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Introduction

Remote sensing is a technology that has revolutionized our ability to acquire and interpret

data from the distance, enabling us to understand and monitor our planet with high precision. One

of the most powerful tools in the remote sensing is hyperspectral imaging, which captures informa-

tion across a large range of the electromagnetic spectrum. However, acquiring, transmitting, and

processing hyperspectral images presents significant challenges due to the huge volume of data

involved. In this introduction, we will explore into these challenges and present how they have

been effectively addressed through a groundbreaking technique known as compressive feature ex-

traction.

The Challenges of Hyperspectral Remote Sensing: Hyperspectral remote sensing in-

volves capturing data across hundreds or even thousands of narrow spectral bands, providing rich

information about the Earth’s surface and atmosphere Bioucas-Dias et al. (2012). The spectral

information contains a wealth of data that can be used for inference tasks as object identification

or classification in various remote sensing applications, including food quality assessment, preci-

sion agriculture, and material identification Lorente et al. (2012); Dale et al. (2013); Bioucas-Dias

et al. (2013). While this wealth of data is immensely valuable, it also poses a multitude of chal-

lenges. First, acquiring hyperspectral images can be a complex and resource-intensive task. It

often requires advanced sensor technology and may demand specialized platforms, such as satel-

lites, drones, or aircraft, to cover large areas. Furthermore, these sensors generate vast amounts

of data, which must be efficiently transmitted to processing centers Lopez et al. (2013); Báscones



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 15

et al. (2018). Traditional methods involve capturing and storing all the spectral information, creat-

ing massive data sets that effort computing resources. In addition to acquisition and transmission

challenges, processing hyperspectral data is a computational and storage nightmare. Once on the

ground, the processing of hyperspectral data involves dimentional reduction through feature ex-

traction, as well spectral unmixing, object detection or classification algorithms to extract valuable

information about land cover, vegetation health, mineral composition, and more. However, the size

of these data sets makes it difficult to analyze in a timely and cost-effective manner. As a result,

these challenges have been a significant bottleneck in the effective use of hyperspectral imaging

for environmental monitoring, agriculture, mineral exploration, and other crucial applications.

Overcoming Challenges with Compressive Sampling: Recently, the philosophy behind

all our current technologies for digital data acquisition has been changing due to a large amount

of information. New acquisition systems are designed with the expectation of requiring a large

number of samples, improving the probability of collecting more discriminating information. For

spectral imaging, increasing the spectral resolution improves the probability of collect features that

enhance the differentiation of materials in a scene. While not all hyperspectral applications require

a large number of spectral bands for effective operation, in the absence of prior constraints, a small

number of acquired bands may be enough to characterize one scenario but not another. Therefore,

hyperspectral systems that upsample the spectral details of a scene allow additional information

to accommodate any acquisition variability. Besides, it brings flexibility to the growing interest in

extending the use of hyperspectral data to various fields of science. However, the advantages of

obtaining large amounts of information come at the cost of a substantial increase in overhead for
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acquisition, storage, communication, and processing.

To address the hurdles associated with hyperspectral remote sensing, compressive sampling,

also known as compressed sensing or CS, has emerged as a revolutionary technique. Compressive

sampling is a signal processing approach that exploits the inherent structure and redundancy within

hyperspectral data, allowing for efficient data acquisition Li et al. (2012); Lin et al. (2014); Wang

et al. (2018); Garcia et al. (2018). This innovative method relies on the principle that many natural

signals are inherently sparse or compressible in some domain. In the case of hyperspectral im-

ages, this means that the valuable information can be accurately reconstructed from a significantly

smaller set of measurements than traditional methods would require. By strategically sampling

the signal, compressive sampling reduces the amount of data acquired and transmitted, making it

more feasible for resource-constrained platforms. This results in a more efficient and cost-effective

workflow, enabling a more responsive time analysis for a wide range of applications.

New Challenges and Research Question: Traditional hyperspectral data is voluminous

and high-dimensional, and compressing it significantly reduces the available information Nasci-

mento et al. (2020). However, reconstructing hyperspectral data from compressive measurements

for inference tasks, poses some challenges due to the unique characteristics of hyperspectral im-

agery. When compressive measurements are employed to reduce data volume, critical spectral

information may be lost, making it difficult to accurately identify and classify objects. Moreover,

hyperspectral data is highly susceptible to noise and atmospheric artifacts, which can further com-

plicate the reconstruction process. The computational demands for reconstructing hyperspectral

data are substantial, as they require complex algorithms and substantial processing power. Balanc-
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ing the trade-off between data compression and the preservation of critical spectral details, while

ensuring efficient processing for object detection and classification remains a persistent challenge

in the field of hyperspectral remote sensing. This doctoral thesis aims to investigate the effect

of number of measurements on classifcation accuracy. The central research question guiding this

study is

how can precision be preserved when inferring pixels in hyperspectral images that have been ac-

quired compressively without needing to reconstruct the entire data?

As we delve deeper into the realm of compressive hyperspectral imaging, a shift in perspec-

tive is needed. Instead of focusing solely on reconstructing the entire data cube, we must explore

methods that extract valuable features from the compressed data. Feature extraction is an essential

concept that enables the retrieval of critical information while mitigating the computational and

storage challenges associated with data cube reconstruction. Feature extraction from compressive

measures offers several advantages over traditional hyperspectral reconstruction for inference tasks

such as object detection, or classification. Firstly, it significantly reduces the computational bur-

den by avoiding the need to fully reconstruct high-dimensional hyperspectral data, which can be

time-consuming and resource-intensive. This allows efficient data processing, making it suitable

for applications that require rapid decision-making. Secondly, feature extraction can enhance the

robustness of the inference task by extracting relevant information directly from the compressed

measurements, often resulting in more compact and discriminative feature representations. This
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can lead to improved accuracy in tasks like target detection or classification, where relevant infor-

mation can be buried within the hyperspectral data. Overall, feature extraction from compressive

measures offers a more efficient and effective approach to hyperspectral data analysis, making it a

valuable technique in various remote sensing and image processing applications.

This thesis represents a contribution to the effort to bring hyperspectral processing methods

to real applications through the analysis of the necessary aspects that allow the incorporation of

compressive sensing theory in hyperspectral images.

Related work: Previous works have developed strategies to perform inference tasks in the

compressed measurements. For instance, target detection and classification from the compressed

measurements are addressed in Yang et al. (2013, 2014). Also, the assumption that the HSIs live

in a low dimensional subspace has been recently exploited in the recovery Golbabaee et al. (2013);

Martín et al. (2015); Yang et al. (2015a). In Golbabaee et al. (2013), the subspace is assumed

known and a spatial regularization term is used to promote the spatial smoothness. In Martín

et al. (2015); Yang et al. (2015a), the subspace is assumed known (endmembers, dictionary, etc) or

randomly initialized and updated using an alternating optimization (AO) strategy. The use of AO

strategy and the ℓ1 gradient regularization as a form of spatial regularization to extract features has

been demonstrated in Rasti et al. (2017). However, all of these methods require the knowledge of

the subspace, which, may compromise its applicability. Even more, if the subspace is randomly

initialized, it may result in a local minimum solution. Also, sensing strategies have been designed

to preserve the subspace and estimate it from the compressed measurements Chen et al. (2014);

Yang et al. (2015b); Martín and Bioucas-Dias (2016); Bacca et al. (2019). In Chen et al. (2014), a
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partition sampling is proposed to estimate the subspace from compressed measurements supported

by the Rayleigh-Ritz theory. In Yang et al. (2015b), spatial-spectral tensor sampling is adopted

to preserve the structure of the data. In Martín and Bioucas-Dias (2016); Bacca et al. (2019), a

measurement strategy is designed on the spectral domain, and thus learn the subspace the from

compressed measurements.

On the other hand, recent research has shifted its attention to the integration of multi-sensor

data for land cover classification through feature fusion. One notable approach in this domain

is the subspace feature fusion (SubFus) technique, which involves extracting spatial features from

multimodal images and achieving fused features by solving an optimization problem based on sub-

spaces Rasti et al. (2019); Rasti and Ghamisi (2020). This technique has been studied extensively

in the context of hyperspectral (HS) and high-resolution (HR) images to improve classification

accuracy. Additionally, methods have been proposed to fuse features of compressive spectral sen-

sor systems with complementary RGB sensors. These methods synthesize sampling matrices that

describe compressive measurements as projections of the fused features for different CSI opti-

cal architectures, such as the coded aperture snapshot spectral imaging (CASSI) system Ramirez

and Arguello (2019); Ramirez and Arguello (2019); Ramirez et al. (2021). The process of feature

fusion is framed as the resolution of a regularized inverse problem, and several studies have demon-

strated that employing ℓ1 gradient regularization can serve as an effective preprocessing technique

for segmenting regions and improving classification performance. It’s worth noting, however, that

in contrast to the widespread use of ℓ1 gradient regularization as a form of spatial regularization,

the ℓ0 gradient regularization stands out by yielding significantly superior results when applied
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to piecewise constant images. This observation has been supported by various works, as cited in

Cascarano et al. (2021); Wang et al. (2021).

General Objective: Design and implement methods that preserve precision during the

inference process for compressively captured hyperspectral images.

Specific Objectives: Develop a compressive sampling method for hyperspectral images

that preserves classification accuracy during pixel inference.

Design a computational method that preserve inference precision, especially in classifica-

tion, when working with compressively acquired spectral images.

Implement an optical prototype in the optics laboratory using a Digital Mirror Device

(DMD) based on the developed sampling method.

Evaluate the designed methods and compare their performance with state-of-the-art tech-

niques.

Summary of Contributions: A list of the original contributions made within this thesis is

as follows:

Chapter 3: One recovery model for improved speed reconstruction of HSI from CS mea-

surements using LR matrix approximation (Section 2.2).

An accompanying recovery algorithm, based on the combination of alternating optimization

(AO) and alternating direction method of multipliers (ADMM) (Section 2.3).

Detailed performance analyses of the proposed framework (Section 2.4).
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Chapter 4: One recovery model for feature extraction of HSI from CS measurements using

multimodal model (Section 3.2).

An accompanying recovery algorithm, based on the combination of alternating optimization

(AO) and alternating direction method of multipliers (ADMM) (Section 3.3).

Detailed performance analyses of the proposed multimodal model by means of classifica-

tion accuracy (Section 3.4).

Journals: Vargas, H., Ramirez, J., & Arguello, H. (2020). ADMM-based ℓ1− ℓ1 optimiza-

tion algorithm for robust sparse channel estimation in OFDM systems. Signal Processing, 167,

107296.

Vargas, H., & Arguello, H. (2019). A low-rank model for compressive spectral image clas-

sification. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9888-9899.

Conferences: Ramírez, J., Vargas, H., Martínez, J. I., & Arguello, H. (2021, July). Subspace-

Based Feature Fusion from Hyperspectral and Multispectral Images for Land Cover Classification.

In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 3003-

3006). IEEE.

Vargas, H., Fonseca, Y., & Arguello, H. (2018, September). Object detection on com-

pressive measurements using correlation filters and sparse representation. In 2018 26th European

Signal Processing Conference (EUSIPCO) (pp. 1960-1964). IEEE.
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1. Theoretical Aspects

This chapter presents spectral images, the concept of spatial and spectral resolution are ex-

plained along with traditional acquisition methods of hyperspectral imaging systems. On the other

hand, compressive sensing, and main approaches used in reconstruction methods are reviewed.

1.1. Notation and Symbols

The mathematical notations used throughout this thesis are as follow. Scalars are rep-

resented using letters without bold, e.g., (x,y,z, · · ·), vectors are represented using lower-case

bold letters, e.g., (xxx,yyy,zzz, · · ·), and matrices are represented using upper-case bold letters, e.g.,

(XXX ,YYY ,ZZZ, · · ·). If an individual element of a vector is required, it is indexed by a scalar placed as

a lower subscript, e.g., xi or xxx(i) which represents the i-th element of vector xxx. Unless specified

otherwise, all vectors are by default column vectors. If a row vector is required, it is written as the

transpose, e.g., xxxT. Indexing columns of a matrix are represented by lower subscripts and colon,

e.g., xxx j or XXX (:, j) which denotes the j-th column of XXX . Similarly, rows of a matrix are denoted by

the corresponding subscripted row vectors, e.g., xxxTi or XXX (i,:) is the i-th row of XXX . If an individual

element of a matrix is required, it is represented as a scalar with two comma separated subscript

indices so that xi, j, which is the element in the i-th row and j-th column of XXX . Alternatively, it

can be written as XXX (i, j). When manipulating matrices with complex elements, the conjugate (or

Hermitian) transpose is denoted by XXXH. The expression IIIn means the identity matrix with dimen-

sions n×n, 000n×m means a matrix of zeros with dimensions n×m, and 111n×m means a vector with

all components unitary and dimensions n×m. Prior to the ensuing presentation, let us define the
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symbols in the Table 1 for the ease of later use.

Table 1
Symbols

Symbol Description
R, C Set of real and complex numbers respectively

Rn, Cn An n-dimensional vector space defined over real or complex numbers respectively.

⊗ Kronecker operator. Details are presented in Appendix 3.5.

vec(·) Vectorization operator. Convert from XXX ∈ Rn×m to xxx ∈ Rnm.

mat(·, n, m) Matrization operator. Convert from xxx ∈ Rnm to XXX ∈ Rn×m.

∥ · ∥p ℓp-norm (p = 1,2,∞). Details are presented in Appendix 3.5.

∥ · ∥p,q ℓp,q mixed-norm. Details are presented in Appendix 3.5

∥ · ∥F Frobenius norm

{i, j,k, · · ·} General-purpose set index of arrays

{Ni,N j,Nk, · · ·} General-purpose set length of arrays

1.2. Hyperspectral Imaging

The Spectral Image (SI) is a data set consisting of spatial and spectral information. Spectral

information represents the response to the absorption or emission of electromagnetic radiation to

certain wavelengths with spatial coordinates. These images are captured by spectrometer systems

that measure the intensity of light waves to study the interaction of electromagnetic radiation with

matter to analyze their characteristics.

Electromagnetic spectrum: Imaging sensors primarily utilize optical imaging systems,

thermal imaging systems, or synthetic-aperture radar (SAR) Zhu et al. (2018). Figure 1 depicts

the electromagnetic spectrum (EMS), spanning from gamma rays to radio waves. Optical imaging

systems are designed to capture imagery within the visible, near-infrared, and shortwave infrared

spectrums, typically generating panchromatic, multispectral, and hyperspectral images. In the field
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of remote sensing, common applications involve the visible light (VIS) range 380− 780 mm, the

infrared (IR) range 780− 0.1 mm, and the microwave range 0.1− 1 m. Within the VIS range,

specific spectral bands such as blue 450 - 495 nm, green 495 - 570 nm, and red 620− 750 nm

are employed for panchromatic, multispectral, or hyperspectral imaging purposes. The red spec-

trum, in conjunction with near-infrared (NIR), is typically harnessed for applications related to

vegetation. For instance, the Normalized Difference Vegetation Index (NDVI) serves as a tool for

assessing targets, whether they contain live green vegetation or not. Typically, the infrared spec-

trum is categorized into distinct regions: Near-Infrared (NIR, 0.78 – 3 µm), Mid-Infrared (MIR, 3

- 50 µm), and Far-Infrared (FIR, 50−1000 µm) Zhu et al. (2018). Conversely, Synthetic Aperture

Radar (SAR) employs microwaves to illuminate ground targets, gauging the backscatter and travel

time of transmitted waves as they bounce off objects on the ground Zhu et al. (2018). Typically,

SAR can be categorized into Single frequency (L-band, C-band, or X-band)and Multiple frequency

(Combination of two or more frequency bands).

The fundamental factors for designing and operating a Synthetic Aperture Radar (SAR) en-

close the following key parameters: electromagnetic energy power, frequency, phase, polarization,

incident angle, and spatial resolution.

Acquisition methods: Figure 2 presents an illustration of three distinct acquisition meth-

ods. Among these methods, two are spatially scanned approaches: the slit spectrometer and the

whiskbroom scanner introduced by Golay in Golay (1949) and discussed further by Breuer in

Breuer and Albertz (2000). These techniques involve scanning the spatial coordinates (x,y) of a

scene to capture the 3-dimensional (3D) hypercube (x,y,λ ). However, it’s important to note that
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Figure 1. Classification of sensors based on spectral bandwidth.

spatial measurements obtained using these methods may be impacted by temporal misalignment

due to object or scene motion. The third method depicted is the spectral scanned spectrometer,

featuring a filtered camera, as described by Gat in Gat (2000). This particular sensor measures the

wavelength (λ ) by sequentially adjusting a spectral bandpass filter over time. Unlike the spatially

scanned modalities, spectral measurements are susceptible to potential temporal misregistration.

It’s worth mentioning that various acquisition methods may exhibit different types of spatial arti-

facts, depending on the specific imaging technique employed. Additionally, the spatial and spectral

resolution can vary between different sensors. Developers are continually working to enhance the

quality and increase the resolution of these sensors.

Spatial resolution: As shown in Figure 3, the spatial resolution is the ability to distinguish

features in an image and it can be expressed as the minimum distance by which two separate objects

are perceived as disjoint. In optical image sensors, the spatial resolution is generally related to the

field of view (FOV) of the sensor Brady (2009). Scene elements located at different positions FOV
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Figure 2. The hypercube that is sampled by traditional spectral imaging devices through spatial or
spectral scanning.

show a different spatial resolution. This last aspect is very important for airborne platforms (large

FOV) and negligible for satellite sensors (small FOV).

Spectral resolution: As shown in Figure 3, the spectral resolution is the ability of a sensor

to respond to a range of specific wavelengths (spectral bands). The sensors can be classified as

panchromatic (PAN), multispectral (MS), hyperspectral (HS). The best example for PAN is the

sensor in the visible spectral range and near-infrared (NIR-V), where the detector is typically in

the range of [400-1000] nanometers. The MS sensors operate in multiple wavelength ranges. The

number of bands used is 3-10 in the visible range with wavelengths ranges of about 50 nanometers.

When the spectral resolution is better than 10 nanometers, the sensors are denoted as HS and may

contain hundreds of bands Brady (2009).

Radiometric resolution: The radiometric resolution of an imaging system es the capacity

for distinguishing variations in energy levels. A sensor with higher radiometric resolution will

exhibit greater sensitivity in detecting small differences in reflected or emitted energy.
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Figure 3. Spatial resolution examples and classification of sensors based on spectral bandwidth.

