 

Au : S n
× n → RmL be the linear mapping defined as 

 
 

Au(W) = [aH Wau,1, · · · , aH Wau,mL]T , (42) 
 
 

where W is a matrix variable that belongs to S n×n which is the space of self-adjoint positive 

semidefinite matrices. Observe that if W = xxH then gu = Au(W) for all u = 1, 2, 3. In order to 

guarantee  unique  solution  from  the  phaseless  measurements,  the  linear  operators  Au(·) must  be 

injective Candes et al. (2013); Gross et al. (2017). Indeed, it is only necessary to prove that Au(·) 

is injective in the set 

Tx := {xwH + wxH : w ∈  Cn}, (43) 

which is the tangent space of the manifold of all rank-one Hermitian matrices at the point xxH
 

Candes et al. (2013); Gross et al. (2017). Proving this property over Au(·) guarantees the existence 

of a unique solution to the proposed super-resolution phase retrieval scenario Candes et al. (2013); 

Gross et al. (2017). Before proving Theorem 1, it is important to remark that this thesis assumes that 

the coded aperture M̃ l entries are i.i.d copies of an admissible random variable d which satisfies 

Definition 1. 

 
Definition 1. (Admissible Random Variable). A discrete random variable obeying |d| ≤ 1, is said 

to be admissible. 
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l 

2 

1 

cmL ∞ 

 

Theorem  1.  Fix  any  δ  ∈  (0, 1) and  the  set  of  coded  apertures  {M̃ l : l = 1, · · · , L} with  i.i.d 

entries of an admissible random variable d. Assume that for some constant c > 0, the matrix 
L 

P = ∑ M̃ H DHDM̃ l satisfies 
l=1 

ǁP − cIǁ∞ ≤ δ , (44) 
 

 

where L ≥ c0n, for some sufficiently large constant c0 > 0, with I as the identity matrix, and D 

the down-sampling matrix as in (35). Then, considering (44), the sensing matrices Au for the u-th 

diffraction zone satisfy 

 

P 

 
  1    

ǁAuǁ2   ≤ 1 + δ 

  

≤ 1 − ne
− c1mLε2 

, (45) 
 
 

for some constant c1 > 0 with ε := máx(δ , δ 2). Also, with the same probability of (45), the linear 

operators Au(·) that model the phaseless measurements for the u-th diffraction zone are injective 

in the set Tx, that is 

 
(1 − δ )ǁWǁ1 ≤ 

cmL 
ǁAu(W)ǁ1 ≤ (1 + δ )ǁWǁ1, (46) 

 
for any W ∈  Tx. Therefore, the existence of a unique solution to the proposed super-resolution 

phase retrieval scenario is guaranteed with high probability. 

Demostración.  Let W ∈  Tx, have rank at most two. For a normalized eigenvector of W, the eigen- 
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ǁ ǁ . | | | | . 

i=1 

2 

u 

2 2 

= ̈ ∑ M̃ H DHDM̃ 
l¨ l 

 

value decomposition can be expressed as 

 

 
W = λ1bbH + λ2vvH, (47) 

 
 

with non-negative eigenvalues λ1, λ2 and normalized vectors b, v. Observe that from the definition 

of the linear map Au(·) in (42) we have that 

mL 

Au(W) 1 = ∑ λ1 ai,ub 2 + λ2 ai,uv 2
 

i=1 
mL 

≤ ∑ |λ1| |ai,ub|2 + |λ2| |ai,uv|2
 

= |λ1|ǁAubǁ2 + |λ2|ǁAuvǁ2 

 
 
 
 

(48) 

 
2 2 

≤ (|λ1| + |λ2|)ǁAuǁ∞ = ǁWǁ1ǁAuǁ∞, 
 

 

in which the first and second inequalities are obtained using the triangle inequality, and the last 
 

claim is based on the fact that ∑ j |λ j| = ǁWǁ1 and ǁbǁ2 = ǁvǁ2 = 1. On the other hand, notice that from 

the definition of Au in Table 1, it can be obtained that 

 

ǁAuǁ∞ = λmax 
 
AHAu

 
 

 

  
¨ 

¨ 

¨
l=1 

¨
∞ 

 

where λmax(·) denotes the largest eigenvalue of a matrix. Additionally, assuming the condition in 

(44) holds for L ≥ c0n, for some sufficiently large constant c0 > 0, then from  Theorem 5.44 in 

2 
L 

2 
= ǁPǁ∞ , (49) 
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1 

cmL ∞ 

2 2 

 

Vershynin (2010) it can be obtained that 

 
 

P 

 
  1    

ǁAuǁ2 

 
≤ 1 + δ

  

≤ 1 −  ne
−c1mLε2 

, (50) 
 
 

for some constant c1 > 0 with ε := máx(δ , δ 2). Thus, combining (48) and (50), the right side of 

the inequality in (46) is expressed as 

 
 

cmL 
ǁAu(W)ǁ1 ≤ (1 + δ )ǁWǁ1 (51) 

 
with probability at least 1 −  ne

−c1mLε2 
. 

On the other hand, since (50) holds, from Lemma 5.36 in Vershynin (2010) it can be obtai- 
 

ned that 1 1 

c 
ǁAu(W)ǁ1 = 

c 

 
λ1ǁAubǁ2 + λ2ǁAuvǁ2

 
 

≥ (1 − δ )(λ1 + λ2) = (1 − δ )ǁWǁ1, 

with probability at least 1 −  ne
−c1mLε2 

, where the last equality is obtained since W is positive 

semidefinite. Thus, from (52) 

 
1 1 

cmL 
ǁAu(W)ǁ1 ≥ 

mL 
(1 − δ )ǁWǁ1, (53) 

Finally, combining the left side of (51) and the right side of (53), the result in (46) holds. In 

consequence, each operator Au(·) is injective with high probability, guaranteeing the existence of 

a unique solution to the proposed super-resolution phase retrieval scenario Candes et al. (2015a); 

(52) 
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Candès and Li (2014). 
 

Notice that Theorem 1 proves that the probability of the linear operators Au(·) to be injec- 

tive increases when the value of δ in (44) is small. From an optimization point of view, this result 

implies the need to design the set of coded apertures to guarantee uniqueness. Then, considering 

this observation, the following section provides a strategy to design the set of coded apertures  

based on condition (44). 
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r2 

 
 
 

4. Coded Aperture Design in Phase Retrieval 

 

As shown in the theoretical and experimental results, the coded apertures (CA) distribution 

plays a crucial role in recovering the phase in coded diffraction patterns (CDP). Therefore, this 

chapter presents two CA design strategies, one independent of the data, based on a greedy strategy 

to increase the theoretical recovery probability. The other is based on data, using an end-to-end 

(E2E) deep learning approach. 

4.1. Greedy strategy based on uniqueness guarantees 

 

The result from the previous section provides useful guidelines for the design of coded- 

aperture ensembles, which lead to satisfy (46) so that better sensing matrices can be obtained to 

guarantee uniqueness. In particular, the theoretical condition in (44) shows that the set of coded 

apertures defines the concentration of measure of the largest eigenvalue of the sensing matrix Au 

Hinojosa et al. (2018). Then, to determine a strategy to design the set of coded apertures, the 

structure of matrix P has to be analyzed. Thus, notice that from (35) we have that 

 

DHD =
 1 

I + R, (54) 
m 
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` ˛¸ x ` ˛¸ x 

 

where R contains the off-diagonal terms of DH D. Taking (54) into account, the matrix P can be 

expressed as 

 

L 
P ˜ H    H ˜ 1 L ˜ H ˜ L ˜ H ˜ 

= ∑ Ml D DMl = 
r2   ∑ Ml Ml + ∑ Ml RMl . (55) 

l=1  
m l=1       

V1 

l=  1    

V2 

 

From (55), it can be observed that (44) can be satisfied if V1 = cI, and V2 = 0 for some imposed 

constant c > 0, where 0 represents a n ×  n all-zero matrix. More precisely, these two conditions 

lead to the following design criteria: 

(a) Temporal correlation: Condition V1 = cI for some c > 0 can be accomplished if each 

pixel of the image is modulated for all the coding elements of the random variable d, along the L-

experiments. 

 
Figure 7. Visual comparison between a designed and a non-designed coded aperture. 

 

 

Note: For two experiments with the admissible random variable d ∈  {1, 0}. 
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l 

+ ̈ ∑ (M̃ H DHDM̃ 
l)1n − (U/n)1n¨ 

L 

L 

n l n 

2 

 

(b) Spatial separation: In practical terms, one can minimize the term V2 by building a set 

of coded apertures with an equispaced distribution of the coding elements, since R is the matrix 

that contains the off-diagonal terms of DH D. 

A recent work has developed a strategy that considers these criteria to design the coded 

apertures Mejia and Arguello (2018). Specifically, Mejia and Arguello (2018) minimizes the upper 

bounds of the Gershgorin theorem of a given matrix, which in this case is P. This process generates 

a uniform distribution of the coding elements within the coded apertures ensuring that V1 = cI, for 

some c > 0 and V2 ≈ 0. This thesis follows the optimization strategy developed in Mejia and 

Arguello (2018) to design the set of coded apertures, which is formulated as 

 

¨ 
¨ 

 

 

m´ın 
¨1T ∑ (M̃ H DHDM̃ 

l) − (U/n)1T ̈  
{M̃ l} ¨

¨  
l=1 

¨
2 

¨ 
¨ ¨

l=1 
¨

2 
 

for l = 1, · · · , L, where 1n ∈  Rn denotes the vector whose entries are ones, and U is a constant. This 

optimization problem is solved using a greedy algorithm Mejia and Arguello (2018). The design 

criteria in (56) can be referred to as uniform sensing, as illustrated in Fig. 7, for an admissible 

random variable d ∈  {1, 0}. Specifically, the first term in (56) handles the sum per column of P that 

indicates the number of times a pixel of the image is sensed. Additionally, the second term of (56) 

indicates the number of pixels of the image measured onto a certain experiment by the sensor. In 

addition, the proposed coded aperture design prevents forming clusters of the same coding element, 

as happens in Fig. 7. It is worth mentioning that Fig. 7 illustrates a designed coded aperture when 

2 

, (56) 
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l=1 

D,θ 

2 

 

d has just two possible values i.e. {0, 1}. In the case when d has more than two values, the coded 

aperture can be seen in Mejia and Arguello (2018) as a three-dimensional binary structure, where 

the third dimension is related to the number of elements of d, such that each slice corresponds to a 

binary mask that indicates whether each value of d is located. 

4.2. End-to-End Phase Mask Design 

 

This proposed strategy seeks the sensing design in PR based on MPM for reconstruction 
 

procedure using the E2E approach. Here, it jointly optimizes the MPM D ∈  {Dl}L
 , and the 

 

parameters θ , according to a chosen DNN Mθ (·), by minimizing a cost function L (·) considering a 

regularization function R(·) that promotes particular properties in MPM. From a set of J scenes 

{x( j)}
J , which produce the initial estimation {z̃( j) = FSI(|fH Dlx

( j)|2)}J , then, the proposed 
j=1 

optimization problem is given by 

k j=1 

 

 

{D
∗
, θ 

∗} ∈  arg min L (D, θ |x( j), z̃( j)), 

  1 J 

 

(57) 

L (D, θ |x( j), z( j)) = ∑ ||Mθ (z̃( j)) − x( j)||2 + ρR(D), 
J j=1 

 

where ρ > 0 is a regularization parameter. Algorithm 2 summarizes the proposed E2E methodo- 

logy in order to solve the optimization problem stated in (57). In line 5, the acquisition model is 

implemented. Then, in line 6, the optical field is estimated through Algorithm 1. The designed 

DNN refines the optical field approximation in line 7. The loss function is evaluated in line 8. Be- 

sides, the gradients of D and θ are computed in lines 9 and 10, respectively, which are used in the 

Adam update Kingma and Ba (2014). Finally, the optimal MPM and the optimal parameters θ of 
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j=1 

l=1 

k,l 

← 
← 

k,l k 

J j=1 2 

 

the recovery phase network are returned in line 11. 
 

Algorithm 2 Learning MPM.  

1:   Input: Training set {x( j)}J  with J images. 

2: Initialize: Initialize the optimization variables for L MPM as D ∈  {Dl}L
 from a uniform 

distribution. 
3: for epoch = 1:E do 

4: for  j = 1:J do 
5: y( j) = |fH Dlx

( j)|2, k ∈  {1, · · · , n} 

6: z̃( j) ← FSI
 

y( j), Dl

 
 

7: z( j) ← Mθ 

 
z̃( j)

 
 

8: LD,θ = 1 ∑J  ǁx( j) − z( j)ǁ2 + ρR(D) 

9: D Adam(D, β1∇DLD,θ ) 

10: θ Adam(θ, β2∇θ LD,θ ) 
11: end for 

12: end for 

13: Return: Optimal MPM D and θ 
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5. Proposed Phase Retrieval Recovery Methods 

 
Recent literature has shown that the non-convex formulations outperform the convex met- 

hods, requiring fewer measurements and less computational complexity to retrieve the phase ima- 

ge. However, most non-convex methods are based on non-smooth loss function, and they do not 

include prior information about the signal, such as sparsity. Therefore, this chapter presents so- 

me algorithms proposed based on a smoothed non-convex least-squares objective function, where 

sparsity prior as total-variation and deep priors are also included in the proposed formulation. 

5.1. Smoothing Phase Retrieval Algorithm 

 

The smoothing phase retrieval problem is proposed to the general phase retrieval problem 

formulated as the system of m quadratic equations of the form 

 
yk = |⟨ak, x⟩|2, k = 1, · · · , m, (58) 

 

where the data vector y := [y1, · · · , ym]T ∈  Rm represents the measurements, ak ∈  Rn/Cn are the known 

sampling vectors and x ∈  Rn/Cn is the desired unknown signal. This thesis considers the complex-

valued Gaussian design vectors as ak ∼ C N (0, In) = N (0, 1 In) + jN (0, 1 In), assumed 

to be independently and identically distributed (i.i.d.), where j = 
√
− 1. For the real Gaussian case the 

sampling vectors ak are given by ak ∼ N (0, In), also assumed to be i.i.d.. Then, adopting the least-

squares criterion, the task of recovering a solution from the phaseless measurements in Eq. 
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(1) reduces to that of minimizing the amplitude-based lost function 
 
 

m´ın f x m´ın 
1 m 

a x √
y 

2 
 

 

(59) 

x∈ Cn 

( ) = 
x∈ Cn m 

∑ |⟨ k, 
 

⟩| − k) . 

 
 

Notice that the optimization problem in (59) is non-smooth and non-convex Pinilla et al. (2018a). 

Then, this method proposes an algorithm based on the Smoothing Projected Gradient (SPG) met- 

hod Zhang and Chen (2009), to solve this non-smooth and non-convex optimization problem. This 

method uses an auxiliary smoothing function g(·) to approximate the original objective function, 

in order to solve the non-smooth and non-convex optimization problem. 

 
Definition 2. Smoothing function: Let f : Cn → R be a locally Lipschitz continuous function. Then 

g : Cn × R+ → R is a smoothing function of  f (·), if g(·, µ) is smooth in Cn for any fixed µ ∈  R++ 

and 

 

for any fixed w ∈  Cn. 

l´ım g(w, µ) = f (w), (60) 
µ↓0 

 

Smoothing methods are widely used in non-smoothing functions such as TV regularization, 

sparsity, among others Zhang and Chen (2009). However, this technique has not yet been used for 

the phase retrieval problem. Therefore, according to the above definition, this thesis considers the 

function ϕµ : R → R++ defined as 

ϕµ (w) = 

q

w2 + µ2, (61) 

k=1 
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k 

 

Figure 8. Visual representation of the smoothing function. 
 

Note: The smoothing function tending to the absolute value mapping when µ decreases. 

 

where µ ∈  R++ is a tunable parameter, that decreases at each iteration as illustrated in Fig. 8. The 

following lemma shows that ϕµ (·) has important smooth properties to approximate the functions 

fk(·), given that ϕ0(|aH x|) = fk(x). 

Lemma 1. The function ϕµ (w), defined in Eq. (61), has the following properties. 

 
1. ϕµ (w) is Lipschitz continuous function. 

 
2. ϕµ (w) converges uniformly to ϕ0(w) on R. 

 

Demostración. 1.  Since µ > 0 then ϕµ (w) is smooth on R, where ϕµ
′ (w) is given by 

 
 

ϕ
′ (w) = 

w
 . (62) 

µ √
w2 + µ2 
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√ 

| ≤ | 

k 

m 

x∈ Rn/Cn x∈ Rn/Cn m k = 1 
k 

Notice that 
√

w2 + µ2  ≥ w for all w ∈  R, then |ϕµ
′ (w)| ≤ 1. Therefore, ϕµ (w) is a Lipschitz 

continuous function because its first derivative is bounded Eriksson et al. (2013). Further, the 

Lipschitz constant for the function ϕµ (·) is Lϕµ  = 1. 

 
2. According to the definition of the function ϕµ in Eq. (61), it can be obtained that 

|ϕµ (w) − ϕ0(w)| = |
q

w2 + µ2 − 
√

w2|.  (63) 

Note that by the Minkowski inequality Kreyszig (1989), it can be concluded that w2 + µ2 ≤ 

√
w2 + µ, therefore 

 
 

|ϕµ (w) − ϕ0(w) 
√

w2 + µ − 
√

w2| ≤ µ . (64) 
 
 

 

 

The first result in Lemma 1 is used to guarantee the convergence of the proposed algorithm. 

Also, the second part of Lemma 1 establishes that the function ϕµ (|aH x|) uniformly approxima- 

tes fk(x), which is a desirable convergence, since it only depends on the value of µ. Therefore, a 

smooth optimization problem to recover the unknown desired signal x ∈  Rn/Cn from the measu- 

rements qk in Eq. (59) can be formulated as 

 
 

m´ın g(x, µ) = m ı́n ∑ 
 
ϕµ (|aHx|) − qk

 2 
, (65) 

1 
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. 

. 
| 

|K(x, µ)| = 
m   ∑ 

.
k=1 

ϕµ (|ak x|) − qk − ϕ0(|ak x|) − qk 
, (67) 

. 

m ∑ 
.

k=1 

µ (| k 0 (| k k k 0(| k ) . 
. 

µ k 0 k 

m k 
=1 

k k 

where qk = 
√

yk and g(x, µ) is the smoothing function of f (x). Notice that if Eq. µ = 0, (65) 

reduces to the non-smooth formulation described in (59). Theorem 2 shows that the function g(·) 

is a uniformly smooth approximation of the function  f (·), which is a desired behavior in order to 

solve the optimization problem in Eq. (59). 

Theorem 2.  Let  f  and g(·, µ) be as defined in Eq. (59) and Eq. (65), respectively. Then g(·, µ) is 

smooth for any fixed µ > 0, and there exists a constant κ1 > 0 satisfying 

 
|g(x, µ) − f (x)| ≤ µκ1. (66) 

 

Demostración.  From Eqs. (59) and (65) it can be obtained that 
 

1 m 
H 2 H 2. 

 

where K(x, µ) = g(x, µ) −  f (x). Note that the right hand side of the equality in Eq. (67) can be 

rewritten as 

1 m 

ϕ2
  

aHx 

 
ϕ2   aHx 2q  

 
ϕ 

 
aHx ϕ aHx  

 .
 

 
(68) 

 

By definition of the function ϕµ (·) in Eq. (61), it can be concluded that 

 
ϕ2 (|aHx|) − ϕ2(|aHx|) = µ2. (69) 

Applying the triangular inequality, it can be obtained that 

|g(x, µ) − f (x)| ≤ 

m 

∑ µ2 + 2qk .ϕµ (|aHx|) − ϕ0(|aHx|). . (70) 
1 

|) − |) − µ (| |) − 



5.1.  SMOOTHING PHASE RETRIEVAL ALGORITHM 68 
 

k 

 

Using the fact that the function ϕµ (·) uniformly approximates the function ϕ0(·) as was proved in 

Lemma 1, the above inequality can be expressed as 

 

1   m 
2

 
 |g(x, µ) − f (x)| ≤ 

m 
∑ µ + 2qkµ. (71) 

 
 

Therefore by taking qmax = máx{qk|k = 1, · · · , m}, from Eq. (71) it can be obtained that 
 

1  
    m 

2

 max

!

 

|g(x, µ) − f (x)| ≤ 
m

 ∑ µ 
k=1 

+ 2µq = µκ1, (72) 

 

where κ1 = (µ + 2qmax). Thus, the result holds. 

On the other hand, the function g in Eq. (65) is smooth since ϕµ (|aH x|) is smooth as defined 
 

in Eq. (61). 
 

On the other hand, to solve Eq. (65), this thesis presents the Phase Retrieval Smoothing 

Conjugate Gradient method (PR-SCG), summarized in Algorithm 3. This algorithm is a gradient 

descent method based on the SPG method. The PR-SCG uses a nonlinear conjugate gradient met- 

hod developed in Chen and Zhou (2010), to accelerate its convergence. Following the algorithm in 

each iteration, a backtracking line search strategy is used to choose a correct step size of the con- 

jugate gradient update direction, which is calculated in Line 9. Further, the smoothing parameter 

µ is updated as in Zhang and Chen (2009), to obtain a new point. That is, if ǁ∂g (xi+1, µi)ǁ2 ≥ γµi in 

Line 10 is not satisfied, then the smoothing parameter is updated using the new point in Line 

13. Algorithm 3 calculates the conjugate direction in Line 17. Each vector g˜i in Algorithm 3 is cal- 

k=1 
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∂  ∗z 

m 

ki 
k 

k 

k 

 

culated using the Wirtinger derivative as was introduced in Hunger (2007). The following lemma 

introduces the Wirtinger derivative of the function g(x, µ). 

Lemma 2. The Wirtinger derivative of a real-valued function h(z) : Cn → R with complex-valued 

argument z ∈  Cn is obtained for 

 

2 
∂h(z)

. (73) 
∂ z∗ 

 

 

The proof of this lemma can be found in Corollary 5.0.1 in Hunger (2007). It is important to remark 

that this Wirtinger derivation has been recently used by the state-of-the-art methods to solve the 

phase retrieval problem Candes et al. (2015d); Wang et al. (2016a); Chen and Candes (2015b). 

For simplicity, this thesis denotes the Wirtinger derivative of any function h(z) as ∂h(z), 

i.e. ∂h(z) = 2 ∂h(z). Then, considering the result in Lemma 2, the Wirtinger derivative of g(x, µ) is 
 

given by  
∂g(x   µ 

 
2   m    

ϕ
 
 

aHx 

 

q   ∂ϕ 

 
aHx 

 
 (74) 

i, i) = ∑( 
k=1 

µi (| k i|) − k) µi (| k i|), 

 

where  
∂ϕµ (|aHxi|) = 

ϕ
 

 
aH xi 

µi (|a
H xi|) 

 
ak. (75) 

 

Notice that, in contrast to the gradient update steps for the TAF and TWF methods intro- 
 

duced in Wang et al. (2017a) and Chen and Candes (2015b) respectively, ∂g(xi, µi) in Eq. (93) 

is always continuous because ϕµ (|aH w|) /= 0 for any w ∈  Cn. Therefore, the proposed PR-SCG 

method does not require truncation parameters. 
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− 

i 

—  − 

ǁ ǁ ≥ 

 −  −   

2 
2 

  
g̃ 

    k=1   k 

m |I0| k 
k 

ǁak ǁ2 

i+1 = − 
i+1 − 

2 i+1 

dH z̃i |dH z̃i|2 

 
 

 

Algorithm 3 PR-SCG: Smoothing Conjugate Gradient Phase Retrieval Method 
 

1: Input: Data {(ak; qk)}m
 and ε0 = 10−10. Choose constants δ1 = 0,9, δ2 = 0,4, γ1 = 0,5, µ0 = 

5 ×  104/m, γ = 0, k=1 01 and T 
 

 

maximum number of iterations. 

2: Initial point x = 

q
∑m

 
q2 

z̃ . where z̃ is the leading eigenvector of Y := 1 ∑ 
√

q 
ak a

H 

.
 
 

3: Set d0 = g˜0 = ∂g(x0, µ0). 
4: 

5: for i = 0 : T 1 do 
6: Compute the step-size αi by backtracking 

7: Set ρ = 1. 
8: while g (xi + ρdi, µi) > g (xi, µi) + δ1ρR 

 
g̃Hdi

  
do 

9: ρ = δ2ρ 
10: end while 

11: αi = ρ and xi+1 = xi + αidi 

12: if   ∂g (xi+1, µi) 2 γµi then 

13:  µi+1 = µi 

14: else 

15: µi+1 = γ1 µi 

16: end if 

17: p̃i = g̃i+1 g̃i and si = xi+1 xi.    
R(sH p̃i) 

 

 
18: 

19: 

z̃i = p̃i + ε0ǁg̃i+1ǁ2 + máx{0, − 
ǁsi ǁ2       } 

si. 

 
d g̃ 

  
g̃

H
 

 

 

z̃i 2ǁz̃iǁ2g̃
H
 

 

 

di 

! 

d

 

H 

+ R i+1 
 

 

di 
  

z̃i. 

20: end for 
21: return: xT 

dH z̃i 

22:   Notation:  R(·) represents the real part function. 

 

Initialization Stage. This thesis uses the Weighted Maximal Correlation initializa- 

tion proposed in Wang et al. (2017b) and described in Section 2.2.3.1. This procedure is calculated 

in Line 2 of Algorithm 3. It is worth highlighting that any proposed initialization can be employed 

to be then refined by the proposed smoothing steps. 

i 

i i 

i 

2 
0 0 0 0 k∈ I0 

i+1 + R i 
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5.2. Stochastic Smoothing Phase Retrieval Algorithm 

 
When the sample size is large, a stochastic algorithm is preferred due to its fast convergence, 

and low computational complexity Zhang and Liang (2016); Wang et al. (2017a). In this section, 

this thesis develops a stochastic algorithm named Stochastic Smoothing Phase Retrieval (SSPR),  

which is summarized in Algorithm 4. This thesis shows that SSPR guarantees exact recovery with 

a linear convergence rate. 

The SSPR algorithm solves the following optimization problem 

 

 
mı́n

n 
g1(x, µ) = mı́n

n 
E [lkt (x, µ)] , (76) 

x∈ C x∈ C 

 

where E[·] is the expected value function, and l  (x, µ) = 
 
ϕ  (|aH x|) − q  

 2  
is a component fun- 

 

ction of g(x, µ) in Eq. (65), for some index kt ∈  {1, 2, · · · , m} per iteration t ≥ 0. Specifically, SSPR 

successively updates x0 using the following stochastic gradient iterations for all t ≥ 0 

 

 xt+1 
 

xt −  α aHxt − qk 
 

 

 
aH xt 

 

 

 

ak , (77) 
 

 = 
t t 

q 
H 2 2 

t
 

where α ∈  (0, 1) is a constant. The index kt is sampled uniformly at random from {1, 2, · · · , m}. 

