
STRUCTURED AND CONTINUOUS VIDEO SIGN LANGUAGE

RECOGNITION

JEFFERSON DAVID RODRÍGUEZ CHIVATÁ

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERÍAS FÍSICOMECÁNICAS

ESCUELA DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

BUCARAMANGA

2021



STRUCTURED AND CONTINUOUS VIDEO SIGN LANGUAGE

RECOGNITION

JEFFERSON DAVID RODRÍGUEZ CHIVATÁ

Research work in partial fulfillment of the requirements for the degree of:

Magíster en Ingeniería de Sistemas e Informática

Advisor:

Fabio Martínez Carrillo

Ph.D in Systems and Computer Engineering

Co-advisor:

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERÍAS FÍSICOMECÁNICAS

ESCUELA DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

BUCARAMANGA

2021



ACKNOWLEDGEMENTS

The author expresses his acknowledgement:

Mainly to Professor Fabio Martínez Carrillo for being a great academic and professional guide,

for his patience, dedication, effort, guidance and teamwork. In general, to the research group

Biomedical Imaging, Vision and Learning Laboratory for supporting most of the technical and

theoretical component needed. Thanks also to all the colleagues who in some way made possible

the achievements that today are consolidated in this document.

Special thanks to my couple, family members and parents who have been unconditional and

important during this process and deserve to receive all the credits.

Finally, thanks to the Escuela de Ingeniería de Sistemas e Informática (EISI) and the Univer-

sidad Industrial de Santander (UIS) and other staff who made this process possible.

3



CONTENTS

page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1. SIGN LANGUAGE RECOGNITION (SLR) . . . . . . . . . . . . . . . . . . . 15

2. RESEARCH PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. PROPOSED APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1. An Attention-based Encoder-Decoder for Sequential Motion Learning . . . . . . . . 22

4.1.1 A First Motion and Structural Encoder Level . . . . . . . . . . . . . . . . . . . . 24

4.1.2 A Second Motion and Structural Encoder Level . . . . . . . . . . . . . . . . . . . 25

4.1.3 A Motion Attention-based Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. CoL-SLTD: A New Structured Translation Dataset . . . . . . . . . . . . . . . 30

5.1. Datasets for Sign Language Translation . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Proposed Colombian Sign Language Translation Dataset . . . . . . . . . . . . . . 31

6. EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1. Sign Language Datasets and Evaluation Schemes . . . . . . . . . . . . . . . . . . . 36

6.1.1 Evaluation Scheme on CoL-SLTD . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.2 RWTH-PHOENIX-Weather 2014T Dataset . . . . . . . . . . . . . . . . . . . . . 36

6.2. Proposed Architecture Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. EVALUATION AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1. Results on CoL-SLTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4



7.2. Baseline Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1 Evaluation and results over CoL-SLTD: . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.2 Evaluation over RWTH-Phoenix Dataset: . . . . . . . . . . . . . . . . . . . . . . 46

8. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 52

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5



LIST OF FIGURES

page

Figure 1. Pipeline of the proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2. Structured SL Features Volumes extractor. . . . . . . . . . . . . . . . . . . . . 26

Figure 3. Proposed Colombian Sign Language Dataset . . . . . . . . . . . . . . . . . . . 33

Figure 4. CoL-SLTD sign example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 5. Sentence type from a motion point of view . . . . . . . . . . . . . . . . . . . . 35

Figure 6. Preliminary parameter validation on CoL-SLTD . . . . . . . . . . . . . . . . . 43

6



LIST OF TABLES

page

Table 1. Sign language translations datasets . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 2. CoL-SLTD evaluation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3. Motion evaluation using GRU units on CoL-SLTD . . . . . . . . . . . . . . . . 41

Table 4. Motion evaluation using LSTM units on CoL-SLTD . . . . . . . . . . . . . . . . 42

Table 5. Structural componentes evaluation on CoL-SLTD . . . . . . . . . . . . . . . . . 44