1.3. Processing Pipeline

In practical hyperspectral imaging applications, the quality of the observed hyperspectral

image (HSI) can be adversely affected by various factors, such as the imaging technology, system,

and environmental conditions. Consequently, it becomes necessary to estimate a clean, noise-

free version of the HSI Rasti et al. (2018). When noise sources degrade the observed signal, this

process is commonly referred to as "denoising." To represent a hyperspectral image, we reshape

it into a two-dimensional matrix form by flattening its spatial dimensions for each spectral band.

Specifically, we represent the hyperspectral image as a matrix denoted by ZZZ ∈ Rn×Nλ , where n =

Nx ·Ny. Here, Nx and Ny represent the spatial dimensions, and Nλ denotes the number of spectral

bands. In the matrix representation, the degraded HSI is expressed as a sum of a true unknown

signal and an additive noise component, as shown below:
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YYY = ZZZ +HHH, (1)

where YYY ∈Rn×Nλ containing the vectorized observed image at band i in its ith column, ZZZ ∈Rn×Nλ

is the true unknown signal, and HHH ∈ Rn×Nλ is the matrix representing the noise. The Gaussian

noise model is a widely employed approach in the field of remote sensing for modeling HSI.

Consequently, the elements in HHH(i, j) are assumed to be independent and identically distributed

(i.i.d.) Gaussian variables with a zero mean and a variance of σ2.

1.3.1. Feature extraction. While hyperspectral images typically contain abun-

dance data, a significant portion of this information can be redundant or irrelevant, often referred

to as noise. Therefore, it becomes crucial to identify the most informative aspects of these images.

This process is known as feature extraction, which involves converting the data into numerical fea-

tures of reduced dimensionality while retaining the most important information from the original

dataset. Feature extraction offers several advantages, such as reducing computational complexity

and simplifying models. In the field of HSI analysis, linear regression modeling is widely em-

ployed for tasks like dimensionality reduction, feature extraction, denoising, and compression. In

this context, an HSI represented as ZZZ is commonly modeled as a low-rank (LR) matrix. Conse-

quently, if n vectors, each of dimension Nλ , are confined to a subspace of much lower dimension,

denoted as Nr≪ Nλ , each Nλ -long vector exhibits only Nr degrees of freedom. The singular value

decomposition (SVD) provides a means of achieving a LR decomposition of ZZZ. This decomposi-
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tion leads to the noisy low-rank model:

YYY = ZZZ +HHH,

=UUUSSSVVVT+HHH,

(2)

where the columns of UUU ∈ Rn×Nr , VVV ∈ RNλ×Nr are respectively a set of vectorized eigen-images

and the associated spectral components, and SSS ∈ RNr×Nr is a diagonal singular value matrix. In

this variant, UUU and VVV are semi-unitary matrices such that UUUTUUU = VVVTVVV = IIINr . Note that SVD

is an approximation modeled by an error which in this case is Gaussian. In practical scenarios,

an efficient estimation of the noise level can be achieved when assuming that the original image

exhibits LR characteristics and follows a Gaussian distribution with regards to the elements of

the noise matrix, denoted as HHH. Specifically, if HHH = 000 and all the eliminated singular values are

zero, this representation effectively covers the genuine signal subspace. When the noise condition

concerning HHH is independently and identically distributed (i.i.d.), this representation aligns with

the maximum likelihood estimate of the said subspace.

Principal Component Analysis Decomposition: PCA is based on the fact that the neigh-

boring bands of the hyperspectral image are highly correlated and contain similar information.

PCA was developed from the point of view of analysis of variance. Hence, the initial principal

component (PC) can be regarded as a linear combination of variables that maximizes variance.

The subsequent PC represents the linear combination that maximizes variance while satisfying

the requirement that its loading vector is orthogonal to the loading vector of the first PC, and so
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forth. From the geometric point of view, which is closely related to the SVD, PCA seeks to find

an (affine) subspace S = {qqq1,qqq2, . . . ,qqqNr
} of dimension Nr where qqqi ∈ RNλ that best fits a set of

points ZZZ(i,:) for all i = {1,2, . . . ,n}. Therefore, if those points are contaminated by additive noise,

then

YYY = ZZZ +HHH,

=CCCQQQ+HHH,

(3)

where CCC ∈ Rn×Nr is the feature matrix, QQQ ∈ RNr×Nλ is an unknown subspace basis, and HHH(:,i) is

i.i.d. Gaussian noise with covariance matrix σ2IIIn. In the model (3), the matrix QQQ contains the

eigenvectors of the covariance matrix from the observation matrix YYY . For this, let YYY = YYY − 111nµµµT

be the observed data centered along of the columns, where µµµ ∈ RNλ is the mean vector of the

columns of YYY . The eigen-decomposition of the covariance matrix is given by:

YYYTYYY =
(

UUUSSSVVVT
)T

UUUSSSVVVT,

=VVV SSSTUUUTUUUSSSVVVT,

=VVV SSS2VVVT,

where SSS2 is the diagonal part of matrix SSS with every element on the diagonal squared. The eigen-

vectors of YYYTYYY , can be obtained either by doing an eigen-decomposition of YYYTYYY , or by doing a

singular value decomposition from YYY . The pseudo-code of PCA for any matrix is summarized in

the Algorithm 1.1.
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Algorithm 1.1 Principal component analysis (PCA).
1: function PCA(XXX , Nk)

// Let be XXX ∈ Rn×m and 111n ∈ Rn, then
2: µµµ =

(1
n

)
XXXT111n // where µµµ ∈ Rm

3: XXX = XXX−111nµµµT

4: [UUU , SSS, VVV ] = svd
(

XXXTXXX
)

5: QQQ =
(
VVV(:,1:Nk)

)T // where QQQ ∈ RNk×m

6: return QQQ
7: end function

1.3.2. Inference Task. HSI finds its primary applications in the domains of en-

vironment Smith et al. (2001), agriculture Guan et al. (2004), pharmacology, and more, where it

plays a crucial role in detecting, classifying, or identifying objects and their properties based on

their spectral characteristics Gehm et al. (2008). Inference, in this context, involves extracting

specific information from spectral measurements. Tasks such as unmixing, detection, and classi-

fication in spectral imaging have evolved from years of research in Remote Sensing Applications.

Remote Sensing (RS) takes advantage of these images to measure, analyze, and interpret objects

within a scene, whether at a short, medium, or long distance, achieved through aerial or satellite

sensors, as highlighted by Plaza in a recent study Plaza et al. (2009).

Unmixing: Sensors capture scenes in which a single pixel can contain spectral information

of different materials. In remote sensing it is very common that more than one material can be

within the spatial boundaries of one pixel. The spatial coordinates that contain multiple material

are called mixed pixels, in contrast to Pure Pixels (PP) that are pixels containing only one material

Keshava and Mustard (2002). Each pixel in the grid is thus a sum of spectral reflectance from the

different materials within the spatial boundaries of the pixel. Let zzzi ∈ RNλ be a spectral vector.
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Each vector in the observed spectral image can be represented by a linear combination of basis

vectors EEE ∈ RNλ×Ne (Ne is the number of basis) as

zzzi = EEEaaai, (4)

where aaai ∈RNe is the basis coefficients of zzzi with respect to EEE. The basis vectors can be seen as the

mixing matrix, which contains the spectral characteristics of the endmembers, while aaai represents

the abundance coefficients for the spectral vector zzzi. Due to physical considerations, the abundance

coefficients should satisfy two constraints: The abundance non-negativity constraint (ANC) and the

abundance sum-to-one constraint (ASC) given by

aaai ≥ 0, and
Ne

∑
k=1

aaai(k) = 1.

In some cases, researchers might anticipate that the combined abundance fractions do not

necessarily add up to one, as certain algorithms may not fully capture all materials within a pixel.

This is particularly relevant because many algorithms are based on either a geometrical or a sta-

tistical framework, as discussed by Bioucas-Dias et al. in their work on hyperspectral imaging

Bioucas-Dias et al. (2012).

Classification and Target Detection: In classification, as discussed in Chen et al. (2011)

Chen et al. (2011a), a spectral signature can be expressed as a linear combination of a select few

elements from an overcomplete dictionary, which is composed of training data from various class
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categories. This representation can effectively reveal class-specific information, particularly when

signals from distinct classes occupy disparate subspaces. It is assumed that the spectral signatures

of pixels within the same class approximately share a low-dimensional subspace. Suppose we

have Nc distinct classes and the k-th class has Nt training samples DDDk ∈ RNλ×Nt . If zzzi belongs

to the k-th class, then its spectrum approximately lies in a low-dimensional subspace spanned by

the training samples in the k-th class. Building upon the sparsity assumption mentioned earlier,

we can represent an unfamiliar test sample as belonging to the collective set of Nc subspaces that

correspond to the Nc classes. By combining the subdictionaries for each class, the test sample,

denoted as zzzi, can be expressed as a linear combination of the training samples in a sparse manner:

zzzi =
Nc

∑
k=1

DDDkccci,k,

where ccci,k ∈ RNt is a coefficients vector associated with each class subdictionary. Ideally, if zzzi

belongs to the k-th class, then ccci,k = 000, where 1 ≤ k ≤ Nc and k ̸= k. In supervised classification,

it is assumed that Nt training labels per class are known, from which the remaining labels are esti-

mated. Assuming that there are Nc different classes, Nt is the number of training samples per class

and every single observation vector belongs to one of the given classes, the problem of classifying

each test vector consists in finding the class whose training vector is the nearest to the test vector

in the Euclidean distance sense. In the case of target detection Chen et al. (2011b), typically the

dictionary consists of the training samples from the target and background subdictionaries repre-

sented by DDD = [DDDt DDDd] and sparse representation vector ccci =
[
(ccct)

T
i (cccb)

T
i
]T, where (ccct)i and (cccb)i
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represent the sparse coefficient vectors corresponding to the target and background dictionaries,

respectively.

1.4. Compressive Spectral Imaging

Traditional approaches to sampling signals and images are based on the Nyquist / Shannon

theorem which states that the sampling rate must be greater than twice the bandwidth of an input

signal Vaidyanathan (2001). However, in Candes and Tao (2006), a new concept called Compres-

sive Sampling (CS) was proposed as a signal acquisition and compression method. Generally, CS

states that it is possible to obtain images or signals from a reduced number of data samples than

the criterion of Nyquist / Shannon Romberg (2008); Duarte et al. (2008); Tropp et al. (2006). The

success of this technique is that sensing and compression processes are carried out simultaneously

and the number of samples required is significantly reduced. CS requires two conditions under

which recovery is possible Candes and Romberg (2007). There are two key concepts to consider.

The first is "sparsity," which demand that the signal exhibit sparsity in a specific domain. The

second concept is "incoherence," which is enforced by the isometric property and is adequate for

sparse signals.

1.4.1. Mathematical model. In order to describe the compressive hyperspectral

image acquisition process, suppose the i-th image band is represented by the vector zzzi ∈Rn, that is

a column-wise concatenation of the pixels in the i-th band. A hyperspectral image with Nλ bands

can then be represented as a matrix ZZZ ∈Rn×Nλ . Let us define the operator φ : Rn×Nλ −→ Rm. Since

compressive sensing theory deals with linear sampling schemes, any compressive hyperspectral
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image acquisition process can therefore be modelled by:

yyy = φ(ZZZ)+ηηη , (5)

where yyy ∈ Rm is the vector containing m linear measurements of ZZZ, corrupted by the noise vector

ηηη ∈Rm inherent to the acquisition process. By assuming that φ(·) is a linear operator, one can also

write (5) equivalently as the more familiar matrix-vector product:

yyy = ΦΦΦvec(ZZZ)+ηηη , (6)

where the operator A is represented as the matrix ΦΦΦ ∈ Rm×nNλ so that each element in yyy corre-

sponds to an inner product between the hyperspectral image ZZZ, and the corresponding row of ΦΦΦ.

Consider the following example in the Coded Aperture Snapshot Spectral Imager (CASSI): The

imaging process involves encoding the spatial dimension and employing dispersive components.

CASSI’s operational principle relies on the use of a coded aperture and a dispersive component to

control the optical field originating from the scene. This involves projecting the object through a

coded aperture, a dispersive element, and several sets of relay lenses onto the detector, resulting in

a multiplexed projection of the three-dimensional data cube. To obtain compressive measurements

across the Focal Plane Array (FPA), the optical field is integrated over the detector’s spectral range.

Alternatively, the Compressive Whiskbroom is the solution based on the work Fowler (2014). The

measurement system operates directly within the instrument optics, eliminating the necessity to
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capture data in its entirety in spectral resolution. The optical system comprises three primary com-

ponents: the initial element split the light into various wavelengths, the second element employs

a programmable DMD to execute signal-random element multiplications, and the final element, a

cylindrical lens, combines the reflected light from the DMD producing the final randomly projected

observations.

1.4.2. Sparse representation. Spectral data cubes are sparse and they admit a

representation in a given basis or frame in which most of the coefficients are small and they are well

approximated with a small number of large coefficients. Kronecker dictionaries, those that can be

written as a Kronecker product of elementary matrices, play a key role in the sparse representation

of higher dimensional data. In order to introduce them here, let us consider the simplest case of a

hyperspectral image ZZZ ∈ Rn×Nλ for which a separable transform can be applied as follows:

CCC = ΨΨΨ2DZZZΨΨΨ1D, (7)

with ΨΨΨ2D ∈ Rn×n and ΨΨΨ1D ∈ RNλ×Nλ being matrices associated with the transforms of columns

and rows, respectively, and CCC∈Rn×Nλ is the matrix of coefficients. Also, the original hyperspectral

image ZZZ can be recovered by applying the inverse transform,

ZZZ = ΨΨΨ
−1
2DCCCΨΨΨ

−1
1D. (8)



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 37

Then, the signal ZZZ has a Ns-sparse representation with respect to the dictionary ΨΨΨ= (ΨΨΨ−1
1D)

T⊗ΨΨΨ
−1
2D

if the following relation holds:

vec(ZZZ) = ΨΨΨccc, with ∥ccc∥0 ≤ Ns, (9)

where ccc = vec(CCC) with dimensions n. The functional ∥xxx∥0 = {#i | xi ̸= 0} is the ℓ0 pseudo-norm of

the vector xxx ∈ Rn obtained by counting the number of nonzero entries. Traditional basis functions

are the wavelet transform, cosine transform, and pre-trained dictionaries Arguello and Arce (2011,

2013). One important goal of CS is to recover the signal ccc from the fewest possible measure-

ments yyy. Many vector vec(CCC) can yield the measurements yyy due to the rank deficiency of matrix

AAA = ΦΦΦΨΨΨ
T. The coherence Candes and Romberg (2007) between the sampling matrix ΦΦΦ and the

sparsifying basis ΨΨΨ is defined as

µ(ΦΦΦ,ΨΨΨ) =
√

nNλ

(
max

1≤i, j≤nNλ

|⟨φφφ i,ψψψ j⟩|
)
,

where |⟨φφφ i,ψψψ j⟩| represents the inner product between the i-th column of ΦΦΦ and the j-th column

of ΨΨΨ. The coherence metric quantifies the strongest correlation between any two elements within

ΦΦΦ and ΨΨΨ. The coherence value, denoted as µ(ΦΦΦ,ΨΨΨ), falls within the range of [1,
√

nNλ ]. When

ΦΦΦ and ΨΨΨ exhibit correlated elements, the coherence value is high; conversely, it is low when the

elements are uncorrelated. In the context of compressive sampling, the primary focus is on pairs

with low coherence, essentially incoherent pairs. Conversely, an effective approach to constructing
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the matrix ΦΦΦ is to explicitly sample measurements from an orthonormal basis. When selecting ΨΨΨ

and ΦΦΦ, it is possible to implement the matrix AAA efficiently, eliminating the need for explicit matrix

multiplications. This optimization aids in the development of rapid algorithms for solving the

reconstruction problem.

1.4.3. Reconstruction algorithms. The previous theoretical results correspond to

a noiseless scenario, but in practical situations, noise is always present. When ηηη represents additive

Gaussian noise with limited energy, the inversion of the process in (6) can be approached in various

ways. If we lack any prior information about the unknown, Maximum Likelihood (ML) estimation

recommends identifying the ZZZ that yields the most probable set of measurements yyy. However, this

approach is often filled with difficulties since most inverse problems are ill-posed. A more stable

solution to the aforementioned inverse problem is offered by the Maximum-A posteriori Proba-

bility (MAP) estimator, which introduces regularization into the estimation process by assuming a

prior distribution over the signal space. When exploring the extensive body of published work in

this field, two primary types of priors emerge Elad et al. (2007).

MAP synthesis approach: The first type of prior arises from employing a synthesis-based

approach. Suppose that our clean hyperspectral signal ZZZ ∈ Rn×Nλ in the model (6) is replaced

using the linear combination of (9) as:

yyy = ΦΦΦvec(ZZZ)+ηηη

= ΦΦΦΨΨΨccc+ηηη

= AAAccc+ηηη .

(10)
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We assume that for the clean signal ZZZ, its representation ccc is sparse in the transform basis

ΨΨΨ ∈ RnNλ×nNλ , implying that only a few coefficients are involved in its construction. Also, we

assume that the transformation matrix ΨΨΨ satisfies the property ΨΨΨ
T

ΨΨΨ = ΨΨΨΨΨΨ
T = IIInNλ

. By using the

statistical properties of the noise vector ηηη , which is assumed normally distributed with zero mean,

and variance σ2, then the following is the MAP synthesis option for the recovery of ZZZ:

ccc ∈ argmin
ccc

f (ccc)+g(ccc), (11)

where

f (ccc) =
1
2
∥yyy−AAAccc∥2

2, g(ccc) = λ∥ccc∥1,

with ∥xxx∥1 being the ℓ1-norm of the vector xxx, and λ > 0 a regularization parameter that balances the

data-fidelity term and code sparsity. Note that f and g are convex functional and f is differentiable.

The proximal gradient method Parikh et al. (2014):

ccc(t) = proxρ,g

(
ccc(t−1)−ρ∇ f (ccc(t−1))

)
= soft

(
ccc(t−1)−ρAAAT

(
AAAccc(t−1)− yyy

)
, λρ

)
,

is a fixed point iteration that converges to the unique minimizer of the objective function f (ccc)+

g(ccc) for a fixed step-size ρ ∈ (0,1/L], where ∇ f is the gradient of f , and L is the Lipschitz

constant of ∇ f . The Lipschitz constant in the problem (11) is approximate as L = λmax(AAATAAA),

which is the largest eigen-value of gram matrix AAATAAA. The operator proxλ ,g(xxx) is the proximal
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operator with parameter λ for functional g. The proximal operator for the ℓ1-norm is the element-

wise soft-thresholding operator, which is defined as soft(x,τ) = sign(x)max(|x|−τ, 0). Details of

the proximal gradient method are described in Algorithm 1.2. When the problem in (11) is solved,

the hyperspectral image is estimated as:

ZZZmap-s = mat(ΨΨΨĉcc, n, Nλ ) .