The following lemma establishes how to calculate the Wirtinger derivative of g1(x, µ), 

which is a helpful result to prove the global convergence of the SSPR algorithm in Theorem 4. 

+ µt |akt 
xt| 

k 
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µ kt t kt kt 

 
 

 

Algorithm 4 SSPR: Stochastic Smoothing Phase Retrieval algorithm 
 

Input: Data {(ak; qk)}m and choose constants α = 1,6/n. Choose γ1 = 0,9, µ0 = 6 ×  

104/m, γ = 0,01 and T 
k=1 

= 500 m maximum number of iterations. 

Initial point x0 m 
k=1 

2 k x̃ 0, where x̃0 is the leading eigenvector of Y0 := 1 
∑k∈ I √qk

 ak a
H

 2 
 

m 

for t = 0 : T −  1 do 
|I0| 0 ǁak ǁ2 

Choose kt uniformly at random from {1, 2, · · · , m} 
aH xt H   kt  

 xt+1 = xt −  α 
akt 

xt − qkt  
q

|aH x |2+µ2 akt 

kt   t t 

if   ∂g1 (xt+1, µt) 2 γµt then 

µt+1 = µt 

else 

µt+1 = γ1 µt 

end if 

end for 

return: xT 

 

Lemma 3. The Wirtinger derivative of g1(x, µ) is given by 

 
 

∂g1(x, µ) = E[∂lkt (x, µ)] . (78) 

 
 
 

Demostración.  From Eq. (76) it has that 

 

g1(x, µ) = E
h 

ϕµ (|aHx|) − qk 
 2
i
 

= E
h
ϕ2 (|aHx|)

i
− 2E

 
qk ϕµ (|aHx|)

 
+ E[q2 ]. (79) 

q 
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k 

m 

k=1 

k=1 

m k 
=1 

k 
k=1 

E [∂lk (x, µ)] = E
 

2(ϕµ (|aHx|) − qk )∂ϕµ (|aHx|)
 
 

 

Since kt is sampled uniformly at random from {1, 2, · · · , m} then 
 
 

g1(x, µ) = 
1

 ∑ 
 
ϕµ (|aHx|) − qk

 2  
= 

m 

∑ lk(x, µ), (80) 
 

where lk(x, µ) = 
 
ϕµ (|aH x|) − qk

 2
. From Eq. (80) it can be obtained that 

 
 

∂g (x µ 2 m   

ϕ
 

aHx q   ∂ϕ aHx (81) 

1 , ) = ∑( 
k=1 

µ (| k |) − k) µ (| k |). 

 

 

On the other hand, notice that 
 
 

 
t kt t kt 

2   m 
H H 

= 
m 

∑ (ϕµ (|ak  x|) − qk)∂ϕµ (|ak  x|). (82) 

 
Combining Eqs. (81) and (82) we have that 

 

 
∂g1(x, µ) = E[∂lkt (x, µ)] . (83) 

 
 

Thus, from the above equation the result holds. 
 

The local error contraction of the step in Line 4 in Algorithm 4 is characterized by the 

following theorem, for any value of µ ∈  R++. 

Theorem 3.  Local error contraction:  Consider the noiseless measurements qk = |⟨ak, x⟩| for an 
 

arbitrary signal x ∈  Cn, and i.i.d {ak ∼ C N (0, In)}m  . If α ∈  (0, α0/n] and also m ≥ c0n then, 

m 

1 
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t r 2 

 

with probability at least 1 −  2e
−ε2m/2, the stochastic smoothing phase retrieval algorithm, tabulated 

in Algorithm 4, satisfies 

Ek  
 
d2(xt+1, x)

  
≤ ρ (1 − υ)t+1 ǁxǁ2, (84) 

for ρ = 1/10 and some numerical constant υ ∈  (0, 1), where the expectation is taken over the 

random variable kt, and c0 is a universal constant. 

 
Demostración.  The proof of Theorem 3 is relegated to Appendix A. 

 

Now, the following theorem, which uses the result in Theorem 3, establishes that the se- 

quence {xi} generated by Algorithm 4 reconstructs the solution exactly, up to a global uni-modular 

constant. 

Theorem 4. In the setup of Theorem 3 we have that the sequences {µi} and {xi} generated by 

Algorithm 4 satisfies 

 
lı́m µi = 0, and  lı́m ǁ∂ g1(xi, µi−1)ǁ2 = 0. (85) 
i→∞ i→∞ 

 
 

Demostración.  The proof of Theorem 4 can be found in Appendix B. 
 

Notice that, combining Theorems 3 and 4, it can be concluded that the proposed SSPR 

algorithm achieves linear convergence because the number of equations m and unknowns exceeds 

a fixed numerical constant Chen and Candes (2015b). 
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5.3. Sparse Smoothing Phase Retrieval Algorithm 

 
The sparse phase retrieval problem can be formulated as the solution to the system of m 

 

quadratic equations of the form 

 

 
yi = |⟨ai, x⟩|2, i = 1, · · · , m, subject to ǁxǁ0 = k, (86) 

 
where x ∈  Rn/Cn is the desired unknown signal, the sparsity level k   n is assumed to be known 

and ǁ·ǁ0 is the zero pseudo-norm. Notice that this prior information is incorporated in the traditio- 

nal phase retrieval formulation. Similarly, this thesis adopts the smoothing formulation as 

 

m´ın g(x, µ) = ∑ 
 
ϕµ (|aHx|) − qi

 2 
, (87) 

 

 

where g(x, µ) is the smoothing function of f (x) in (59). 

To solve (87), this thesis proposes the Sparse Phase Retrieval algorithm via Smoothing Fun- 

ction (SPRSF), summarized in Algorithm 5. SPRSF is a gradient threshold descent method, which 

iteratively refines a initial guess solution. Specifically, in Line 2 the algorithm calculates the initial 

guess z(0). Also, following the algorithm in each iteration, the threshold step is calculated in Line 

4 as will be explained in Subsection 5.3.1. Further, the smoothing parameter is updated to obtain 

a new point. That is, if ¨∂g
 

z(t+1), µ(t)

 
¨ ≥ γµ(t), in Line 5 is not satisfied, then the smoothing 

 

parameter is updated using the new point in Line 8. Each vector ∂g(z(t), µ(t)) in Algorithm 5 is cal- 

culated using the Wirtinger derivative as was introduced in Hunger (2007). SPRSF applies gradient 

m i 

1 
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i 

m i=1 |aH z(t)|2 + µ2 

∈  

m 

 
 

 

Algorithm 5 Sparse Phase Retrieval Algorithm via Smoothing Function (SPRSF) 
 

1: Input: Data {(ai; qi)}m , sparsity level k. The step size τ ∈  (0, 1), control variables γ, γ1 ∈  

(0, 1), µ(0) R++ and number of iterations T . 
2: 

3: Initialization: S0 set to be the set of k largest indices of { 1 ∑m q2a2 }1≤ j≤n. Let x̃(0) be the 
leading eigenvector of the matrix Y : 1 ∑ √

q 
ai,S0 

aH
 

 
 

. Define the initial point as z(0) : 
 

 

λ x̃(0), where λ 

 

   

:= 

q
∑m 

1 q
2 

. 

= m i∈ I0 i,S0 

i  ǁai,S0 ǁ
2 

5: for t = 0 : T −  1 do 

6: z(t+1) = Hk(z
(t) −  τ∂g(z(t), µ(t))) 

7: if ǁ∂g   z(t+1), µ(t)  ǁ2 ≥ γµ(t) then 

8: µ(t+1) = µ(t) 

9: else 

10: µ(t+1) = γ1 µ(t) 

11: end if 
12: end for 

13: Output: z(T )
 

 

iterations based on the Wirtinger derivative to refine the initial estimate. Specifically, the Wirtinger 

derivative of g(z(t), µ(t)) is given by 

 
∂g(z(t), 

 
µ(t)) = 2  

∑ aH z(t) 

 
—  qi 

aH z(t) 

 

 

 ai. 
 

 

 
(88) 

 

Notice that, in contrast to the gradient update steps for the SPARTA method introduced in 
 

Wang et al. (2016b), ∂g(z(t), µ(t)) in (88) is always continuous because µ(t) 0 for any t ∈  N. 
 

Therefore, the proposed SPRSF method does not require any truncation parameter. 
 

5.3.1. Thresholded Gradient Stage. The proposed Algorithm 5 solves the sparsity 

constraint of the optimization problem in (65) by iteratively refining the current update step z(t) by 

a k-sparse hard thresholding operator Hk(·), as calculated in Line 4 in Algorithm 5. Specifically, 

(t) i 

4: 

= 

q 

0 
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Hk(u) sets all the entries in the vector u ∈  Cn to zero, except for its k largest absolute values. 

5.3.2. Convergence Conditions. This subsection provides theoretical results that 

guarantee the convergence of the proposed method summarized in Algorithm 5. The following 

theorem establishes that the successive estimates of SPRSF in Line 4 of Algorithm 5, tend to the 

unknown desired signal x ∈  Cn for a given value of µ. 

Theorem 5. (Local error contraction): Let x ∈  Cn be any k-sparse (k n) signal vector with 

the minimum nonzero entry on (1/
√

k)ǁxǁ2. Consider the measurements qi = |⟨ai, x⟩|, where ai ∼ 

C N (0, In), ∀ i = 1, · · · , m. With a constant step size τ ∈  (0, 1), successive estimates of SPRSF in 

Algorithm 3 satisfy 

dr(z(t+1), x) ≤ δ (1 − η)t+1ǁxǁ2 (89) 

 
which holds with probability exceeding 1 −  2e

−c1m provided that m ≥ C1k2 log(mn). Here, c1,C1 ≥ 

0 and 0 < η < 1 are some universal constants. The constant δ is obtained from (17) 

 
Demostración.  The proof of Theorem 5 can be found in Appendix C. 

 
Note that Theorem 5 provides that the sequence {z(t)}t≥1, generated by Algorithm 3, produ- 

ces a monotonically decreasing sequence {g(z(t), µ)}t≥1, with a given µ. Moreover, the sampling 

complexity bound m ≥ C1k2 log(mn), can often be rewritten as m ≥ C1
′ k2 log(n) for some constant 

C1
′ ≥ C1 and large enough n Wang et al. (2016b). Thus, it can be concluded that the sampling 

 

complexity of the SPRSF algorithm is O(k2 log(n)). 
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5.4. Smoothing Phase Retrieval with Outliers 

 
In some applications, it is expected to have measurements corrupted by sparse outliers Shu- 

yue and Hongnian (2000). These arise due to various factors such as illumination, occlusion, device 

malfunctioning, or simply recording errors Chen et al. (2017). For instance, in X-ray imaging, the 

noise produced by the intensity of the X-ray radiation or charge-couple devices (CCD) exposu- 

re time is not large enough to be treated as Gaussian noise and should be modeled as outliers 

Qian et al. (2017); Shuyue and Hongnian (2000). Nevertheless, under this scenario, the methods 

mentioned above for PR have not shown good performance. Therefore, the PR problem needs to 

change its formulation. The phase retrieval problem contaminated by sparse arbitrary outliers can 

be formulated as a system of m quadratic equations of the form 

 
yk = |aHx|2 + ok, k = 1, · · ·, m, (90) 

 

where o = [o1, · · · , om] is a sparse vector with αm non-zero entries and (·)H denotes the conjugate 

transpose operation. To solve the phase retrieval with outliers, this thesis is based on the proposed 

smoothing method where first is necessary a proper initialization and then refined by gradient 

descent steps. 

Considering that (61) is a smooth optimization problem for µ > 0, now a gradient descent 
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H 
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k 
H 
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t kt t 

k k=1 

 

procedure to solve (65) can be applied. To remember, the gradient of g(·) is defined by 
 

 
∂g x µ 

2   m  
 

ϕµ 
 
|aHx|

 
− 
√

yk 
! 

a  a   x
 

 
(91) 

 

 

Note that the gradient depends on the term ϕµ

 
|aH x|

 
−  
√

yk, which has a direct relationship with 
 

outliers expressed as 

c|ok | = |ϕµ 
 
|aHx|

 
− 
√

yk | (92) 
 

for a constant c and kt in the support of o. In a gradient descent method, these positions drastically 

modify the search direction update. Therefore, in order to remove the corrupted components of  

the gradient in (91), an adaptive truncated version of ∂g(x(t), µ(t)) is calculated in each iteration. 

Therefore, the proposed procedure effectively dealing with outliers is given by 

 
 

z t 1 = z t −  
2λ

 ∑ ∂g(z t , µ t ), (93) 
( + ) ( ) m ( ) ( ) 

k∈ T(t) 

 

where T(t) are given by the residual using the current iteration as 

 
T(t) : = {k : | .ϕµ 

 
|aHz(t)|

 
− 
√

yk
.    

≤ β med({.ϕµ 
 
|aHz(t)|

 
− 
√

yk

 
}m

 

 

 

 
)} (94) 

 
 
 
 
 

where β is a regularization parameter and med(·) denotes the sample mean operator. Notice 

. 
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n ∑= k 

    

k 

|| || ≤ 

k 

—  2λ ∑ 

k=1 

1 −  
√

yk
 akaH z 

m 

 

that (94) prune samples whose residual gradient components are much large than the sample me- 

dian. This robust property of median lies in the fact that the median cannot be affected with large 

values of outliers. Algorithm 6 summarizes the proposed method, where the initial estimation is 

calculated in line 2; lines 3 and 4 refine this initial approximation and finally, the µ parameter is 

updated in lines 6-10. 

Notice that using the median as an estimator, O(n log n) measurements are needed. Speci- 

fically, Zhang et al. (2018) provides a theoretical result that shows that it achieves recovery based 

on the local error contraction, which ensures that 

 
dist(z(t), x) = υ(1 − ρ)(t)||x||2, (95) 

 
for 0 < ρ, υ < 1 with probability at least 1 −  c1exp(c2m) for c1, c2 > 0 if m > n log n measure- 

 

Algorithm 6 RSPR: Robust smoothing phase retrieval algorithm 
 

1: Input: Data {(ak; yk)}m and choose constants β = 4,6. Choose γ1 ∈  (0, 1), µ0 > 0, γ > 0 and T maxi- 
mum number of iterations.    

2: Initial point x(0) = λ0z̃ 0, where λ0 k=1 yk 
2 

 

and z̃0 is the leading eigenvector of Y0 :=
 1 ∑k∈ I aka

H
 2 

 ∑k=1 ǁak ǁ 
m

 |I0| 0   ǁak ǁ2 

where I0 contains the indices corresponding to the |I0| = 6   largest values of {yk/ǁak ǁ2}. 
3: for t = 0 : T −  1 do . √ . 

  

ϕµ  |ak  z(t)| −  yk ≤ 4: T(t) :.= {k : 
√ 

| 
 

 
β med({.ϕµ 

 
|aH z(t)|

 
−  yk

 
}m    )} 

     
 

 
6: if   ∂g(z(t+1), µ(t)) 2 γµ(t) then 
7: µ(t+1) = γ1 µ(t) 

8: else 

9: µ(t+1) = µ(t) 

10: end if 

11: end for 

12: return: z(T) 

(t) k 
ϕµ (|aH z(t)|) 

k∈ T(t) m (t) (t+1) 

H 

5: z = z 

m 
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Lm r,ϕ,x∈ Cn 
∑ 
i=1 

u,i ( u)i + tv1 ǁ 

 

ments are available. Also, because of the geometric convergence rate, the proposed method achie- 
 

ves ε-accuracy (i.e. dist(z(t), x) = ε||x||2) within at most O(log(1/ε)) iterations. Therefore, the 

computation cost is O(mn log (1/ε)). 

5.5. Super Resolution Phase Retrieval Algorithm 

This section presents a reconstruction algorithm focused on the super resolution scenario 

proposed in this thesis to estimate a high-resolution image from the low-resolution measurements 

gu acquired at the u-th diffraction zone. However, as shown below, the split and sparsity metho- 

dology can also be used for super-resolution scenarios and the traditional phase retrieval problem. 

This method follows the smoothing technique introduced in Pinilla et al. (2018a) to overcome the 

non-smoothness of the amplitude-based objective. Specifically, using Euler’s formula, x = r Ⓢ e jϕ , 

where r, ϕ are the magnitude and phase of x and Ⓢ denotes the Hadamard product, the smooth 

objective takes the form 

 

 
m´ın 

1   mL    

ϑ
  

aH x 
√ 

g 
2 

λ Lr 
 

+ λtv2 ǁLϕ ǁ1 

 
 

 
subject to x −  r Ⓢ e jϕ = 0, (96) 

µ (| |) − ǁ1 
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u,i 

Lm x∈ Cn 
( , ) = ∑ 

i=1 
u,i ( u)i 

where  the function  ϑµ : R+ → R+,  defined as  ϑµ (w) = 
√

w2 + µ2  with  µ ∈  R++,  smooths the 

term |aH  x|. 

Notice that in (96) the spatial property of the magnitude and phase of x is exploited by mi- 

nimizing the total variation (TV) where λtv1 and λtv2 are the regularization parameters associated 

with TV, and L = [Lh; Lv] denotes the operator that computes the horizontal and vertical differen- 

ces. Specifically, these two regularization terms come from the fact that both, r and ϕ should be 

spatially continuous Katkovnik and Egiazarian (2017). 

It is important to note that (96) is non-convex with respect to x, r, and ϕ, making this 

problem more challenging. However, (96) has solution with respect to x, r, and ϕ separately. The- 

refore, this thesis proposes an algorithm that starts with a proper initialization, and the optimization 

problem in (96) is solved one vector at a time, while the other variables are assumed to be fixed, as 

summarized in Algorithm 7. More details about every step of Algorithm 7 are provided below. 

5.5.1. Optimization with respect to x. Considering the optimization problem in 

(96), the minimization problem with respect to x can be expressed as 

 

 
m´ın 

 
f x µ 

1   mL    

ϑ
  

aH x 
√ 

g 
2 

 

+ 
ρ 

ǁx − r(t) Ⓢ e jϕ
(t) 

ǁ2, (97) 

2 2 

 

 

where ρ > 0 is a regularization parameter. This sub-step can be solved with a descent gradient 

method based on the Wirtinger derivative as introduced in Candes et al. (2015d), which in this case 

µ (| |) − 



5.5.  SUPER RESOLUTION PHASE RETRIEVAL ALGORITHM 83 
 

i=1 

i=1 u,i 

. .(t+1)x 

. . 

− 

Ⓢ 

f (x, ) = 
Lm 

∑ 
i=1 

au,ix −  (gu)i
 u,i  

ϑµ (|aH  x|) u,i 

 
 

 

Algorithm 7 Super-Resolution Phase Retrieval Algorithm 
 

1:   Input:  Data {(au,i; (g  u)i)}mL , µ0 ∈  R++, and number of iterations T . 

2:   Initial point x(0) = 

q
∑mL (gu)i x̃(0), where x̃(0) is the leading eigenvector of Y  := 

 

 
  1 ∑ au,ia

H
 

 
 

 

 
mL 

given by the power iteration method. 

3: r(0) = x(0) 

4:   ϕ(0) = Phase(x(0)). 
5: for t = 0 : T 1 do 

6: x(t+1) = Algorithm 2 (r(t), ϕ(t)) 

7: r = x(t+1) 

8: ϕx(t+1) = Phase(x(t+1)) 

9: r(t+1) = Algorithm 3 (rx(t+1)) 

10: ϕ(t+1) = Algorithm 4 (ϕx(t+1)) 
11: end for 

12: w = r(T ) e jϕ
(T )

 

13: Output: w 

|I0| i∈ I0  ǁau,iǁ2 

 
 

 

is given by 

∂ µ 
1

 
mL 

     

H 
√ aH x 

!
 

 

+ ρ(x −  r(t) Ⓢ e jϕ
(t)
). (98) 

 
Additional, in each iteration the smoothing parameter is updated to obtain a new point if  

ǁ∂ f 
 

x(s+1), µ(s)
 

ǁ2 ≤ γµ(s) is satisfied. The solution of this problem is summarized in Algorithm 8. 

Convergence and computational complexity: Since Algorithm 8 is a gradient descent met- 
 

hod, ∂ f (x, µ) needs to be Lipschitz continuous Grippo et al. (1986). This condition is satisfied if 

the Wirtinger derivative of the two terms in (97) are Lipschitz continuous. Specifically, Theorem 

2 
0 

au,i 
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r∈ R 

 
 

 

Algorithm 8 Algorithm to estimate x  

1: Input: Previous iterations r(t), and ϕ(t). 

2: Initialize: Constants τ, γ, γ1 ∈  (0, 1), and the number of iterations S1. 
3: for s = 0 : S1 −  1 do 

4: x(s+1) ← 
 

 

 

x(s) −  τ∂ f (x(s), µ(s)) 

 
6: µ(s+1) = γ1 µ(s) 

7: else 

8: µ(s+1) = µ(s) 

9: end if 
10: end for 

11: Output: x(S1) 

 

2 from  Pinilla et  al. (2018a) proved  that the Wirtinger  derivative of the  first term of f (x, µ) is 

Lipschitz continuous. Also, given the fact that the second term in (97) is based on the l2 norm, 

this condition is trivially satisfied. Thus, the convergence of Algorithm 8 is guaranteed. Finally, 

following the iteration process of Algorithm 8, it can be seen that its computational complexity is 

O(LS1). 
 

5.5.2. Optimization with respect to r. To obtain the update step of r, the cost fun- 

ction in (96) is minimized with respect to r resulting in the following optimization problem 

 
mı́n

n 
λtv1 ǁLrǁ1 

subject to rx(t+1) −  r = 0, (99) 

 
where rx(t+1) is the magnitude of x(t+1) at the global iteration t + 1. In order to solve (99), an 

alternating direction method of multipliers (ADMM) strategy is used. Specifically, an auxiliary 

ǁ2 ≤ γµ(s) then 5: if ǁ∂ f x(s+1), µ(s) 
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,z∈ R 

2 

2 

5: r(s+1) =
 

LT L + I
 − 1

 + g1  + LT (z(s) + g2   ) 

1 1 x(t+1) 

1 

 

variable z is introduced, such that the optimization problem in (99) can be rewritten as 
 

 

r
mı́n

n 
λtv1 ǁzǁ1 

subject to rx(t+1) −  r = 0 

z −  Lr = 0. 

 

 
(100) 

 

 

Note that the augmented Lagrangian associated to the optimization problem in (100) is expressed 
 

as 

 

 
L (r, z, g , g ) = λ 

 

 
ǁzǁ 

 

 

ρ + ǁr 

 

 
—  r + g ǁ 

1 2 tv1 1 2 x(t+1) 1 2 

+ 
ρ 

ǁz − Lr + g2ǁ2, (101) 

2 2 

 

 

where g1 and g2 are the scaled dual variables, and ρ > 0 is the weighting of the augmented La- 

grangian term. The solution for each variable of L (·) is summarized in Algorithm 9. Specifically, 

Algorithm 9 Algorithm to estimate r 
 

1: Input: vector rx(t) 

2: Initialize: constants ρ, λtv1 > 0, and the number of iterations S2 
3: z = g1 = g2 = 0 

4: for s = 0 : S2 −  1 do  

(s) (s)  
 
 

6: z(s+1) = Sλtv /ρ  

  

Lr(s+1) −  g 
 
 

(s) 

7: g
(s+1) 

= g
(s) 

+ r
 

—  r(s+1) 

8: g
(s+1) 

= g
(s) 

+ z(s+1) −  Lr(s+1) 
2 2 

9: end for 

10: Output: r(S2)
 

rx(t+1) 
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(s)  2 (s)(s) 
 2 

(s+1) 

(t+1) 1 2 

1 1 

2 2 

1 

 

Algorithm 9 begins by initializing the variables z = g1 = g2 = 0. Then the Lagrangian with respect 

to the variable r is minimized. The solution for r is given by 

r(s+1) =argmin   ǁr − r + g    ǁ + ǁz − Lr + g    ǁ 

r∈ Rn 

x(t+1) 1 2 2 2 

(102) 

=
 
LT L + I

 − 1 
 

rx + g(s) + LT (z(s) + g(s))
  

, 
 

as computed in Line 5. On the other hand, the solution for z in Line 6 is computed as 
 

 

z(s+1) =arg min   λtv ǁzǁ1 + 
ρ 

ǁz − Lr(s+1) + g(s)ǁ2 

z∈ Rn 2 2 2
 

=Sλtv1 /ρ  

  

Lr −  g , (103) 
(s+1) (s) 

 

 

where Sτ (·) denotes the component-wise application of the soft-threshold function as 

 
Sτ (w) = sign Ⓢ máx(0, |w| − τ), (104) 

Finally the updates of the dual variables for the iteration s + 1 are given by 

g
(s+1) 

= g
(s) 

+ r
 —  r (105) 

 
 
 
 
 

g
(s+1) 

= g
(s) 

+ z(s+1) −  Lr(s+1), (106) 

 
as summarized in Lines 7 and 8 of Algorithm 9. 

2 

x(t+1) 
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ϕ∈ R 

(s)  2 (s)(s) 
 2 

(t+1) 1 2 

2 

 

5.5.3. Optimization with respect to ϕ. Finally, the update step of ϕ, considering 

(112), can be obtained solving the following optimization problem 

 
mı́n

n 
λtv2 ǁLϕ ǁ1 

subject to ϕx(t+1) −  ϕ = 0, (107) 

 

where ϕx(t+1) is the phase of x(t+1) at the global iteration t + 1. To solve (107), an ADMM strategy 

was followed and summarized in Algorithm 10. Also, notice that (99) and (107) are similar opti- 

mization problems. Performing a similar derivation for ϕ, from (102) the solution for ϕ is given 

by 
 

ϕ (s+1) =argmin   ǁϕ − ϕ + d    ǁ + ǁb − Lϕ + d    ǁ 

ϕ∈ Rn 

x(t+1) 1 2 2 2 

(108) 

=
 
LT L + I

 − 1 
 

ϕx + d(s) + LT (b(s) + d(s))
  

, 
 

as computed in Line 5 of Algorithm 10, where d1 and d2 are the scaled dual variables, and b is an 

auxiliary variable. On the other hand, the solution for b is similarly written as 

 

b(s+1) =arg min   λtv ǁbǁ1 + 
σ 

ǁb − Lϕ(s+1) + d(s)ǁ2 

b∈ Rn 2 2 2
 

=Sλtv2 /σ  

  

Lϕ −  d , (109) 
(s+1) (s) 

2 
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(s+1) 

2 

1 1 

2 2 

5: ϕ(s+1) =
 

LT L + I
 − 1

 + d1  + LT (b(s) + d2   ) 

1 1 x(t+1) 

2 

 

as calculated in Line 6 of Algorithm 10, where σ > 0 is the weighting of the augmented Lagrangian 

term. The final two steps of Algorithm 10 update the dual variables as follows 

 

d
(s+1) 

= d
(s) 

+ ϕ
 —  ϕ (110) 

 

d
(s+1) 

= d
(s) 

+ b(s+1) −  Lϕ(s+1), (111) 

 
as summarized in Lines 7 and 8. 