Table 6. State of the Art comparison on CoL-SLTD . . . . . . . . . . . . . . . . . . . . . 45

Table 7. State of the Art comparison on RWTH-PHOENIX . . . . . . . . . . . . . . . . 46

7



LIST OF APPENDICES

page

Appendix A. Academic Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendix B. Informed Consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8



ABSTRACT

TITLE: STRUCTURED AND CONTINUOUS VIDEO SIGN LANGUAGE RECOGNITION *

AUTHOR: JEFFERSON DAVID RODRÍGUEZ CHIVATÁ **

KEYWORDS: SIGN LANGUAGE TRANSLATION, CONTINUOUS SIGN RECOGNITION, SIGN LAN-

GUAGE, SHAPE AND MOTION PATTERNS.

DESCRIPTION: Sign languages are the main mechanism of communication in the deaf community. These

languages are highly variable in communication, with divergence in gesture representation, sign configuration

and multiple variants due to cultural aspects. Current methods for automatic and continuous sign translation

include deep learning models that encode the visual representation of signs. Despite significant advances, the

convergence of these models requires huge amounts of data to exploit the sign representation, resulting in very

complex models. This fact is associated with increased variability, but also with the limited exploration of

many components of language that support communication. For example, gestural movement and grammatical

structure are fundamental components in communication, which can address misinterpretations of visual and

geometric signs during video analysis. This paper introduces a compact architecture for sign-to-text translation

that explores motion as an alternative to support sign translation. Such a characterization is robust to appearance

variance with support for geometric variations. In addition, this work proposes two modules that provide

robustness to the structural component directly reflected in the translation. The proposed architecture was

evaluated on a own Colombian Sign Language dataset built specifically for this task (CoL-SLTD) dedicated to

the study of motion and sentence structure, also on a state-of-the-art dataset called RWTH-Phoenix-weather.

From the CoL-SLTD dataset, the best configuration reports a BLEU-4 score of 35.81 on the test set. As for

the RWTH-Phoenix-weather, the proposed strategy achieved a BLEU-4 score in test set of 4.65 improving the

results in similar reduced conditions.

* Research work

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería de Sistemas e Informática. Advisor: Fabio
Martínez Carrillo, Ph.D. Co-advisor:
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RESUMEN

TÍTULO: RECONOCIMIENTO ESTRUCTURADO Y CONTINUO DE SIGNOS EN LA LENGUA DE

SEÑAS REGISTRADOS EN VIDEO. *

AUTOR: JEFFERSON DAVID RODRIGUEZ CHIVATÁ **

PALABRAS CLAVE: RECONOCIMIENTO CONTINUODE SIGNOS, LENGUADE SEÑAS, PATRONES

DE FORMA Y MOVIMIENTO, RECONOCIMIENTO ESTRUCTURADO.

DESCRIPCIÓN: Las lenguas de señas son el principal mecanismo de comunicación en la comunidad sorda.

Estas lenguas son muy variables en la comunicación, con divergencias entre la representación de los gestos, la

configuración de los signos y múltiples variantes debido a aspectos culturales. Los métodos actuales para la

traducción automática y continua de signos incluyen modelos de aprendizaje profundo que codifican la repre-

sentación visual de los signos. A pesar de los importantes avances, la convergencia de estos modelos requiere

enormes cantidades de datos para explotar la representación de las señas, lo que da lugar a modelos muy comple-

jos. Este hecho se asocia a la mayor variabilidad, pero también a la escasa exploración de muchos componentes

del lenguaje que sustentan la comunicación. Por ejemplo, el movimiento gestual y la estructura gramatical son

componentes fundamentales en la comunicación, que pueden hacer frente a interpretaciones erróneas de los sig-

nos visuales y geométricos durante el análisis del vídeo. Este trabajo introduce una arquitectura compacta para

la traducción de señas a texto que explora el movimiento como alternativa para apoyar la traducción de signos.