The iterative soft thresholding algorithm (ISTA) is by no means the best solution for solving

the (11) problem, however, it is very simple, and easy to implement. Alternatively, Fast ISTA

(FISTA) is a fast version of the proximal gradient method which adaptively change the step-size of

the gradient to improve its convergence Beck and Teboulle (2009).

Algorithm 1.2 Proximal gradient ℓ1-norm.
Input: yyy ∈ Rm, AAA ∈ Rm×nNλ , ρ ∈ (0,1/L), λ > 0 and ε .

1: Initialize: ccc(0) = 000, error = 1
2: for t = 1,2, . . . to MAXITER or (error < ε) do
3: ccc(t) = soft

(
ccc(t−1)−ρAAAT

(
AAAccc(t−1)− yyy

)
, λρ

)
4: error = ∥ccc(t)− ccc(t−1)∥2

2
5: end for
6: Set ĉcc = ccc(t)

Output: ĉcc

MAP analysis approach: The second method employs an analysis-based approach, wherein

it computes the likelihood of a signal by applying a series of forward transforms to it. These prior

probabilities serve as fundamental components in numerous traditional and contemporary algo-
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rithms, often serving as regularization factors in optimization tasks.

ZZZmap-a ∈ argmin
ZZZ

f (ZZZ)+g(ZZZ), (12)

where

f (ZZZ) =
1
2
∥yyy−ΦΦΦvec(ZZZ)∥2

2

g(ZZZ) = λ2D

Nλ

∑
i=1

(∥∥DDDhZZZ(:,i)
∥∥

1 +
∥∥DDDvZZZ(:,i)

∥∥
1

)
+λ1D

n

∑
i=1

∥∥ZZZ(i,:)DDDλ

∥∥
1

are lower semi-continuous functions. The matrices DDDh, DDDv and DDDλ are the spatial and spectral

sparsity operators, respectively, with their own regularization parameters λ2D and λ1D. Details of

the of DDDh and DDDv are consigned in the Appendix 3.5.

On the othder hand, alternating direction method of multiplier (ADMM) is a variant of the

family of algorithms known as the augmented Lagrangian methods Boyd et al. (2011) that solves

problems in the form of (12), by rewritten it as a contrained optimization problem

min
ZZZ1,zzz2

f (ZZZ1)+gz(zzz2) s.t. DDDvec(ZZZ1) = zzz2, (13)
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where

gz(zzz2) = gz (zzz2,1,zzz2,2,zzz2,3) = λ2D
(∥∥zzz2,1

∥∥
1 +
∥∥zzz2,2

∥∥
1

)
+λ1D

∥∥zzz2,3
∥∥

1

DDD =



IIINλ
⊗DDDh

IIINλ
⊗DDDv

(DDDλ )
T⊗ IIIn


, zzz2 =



zzz2,1

zzz2,2

zzz2,3


,

and zzz2,1,zzz2,2,zzz2,3 ∈ RnNλ are auxiliary variables. Despite this seemingly trivial change, the

MM now solves (13) by forming the so-called augmented Lagrangian of (13):

L (ZZZ1,zzz2,zzz3,) = f (ZZZ1)+gz(zzz2)+
ρ

2
∥DDDvec(ZZZ1)− zzz2 + zzz3∥2

2 ,

where zzz3 is the associated Lagrange multiplier and ρ > 0 is a scalar constant. The ADMM finds

the solution to (13) by iterating between minimizing L (ZZZ1,zzz2,zzz3) with respect to (ZZZ1,zzz2) while

keeping zzz3 fixed, and updating zzz3 for the given ZZZ1 and zzz2 until the designated stopping criterion is

satisfied. The resulting algorithm is presented in Algorithm 1.3.

For the termination of Algorithm 1.3, the stopping criterion described in (Boyd et al., 2011,

sec. 3.3.1) is adopted. Then, the Algorithm 1.3 ends when rres and sres are smaller than some



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 43

Algorithm 1.3 Alternating direction method of multiplier (ADMM).
Input: yyy ∈ Rm, ΦΦΦ ∈ Rm×nNλ , ρ,λ > 0 and ε .

1: Initialize: ZZZ(0)
2 = 000, zzz(0)3 = 000

2: for t = 1,2, . . . to MAXITER or (error < ε) do

3: ZZZ(t)
1 ∈ argminZZZ1

f (ZZZ1)+(ρ/2)
∥∥∥DDDvec(ZZZ1)− zzz(t−1)

2 + zzz(t−1)
3

∥∥∥2

2

4: zzz(t)2 ∈ argminzzz2
gz(zzz2)+(ρ/2)

∥∥∥DDDvec
(

ZZZ(t)
1

)
− zzz2 + zzz(t−1)

3

∥∥∥2

2

5: zzz(t)3 = zzz(t−1)
3 +DDDvec

(
ZZZ(t)

1

)
− zzz(t)2

6: error = rres + sres
7: end for
8: Set ẐZZ = ZZZ(t)

1

Output: ẐZZ

threshold ε , where

rres =
∥∥∥DDDvec

(
ZZZ(t)

1

)
− zzz(t)2

∥∥∥2

2

/
max

(∥∥∥DDDvec(ZZZ(t)
1 )
∥∥∥2

2
,
∥∥∥zzz(t)2

∥∥∥2

2

)
,

sres =
∥∥∥ρDDDT

(
zzz(t)2 − zzz(t−1)

2

)∥∥∥2

2

/∥∥∥DDDTzzz(t)3

∥∥∥2

2
,

are the relative primal residual and dual residual, respectively.
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2. Compressive Hyperspectral Image Acquisition, Reconstruction, and Classification

Previous sections described some compressive spectral imaging systems that allow acquir-

ing spectral images with a small number of measurements. These acquisition systems are designed

according to CS theory, which contains enough information for an accurate SI reconstruction.

The benefit of these implementations comes from CS sampling theory with a significant reduction

in acquisition complexity (from a hardware point of view) at the expense of additional recovery

procedures that the decoder must perform to recover the full-dimensional image. However, recon-

struction may not be necessary in certain applications such as land-cover classification. Instead

of knowing the full image, researchers are interested in features that could be extracted directly

from the compressed measurements, which provide high inference capabilities. LR matrix ap-

proximation has been widely used in feature extraction, because it reduces the data dimension

and computational cost. Therefore, in this thesis, compressive hyperspectral imaging and feature

extraction are combined in a framework for HSI classification using a LR matrix approximation

model. In the proposed framework, the compressed measurements are acquired from a single pixel

spectrometer. Instead of using the traditional high-complexity reconstruction model, a LR matrix

factorization problem is formulated. The LR problem maximizes the posterior distribution with

respect to the feature space and coefficients, and it is numerically solved based on an alternating

optimization strategy. By incorporating spatial information, the numerical procedure minimizes

the total variational of the feature coefficients subject to an orthogonality constraint for the feature

space. Experiments on real HSI show that the proposed approach can provide equally competitive
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classification results when compared to the traditional approach that performs feature extraction

and classification on the recovered from the compressive measurements.

2.1. Single Pixel Hyperspectral Camera

Figure 4 illustrates the acquisition process of the Compressive Hyperspectral Imaging (CHSI)

system used in this work Li et al. (2012). The continuous model of the power spectral density

through the spatial light modulator and optics at the detector is defined as follows. The spectral

density entering the instrument is denoted as z(x,y,λ ). Immediately after the spatial light modula-

tor, the spectral density is given by

z(k)1 (x,y,λ ) = z(x,y,λ )φ (k)(x,y), (14)

where φ (k)(x,y) is the transmission function of the spatial modulation and k indexes the number of

random patterns, k = 1, . . . ,m. Let φ
(k)
i, j ∈ {0,1} | i = 1, . . . ,Nx, j = 1, . . . ,Ny, be the discretization

of the spatial modulation function φ (k)(x,y) such that

φ
(k)(x,y) = ∑

i, j
φ
(k)
i, j rect

( x
∆
− i,

y
∆
− j
)
, (15)

where

rect(x,y) =


1 if 0≤ x≤ 1, 0≤ y≤ 1

0 otherwise

,
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and the spatial modulator has pixel size ∆. Similarly, the spatial discretization of the spectral data

cube is defined as

zi, j(λ ) =
∫∫

z(x,y,λ )rect
( x

∆
− i,

y
∆
− j
)

dxdy. (16)

The continuous model for the spectral density through the spatial light modulator and the

optics, before it impinges the sensor array is given by

z(k)(λ ) =
∫∫

z(k)1 (x,y,λ )dxdy. (17)

Using (14), (15), and (16), Equation (17) can be rewritten as

z(k)(λ ) =
∫∫

z(x,y,λ )∑
i, j

φ
(k)
(i, j)rect

( x
∆
− i,

y
∆
− j
)

dxdy

=∑
i, j

φ
(k)
i, j zi, j(λ ).

(18)

Figure 4. Schematic of the single pixel camera for hyperspectral data acquisition Li et al. (2012).

For the discretization in the spectral domain, the spectral range is partitioned into a fi-
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nite number of subintervals, or channels. Let the discretization of the spectral axis be λl for

l = 1, . . . ,Nλ . The range of the l-th spectral band is [λl,λl+1] where λl is the solution to the

equation given by

S (λl+1)−S (λl) = ∆λ , l = 1, . . . ,Nλ , (19)

where S (λ ) is the dispersion induced by the dispersive element. In practice, the dispersive ele-

ment and sensor operations are performed by a spectrometer. Thus, in the presence of noise, the

measurements on the detector can be represented as

x(k)l =
∫

z(k)(λ ) rect
(

λ

∆λ (l)
− l
)

dλ +w(k), (20)

where w(k) is additive noise in the sensor, and ∆λ (l) = λl+1−λl is the range of the l-th spectral

band. As a result, the sensor array measurements can be written as

x(k)l = ∑
i, j

φ
(k)
i, j zi, j,l +w(k), (21)

where

zi, j,l =
∫

zi, j(λ ) rect
(

λ

∆λ (l)
− l
)

dλ .

Equation (21) can be expressed as the linear matrix-vector system. By converting from row-column

subscripts into linear indexing with n = NxNy, the CHSI can be expressed as a linear matrix system



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 48

given by 

xxxT1

xxxT2

...

xxxTm


=



φ
(1)
1 φ

(1)
2 · · · φ

(1)
n

φ
(2)
1 φ

(2)
2 · · · φ

(2)
n

...
... . . . ...

φ
(m)
1 φ

(m)
2 · · · φ

(m)
n





zzzT1

zzzT2

...

zzzTn


+



wwwT
1

wwwT
2

...

wwwT
m


, (22)

where xxx ∈ RNλ is the k-th sample for all bands, and zzzi ∈ RNλ is the i-th hyperspectral pixel for all

bands. In matrix form would be

XXX = ΦΦΦZZZ +WWW , (23)

where ΦΦΦ ∈ {0,1}m×n represents the acquisition HSI system, XXX ∈ Rm×Nλ denotes the observation

matrix with m measurements and WWW is the noise matrix. For practical implementation purposes, the

real system can be implementing by first capturing XXX1 =ΦΦΦ1ZZZ+WWW1 where ΦΦΦ1 ∈ {1}m×n is a matrix

of ones, YYY1 ∈ Rm×Nλ , and WWW1 ∈ Rm×Nλ is the noise. Note that just one measurement is needed to

form YYY1 since all the projections on ΦΦΦ1 are the same. Second, the m measurements XXX are obtained

from Equation (23). Thus, the measurements corresponding to the matrix ΦΦΦ2d ∈ {−1,1}m×n are

obtained by performing the following operations

(2XXX−XXX1) = (2ΦΦΦ−ΦΦΦ1)ZZZ +(2WWW −WWW1)

YYY = ΦΦΦ2dZZZ +HHH.

(24)

However, the projection matrix ΦΦΦ2d requires mn memory units for storage and O(mnNλ ) opera-
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tions, which quickly reaches practical computational limits. To overcome these drawbacks, Struc-

turally Random Matrix (SRM) coding strategy is used, due to its optimal sensing performance, fast

transformation and hardware/optics implementation Do et al. (2012). The SRM is defined as

ΦΦΦ2d =
(√

n/m
)

RRRHHHhPPP,

where PPP ∈ {0,−1,1}n×n is a diagonal matrix whose diagonal entries have independent random

signs, HHHh ∈ {−1,1}n×n is the Walsh–Hadamard transform, and RRR ∈ {0,1}m×n is a subset of rows

from the identity matrix. The scale coefficient (
√

n/m) normalizes the transform so that the energy

of the measurement vector is almost similar to that of the input signal vector. The minimal number

of measurements for Ns-sparse vectors is given by m=O(Nslog(n)) when ΦΦΦ2d is a SRM, (Do et al.,

2012, Theorem IV.2). Note that coding strategy presented in Do et al. (2012), which is named

Structurally Random Matrix (SRM), is the same coding strategy used in Boutsidis and Gittens

(2013), which is named Subsampled Randomized Hadamard Transform (SRHT). The purpose

of the coding strategy used in Boutsidis and Gittens (2013) is to preserve the subspace matrix

in randomized low-rank approximation algorithms. From this, we can assume that this coding

strategy, proposed in Do et al. (2012) and used in Boutsidis and Gittens (2013), is good for sparse

recovery and subspace matrix preservation. The bound of number of measurements is analyzed

from the coherence property of the sensing matrix and not from the RIP property.
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2.2. Problem Statement

In general, the degradation model (24) represents the discrete approximation of the com-

ponents of data acquisition systems (include sensors, filters, signal conditioning, data acquisition

hardware, and software applications) for the observed images. As denoted in previous chapter,

a commonly used approximation in most real HSI is the LR model Bioucas-Dias et al. (2012).

Then, if n vectors of dimension Nλ lie in a subspace of dimension Nr≪ Nλ , each Nλ -long vector

has only Nr degrees of freedom. In order to get significant reduction in complexity, (24) can be

approximated as

YYY = ΦΦΦ2dCCCQQQ+HHH, (25)

where CCC ∈Rn×Nr is the feature matrix (the columns of CCC are known as feature maps), QQQ ∈RNr×Nλ

is an unknown subspace basis and Nr is the numerical rank of ZZZ. The matrix HHH is additive term

that include both modeling errors and sensor noises.

2.2.1. Constrained optimization. The estimation of the matrices CCC and QQQ from

the measurements YYY in (25) can be done from a Bayesian point of view. In this work, the matrix

QQQ belongs the set Q = {QQQ ∈ RNr×Nλ | QQQQQQT = IIINr}. Using the statistical properties of the noise

matrices HHH and YYY , have matrix Gaussian distributions, i.e.,

p(YYY |CCC,QQQ) = MN n×Nλ

(
ΦΦΦ2DCCCQQQ, σ

2IIIn, IIINλ

)
,
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with variance σ2. The posterior of CCC and QQQ is given by

p(CCC,QQQ|YYY ) ∝ p(YYY |CCC,QQQ)p(CCC)p(QQQ). (26)

One can then obtain stable reconstructed features by computing the maximum of the posterior

density, i.e. the Maximum a Posteriori (MAP). The constraints for the matrix QQQ admit a uniform

distribution on the feasible region Q Wen and Yin (2013) such that

p(QQQ) =


1/vol(Q), if QQQ ∈Q

0 elsewhere

,

where vol(Q) =
∫

QQQ∈Q dQQQ is the volume of the set Q. Then, the MAP of Equation (26) is defined

as the mode of the posterior distribution given by:

max
CCC,QQQ

p(CCC,QQQ|YYY ) = max
CCC,QQQ

p(YYY |CCC,QQQ)p(CCC)p(QQQ)

= max
CCC,QQQ


p(YYY |CCC,QQQ)p(CCC) if QQQ ∈Q

0 elsewhere

= max
CCC,QQQ∈Q

p(YYY |CCC,QQQ)p(CCC).

On the other hand, the prior CCC is obtained by assuming that the increment, are independently and

identically distributed following a Laplacian distribution Bardsley (2012). The prior of CCC is defined
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as

p(CCC) ∝ exp

(
−λc

Nr

∑
i=1
∥DDDCCC(:,i)∥1

)
, (27)

where DDD = [DDDv; DDDh] is the TV operator, and the matrices DDDv and DDDh are the 2D discretized vertical

and horizontal derivatives, respectively, and λc > 0 is the shape parameter of the distribution. Cal-

culation of the matrix operators for the vertical and horizontal differences to apply on a vectorized

image can be defined as follow. Assume that we have an Nx×Ny image XXX . Now, apply a vertical

difference matrix on XXX , i.e., DDDxXXX , where DDDx is an Nx×Nx matrix given by

DDDx =



1 0 0 · · · 0 −1

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · −1 1



,

where DDDx is the circular convolution matrix of the kernel kkk = [1,−1]. Now vectorize DDDxXXX , i.e.,

vec(DDDxXXX) =
(

IIINy⊗DDDT
x

)
vec(XXX) = DDDvxxx,

where xxx is the vectorized image of length n = NxNy. This shows that DDDvxxx contains a vertical

difference of an image XXX . Moreover, with a similar argument, DDDhxxx contains a horizontal difference
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of an image XXX . By taking the negative logarithm of p(CCC,QQQ|YYY ) in (26), i.e.,

min
CCC,QQQ∈Q

− log(p(YYY |CCC,QQQ))− log(p(CCC)),

the MAP estimator of (CCC,QQQ) can be obtained by solving a constrained optimization problem as

min
CCC,QQQ

J(CCC,QQQ) = f (CCC,QQQ)+g(CCC) s.t. QQQQQQT = IIINr , (28)

where

f (CCC,QQQ) =
1
2
∥YYY −ΦΦΦ2DCCCQQQ∥2

F, g(CCC) = λ

Nr

∑
i=1
∥DDDCCC(i,:)∥1,

λ = λcσ2, λ > 0 is a regularization parameter, and ∥ · ∥F is the Frobenius norm. The vector

CCC(i,:) ∈ Rn represents the i-th feature. In the problem (28), the ℓ1-norm on the differences between

adjacent pixels (TV operator) offers some desirable properties. First, it encourages sparsity of the

coefficients and also sparsity of their differences, which is very popular in CS recovery techniques.