 

Algorithm 10 Algorithm to estimate ϕ 
 

1: Input: Vector ϕx(t+1). 
2: Initialize: Constants σ, λtv2 > 0, and the number of iterations S2. 
3: b = d1 = d2 = 0. 

4: for s = 0 : S2 −  1 do    

(s) (s)  

6: b(s+1) = Sλtv /σ  

  

Lϕ(s+1) −  d 
 
 

(s) 

7: d
(s+1) 

= d
(s) 

+ ϕ
 

—  ϕ(s+1) 

8: d
(s+1) 

= d
(s) 

+ b(s+1) −  Lϕ(s+1) 
2 2 

9: end for 

10: Output: ϕ(S2) 

 
 

Convergence and computational complexity: In order to guarantee the convergence of Al- 

gorithms 9 and 10, the augmented Lagrangian in (101) needs to be a proper convex and closed 

function, according to the ADMM algorithms. This condition is satisfied since (101) is the sum of 

non-negative convex functions Boyd et al. (2011). Moreover, since the proper convex optimization 

function is continuous, it is closed. Thus, the convergence of Algorithms 9 and 10 is guaranteed 

Boyd and Vandenberghe (2004). Following the iteration process of Algorithms 3, 4, and assuming 

that (LT L + I)
−1 can be precomputed, it can be seen that the computational complexity of both 

x(t+1) 

ϕx(t+1) 
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algorithms is O(S2n2). 

5.5.4. Global Convergence. Given that the optimization problem in (112), viewed 

as a function of x, r or ϕ, attains a stationary point from Theorem 4.1 in Tseng (2001), every limit 

point of the sequence {x(t), r(t), ϕ(t)} generated by Algorithm 7 is a stationary point of the consi- 

dered optimization problem. Finally, considering the computational complexity of Algorithms 8, 

9, and 10, it can be concluded that the overall reconstruction process summarized in Algorithm 7 

has a computational complexity O(LS1 + S2n2), which directly depends on the image size, number 

of experiments, and the iterations. 

5.6. Deep Unrolled Recovery Network 

 

Hoover, in some applications, the prior knowledge of the scene is not easy to incorporate as 

a regularizer; therefore, it is more convenient to learn the prior using the available data. Therefore,  

we designed a proposed unrolled decoder is inspired by the optimization formulation present in 

Bacca et al. (2018) which introduced a non-smooth function and exploited sparsity assumption for 

the magnitude and phase separately. Specifically, using Euler’s formula, x = r Ⓢ e jϕ , where r, ϕ 

Figure 9. Propposed E2E approach. 
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2nL 

 

2nL 

2 

2 

 

are the magnitude and phase of x and Ⓢ denotes the Hadamard product, the refined network aims 

to solve the following optimization problem 

 

m´ın   1  L n− 1 

ϑ
 fHD z √

y 
2 

 

r,ϕ,z∈ Cn 
∑ ∑ 
l=1 k=0 

µ (| k l |) − k,l

 
 

 
subject to z −  r Ⓢ e jϕ = 0, 

+ λrRr(r) + λϕ Rϕ (ϕ) 
(112) 

 

where the function ϑµ : R+ → R+, defined as ϑµ (w) = 
√

w2 + µ2  and Rr(·) and Rϕ (·) denoted 

the regularization of the magnitude and phase with its corresponding regularization terms λr and 

λϕ , respectively. This thesis proposed to replace the effect of the regularization terms by a prior 

network as explained below. Particularly, the minimization respect of z, r and ϕ can be found by 

iteratively solving the following optimization problems 

 
 

z(t+1) : 
argmin

 1  
 L n−1 

ϑ
 fHD z √

y 
2 

 
= 

z∈ Cn 
∑ ∑ 
l=1 k=0 

µ (| k l |) − k,l

 
 

+ 
ρ 

ǁz − r(t) Ⓢ e jϕ
(t) 

ǁ2, (113) 

2 2 

 
 
 

 
r(t+1) := argmin λ R 

 
ρ (r) + ǁrz 

 
— rǁ , (114) 

r r 

r∈ Cn 
2 

(t+1) 2 

 
 

ϕ(t+1) := argmin λϕ Rϕ 
ϕ∈ Cn 

 

 
 

ρ 
(ϕ) + 

2 
ǁϕz(t+1) 

 

— ϕ ǁ2, (115) 
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k 
k 

− 

—   √
yk,lf   Dlz 

!
 

 

where rz(t+1) and ϕz(t+1) are the magnitude and phase of z(t+1) at the global iteration t + 1. this 

thesis solves (113) using a descent gradient method based on the Wirtinger derivative as 

 

z(t+1) := 

z(t) α  
Ln 

 

 
 

L n 1 

∑ ∑ 
l=1 k=0 

 

fH Dlz
(t) −  

 

 

H (t) 
k 

ϑµ (|fH Dlz(t)|) 

 

 
DHfk 

 

 
 

(116) 

—  αρ
 

z −  r(t) Ⓢ e jϕ
(t)

 

, 

where α > 0 is the gradient descent step size and ρ > 0 is a regularization parameter. The minimi- 

zing of r(t) and ϕ(t) can be seen as a proximal operator that can be addressed by applying a DNN 

at the magnitude and phase of z(t+1) as 

 
r(t+1) = Rθ

 
rz(t+1) 

  

, (117) 

 
ϕ(t+1) = Pθ 

 
ϕz(t+1) 

  

, (118) 
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k 
∑ ∑ 

k 

 

where Rθ and Pθ represent a DNN with trainable parameters θ for the magnitude and phase, 

respectively. Finally, combing (116), (117) and (118) in a hold step, the image can be estimated as 

 

z(t+1) := 

 α  L n− 1 
 

 √
yk,lf

H Dlz
(t)  

!
 

Ln 
l=1 k=0 

` 

 
 

ϑµ (|fH Dlz(t)|) 

∇h(z

˛
(

¸
t)|yk,l  

x
 

(119) 

—  αρ

 

z(t) −  Rθ 
 
rz(t) 

 
Ⓢ e 

jPθ 

  

ϕ
z(t)  

      

. 

 
 

To solve (119), and find the optimal θ parameter, this thesis proposes to unroll the recursion 
 

iteration via DNN from t ∈  {1, · · · , T } step iterations, as depicted in Fig. 9, which results in T layers of 

the proposed method denoted as Mθ (·). Additionally, The parameters λ and µ are also trainable in 

the unrolled DNN. 

5.7. SPUD: simultaneous phase unwrapping and denoising algorithm for phase imaging 

5.7.1. Phase unwrapping. When we work with continuous phase images, as is the 

focus of this thesis, it is necessary to apply unwrapping methods to use prior information to the 

phase image correctly. This is due to the natural periodicity of the phase image, where values  

between [−π, π] or [0, 2π] only produce the different effect in the phase, i.e., a value of π make the 

same offset of a value 3π. For instance, Fig.10 presents a continuous phase image and its wrapped 

version, where both produce the same phase delay. 

This is a common ambiguity present in the recovery algorithms. However, to explore the 

prior information of the image is convenient to work with the continuous phase image instead 

z(t)− fH Dlz
(t) −  DHfk) k 
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of the wrapped version. For instance, it is easier to apply denoiser for the constant phase than 

the wrapped version Pineda et al. (2020). So, several phase retrieval algorithms employ unwrap- 

ping algorithms in each step of the algorithm before exploiting the prior information. However,  

unwrapping methods use iterative procedures to obtain the solution, resulting in long execution 

times Pineda et al. (2020). Therefore, this thesis presents a non-iterative Simultaneous Phase Unw- 

rapping and Denoising algorithm for phase imaging, referred to as SPUD. The proposed method 

relies on the least-squares Discrete Cosine Transform (DCT) solution for phase unwrapping with 

an additional sparsity constraint on the DCT coefficients of the unwrapped solution. 

Figure 10. (Left) Continuous phase image (Right) Wrapped phase image 

 

 

 

 

 

 

 

 

 
Note: Both images produce the same phase delay. 

 

 
5.7.2. Problem Formulation. The goal in 2D phase unwrapping is to estimate the 

true phase image φ ∈  RM× N, from a wrapped phase image ϕ ∈  (−π, π]M×N defined by 

ϕ = W {φ } ,′ (120) 
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i, j 

 

where W {·} is the wrapping operator that performs component-wise 2π modulo wrapping opera- 

tion 

W = : RM× N → (−π, π]M× N , 

ϕ → mod(φ + π, 2π) −  π . 

 
(121) 

 

The proposed formulation relies on two assumptions. The first is that the desired unwrapped phase 

and the wrapped phase have the same local phase differences. Therefore, it is conventional to define 

 
 

x 
i, j = W

 
ϕi+1, j −  ϕi, j

} 
, ∆ϕy = W

 
ϕi, j+1 −  ϕi, j

} 
, (122) 

 

as the horizontal and vertical phase differences, respectively. This assumption has an exact solution 

by solving a least-squares algorithm (in the noiseless scenario) Ghiglia and Romero (1996); Ghiglia 

and Pritt (1998) or shows desirable results when the noise present in the differences does not exceed 

π,  i.e.,  |ϕi+1, j − ϕi, j + ηi, j| < π,  where  ηi, j  is  the  noise  of  the  horizontal  differences.  It  occurs 

similarly for vertical differences. The second assumption of this thesis is that the true phase image 

is smooth Estrada et al. (2011). Therefore, it can be sparsified in a given transformation T (·), i.e., 

||T (φ )||0 = k   MN, where ||x||0 = |{i : xi /= 0}| with |{·}| as the cardinality of a set, such that, 

the l0-norm counts the number of nonzero elements of x. Additionally, in a noisy phase image, the 

sparsity property implies that the relevant information is concentrated in few coefficients, while the 

power of the noise remains white Yu and Sapiro (2011). Hence, a least-squares phase unwrapping 

∆ϕ 
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i, j i, j 

i, j i, j 

i, j 
x 

i, j 
y 

φ i j 
i, i, 

i j 
i, i, 

 

formulation incorporating these two assumptions can be expressed as 

 

arg min

(

∑(∆φ x
j − ∆ϕx j)2 + ∑(∆φ y

j − ∆ϕy j)
2

) 

+ ǁT (φ )ǁ0 , (123) 

 

 

where ∆φx
 and ∆ϕx

 denote the x-components of the unwrapped and wrapped phase gradients, 

respectively; ∆φy and ∆ϕy are their y components counterparts. 
 

5.7.3. Simultaneous Phase Unwrapping and Denoising Algorithm. This thesis 

proposes a non-iterative method to solve (123). In particular, notice that the left side of (123) is 

reduced to the Hunt’s matrix formulation given by, 

 
 
φi+1, j −  2φi, j + φi−1, j

 
+

 
φi, j+1 −  2φi, j + φi, j−1

  
= ρi, j , (124) 

 
 

where, 

ρi, j =
 

∆ϕx 

 
—  ∆ϕi− 1, j 

 
+

 
∆ϕy 

 
—  ∆ϕi, j− 1 

 
   

. (125) 

 

Additionally, (125) can be interpreted as the discretization of Poisson’s equation with Neumann 
 

boundary conditions  

∇2φi, j = ρi, j , (126) 
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hard 

hard ¨2 

2 ˆ 

 

where ∇2 is the Laplacian operator. Therefore, applying the two-dimensional DCT on the M ×  N 

grid to both sides of (126) yields 
 

 

φ î, j 

  ρ̂i, j  

= 
2[cos(πi/M) + cos(π j/N) −  2] 

, (127)
 

 

where  φ̂i, j  = T (φi, j) and  ρ̂i, j = T (ρi, j) denote  the  2-D  forward  DCT  of  φi, j  and  ρi, j,  respecti- 

vely. The sparsity information can be exploited using the element-wise hard-thresholding operator 

λ 
hard (.), which can be directly applied in the sparse vector to reduce the noise Yu and Sapiro 

 

(2011), i.e, in the DCT domain defined as 
 

λ 
ˆ 

0  if   | φ̂i, j  |≤ λ 

Θhard (φi, j) = . (128) 

 φ̂i, j,  otherwise 
 

Finally, the noise-free solution φi, j is obtained by the inverse DCT of (128), i.e., φ = T 
−1

 
Θλ (φ î, j)

 
. 

 

Notice that the mean squared error (MSE) of the true phase and the threshold estimation ((128)), 
 

can be written as 

E

 

¨φ −  T 
−1 

  
Θλ 

 
(φ î, j )

 
¨2

    

= 

 

 
(129) 

∑ 
i, j:|φ̂i, j |≤λ 

.T (φi, j). + σ  .{i, j : |φi, j| > λ }. , 

 

where the first and second terms are the bias and variance of the threshold estimation, assuming 

Gaussian white noise with variance σ 2. Additionally, with a threshold parameter λ sufficiently 

close to σ 
√

2 log(MN), the MSE is comparable to that of an oracle projection, which reduces the 

Θ 

2 



5.7. SPUD: SIMULTANEOUS PHASE UNWRAPPING AND DENOISING ALGORITHM FOR PHASE IMAG 
 

i, j i, j 
y 

hard 

 

variance without increasing the bias, resulting in an optimal denoising value Donoho and Johnstone 

(1994). Algorithm 1 summarizes the steps explained above. 

 

Algorithm 11 SPUD: Simultaneous Phase Unwrapping and Denoising Algorithm for Phase 

Imaging 

1: Input: Wrapped phase image ϕ and the threshold parameter λ . 
2: Method: 

3: ρi, j =
 

∆ϕx
 

x 
i−1, j 

 
+

 
∆ϕy —  ∆ϕi, j− 1

     

. 

4: ρˆ = T (ρ) 
5:   φ̂i, j  = (ρ̂i, j)/2[cos(πi/M) + cos(π j/N) − 2] 

6: φˆi, j = Θλ (φˆi, j) 

7: Output: Restored phase φ = T 
−1(φˆ) 

 

5.7.4. Computational complexity. One of the main advantages of the proposed 

method is its low computational complexity since it is a non-iterative algorithm. Following the 

SPUD algorithm steps, it can be observed that the DCT transform has a computational complexity 

of O(N log N) and the hard-threshold of O(N). Therefore, the SPUD algorithm has a computational 

complexity of O(N log N). 

— ∆ϕ 
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6. Simulation Results 

 

This chapter presents the simulation results of the different approaches for the super-resolution 

scenario and the recovery method. 

Metrics: To quantity show the improvement of the proposed methods, the following metric 

is considered 

Relative Error: is computed as the 
 

 

relative error := 
dist(z, x)

 
ǁxǁ2 

 
(130) 

 

 

with  
 

dist(x, z) = min 
θ ∈ [0,2π) 

 
ǁxe

− jθ − zǁ2. (131) 

 

where x is the underlying signal and z is the estimated. 
 

Peak signal to noise ratio (PSNR): The PSNR between the reference image x and its esti- 

mation z are calculated mathematically as follows 

 

PSNR = 10 log10  
||x||∞n 

, (132) 
||x −  z||2 

 

 

where n is the dimension of the signal. 
 

 

10−5. 

Empirical success rate: A trial is declared successful if the relative error is smaller than 
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Standard deviation This is used for phase images error, which is given by Montresor and 
 

Picart (2016), 

σε = 

q

E [ε2] −  E [ε]2 , (133) 
 

where ε = x −  z is the phase difference between the simulated true phase x, and the restored phase 

map z. E [·] denotes the expected value. 

Quality Index: models the phase degradation as structural distortions instead of errors Wang 
 

et al. (2002). The Quality Index is defined as, 

 
 

Qindex =
 σsr 

·
 2µsµr 

·
 2σsσr   

 

 

 

, (134) 
σsσd µ2 + µ2 σ 2 + σ 2 

s r s r 

 
 

where µs and µr denote the mean values of the true simulated phase and the restored phase map, 

respectively. σs and σr are their variances and σsr the covariance. The value of Qindex is defined to 

lie in the interval [− 1, 1], being 1 a perfect similarity. 

6.1. Physical super resolution phase retrieval 

6.1.1. Super Resolution Factor. This section illustrates the reconstruction quality 

attained with the proposed super-resolution scenario described in Section 3.1 using the proposed 

recovery method described in Section 5.5 for two different super-resolution factors, rm = 2, 4, when 

the number of experiments/snapshot is fixed to L = 4. The coded diffraction patterns at the far zone 

were simulated using the admissible random variable d = − 1, 1, −  j, j, and the results obtained are 

shown in Figure 11. For all the images, it can be seen that when the resolution factor increases, 

the quality of the images decreases. This is an expected result since the diffraction patterns of the 
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scene are obtained with a detector of poor resolution. Specifically, the reconstructed phase and 

magnitude details are lost, yielding 0.1466 and 0.1921 relative errors for the magnitude and phase, 

respectively. This shows that a high-resolution image can be reconstructed using low-resolution 

sensors, with rm < 4. 

6.1.2. Sampling and Time Complexity. To evaluate the sampling complexity of 

the proposed method, some numerical tests varying the number of experiments were conducted 

for a noiseless scenario. Specifically, L is ranged from 1 to 10, using designed, coded apertures 

based on the random variable d3. Figure 12 plots the mean and standard deviation of the PSNR 

of 10 trials. From Fig. 12 it can be observed that when L ≥ 4, the quality of the reconstruction 

for both phase and magnitude does not significantly increase. Also, it can be concluded that the 
 

reconstruction quality of the magnitude exhibits a higher standard deviation compared to the phase. 

 
Figure 11. Reconstructed images using the proposed method for three different data sets. 

 

Note: The super-resolution factor is rm = 2 and 4. 
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Figure 12. Quality of the reconstructed phase and magnitude measured in PSNR 
 

 

 

 

   

 

   

  

Note: For different number of experiments. 

 
Figure 13. Reconstructed images when L = 1 and L = 4. 

 

Note: (Top) original and reconstructed phase and (Bottom) amplitude images. 
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To complement this experiment, Fig. 13 illustrates the reconstructed magnitude and phase 

using L = 1, 4 from CDP acquired at the middle zone. Notice that the proposed method obtained 

30 dB and 37 dB of PSNR in the reconstructed phase for L = 1 and L = 4, respectively. For the 

amplitude 35 dB and 46 dB of PSNR were respectively obtained with the same number of experi- 

ments. On the other hand, the running time of Algorithm 7 directly depends on its alternate steps, 

which for this experiment correspond to ' 15 sec for Algorithm 8 and ' 0,1 sec for Algorithm 9, 

10, implying a total of ' 600 sec for Algorithm 7. 

6.1.3. Noise Robustness. This section presents numerical simulations to charac- 

terize the robustness of the proposed method when the measurements are corrupted by additive  

Gaussian noise for different values of SNR and for the three diffraction zones. Figure 14 plots the 

attained Peak-Signal-to-Noise-Ratio (PSNR) with the proposed method using L = 4 and rm = 2, 

and coded apertures based on the random variable d3, when the SNR is varied from 5 to 50 dB. 

 
Figure. 14 reveals that the reconstruction quality of the proposed method is more stable 

from 30 to 50 dB of SNR for both magnitude and phase. Further, from values between 5 and 20 

dB of SNR, the quality of the reconstruction is low due to the amount of added noise. This shows 

the effectiveness of the proposed method to recover a high-resolution signal from low-resolution 

coded diffraction patterns under additive Gaussian noise. 

6.1.4. Comparison with Other Super-Resolution Schemes. From Table 1 it can 

be observed that the proposed SR models are different from those in Katkovnik et al. (2017); 

Katkovnik and Egiazarian (2017); Jaganathan et al. (2016). Therefore, to validate the performance 

of the algorithm concerning other SR schemes, Algorithm 7 was adapted to the sensing model at the 
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Figure 14. Reconstructed quality of the phase and magnitude measured in PSNR. 
 

               
 

   

Note: For different levels of noise. 

 

far-field in Katkovnik and Egiazarian (2017) and compared with its computational super-resolution 

algorithm, SR-SPAR. Further, in this section, this thesis does not compare with the methodology 

proposed in Jaganathan et al. (2016) because its reconstruction algorithm becomes intractable for 

large images, as in the case of the used images. This test was carried out without noise for L = 2, 

using a set of coded apertures based on the random variable d3. All the parameters used for SR- 

SPAR were those suggested in Katkovnik and Egiazarian (2017). The pixel sizes of the sensor 

and the coded aperture were fixed as ∆s = ∆m = 5,2µm, and the wavelength λ is assumed to be 

λ = 632,8nm. The number of pixels of the simulated sensor is 1024 ×  1024, assuming that it fully 

covers the diffraction pattern area. Two super-resolution factors are compared, rm = 2, 4, and the 

attained results of the proposed methods and SR-SPAR are shown in Fig. 15. Observe that these 

results suggest that the proposed reconstruction method exhibits a comparable performance with 
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Figure 15. Comparison with state-of-the-art 
 

 

 

 

 

 

 

 

 

 

Note: (Top) Original phase and amplitude, (Middle) reconstructed phase for rm = 2 and rm = 4 and 
(Bottom) reconstructed magnitude for the same super-resolution factors. 

 
 

respect to SR-SPAR under the super-resolution scenario in Katkovnik and Egiazarian (2017). 

 
6.2. Coded Aperture Design for Super-Resolution 

 

As explained in section 5, the initialization plays an important role in correcting phase ima- 

ge estimation. Therefore the performance of the well-known orthogonal-promoting initialization 

proposed in Wang et al. (2017b) is evaluated. Therefore, the designed coded apertures, using uni- 

form random variables d1 ∈  {0, 1}, d2 ∈  {− 1, 1} and d3 ∈  {− 1, 1, −  j, j} is compared with random 
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Figure 16. Relative error of the returned initialization using designed and non-designed coded 

apertures 
 

 

 

   
 

Note: The number of experiments is varied. 
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distribution. Specifically, the relative error of the returned initialization for different number of  

experiments, and the constant δ in (46) were determined for these random variables. The results 

are summarized in Fig. 16 and Table 2. From Fig. 16 it can be observed that the designed coded 

apertures generate a more accurate initialization of the true image compared with non-designed 

ensembles for any diffraction zone and for all d1, d2 and d3. These numerical results are expected 

since the designed coded apertures are constructed to satisfy the condition better (44). Additionally, 

to verify that the designed coded apertures could lead to better estimations of the true signal, the 

minimum constant δ from (46) is determined and presented in Table 2, when L = 4. Specifically, 

observe that the attained value of δ when designed coded apertures are used is smaller than that 

of non-designed ensembles. Remark that (46) states that a small value of δ is desired, which is 

independent of the diffraction zone according to condition (44). In summary, these numerical tests 

validate the proposed coded aperture design strategy. 

Table 2. Value of δ using designed coded apertures for random variables d1, d2 and d3, when L = 4. 
 

δ d1 d2 d3 

Proposed 0.3750 0.5807 0.5984 

Random 0.5568 0.6564 0.6167 

 
6.2.1. E2E Phase Mask Design. The End-to-End (E2E) approach considers a data- 

set to find the spatial distribution of the CA by customizing the optical sensing as a layer in an E2E 

network. For this, the NYU Depth Dataset Silberman et al. (2012) is employed for evaluating the 

proposed deep approach, which contains 1449 RGB images with depth maps of 15 discretization 

levels; here, 80 %, 10 %, and 10 % of images were selected for training, testing, and validating, 

respectively. On the one hand, all images were resized to 256 ×  256 pixels; then, the RGB images 
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greedy 

Designed E2E 

 

Figure 17. Relative error of the returned initialization using designed and non-designed coded 

apertures. 
 

 

 

   
 

Note: The number of experiments is varied. 

 

were converted to a grayscale version and normalized to simulate the amplitude information. On 

the other hand, the depth maps were scaled in the range [−π, π] to simulated the phase information. 

Similar as the previous section, this thesis evaluated the designed coded apertures, using random 

variables d1 ∈  {0, 1}, d2 ∈  {− 1, 1} and d3 ∈  {− 1, 1, −  j, j} compared with random distribution and 
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L 

 

the previous design. To address the constraints of the variables, this thesis starts with random va- 

lues between e j[
−π,π] and the following regularize integrated into the main loss function of the 

network 

R(D = e jC) = 
1 

∑ ∏ 
 

l 
i, j —  κd 

 2 
, (135) 

i, j,l d 

 

where kd is the desired value. For instance, for {−1, 1} the k1 = π and k2 = π which produce e 

jπ = 1 and e
−
 jπ = − 1. For this experiment, the network is composed of the forward model and 

also the initialization, as is illustrated in Fig.9. The MSE is used as the main loss function. The 

relative error of the returned initialization for the different numbers of experiments is summarized 

in Fig.17. It can be observed that the designed, coded apertures generated by the E2E method 

significantly improve the results obtained with the Random and the greedy strategy presented in 

the previous section. 

6.3. Recovery Phase Retrieval Algorithms 

 
6.3.1. Smoothing and Stochastic Smoothing Phase Retrieval Algorithm. 

 

6.3.1.1. Sampling Complexity and Speed of Convergence. For this experiment, 

simulations compare the convergence speed and sample complexity when all the algorithms are 

equipped with their initialization and suggested parameter settings for noiseless real and complex 

data. In the case of the incremental algorithms such as SSPR and STAF, one iteration is equiva- 

lent to a m stochastic iterations over the entire data, i.e. m gradient evaluations of the component 

functions lkt . Figure 18 summarizes the converging speed of the different mentioned methods. 

The real case scenario results are shown in Fig. 18 (a). Note that PR-SCG requires up to 

 
C
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66.7 %, 58.3 %, and 41.1 % fewer number of iterations concerning TWF, TAF, and RWF algo- 

rithms, respectively, and SSPR can solve the phase retrieval problem with 89.5 %, 87.2 %, 82.1 % 

and 69.4 % less number of iterations in contrast to Truncated Wirtinger Flow (TWF) Chen and 

Candes (2015a), Truncated Amplitude Flow (TAF) Wang et al. (2016a), Reshaped Wirtinger Flow 

(RWF) Zhang and Liang (2016) and the proposed PR-SCG algorithms respectively. Note that Sto- 

chastic Truncated Amplitude Flow (STAF) Wang et al. (2017a) and the proposed SSPR require a 

similar number of iterations for both real and complex cases as shown in Figs. 18(a) and 18(b), 

respectively. Further, for the complex scenario, shown in Fig. 18(b), the PR-SCG method can solve 

the phase retrieval problem with 28.5 %, 45.6 % and 67.1 % less number of iterations in contrast 

to TAF, RWF, and TWF, respectively, and SSPR requires up to 79.2 %, 88.8 %, 90.7 %, and 93.1 % 

less number of iterations with respect to PR-SCG, RWF, TAF, and TWF algorithms, respectively, 

Figure 18. Relative error versus iteration with n = 1, 000 , m/n = 8. 
 