Dicha caracterización resulta robusta a la varianza de la apariencia con apoyo a las variaciones geométricas.

Además, este trabajo propone dos módulos que aportan robustez al componente estructural reflejado directa-

mente en la traducción. La arquitectura propuesta se evaluó en un conjunto de datos propio de lengua de señas

colombiana construido específicamente para esta tarea (CoL-SLTD) dedicado al estudio del movimiento y de

la estructura de las oraciones, también en un conjunto de datos del estado del arte llamado RWTH-Phoenix-

weather. Del conjunto de datos CoL-SLTD, la mejor configuración reporta una puntuación BLEU-4 de 35.81 en

el conjunto de pruebas. En cuanto al RWTH-Phoenix-weather, la estrategia propuesta alcanzó una puntuación

BLEU-4 en prueba de 4.65 mejorando los resultados en condiciones reducidas similares.

* Trabajo de investigación

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería de Sistemas e Informática. Director: Fabio
Martínez Carrillo, Ph.D. Codirector:
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INTRODUCTION

Sign language (SL), a visual-gesture based system, is the main mechanism of communication

for the Deaf community, i.e., the primary language alternative for ∼ 466 million people with

hearing loss, of whom only 17% use a hearing aid 1. Like any natural language, SL around

the world reports many variants due to cultural and regional changes, with more than 300 of-

ficial languages 2. Each of these languages has its own grammar, lexicon, and multiple ways

to represent words, concepts, and expressions through isolated or composed gestures. Nowa-

days, the main reason for deficiency in the inclusion of the Deaf community in society is the

lack of knowledge of SL, leading to many limitations in access to services, which in most cases

is totally null for this population. These complicated facts are mainly related to the absence

of interfaces that easily translate from deaf languages to spoken or written languages. Even

considering methodologies that focus on a specific regional SL, the learning and modeling of SL

remain quite challenging due to marked variability of gestures and the multiple modifications

that could have any expression during the communication. Thus, nowadays it is essential, but

challenging to develop technological support for this automatic translation.

Technically, SL is represented as a set of visual spatio-temporal gestures structurally connected,

known as glosses, which can be represented in their written form through fundamental commu-

nication units. These communication components can represent simple words, expressions, and

phrases with complex grammatical structures or even complete concepts 3. Therefore, it is a

1 WHO Media centre. Deafness and hearing loss. English. Visited 28-April-2020. World Health Organization,
2020.

2 WFD Media centre. Our Work. English. Visited 28-April-2020. Word Federation of the Deaf (WFD), 2020.

3 William C Stokoe. “Sign language structure”. In: Annual Review of Anthropology 9.1 (1980), pp. 365–390.
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challenge to automatically understand the visual-manual utterances of the articulators. Addi-

tionally, these glosses can be developed in different video lengths, and entail non-linear temporal

sign relationships.

In the literature, several automatic SL recognition (SLR) have been proposed ranging from

classical naive gesture recognition strategies to more sophisticated frameworks that deal with

continuous sign language recognition (CSLR). On the one hand, the classical approaches have

mainly been based on hand-craft features that mainly code the appearance of signs to find iso-

lated and global word correspondences over lexical and non-lexical isolated signs (ISLR) 4,5,6.

These approaches, however, lose the temporal capability to recognize gestures in more real-

istic scenarios. Alternatively, approaches based on Hidden Markov Models (HMMs) 7,8 have

been proposed to model sign changes during sequences to continuously recognize signs (CSLR).

These approaches exploit appearance and shape sign observations that together with tempo-

ral modeling find a sign-text correspondence9. Nevertheless, these approaches are based on

the hypothesis of an almost consecutive temporal dependence on signs, which leads to a false

4 Morteza Zahedi, Daniel Keysers, and Hermann Ney. “Appearance-based recognition of words in american
sign language”. In: Iberian Conference on Pattern Recognition and Image Analysis. Springer. 2005, pp. 511–
519.