Second, it ensures some spatial regularity and preserves the edges, which are boundaries of objects

that are used to obtain a preliminary classification procedure. Therefore, TV combined with the

ℓ1-norm has a strong geometrical meaning that makes it useful for feature selection and denoising

of shapes Bardsley (2012). Notice that, the problem (28) is non-convex with respect to CCC and QQQ,

simultaneously. However, the sub-problem of CCC is a generalized lasso optimization problem Boyd

et al. (2011), which is convex. While the sub-problem of QQQ minimizes a quadratic function with

orthogonality constraint Wen and Yin (2013), which is non-convex. Therefore, each sub-problem
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can be efficiently solved via ADMM.

2.2.2. Subspace preservation. Because the problem (28) is nonconvex with re-

spect to both variables, the initialization drastically impacts the results. Note that the matrix ΦΦΦ

preserves the subspace matrix of ZZZ, with high probability after projection Boutsidis and Gittens

(2013). Then, for initializing the solution of (28), the eigenvectors of the matrix YYYTYYY are used

since they are close to the eigenvectors of the matrix ZZZTZZZ . Let ZZZ =UUUSSSVVVT be the Singular Value

Decomposition (SVD). Note that

YYYTYYY =VVV SSSUUUT
(

ΦΦΦ
T
2DΦΦΦ2D

)
UUUSSSVVVT

=VVV SSSUUUT
(

IIIn +ΦΦΦ
T
2DΦΦΦ2D− IIIn

)
UUUSSSVVVT

=VVV SSS2VVVT+VVV SSSUUUT
(

ΦΦΦ
T
2DΦΦΦ2D− IIIn

)
UUUSSSVVVT,

(29)

where the first term VVV SSS2VVVT is the eigen-decomposition of the matrix ZZZTZZZ and the second term

VVV SSSUUUT(ΦΦΦT
2DΦΦΦ2D− IIIn)UUUSSSVVVT is the perturbation matrix. Then, when the second term is small in

some sense, it would be reasonable to expect YYYTYYY to have approximately the same spectral infor-

mation of ZZZTZZZ. From equation (29), the symmetric matrix YYYTYYY can be modeled as the summation

of some original symmetric matrix ZZZTZZZ and a perturbation matrix EEE, such that,

YYYTYYY = ZZZTZZZ +EEE, where EEE = ZZZT(ΦΦΦT
2DΦΦΦ2D− IIIn)ZZZ. (30)

Since ΦΦΦ2D = RRRHHHhPPP (details about RRR,HHHh and PPP are reported in Section 2.1), each element of the

matrix ΦΦΦ2D(i, j) ∈ {−1/
√

m, 1/
√

m} can be approximated as (2B(1,0.5)−1)/
√

m where B(·) is
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a Binomial distribution. The scale coefficient
√

m is used to normalize the transformation so that

diag(ΦΦΦT
2DΦΦΦ2D) = IIIn for any value of m. Note that

• when m = n, ΦΦΦ
T
2DΦΦΦ2D = IIIn and the entries of (ΦΦΦT

2DΦΦΦ2D− IIIn) are 0.

• when m < n, ΦΦΦ
T
2DΦΦΦ2D ≈ IIIn and the entries of ΦΦΦ

T
2DΦΦΦ2D− IIIn are small.

Also, this expression can be understood as the amount of error between the eigenvectors of ZZZTZZZ

and those of YYYTYYY under the additive perturbation EEE. Let

ZZZTZZZ =VVV SSS2VVVT =
Nλ

∑
i=1

sss2
i vvvivvvTi , YYYTYYY =VVV ySSS2

yVVVT
y =

Nλ

∑
i=1

(sssy)
2
i (vvvy)i(vvvy)

T
i ,

where vvvi and (vvvy)i are the original and perturbed eigenvectors, respectively and sss2
i and (sssy)

2
i are the

original and perturbed eigenvalues, respectively. Then, the angle between {vvv1, . . . ,vvvi, . . . ,vvvNλ
} and

{(vvvy)1, . . . ,(vvvy)i, . . . ,(vvvy)Nλ
} is bounded by the following theorem.

Theorem 1 [from Davis and Kahan (1970) Theorem V.4.4]: The angle between vvvi and

(vvvy)i is given by

sin(∠(vvvi, (vvvy)i))≤
∥EEE∥2

gap
(
i, ZZZTZZZ

) , (31)

where gap
(
i, ZZZTZZZ

)
= minl ̸= j |sss2

i − (sssy)
2
i |. Another definition of gap is presented in Nakatsukasa

(2018). Since we may reverse the sign of (vvvy)i, if necessary, there is a choice of orientation of (vvvy)i

for which (vvvy)
T
i vvvi≥ 0. For this choice, we can also deduce that ∥(vvvy)i−vvvi∥2≤

√
2sin(∠(vvvi, (vvvy)i)).

In order to illustrate this, we have performed some simulations using the Indian Pines dataset. The

Fig. 5 shows the error between first three original and estimated eigenvectors with its respective
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error bound from Equation (31), which shows that the second term in (17) is actually small.

Figure 5. Error between first three original and estimated eigenvectors with its respective error
bound.

2.3. Optimization Algorithm

The problem in (28) is solved one matrix at a time, while the other is assumed to be fixed.

This procedure is summarized in Algorithm 2.1, where the AO estimator leverages the low-rank

constraints by iteratively updating CCC and QQQ, which has low complexity compared to directly esti-

mating ZZZ. To overcome the closed-form expression problem in (28), the ADMM is embedded in

each iteration of the AO algorithm.

2.3.1. Optimizing the first variable. Given a fixed QQQ, the minimization problem

in (28) can be solved by introducing auxiliary variables, splitting the objective and the constraints,

and using the ADMM method. By introducing the auxiliary variables CCC1 ∈Rn×Nr and CCC2 ∈R2n×Nr ,

the optimization problem in (28) with respect to CCC can be rewritten as:

min
CCC1,CCC2

fc(CCC1)+gc(CCC2), s.t. DDDCCC1−CCC2 = 000, (32)
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Algorithm 2.1 Feature extraction based on ℓ1-ADMM-AO.
Input: YYY , ΦΦΦ2D, Nr, λtv.

1: QQQ(0) ← pca(YYY , Nr) // Initialize QQQ using Alg.(1.1).
2: Initialize: CCC(0,0)

2 , CCC(0,0)
3

3: for t = 1,2, . . . to stopping rule do
// Optimize CCC using ADMM

4: for k = 1,2, . . . to stopping rule do
5: CCC(k)

1 ∈ argmin
CCC1

L
(

CCC1,CCC
(t−1,k−1)
2 ,CCC(t−1,k−1)

3

)
// (36)

6: CCC(t−1,k)
2 ∈ argmin

CCC2

L
(

CCC(k)
1 ,CCC2,CCC

(t−1,k−1)
3

)
7: CCC(t−1,k)

3 ←CCC(t−1,k−1)
3 +DDDCCC(k)

1 −CCC(t−1,k)
2

8: end for
9: CCC(t) =CCC(k)

1
// Optimize QQQ using SVD

10:
[
UUU , SSS, VVVT

]
= svd

((
ΦΦΦ2DCCC(t)

)T
YYY
)

11: QQQ(t) =UUUVVVT

12: end for
13: Set ĈCC =CCC(t)

Output: ĈCC
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where

f (CCC1) =
1
2
∥ΦΦΦ2DCCC1QQQ−YYY∥2

F, g(CCC2) = λ

Nr

∑
i=1
∥CCC2(:,i)∥1.

The augmented Lagrangian function is defined as

L (CCC1,CCC2,CCC3) = f (CCC1)+g(CCC2)+
ρ

2
∥DDDCCC1−CCC2 +CCC3∥2

F, (33)

where CCC3 ∈ R2n×Nr is the scaled dual variable, and ρ > 0 is the weighting of the augmented

Lagrangian term Boyd et al. (2011). The method to solve CCC is summarized in Algorithm 2.1, that

consists in minimizing CCC1,CCC2 and CCC3, alternately. More details can be found in Boyd et al. (2011).

Forcing the derivative of (33) with respect to CCC1 to be zero leads to the following linear system

CCC1←
(

ΦΦΦ
T
2DΦΦΦ2D +ρDDDTDDD

)−1(
ΦΦΦ

TYYY QQQT+ρDDDT(CCC2−CCC3)
)
, (34)

where (ΦΦΦT
2DΦΦΦ2D +ρDDDTDDD) has dimension n× n. Due to the high dimension, the solution of this

system has an extremely heavy computational cost. An alternate strategy can be used to ap-

proximately solve the local optimization problem efficiently. Linearized ADMM is a variation

of ADMM which is based on approximating the augmented quadratic term to its first order ap-

proximation Parikh et al. (2014); Cao and Liu (2018). Let fg(CCC1) = (ρ/2)∥DDDCCC1−CCC2+CCC3∥2
F, and

its first order approximation be expressed as

fg(CCC1)≈ fg(CCC
(t)
1 )+

(
∇ fg(CCC

(t)
1 )
)T(

CCC1−CCC(t)
1

)
+

τ

2

∥∥∥CCC1−CCC(t)
1

∥∥∥2

F
, (35)
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where ∇ fg(CCC
(t)
1 ) = ρDDDT(DDDCCC(t)

1 −CCC2+CCC3) is the gradient of fg(CCC
(t)
1 ) at the current point CCC(t)

1 and τ

is a positive proximal parameter. Then, the combination of (33) and (35) and forcing its derivative

with respect to CCC1 to be zero leads to the linear system given by

CCC1←
(

ΦΦΦ
T
2DΦΦΦ2D + τIIIn

)−1(
ΦΦΦ

T
2DYYY QQQT+ τCCC(t)

1 −ρDDDT(DDDCCC(t)
1 −CCC2 +CCC3)

)
, (36)

and decomposing the matrix ΦΦΦ2D, the inversion matrix is

(
ΦΦΦ

T
2DΦΦΦ2D + τIIIn

)−1
=
(

PPPTHHHT
h RRRTRRRHHHhPPP+ τIIIn

)−1

= PPPTHHHT
h (RRR

TRRR+ τIIIn)
−1HHHhPPP

. (37)

Note that the matrix (RRRTRRR+ηIIIn)
−1 is a diagonal operator, and is thus easily inverted. In

general, the requirement on step size τ obeys 0 < τ ≤ ρ/∥DDD∥2
2 (Parikh et al. (2014) Section 4.4.2).

This version of the ADMM strategy is advantageous because every substep of the method has a

closed-form solution. The optimization problem to solve for CCC2 is written as

CCC2 ∈ argmin
CCC2

λ∥CCC2∥1,1 +
ρ

2
∥DDDCCC1−CCC2 +CCC3∥2

F

← soft(DDDCCC1 +CCC3, λ/ρ)

, (38)

where soft(·,λ ) denotes the element-wise application of the soft-thresholding operator.

In the linearized ADMM the primal residual is the same as for standard ADMM, however

the dual residual changes since the augmented Lagrangian term is linearized. The derivation of the



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 60

dual residual from Equation (33) is the same as for standard ADMM (Boyd et al., 2011, Section

3.3), however, the term (ρ/2)∥DDDCCC1−CCC2 +CCC3∥2
F is here linearized. Denote the optimal variables

by CCC∗1, CCC∗2, and CCC∗3. The necessary and sufficient optimality conditions for the ADMM problem

in (32) are primal feasibility {DDDCCC∗1 −CCC∗2 = 000}, and dual feasibility {0 ∈ ∂ f (CCC∗1) + DDDTCCC∗3,0 ∈

∂g(CCC∗2)+CCC∗3}, where ∂ (·) denotes the sub-differential of a function. These conditions can be used

to derive convergence measures for algorithm iterations (CCC(t)
1 ,CCC(t)

2 ,CCC(t)
3 ). Note that the optimality

conditions for the first subproblem (i.e., the subproblem with respect to CCC1) in (32) are given by

0 ∈ ∂ f (CCC(t)
1 )+ρ

(
DDDT(DDDCCC(t−1)

1 −CCC(t−1)
2 +CCC(t−1)

3 )
)
+ τ(CCC(t)

1 −CCC(t−1)
1 ).

By using CCC(t)
3 = C(t−1)

3 +DDDCCC(t)
1 −CCC(t)

2 , then

0 ∈ ∂ f (CCC(t)
1 )+ρDDDTCCC(t)

3 + τ(CCC(t)
1 −C(t−1)

2 )−ρDDDTDDD(CCC(t)
1 −CCC(t−1)

1 )+ρDDDT (CCC(t)
2 −CCC(t−1)

2 ).

This means that the quantity

SSS(t) = ρDDDT (CCC(t)
2 −CCC(t−1)

2 )+ τ(CCC(t)
1 −CCC(t−1)

1 )−ρDDDT DDD(CCC(t)
1 −CCC(t−1)

1 ). (39)

2.3.2. Optimizing the second variable. The solution for QQQ is summarized in Al-

gorithm 2.1, aiming at a more computationally efficient method for solving (28) with respect to QQQ.
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By denoting first the indicator function of QQQ of the set Q as:

iQ(QQQ) =


0 if QQQ ∈Q

+∞ otherwise

,

and CCC as an constant. The following constrained optimization problem is solved by computing a

low-rank Procrustes rotation (Zou et al., 2006, Theorem 4)

QQQ ∈ argmin
QQQ

iQ(QQQ)+
1
2
∥YYY −ΦΦΦ2DCCCQQQ∥2

F

←UUUVVVT,

(40)

where UUU , SSS, VVV is the SVD of (ΦΦΦ2DCCC(t))TYYY with UUU ∈ RNr×Nr , VVV ∈ RNλ×Nr being orthogonal basis

and SSS ∈RNr×Nr a diagonal matrix. This problem has been considered in applications such as linear

and nonlinear eigenvalue problems Wen and Yin (2013); Lai and Osher (2014).

2.3.3. Convergence and computational complexity analysis. Consider the non-

convex optimization problem in (28) with variables separated into 2 blocks. The proposed AO

method cyclically updates CCC and QQQ via Algorithm 1. To analyze the convergence of the proposed

AO method, this work recalls the convergence criterion for the Block Coordinate Descent (BCD)

algorithm stated in Bertsekas (1999).

Theorem 2 (Bertsekas, 1999, Proposition 2.7.1): Suppose that J is continuously differen-

tiable over the set Q. Suppose also that for each {CCC,QQQ}, J(CCC,QQQ) viewed as a function of CCC attains

a unique minimum. The similar uniqueness also holds for QQQ. Let {CCC(t),QQQ(t)} be the sequence
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generated by the BCD method, then, every limit point of {CCC(t),QQQ(t)} is a stationary point.

Note that the generated sequence will monotonically decrease the objective function. If

some conditions are satisfied, strong convergence will be obtained (Bertsekas, 1999, Proposition

2.7.1). For example, if each sub-problem in (28) is convex and has a unique solution, then every

limit point is a stationary point. The uniqueness of the solution is not required when the number

of blocks is two Grippo and Sciandrone (2000). However, the minimization with respect to QQQ is a

non-convex problem, and there is not guarantee that the AO method can reach the global solution

of (28). Non-convex problems can get stuck at local solutions by using BCD-based methods.

A simple modification of the objective function, consisting in removing the condition QQQ ∈ Q

and adding the quadratic term λq∥QQQQQQT− IIINr∥2
F, where λq > 0 is very small, obtaining a convex

objective function, enables the use of Theorem 1. Even without including the quadratic term, the

convergence of Algorithm 1 can be observed in practice. Furthermore, if Q is compact, which

implies that the sequence generated is bounded, the BCD method is guaranteed to converge to a

stationary point Tseng (2001). Then, the stopping criteria in Algorithms 2.1 for optimizing CCC is the

power of primal and dual residual (Boyd et al., 2011, page 19), the value of ρ = 1 and ε = 10−4.

The stopping rule for Algorithm 2.1 is

∣∣∣J(CCC(t),QQQ(t))− J(CCC(t−1),QQQ(t−1))
∣∣∣∣∣∣J(CCC(t),QQQ(t))

∣∣∣ ≤ 10−4,

or t = ⌊Nλ/Nr⌋− 1, where ⌊·⌋ is the floor operator. The condition t = ⌊Nλ/Nr⌋− 1 guarantees

that the complexity of Algorithm 1 never reaches the complexity of the traditional reconstruction
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methods.

In Algorithm 2.1, the computational complexity of the optimization of CCC1 is O(nNrlog(n)),

and the computational complexity of the optimization of CCC2 is O(n). The overall complexity per

iteration for solving CCC in Algorithm 2.1 is given by O(nNrlog(n)). It should be noted that, in real

images, Nλ is very likely to be larger than Nr. Thus, the overall complexity per iteration for solving

QQQ in Algorithm 2.1 is given by O(N2
r Nλ ). Therefore, Algorithm 2.1 has computational complexity

O(nNrlog(n))+O(N2
r Nλ ).

2.4. Numerical Experiments

This section presents numerical results on the proposed method for supervised classifica-

tion of every pixel using real datasets. The proposed scheme was implemented in Matlab and

all numerical experiments were performed on a computer with an Intel(R) Core(TM) i7− 4790

CPU@3.60GHz and 32 GB RAM. All experiments follow the data acquisition model given in

(24). For each fixed set of parameters (Compression Ratio (CR), Nr, λ , noise), the averaged re-

sults of 10 realizations of the sensing matrix YYY are shown. In the noisy case, for each generated

sensing matrix YYY , the averaged results of 10 independent noise realizations are performed. The

classifier used here is the Nearest Neighbor Search (NNS) and it can be written as

class(ccci) = argmin
j=1,...,Nc

∥ccci−θθθ j,k∥2
2, k = 1, . . . ,Nt ,
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where θθθ j,k is the k-th training sample belonging to the j-th class, ccci ∈ RNr is the i-th row of CCC. As

a summary, the Table 2 shows all matrix dimensions and meaning of the symbols used. In each

classification experiment, Nt samples were randomly chosen per class, as training samples and the

remaining samples were used for testing. For Indian Pines database, five training pixels of the

classes Alfalfa, Grass-pasture-mowed, Oats and Stone-Steel-Towers were chosen randomly.

Table 2
Matrix dimension summary.