Note:(a) Noiseless real-valued Gaussian model with x ∼ N (0, In) and ak ∼ N (0, In), (b) Noi- 
seless complex-valued Gaussian model with x ∼ N (0, In) + jN (0, In) and ak ∼ N (0, 1 In) + 

2 

jN (0, 1 In). 
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Figure 19. Empirical success rate versus number of measurements with n = 1, 000, m/n. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: (a) Noiseless real-valued Gaussian model with m/n with 0.1 step size from 0 to 7, x ∼ 

N (0, In) and ak ∼ N (0, In). (b) Noiseless complex-valued Gaussian model, m/n with 0.1 step 
size, x ∼ N (0, In) + jN (0, In) and ak ∼ N (0, 1 In) + jN (0, 1 In). 

2 2 

 
 

and similar iterations in contrast to STAF. Notice that the RAF method requires more iterations to 

converge than the other analyzed algorithms for both complex and real cases. 

Additionally, numerical results were conducted to validate the sample complexity of the 

different algorithms for real and complex noiseless cases. In particular, the results for the real case, 

shown in Fig. 19(a), establishes that SSPR achieves a success rate of over 93 % when m/n = 1,8 and 

guarantees perfect recovery from about 1,9n measurements. For the case of PR-SCG, a success rate 

of around 98 % is obtained when m/n = 2,1 and perfect recovery from about 2,2n measurements. 

Now, considering the complex case, Fig. 19(b) shows that the PR-SCG algorithm ensures 

perfect recovery from about 2,8n measurements and SSPR achieves perfect recovery from about 

2,7n measurements. Therefore, these numerical results confirm the effectiveness of the proposed 

methods. 

, , 
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Figure 20. Relative error versus iteration with n = 1, 000 and m/n = 8. 
 

Note: (a) Noisy real-valued Gaussian model with x ∼ N (0, In) and ak ∼ N (0, In). (b) 
Noisy complex-valued Gaussian model with x ∼ N (0, In) + jN (0, In) and ak ∼ N (0, 1 In) + 

2 

jN (0, 1 In). 
 
 
 

6.3.1.2. Noise Robustness. Numerical tests are conducted to demonstrate the ro- 

bustness of PR-SCG and SSPR to additive noise corruption. These simulations were realized under 

the noisy real and complex-valued Gaussian model yˆk = |aH x|2 + ηk with ηk ∼ N (0, σ 2I). The 

noisy data was generated as qk = 
√

ŷk and σ 2  = 0,12ǁxǁ2  with m/n = 8. Figure 20 summarizes 

these experiments for the real and complex cases. Specifically, it can be observed that the SSPR 

exceeds in convergence speed of the other methods in real and complex cases since it requires  

fewer iterations to solve the phase retrieval problem. In terms of the number of iterations, STAF 

exhibits the same behavior as SSPR according to the previous test, but under a noisy scenario,  

the performance of STAF diminishes compared to SSPR. Thus, these experiments show a better  

statistical performance of the SSPR method under a noise corruption model. 

Figure. 20 also shows that PR-SCG attains a higher performance under a noisy scenario 
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Figure 21. Empirical success rate versus number of measurements for n = 1000, known sparsity k = 10 and m/n 
with a step size of 0.1 from 0.1 to 3. 

 

 

      

      
     

        

        

      

 

 
Note: (a) Noiseless real-valued Gaussian model for x ∼ N (0, I1000) and ai ∼ N (0, I1000). (b) 
Noiseless complex-valued Gaussian model, with x ∼ N (0, In) + jN (0, In) and ai ∼ N (0, 1 In) + 

2 

jN (0, 1 In). 
 

 

than its non-stochastic competing alternatives TAF, RWF, and TWF. 
 

6.3.2. Sparse Smoothing Phase Retrieval Problem. 

6.3.2.1. Known Sparsity. The first experiment analyzes the sampling complexity 

under a noiseless real and complex Gaussian model, assuming that the sparsity k is known. Figure 

21 summarizes the attained empirical success rate in terms of the number of measurements, for all 

algorithms under analysis. For this test, the sparsity of the signal x is fixed as k = 10, and the ratio 

between m and n (i.e m/n) is varied from 0.1 to 3, with a step size of 0.1, for both the real and the 

complex cases. At each ratio m/n, the average over 100 tests was calculated. 

The simulations in Fig. 21 suggest that the proposed algorithm SPRSF requires less number 

of measurements to solve the sparse phase retrieval problem in comparison with the SparseAlt- 

MinPhase (SAMP) Netrapalli et al. (2013), sparse WF (SWF) Yuan et al. (2017), and the Sparse 

Truncated Amplitude flow (SPARTA) Wang et al. (2016b) methods, for both the real and the com- 
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plex cases. Moreover, notice that SPRSF achieves a success rate over 98 % when m/n = 0,5 for 

the real case and a success rate over 95 % when m/n = 0,6 for the complex case. Further, SPRSF 

guarantees a perfect recovery from about 0,6n and 0,7n measurements for the real and complex 

cases, respectively. Therefore, these results show the effectiveness of the smoothing approximation 

scheme to solve the sparse phase retrieval problem. 

6.3.2.2. Unknown Sparsity Boundary. In this experiment, this thesis compares the 

proposed method with the state-of-the-art approaches to recover the signal x in terms of the sam- 

pling complexity, when the sparsity k is unknown. Specifically, from Theorem 5, it can be obtained 

that the sampling complexity of the SPRSF method is O(k2 log(n)). Now, suppose that there is no 

knowledge about the sparsity k. It is assumed that the sparsity is k = 
√

n, the sampling comple- 

xity is given by O(n log(n)), which is considered the limit value of the unknown k when k n 

Yuan et al. (2017). Therefore, in this Test the sparsity of the signal x is fixed to k = 10, but the 

experiments, in Fig. 22, assume the sparsity of the signal x is 
√

n ≈ 32, since n = 1000. 

Notice that, SPRSF outperforms the other algorithms when the prior sparsity k is not known 

correctly for both real and complex cases. Further, it can be observed that compared with Test 1 in 

Fig. 21, the superiority of the proposed method SPRSF with respect to SPARTA, SWF and SAMP, 

is more evident. Figure 22 also shows that SPRSF attains a success rate of 80 % when m/n = 0,3 

for the real case and a success rate of 90 % when m/n = 0,5 for the complex case. Perfect recovery 

is attained from about 0,6n and 0,7n measurements for the real and the complex cases, respectively. 

It can be concluded that this second test suggests that the proposed smoothing approxima- 

tion scheme outperforms its competitive alternatives when the sparsity is assumed different from 
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its real value. 
 

6.3.2.3. Unknown Sparsity. In this experiment, numerical simulations are conduc- 
 

ted to analyze the ability of the methods to solve the sparse phase retrieval problem when the 

sparsity k is completely unknown. For these simulations, the sparsity of the signal x was fixed as 

k = 10, and since the sparsity is unknown, this thesis ranges kˆ from 35 to 180 for real and complex 

cases, with a step size of 5. At each k̂, the average of the empirical success rate over 100 tests is 

calculated. This thesis called the sparsity k̂, the prior sparsity. The number of measurements m was 

fixed to m = n. All these numerical tests are summarized in Fig. 23. This thesis omitted the SAMP 

simulations in Fig. 23 since from Fig. 21 it can be noticed that SAMP cannot solve the sparse PR 

problem when the sparsity k is known and the number of measurements m = n. 

From Fig. 23 it can be observed that the proposed method SPRSF overcomes its competing 

alternatives because it guarantees perfect recovery when the sparsity k of the signal x is completely 

Figure 22. Empirical success rate versus number of measurements for n = 1, 000, m/n with a step size of 0.1 from 0 
to 3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note: The sparsity is assumed to be k = 
√

n 32 while the real sparsity is k = 10. (a) Noiseless 
real-valued Gaussian model for x ∼ N (0, I1000) and ai ∼ N (0, I1000). (b) Noiseless complex- 
valued Gaussian model, with x ∼ N (0, In) + jN (0, In) and ai ∼ N (0, 1 In) + jN (0, 1 In). 

2 2 
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Figure 23. Empirical success rate versus number of measurements for n = 1000, m/n = 1, where the real sparsity is 

k = 10. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The priory sparsity kˆ was ranged from 35 to 180, with a step size of 5. (a) Noiseless real- 

valued Gaussian model with x ∼ N (0, I1000) and ai ∼ N (0, I1000). (b) Noiseless complex-valued 
Gaussian model with x ∼ N (0, In) + jN (0, In) and ai ∼ N (0, 1 In) + jN (0, 1 In). 

2 2 

 
 

unknown. Further, notice that SPARTA cannot recover the signal without prior knowledge about 

the sparsity from a prior sparsity kˆ = 55 and kˆ = 140 for the real and complex cases, respectively 

when the sparsity is k = 10. Also, it can be concluded that SWF is superior to SPARTA for the real 

case, but SWF cannot recover the sparse signal from a prior sparsity kˆ ≥ 155. However, for the 

complex case, SPARTA exhibits a better performance than SWF, because SPARTA cannot always 

recover the signal from a priority sparsity kˆ ≥ 150. 

In summary, by combining the results from Test 2 (Fig. 22) and Test 3 (Fig. 23), it can be 

concluded that SPRSF is highly superior to SPARTA, SAMP, and SWF in recovering the sparse 

signal x when there is no prior knowledge about the sparsity k. 

6.3.2.4. Different Values of Sparsity Analysis. This section shows numerical simu- 

lations to determine the effect of different sparsity values on the performance of SAMP, SPARTA,  

SWF and SPRSF. For these experiments, this thesis fixed the number of measurements m = 1,5n 

k k 
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with n = 1000 and the sparsity of the signal varying from 10 to 100 with a step size of 5. In these 

cases, this thesis assumes that the sparsity k is known. All the numerical results are summarized in 

Fig. 24. 
 

Figure 24. Empirical success rate versus sparsity k ranged from 10 to 100 with a step size of 5, n = 1000, m/n = 1,5. 
 

Note: (a) Noiseless real-valued Gaussian model for x ∼ N (0, I1000) and ai ∼ N (0, I1000). (b) 
Noiseless complex-valued Gaussian model, with x ∼ N (0, In) + jN (0, In) and ai ∼ N (0, 1 In) + 

2 

jN (0, 1 In). 
 
 
 

Figure 24 shows that the SPRSF method is superior to the SAMP, SPARTA and SWF algo- 

rithms, for both real and complex cases, since SPRSF can solve the sparse phase retrieval problem 

for signals with larger sparsity values, as opposed to its competitive alternatives. Also, it can be 

concluded that SPRSF has a mean recovery rate of about 75 % and 12 % when the sparsity is 

k = 100 for the real and complex cases, respectively. 

6.3.2.5. Noise Corruption Analysis. Numerical tests are conducted to demonstrate 

the robustness of SPRSF to noise corruption. These simulations are performed under the noisy real 

complex valued Gaussian model yˆi = |aH x| + ηi. The noisy data was generated as qi = yˆi with a 

signal to noise ratio (SNR) ranging from 5dB to 70dB. The number of measurements was fixed 
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as m = 1,5n and the sparsity as k = 10. The results in Fig. 25 are the average of the relative error 

metric dr(z, x)/ǁxǁ2 of 100 tests for each SNR value. 

From Fig. 25 it can be observed that SWF attains slightly better performance in solving 

the sparse phase-retrieval problem, compared with SPRSF for the real and complex cases, in high- 

noise scenarios 0 < SNR ≤ 20. However, when the noise level decreases, the proposed method 

overcomes that of SWF for both cases. Further, for the real and complex cases, the results show 

that SPRSF exhibits better performance than its competitive SPARTA and SAMP alternatives for 

all noise values. 

6.3.3. Smoothing Phase Retrieval with Outliers. This section evaluates the nu- 

merical performance of the proposed smoothing phase retrieval algorithm with outliers algorithm 

compared with the competitive algorithms Median-RWF Zhang et al. (2018), Median-TWF Zhang 

et al. (2018), Robust-RWF Chen et al. (2017), and Prox Duchi and Ruan (2017). Two cases of 

Figure 25. Mean of 100 NMSE test for different values of Gaussian white noise from 5dB to 70dB of SNR. 
 

Note: (a) Noisy real-valued Gaussian model. (b) Noisy complex-valued Gaussian model. 
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 if T 

y as 0. 

 

outliers were tested: 
 

• Case 1: When the measurement vectors and the outliers are independent, i.e. 

 
H 2 
k 

yk = 

ok,    if T 
∗
, 

where T 
∗
 is the true support of the outliers and T ∗ is its complement. 

 
 
 
 
 
 

(136) 

 

• Case 2: The corrupted measurements are dependent of the sensing vectors ak as in (90). 

The default values of the parameters of Algorithms 6, were fixed to µ0 = 60, T = 300, β = 

Figure 26. Relative error of the returned initialization 
 

 

 
 

 

 
 

 

Note: for case (a) omax = 0,5ǁxǁ2, (b) omax =ǁxǁ2, (c) omax = 0ǁxǁ∞ǁxǁ2 and for case 1 (d) setting 
k 
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4,6, γ = 0,9, γ1 = 0,5, λ = 0,6. These values were determined using a cross-validation strategy such 

that each simulation uses the value that results in the best reconstruction quality. 

Figure 27. Probability of success for a) median-TWF b) median- RWF c) Robust-RWF d) Prox and 

e) the proposed RSPR where dimension n = 100. 
 

 

 
 

 
 

Note: Horizontal axis indexes outliers fraction s while vertical axis indexes the measurement ratio 
m/n. 
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6.3.3.1. Performance of the Initialization strategies. The first experiment shows 

the performance of OPI, used in the proposed method, compared with initializations proposed to 

deal with sparse outliers such as the Median-RWF Zhang et al. (2018), Robust-RWF Chen et al. 

(2017) and Small initialization Duchi and Ruan (2017). The number of measurements was fixed 

as m = 3n and each measurement yk can be independently corrupted with probability α ∈  [0, 0,4]. 

For the first outliers case, set yk = 0, which is more difficult for OPI. In case 2, the outliers ok ∼ 

U (0, omax) were randomly generated from a uniform distribution. Figure 26 shows the results for 

different cases. Specifically Figure 26 (a-c) show the case 2 for omax = 0,5ǁxǁ2, omax =ǁxǁ2  and 

omax =ǁxǁ∞ǁxǁ2, respectively, and Figure 26 (d) shows the case 1. It can be observed that for these 

scenarios OPI outperforms the other initializations. 

Case 1 . In this experiment, the case when the measurements vector and the outliers 

are independent was evaluated. For this, each measurement yk = 0 can be corrupted with probabi- 

lity of α ∈  [0, 0,3] independently. Figure 27 summarizes the success rate of the different methods 

varying the number of measurements and the outliers fraction. White squares indicate that 100 % 

of times, the methods solved the problem satisfactorily, while the black squares indicate 0 % of 

success rate. Figure 27 shows two points of reference, where the proposed method obtains betters 

results compared with the other methods. Specifically, when the number of measurements and the 

number of outliers increases the proposed method is more robust. 

Case 2 . Numerical tests are conducted to demonstrate the robustness of the propo- 

sed method under the second outliers scenario. The outliers ok ∼ U (0, omax) were randomly gene- 
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Figure 28. Empirical success rate versus number fo measurements with n = 200 and outliers frac- 

tion α = 0,1 
 

 

Note: for (a) omax = 0,1ǁxǁ2 , (b) omax =ǁxǁ2 and (c) omax =ǁxǁ∞ ǁxǁ2. 

rated from a uniform distribution and the measurements were generated using the model in (90). 

Three maximum amplitudes of the outliers were evaluated in this test omax = 0,1ǁxǁ2, omax =ǁxǁ2 and 

omax =ǁxǁ∞ ǁxǁ2. Figure 28 shows the sampling complexity of the phase retrieval method with α = 

0,1m of outliers. Figure 28 suggests that the proposed method RSPR requires less number of 

measurements to recover the signal x in comparison with its robust competitive algorithms. Speci- 

fically, it can be observed in fig. 28 (b) that the proposed method needs 25 %, 29 % and 38 % less 

measurements compared with Median-RWF, Robust-RWF and Prox, respectively. 

Additionally, in order to evaluate the robustness of the proposed method, set m/n = 4, and 

the outliers fraction is varied from 0.01 to 0.4 with a step size of 0,03. Results are summarized 

in Fig.29, where it can be observed that the proposed method has similar performance to Median- 
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Figure 29. Empirical success rate versus outliers fraction (α), with n = 200 and m = 4n 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: for (a) omax = 0,1ǁxǁ2 , (b) omax =ǁxǁ2 and (c) omax =ǁxǁ∞ ǁxǁ2. 

RWF for small values of omax. However, when the value of the outliers magnitude increases, the 

proposed method outperforms the other phase retrieval algorithms. Specifically, from fig.29 (c), 

it can be observed that for α = 0,16 the success recovery of the proposed method is 20 %, 98 % 

and 97 % more probable compared with Median-RWF, Robust-RWF and Prox, respectively. Thus, 

these experiments show a better statistical performance of the RSPR under sparse outliers. 

6.4. Deep Unrolled Recovery Network 

 

The deep unrolled recovery network is illustrated in Fig.17. Particularly, this thesis used 

the E2E formulation for coupled design the CA. Similar to the previous section, the NYU Depth 

Dataset Silberman et al. (2012) is employed for evaluating the proposed deep approach, which 

contains 1449 RGB images with depth maps of 15 discretization levels; here, 80 %, 10 %, and 
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Figure 30. Visual representation of the proposed Deep Unrolling method compared with the state- 

of-the-art method 
 

 

 

   

 

  

Note: for a different number of snapshots. 
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10 % of images were selected for training, testing, and validating, respectively. All images were 

resized to 256 ×  256 pixels; then, the RGB images were converted to a grayscale version and 

normalized to simulate the amplitude information. On the other hand, the depth maps were scaled 

in the range [−π, π] to simulated the phase information. This thesis evaluated the designed, coded 

apertures, using random variables d1 ∈  {0, 1} and this thesis compared with the results of SPR, 

TAF, and TWF. The Unet-based DNN Bacca et al. (2021) with skip connections at every pooling 

operation is implemented as a prior network for the Magnitude and Phase, respectively, i.e., two 

Unet was used. The MSE is used as the main loss function. These experiments were tested using 

Ł = 1, 3, 4 number of snapshots for the proposed method with 30dB of SNR. Figure 30. shows the 

visual results of a testing image. There it can be observed that the proposed method obtain good 

results even at one snapshot. 

6.5. SPUD 

 

The performance of the proposed phase unwrapping method was evaluated with numeri- 

cally simulated data and compared to a denoising plus phase unwrapping strategy. The denoising 

stage is performed using the 2D Windowed Fourier Transform filter (WFF) Kemao (2004, 2007); 

Kemao et al. (2008), which was shown to outperform the state-of-the-art denoising algorithms in 

terms of phase error Montresor and Picart (2016). For the phase unwrapping stage, this thesis used 

the least-squares DCT closed solution. This method is referred to from now on as WFF+LSPU. 

Suggested parameter settings for WFF were provided in Kemao et al. (2008). 

The motivation for these experiments is to find out if, for mild phase noise, the proposed 

method can avoid the use of costly procedures such as WFF. For this reason, this thesis does 
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SPUD 

WFF 

 

Figure 31. Average phase restoration performance results of SPUD and WFF+LSPU. SPUD out- 

performs WFF+LSPU 
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Note: in terms of (A) restored phase error (σε ), and performs at par with WFF+LSPU in terms of 
(B) Quality index and (C) PSNR. 

 
 

not compare against other noise-robust phase unwrapping methods, like PUMA Bioucas-Dias and 

Valadao (2007), that have been shown to require additional denoising stages Hongxing and Lingda 

(2014). 

Fig. 31 summarizes the performance of the SPUD algorithm and WFF+ LSPU for the entire 

dataset and the three metrics explained above. This thesis plots the average values of σε , Qindex, 

and PSNR for the 20 simulated noise levels at each fringe density. From Fig. 31 (A), the proposed 

method showed the best performance in terms of phase errors compared to WFF+LSPU regardless 

of fringe density. Whereas from Figures 31 (B) and (C), the SPUD method performs at par with 

respect to WFF+LSPU in terms of Qindex and PSNR. 

To visualize the performance results, in Fig. 32, this thesis summarizes the outputs from the 

SPUD algorithm and WFF+LSPU for the different five phase densities and the highest noise level. 
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Both methods effectively reduced the noise and correctly unwrapped the phase. However, the pha- 

se errors obtained by the proposed method are lower than the errors obtained from WFF+LSPU. 

Note that the phase errors from WFF+LSPU tend to increase with higher fringe densities at the 

Figure 32. 2D representation of the SPUD and WFF+LSPU performance for the five phase densi- 

ties and the noise level 20. 
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Note: The SPUD error maps are smoother and the errors are randomly distributed, whereas the 
WFF+LSPU error maps concentrate high errors in the vicinity of high density fringes. 
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same noise level, whereas the phase errors from SPUD remain approximately constant regardless 

of fringe density. Additionally, the errors from SPUD are randomly distributed throughout the pha- 

se map, which is a desired property of denoising methods Buades et al. (2011), while the errors 

from WFF+LSPU are concentrated near high fringe density regions. The quantitative results from 

Fig. 32 are shown in Table 3 for the three performance metrics. As in the average performance 

scores, SPUD outperforms WFF+LSPU in terms of phase error σε , and has a comparable perfor- 

mance with respect to WFF+LSPU in terms of Qindex and PSNR. The high Qindex and PSNR values 

show the restoration capabilities of both methods. 

Table 3. Quantitative assessment of the phase estimation quality in Fig. 32. In bold typeface the 
values where SPUD performance is superior. 

 

SPUD WFF + LSPU 
  

Density σ  σε (rad) Qindex PSNR (dB) σε (rad) Qindex PSNR (dB) 

1 0.467 0.0059 0.838 56.33 0.0057 0.849 56.36 

2 0.479 0.0067 0.878 53.21 0.0092 0.899 53.19 

3 0.463 0.0069 0.903 50.95 0.0129 0.916 50.83 

4 0.481 0.0058 0.945 48.21 0.0187 0.924 48.19 

5 0.476 0.0161 0.925 46.47 0.0266 0.934 46.54 
 
 

6.5.1. Execution time assessment. From the above experiments, it can be conclu- 

ded that the SPUD method obtains a comparable result with WFF+LSPU. However, the main ad- 

vantage of the proposed method is its low computational complexity. To illustrate that, this thesis 

evaluates the execution time of SPUD and WFF+LSPU on a personal computer (PC) with Win- 

dows 7 (2.4 GHz i7 intel processor, 8 GB RAM) and MATLAB R2017a. In this experiment, this 
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Table 4. Execution time comparison for different array sizes. Time measurements in seconds. 
 

Array Size 
SPUD

 WFF+LSPU WFF (GTX295 

(pixels) 
(double

 (double GPU, single 

precision) precision) precision) 

256×  256 0.0069 24.7215 0.25 

512×  512 0.0857 104.2615 0.93 

  1024×  1024 0.2326 755.8024 3.60  
 

thesis uses three-phase maps with the same phase density and noise level but with different sizes 

(number of pixels). Table 4 shows the execution time results for both methods in the phased resto- 

ration of array sizes: 256 ×  256, 512 ×  512, and 1024 ×  1024. It can be noticed that WFF+LSPU is 

several orders of magnitude slower than SPUD, and this is mainly due to the high complexity in 

the denoising stage with WFF. However, since there are GPU implementations of WFF, execu- 

tion times for the processing of fringe patterns of the same size as reported in Gao et al. (2009) 

are included. Even in this scenario, the non-optimized MATLAB implementation of the proposed 

method in double precision (that includes denoising and unwrapping) is one to two orders of mag- 

nitude faster than the GPU implementation of WFF in single precision (only the denoising stage  

without unwrapping). 

6.5.2. Experimental Results . The SPUD algorithm was evaluated on two wrap- 

ped phases from InSAR provided as open-source data in Refs. Hernandez-Lopez et al. (2018); 

SAR-EDU (2019). Figure. 33(A) shows the first interferometric phase of size 561 ×  1591 pixels, 

which corresponds to the shape of a volcano. Note that the phase map contains regions of phase 

dislocations. In this situation, filtering by WFF has proven to be unhelpful Meng et al. (2012). 

Following the threshold formula, we set λ = 0,5
√

2 log(MN) for these experiments.Figure. 33(B) 
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Figure 33. Phase unwrapping by SPUD from an interferometric wrapped phase of size 1591 561 

pixels. 
 
 

 

-20   0   20  40 

Note: (A) Wrapped phase. (B) Unwrapped phase. (C) Re-wrapped values of the unwrapped phase 
compared with (A). (D) Mesh of the unwrapped phase. The red box indicates a region of phase 
dislocations, with a zoomed view. 
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Figure 34. Phase unwrapping by SPUD from an interferometric wrapped phase of size 1065 2032 

pixels. 

 

(D) 

 

 

 

 

 

 

 
 

Note: (A) Wrapped phase. (B) Unwrapped phase. (C) Re-wrapped values of the unwrapped phase 
compared with (A). (D) Mesh of the unwrapped phase. 

 
 

shows the unwrapped and restored phase map obtained by SPUD. Since the dynamic range of the 

unwrapped result is large, we re-wrap the unwrapped values for visual comparison (Fig. 33(C)), 

as suggested in Ref. Ghiglia and Pritt (1998). The proposed algorithm removes the regions of pha- 

-10 0 10 
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se dislocations from the restored phase map by the smoothing constraint without increasing the 

computational complexity. Additionally, the unwrapped solution seems congruent with the origi- 

nal data, and no propagation errors are evident. Figure. 33(D) shows the mesh of the unwrapped 

phase. The processing time in this experiment was 0.504 s. 

Figure. 34(A), shows the second wrapped phase map of size 1065 ×  2032 pixels, which 

corresponds to a region over Phoenix, Arizona, USA, scanned by the Canadian satellite system, 

RADARSAT-2. The phase map describes a complex topographic area and exhibits noise. Figu- 

re. 34(B) shows the unwrapped and restored phase with the proposed method. The re-wrapped 

phase map is shown in Fig. 34(C). Observe that the effect of noise was minimized with the structu- 

ral information substantially preserved. The mesh of the unwrapped phase is shown in Fig. 34(D). 