5 Mahmoud M Zaki and Samir I Shaheen. “Sign language recognition using a combination of new vision based
features”. In: Pattern Recognition Letters 32.4 (2011), pp. 572–577.

6 Jefferson Rodríguez and Fabio Martínez. “A Kinematic Gesture Representation Based on Shape Difference
VLAD for Sign Language Recognition”. In: International Conference on Computer Vision and Graphics.
Springer. 2018, pp. 438–449.

7 Helen Cooper et al. “Sign language recognition using sub-units”. In: Journal of Machine Learning Research
13.Jul (2012), pp. 2205–2231.

8 Oscar Koller et al. “Deep Sign: Enabling Robust Statistical Continuous Sign Language Recognition via
Hybrid CNN-HMMs”. In: International Journal of Computer Vision 126 (2018), pp. 1311–1325.

9 Oscar Koller et al. “Deep sign: hybrid CNN-HMM for continuous sign language recognition”. In: Proceedings
of the British Machine Vision Conference 2016. 2016.
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assumption for SL. Currently, more sophisticated learning frameworks have allowed finding

complex correlations between raw video volumes and corresponding glosses. In such strategies,

deep convolutional features have been used to represent visual signs that, together with recur-

rent neural networks, exploit more complex temporal relationships 10,11,12. These approaches

have represented a significant advance in the introduction of sign language translation (SLT)

systems in real-life scenarios. The neural encoder-decoder architecture introduced in SLT by

Camgoz et. al.13 and used in many recent works 14,15 has presented the most promising results.

Such architectures, nevertheless, require complex hyper-parametric schemes due to insufficient

feature description when using raw appearance and shape information, requiring high compu-

tational capabilities. Moreover, these approaches, so far, lose a fundamental component of SL:

the sign’s motion coherence.

Motion is a fundamental SL primitive that defines much of the relationship among glosses

and may even redefine the meaning of many communication segments. In terms of automatic

processing, this motion SL component could be the key to deal with variance in gestures,

reducing complexity in representation models. However, this motion component is still poorly

10 Runpeng Cui, Hu Liu, and Changshui Zhang. “Recurrent convolutional neural networks for continuous sign
language recognition by staged optimization”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 7361–7369.

11 Necati Cihan Camgöz et al. “SubUNets: End-to-End Hand Shape and Continuous Sign Language Recogni-
tion”. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 3075–3084.

12 ShuoWang et al. “Connectionist Temporal Fusion for Sign Language Translation”. In: 2018 ACM Multimedia
Conference on Multimedia Conference. ACM. 2018, pp. 1483–1491.

13 Necati Cihan Camgoz et al. “Neural Sign Language Translation”. In: CVPR 2018 Proceedings (2018).

14 Sang-Ki Ko et al. “Neural Sign Language Translation based on Human Keypoint Estimation”. In: arXiv
preprint arXiv:1811.11436 (2018).

15 Dan Guo et al. “Hierarchical Recurrent Deep Fusion Using Adaptive Clip Summarization for Sign Language
Translation”. In: IEEE Transactions on Image Processing 29 (2019), pp. 1575–1590.
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explored in the SL domain, and its use is only implicitly included in semantic and relational

processing. Therefore, it is necessary to review this component of the SL and try to understand

how the motion interaction of signs is produced.

The main contribution of this research is an in-depth analysis of motion modeling, at different

levels and under different coding schemes, to represent sign languages. In summary, the specific

contributions are:

• A structured encoder-decoder deep strategy that fully exploits motion information and

structural relations in sentences.

• A 3D convolutional optical flow representation that captures relevant kinematic features

from video sign. This motion representation, coded in the first module of the encoder-

decoder architecture, was integrated and learned together with the translation architec-

ture. In this way, only salient motion primitives related to signs are recovered from video

sequences.

• An analysis and evaluation of the gestural attention layers types by determining the main

spatio-temporal descriptors correlated with spoken language.