Variable Description
n,Nλ Number of pixels and spectral dimension of the data cube
Nr Number of features
Nt Number of training samples per class
Nc Number of classes

2.4.1. Tuning Parameter Selection. This subsection, explores the effect of select-

ing the parameter λ and the number of features R on the performance of the proposed method

in terms of OA obtained by applying the NNS classifier on the reconstructed features. The ex-

periments are carried out by selecting different numbers of training samples per class, Nt = 5, 25

and 50 and different CR = 0.05,0.1,0.15,0.2,0.25 and 0.3. Figure 6 depicts the behavior of OA

for Indian Pines when 0.01 ≤ λ ≤ 0.1 and the feature number is 5 ≤ Nr ≤ 25. It can be seen in

Fig. 6 that, for CR ≥ 0.1, the difference between OAs is not larger than 0.1. Furthermore, the

selection of parameter λ offers the potential to improve the performance of OA obtained by the

NNS classifier. Note also in Figure 6 that the proposed method produces similar results when the

parameter R > 20. The selection of the parameter Nr can be done from eigen-decomposition of the

matrix YYYTYYY by selecting the number of most representative eigenvalues. Also, note that when, the
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parameter Nt < 50, the OA does not exceed 0.9 for the NNS classifier. In the next experiments the

parameters Nr, Nt and λ are fixed to λ = 0.01, Nr = 20 and Nt = 50.
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Figure 6. Parameter sensitivity analysis in terms of OA for the NNS classifier on the Indian Pines
data base. Different values of CR, number of training samples Nt are used while varying
0.01≤ λ ≤ 0.1 and 5≤ Nr ≤ 25.

2.4.2. Initialization. There is a need for good initializations for LR matrix factor-

ization given that it is a non-convex problem which has many local minima. A good initialization

can improve the speed and accuracy of the algorithms. To illustrate this point, the proposed algo-

rithm is tested in terms of OA and AA when QQQ is initialized by a random orthogonal matrix labeled

as "Rand" and when it is initialized by Algorithm 1.1 labeled as "Prop". The proposed method is

applied on Indian Pines when CR = 0.1,0.2, λ = 0.01, Nr = 20, Nt = 50. The extracted features

are classified by using the NNS classifier for each iteration of Algorithm 2.1. Figure 7 compares

the classification performance when the algorithm is initialized using both approaches cases. It can

be seen that initializing with the eigenvectors yields to higher OA and that a random initialization

generally leads to a lower value of OA. Therefore, in the next experiments, QQQ is initialized using
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Algorithm 2.1.
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Figure 7. Comparison of the method when it is initialized by using Prop with CR = 0.1, CR = 0.2
and a random orthogonal matrix Rand with CR = 0.1, CR = 0.2 in terms of AA and OA.

2.4.3. Spatial Feature Analysis. When the spatial regularization is used, the re-

sulting reconstructed features are approximately piecewise constant because it promotes piecewise

smoothness (homogeneous spatial regions) on the extracted features. In order to show that the

proposed method preserves useful information, Figure 8 displays the first three extracted features

for both datasets, specifically, false color of the first three spectral features (first row), edge infor-

mation extracted from first three spectral features (second row) and mean operation on the pixels

in each bounded region (third row) with parameters (a) CR = 1, λ = 0.001 (b) CR = 1, λ = 0.05,

(c) CR = 0.2, λ = 0.05, (d) CR = 0.1, λ = 0.05, (e) CR = 1, λ = 0.001 (f) CR = 1, λ = 0.05, (g)

CR = 0.2, λ = 0.05 and (h) CR = 0.1, λ = 0.05. Note that the extracted features are partitioned

into spatial bounded regions which are very similar to the ground truth classification map. Each

bounded region belongs to one single structure in the original image, as can be seen in Figure 8

the smallest structures are removed by varying the parameter λ such that only the main structures
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of interest remain. Furthermore, by visually comparing the features, one can observe that spatial

variations of regions are preserved enough for good classification above of CR = 0.2. Therefore,

the ℓ1-norm on the differences between adjacent pixels shows better performance in recovering not

only edge features but also class structures.
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Figure 9. Feature plots of three classes for both datasets. (a) PCA on Indian Pines, (b) Prop on
Indian Pines with CR = 0.25, λ = 0.05, (c) PCA on Pavia University and (d) Prop on Pavia
University with CR = 0.25, λ = 0.05.

Additionally, the proposed feature extraction method is compared with PCA in a typical

analysis scenario. Particularly, the ability to recover multi-class structure is verified for both Indian

Pines and Pavia University datasets. Figure 9 plots 30 samples for each class of the first spectral

feature using (a),(c) PCA and (b),(d) the proposed method. The compressed extracted features were

estimated with parameters CR = 0.25 and λ = 0.05. In a multi-class scenario, PCA is inundated

by many of features when using three classes and cannot display good class structure. In contrast,

the proposed method reduces the uncertainty and clearly shows better class structures.
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2.4.4. Comparison with other reconstruction methods. In this section we test

the robustness of the proposed method labeled as "Prop" against the following approaches where

the hyperspectral matrix is reconstructed and then it is classified by using the first 20 principal

components. By rewriting the acquisition model in (24) as

yyy = (IIINλ
⊗ΦΦΦ2D)vec(ZZZ)+ηηη

= ΦΦΦvec(ZZZ)+ηηη ,

where yyy = vec(YYY ), and ηηη = vec(HHH). Two different sparsifying approaches are considered in the

reconstruction. The first approach, “Reco-3DWD" estimates the data cube by solving the MAP

synthesis approach (11) with ΨΨΨ = ΨΨΨ1D⊗ΨΨΨ
T
2D, where ΨΨΨ2D is the basis formed by a 2-D symm-

let wavelet basis and ΨΨΨ1D a 1-D discrete cosine basis Arguello and Arce (2014). This prob-

lem can be solved by using Beck and Teboulle (2009) with regularization parameter given by

λ = γ∥(ΦΦΦΨΨΨ)Tyyy∥∞, where γ was selected by cross validation over different values between (0,1).

The second approach, “Reco-3DTV" employs a TV regularization and obtains the data cube by

solving the MAP analisys approach (12). This problem can be solved using a Linearized ADMM-

based approach Ouyang et al. (2015). Recall that, the problem is formulated as:

min
ZZZ1,zzz2

f (ZZZ1)+g(zzz2) s.t. DDDvec(ZZZ1)− zzz2 = 000 (41)
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where

f (ZZZ1) =
1
2
∥yyy−ΦΦΦvec(ZZZ1)∥2

2, g(zzz2) = λ∥zzz2∥1 DDD =



IIINλ
⊗DDDh

IIINλ
⊗DDDv

(DDDλ )
T⊗ IIIn


, zzz2 =



zzz2,1

zzz2,2

zzz2,3


,

and zzz2,1,zzz2,2,zzz2,3 ∈ RnNλ are auxiliary variables. The augmented Lagrangian associated to the

optimization can be written as

L (ZZZ1,zzz2,zzz3) =
1
2
∥yyy−ΦΦΦvec(ZZZ1)∥2

2 +λ∥zzz2∥1 +
ρ

2
∥DDDvec(ZZZ1)− zzz2 + zzz3∥2

2, (42)

where zzz3 is the scaled dual variable, and ρ > 0 is the weighting the of augmented Lagrangian

term. Note that, the first step is the most expensive, which requires the solution of a quadratic

problem. Computing the inverse or pseudoinverse at each iteration is too expensive to implement

numerically. In Ouyang et al. (2015), the term (ρ/2)∥DDDvec(ZZZ1)− zzz2 + zzz3∥2
2 is linearized to solve

the quadratic problem iteratively. Each iteration of the linearized method demands updating a lin-

earized parameter. The complexity of this methods is given by four matrix-vector multiplications

on computing ΦΦΦ
T

ΦΦΦvec(ZZZ) and DDDTDDDvec(ZZZ). Since the product of the matrix ΦΦΦ by any vector

has computational complexity O(nNλ log(nNλ )) and DDD can be computed using the Two Dimen-

sional Fast Fourier Transform which leads O(nNλ log(nNλ )). Then, the overall cost per iteration

is O(nNλ log(nNλ )).
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Table 3
Comparison of the computational complexity.

Method Reconstruction Classification Storage
Reco-3DWD O(nNλ log(nNλ )) O(nNtNcNλ ) O(nNλ )

Reco-3DTV O(nNλ log(nNλ )) O(nNtNcNλ ) O(nNλ )

Prop #iter× (O(N2
r Nλ )+O(nNrlog(n))) O(nNtNcNr) O(nNr)+O(NrNλ )
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Figure 10. Comparison of Prop using Indian and Pavia against Reco-3DTV using Indian and
Pavia in terms of Time (left) and Classification Accuracy (right).

Table 3 summarizes the computational complexity comparison for Prop, Reco-3DWD and

Reco-3DTV. The NNS has a computational complexity O(nNtNcNλ ) for the reconstruction method

and O(nNtNcNr) for the proposed method. The computation cost per iteration of Reco-3DWD and

Reco-3DTV are given by O(nNλ log(nNλ )), because the matrices ΨΨΨ and DDD can be attained via the

Fast Fourier Transform.

Figure 10 shows the time in seconds of Prop and Reco-3DTV with CR = 0.2 and λ = 0.01,

for Indian Pines and Pavia datasets. The parameters were fixed to Nr = 20, Nt = 50 for Indian Pines

and Nr = 15, Nt = 100 for Pavia dataset. Note that, in the first iteration, the CA of Prop is lower
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than the CA of Reco-3DTV for both datasets. However, Prop yields to better CA than Reco-3DTV

by using two more iterations. Also, it can be seen that the computing time of Prop increases per

iteration without reaching that of Reco-3DTV.

0.1 0.2 0.3

0.7

0.8

0.9

CR

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

AA (Noise free)

0.1 0.2 0.3

0.6

0.7

0.8

CR

OA (Noise free)

0.1 0.2 0.3

0.7

0.8

0.9

CR

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

AA (SNR 30 dBs)

0.1 0.2 0.3

0.6

0.7

0.8

CR

OA (SNR 30 dBs)

Prop Reco-3DTV Reco-3DWD

Figure 11. Comparison of the Prop against Reco-3DTV, Reco-3DWD using the NNS classifiers
for different CR with and without additive noise.

Figure 11 compares the performance of the Prop method against Reco-3DWD and Reco-

3DTV methods in terms of AAs and OAs obtained by applying NNS on the extracted features.

The parameters have been fixed to Nr = 20, Nt = 50, λ = 0.01 and different compression ratios,

with and without additive noise. This test empirically validates the feasibility of Prop by showing
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that the features can be directly extracted from the compressed hyperspectral data by solving the

proposed model.

Figure 12 shows the estimated classification maps an binary maps of incorrect classification

results obtained by the different methods for Indian Pines and Pavia University datasets. Note that

the proposed method provides better classification results than the reconstruction-based methods

(Reco-3DWD, Reco-3DTV). Further, for illustration purposes, Fig. 8 also includes the results for

two state-of-the-art feature extraction-based classification methods that work directly on the full

hyperspectral data, i.e. the orthogonal total variation component analysis Rasti et al. (2016) (la-

beled as OTVCA), and the extended morphological profiles Dalla Mura et al. (2010) (labeled as

EMP+PCA). It can be seen that the proposed method provides comparable results to those of the

full-data classification. This means that Prop can both, reduce the dimension of the data and well

preserve the useful information.

2.5. Conclusion

we have proposed a low rank matrix factorization algorithm based on AO with internal

ADMM for compressive feature extraction in order to perform spatial classification. The proposed

method considers the spatial information by incorporating ℓ1-norm prior in the 2D TV domain and

spectral information by estimating the subspace from compressive measurements. The experiments

indicate that the proposed framework can provide equally competitive classification results when

compared to the traditional approach based on the reconstructed images and feature extraction-

based classification approaches. Numerical results clearly demonstrate that compressively ac-
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quired data ranging from 10% to 25% of the full size can produce satisfactory classification results.

However, higher compression ratios are the major drawback of the proposed framework. Future

work can be focused on feature extraction from multiple compressive spectral sensors as a fusion

strategy to perform high classification accuracy from higher compression ratios.
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3. Compressive Hyperspectral Image Acquisition with Complementary RGB Sensor,

Feature Extraction, and Classification

Figure 13. Schematic of the single pixel hyperspectral camera for compressive high resolution
spectral data acquisition with a complementary RGB sensor Garcia et al. (2020); Tao et al. (2021).

Image fusion from different sensors can provide complementary information to improve the

performance of classification tasks. Common classification pipelines based on multi-sensor fusion

first perform the estimation of full-resolution image, followed by a feature extraction step. How-

ever, these features can be extracted directly without recovering of the full-image. Therefore, this

work proposes a computational framework to extract features with high-spatial-resolution directly

from a multi-sensor system. The multi-sensor setup considered in this work is the single pixel

hyperspectral camera with a complementary high-spatial resolution RGB sensor. In this work, we

first extracts spatial features from the complementary image using morphological profiles, and we

assume that the extracted features and the hyperspectral measurements, lie in a low dimensional
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subspace. This work developed a optimization scheme to solve the feature fusion problem by inte-

grating the alternating direction method of multipliers with the block coordinate descent method.

The alternating optimization method estimates the spatial features in the fusion model by penaliz-

ing the ℓ0-norm of the spatial gradient magnitudes. The quality of extracted features is measured

in terms of supervised pixel-based classification methods. The multi-sensor scenario is tested with

synthetic experiments by simulating the single pixel hyperspectral camera with a complementary

RGB sensor from Pavia University and Houston University datasets. Extensive simulations show

that the proposed approach outperforms other state-of-the-art methods in terms of classification

accuracy.

3.1. Single Pixel Hyperspectral Camera with Complementary Sensor

The sensing model of the single-pixel hyperspectral imaging system is illustrated in Fig.

13. The data cube is spatially modulated by a series of binary (block-unblock) spatial patterns

and the correlated light is detected by an RGB sensor. For clarity and convenience, the system

projection is described in the matrix form. Let YYYh ∈ Rm×Nλ be an observed high-spectral-low-

spatial-resolution image with Nλ bands and m compressive samples in each band, and YYYm ∈ Rn×3

be an observed low-spectral-high-spatial-resolution image with 3 bands and n pixels in each band

(n = NxNy represent the numbers of pixels for RGB image). Matrix ZZZ ∈ Rn×Nλ denotes the high

spatial and spectral resolution data to be estimated. With this representation, we model the single

pixel hyperspectral measurements as

YYYh = ΦΦΦhZZZ +HHHh, (43)
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where ΦΦΦh ∈Rm×n is the single pixel sampling matrix (24), and HHHh ∈Rm×Nλ represents independent

identically distributed (i.i.d.) noise. The assumption that the noise is identically distributed across

bands is also made for simplicity. Accommodating statistically independent noise across bands

and pixels, but with band-dependent variance, would be straightforward. We model the RGB

measurements as

YYYm = ZZZΦΦΦm +HHHm, (44)

where ΦΦΦm ∈ RNλ×3 represents the spectral response of the high-spatial-resolution RGB sensor

Simoes et al. (2014), and HHHm ∈ Rn×3 represents independent identically distributed (i.i.d.) noise.

In general, these degradation models represent the discrete approximation of the components of

data acquisition systems (include sensors, filters, signal conditioning, data acquisition hardware,

and software applications) for the observed images.

3.2. Problem Formulation

In this section, the common fusion problem is connected with a feature fusion model. The

image fusion problem consists of estimating a high-spatial-high-spectral-resolution image ZZZ, given

the observed images YYYh and YYYm using models described in the equations (43) and (44). For this,

state-of-the-art methods assume that spectral bands can be highly correlated, therefore ZZZ usually

lives in a subspace whose dimension is much smaller than the number of bands Cawse-Nicholson

et al. (2012).

3.2.1. Feature fusion model. In contrast to the image fusion techniques, this work

aims to estimate high-spatial-resolution features with appropriate spectral content from observed
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YYYh and YYYm images. Hyperspectral data normally have a large correlation between bands, the spec-

tral vectors, of size Nλ , usually live in a subspace of dimension much lower than Nλ . Therefore,

we can write

ZZZ =CCCQQQh, (45)

where QQQh ∈ RNr×Nλ is a matrix whose Nr columns span the same subspace as the columns of ZZZ,

and CCC ∈ Rn×Nr are the representation coefficients. Small values of Nr, i.e., Nr ≤ Nλ , translate

into a description of the data in a relatively low dimensional space. This decomposition has two

advantages. One is that it is computationally more efficient to work in a lower dimensional space

than in the original space of ZZZ, making algorithms that use these representations comparatively fast.

The other advantage is that, since the number of variables to be estimated is significantly reduced,

the estimates will normally be more accurate than if we worked in the original dimensionality.

Then, we replace (43) with

YYYh = ΦΦΦhCCCQQQh +HHHh, (46)

where the error due to the dimensionality reduction has been incorporated into HHHh. On the other

hand, YYYm is assumed be a high-spatial-resolution RGB image, where these limited number of

image bands were augmented using morphological profiles (MPs) Fauvel et al. (2012). MPs allow

modeling the spatial information of very high-resolution images, expanding its dimensionality

to obtain a detailed signature at each pixel. It also allows the application of subspaces-based

techniques that integrate both spatial and spectral information. The use of spectral and spatial

information simultaneously has become a standard procedure in image classification, especially in
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high-resolution images Liao et al. (2017). Then, let yyyi ∈ Rn be the i-th band of the RGB image.

Furthermore, let {ψ j,φ j} j∈{1,...,Np} be a set of opening and closing operators, respectively, where

Np denotes the size of the used filter, the MP of the i-th band can be defined as:

GGGi =
[
ψNp(yyyi) · · ·ψ1(yyyi) yyyi φ1(yyyi) · · ·φNp(yyyi)

]
,

where GGGi ∈ Rn×(2Np+1) is the matrix contains the vectorized morphological features Fauvel et al.

(2012); Liao et al. (2017). The concatenation of each morphological profile provided a new struc-

ture named extended morphological profile (EMP). Specifically, the morphological transforma-

tions of the each image are stacked and rearranged along the third dimension forming an extended

profile. By staking each MP of the RGB image one over other, e.g. YYYmp = [GGG1 GGG2 GGG3] ∈ Rn×Nmp

with Nmp = 3(2Np +1), the low-rank matrix decomposition YYYmp can be modeled in lower dimen-

sional space as

YYYmp =CCCQQQmp +HHHmp, (47)

where QQQmp ∈ RNr×Nmp is a matrix whose Nr columns span the same subspace as the columns of

ZZZ, and HHHmp is the additive term that include both modeling errors and the sensors noise. The

estimation of the above models aims to find the coefficients CCC that best represent the two image

sets YYYh and YYYmp in the subspace spanned by the columns of QQQh and QQQmp. In (46) and (47), the

low-rank property are enforced using a product of two rank Nr matrices CCC and QQQh (or QQQmp ) where

Nr ≤min(n,Nh,Nmp). In this work, we observe that both above models can be reduce to following
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model

YYYh = ΦΦΦhCCCQQQPPP+HHHh, YYYmp =CCCQQQPPP+HHHmp, (48)

where QQQ ∈ RNr×(Nλ+Nmp) is the union of subspaces. Here, matrices QQQh and QQQmp are replaced with

QQQPPP and QQQPPP, respectively. The matrix PPP ∈ R(Nλ+Nmp)×Nλ accounts for a uniform subsampling of

the subspace QQQ, whose columns are a subset of the columns of the identity matrix III(Nλ+Nmp), and

PPP ∈ R(Nλ+Nmp)×Nmp is the matrix that selects the columns not selected by PPP.