The processing time for this experiment was 1.04 s. 
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7. Extension to Compressive Spectral Imaging 

 

This chapter presents some resulting work on compressive spectral imaging (CSI) using 

the mathematical concepts addressed in this thesis, mainly in the recovery methods and the coded 

aperture design. 

The CSI sensing paradigm acquires 2D multiplexed projections of a three-dimension scene 

instead of directly acquire all voxels, resulting in image compression via hardware. The spatial- 

spectral data cube is represented as F ∈  RM× N× L with M ×  N spatial dimensions, L spectral bands, 

and f ∈  RMNL denotes the vector representation of the spectral image. Thus, the system matrix 

model can be expressed as 
 

y = Hf, (137) 

 
where y ∈  Rm represent the measurements with m << MNL and H ∈  Rm× MNL represents the 

linear sensing matrix. Even though CSI yields efficient sensing, a reconstruction process from the 

compressed measurements is needed since it finds a solution to an under-determined system. 

7.1. Compressive Reconstruction: 

 
7.1.1. Compressive Spectral Image Reconstruction using Deep Prior and Low– 

Rank Tensor Representation Bacca et al. (2021). The goal in CSI is to recover the spectral 

image F ∈  RM× N× L from the compressive measurements y. A tensor formulation for addressing 
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this problem is described below 

 
 

minimize    
1 

ǁy − Hvect (F )ǁ2 + λ φ (Z 
′
o) (138) 

Z o 2 2 

subject to F = Z 
′
o × 1 U′ × 2 V′ × 3 W′

, 

 

where the matrices U′ ∈  RM×M, V′ ∈  RN×N  and W′ ∈  RL×L are fixed and known orthogonal matri- 

ces, which usually are the matrix representation of the Wavelet and the Discrete Cosine transforms; 

Z 
′
o  is  the  representation  of  the  spectral  image  in  the  given  basis  and  φ (·) : RM×N×L  → R  is  a 

regularization function that imposes particular image priors with λ as the regularization parame- 

ter Figueiredo et al. (2007). 

Unlike the hand-craft priors as sparsity Arce et al. (2014), this thesis explores the power 

of some deep neural networks as image generators that map a low-dimensional feature tensor 

Z ∈  RM×N× L to the image as 

F = Mθ (Z ), (139) 

where Mθ (·) represents a deep network, with θ as the net-parameters. To ensure a low-dimensional 

structure over the feature tensor, this thesis used the Tucker representation, i.e., Z = Z o × 1 U × 2 V 

× 3 W with Z o ∈  RMρ × Nρ × Lρ as a 3D low dimensional tensor, with Mρ < M, Nρ < N and Lρ < L. This 

representation, in the input of the network, aims to maintain the 3D structure of the spectral 

images, exploits the inherent low-rank of this data Wang et al. (2017d); León-López and Fuentes 

(2020), and also implicitly constraint the output F in a low dimensional manifold via the archi- 
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Figure 35. Visual representation of the proposed deep neural scheme, where the boxes with back- 

ground color represent the learning parameters. 
 

Note: The white box stand for the non-trainable CSI system, and the non-box blocks represent the 
outputs of the layers. 

 
 

tecture and the weights of the net Wu et al. (2019). It is worth highlighting that, unlike Wang 

et al. (2017d); León-López and Fuentes (2020), this thesis does not satisfy the low-rank structure 

in the recovered spectral image (output of the network). Instead, this thesis imposes Tucker de- 

composition on the input network, which expects that after some convolution layer, extract some 

non-linearity features present in the SI. 

This thesis is focused on a blind representation, where instead of having a pre-training net- 

work or massive amount of data to train this deep neural representation, this thesis expresses an 

optimization problem which learns the weight θ in the generative network Mθ and also the ten- 

sor feature Z  with its Tucker representation elements as Z o, U, V and W. All the parameters of 

this optimization problem are randomly initialized, and the only available information is the com- 

pressive measurements and the sensing model, i.e., the optimization problem is data training inde- 

pendent. In particular, this thesis explores the prior implicitly captured by choice of the generator 

network structure, which is usually composed of convolution operations, and the importance of the 

low-rank representation feature; therefore, the proposed method consists of solving the following 
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optimization problem 
 

 
1 2 

 minimize 
θ,Z o,U,V,W 2 

ǁy − Hvect (Mθ (Z ))ǁ2 (140) 
 

subject to Z = Z o × 1 U × 2 V × 3 W, 

 

where the recovery is F 
∗ = Mθ ∗ (Z o

∗ × 1 U∗ × 2 V∗ × 3 W∗). This optimization problem can be sol- ved 

using an end-to-end neural network framework, as shown in Fig. 35. In this way, the input, that is 

common in all neural networks, is replaced with a custom layer with Z o, U, V, W as learnable 

parameters, which construct the low-rank Tucker representation of Z , then this tensor Z is refined 

with convolutional layers via Mθ (Z ); these optimization variables are represented by the first two 

blue-blocks in the Fig. 35. The final layer in the proposed method is a non-training layer which 

models the forward sensing operator Hvect(Mθ (Z )) to obtain the compressive measurements y 

as the output of the net. Therefore, the problem in (140) can be solved with state-of-the-art deep 

learning optimization algorithm, such as, stochastic gradient descent. Once the parameters are op- 

timized, the desired SI is recovered just before the non-trainable layer labeled as Ç SI systemı̈n Fig. 
 

35. 
 

7.1.1.1. Simulations and Results. Although the proposed method does not need 
 

data to work, this test compares its results with the deep learning approaches to demonstrate the  

quality achieved. In particular, this thesis uses five learning-based methods for comparison: HS- 

CNN Xiong et al. (2017), ISTA-Net Zhang and Ghanem (2018), Autoencoder Choi et al. (2017); 

HIR-DSSP Wang et al. (2019) and DNU Wang et al. (2020). These methods were trained using the 
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Figure 36. Two reconstructed scenes using the 5 learning-based methods. 
 

Note: Three are the variations of the proposed method, i.e., (AutoEncoder, UNet, and ResNet)- 
Based. 

 

public ICVL Arad and Ben-Shahar (2016), Harvard Chakrabarti and Zickler (2011), and KAIST 

Choi et al. (2017) hyperspectral image data-sets using their available codes and following the prin- 

ciples in Wang et al. (2018d, 2019) to partition the training and testing sets; the sensing process 

was evaluated for a single snapshot with 30 dB of SNR, according to Wang et al. (2020). For this 

section, ResNet-based, AutoEnconder-Based, and UNet-based were used as the Convolutional la- 

yer in the proposed method with ρ = {0,5, 0,7, 0,7}, respectively. Two testing images of 512 ×  512 

of spatial resolution and 31 spectral bands were chosen to evaluate the different methods, and the 

reconstruction results and ground truth are shown in Fig. 36. It can be observed that the two variants 

 
 
 
 
 
 
 
 

 
Prop. ResNet-based 

(32.92/0.992/0.021) 
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Table 5. Computational complexity of the deep learning and the proposed methods measured as 
mean time in seconds of 5 trials. 

Methods HSCNN ISTA-Net AutoEncoder HIR-DSSP DNU 
Prop. 

AutoEncoder 

Prop. 

UNet 

Prop. 

ResNet 

GPU Time [s] 8.708 3.224 575.421 8.397 2.744 137.375 278.0411 135.834 

CPU Time [s] 72.174 27.154 3948.421 68.214 20.727 1084.154 2224.145 997.156 

of the proposed method outperform in visual and quantitative results to HSCNN, ISTA-Net, Au- 

toEnconder, HIR-DSSP, up to (5/0,030/0,020) in terms of (PSNR/SSIM/SAM), respectively, and 

show comparable/close results with respect to the DNU method, which is the best deep learning 

method. To make a fair run-time comparison of the different methods, all the recovery approaches 

were running in an Intel (R) Xeon (R) CPU 2.80 GHz. Additionally, since all deep learning met- 

hods are implemented to use GPU, it is also run it Google Colab source using an NVIDIA Tesla 

P100 PCIe 16 GB. Table 5 shows the running time for reconstructing one spectral image from the 

compressive measurements. Notice that the proposed methods are iterative; therefore, it employed 

2,000 iterations which offers a stable convergence. Although the execution time to obtain a spectral 

image is longer than most deep learning methods, the proposed methods have the advantage that it 

does not require training, i.e., only the compressive measurements are available for the proposed 
 

approach. 
 

7.1.1.2. Validation in a Real Testbed Implementation. This section evaluates the 
 

proposed method with real measurements acquired using a testbed implementation. For this sec- 
 

tion, the ResNet-based model was used with (ρ = 0,4), and learning rate 1e −  3. Specifically, two 

different scenarios of compressed projections were assessed, which are described as follows. 

This scenario was carried out for one snapshot of the CASSI testbed laboratory imple- 

mentation depicted in Fig. 37. This setup contains a 100-nm objective lens, a high-speed digital 
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micro-mirror device (DMD) (Texas Instruments-DLI4130), with a pixel size of 13, 6µm, where the 

CA is implemented, an Amici Prism (Shanghai Optics), and a CCD (AVT Stingray F-145B) came- 

ra with spatial resolution 1388 ×  1038, and pitch size of 6,45µm. The CA, spatial distribution for 

the snapshot, comes from blue noise patterns, i.e., this CA is designed according to Correa et al. 

(2016a). The coding and the scene were implemented to have a spatial resolution of 512 ×  512 

pixels and L = 13 as the resolvable bands. This thesis decided to compare with PnP-ADMM, and 

DIP using this real data. 
 

Figure 38 presents the RGB scene obtained with a traditional camera, and the false-colored 

RGB images corresponding to reconstructed spectral images using the different solvers. Further- 

more, the spectral responses of two particular spatial locations in the scene indicated as red points 

in the images are also included and compared with the spectral behavior using a commercially 

Figure 37. Testbed CASSI implementation. 
 

Note: The relay lens focuses the encoded light by the DMD into the sensor after dispersed by the 
prism. 
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Figure 38. (Left) RGB visual representation of the scene obtained with the different methods, 

(Right), two spectral signatures of the recovered scenes. 
 

RGB Scene 

 

 

 

available spectrometer (Ocean Optics USB2000+). The visual results show that the proposed met- 

hod yield better spatial and spectral reconstruction since the RGB reconstructed is sharper in the 

proposed scheme, and the spectral signatures are closer to those taken by the spectrometer; this is,  

the SAM of the normalized signatures obtained from the PnP-ADMM algorithm is 0.188, Deep 

Image Prior is 0.205, and the SAM associated to the proposed method is 0.120. These numerical 

results validate the performance of the proposed method with real data for a real CASSI setup 

using a binary-coded aperture. 

7.1.2. Non-Iterative Hyperspectral Image Reconstruction from Compressive Fu- 

sed Measurements Bacca et al. (2019). Several camera designs have been proposed for compres- 

sive spectral image acquisition Arguello and Arce (2014); Correa et al. (2015). A common point 

among those is using a random pattern to modulate the spatial information to obtain the measure- 

P1 

 
PnP-ADMM 

Proposed 

DIP 

P2 
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Figure 39. Single Pixel Camera schematic for hyperspectral data acquisition 
 

 

ment collection. This thesis is focused on the fusion of measurements from the single-pixel camera 

and the 3D-CASSI scheme. 

7.1.2.1. Single Pixel Camera. The single-pixel camera (SPC) for spectral imaging 

Sun and Kelly (2009); Soldevila et al. (2013) is illustrated in Fig. 39. SPC, in the k-th shot, uses a 

spatial light modulator which spatially codes all the spectral bands of the data cube using the same 

block-unblock pattern (hs)k,i, j. Then, the encoded data is projected into a single spatial point where 

a spectrometer is used as the detector. This system can be modeled as a linear mapping, where all 

pixels (i, j) of the image ( f )i, j,l in each spectral band l are mapped to a single point (ys)k,l. This is 

expressed mathematically as 

 
 

M− 1 N−1 

(ys)k,l = ∑ 
i=0 

∑ (hs)k,i, j( f )i, j,l, (141) 
j=0 
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with (hs)k,i, j ∈  {0, 1}; where k = 0, . . . , Ks −  1 indexes the different captured projections for a total 

of Ks shots. Equation (141) can be expressed as the linear system 

 

Ys = HsF, (142) 

 

where Hs ∈  {0, 1}Ks× MN represents the SPC sensing matrix, Ys ∈  RKs× L denotes the observation matrix 

with Ks shots, and F ∈  RMN× L is the hyperspectral data cube organized as F = [f(1), . . . , f(MN)]T , where 

f(l) ∈  RL× 1 represents the spectral signature of the l-th pixel. Notice that the compression rate of 

the SPC is given by 
 

%SPC = Ks/MN. (143) 

 
7.1.2.2. 3D-CASSI Scheme. The spatial-spectral coded compressive spectral ima- 

ging system (3D-CASSI) is a CSI sensing scheme that modulates the spectral data cube in the 

Figure 40. Schematic of 3D-CASSI sensing approach. 
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spatial and spectral dimensions simultaneously Cao et al. (2016). Unlike SPC, which encodes all 

the spectral bands with the same pattern, 3D-CASSI uses a 3D-coded aperture (hc)k,i, j,l  (ensemble 

of 2D coded apertures), which enables different coding for each spectral band. Specifically, the 3D 

coded aperture, in the k-th shot, is composed by a set of coding filters φs ∈  RL, for s = 0, · · · S −  1 

where S denote the number of different coding patterns distributed on hc in a single shot. Note 

that in general S < LCorrea et al. (2015). Then, the coded spectral data cube is integrated along 

the spectral dimension such that each spatial position of the acquired measurements contains the 

compressed information of a single coded spectral signature as shown in Fig. 40. Works in Gehm 

et al. (2007); Lin et al. (2014a,b) describe different implementations of the 3D-CASSI scheme (see 

Cao et al. (2016) for more details). 

Mathematically, the output of the sensing process, at the (i, j)-th detector pixel and a speci- 

fic snapshot k, can be expressed as 

 
L 1 

(yc)k,i, j = ∑(hc)k,i, j,l ( f )i, j,l . (144) 
l=0 

 

Assuming that Kc shots are taken, the set of compressed measurements from (144) can be arranged 

in a Kc ×  MN matrix 

 
Ŷ  = 

 
[(yc)(0,0,0), (yc)(0,1,0), · · · , (yc)(0,0,1), · · · , (yc)(0,M−1,N−1)]

T , 

· · · , [(yc)(Kc− 1,0,0), · · · , [(yc)(Kc− 1,M− 1,N− 1)]
T 

 T
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, where each column value corresponds to a compressed spectral signature. 
 

On the other hand, if we assume that Kc = S, the entries of Ŷ can be rearranged to form a 
 

new matrix Yc, such that each row contains the compressed information acquired with a specific  

coding pattern φs Hinojosa et al. (2018). Formally, the rearrangement can be expressed as 

 
Ys, j = Ŷs′ , j if Ŷs′ , j  = (φ s)T f j ∀ s

′
, (145) 

 

for s, s
′ = 0, · · · , Kc − 1, where f j denotes the  j-th spectral signature with  j = 0, · · · , MN − 1. This 

rearrangement, depicted in Fig. 41, preserves the structure of the underlying high dimensional data. 

Note that this rearrangement is possible only when Kc = S, since in this case, it can be guaranteed 

that, at a specific snapshot, one pixel is encoded only once by a different pattern and, at the end 

of the sensing procedure, all pixels were encoded by the whole set of Kc coding patterns. Alter- 

natively, define the matrix of Kc coding patterns as Hc = φ 0, φ 1, · · · φ Kc−1 T 
then, the problem of 

acquiring and rearranging the measurements Yc can be succinctly expressed as 

 
 

Yc = HcF
T , (146) 

 
 

where the compression rate of this CSI sensing scheme is 

 

 
%3D = Kc/L. (147) 

 
 

From (143) and (147) the total compression rate given by the fusion of both sets of measurements 
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is expressed as  

%total = %SPC + %3D = 
KsL + KcMN 

. (148) 
 

It should be noted that the total compression rate should not exceed 1. Therefore, the individual  

compression rates %SPC and %3D should be at most 0.5. 

7.1.2.3. Reconstruction Algorithm. A fundamental assumption of this thesis is that 

each spectral vector f j lives in a P− dimensional subspace S , with P << L. This is an approach 

commonly used in many HSI applications Yang et al. (2010); Bacca et al. (2017); Qian et al. (2011); 

Nascimento and Dias (2005). Let E = [e1 · · · eP] be a matrix holding a basis for the subspace S on its 

columns, where e j ∈  RL. Therefore, each spectral vector f j can be represented (non-uniquely1) 

as 
 

f j = Ea j, f or  j = 0, · · · MN −  1, and FT = EA, (149) 

 
with A = [a1 · · · aMN], where a j ∈  RP is the representation coefficient of f j with respect to the basis 

E. This formulation can be applied to the linear mixture model (LMM), since each column of the 

matrix E may be interpretable as one endmember, and A as the corresponding abundance matrix 

when the sum-to-one constraint (ASC) and the non-negative constraint (ANC) are included in the 

reconstruction problem Bioucas-Dias et al. (2012). However, this thesis is based on the general 

case of finding the basis of a low-dimensional subspace and its respective coefficients. Note that, 

taking (149) into account, (144) can be re-expressed as 

 

 

1 The matrix FT can be rewritten as FT = (ER)(RT A) for any rotation matrix R. 
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Figure 41. Rearrangement of the matrix Ŷ  such that the s-th row of Y contains the compressed 

measurements acquired with the s-th coding pattern φs. 
 

 

 

 

 

 

 

 

 

 

 

 
L− 1 P− 1 

(yc)k,i, j = ∑(hc)k,i, j,l ∑ (e)l,p(a)i, j,p 

l=0 
P−1 

p=0 
L− 1 

= ∑ (a)i, j,p ∑(hc)k,i, j,l (e)l,p, (150) 
p=0 l=0 

 

which shows that, in the 3D-CASSI scheme, the sensing matrix only affects the basis, while the 

representation coefficients remain constant. Now, let Ẽ  = HcE be the codification basis, then, from 

(146) and (149) the measurements can be rewritten as 

 

 
Yc = Ẽ A. (151) 

 

 

The matrix Ẽ can be obtained using, for instance, the VCA endmember extraction algorithm Nas- 
 

cimento and Dias (2005) with P endmembers or any other way to find the basis of a subspace such 

as the SVD decomposition as 

 
Σ = YcYT /MN = Ẽ AAT Ẽ T  = WΛWT , (152) 

. . . 
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such that, choosing the P eigenvectors corresponding to the P largest eigenvalues as columns of a 
 

matrix W, yields Ẽ  = [W0, · · · WP−1]. Further, assuming that the columns of Ẽ 

pendent, the abundance matrix can be exactly recovered as 

are linearly inde- 

 

A = 
 
Ẽ T Ẽ 

 −1 
Ẽ T Yc. (153) 

On the other hand, E cannot be recovered from (151) since it is an undetermined system of equa- 

tions with Kc << L. However, notice that from (141) we have that 

 

M− 1 N−1 P− 1 

(ys)k,l = ∑ ∑ (hs)k,i, j ∑ (e)l,p(a)i, j,p 

i=0   j=0 p=0 
P− 1 M− 1 N−1 

= ∑ (e)l,p 
p=0 

∑ 
i=0 

∑ (hs)k,i, j(a)i, j,p, (154) 
j=0 

 

 

which shows that this architecture only affects the abundance map. Thus, (154) can be expressed 
 

in matrix form as  

Ys = HsA
T ET , (155) 

 

and taking into account that it can obtain A from (153), the exact reconstruction of E, provided 

that the product of AHT is full row rank, can be calculated as 

 

E = YT HsA
T
 

AHT HsA
T
 − 1 

. (156) 
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3: E = YT HsA
 

AHT HsA
T

 − 1
 

 

Exact reconstruction of F, in the absence of noise, can be achieved under the conditions established 

in Theorem 6. Algorithm 13 summarizes the steps explained above for the proposed method. 

Theorem 6. (Noiseless exact reconstruction): Assume that an HSI F ∈  RL× MN , has rank P ≤ 

m´ın{L, MN}, such that it can be factorized as FT = EA where E ∈  RL× P and A ∈  RP× MN . Also, 

consider the measurement matrices Hs ∈  {0, 1}Ks× MN and Hc ∈  {0, 1}Kc× L, independently drawn at 

random from a Bernoulli (1/2) distribution. Then, F can be exactly recovered from the compressed 

measurements Ys and Yc by recovering A and E from the solution of (153) and (156), respectively, 

if P ≤ Ks and P ≤ Kc shots are taken. 

 
Demostración.  The proof of Theorem 6 is in the published article Bacca et al. (2019). 

 
 

Algorithm 12 FCSI reconstruction 
Input: Measurements Ys, Yc, sensing matrices Hs, Hc, and 

dimension of the subspace P. 

1:   Ẽ  ← VCA(Yc) 

2:   A ← 
 
Ẽ T Ẽ 

 −1 
Ẽ T Yc. 

 

s s 

 

4: FT = EA 
 

Output: The hyperspectral image F 

 

 

It is easy to see that the computational complexity of Algorithm 12, is dominated by the 

computation of the inverse matrices in steps 2 and 3. However, the size of these matrices depends 
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on the size of the low-dimensional subspace which is considered small. Therefore, the inversion of 
 

these matrices has computational complexity O(P2 log P). 

7.1.2.4. Estimation of the size of the low-dimensional subspace (P). The compu- 

tation complexity of Algorithm 12 depends on the dimension of S i.e. P. For this reason, it is 

necessary to estimate the value of P in order to reduce the reconstruction time. Since Kc, Ks ≥ P 

and the sensing matrices Hs ∈  {0, 1}Ks× MN, Hc ∈  {0, 1}Kc× L are independently drawn at random 

from a Bernoulli (1/2) distribution, the matrices Yc and Ys still lie in a low dimensional subs- 

pace, i.e., the ranks of the sensing matrices are precisely P. Considering the noiseless case, let 

λ1(Yc) ≥ λ2(Yc) ≥ · · · ≥ λKc (Yc) be the eigenvalues of Yc sorted in descending order. It is easy to see 

that the P eigenvectors corresponding to the largest eigenvalues, span the range of Yc, and 

λP+1(Yc) ≥ · · · ≥ λKc (Yc) are approximately zero. Thus, the dimensionality of S is given by 

 
P˜ = argmax 

λj(Yc) −  λj+1(Yc)
, (157) 

j λj+1(Yc) 

 

which finds the maximum gap between two adjacent eigenvalues using the relative error. Notice 

that this procedure can be carried out with the matrix Ys and the same results will hold. This is 

because, as for the matrix Yc, λP+1(Ys) ≥ · · · ≥ λKc (Ys) are approximately zero since Ys lies in a 

subspace of rank P. 
 

7.1.2.5. Simulations and Results. In this experiment, the 145 ×  145 pixel Indian 

Pines image is used as the test image for this experiment. A total of 20 water absorption and noisy 

bands were removed from the original 220 bands, leaving 200 spectral bands for the experiment 
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Figure 42. Quality of the reconstruction measured in PSNR vs total compression ratio 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: We evaluate three different methods 

 

Zhang et al. (2016). The estimation of P for all algorithms was fixed as P˜ = 14, which is the result 

of applying Hysime Bioucas-Dias and Nascimento (2008) directly on F. The noise considered in 

the experiment is given by the noise of the image and the one obtained by imposing a low range 

constraint. In Mart´ın and Bioucas-Dias (2016) the the spectral compressive acquisition (SpeCA) 

shows that it is enough to choose nv = MN, mb = 1 and the remaining compression is used for ma. 

Similarly, the spatial–spectral compressed reconstruction based on spectral unmixing (SSCR SU) 

Wang et al. (2018c) shows good behavior when choosing Nspa = 0,04MN and the rest of the total 

compression is used for Nspe. For this reason, in these simulations, the configuration of the total 

compression rate was established following their respective suggestions. 

Numerical results for the quality of the reconstruction are shown in Figure 42 where the 

total compression rate varies from 0.09 to 0.3 in steps of 0.01. Notice that the proposed method 

performs better when the compression ratio is low. However, when the number of measurements 
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increases, the proposed method is similar to those obtained with SSCR SU algorithm. It is worth 

noting that due to the structure of Φspa, which randomly select spectral pixels extracting from the 

Table 6. Reconstruction time for different data sets and compression ratio. 

Reconstruction Time [s] 

Indian Pines 

  %total FCSI SSCR SU SpeCA   
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 43. Indian Pines in band 112 
 

Note: a) original band, Reconstructed band from 15 % of measurements with b) FCSI c) SSCR SU 
and d) SpeCA. 

.10 0.04 2.04 47.83 

0.15 0.05 2.06 48.10 

0.20 0.05 1.98 48.98 

0.25 0.07 0.86 51.56 

0.30 0.15 0.28 84.46 

Pavia University 

P FCSI SSCR SU SpeCA 

5 2.65 13.59 58.58 

10 2.38 14.12 155.71 

15 2.47 13.43 386.44 

20 2.51 14.39 717.73 

30 2.60 15.28 997.36 
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full image, SSCR SU requires at least one pure signature per feature to be sensed. Additionally, the 

time needed for each of the reconstruction methods is summarized in Table 9. It can be seen that 

the proposed method is the fastest in comparison with the other methods. Specifically, the proposed 

method is up to 5.6 times faster than SSCR SU and 563 times faster than SpeCA. To visualize the 

reconstructions, Figure 43 shows the Indian Pines dataset in band 112 and the same reconstructed 

band using 15 % of measurements for all methods. Note that the proposed method in the zoomed 

version is much cleaner than its counterparts. 

7.1.2.6. Validation in a Real Testbed Implementation. The testbed shown in Figure 

44 was used to implement the SPC and emulate the 3D-CASSI scheme to verify the proposed al- 

Figure 44. Test-bed implementation of the fusion of SPC and 3D-CASSI scheme. 
 

Note: In the SPC arm, the target is illuminated by a lamp, where the objective lens focuses the 
scene in the DMD, then, the encoded light is condensed in a single point where is sensed by the 
spectrometer. In the 3D-CASSI scheme, the filter array is used to emulate the spectral bands and 
similar to the SPC arm the target is encoded and then it is sensed with a CCD camera instead of 
spectrometer. 