3.2.2. Constrained Optimization. The estimation of the projected high-spatial

resolution features CCC and projection matrix QQQ from observations YYYh and YYYmp in (48) can per-

formed by solving an inverse problem. In most image estimation problems, the inverse problem

is ill-posed, which requires regularization or prior information. With measurements acquired by

different sensors, the error matrices in (48) can be assumed statistically independent. Then, the

posterior function of CCC and QQQ is given by

p(CCC,QQQ|YYYh,YYYmp) ∝ p(YYYh|CCC,QQQ)p(YYYmp|CCC,QQQ)p(CCC)p(QQQ), (49)

where ∝ indicates proportionality. The parameter estimation in (49) can be obtained by computing

the maximum of the posterior density, i.e., the MAP. The matrix QQQ is assumed that admit uniform

distribution on the Stiefel manifold. Mathematically, the Stiefel manifold is defined as

Qn×m = {QQQ ∈ Rn×m | QQQQQQT = IIIn, n≤ m}.
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The adoption of orthonormal subspace basis simplified the computation of both, the basis updating

and coefficients recovery. On the other hand, the error matrices are assumed distributed according

to the normal distributions with zero mean and variances σ2
h and σ2

mp, respectively. By taking

the negative logarithm of p(YYYh|CCC,QQQ) and p(YYYmp|CCC,QQQ) in (49), the MAP estimator of {CCC,QQQ} is

equivalent to solving to solving the following constrained optimization problem

min
CCC,QQQ

J (CCC,QQQ) = l(CCC,QQQ)+λ

Nr

∑
i=1

r(CCC(:,i))

s.t QQQQQQT = IIINr ,

(50)

where

l(CCC,QQQ) =
1
2
∥ΦΦΦhCCCQQQPPP−YYYh∥2

F+
γ

2
∥CCCQQQPPP−YYYmp∥2

F,

r(·) is a penalty ensuring spatial regularization, λ > 0 is a parameter adjusting the importance of

regularization, and γ = σ2
mp/σ2

h is the trade-off between the hyperspectral and the complementary

image noise parameters.

3.2.3. Spatial Regularization. Based on the observation that the regions in the

gradient domain, black pixels usually have nearly uniform intensity values, and the edge pixels

follow some distribution, modeling images with a gradient representation has been shown to be

very effective in feature fusion Rasti et al. (2017, 2019); Rasti and Ghamisi (2020). Then, the

prior of the CCC(:,i) can be obtained by assuming that in the gradient domain, the pixels are indepen-

dently and identically distributed following a Laplacian distribution. Note that, Laplace prior is

the Bayesian equivalent of ℓ1-norm regularization. However, this work promotes the ℓ0-gradient
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regularization previously used in applications such as image segmentation and super-resolution Xu

et al. (2011); Cascarano et al. (2021), to performs a feature level-fusion analysis. The ℓ0-gradient

regularization induces a segmentation-like effect that generates piece-wise constant regions while

preserving edges. Then, we consider the ℓ2,0 mixed pseudo-norm defined as

∥XXX∥2,0 = #
{

i |
∥∥XXX (i,:)

∥∥
2 ̸= 0

}
,

where #{·} denotes the cardinal of the set {·}. It can be easily shown that using a Bernoulli prior

is the Bayesian equivalent of ℓ0 pseudo-norm. Then, for a vectorized image xxx ∈ Rn, we describe

the sparsity property with a regularizer in terms of the gradient operator,

r (xxx) =

∥∥∥∥∥
[

DDDhxxx DDDvxxx

]∥∥∥∥∥
2,0

, (51)

where the matrices DDDh,DDDv ∈ Rn×n are operators to calculate the first order vertical and horizontal

differences, respectively. Assuming periodic boundary condition (BC), matrices DDDv and DDDh are

circulant, thus factors into DDDv = FFFH
ΛΛΛvFFF and DDDh = FFFH

ΛΛΛhFFF , where FFF ∈ Cn×n and FFFH ∈ Cn×n

are unitary matrices representing the two dimension discrete fourier transform (2D-DFT) and its

inverse, and ΛΛΛh and ΛΛΛv are diagonal matrices of the 2D-DFT coefficients of the convolution kernel.

3.3. Alternating Optimization Scheme

The problem in (50) is solved one matrix at a time, while the other is assumed to be fixed.

This procedure is summarized in Algorithm 3.1, where the AO estimator is adopted to solve effi-
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Algorithm 3.1 Feature fusion based on ℓ0-ADMM-AO.
Input: YYYh, YYYmp, KKK, Nr and λ .

1: QQQh = pca(YYYh, Nr) // Initialize QQQ using Alg.(1.1).
2: QQQmp = pca

(
YYYmp,Nr

)
// Initialize QQQ using Alg.(1.1).

3: QQQ(0) =
[
QQQh QQQmp

]
4: Initialize: CCC(0,0)

2 , CCC(0,0)
3 , QQQ(0,0)

2 , QQQ(0,0)
3

5: for t = 1,2, . . . to stopping rule do
// Optimize CCC using ADMM

6: for k1 = 1,2, . . . to stopping rule do
7: CCC(k1)

1 ∈ argmin
CCC1

Lc

(
CCC1,CCC

(t−1,k1−1)
2 ,CCC(t−1,k1−1)

3

)
8: CCC(t−1,k1)

2 ∈ argmin
CCC2

Lc

(
CCC(k1)

1 ,CCC2,CCC
(t−1,k1−1)
3

)
9: CCC(t−1,k1)

3 =CCC(t−1,k1−1)
3 +AAACCC(k1)

1 +BBBCCC(t−1,k1)
2

10: end for
11: Set CCC(t) = CCC(k1)

1
// Optimize QQQ using ADMM

12: for k2 = 1,2, . . . to stopping rule do
13: QQQ(k2)

1 ∈ argmin
QQQ1

Lq

(
QQQ1,QQQ

(t−1,k2−1)
2 ,QQQ(t−1,k2−1)

3

)
14: QQQ(t−1,k2)

2 ∈ argmin
QQQ2

Lq

(
QQQ(k2)

1 ,QQQ2,QQQ
(t−1,k2−1)
3

)
15: QQQ(t−1,k2)

3 = QQQ(t−1,k2−1)
3 +QQQ(k2)

1 −QQQ(t−1,k2)
2

16: end for
17: Set QQQ(t) = QQQ(k2)

1
18: end for
19: Set ĈCC =CCC(t)

Output: ĈCC
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ciently CCC, and QQQ iteratively. To overcome the closed-form expression problem in (50), the ADMM

is embedded in each iteration of the AO algorithm.

3.3.1. Optimization with respect to the matrix C (Q fixed). Given a fixed QQQ, the

minimization problem in (50) with respect to CCC can be solved by converting it into ADMM form.

By introducing the auxiliary variables CCC1 ∈ Rn×Nr and CCC2 ∈ R2n×Nr , the optimization problem in

(50) with respect to CCC can be rewritten as:

min
CCC1,CCC2

fc(CCC1)+gc(CCC2), s.t. AAACCC1 +BBBCCC2 = 000, (52)

where

fc(CCC1) =
1
2
∥ΦΦΦhCCC1QQQPPP−YYYh∥2

F+
γ

2
∥CCC1QQQPPP−YYYmp∥2

F,

gc(CCC2) = gc(CCC21,CCC22) = λ

Nr

∑
i=1

∥∥∥∥∥
[

CCC21(:,i) CCC22(:,i)

]∥∥∥∥∥
2,0

,

and

AAA =

DDDh

DDDv

 , BBB =

−IIIn 000

000 −IIIn

 , CCC2 =

CCC21

CCC22

 ,

with CCC21,CCC22 ∈ Rn×Nr . The iterative procedure to solve the formulation in (52) is shown in Algo-

rithm 3.1. The augmented Lagrangian function is defined as

Lc(CCC1,CCC2,CCC3) = fc(CCC1)+gc(CCC2)+
ρc

2
∥AAACCC1 +BBBCCC2 +CCC3∥2

F, (53)
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where ρc > 0 is the Lagrange penalty parameter Boyd et al. (2011), and CCC3 = [CCC31;CCC32] with

CCC31,CCC32 ∈Rn×Nr denotes the scaled Lagrange multipliers related to the constraint AAACCC1+BBBCCC2 = 000.

Then, Lc(CCC1,CCC2,CCC3) is minimized with respect to CCC1 and CCC2, and update CCC3 as in Algorithm 3.1.

The sub-problem CCC1 is solved in step 7 of Algorithm 3.1 by forcing the derivative of (53)

with respect to CCC1. It leads the following linear system:

CCC1 =
(

ΦΦΦ
T
h ΦΦΦh +EEE2

)−1
EEE1, (54)

where

EEE2 = γIIIn +ρc

(
DDDT

h DDDh +DDDT
v DDDv

)
,

EEE1 = ΦΦΦ
T
h YYYhPPPTQQQT+ γ

(
YYYmpPPPTQQQT

)
+ · · ·

ρc

(
DDDT

h (CCC21−CCC31)+DDDT
v (CCC22−CCC32)

)
.

The first order optimality conditions lead to the solution of large-size linear systems. To solve them

efficiently, we make use of conjugate gradient (CG) algorithm with a warm-start initialisation at

every iteration. However, under suitable assumptions, the problem admits faster solution.

Compressive hyperspectral imaging: In compressive sensing the compressive HS single

pixel camera is implemented as ΦΦΦh = MMMHHHd, where HHHd ∈ Rn×n is the Walsh-Hadamard transform,

and MMM ∈ {0,1}m×n is a random down-sampling operator Vargas and Arguello (2019); Garcia et al.

(2020). Consequently, the sensing matrix is an identity matrix when MMMHHHdHHHT
d MMMT = IIIm. The

coefficient
√

(n/m) normalizes the transform so that the energy of the measurement vector is
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almost similar to that of the input signal vector. An alternative to solve efficiently the inversion

problem presented in 54 from the masking operator is to use the method of the Reeves-Sorel

Technique Almeida and Figueiredo (2013). Following Almeida and Figueiredo (2013), notice that

HHHd = RRR

MMMHHHd

MMMHHHd

 ,

where MMM is the matrix that selects the rows not selected by MMM and RRR is a permutation matrix that

puts these missing rows in their original positions in HHHd. Then,

HHHT
d HHHd =

[
HHHT

d MMMT HHHT
d MMMT

]
RRRTRRR

MMMHHHd

MMMHHHd

 ,

= HHHT
d MMMTMMMHHHd +HHHT

d MMMTMMMHHHd,

(RRR is a permutation matrix, thus RRRTRRR = IIIn), the inverse of (36) can be written as

(
HHHT

d MMMTMMMHHHd + γIIIn +ρc

(
DDDT

h DDDh +DDDT
v DDDv

))−1

=
(
(1+ γ)IIIn +ρc

(
DDDT

h DDDh +DDDT
v DDDv

)
−HHHT

d MMMTMMMHHHd

)−1

= EEE−1
3 −EEE−1

3 HHHT
d MMMT

(
MMMHHHdEEE−1

3 HHHT
d MMMT− IIIm

)−1
MMMHHHdEEE−1

3

where the second equality results from using the Sherman Morrison–Woodbury matrix inversion

identity, after defining EEE3 = (1+γ)IIIn+ρc
(
DDDT

h DDDh +DDDT
v DDDv

)
. We use the CG algorithm to solve the



COMPRESSIVE HYPERSPECTRAL FEATURE EXTRACTION 88

above inversion; we confirmed experimentally that taking only one CG iteration yields the fastest

convergence, without degrading the final result.

Super-resolution: In image super-resolution ΦΦΦh = SSSKKK, where KKK ∈ Rn×n is the matrix rep-

resentation of the cyclic convolution operator, i.e., KKK is a block circulant matrix with circulant

blocks, and SSS ∈ Rm×n is a down-sampling operator, while its transpose SSST interpolates the deci-

mated image with zeros. The constant m represents the number of samples with m = MxMy and d

represents the scaling factor with n = d2m. Since KKK is block circulant with circulant blocks, it can

be factored into KKK = FFFH
ΛΛΛFFF . Consequently, the down-sampling matrix is an identity matrix when

SSSSSST = IIIm, and is a binary diagonal matrix with ones at the observed positions and zeros elsewhere

when SSSTSSS ∈ Rn×n. Then, the inversion in (54) can be computed in closed form following Zhao

et al. (2016). From (54), note that

(
KKKTSSSTSSSKKK + γIIIn +ρc

(
DDDT

h DDDh +DDDT
v DDDv

))−1

= FFFH
(

ΛΛΛ
H
(

FFFSSSTSSSFFFH
)

ΛΛΛ+ γIIIn +ρc

(
ΛΛΛ

2
h +ΛΛΛ

2
v

))−1
FFF .

The theoretical result presented in Zhao et al. (2016) for 2D images, allows the following decom-

position:

FFFSSSTSSSFFFH =
1
d2

((
111d111Td ⊗ IIIMy

)
⊗
(

111d111Td ⊗ IIIMx

))
,

=
1
d2

((
111d⊗ IIIMy

)
⊗ (111d⊗ IIIMx)

)((
111Td ⊗ IIIMy

)
⊗
(

111Td ⊗ IIIMx

))
.
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Then, further simplification can be achieved, i.e.,

ΛΛΛ
H
(

FFFSSSTSSSFFFH
)

ΛΛΛ

= ΛΛΛ
H

(
1
d2

((
111d⊗ IIIMy

)
⊗ (111d⊗ IIIMx)

)((
111Td ⊗ IIIMy

)
⊗
(

111Td ⊗ IIIMx

)))
ΛΛΛ,

=
1
d2

(
ΛΛΛ
H

ΛΛΛ

)
,

where ΛΛΛ =
((

111Td ⊗ IIIMy

)
⊗
(

111Td ⊗ IIIMx

))
ΛΛΛ. Then applying the Woodbury matrix identity to obtain

(
1
d2

(
ΛΛΛ
H

ΛΛΛ

)
+EEE3

)−1

= EEE−1
3 −EEE−1

3 ΛΛΛ
H
(

d2IIIm +ΛΛΛEEE−1
3 ΛΛΛ

H
)−1

ΛΛΛEEE−1
3 ,

where EEE3 = γIIIn + ρc

(
ΛΛΛ

2
h +ΛΛΛ

2
v

)
. Note that EEE−1

3 involves a diagonal inversion, with O(n) cost.

Also note the term ΛΛΛEEE−1
3 ΛΛΛ

H is diagonal matrix then the above expression involves a diagonal

inversion with O(m) cost.

The sub-problem CCC2 is decouple into two variables CCC21 and CCC22 in step 8 of Algorithm 3.1.

Due to decomposability of the ℓ2,0-mixed pseudo norm, solving for CCC21 and CCC22 corresponds to

solve a ℓ2,0-ℓ2 problem

{CCC21,CCC22} ∈ argmin
CCC21,CCC22

gc(CCC21,CCC22)+
ρc

2

∥∥∥∥∥∥∥∥∥AAACCC1 +BBB

CCC21

CCC22

+
CCC31

CCC32


∥∥∥∥∥∥∥∥∥

2

F

,
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whose solution is given by a row-wise vector-hard threshold function Xu et al. (2011),

{
CCC21(:,i),CCC22(:,i)

}
= rhard

({
EEE4(:,i),EEE5(:,i)

}
,λ/ρc

)
, (55)

where EEE4 = DDDhCCC1 +CCC31, EEE5 = DDDvCCC1 +CCC32. The derivation of the Algorithm 3.2 from the func-

tional (51) can be reviewed from Xu et al. (2011).

Algorithm 3.2 Row-hard-threshold algorithm.
1: function RHARD(XXX , τ)

// Let be XXX ∈ Rn×m and τ ≥ 0, then
2: for i = 1,2, . . . ,n do
3: if

∥∥XXX (i,:)
∥∥2

2 ≤ τ then
4: XXX (i,:) = 000 // where 000 ∈ Rm

5: end if
6: end for
7: return XXX
8: end function

3.3.2. Optimization with respect to the matrix Q (C Fixed). The solution for QQQ

is summarized in Algorithm 3.1. Aiming at a more computationally efficient method for solving

(50) with respect to QQQ, ADMM introduces auxiliary variables to split the orthogonality constraints,

which leads to another formulation of (50). In order to minimize with respect to QQQ, the following

constrained optimization problem is solved when CCC is assumed constant

min
QQQ1,QQQ2

fq(QQQ1)+gq(QQQ2) s.t. QQQ1−QQQ2 = 000, (56)
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where

gq(QQQ2) =


0 if QQQ1 ∈Q

+∞ otherwise

,

fq(QQQ1) =
1
2
∥ΦΦΦhCCCQQQ1PPP−YYYh∥2

F+
γ

2
∥CCCQQQ1PPP−YYYmp∥2

F

,

and QQQ1,QQQ2 ∈ RNr×(Nλ+Nmp) are auxiliary variables. This problem has been considered in appli-

cations such as linear and nonlinear eigenvalue problems Wen and Yin (2013). The Lagrangian

function associated to the optimization of QQQ can be written as

Lq(QQQ1,QQQ2,QQQ3) = fq(QQQ1)+gq(QQQ2)+
ρq

2
∥QQQ1−QQQ2 +QQQ3∥2

F, (57)

where QQQ3 ∈RNr×(Nλ+Nmp) is the scaled dual variable. The optimization of L (QQQ1,QQQ2,QQQ3) consists

in updating QQQ1, QQQ2, and QQQ3 iteratively as summarized in Algorithm 3.1.

From (57), computing the QQQ1-update requires to solve the linear system. We can take

advantage of the masking matrix PPP to separate QQQ1 into QQQ1PPP and QQQ1PPP, where PPP is the matrix that

selects the pixels not selected by PPP. We then have

QQQ1PPP =
(

CCCT
ΦΦΦ

T
h ΦΦΦhCCC+ρqIIINr

)−1(
CCCT

ΦΦΦ
T
h YYYhPPPT+ρq(QQQ2−QQQ3)

)
PPP,

QQQ1PPP =
(

CCCTCCC+ρqIIINr

)−1(
CCCTYYYmpPPPT

+ρq(QQQ2−QQQ3)
)

PPP.