7.1.  COMPRESSIVE RECONSTRUCTION: 152 
 

 

gorithm in the laboratory. This prototype consists of two main systems. The SPC arm is composed 

of a 100mn objective lens; a digital micro-mirror device (DMD) used as a spatial light modulator; 

a 100mm relay lens; an F220SMA-A as a condenser lens which is connected to an Ocean Optics 

Flame S-VIS-NIR-ES spectrometer through an optical fiber. The target in this arm is illuminated 

by a lamp for the visible spectrum. The 3D-CASSI arm is composed of a set 18 of filters, each with 

a bandwidth of 13nm approximately, between 458mn and 638mn; the same objective lens relay and 

a CCD camera are used. A beam splitter is used to ensure that both optical systems observe the 

same target. To obtain the compressive measurements in both architectures, the 3D-CASSI scheme 

was first captured. For this, each coding pattern filter was emulated using the filter array and the 

DMD as explained in detail in Rueda et al. (2015a). To guarantee the reorder process presented in 

(145), the number of shots and emulated coding pattern filters must be the same. Specifically, for 

this experiment, a total of 8 shots were acquired, and each shot guarantees that a different coding 

pattern filter is emulated in each spatial position. So, that, at the end of the shots, each filter has 

encoded all the pixels and, therefore, the reordering process can be carried out. On the other hand, 

white illumination was employed to obtain the SPC measurements, and the DMD was randomly 

configured at each shot to block 50 % of the light. 

In order to validate the testbed, the target was sensed with M = N = 128, and 72 spectral 

bands of the scene are reconstructed. It should be clarified that the bands in the spectrometer match 

the spectral range of the filter array. In these cases, the compression ratio used was established for 

both architectures as %3D = 0,11 and %S = 0,08 for the 3D-CASSI scheme and SPC, respectively. 

Figure 45 shows the RGB version of the target and the false-color obtained with the reconstructed 
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Figure 45. a) RGB image b) False color obtained from the reconstructed spectral image. 
 

scene with P = 6. It can be seen that the spatial information of the scene is preserved with the 

proposed method. The spectral reconstruction accuracy of the proposed method was validated by 

choosing four points in the scene and then measuring them with the spectrometer. Figure 46 shows 

the spectral points obtained with the spectrometer and the reconstructed method. Notice that the 

proposed method provides noisier signatures; however, it follows the reference spectra from the 

spectrometer. This result verifies the applicability of the proposed approach to reconstruct images 

from the fusion of these two types of measurements. 

7.2. Coded Aperture Design for High Level Task 

 

The idea behind these proposed methods is to employ high-level tasks directly from the 

compressive domain bypassing the signal recovery stage. This thesis focuses on subspace cluste- 

ring applications and a deep learning approach, which can be generalized to high-level tasks like 

classification and semantic segmentation. Furthermore, this thesis shows that the quality of the 

high-level task directly depends on the CA, which can be designed to improve the performance of 

the task. 
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Figure 46. Spectral Signatures of P1, P2, P3 and P4 of the target with the spectrometer and the 

proposed method. 
 

 

  

 

7.2.1. Coded Aperture Design for Compressive Spectral Subspace Clustering Hi- 

nojosa et al. (2018). This technique is based on the 3D-CASSI scheme present in Section 7.1.2.2. 

To remember, the sensing process of this architecture can be represented as 

 
Y = ΦF, (158) 

 
 

where Y is the compressive measurements, and Φ represent the coded aperture. 

7.2.1.1. Coding Pattern Design. Recent works in CSI have focused on properly 

designing the coding patterns in order to reconstruct the underlying spectral scene better citeargue- 

llo2014colored,arguello2013rank. These designs use the restricted isometry property (RIP) as the 

main optimization criterion. On the other hand, because this thesis aims to perform classification 
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on the compressed measurements, the design of the coding patterns must preserve the similarity 

among the spectral signatures. In order to design the coding patterns matrix , the following three 

design criteria are considered. 

7.2.1.2. Sensing Scheme. The entries of the matrix Φ are chosen from a Bernoulli 

distribution (Φ)s,k ∼ Be(p). Therefore, the entries of the s-th coding pattern can be expressed as 
 

 
 

(φs 

 

 
)k = 

1, with probability p 

0, with probability q, 

 

 
(159) 

 

 

for k = 0, 1, · · · , L −  1, where q = 1 −  p. A projection matrix with this structure simply carries out a 

random sampling on the data vectors, across all the spectral bands, before performing element-wise 

addition. Considering that surface-emitted spectral signatures are, in general, relatively smooth 

functions of wavelength Gu et al. (2000), acquiring the information of different sets of adjacent 

spectral bands at each snapshot will preserve the original signal structure. Therefore, the intuition 

is to randomly sample neighboring spectral bands instead of randomly sampling all the spectral  

data vectors, which could add outliers to the measurements. 

For each coding pattern φs,  randomly select two cutoff wavelengths λk1 , λk2 ∈  {0, 1, · · · , L −  1} 

such that λk1 < λk2 and λk2 −  λk1 + 1 = ∆, where ∆ is defined as the coding pattern bandwidth. Then, 
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the band-structured random matrix can be expressed as 
 
 

 
(φs)k = 

1, with prob. 1 ⇐ ⇒ λk1 ≤ k ≤ λk2 

 

(160) 

0, otherwise. 

Equation (160) can be alternatively written as 

 

 
(φ s)k = δ ([λk1 /k♩ ) δ ([k/λk2 ♩ ) ϕk, (161) 

 
where δ (·) is the Kronecker delta function and ϕ ∈  RL  is a random vector whose entries follow a 

Bernoulli distribution with probability 1 , i.e., ϕk ∼ Be(1 ). 

7.2.1.3. Preserving Similarities. The success of subspace clustering on the com- 

pressed measurements depends fundamentally on how the coding matrix Φ affects the mutual 

similarities of the spectral signatures. A usual measure of similarity among two vectors is the co- 

sine of the angle between them. Then, assuming that the vectors have unit length, the similarity 

between two compressed measurements y j = Φf j, y j ′ =  f j ′ is defined as 

 

 

sim(y j, y j ′ ) = y  y j ′ = f T   f j ′ j /= j
′
, (162) 

 
 

where y j ∈  RS and f j ∈  RL correspond to the j-th column of the matrices Y and F, respec- 

j 
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tively. If the columns of are normalized, it is possible to decompose the matrix T as 
 
 

T = I + Θ, (163) 
 
 

 

where 
 
 

Θkk ′ = (Φk)  Φk ′ k 

 

 
k

′
, (164) 

 

Φk denotes the k-th column of Φ, and Θkk = 0. Observe that the matrix Θ collects all the entries 

outside the diagonal of   T   . Therefore, if Θ j j ′ = 0 ∀  j, j′, the matrix   T   would be equal to I and the 

similarities of the spectral signatures would be exactly preserved in the compressed measurements.  

However, because the matrix  has more columns than rows, all the entries of Θ could be mostly 

small but not equal zero Kaski (1998). Considering that a linear mapping such as that in (137) can 

cause significant distortions in the compressed measurements if T is not approximately I, the 

proposed coded aperture design should minimize the entries of Θ. 

7.2.1.4. Information Acquisition. In order to better discriminate among the classes, 

new information from the underlying spectral scene should be acquired in each measurement shot. 

Therefore, the coding patterns should be linearly independent, i.e., the matrix should be full rank. 

Additionally, the number of measurements acquired for all spectral bands should be approximately 

the same, i.e., the matrix T should approximate to the identity matrix I. Specifically, this can be 

attained by decomposing the matrix T as 

 

T = I + Λ, (165) 
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where  
Λss ′ = φ s(φ s ′

)T s /= s
′
, (166) 

 

and Λss = 0. Therefore, the minimization of the entries of Λ should be considered in the coded 

aperture design. 

7.2.1.5. Optimization Algorithm for Coding Patterns Design. Taking into account 
 

the previous considerations, the proposed coding pattern design can be succinctly expressed as the 

following optimization problem 

 
 
 
 

argmin ǁΘǁ + ǁΛǁ 
F F 

{φ 0,φ 1,··· ,φ S−1} 
 

subject to Θ = T −  I, Λ = T −  I, 

Rank( ) = S, (167) 
 

(φ s)k = δ ([λk1 /k♩ ) δ ([k/λk2 ♩ ) ϕk, 

 

for s = 0, · · · , S −  1 and k = 0, · · · , L. This optimization problem can be efficiently solved with 

the procedure summarized in Algorithm 13. Specifically, lines 2 to 4 generate the first filter φ 0 , 

which has a band structure with a predefined bandwidth ∆. Then, lines 6-9 are intended to minimize 

the number of times a spectral band is sensed. Specifically, the algorithm counts how many 

spectral bands have been sensed in a certain bandwidth, and then the banded section with less 

information is chosen (expressed in step 9), complying with the criteria of subsection 7.2.1.4. 
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Finally, this thesis chooses the position in which the inner products are minimized. This is attained 

by minimizing the elements outside the diagonal, i.e., by minimizing the sum of the values in the 

neighborhood (step 12) expressed in steps from 15 to 18. As observed in Fig. 47, a random design 

of Φ entries may lead to oversampling a subset of spectral bands (green line) while leaving some 

spectral bands unsampled (red line). 
 

Algorithm 13 Optimal Coding Patterns Design 
 

Input: Number of bands L, number of shots S, bandwidth 

∆ > 0. 
Initialization : 

1: ← 0S,L 

2: Randomly select λk1 , λk2 such that λk2 > λk1 with λk2 −  λk1 + 1 = ∆ 

3: Select ϕ ∈  RLsuch that ϕk ∼ Be(1 ) 
4: k ←  ([ k1/k♩ )  ([k/  k2♩ )  k 

5: for s ← 1 to S −  1 do 

6: for i ← 0 to (L −
i

 ∆) do 
s′ 

7: ui ← 
∑s

 

∑ +∆−1(φ )k
 

8: end for 

9: 

10: 

iˆ argmini ui 
l˜= 0 

11: for i ← iˆto (iˆ+ ∆ − 1) do 
12: bl̃  ← ∑s

′=0 ∑
i 
=(i− (φ s′ 

)k 
 

13: 

s 

l˜= l˜+ 1 
k 1) 

14: end for 

15: for i˜← 0 to [ 1 ∆♩  do 

16: lˆ← argminl˜bl˜ 

17: (φs)lˆ+i˜ 1 ← 1 
18: blˆ ∞ 
19: end for 

20: end for 

Output: 

 
 

7.2.1.6. Theoretical Results. In the previous section, the optimization algorithm for 

coding pattern design, proposed in (167), seeks at improving the Φ matrix orthogonality by mini- 
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Figure 47. Examples of coding patterns generated by the proposed (left) and random (right) design, 

respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

mizing ǁΘǁ2  + ǁΛǁ2 . Then it expected that, with high probability, the l2 norm of f j vectors will not 
 

change significantly when compressed by the matrix Φ, i.e., ǁΦf j ǁ2  ≈ ǁf j ǁ2. In this section, using 
 

concentration of measure Ledoux (2005), this thesis analyzes the structure of Φ and provide a theo- 

retical bound for such probability. In order to establish a concentration of measure, first observe 

that the matrix Φ can be decomposed as the product of two matrices as Φ = Φ̂ J, where Φ̂ ∈  RS× S∆ 

 

is a block diagonal matrix with random vectors ϕs, following a Bernoulli distribution Be(1 ), on 

its diagonals. Fig. 48 depicts the structure for Φ̂ and, J ∈  RS∆× L, respectively. The matrix J can be 
 

viewed as a band-subset random selection matrix which constructs vectors partitioned in S blocks 
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of length ∆, containing the information of ∆ random-selected neighboring spectral bands of a parti- 

cular pixel f j. Specifically, the block signal is denoted as f̄ jJf j = 
h
(f̄0)T , (f̄1)T , · · · , (f̄S−1)T 

i 
∈  RS∆, 

with energy distribution across blocks ν 
 

ǁf̄0ǁ2, ǁ̄f1ǁ2, · · · , ǁ̄fS−1   2
 T 

RS. Using this notation, the 
 

concentration of matrix Φ is presented in the following theorem. 

 
Theorem 7. Assume that ¯f j ∈  RS× ∆ is a block-partitioned signal with S blocks of size ∆. Let 

Φ̂  ∈  RS× S∆  be  a  block-diagonal  random  matrix,  where  each  block  on  its  diagonal  corresponds 
 

to a random vector ϕs drawn independently, whose entries follows a Bernoulli distribution with 

probability 1 . Then, for any ε ∈  (0, 1) 

P(|ǁΦ̂ f̄ j ǁ2− ǁf̄ j ǁ
2| > ε ǁ̄f j ǁ2) 

2 2 

 2 exp

 

 

2 

C  mı́n 

 
C2ε2ǁν ǁ2 

 
 

 

 (168) 

≤ −  1 
2 1 , 

ǁν ǁ2 
C2ε ǁν ǁ1 

   
1 − 2−S

  
,
 

 

 

 

where C1 and C2 are absolute constants. 

 
Demostración.  The proof can be found in the published paper Hinojosa et al. (2018). 

 

The underlying assumption for the success of the SSC algorithm is that the optimization 

program (described in the next section, see (170)) recovers a sparse subspace representation of each 

data point, i.e., a representation whose nonzero elements correspond to the subspace of the given 

point. In Elhamifar and R.Vidal (2013), the authors provide recovery conditions under which, for 

data points that lie in a union of linear subspaces, the sparse optimization program in (170) recovers 

ǁν ǁ∞ 
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′=d 

d d 

 

subspace-sparse representation of data points. Particularly, denote Fd as the matrix containing all 

data points f j from the subspace Sd with dimension Qd and, similarly, denote F−d as the matrix 

containing data points in all subspaces except Sd. Further, Let Wd be the set of all full-rank sub- 

matrices  F̃ d  ∈  R
L× Dd   of  Fd .  From  (Elhamifar  and  R.Vidal,  2013,  Theorem  3),  if  the  condition 

 
 

máx 
F̃ d ∈ Wd 

σ̃Qd (F̃ d ) > 
√

Qd ǁF−d ǁ1,2 máx cos(θd,d ′ ) (169) 

 

holds, then for every f j in the subspace Sq, the l1-minimization in (170) recovers a subspace-sparse 

solution 2. 

In (169), θ j, j ′ is the first principal angle between Sd and Sd
′ and σ̃Qd (F̃ d ) = 1/ǁ(F̃ T F̃ d )

−1F̃ T ǁ2,2 

denotes the Qd-th largest singular value of F̃ d . Because the matrix Φ preserves the l2  norm of f j 

with high probability given by (168), then σ̃Qd (F̃ d ), which is induced by the l2 norm, will also be 

preserved in the compressed domain, i.e., σ̃Qd (F̃ 
d ) ≈ σ̃Qd (ΦF̃ 

d ). In addition, note that because one 

of the Φ design criteria is to preserve the similarity (a.k.a, cosine of the angle between two vec- 

tors), it is expected that θ j, j ′ is also preserved. Therefore, it is possible to infer that if the condition 

in (169) holds for the spectral pixels F, it will also hold for the compressed pixels Y with high 

probability. 
 

7.2.1.7. Compressed Sparse Subspace Clustering with Spatial Regularizer . As- 

suming that compressed pixels of the same land-cover class lie in one independent subspace, subs- 

 

 
2 The induced norm ǁF−d ǁ1,2, in (169), denotes the maximum l2-norm of the columns of F−d . 
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Figure 48. Block diagonal structure of the matrix Φ̂ and the structure of the J matrix. 
 

 

 

 

 
 

 

Note: In the figure, diag(1∆) is a diagonal ∆ ×  ∆ matrix whose diagonal values are one. 

pace clustering methods can be used in order to separate them into the same group or cluster. In 

particular, SSC builds the similarity matrix, which describes the data points membership, by fin- 

ding a sparse representation for each compressed pixel whose nonzero elements ideally correspond 

to points from the same subspace. Given the designed matrix Φ and the compressive measurements 

Y = ΦF, the SSC sparse representation model is formulated as the following optimization problem: 

 

 
min λ ǁZǁ1 + ǁRǁ 
Z,R 2 F 

(170) 

s.t.  Y = YZ + R, diag(Z) = 0, ZT 1 = 1, 

where 1 is a one-valued vector, Z ∈  RMN× MN refers to the representation coefficient matrix 

and the l1-norm regularization in this formulation suggests that a sparse representation of a data 

point finds points from the same subspace. The matrix R stands for the representation error, and 

the regularization parameter λ for the sparsity trade-off. The constraint diag(Z) = 0 is used to 

eliminate the trivial solution of writing a point as an affine combination of itself and the constraint 

ZT 1 = 1 ensures that it is a case of affine subspaces Elhamifar and Vidal (2009); Elhamifar and 

2 
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R.Vidal (2013). 

Taking into account that neighboring pixels in a spectral image usually consist of similar 

materials, a smoothing filter can be applied to the sparse coefficient matrix, in order to reduce 

the representation error, being able to extract more information from the data Zhang et al. (2016). 

Specifically, the smoothing filter will reduce the noise trying to assign the same representation  

value to neighboring pixels. In this thesis, such spatial information is effectively incorporated into 

the similarity matrix by first rearranging the 2-D sparse coefficient matrix Z ∈  RMN× MN into a 3D 

cube Z ∈  RM× N× MN , treating each coefficient vector as a “pixel” in the cube. Unlike Zhang et al. 

(2016) that perform a 2D average filter in each slide of the cube Z This thesis proposes to 

perform the smooth filtering using a 3D median filter with a 3D moving window W ∈  R3× 3× 3. 

Specifically, W is moved through Z , on each band, pixel by pixel and replacing each value with 

the median value of neighboring pixels. Finally, the filtered cube Z is rearranged back to the 

matrix Z̄ ∈  RMN× MN . This new auxiliary variable is used to regularize Z, hence, the problem of 
 

finding a sparse representation coefficient matrix exploiting the spatial information of the scene is 

formulated as the following optimization program 

 

 
min ǁZǁ1 + 

λ 
ǁRǁ2  + 

α 
ǁZ − Z̄ ǁ2 

Z,R,Z̄ 2 F 2 F 

(171) 

s.t. Y = YZ + R, diag(Z) = 0, ZT 1 = 1, 
 

 

where α is a regularization parameter denoting the weight of the spatial information in the subs- 

pace clustering algorithm. In the subsequent sections, this thesis also refers to the optimization 
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Figure 49. Visual representation of the median filter step. 
 
 

MN MN 

 

 

 
 

Z 

a) b) c) d) 

Note: a) Sparse Coefficient matrix Z, then it is reshaped as in b) and a median filter is applied to 
obtain the new values c) and finally it is reshaped to its initial size d). 

 

problem in (171) as S-SSC. The minimization in (171) can be efficiently solved by the alterna- 

ting direction method of multipliers (ADMM), which is described in detail in the Appendix of 

the published paper Hinojosa et al. (2018). The solution of (171) corresponds to subspace-sparse 

representation of the data points, which is used by spectral clustering (SC) to infer the clustering 

of the data. Specifically, the clustering result is obtained by applying SC to the Laplacian matrix 

induced by the similarity matrix W ∈  RMN× MN which is defined as W = |Z| + |Z|T Elhamifar 

and Vidal (2009); Elhamifar and R.Vidal (2013). The complete CSI subspace clustering algorithm 

(CSI-SSC) is summarized in Algorithm 14. 
 

Algorithm 14 Compressive Spectral Subspace Clustering 
 

Input: A set of CSI measurements acquired as Y =ΦF, where the coding pattern matrix Φ is 
obtained with Algorithm. 13. 

1: Solve the sparse optimization problem in (171) using the ADMM algorithm. 
2: Normalize the columns of Z as z j ← 

z j ∞ 

3: Form a similarity graph representing the data points. Set the weights on the edges between the 
nodes as W = |Z| + |Z|T . 

4: Apply SC Ng et al. (2002) to the similarity graph. 
Output:  Segmentation of the data: Y 1, · · · ,Y l  

MN 
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7.2.1.8. Simulations and Results. In order to validate the clustering performance 

of the proposed coding pattern design, cluster maps and quantitative results are presented for the 

two hyperspectral scenes. In all the experiments, the coding patterns were generated for parameters 

∆ = 20 and S = 25. Further, white Gaussian noise with 25 dB of SNR was added to the acquired 

compressed measurements. In addition, the results obtained with the sparse subspace clustering 

algorithm (SSC), described in (170), when the complete spectral data cube is used as input (Full- 

data-SSC), are also shown. Fig. 50 presents the obtained visual clustering results on Indian Pines. 

The quantitative evaluations corresponding to the accuracy for each class, overall accuracy (OA), 

average accuracy(AA) and Kappa coefficients are shown in Table 7, where all values are given in 

percentage. Similarly, Fig. 51 and Table 8 present the visual clustering results and quantitative eva- 

luation on the Pavia University, respectively. In the tables, the optimal value of each row is shown 

in bold and the second-best result is underlined. From Tables 7 and 8, it can be clearly observed 

that the proposed clustering approach, using the proposed coding patterns, provides comparable 

results to applying clustering directly on the full spectral data cube. Furthermore, it is observed 

from the visual clustering maps that, although the reconstruction is avoided, the results obtained 

with the proposed coding patterns are very similar to the results obtained with the Full-data. This 

behavior was expected since the proposed coding patterns approximately preserve the similarities  

among spectral pixels, as it was theoretically shown in section 7.2.1.6. 

7.2.1.9. Clustering Time and Spectral Image Reconstruction. In this section, the 

effectiveness of applying clustering directly on the compressed domain is evaluated. For this purpo- 
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Figure 50. Visual clustering results on AVIRIS Indian Pines image. 

 

Unlabeled 

Corn-no-till 

Grass 

Soybeans-minimum-till 

Soybeans-no-till 

 
 

Note: (a) Ground truth. (b) Full-data, (c) Full-data-SSC , (d) Proposed-design and (e) Random- 
design. 

 
Table 7. Quantitative evaluation of the different clustering results for the AVIRIS Indian Pines 
Image. 

 

Class Random-design Proposed-design Full-data-SSC Full-data 
 

Corn-no-till 73.13 70.45 48.96 66.77 

Grass 95.25 100 98.60 100 

Soybeans-no-till 52.87 88.80 70.63 69.54 

Soybeans-minimun-till 55.29 60.52 59.23 80.05 

OA 63.83 73.07 62.62 76.16 

AA 69.14 79.94 69.35 79.09 

Kappa 49.26 62.65 47.58 65.89 

 
 

se, a sub-image of ROSIS Pavia university datasets with the size of 64 ×  64 pixels, which contains 

four land-cover classes: asphalt, meadows, trees, and bricks, were used, see Fig. 52(a). CSI measu- 

rements were acquired using the random and proposed coding patterns. Then, 300 iterations of the 

gradient projection for sparse reconstruction algorithm (GPSR)Figueiredo et al. (2007) were used 
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Figure 51. Visual clustering results on ROSIS Pavia University image. 
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Note: (a) Ground truth. (b) Full-data, (c) Full-data-SSC , (d) Proposed-design and (e) Random- 
design. 

 
Table 8. Quantitative evaluation of the different clustering results with the AVIRIS Pavia University 
Image. 

 

Class Random-design Proposed-design Full-data-SSC Full-data 

Bitumen 18.60 88.37 0 90.70 

Asphalt 71.37 67.25 33.84 80.26 

Trees 90.38 88.46 100 90.38 

Bricks 100 99.68 99.68 99.68 

Bare Soil 46.78 61.40 36.26 66.67 

Metal sheet 82.90 97.73 91.00 97.73 

Meadows 91.16 100 55.02 100 

Shadows 99.48 24.35 98.45 24.35 

OA 78.72 83.81 71.45 86.58 

AA 75.09 78.41 64.28 81.22 

Kappa 72.63 78.89 62.95 82.50 

 
 

to reconstruct the underlying spectral scene. Fig. 52 presents the obtained visual clustering results 

on the selected sub-image. In Table 9, the time, quality of the reconstruction, and the result of clus- 

tering for the types of coding patterns are shown. From this table, it is possible to observe that the 
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Table 9. Time and classification accuracy when clustering the reconstructed spectral image and the 
CSI measurements 

 

Reconstruction No Reconstruction 
 

Random Patterns Proposed Patterns Random Patterns Proposed Patterns 
 

CSI Recovery 

PSNR [dB] 27.92 34.38 - - 

Time [s] 28.56 26.23 - - 
  Subspace Clustering   

Asphalt 100 100 100 100 

Meadows 71.65 99.07 69.78 97.76 

Trees 56.05 63.06 18.85 65.35 

Bricks 88.04 99.24 98.68 98.83 

OA 83.43 94.88 81.70 94.65 

AA 78.94 90.34 71.89 90.45 

Kappa 77.35 92.90 74.74 92.60 

Solving (171) [s] 16.62 15.78 16.28 10.15 

SC Time [s] 118.25 101.65 106.11 93.55 

Total Time [s] 163.43 143.66 122.39 103.70 

 

proposed coding pattern design shows a gain of up to 6 dB in terms of peak signal-to-noise ratio 

(PSNR) compared to the random patterns. Further, it can be seen that the designed coding pattern 

improves not only the reconstruction quality but also the clustering result for the two scenarios, i.e., 

when the subspace clustering is applied after reconstruction and when it is applied directly on the 

compressed data. Note that the total clustering time of the reconstructions is greater than the time 

of directly applying clustering on the compressed measurements because it takes into account the 

reconstruction time. In the simulations, when using the proposed coding patterns, the total cluste- 

ring time of the reconstructed spectral image was 143.66 [s], while applying clustering directly on 

the compressed measurements takes only 103.70 [s], obtaining very similar classification results. 

7.2.2. Deep Coded Aperture Design: An End-to-EndApproach for Computational 

Imaging Tasks. This method intends to cover a range of CSI linear systems. Therefore, in this 
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Figure 52. Visual clustering results on a 64 ×  64 region of Pavia University. 
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Note: (a) Ground truth. (b), (c) clustering results on reconstructed images using the random and 
proposed coding patterns, respectively. (d),(e) clustering results by directly using the compressed 
measurements acquired with the random and proposed coding patterns respectively. 

 
 

section, some CSI forward measurements are generalized for one snapshot as 

 

 
g = HΦf + η, (172) 

 

where g ∈  Rm denotes the projected encoded measurements, f ∈  Rn denotes the underlying scene, 

HΦ ∈  Rm× n models the sensing matrix whose structure is determined by the setup of the optical 

coding system and the corresponding CA (Φ), and η ∈  Rm stands for the noise. To highlight, the 

CA is the main customizable physical element in an optical coding system, so that, it highly deter- 

mines the performance of the CI task when using projected encoded measurements. Further, some 
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optical coding systems enable the acquisition of multiple snapshots of the same scene, assuming  

that the scene remains constant over a time-lapse, by easily varying the used CA. This process is 

referred to as multishot acquisition Duarte et al. (2008). 

Mathematically, for a number of S snapshots, each projected encoded measurement {gs}S
 

 

is obtained with a different sensing matrix {HΦs }S
 , modeled as in (172). The multishot acquisi- 

 

tion process can be compactly expressed as 
 
 

g̃ = H̃ 
Φ̃ f + η̃ , (173) 

 
where g̃ = [(g1)T , · · · , (gS)T ]T stacks the projected encoded measurements, H̃ 

Φ̃  = [(HΦ1 )T , · · · , (HΦS )T ]T 

stacks the corresponding sensing matrices, Φ̃  = {Φs}S
 is a set containing the corresponding CAs 

 

for each snapshot, and η = [(η̃ 1)T , · · · , (η̃ S)T ]T stacks the measurements noise. The ratio between 

the amount of observed measurements and the size of the underlying scene is known as compres- 

sion ratio given by γ = Sm/n. 

The proposal aims to couple the design of the sensing matrix H̃ 
Φ̃ together with the achie- 

 

vement of a CI task of interest using an E2E approach. Thus, it jointly optimizes the set of CAs 

Φ̃ , and the parameters θ , of a chosen DNN Mθ (·), by minimizing a cost function composed by 

the sum of the loss function Ltask(·, ·), to achieve the task, and a customizable regularization fun- 

ction R(Φ̃ ), that promotes particular properties in the set of CAs. Mathematically, given a set of K 

scenes {fk}K
 , and their corresponding task outputs {dk}K

 , the proposed coupled optimization 
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˜   ρ̃

 Φ∑
K

 

 

problem is formulated as 
 
 

Φ̃ ∗, θ 
∗ argmin 

Φ̃ ,θ 

L (Φ̃ , θ |f, d), (174) 

L (Φ̃ , θ |f, d)  = 
1 

Ltask  Mθ (HΦ̃ fk), dk   +  R(  ), 
k 

 
 

where, ρ > 0 is a regularization parameter. 
 

Then, this thesis follows a two-module procedure that models the encoder and decoder steps 

 
Figure 53. Proposed E2E Approach. (i) The sensing protocol is modeled as a learnable optical 

layer whose trainable parameter is the CA. 

 

Note: A set of scenes passes through the optical layer to obtain the projected measurements that 
enter to the hidden convolutional layers up to the loss function to achieve the specific task. The 
error propagates back up to the CA. 
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to solve (174). The first, referred to as the sensing protocol module, consists of an optical layer that 
 

learns the sensing matrix, H̃ 
Φ̃ , with the set of CAs Φ̃ , as the trainable parameters. Notice that Φ̃  is 

regularized by the function R(Φ̃ ), which aims to guarantee the formation of CAs that satisfy speci- 

fic implementability, transmittance, number of snapshots, the correlation between snapshots, and 

conditionality constraints. The optical layer is directly connected to the second module, referred to 

as the task module, that consists of a chosen trainable DNN with various hidden layers to conclude 

a task. Figure 53 outlines the coupled E2E proposed approach. It can be seen that the CAs directly 

affect the task and vice-versa since the backward step to update the values of Φ̃ takes into account 
 

the trade-off between the error given by the loss of the task, and the regularizer function of the 
 

CAs.  
Remark that once the set of CAs is optimized for the task, the designed sensing matrix H̃ ∗

Φ̃
 

can be used to acquire new projected encoded measurements (ḡ), and the pre-trained DNN (Mθ ∗ ) 

be applied to estimate the task output d̄ , as d̄  = Mθ ∗ (ḡ). Thus, the pre-trained DNN is used as an 

inference operator. 

Next subsections detail the constraints for designing CAs of a coding sensing protocol with 

the proposed regularizers. 

7.2.2.1. Binary Coded Aperture Implementation Constraint. The binarization cons- 

traint is addressed by proposing a family of functions whose minima are obtained uniquely when  

the elements of the CAs are either (0) or (1). Then, it is incorporated in (174) as the regularizer 
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Figure 54. Family of functions to regularize BCA along different values of the tuple p1, p2. 
 
 

Note: The legends refer to the value of p2 in (a.), p1 = p2 in (b.), and p1 in (c.). 
 
 

R(Φ̃ ) given by 

R(Φ̃ ) = 
1 
∑ ∑ 

 
(Φs )2

  p1    
  

(Φs —  1)2

 p2 
, (175) 

 

where p1, p2 ∈  R++ are two hyper-parameters that provide variability in the function curve as 

illustrated in Fig. 54, where 

the behavior of the family of functions along three different combinations of the tuple 

(p1, p2) is presented. In particular, if p1 = p2 the graph is symmetric, which turns in equal speed 

to converge to any of the minima when minimizing the function. Meanwhile, when p2 > p1 or 

p1 > p2, the function presents a bias that leads to a faster direction to converge to one of the mini- 

ma, 0 or 1. Introducing p1 and p2 to control the bias will be useful to determine the transmittance 

of the designed CAs. 

Further, works in Wagadarikar et al. (2008); Candès and Wakin (2008); Higham et al. (2018) 



7.2.  CODED APERTURE DESIGN FOR HIGH LEVEL TASK 175 
 

d=1 

S s i , j,l 
i, j,l i, j,l 

 

address the binarization constraint through CAs composed by ± 1 values3 This thesis addresses 

this constraint by proposing a family of functions whose minimums are found uniquely when the 

elements of the CAs are either − 1 and 1. Hence, the proposed family of functions is incorporated 

in (174) as the regularizer R(Φ̃ ) given by 
 

R(Φ̃ ) = 
1 
∑ ∑ 

 
(Φs + 1)2

   p1    
  

(Φs —  1)2

 p2 
, (176) 

 

 

which generalizes the function presented in Bacca et al. (2020); Higham et al. (2018). Particularly, 
 

when p1 = p2 = 1, (176) produces the function used in Higham et al. (2018) for reconstruction 

and in Bacca et al. (2020) for classification. 

7.2.2.2. Real-valued Coded Aperture Implementation Constraint. The range of 

admitted values in a real-valued CA (Φ ∈  [0, 1]) is wider than in the binary one, which mathemati- 

cally results in a more relaxed constraint. However, the wider the range of values in the mathemati- 

cal design, the harder the fabrication and calibration in the physical system Diaz et al. (2019). This 
 

difficulty can be alleviated by fixing a set {κd}D ∈  R of different quantization levels to appear 
 

in the design. This thesis addresses this real-valued constraint by proposing a family of functions 

whose minima are obtained uniquely when the elements of the CAs are the fixed quantization 

 

 
3  Codification with negative values can be physically achieved by estimating and subtracting the mean light intensity  

from each measurement, which can be achieved with a full-one CA Duarte et al. (2008) For more physical details 
see Bacca et al. (2020). 
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R(Φ) = 
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∑ ∑ Φi, j,l −  κd 
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levels κd . Then, this thesis incorporates it in (174) as the regularizer R(Φ̃ ) given by 

 

˜ 1 
∏

  
s

  2   pd 

 

 

 

where {pd}D ∈  R++ are the hyper-parameters associated for each quantization level. Notice that 
 

(177) is a polynomial of degree ∏d 2pd whose range is always positive and whose roots corres- 

pond to the targeted quantization levels in the CA design. Thus, (177) is the generalization of the 

previous family of functions in (175) and (176) which are the particular cases of 2 target values, 
 

i.e., D = 2 with κ1 = 0, κ2 = 1 for (175), and κ1 = − 1, κ2 = 1, for (176), respectively. 

7.2.2.3. Coded Aperture Transmittance Constraint. The transmittance level is a 

crucial property that affects the calibration of the optical coding system and determines the proper 

utilization of the light in the acquired measurements. Therefore, adjusting the transmittance level 

is an important step to accomplish a task. For instance, in spectral imaging, a high-transmittance 

level is desired to increase the signal-to-noise power ratio Rueda et al. (2015b), unlike in X-ray 

tomography, a low-transmittance level is desired to minimize radiation to the objects Mojica et al. 

(2017). Specifically, varying the transmittance level unbalances the distribution of the quantization 

levels in the CA and produces an ill-conditioned sensing matrix; in consequence, the performance 

of the system can be affected. The general family of functions can indirectly control the transmit- 

tance level by adjusting the hyperparameter κd. Nonetheless, to achieve an exact targeted value, 

this thesis addresses this transmittance level constraint by proposing the following regularization 

function R(Φ̃ ) that adjusts the transmittance level while affecting the less the possible performance 

, (177) 
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s′ 
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of the system  
R(Φ̃ ) = 

1
 
S s 

 

 
s 
i, 

MNL 

 

2 

—  Tr 

 

 
, (178) 

 

where Tr ∈  [0, 1] is a customizable hyperparameter that denotes the targeted transmittance level, 

with 0 and 1 indicating to block or unblock all the incoming light. 

7.2.2.4. Number of Snapshots Constraint. The aim of acquiring multiple snaps- 

hots is to efficiently increase the amount of observed information related to the properties of the 

scene improving the task performance. However, the number of snapshots implies a tradeoff bet- 

ween the task performance and the needed time for acquiring and processing more snapshots Ba- 

raniuk et al. (2017). Therefore, it is essential to determine the least amount of optimal snapshots 

S that achieve the highest performance. This thesis proposes to address this number of snapshots 

constraint by using the following regularizer 

 
R  Φ̃    : 

S ′ s 
 
Φs′ 

 2 
 

(179) 
 
 

where S′ ≥ S is an upper bound for the number of user-determined snapshots, this equation can be 

seen as the l1-norm through the snapshot dimension of the l2-norm of the vectorization of each 

CA. This formulation is based on the traditional l2,1-norm applied on matrices, which has been 

demonstrated to encourage all values in a column to be zero Eldar and Bolcskei (2009); Lohit 

et al. (2019). Thus, (179) promotes all entries in a CA to be equal to zero, i.e., implying the no 

acquisition of the snapshots. 

Notice that expression in (179) is not differentiable when all values of a CA are zero Lohit 

∑ 
i, j,l 

, 
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et al. (2019). Hence, this thesis employs the sub-gradient below in the backward step 
 

 

Φs′

 

 

 

 
ϕ Φ 

′  0 

 
 
 

where ϕ(Φs′
 

 
) = 

q

∑i, j,l(Φ
s′ 

j,l 

i, j,l 

 

 

 

)2. 

 0, otherwise, 

 

Notice that regularizers proposed up to this section are directly related to assembling pro- 

perties of the CA, such as the implementability of the obtained quantization levels, the adjustment 

of the transmittance, and the selection of the number of snapshots to be acquired. Unlike, the fo- 

llowing two regularizers are proposed in order to achieve a better performance in the solution of 

the CI task. 
 

7.2.2.5. Multishot Coded Aperture Correlation Constraint. The correlation bet- 
 

ween the CAs {Φs}S
 used in a multishot acquisition scheme is crucial to increase the observed 

 

information of the underlying scene. Specifically, it has been demonstrated in Correa et al. (2015) 

that the less correlated the CAs, the greater the amount of acquired with fewer snapshots. This  

thesis addresses the correlation constraint using a generalized function that minimizes the correla- 

tion between the S designed CAs. Then, this thesis incorporates it in (174) as the regularizer R(Φ̃ ) 

given by 
 

 

 

R(Φ̃ ) = 

s 
i, 

MNL 

 
. (181) 

= 

   

) ) 
, 

(180) 
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˜ 1 ˜ T  ˜ 2 

Φ F 

K 
k 

Φ 2 

 

Observe that for S = 2, expression in (181) results in the numerator part of the Pearson correlation 

for two CAs Benesty et al. (2009). 

7.2.2.6. Data Driven Conditionality Constraint. The conditionality constraint ac- 

counts for the sensing matrix structure H̃ Φ, which should be linearly independent along its rows 

and columns, to ease its inversion while preserving the features after projection Hinojosa et al. 

(2018). Authors in Hinojosa et al. (2018); Mejia and Arguello (2018); Mojica et al. (2017) address 

this  aim  by  imposing  the  regularizer  ǁH̃ T H̃ Φ − cIǁ2 ,  where  I denotes  the  identity  matrix  for  a 

constant c ∈  R++. This thesis extends this regularizer by taking advantage of the available data 

such that the conditionality is improved according to the specific dataset of interest instead of for 

general acquisition. Hence, the proposal introduces the following regularizer in (174) to promote a 

data-driven improved conditionality in the sensing matrix 

 

R(Φ) = ∑¨H HΦfk −  fk
¨ . (182) 

7.2.2.7. Modeling Considerations. 

7.2.2.8. Trainable Parameters. The number of trainable parameters is a key aspect 

in the efficiency and performance of the proposed E2E approach. Specifically, when the optical  

layer contains a set of S 2D or 3D CAs with N ×  M and N ×  M ×  L elements, respectively, the 

number of trainable parameters ascends to SMN and SMNL, respectively. This limits its use for 

large scale scenes because of the expensive computational memory requirements and the potential 

overfitting problems Goodfellow et al. (2016). This thesis proposes to reduce the number of traina- 
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∆n 

v=1 

∆m 

 

ble parameters by adding spatial structure to each CA so that a kernel Qs of size ∆n × ∆m  N ×  M 

is periodically repeated as follows 
 

Φs = 1 ⊗  Qs, (183) 
 

for s = 1, . . . , S, where 1 denotes a matrix of size N 
M with all elements equal to 1, and ⊗  

 

represents the Kronecker product. Including such periodicity reduces the total number of trainable 

variables to S∆n∆m and S∆n∆mL for the 2D and 3D representation, respectively. Note that this mo- 

del formulation enables to train some optical coding systems with small portions of the training 

images, known as patches, by training directly Qs Gelvez and Arguello (2020). In some 3D appli- 

cations, this training parameter can be further reduced. For instance, in the colored CA, each color 
 

pixel can be expressed as a linear combination of V < L fixed optical filters {wv ∈  [0, 1]L}V
 , so 

 

that, each element of the 3D kernel can be rewritten as 
 
 

Qi, j,l = ∑wnAn
 
 
, (184) 

l  i, j 
n 

 

 

where A denotes the trainable weights of the linear combinations, and in consequence, the number 

of trainable parameters is reduced to S∆n∆mV . 

7.2.2.9. Manufacturing Noise. The manufacturing noise represents a problem in 

the design of optical elements since it can lower the obtained benefits with the design when im- 

plemented in a real setup Diaz et al. (2019); Sitzmann et al. (2018). To overcome this problem, 

an exhaustive calibration process over the real setup is carried out to achieve a performance as  

reliable as the sensing model used in the simulations. On the other hand, this problem can also be 

× 
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addressed by refining the noise modeling in the design. Therefore, this thesis aims at considering 

two sources of perturbations at each step of the forward propagation in the E2E optimization, one 

into the projected measurements as expressed in (173), which commonly comes from the level of 

illumination He et al. (2015), and the other into the CA, which commonly comes from the manu- 

factured process Sitzmann et al. (2018). This thesis adds the latter manufacturing noise as follows 

 

Φ = Φ + η, (185) 

 
where ||η||∞ << ||Φ||∞, and the distribution of the noise η varies according to fabrication proces- 

ses. 

Notice that these regularizes have been designed for specific purposes. However, some of 

them can be incorporated into the optimization problem to get the desired behavior. 

7.2.2.10. Simulation and Results. This experiment aims to show that coupling the 

design of the sensing protocol and the decoder training increase the quality of CI tasks. For this,  

this thesis compared the results against the non data-driven recovery method TwIST with TV 

prior Kittle et al. (2010), and the data-driven recovery networks Hyperspectral Image Recons- 

truction using a Deep Spatial-Spectral Prior (HIR-DSSP) Wang et al. (2019), and HyperRecon- 

Net Wang et al. (2018d). For Twist, this thesis employed a fixed CA. For (HIR-DSSP) and Hy- 

perReconNet, different variations are evaluated: first, this thesis evaluated the performance when 

using a fixed CA generated following a Bernoulli distribution with parameter 0,5, whose results are 

denoted as HyperReconNet-Fixed, and HIR-DSSP-Fixed. Furthermore, the performance when joi- 
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Figure 55. RGB mapping comparison of the reviewed data-driven approaches, employing fixed and 

learned CA into the network. 

 

 

 

 

 

 
Note: Notice that, the CA design regularization improves the quality of previous frameworks for 
the recovery task. 

 
 

ning the design of the CA and the network weights through the proposed binary regularization are 

evaluated, whose results are denoted as HyperReconNet-Ours, and HIR-DSSP-Ours. Finally, this 

thesis evaluated the performance when using the strategy proposed by the HyperReconNet Wang 

et al. (2018d), which learns the CA using a piece-wise threshold (pwt), whose result is denoted 

as HyperReconNet-pwt. Figure 55 shows an RGB visual representation of the recovered images 

with the PSNR and SSIM quantitative metrics which show that the proposed method outperforms 

state-of-the-art methods. Remark the versatility of the proposed regularizers which can be straight- 

forwardly incorporated at any pre-existed net. 

7.2.2.11. Validation in a real setup experiment. Section 7.2.2.10 demonstrated that 

coupling the sensing protocol design and the processing method increases the quality of CI tasks; 

however, most of the obtained benefits are lowered when applying those methods in real setups Co- 

rrea et al. (2016b); Bacca et al. (2019). Hence, this experiment validates the E2E approach with a 

real setup corresponding to one single snapshot of the CASSI testbed laboratory implementation  

depicted in Fig. 56 
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Figure 56. Testbed CASSI implementation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the relay lens focuses the encoded light by the DMD into the sensor after dispersed by the 
prism. 

 

For this, the ARAD dataset was used to train the proposed approach with a compression 

ratio γ = 0,034. The setup contains a 100-nm objective lens, a high-speed digital micro-mirror de- 

vice (DMD) (Texas Instruments-DLI4130), with a pixel size of 13,6µm, an Amici Prism (Shanghai 

Optics), and a CCD (AVT Stingray F-145B) camera with spatial resolution 1388 ×  1038, and pitch size 

of 6,8µm. The 482 ×  512 designed CA is placed at the center of the DMD. 

The performance was compared against the results obtained with the same DNN and hyper- 

parameter tunning process, but with a fixed CA and learning only the network weights, i.e., the 

main difference is that the optical layer is trainable in the proposed method. For the fixed CA, this 

thesis used a random CA and a designed blue-noise CA Correa et al. (2016a). 

Figure 57 (Top) illustrates an RGB visual representation comparison of the spatial quality 

between the reconstructions obtained along the three approaches. It can be noticed a significant 
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improvement in the visual results for a real setup when coupling the design of the CA in the 

DNN. Fig. 57 (Bottom) illustrates a comparison of the spectral quality at three random spatial  

locations whose spectral response was measured in the laboratory with the commercially available 

spectrometer (Ocean Optics USB2000+). It can be noticed that the coupled approach decreases the 

spectral angle between the estimated and reference spectral signatures in comparison to the fixed 

Figure 57. (Top) RGB visual representation of the three evaluated methods (Net design, Blue-noise 

and random). (Bottom) Comparison of the normalized spectral signatures at three points in the 

recovered scenes. 

 

Note: At each point it is shown the quantitative SAM metric to quantify the improvement. 
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Figure 58. Quality behavior of adding various regularizers. 
 
 

Note: (Left) Real SPC setup for classification task with the quality measured in terms of accuracy. 
(Right) Real CASSI setup for reconstruction task with quality measured in terms of the SAM 
metric of the spectral response at three spatial locations. 

 

 

CAs. 
 

7.2.3. Quality improvement via regularizers experiment. This experiment evalua- 
 

tes the effectiveness of binary (175), correlation (181), and conditionality (182) regularizers to 

guide the solution of the optimization problem to a better quality in the CI task for real setups.  

The initial value of each regularization was set as ρ0 = 1e
−7 except for the binary that was as 

ρ0 = 1e
−9. This thesis used the CASSI and a SPC testbed implementation, where 50 random num- 

bers were printed and used as the target (See supplementary material for further implementation 

details). Figure 58 compares the task quality across an interval of different compression ratios for 

five cases: using a random CA; using only binary regularizer; using binary and correlation regulari- 

zers; using binary and conditionality regularizers; and using binary, correlation, and conditionality 
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regularizers. It can be seen that the quality of the task increases as more regularizers are taken in- 

to account, such that using the three regularizers together suppressively outperforms the recovery 

task quality in both setups. This thesis also remarks that the binary regularizer itself provides a  

significant improvement in comparison to the random scenario. 
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8. Conclusions and Future works 

 

This dissertation studied the super-resolution phase retrieval problem from coded diffrac- 

tion patterns. Specifically, the inclusion of a high-resolution coded aperture (CA) allowed the de- 

velopment of a new super-resolution system that was denominated physical super-resolution. The 

forward models for the different diffraction zones (near, middle, and far), were derived under the 

assumption that the attainable resolution of the image is determined by the resolution of the CA, 

assuming that the pixel size of the CA is smaller than the sensor pixel size. Theoretical uniqueness 

guarantees for all the diffraction zones were provided, establishing that the set of coded apertures 

has to be designed to increase the probability of a unique solution. Numerical experiments were 

conducted to evaluate the performance of the super-resolution approach, and it was shown that the 

reconstruction quality is preserved up to a resolution factor of 4. 

From the theoretical results, it was concluded that the CA distribution plays a crucial role in 

recovering the phase in coded diffraction patterns (CDP). Therefore, this thesis shows two design 

strategies, one independent of the data, based on a greedy strategy to increase the theoretical reco- 

very probability, and the other based on data, using an end-to-end (E2E) deep learning approach, 

which is based on modeling a differentiable sensing model of the optical system which is coupled 

as a layer in a recovery network. Simulations show that both methodologies overcome random 

codes, but the E2E method shows better results for different coded elements and the three studied 

diffraction zones. 

From the recovery point of view, this thesis proposed a smoothed non-convex least-squares 
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objective function, which addresses the non smoothness of the traditional phase retrieval formula- 

tion. Furthermore, this thesis shows that sparsity prior as total-variation and deep priors included 

in the proposed smoothing formulation drastically increase the reconstruction quality, resulting in 

good reconstruction even from a single projection. Besides, the deep unrolling strategy developed 

in this thesis shows the best performance to recover the phase in a coded diffraction pattern setup, 

compared with the state-of-the-art methods. 

Additionally, mathematical CA design concepts and recovery algorithms were extended 

to compressive spectral imaging. There, it was shown that the quality significantly increases for 

different tasks, not only reconstruction but also classification and clustering. Furthermore, these 

applications can be validated in the optics setups where the performance is maintained. 

Future work includes the implementation of the proposed super resolution phase retrieval 

scheme to validate the obtained results in a real scenario where some physical consideration about 

the noise and calibration problem needs to be considered. The mathematical concepts developed 

in this thesis can be extended to other applications that employ CA modulations as compressive 

seismic data and radar signals. 

 
 

Appendix A: Proof of Theorem 3 

 

9. Appendix 

 

Since the initialization used in this method, generates a point x0 near to the real signal x, 

it suffices to show that the convergence of gradient loops given x0 lands into the neighborhood of 

global minimums. To prove Theorem 3, the major step is to prove the following Lemma 7 which 

characterizes how the error of an estimate decays upon one iteration of Algorithm 2. Once Lemma 
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k=1 

t r r 

t r t 2 

r 2 2 

 

7 is established, this thesis takes expectation on both sides of Eq. (76) with respect to it−1, and 

apply Lemma 7 one more time to obtain 

 

E{i ,i }
 

d2(xt+1, x)
 
≤ (1 −  υ)2 d2(xt−1, x), (75) 

 
 

where υ ∈  (0, 1). This process continues until the initialization point x0 yields Theorem 3. Then, 

this thesis focuses on proving Lemma 7 stated bellow. 

 

Lemma 7.  Consider  the  noiseless  measurements  qk = |⟨ak, x⟩| with  an  arbitrary  signal  x ∈  Cn, 
 

and i.i.d {ak ∼ C N (0, In)}m  . If α ∈  (0, α0/n] and also m ≥ c0n, then with probability at least 

1 −  2e
−ε2m/2, we have 

Ei 
 

d2(xt+1, x)
 
≤ (1 −  υ)d2(xt, x), (76) 

t r r 

 

 
for all xt satisfying dr(xt,x) ≤ 1 . 

ǁxǁ2  10 

Demostración.  Let ht = e
− jθt xt − x with xt and θt = arg minθ ∈ [0,2π)ǁe− jθ xt − xǁ2. Then, by defi- 

nition of dr(·, ·) we have that 

d2(xt+1, x) = mı́n   ǁe− jθ xt+1 − xǁ2  ≤ ǁe− jθt xt+1 − xǁ2. (77) 
θ ∈ [0,2π) 

From Eq. (187) it can be obtained that 

Ek  
 
d2(xt+1, x)

  
≤ Ek  

h
ǁe− jθt xt+1 − xǁ2

i 
. (78) 

t− 1 
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d2 (xt, x)
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|aH xt |2 + µ2 

µ 2 
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Notice that  
 
 

Ekt 

 

¨e−  jθt xt+1
 

 
—  x

¨2
 

 

= E 

 

¨e
− jθt 

 

x —  α
 

aHx −  ϑ 
 

a 
 
−  x

¨2
  

, (79) 
kt 

 

 
aH xt 

t kt   t kt kt ¨
2

 

where ϑkt = qkt 
q 

kt 
|aH xt |2+µ2 . Then, according to definition of ht, Eq. (79) can be rewritten as 

kt t 

 

 
 

E   
  

d2 (x , x)
 

= E  

 

¨h −  e− jθt α
 

aHx −  ϑ 
 

a 
¨2
  

= ǁht ǁ2 − 2αEk  
h
R 
 

e
− jθt (hHak ) 

 
aHxt − ϑk 

  i
 

+ α2Ek  
h

ǁak ǁ2 .aHxt − ϑk .
2
i 

, (80) 

where R(·) is the real part function. Since kt is sampled uniformly at random from {1, 2, · · · , m}, 

we have 
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.2
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(81) 
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Notice that, from Eq. (81), v1 can be rewritten as 
 

v 
2α 

 
m 

aH h 2 

 
 

 
2α m 

q

  
hHa 

   

e
− jθt (aH xt) 
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(82) 

1 = 
m

 
∑| k 

t | − 
m  

∑ R 
k( t k) q 

k −  k . 
 k    t t k 

` ˛
h

¸
1  

x 

Given the fact that R(w) ≤ |w| for all w ∈  C, h1 in Eq. (82) can be bounded as 
 

h 
2α 

 
m q aHh . e−  jθt (aH xt ) 

 

  

aH x 
. 

 
 

 

  

 
(83) 

 

 

1 ≤ 
m ∑ 

k| k 
t | . q k −  k 

.
 

k=1 

. |aH x |2 + µ2 |aH x|. 