(58)

Note that (CCCT
ΦΦΦ

T
h ΦΦΦhCCC+ρqIIINr) and (CCCTCCC+ρqIIINr) have dimensions Nr×Nr and therefore can be
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precomputed.

From (57), the update of QQQ2 can be calculated by simply computing the Euclidean projec-

tion of (QQQ1 +QQQ3) onto the set Q, also known as the nearest orthogonal matrix problem (Lai and

Osher, 2014, Theorem 1). Suppose we have the SVD decomposition of the matrix (QQQ1 +QQQ3) as

UUUSSSVVVT where UUU ∈ RNr×Nr , VVV ∈ R(Nλ+Nmp)×Nr and SSS ∈ RNr×Nr , then the global solution is

QQQ2 ∈ argmin
QQQ2

gq(QQQ2)+
ρc

2
∥QQQ1−QQQ2 +QQQ3∥2

F ,

←UUUVVVT.

(59)

When (QQQ1 +QQQ3) has full row rank, the solution also is unique.

3.3.3. Convergence and computational complexity analysis. Note that, if each

sub-problem in (50) is convex and has a unique solution, then every limit point is a stationary point

(Tseng, 2001, Theorem 4.1). The uniqueness of the solution is not required when the number of

blocks is two Grippo and Sciandrone (2000). However, the convergence results of our proposed al-

gorithm do not apply due to the non-convexity of the function r(·) and the minimization concerning

QQQ. Therefore, those functionals are analyzed as follows.

• The minimization with respect to CCC belongs to the class of multiplier algorithms that can

be considered as a ‘Generalized Lasso’ problem with ℓ0 regularization rather than the ℓ1-

norm (Boyd et al., 2011, Sec. 6.4.1). A convergence results for this ADMM version is the

recently developed theory by Cascarano et al. (2021), which is applicable to non convex and

non-differentiable functions gc(·). Following the suggestion in Cascarano et al. (2021) to
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ensure convergence, the penalty sequences are adjusted heuristically as ρ(t) = t(1+ε)t with

ε = 10−4.

• The minimization with respect to QQQ is a non-convex problem, and there is not guarantee

that the AO method can reach the global solution of (50). However, the convergence of

Algorithm 3.1 can be observed in practice. Furthermore, if Q is compact, which implies

that the sequence generated is bounded, the BCD method is guaranteed to converge to a

stationary point Tseng (2001).

The stopping rule for Algorithm 3.1 is

∣∣∣J(CCC(t),QQQ(t))− J(CCC(t−1),QQQ(t−1))
∣∣∣∣∣∣J(CCC(t),QQQ(t))

∣∣∣ ≤ 10−4.

As a final observation we mention that the most computationally expensive part for the proposed

method is the solution of CCC in Algorithm 3.1. Following the proposed solution, the order of

computation complexity decreased significantly from O(n3Nr) to O(nNrlog(n)), which allows

the analytical solution (36) to be computed efficiently. Then, in Algorithm 3.1 the computational

complexity of the optimization of CCC is O(nNrlog(n)), and the computational complexity of the

optimization of QQQ is O(nNr). The overall complexity per iteration in Algorithm 3 is given by

O(nNrlog(n))+O(nNr).

3.4. Numerical Experiments

In this section, we assess the performance of the proposed AO-ADMM in terms of classifi-

cation accuracy and computational efficiency on synthetic and real datasets. The proposed scheme
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was implemented in Matlab and all numerical experiments were performed on a computer with an

Intel(R) Core(TM) i7−4790 CPU@3.60GHz and 32 GB RAM. In each classification experiment,

Nt samples were randomly chosen per class, as training samples and the remaining samples were

used for testing.

3.4.1. Pavia University dataset. For this dataset, we obtain the measurements of

the HS image by simulating the single pixel hyperspectral camera Li et al. (2012) with a com-

pression rat CR = 25.00%. Figure 21(b) shows an image projection obtained by the compressive

acquisition system. Unless stated otherwise, the RGB image and the compressive measurement

set are contaminated with additive white Gaussian noise whose SNR is fixed to 30 dB. Finally,

the ground truth map that contains nine distinct classes is illustrated in Fig. 21(c), where every

class labels a different material in the urban cover. All experiments follow the data acquisition

model given in (24). For each fixed set of parameters (Compression Ratio (CR), Nr, λ , noise),

the averaged results of 10 realizations of the sensing matrix ΦΦΦh are shown. In the noisy case, for

each generated sensing matrix ΦΦΦh, the averaged results of 10 independent noise realizations are

performed.

First, to observe the effects of the ℓ0-norm regularization term on the classification features,

Fig. 14 displays four feature bands yielded by the proposed method for three different values of

the regularization parameter, i.e. λ = 0, λ = 5× 10−5, and λ = 5× 10−4. For this experiment,

we set the number of feature bands to Nr = 20. In addition, we use a disk-shaped element for the

morphological opening and closing functions with radius (5,10,20,50). As can be seen in this

figure, the proposed fusion approach yields feature bands with smoother piecewise regions as the
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value of λ increases. In addition, as λ increases, it can be seen that the proposed fusion approach

minimizes the influence of the image noise and the spatial structure of the objects is preserved.
λ

0
=

0
λ

0
=

5
×

10
−

5
λ

0
=

5
×

10
−

4

Band 1 Band 2 Band 4 Band 8

Figure 14. Pavia University dataset. Feature bands obtained by the proposed usion technique for
(upper) λ = 0, (middle) λ = 5×10−5, and (bottom) λ = 5×10−4.
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In addition, we evaluate the performance of the proposed feature fusion in terms of the

accuracy yielded by different supervised methods for pixel-based image classification. Table 4

shows the accuracy values obtained using different supervised classifiers: a feedforward neural

network (FFNN) Ramirez et al. (2021), the nearest neighbor (1NN) classifier, a support vector

machine with a polynomial kernel (SVM-PLY) Camps-Valls and Bruzzone (2005), and a random

forest (RF) classifier Gislason et al. (2006).

Table 4
Performance of the proposed feature fusion approach for different supervised classification meth-
ods.

Classes
# Samples

FFNN 1NN SVM-PLY RF
Train Test

Asphalt 50 6439 82.56 ± 7.10 96.47 ± 1.98 97.48 ± 1.89 97.6397.6397.63 ± 1.111.111.11
Meadows 50 18242 93.29 ± 2.98 97.23 ± 1.64 96.35 ± 2.19 97.9797.9797.97 ± 0.880.880.88
Gravel 50 1930 83.78 ± 25.76 99.2799.2799.27 ± 0.410.410.41 99.12 ± 0.55 99.23 ± 0.91
Trees 50 2984 89.53 ± 3.12 90.59 ± 1.96 94.48 ± 1.39 94.7394.7394.73 ± 1.281.281.28
Metal 50 1295 98.24 ± 1.14 99.89 ± 0.07 98.83 ± 0.64 99.9299.9299.92 ± 0.040.040.04
Soil 50 4979 97.18 ± 2.28 99.94 ± 0.05 99.91 ± 0.06 99.9799.9799.97 ± 0.030.030.03
Bitumen 50 1280 99.20 ± 0.47 99.75 ± 0.16 99.45 ± 0.41 99.9399.9399.93 ± 0.120.120.12
Bricks 50 3632 89.53 ± 9.03 97.40 ± 0.97 97.94 ± 0.95 98.6998.6998.69 ± 1.121.121.12
Shadows 50 897 95.50 ± 2.60 96.37 ± 1.69 94.52 ± 2.53 98.4598.4598.45 ± 1.691.691.69

Overall accuracy (%) 91.44 ± 2.91 97.21 ± 0.86 97.22 ± 1.19 98.1798.1798.17 ± 0.460.460.46
Average accuracy (%) 92.09 ± 3.93 97.43 ± 0.31 97.57 ± 0.54 98.5098.5098.50 ± 0.330.330.33

Kappa Statistic (κ) 0.888 ± 0.038 0.963 ± 0.011 0.963 ± 0.015 0.9760.9760.976 ± 0.0060.0060.006

As can be seen in this table, we randomly select 50 training samples for each class and the

remaining pixels are used to test the corresponding machine learning model. For this experiment,

the proposed feature fusion algorithm is executed using λ = 5× 10−4 and Nr = 20. Note that

the FFNN is built with 10 hidden layers whose training stage is performed using the Levenberg-

Marquardt algorithm. In addition, the parameters of the multiclass SVM-PLY model of order 3

are set to σ = 1 and C = 1. The number of trees of the RF classifier is fixed to 200. Every value
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of this table is obtained by averaging 10 realizations of the respective experiment and at each

trial, a different realization of additive noise is generated and a different set of training samples

is selected. It can be observed that the best accuracy values are in bold font. Furthermore, the

last three rows of Table 4 includes the overall accuracy (OA), the average accuracy (AA), and the

Cohen’s kappa statistic (κ). As can be seen in this table, the RF classifier outperforms the other

supervised methods in terms of accuracy. For the remaining experiments, we shall use the RF

classifier with 200 trees.

To evaluate the influence of the ℓ0-norm regularization term on the classification perfor-

mance, Fig. 15 displays the labeling maps yielded by the proposed feature fusion approach for dif-

ferent values of the penalty parameter, i.e. λ = 0, λ = 1×10−5, λ = 5×10−5, and λ = 5×10−4.

Furthermore, a zoomed version of the corresponding labeling map is included for visual compari-

son and the overall accuracy of each classification map is shown in the figure caption. As can be

seen in this figure, the classification noise is reduced as the λ increases leading to more homoge-

neous labeling regions. Note also that the classification accuracy improves as λ increases for the

evaluation interval.

Parameter analysis displays the classification performance of the subspace-based feature

fusion method on the Pavia University data set for different values of the regularization parameter

and numbers of feature bands. Furthermore, this analysis is obtained by capturing the compressive

measurements of the HS image with two different compression rates: Fig. 16(left): CR = 12.50%

and Fig. 16(right): CR = 25.00%. More precisely, every value is estimated by averaging the

overall accuracy of 50 realizations of the corresponding experiment, where at each trial a different
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(a) λ = 0 (b) λ = 1×10−5 (c) λ = 5×10−5 (d) λ = 5×10−4

OA = 87.41% OA = 90.32% OA = 96.13% OA = 98.20%

Figure 15. Classification maps yielded by the fused features for (a) λ = 0, (b) λ = 1×10−5, (c)
λ = 5×10−5, and (d) λ = 5×10−4.
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training set is randomly selected. As can be seen in these figures, the proposed feature fusion

method improves the classification accuracy as the number of features Nr increases. In addition,

the regularization parameter λ should be carefully selected to obtain an outstanding classification

performance. Note that for small values of λ , image details are preserved in the feature bands,

however, the piece-wise regions are not properly smoothed leading to classification noise in the

labeling maps. Rather, for large values of λ , the feature bands progressively lose the image edges

affecting the class separability, degrading in turn, the classification performance.
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Figure 16. Effects of the number of feature bands and the value of λ on the overall accuracy for
(left) CR = 12.50% and (right) CR = 25.00%

3.4.2. Houston University 2013 dataset. For comparison purposes, Fig. 17 illus-

trates the classification maps obtained from different kinds of features. Specifically, Figs 17(a)-(c)

display the labeling maps yielded by the RGB image, the HSI, and the stacking of the RGB image

with an interpolated version of the HSI (RGB + HSI). Furthermore, Fig. 17(d) depicts the classi-

fication maps obtained by the subspace sensor fusion (SubFus) method Rasti and Ghamisi (2020).

Notice that SubFus method obtains a set of fused features directly from the RGB image and the

HSI. The classification maps obtained by the proposed approach is shown in Fig. 17(e). For this
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dataset, the parameter setting of the proposed feature fusion approach is fixed to λ = 1× 10−3

and Nr = 20. Furthermore, the morphological opening and closing operations are performed using

a disk-shape with radius (20, 50, 100, 200). Table 5 displays the accuracy values generated by

the approaches under test. Each value is obtained by averaging the results of 10 realizations of

the respective experiment, and at each trial, the procedure generates a different realization of the

additive noise with SNR at 30 dB. As can be observed in Table 5, the proposed approach exhibits

a competitive performance with respect to the state-of-the-art feature fusion method. Indeed, our

method outperforms other approaches in terms of OA, AA, and κ .

3.4.3. Houston University 2018 dataset. To test the proposed method, an RGB

composite is obtained by projecting the HS image using the IKONOS sensor response in the visible

wavelength interval (0.38 - 0.86 µm). Fig. 22(a) displays the RGB composite of the Houston

University 2018 dataset. Moreover, the hyperspectral compressive measurements are obtained

by simulating the single pixel hyperspectral camera using a compression ratio ρ = 25.00%. A

projection captured by the compressive hyperspectral imaging system is illustrated in Fig. 22(b).

Furthermore, this dataset includes fifteen different classes, where each class label corresponds to

a distinct structure in the urban cover. Finally, the training sample set and the test sample set are

shown in Fig. 23(c) and Fig. 23(d), respectively.

We compare the performance of the feature fusion proposed method with respect to other

classification approaches. In this sense, we first obtain the labeling maps from single sensor data.

Figs 18(d) and 18(e) display the classification maps obtained from the RGB data and an inter-

polated version of the HS image, respectively. In order to consider a set of features obtained by
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Table 5
Classification accuracies yielded by the different feature fusion approaches for the Houston Uni-
versity 2013 dataset.

Classes
# Samples

RGB HSI
CHSI SubFus TV-SFF

Our
Train Test + RGB Rasti and Ghamisi (2020) Ramírez et al. (2021)

Healthy grass 198 1053 80.56 82.60 81.65 71.13 66.60 80.92
Stressed grass 190 1064 75.80 83.38 70.17 82.79 83.24 82.02
Synthetic grass 192 505 94.26 97.78 97.11 100.00 100.00 100.00
Trees 188 1056 85.94 91.49 84.22 95.11 73.66 89.20
Soil 186 1056 90.84 96.80 95.72 97.97 96.85 97.92
Water 182 143 93.29 99.16 90.98 95.38 99.58 95.38
Residential 196 1072 62.54 74.96 86.08 79.53 73.61 81.54
Commercial 191 1053 30.46 32.90 42.17 41.40 61.32 52.27
Road 193 1059 60.66 68.40 73.36 74.58 79.57 88.22
Highway 191 1036 36.81 43.54 33.93 61.20 61.33 63.12
Railway 181 1054 57.32 70.18 61.00 76.86 80.46 92.97
Parking lot 1 192 1041 41.86 55.06 71.41 81.81 93.92 86.61
Parking lot 2 184 285 48.67 60.46 60.00 80.07 70.74 74.25
Tennis court 181 247 93.93 99.15 97.09 99.19 100.00 99.55
Running track 187 473 96.58 97.55 95.98 99.64 100.00 98.92

Overall accuracy (%) 65.70 72.95 72.75 78.95 79.49 83.3183.3183.31
Average accuracy (%) 69.97 76.89 76.06 82.44 82.72 85.5385.5385.53

Kappa statistic (κ) 0.630 0.710 0.707 0.772 0.777 0.8200.8200.820
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Figure 17. Houston University 2013. Classification maps yielded by (a) the RGB image, (b) the
HSI, (c) the stacking of the RGB image with an interpolated verion of the HSI (RGB+HSI), (d)
the SubFus method, (e) the proposed approach.
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fusing information from multi-sensor data, the PCA obtained from stacking the RGB image and an

interpolated version of the HS image is determined. Then, a set of Nr = 16 PCA bands is selected

to evaluate the classification performance. Fig. 18(e) shows the labeling map yielded by the PCA.

We also apply the SSLRA method Rasti et al. (2019) to the stacked data set whose classification

map is illustrated in Fig. 18(f). Furthermore, Fig. 18(g) shows the labeling map yielded by the

SubFus method Rasti and Ghamisi (2020) from HS and RGB images. Finally, the labeling map

obtained by the proposed feature fusion method is illustrated in Fig. 18(i). Parameter setting of the

proposed feature fusion approach is fixed to Nr = 16 and λ = 0.05.

(a) HS image (b) RGB image (c) Ground truth

(d) RGB. OA:45.73% (e) HS. OA:69.75% (f) PCA. OA:67.53%

(g) SSLRA. OA:72.85% (h) SubFus. OA:74.42% (i) Proposed. OA:75.26%

Figure 18. Houston data set. (a) RGB image, (b) the RGB composite of the HS image, and (c) the ground truth
map. (d)-(i) Labeling maps obtained by various the methods with their respective OA.
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Color Classes
# Samples PCA SSLRA SubFus Proposed

Train Test Rasti et al. (2019) Rasti and Ghamisi (2020)

Healthy grass 75 5729 90.08 90.89 91.35 91.39
Stressed grass 75 20055 85.06 86.64 85.00 85.91
Synthetic grass 75 2639 99.51 99.57 99.51 100.00
Evergreen trees 75 25387 94.45 94.78 93.80 93.90
Deciduous trees 75 11652 93.76 94.62 94.27 94.33
Water 75 55 98.18 99.55 99.64 99.27
Residential 75 31853 83.74 87.49 91.59 96.42
Commercial 75 191549 65.62 72.29 72.59 71.31
Road 75 27971 47.56 52.87 54.67 67.45
Sidewalk 75 49354 52.06 57.79 54.39 59.51
Crosswalk 75 1754 69.82 76.60 78.02 85.16
Major thoroughfares 75 71007 50.95 55.32 58.90 65.32
Paved Parking 75 16374 94.58 95.37 94.91 96.88
Cars 75 4392 80.20 86.52 90.20 94.84
Seats 75 26959 88.80 92.41 98.33 98.12

Overall accuracy (%) 68.11 72.93 73.82 76.00
±1.52 ±1.41 ±1.64 ±1.24

Average accuracy (%) 79.63 82.85 83.81 86.65
±0.50 ±0.51 ±0.35 ±0.46

Kappa Statistic 0.624 0.678 0.688 0.713
0.016 0.015 0.017 ±0.014

Table 6
Labeling accuracies yielded by the different feature extraction methods.