Now, from Eq. (83) it can be obtained that 

h 
2α m q aHh . e−  jθt (aH xt ) e−  jθt (aH xt ) . 

 1 ≤ 
m ∑ k| k t | . q 

H . 
 

 
   k=1 .  |a   xt | + µ |ak x| . 

 

 
2α m 

q
 aHh 

k 
e−  jθt (aH xt ) 

t 
aH x 

  |  k 
. . 2α m H .
q 

2 2 . 
2α m H 2 

 

+ ∑ ak ht , (84) 
k=1 

H 2 2 
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k| 
− 

≤ 
m 

   



CAPI´TULO 9. APPENDIX 192 
 

k k 

k  H 

k 

| | 

+ µt 

  qk|aH xt| 
.
q 

a

 
a x . 

|ak x| |ak  xt| 

k t k 

k t k k k 

k k 

! 

k 

 

in which the second inequality comes from the fact that 
 
 

q . e
− jθt (aH xt) 

 

 

e−  jθt (aH xt ) . 
 

 

 

 k 
. 
q 

H 2 2 
−  

|aH x| . 
 

≤ 
H 

q 
H 2 

2 . | k 
t | + t −  | k  |. 

≤ .

q

|aH xt |2 + µ2 − |aHx|. . (85) 

Then, from Eq. (201) it can be obtained that 

 

.

q

|aH xt |2 + µ2 − |aHx|. ≤ µt + ||aHxt | − |aHx|| 
 

≤ µ0 + |e− jθt (aHxt) − aHx| 
 

= µ0 + |aHht |, (86) 

 
in which the second line comes after the triangular inequality. Combining Eqs. (84) and (202) it 

 

can be obtained that  
 

h 
4α 

 
 
 
 

m 
aH h 2 

 

 

 
µ  

  
2α 

 

 

 
 
 
 

m aHh 

  

 

 

 
(87) 

1 ≤ 
m

 ∑ k 
k=1 t | +  0 ∑ k t . 

k=1 

 

Putting together Eqs. (81), (82) and (203), one can write that 

 

2α m H 2 4α m 
H 2 

 

  

 
2α m 

H 

! 
 

  
− v1 ≤ − 

m
 ∑ ak ht k=1 

+ ∑ ak ht k=1 + µ0 ∑ ak ht k=1 . (88) 
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| | 
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H x 2 µ 2 
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∑ .ak xt −  qk q  
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1 

2 

m 
| | 

 

On the other hand, since for the i.i.d. real-valued Gaussian vectors ak, máxk∈ {1,·· · ,m}ǁakǁ2 ≤ 

2,3n holds with probability at least 1 −  me
−n/2 Wang et al. (2016a), then, from the term v2 in Eq. (81), 

we have with high probability that 

 

2 3nα2
 

 

 

aH x 
.
 

 

 
 

 
k=1 . |a   xt | + µ  . 

 

2,3nα2
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.
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H 2 2 H 
.
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2,3nα2
 

∑ 
k=1 m 

|ak  xt| + µt −  |ak x| 2 
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m 
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µ0 + |aHht |

 
 

2,3nα2
 

 

 

k=1 
m 2 

 
4,6nα2   m 

H 

!
 

 

  ∑ µ0 + µ0 
k=1 ∑ ak ht 

k=1 2,3nα2   m 
H 2 

 

+ ∑ ak ht , (89) 
k=1 

 

where the third inequality was obtained from Eq. (202). Therefore, applying Lemma 7.8 in Candes 

et al. (2015d), if m ≥ c0ε− 2n, then with probability 1 −  2e
−ε2m/2 

 

m 2 H 2 2 
 (1 − ε)ǁht ǁ2 ≤ 

m 
∑ |ak  ht | ≤ (1 + ε)ǁht ǁ2, (90) 

 
 

 

holds for all vectors ht and for any ε ∈  (0, 1). Then, by combining Eqs. (204) and (205) it can be 

obtained that 

 

2 2α m 
H 

! 
− v1 ≤ 2α(1 + 3ε)ǁht ǁ2 + µ0 ∑ ak ht 

k=1 , (91) 

k=1 

| | 
m 

≤ 
m

 

H 2 2 m 

2 

. 

v2 ≤ 
m 
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t r 2 

m k=1 k m k=1 k 

t r 2 

t r 2 

 

with probability at least 1 −  2e
−ε2m/2. Moreover, from the results in Eqs. (192) and (205), it can be 

concluded that 

 
v 2 3α2n 1 

 
ε h 2 

 
2 3nα2µ2 µ  

  
4,6nα2   m

 
 

 

aHh 

!

 
 

  

 
(92) 

2 ≤ , (  +  )ǁ t ǁ2 +  , 0 + 0 ∑ k t . 
k=1 

 

Therefore, by combining Eqs. (81), (206) and (92) we have that 

 

 
Ek  

 
d2(xt+1, x)

  
≤ λ ǁht ǁ2 + µ0c, (93) 

 
 

where λ = 2α(1 + 3ε) + 2,3nα2(1 + ε) and c = 2,3nα2µ0 + 4,6nα ∑m |aH ht | + 2α ∑m
 |aH ht |. 

 

Note that the inequality in Eq. (93) is satisfied for all initial µ0 ∈  R++. Then by Theorem 1.1 in 

Apostol (1974), one can conclude that 

 

Ek  
 
d2(xt+1, x)

  
≤ λ ǁht ǁ2, (94) 

with probability 1 −  2e
−ε2m/2. Notice that, choosing the step size α < 1 =  0,5 = α0 , 

2n(1+3ε) n(1+3ε) n 

then we have that λ ∈  (0, 1). Taking υ = 1 −  λ , Eq. (94) can be rewritten as 
 
 

Ek  
 
d2(xt+1, x)

  
≤ (1 − υ)ǁht ǁ2. (95) 

Therefore, from Eq. (95) the lemma is proved. 

| | 
m 
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Appendix B: Proof of Theorem 4 

 
To prove Theorem 4, this thesis needs to introduce first the contraction mapping definition 

and the Hahn Banach Fixed Point theorem as follows. 

Definition 6.  Contraction mapping: Let  f  : (Cn, dr(·, ·)) → R be a function. Then,  f (x) is a con- 

traction mapping if there is some non-negative β ∈  [0, 1) such that 

 
dr( f (x), f (y)) ≤ βdr(x, y), ∀ x, y ∈  Rn. (96) 

 
 

Theorem 7.  Hahn Banach Fixed Point: Let  f : (Cn, dr(·, ·)) → R be a contraction mapping. Then f 

(x) admits a unique fixed-point x∗ ∈  Cn, (i.e. f (x∗) = x∗). (The proof of Theorem 7 can be found in 

Kreyszig (1989)) 

 
Demostración.  The  sketch  of  the  proof  is  similar  to  the  used  in  Appendix  C  to  prove  Theorem 

 

7. Denote K1 := {k|µk+1 = γ1µk} with γ1 ∈  (0, 1). If K1 is finite, then according to Lines 5-8 in 

Algorithm 2 there exists an integer k such that for all i > k 

 

ǁ∂g1(xi, µi−1)ǁ2 ≥ γµi−1, (97) 

 
where µi = µk and γ ∈  (0, 1). Taking µ = µk, the optimization problem solved by Algorithm 2, 
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i→

∞ 

 

reduces to solve 
 
 
 

m´ın 
x∈ Rn/Cn 

g1(x, µ) = E[lkt (x, µ)] . (98) 

 

 

Assuming the setup of Theorem 3, it can be obtained that Line 4 in Algorithm 2 is contractive 

according to Definition 6, which means from Theorem 7, that there exists a unique fixed point x∗, 

up to a global unimodular constant. Then, from Line 4 in Algorithm 2 we have that 

 
x
∗ = E[x

∗ −  α∂lkt (x
∗
, µ)] . (99) 

 
Using the fact that ∂g1(xi, µi−1) = E [∂lkt (x

∗, µ)], from Eq. (99) it can be concluded that 

 
lı́m infǁ∂g1(xi, µi−1)ǁ2 = 0. (100) 

 
Notice that, Eq. (100) contradicts the fact that ǁ∂g1(xi, µi−1)ǁ2 ≥ γµi−1 for all i > k. This shows 

that K1 must be infinite and l´ımi→∞ µi = 0. Given that K1 is infinite, it can assume that K1 = 

{k0, k1, · · ·} with k0 < k1 < · · · . Thus, we have that 

 
lı́m infǁ∂g1(xi, µi−1)ǁ2 ≤ γ lı́m µi = 0. (101) 

i→∞ i→∞ 

 
 

Therefore, from Eq. (101) the result holds. 
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(t) 

m i=1 |aH z(t)|2 + µ2 

 

Appendix C: Proof of Theorem 5 

Demostración.  Let h(t) = x − e− jθ(t) z(t) with z(t) and θ(t) = arg minθ ∈ [0,2π)ǁx − e− jθ z(t)ǁ2. Also, 

define 

 

d(t) = z(t) −  τ∂g(z(t), µ(t)) (186) 

z(t) 2τ m 

 q 
a z 

 

 

µ q
 aH z(t) 

a
 

 

  
  

= −  ∑ | H   (t)|2 + 
2 −  i q i, 

 

for t = 0, 1, . . . , ∞, which stands for the prior estimate to the hard thresholding operation in Al- 

gorithm 3, line 4. Let Θ(t+1) = S(t+1) ∪  S∗ be a set where S(t+1) is the support of z(t+1), and 

S
∗ is the support of the real solution x. The reconstruction error h(t+1) is supported on the set 

Θ(t+1) := S
∗ ∪  S(t+1); likewise, h(t) is supported on Θ(t) := S

∗ ∪  S(t). Moreover, the difference bet- 

ween Θ(t) and Θ(t+1) can be defined as Θ(t) \ Θ(t+1), which consists of all elements of Θ(t) that are 

not elements of Θ(t+1). It is then clear that |S∗| = |S(t)| = k, |Θ(t)| ≤ 2k, and |Θ(t) \ Θ(t+1)| ≤ 2k as 

well as |Θ(t) ∪  Θ(t+1) | ≤ 3k for all t ≥ 0. When using these sets as subscript, for instance, dΘ(t)
 , it 

means vectors formed by setting to zero all but those elements from the vector other than those in 
 

the set.  
Note that, by definition of dr(·, ·) we have that 

 

 

dr(z
(t+1) 

, xΘ
 ) = m ı́n ǁxΘ — e− jθ z

(t+1) 
ǁ2  ≤ ǁxΘ — e− jθ(t) z(t+1) ǁ2. (187) 

Θ(t+1) (t+1) 
θ ∈ [0,2π) 

(t+1) Θ(t+1) (t+1) Θ(t+1) 

(t) i 

i 
(t) 

i 
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Θ(t+1) 

Θ t  1 

Θ t  1 Θ t  1 

Θ(t+1) 

Θ(t+1) Θ(t+1) 

Θ(t+1) Θ(t+1) 

m i=1 |aH z(t)|2 + µ2 i 

 

Then, notice that by using the triangle inequality, one can write that 
 

 
ǁxΘ —  e−  jθ(t) z

(t+1) 
ǁ2 = ǁxΘ —  e−  jθ(t) d

(t+1) + e−  jθ(t) d
(t+1) −  e−  jθ(t) z

(t+1) ǁ2
 

(t+1) Θ(t+1) (t+1) 

 

≤ ǁxΘ(t+1) 

Θ(t+1) 

—  e−  jθ(t) d
(t+1) ǁ2

 

Θ(t+1) Θ(t+1) 

 

+ ǁe− jθ(t) z
(t+1) 

− e− jθ(t) d
(t+1) 

ǁ2, (188) 
 

 

where in the last inequality the first term is the distance of xΘ(t+1)
 to the estimate d(t+1) 

( + ) 
before hard 

thresholding, and the second is the distance between d(t+1) 
( + ) 

and its best k-approximation z(t+1) 
( + ) 

due to |Θ(t+1)| ≤ 2k. The optimal of z(t+1)  implies ǁe− jθ(t) z(t+1) − e− jθ(t) d(t+1) ǁ2 ≤ ǁxΘ − 

e
− jθ(t) d

(t+1) ǁ2. 

Θ(t+1) Θ(t+1) Θ(t+1) (t+1) 

 

Plugging the latter relationship into (188) yields 
 
 

ǁxΘ — e− jθ(t) z
(t+1) 

ǁ2  ≤ 2ǁxΘ — e− jθ(t) d(t+1) ǁ2, (189) 
 
 

where the equality in (188) arises from restricting this analysis solely to the support Θ(t+1) of 

x −  e− jθ(t) d(t+1). Then, considering (186), the vector e− jθ(t) d(t) can be rewritten as 
 

 
e−  jθ 

 
d(t+1)  e−  jθ 

 
z(t) 

 
2τ m aH h(t) q  e− jθ(t) aH z(t) 

 
 aH x   a

 

 

  

 
(190) 

(t) 
= (t) + ∑ i

 + i q i −  i 
i.
 

Combining (189) and (190) it can be obtained that 

|aH x| 
(t) 

i 

(t+1) (t+1) 
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¨h 

\ \ 

m 

     2 

m 

2 
ǁh xΘ(t+1) −  e z

Θ(t+1) −  m ∑ 
i=1 

ai h 

|aH z(t)|2 + µ2 

m i=1 

|aH z(t)|2 + µ2 

|aH x| 

2 

¨ 

— 
m

 

∑ 

|aH x| 2 

2 

 

1 (t+1) —  jθ(t) (t) 2τ m 
H   (t)

 
 

2τ m  
 

 

 
e−  jθ(t) aH z(t) 

aH x   aHx a ¨ 
 

—  ∑ q i −  i 
| i | 

i,Θ(t+1) 

(t) 
= 

i 2τ m 
—  a 

(t) 

aH 
i 

h
(t) 

Θ(t+1) 
2τ m 

 
 

∑ 
i=1 H 

i,Θ(t+1) i,Θ(t+1) 
(t) 

Θ(t+1) 

∑ ai,Θ(t+1)ai,Θ(t) Θ(t+1) hΘ(t) Θ(t+1) 

i=1 

2τ m  

e−  jθ(t) aH z(t) 
 

aH x   aHx a ¨ 

—  ∑ q 

i −  i 

| i | 

i,Θ(t+1) , 

where the equality follows from re-writing aH h(t) = aH
 h

(t) 

= aH
 

h
(t) 

+aH
 

h
(t) . 

Then, from (191) we have that i i,Θ(t) Θ(t) i,Θ(t+1) Θ(t+1) i,Θ(t)\Θ(t+1) Θ(t)\Θ(t+1) 

 

 1 (t+1) ¨

¸  

(t) 

 
 

v1 

2τ m 

x` 

H

 (t) ¨

˛

 
 
 

2 
ǁh 

ǁ2 ≤¨h
Θ(t+1) −  m 

∑ ai,Θ(t+1) ai,Θ(t+1) hΘ(t+1) 

¨ 

(192) 

¨ 2τ m 
i=1 

H 

  (t) ¨ 

+
¨ ∑ ai,Θ(t+1) ai,Θ(t)\Θ(t+1) hΘ(t)\Θ(t+1) ¨ 

i=1 `

¨     

˛
v2

¸ x 

¨

 

   

i 

m i=1 

+ 

ǁ2 ≤ ai,Θ(t+1) (191) 

(t) 
i 

m 
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H 

¨ 
i 

i i 

2τ m 

¨ 

e−  jθ(t) aH z(t)  aH x  a x a ¨ 

¨ q −  

| i | 

i,Θ(t+1) . 

¨ i=1 |aH z(t)|2 + µ2 |aH x| ¨ 
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i (t) 2 
` ˛

v3

¸  x 
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¨ 

Θ(t+1) 

m 

m 

Θ(t+1) 

1 = 
¨ 

n − 
m

 ∑ 
i=1 

i,Θ(t+1) 
Θ(t+1) 

2 

¨ 

= max ∑ 
i=1 

i,Θ(t+1) ≤ + 

= min ∑ 
i=1 

i,Θ(t+1) ≥ − 1 − 

¨ ¨ 

i=1 

 

Notice that from (192) it can be obtained that 

 

v 
¨
 

I 
2τ m 

a
 

aH 

! 

h
(t)  ̈

 
(193) 

 

2τ m 
H

 
 
 

 (t) 

≤¨In −  
m

 

∑ ai,Θ(t+1) ai,Θ(t+1) 
¨ 

ǁh
Θ(t+1) ǁ2 

≤máx{1 − 2τλ , 2τλ − 1}ǁh(t) ǁ2, 
 

 
 

where  ǁ·ǁ2→2  is  the  spectral  norm  and  λ , λ > 0  are  the  largest  and  the  smallest  eigenvalues  of 

1 ∑m   a (t+1) a
H

 (t+1), respectively. Then, by corollary 5.35 in Vershynin (2010) it can be obtained 
m 

 

that 

i=1 i,Θ i,Θ 

 
λ λ 

1  m 

a aH 

! 

1 ε 

 
 

 
(194) 

 
 

with hight probability when m ≥ C(ε0)2k for some constant C(ε0) depending on ε0 > 0. Moreover, 

by Lemma 5 in Wang et al. (2016a) we have that 

 

λ λ 
1  m 

a aH 

! 

1 ζ ε 

 
(195) 

 
 
 

when m ≥ C(ε1)k for some constant C(ε1) depending on ε1 > 0. Taking the results in (194) and 

(195) into (193) yields 
 
 

v1 ≤ máx{1 − 2τ(1 − ζ1 − ε1), 2τ(1 + ε0) − 1}ǁh(t) ǁ2. (196) 
 
 

For the second term v2 in (192), fix any ε2 > 0. If the ratio number of measurements and 

i,Θ(t+1) 

2→
2 

i,Θ(t+1) 0, 

i,Θ(t+1) 1 
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¨ 

¨ ¨ 

¨ ¨ ¨ ¨ 
¨ Θ 

¨  

m̈ ¨ 

2 ≤ 
m

 ∑ 
i=1 

i,Θ(t+1) 
i,Θ(t)\Θ(t+1) 

2→2 

ǁ 
Θ(t)\Θ(t+1) ǁ2 

¨ 
i=1 

(t) 

2→
2 

m 

= A (t+1) b 
m 

≤2τ √ AΘ(t+1) 

2→2 
¨√m 

b 

≤2τ(1 + ε ) ̈ √
m 

b 

1 m 

1 

 

unknowns m/3k, exceeds some sufficiently large constant, the next holds with probability of at 

least 1 −  2 exp(− c(ε2)m) 

 

v 
2τ m 

a aH 
¨ 

h
(t) 

 

(197) 

 
¨ H ¨ (t) 

≤2τ ̈ In − 
m 

∑ ai,Θ(t+1)∪ Θ(t) ai,Θ(t+1)∪ Θ(t) ¨ 
ǁh

Θ(t)\Θ(t+1) ǁ2 

 

≤2τ(ζ2 + ε2)ǁh
Θ(t)\Θ(t+1) ǁ2, 

in which the first inequality arises from the triangle inequality. The second inequality is obtained 

by Lemma 1 in Blumensath and Davies (2009). Similar to (193), the last inequality in (197) is 

obtained by using corollary 5.35 in Vershynin (2010) for some universal constants c(ε2) and C(ε2) 

such as m ≥ C(ε2)2k. 

Considering the last term v in (192), define A := [a1 Θ 
 

, · · · , am Θ 
 

] and b(t) := [b(t), · · · , b(t)]T 

with b(t) 
   

e
−  jθ(t) aH z(t) 

 

aH x 

! 

aH x , for i 1 
 

m. Then, the v term in (192) can be rew- 
i = q

|aH z(t)|2+µ2 
— 

|aH x| | i | = , · · · , 3 
 

ritten as 
i (t) i 

 

 

 
2τ T 

3 

 
 
 
 
 
 

(t) 

 

 
  1      T     

 
 

 

 

 
  1     (t) 

 

 
3  ¨ (t) 

 

 

where the second inequality is obtained by a standard matrix concentration result for any fixed 
 

ε3 > 0, with probability 1 −  2 exp(− c(ε3)m), provided that m ≥ C(ε3)k, for some sufficiently large 

constant C(ε3) > 0. 

2 

i i 

, , 

¨ 

3 (t+1) (t+1) 1 

v ¨2 ¨ 

(198) 

¨2 , 

¨ 
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¨ ¨ 

i i a x H H i i 

.H 

. 

i 
i 

H   i    i  i i  

H H  (t) H 

i 

i (t) 

i (t) i 

i (t) i i i 

i i 

m 

. 

i 

. 

(t) 
i 

i 

H 

 

Notice that, from the definition of vector b(t) it can be obtained that 
 

1 ¨ ¨2 1 . e−  jθ(t) aH z(t) 

 
  

aH x 
.
 

 

 

 
 

b(t) = 

∑ . q 

i −  i 
. |a x| . (199) 

m 2 m i 1 |aH z(t)|2 + µ2 |aH x|. 
Notice that from (199) one can write that 

 
 

e−  jθ(t) aH z(t) . H . a x 
 

 

a x . e−  jθ(t) aH z(t) e−  jθ(t) aH z(t) . 
 

 . 
q

|aH z(t)|2 + µ2 
—  

|aH x|. 
| i

 | ≤ | i 
| 
. 
q

|aH z(t)|2 + µ2    
−
 

 

 

|aH x| . 

i (t) 
i
 

i 

e−  jθ(t) aH z(t) a x 
 

(t) 
i
 

aH x 

+ | i | 
i 

|aH x| 

—  
|aH x|. 

≤ .
q

|aHz(t)|2 + µ2 —  |a x|. + |a h | (200) 
 

in which the second inequality comes from the fact that 
 
 

a x . e−  jθ(t) aH z(t) 

 

  

e−  jθ(t) aH z(t) . 
 

  

  |aH x||aH z(t)| 

 
  

 
 

.
q 

aH
 

 
 

 
z(t) 2 µ2 aHx 

.
 

| i | 
. 
q

|aH z(t)|2 

µ2 
−  

|aH x| . 
≤ 

|aH x|
q

|aH z(t)|2 

µ2  
. | i | + (t) −  | i |. 

 

≤ .
q

|aHz(t)|2 + µ2 —  |a x|. . (201) 
 
 

Then, from (201) it can be obtained that 
 
 

.
q

|aHz(t)|2 + µ2 —  |a x|. ≤ µ(t) + .|a z | −  |a x|. 
 

≤ µ(0) + .e
−  jθ(t) aH z(t) −  aH x. 

 

= µ(0) + |aHh(t)|, (202) 

(t) i i i 
(t) 

+ i 

H 2 

i = 

2 

H H   (t) 
i i 

+ 
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i i a x H 

1 2 
|
m

 

1 2 

4 

m 
¨ ¨2 ≤ 

m ∑ | i | = ∑ 
i=1 

i | + (0) 

m i=1 i 

4 
4 

i 

 

in which the second line comes after the triangular inequality. Then, putting together (200) and 
 

(202) one can conclude that 
 
 

e−  jθ(t) aH z(t) . 
 

 

H . a x µ 
 

 

 

2 aH h(t)  (203) 

. 
q

|aH z(t)|2 + 2 (t) 

—  
|aH x|. 

| i
 

| ≤ (0) + | i |. 
 

Combining (199) and (203) it can be obtained that 
 
 

¨
b(t)¨ 1 m     

µ
 

 

 

2 aH h(t) 
  2 4 m 

aH h(t) 2 µ c 
 

(204) 

 

where  c = µ(0) 
  

4  ∑m   |aHh(t)| + µ(0)

 
.  Applying  Lemma  7.8  in  Candes  et  al.  (2015d),  if  m ≥ 

c0ε
−2n, then with probability 1 −  2e

−ε2m/2 
 
 
 (t)  2 1 m 

H
 

 
 

 (t) 2  (t)  2 

(1 − ε4)ǁh ǁ2 ≤ 
m 

∑|ai  h | ≤ (1 + ε4)ǁh ǁ2, (205) 
 
 

holds for all vectors h(t) and for any ε4 ∈  (0, 1). Then, by combining (204) and (205) it can be 

obtained that 

 

¨
b(t)¨  

≤ 4(1 + ε )ǁh(t)ǁ2 + µ  
c (206) 

m 
¨ ¨2 

with probability at least 1 −  2e
−ε2m/2. 

4 2 (0) 

 

Notice that inequality in (206) is satisfied for all initial µ(0) ∈  R++. Then, by Theorem 1.1 

i=1 

i 
µ 

i=1 

(0) + , 
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1 2 
¨ 

+ ( +  )ǁ2 

 2 

(t) 

(t+1) (t) 

Θ(t+1) h 

¨√m 
b ¨2 ≤2(1 + ε )ǁh

Θ(t) ǁ , 

1 (t) 

 

in Apostol (1974), one can conclude that 

 
 ¨

b(t)¨  
≤4(1 + ε )ǁh(t) ǁ 

 
 

 

 

 
(207) 

m 
¨

2 

¨ ¨ 

4 Θ(t)   2 
(t) 

5 2 

 
− ε2m/2 

for any ε5 > 0 with probability at least 1 −  2e 5 . 
 

Therefore, putting together the bounds in (196), (197), (198) and (207) into (192), one can 
 

write 

 
1 

ǁh(t+1)ǁ2 ≤máx{1 − 2τ(1 − ζ1 − ε1), 2τ(1 + ε0) − 1}ǁh(t) ǁ2 
2 

2τ ζ ε h(t) 
Θ(t)\Θ(t+1) 

Θ(t+1) 

 

ǁ2 + 4τ(1 + ε3)(1 + ε5)ǁh
Θ(t) ǁ2 

√ 
´ (t) 

 

(t) 

≤  2 max{ϑ , 2τ(ζ2 + ε2)}ǁh ǁ2 + 4τ(1 + ε3)(1 + ε5)ǁh ǁ2 
 

ǁh ǁ2 ≤ρ ǁh ǁ2, (208) 
 

 

in  which  the  second  inequality  results  from  ǁh(t) 
(t) 

ǁ2 + ǁ 
Θ(t)\Θ(t+1) 

ǁ2 ≤ 
√

2ǁh(t)ǁ2,  with  ϑ = 

máx{1 − 2τ(1 − ζ1 − ε1), 2τ(1 + ε0) − 1}. From the last inequality it can be obtained that 

 

ρ = 2 
 √

2 máx{ϑ , 2τ(ζ2 + ε2)} + 4τ(1 + ε3)(1 + ε5)
  

. (209) 

Then, to ensure linear convergence, from (209) it suffices to choose a step τ > 0 such that ρ < 1 

in (209). Letting η = 1 −  ρ ∈  (0, 1), which justifies the linear convergence result in (89) with 

2 
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probability exceeding 1 −  2e
−c1m for some c1 ≥ 0. 
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