To quantitatively evaluate the performance of the proposed method, Table 6 shows the clas-

sification accuracy obtained by the various feature fusion approaches. Specifically, every accuracy

value is obtained by averaging 20 realizations of the respective experiment and at each trial, a dif-

ferent set of training samples is randomly selected. Furthermore, the overall accuracy, the average

accuracy, and the Kappa statistic are shown in the last three rows of Table 6 for the various feature

fusion techniques. Notice that the best accuracy values are shown in bold font. As can be observed

in this table, the proposed method exhibit a competitive performance compared to the other feature

fusion methods.

Table 7 displays the labeling accuracies using different feature fusion approaches for the
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Houston University 2018 dataset. More precisely, we include the results yielded by the HS image,

the RHSI+RGB approach, the feature fusion based on the orthogonal total variation component

analysis (OTVCA_Fus) Lorenz et al. (2019), the SubFus method Rasti and Ghamisi (2020), and

our approach. For this table, we select 10% of the ground truth pixels as training samples and

the remaining 90% as testing samples. The parameters of the proposed approach are set to λ =

1×10−4 and Nr = 12. In addition, the morphological operations use disk shape masks with sizes

(20, 50, 100, 200). Each accuracy value is obtained by averaging 10 realizations of the respective

experiment, where every trial randomly generates a new set of training samples. As can be seen

in Table 7, the proposed method exhibits a competitive performance with respect to other state-of-

the-art approaches. Even, the proposed approach provides better results than the other approaches

in terms of OA, AA, and κ . Finally, Fig. 19 shows the overall accuracy (OA) obtained by various

feature fusion approaches for different training sample ratios. As a result, the proposed approach

outperforms other feature fusion methods for the entire evaluation interval with an accuracy gain

of at least 4%.

3.5. Conclusions

A feature fusion method was proposed using the subspace-based approach and an ℓ0-norm

regularization for spectral image classification from HSI observations and RGB images. More

precisely, the proposed feature fusion method was developed under the assumption that the mor-

phological profiles (MP) of the RGB image and the HSI measurements can be described as a high-

resolution feature matrix lying in different subspaces. In contrast to previous works, the proposed

method has been developed as a joint optimization framework that included the ADMM approach
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Figure 19. OA versus the training set ratio for different feature fusion approaches.

and the block coordinate descent technique. Furthermore, to exploit the rich spatial information

embedded in RGB images, the ADMM optimization stage focused on minimizing a cost function

regularized by the ℓ0-norm of the feature band gradient. The proposed approach was evaluated

in the context of land cover classification using two scenarios. First, we tested the feature fusion

method by simulating both compressive HSI data and an RGB projection. In addition, the proposed

method was evaluated on a real dataset. The numerical results shown an outstanding performance

in terms of classification accuracy for different parameter settings. Additionally, we illustrated that

the proposed feature fusion method outperforms other state-of-the-art multi-sensor feature fusion

approaches on simulated and real datasets. In future works, we are interested in considering other

multimodal data such as light detection and ranging (LiDAR) and synthetic aperture radar (SAR).

Furthermore, as further research lines, we are also interested in developing unsupervised methods

for extracting the image degradation models that enable an accurate problem formulation.
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Discussion, Conclusions and Future Works

Discussion: The utilization of compressive classification techniques in conjunction with

multi-channel images has brought about a significant paradigm shift in the realm of image analysis

Vargas et al. (2018). This innovative approach has profoundly impacted new research by offering

enhanced efficiency, reduced data storage requirements, and improved accuracy object classifica-

tion. By compressing multi-channel images data while preserving essential spectral information,

researchers can expedite data transmission and storage processes, enabling quicker access to vital

information. This advancement not only optimizes resource allocation but also facilitates the ex-

ploration of large-scale and time-sensitive applications. Some results of these investigations have

motivated the following works Kwan et al. (2019); Machidon and Pejovic (2021); Lucena et al.

(2021). On the other hand, solving regularization-based problems using the Alternating Direction

Method of Multipliers (ADMM) is an important and widely used approach in optimization and

signal processing Vargas and Arguello (2019). ADMM is a powerful optimization technique that

can effectively address a variety of problems, including those involving ℓ1 regularization, and it

has significant implications for many fields Jurdana et al. (2021); Wang et al. (2022).

On the other hand, it is essential to acknowledge certain limitations associated with the pro-

posed methodology. The primary limitation pertains to the determination of the optimal number of

samples required to maintain classification accuracy. While there are existing theoretical studies

that address the minimization of measurements needed to reconstruct the full data cube, the litera-

ture lacks insight into the selection of the minimal number of measurements necessary for feature
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extraction while preserving classification accuracy. The second limitation is linked to real-world

implementation. The single-pixel hyperspectral camera requires long acquisition times due to the

integration periods of the hyperspectral sensor. This acquisition period poses challenges in scenar-

ios involving remote sampling, especially when aircraft are in constant motion, leading to potential

misalignment issues over time. The third aspect, equally significant, pertains to the integration of

alternative modalities. This study primarily emphasized the utilization of a high-resolution RGB

camera, chosen for its capacity to extract intricate details at high resolutions while maintaining

low sensor noise. When contemplating the inclusion of other modalities like light detection and

ranging (LiDAR) and synthetic aperture radar (SAR), it introduces complexities to the proposed

methodology due to the inherent noise models associated with these types of images.

Conclusions: Hyperspectral imaging systems offer much more information than conven-

tional digital cameras and have received increasing attention in a wide range of applications. How-

ever, the challenges faced when implementing new technology have unfortunately held back many

new developments due to high costs and computational times. Fortunately, recent advances in sig-

nal processing have suggested partial alternatives that alleviate these problems. The main objective

of this work was to investigate these alternatives and their integration with the compressive sens-

ing theory, in hyperspectral systems. The contributions of this thesis are framed in the three main

components: Feature extraction model for hyperspectral images through compressive sensors, re-

construction of these features from their compressive measurements, and detailed analysis of the

model performance and proposed estimation method. The achievements and conclusions can be

summarized as follows:
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• We found that such multiplexing strategies have a significant impact on the performance of

many existing methods that exploit the high-dimensional structures presenting data types.

This approach allows for the acquisition of hyperspectral data with reduced data volume,

making it more efficient in terms of storage and transmission. This advancement is crucial

for applications where data size is a concern, such as remote sensing and unmanned aerial

vehicles (UAVs). Also, Chapter 2 investigated a strategy that exploits the low-rank struc-

ture available for hyperspectral capture and produces a feature extraction method, which

uses subspace modeling and spatial regularization. This innovative approach effectively by-

passes established reconstruction techniques and has demonstrated comparable performance

to methods using 100% of the data in terms of classification accuracy metrics.

• We found that combining the single-pixel hyperespectral architecture with a high-resolution

RGB sensor enables the acquisition of hyperspectral data with both high spatial and spectral

resolution. The RGB sensor captures detailed spatial information, while the hyperspectral

component provides rich spectral data. This combination is advantageous in applications

such as remote sensing, where the identification of specific materials or objects depends on

the spatial resolution of the scene. In Chapter 3, we present a multisensor-based model that

independently combines spatial and spectral property preservation applied to feature extrac-

tion. In addition, an optimization problem for feature extraction was investigated, which

takes advantage of these two desired properties by minimizing the ℓ0 gradient regularization

norm, and the ℓ2-norm. The efficacy of this method was demonstrated through algorithmic
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implementation using ADMM, and an improvement in classification accuracy metric over

existing techniques was achieved and demonstrated through experimentation.

• We found that the Alternating Direction Method of Multipliers (ADMM) to solve the com-

pressive feature extraction problem has distinct advantages. ADMM is a versatile optimiza-

tion technique that can be applied to a wide range of feature extraction problems. It allows

for the incorporation of various constraints and regularization terms to tailor the feature

extraction process to specific requirements. Additionally, ADMM is known for its strong

convergence guarantees, which ensure that the optimization process converges to a solu-

tion, even for non-convex problems. This reliability is essential in feature extraction, where

finding a global minimum is often challenging.

In conclusion, the benefits of extracting features from compressed measurements in hyper-

spectral imaging and combining a single-pixel architecture with a high-resolution RGB sensor are

numerous. These advantages encompass efficiency, cost-effectiveness, improved data quality, and

enhanced capabilities for various applications, ultimately enabling more effective hyperspectral

data acquisition and analysis.

Future Works: The research and study carried out in this dissertation can be continued and

extended in several directions. Some interesting ideas and future works are listed below.

• The thesis was focused on hyperspectral images and RGB, we are interested in consider-

ing other multimodal data such as multispectral, light detection and ranging (LiDAR) and

synthetic aperture radar (SAR).
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• In the models used in the thesis, the noise of the compressive hyperspectral image is as-

sumed to be zero-mean additive Gaussian. Although, the performance of the techniques

are satisfactory, a future work is to take into consideration the other types of noise such as

heteroskedastic noise modeling.

• Applying different types of penalties (for example Plug-and-Play with convolutional neural

networks scheme as a regularizer) rather than ℓ0 gradient regularization for feature extraction

can be the next step for further study.

• Identifying the subspace dimension is a crucial step in most hyperspectral algorithms. As fu-

ture work, it is possible to investigate the problem of determining the subspace dimension of

the hyperspectral image using the method based on Stein’s unbiased risk estimator (SURE).

On the other hand, future research could explore different options for the sampling operator

that allow other types of decompositions, such as spectral unmixing, while maintaining the prop-

erties that enable an efficient solution to the compressive feature extraction problem. Furthermore,

when analyzing the classifications obtained by the algorithms, additional work is required to obtain

higher-quality pixel labeling from the extracted features. The proposed algorithms can be applied

as a preprocessing step for deep learning-based classification methods and could also be used to

enhance the training and verification of neural networks for hyperspectral image classification.
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Apeendices

Indian Pines and Pavia University Data sets

The first data set is the Indian Pines from AVIRIS sensor that generates 220 bands across the

spectral range from 0.2 to 2.4 µm. In the experiments, the number of bands is reduced to 200 by

removing 20 water absorption bands. This image has spatial resolution of 20m per pixel and spatial

dimension of 128×128 pixels. The second hyperspectral image used in this work, the University of

Pavia, is an urban image acquired by the Reflective Optics System Imaging Spectrometer (ROSIS).

The ROSIS sensor generates 115 spectral bands ranging from 0.43 to 0.86 µm and it has a spatial

resolution of 1.3 m per pixel. The University of Pavia image consists of 256×256 pixels, and 103

bands. In Table 8, the number of classes, total samples available for each class and color label for

both hyperspectral datasets are shown and Figure 20 represents the classification maps. The black

pixels from the ground truth maps are unlabeled regions which are not taken into account in the

classification results.

Figure 20. False color image and ground truth classification maps for Indian Pines (1st and 2nd)
and Pavia University (3rd and 4th) datasets. Black pixels represent unlabeled regions.
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Table 8
Total labeled samples for classification of the Indian Pines and Pavia University data sets.

Indian Pavia
# Class name Samp. # Class name Samp.
1 Alfalfa 46 1 Asphalt 6631
2 Corn-notill 1428 2 Meadows 18649
3 Corn-mintill 830 3 Gravel 2099
4 Corn 237 4 Trees 3064
5 Grass-pasture 483 5 Painted-metal-sheets 1345
6 Grass-tress 730 6 Bare Soil 5029
7 Grass-pasture-mowed 20 7 Bitumen 1330
8 Hay-windrowed 478 8 Self-Blocking Bricks 3682
9 Oats 20 9 Shadows 947
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass Tress-Drives 386
16 Stone-Steel-Towers 93

Pavia University Data sets (full)

This dataset was collected by the Reflective Optics Imaging Spectrometer (ROSIS-03) over

an urban area of the University of Pavia, Italy. In particular, the acquisition of the HS image

was managed by the German Aerospace Agency and it was funded by the HySens Project. The

captured dataset exhibits a high-spatial-resolution (1.3 m per pixel) with 610×340 pixels and 103

spectral channels that cover the wavelength interval from 0.43 to 0.84 µm Grupo de Inteligencia

Computacional (2008). To evaluate the performance of the proposed feature fusion method, an

RGB image is built by projecting the HS image using the IKONOS sensor color response Wei

et al. (2015). Figure 21(a) displays the synthetic RGB image.
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(a) RGB image (b) Ground truth (c) Labels

Figure 21. Pavia University dataset. (a) the RGB image, (b) a compressive HS projection, (c) and
(d) ground truth data.

Houston University Data sets 2013

This spectral image was obtained in 2012 by the Compact Airborne Spectrographic Imager

(CASI) over an urban area of the University of Houston, USA. This dataset was distributed for

the 2013 IEEE Geoscience and Remote Sensing Society Data Fusion Contest (GRSS_DFC_2013)

Debes et al. (2014). More precisely, this image exhibits dimensions of 344× 1,904 pixels and

144 spectral bands in the wavelength range from 0.38 to 1.05 µm. To test the proposed method,

an RGB composite is obtained by projecting the HSI using the IKONOS sensor response in the

visible wavelength interval (0.38 - 0.86 µm). Fig. 22(a) displays the RGB composite of the

Houston University 2013 dataset. Moreover, the HSI is obtained by downscaling each band of the

the original HSI with a spatial decimation ratio of 4:1. In consequence, the HSI exhibits dimensions

of 172×952 pixels and 144 image bands. A grayscale image of a single spectral band of the HSI
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is illustrated in Fig. 22(b). Furthermore, this dataset includes fifteen different classes, where each

class label corresponds to a distinct structure in the urban cover. Finally, the training sample set

and the test sample set are shown in Fig. 22(b) and Fig. 22(c), respectively.

Houston University Data sets 2018

In this case, the hyperspectral image was collected by the ITRES CASI 1500 camera over

an urban area of the University of Houston Xu et al. (2019). Specifically, this image exhibits a

spatial resolution of 1m per pixel with dimensions of 601× 2384 pixels and 48 spectral bands in

the wavelength interval from 0.38 to 1.05 µm. Fig. 22(a) displays the RGB composite of the

HS image. Moreover, this database includes an RGB image that was captured by the DIMAC

ULTRALiGHT+ sensor. This image exhibits dimensions of 8984× 6732 pixels with a spatial

resolution of 5 cm per pixel (Fig. 23(b)). In addition, Fig. 23(c) illustrates the ground truth map

included in the database representing 20 classes in the urban cover.
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Kronecker product

Given two matrices AAA and BBB with dimensions Ni×N j and Nk×Nl , respectively, their Kronecker

product AAA⊗BBB with resultant dimensions NiNk×N jNl is defined by

AAA⊗BBB =



a1,1BBB a1,2BBB · · · a1,N jBBB

a2,1BBB a2,2BBB · · · a2,N jBBB

...
... . . . ...

aNi,1BBB aNi,2BBB · · · aNi,N jBBB


.

A basic property is that vec(BBBXXXAAAT) = (AAA⊗BBB)vec(XXX) where XXX has dimensions Nl×N j.

Woodbury matrix identity

The Woodbury matrix identity is

(AAA+BBBCCCDDD)−1 = AAA−1−AAA−1BBB
(

CCC−1 +DDDAAA−1BBB
)−1

DDDAAA−1,

where AAA is an Na×Na matrix, BBB is an Nb1×Nb2 matrix, CCC is an Nc×Nc matrix, and DDD is an

Nd1×Nd2 matrix. It is assumed than the matrices AAA and CCC are invertible.

Vertical and horizontal differences operator

Calculation of the matrix operators for the vertical and horizontal differences to apply on a vec-

torized image can be defined as follow. Assume that we have an Nx×Ny image XXX . Now, apply a
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vertical difference matrix on XXX , i.e., DDDxXXX , where DDDx is an Nx×Nx matrix given by

DDDx =



1 0 0 · · · 0 −1

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · −1 1


,

where DDDx is the circular convolution matrix of the kernel kkk = [1,−1]. Now vectorize DDDxXXX , i.e.,

vec(DDDxXXX) =
(

IIINy⊗DDDT
x

)
vec(XXX) = DDDvxxx,

where xxx is the vectorized image of length n = NxNy. This shows that DDDvxxx contains a vertical

difference of an image XXX . Moreover, with a similar argument, DDDhxxx contains a horizontal difference

of an image XXX .

Notation of vector norm

The p-norm (also ℓp-norm) of a vector xxx ∈ Rn is defined as

∥xxx∥p =

(
n

∑
i=1
|xi|p

)1/p

.

Note that for

• p = ∞, ∥xxx∥∞ = maxi∈{1,...,n} (|xi|).
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• p = 0, ∥xxx∥0 = #{i | xi ̸= 0} is a pseudo-norm.

• p≥ 1, is a convex function.

• p ∈ [0,1), is a non-convex function.

Notation of matrix norm

The mixed (p, q)-norm (also ℓp,q-mixed norm) of a matrix XXX ∈ RNi×N j is defined as

∥XXX∥p,q =

 Ni

∑
i=1

(
N j

∑
j=1

∣∣xi, j
∣∣p)q/p

1/q

.

In particular, for p = 2, q = 0 the pseudo-norm

∥XXX∥2,0 = #
{

i
∣∣∣ ∣∣XXX (i,:)

∥∥
2 ̸= 0

}
,

where #{·} denotes the cardinal of the set {·}.

Reconstruction quality metrics

PSNR is calculated in dB as

PSNR = 10log10

(
(max(xxx))2

MSE(xxx, x̂xx)

)
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where xxx is the vectorized original image of length n, x̂xx is the vectorized estimated image, max(xxx)

is the maximum value of vector xxx and

MSE(xxx, x̂xx) =
1
n
∥xxx− x̂xx∥2

2.

Then, the average PSNR is the band-based PSNR averaged over all bands of the hyperspectral

dataset.

Classification quality metrics

The basis of the classification is the confusion matrix given by

CCCm =



(cm)1,1 (cm)1,2 · · · (cm)1,Nc

(cm)2,1 (cm)2,2 · · · (cm)2,Nc

...
... . . . ...

(cm)Nc,1 (cm)Nc,2 · · · (cm)Nc,Nc


where (cm)i, j indicates the number of pixels that belong to the i-th class sample in the experimental

area and are assigned to the j-th class, and Nc is the number of classes. According to the classifi-

cation confusion matrix the CA is the proportion of correctly classified pixels for each class. Then,

the Overall Accuracy (OA) and Average Accuracy (AA) are calculated as

OA =
∑

Nc
i=1(cm)i,i

∑
Nc
i, j=1(cm)i, j

, AA =
1

Nc

(
∑

Nc
i=1(cm)i,i

∑
Nc
j=1(cm)i, j

)
.
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Kappa coefficient is a statistical measurement of agreement and is given by

κ =
OA−P
1−P

,

where

P =
(CCCm111Nc)

T (CCCm111Nc)(
∑i, j CCCm(i, j)

)2 .
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