• A new structured SLT dataset dedicated to exploring temporal structure and motion

information and their roles in communication. The set of phrases and glosses, were selected

to analyze the structure and motion dependencies in the sentences, therefore, signers

naturally describe the motion using different articulators during communication. The

dataset is open to the scientific community.

The proposed approach was fully evaluated w.r.t. translation capability, on two different

datasets: Our motion-dedicated sign dataset from Colombian SL (Col-SLTD) and also in the

RWTH-Phoenix state-of-the-art dataset. Also, the proposed approach was compared with a

state-of-the-art strategy, based on the deep encoder-decoder architecture.

14



1. SIGN LANGUAGE RECOGNITION (SLR)

Sign language recognition is a research area responsible for studying, analyzing, processing,

and modeling sign language to build systems to aid the interaction and communication of the

Deaf community. SLR has been addressed from many approaches in the literature, which can

be grouped according to the complexity. A primary group has been dedicated to the isolated

sign language recognition (ISLR) that includes the alphabet, finger, and word individual char-

acterization. Other groups have a focus on continuous sign language recognition (CSLR) that

includes more complex sentence interactions to give a structured translation of a particular set

of words. More recently new learning architectures have allowed approaching continuous sign

language translation (SLT) that take into account more historical sentence relationships but

also with a non-linear nature, and even can predict and generate feature signs.

The proposed methods in each of these areas generally try to exploit the main components of

language such as manual signs, the shape, the position and the movement of hands, but also

non-manual gestures such as facial expression and body posture, which can modify and com-

plement the meaning from manual signs. Regarding the methods, a timeline can be followed,

starting with strategies based on "hand-craft" features that provide a specific solution to each

sign modeling problem. For instance, seminal ISLR works were proposed from features ex-

tracted from appearance 4,5 but with notable limitation on sign description, being also sensible

to illumination changes. Other works characterized the signs as a decomposition of fundamental

kinematic component,16, or by describing the signs as a composed representation obtained from

optical flow6. These approaches, however, lose the temporal capability to recognize gestures in

16 Konstantinos G Derpanis, Richard P Wildes, and John K Tsotsos. “Definition and recovery of kinematic
features for recognition of American sign language movements”. In: Image and Vision Computing 26.12
(2008), pp. 1650–1662.
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more realistic scenarios. Alternatively, approaches based on Hidden Markov Models (HMMs)
7,17,18 have been proposed to model sign changes during sequences to continuously recognize

signs. These approaches have been useful to understand the importance of temporal relation-

ships between signs, but their assumptions, most of the time, prove insufficiency in modeling

long-term temporal dependencies of language.

Current advances in comprehensive and deep learning approaches, together with robust convolu-

tional representations, have allowed for going beyond traditional recognition tasks. For instance,

robust visual representations obtained from convolutional neural networks (CNN) have been in-

tegrated into HMMs, to achieve a more robust and continuous recognition of SL9,19,8. These

CNN-HMM approaches improved the visual description due to the discriminatory CNN prop-

erties, allowing a better temporal prediction of the corresponding sign sequences. However,

these approaches are still based on Markov’s assumptions, modeling only neighborhood sen-

tence units, which have been proved to be insufficient to capture whole temporal connections

between gestures. As a consequence, some approaches have dedicated their efforts to model non-

consecutive sign relationships, by implementing recurrent neural networks (RNN)10,20. These

approaches learn long-term dependencies, using for instance Long Short-Term Memory (LSTM)

and Gated Recurrent Units (GRU), from a large amount of matching information between sign

17 Oscar Koller, Jens Forster, and Hermann Ney. “Continuous sign language recognition: Towards large
vocabulary statistical recognition systems handling multiple signers”. In: Computer Vision and Image
Understanding 141 (2015), pp. 108–125.

18 Dan Guo et al. “Online early-late fusion based on adaptive HMM for sign language recognition”. In: ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM) 14.1 (2017), pp. 1–18.

19 Oscar Koller, Sepehr Zargaran, and Hermann Ney. “Re-sign: Re-aligned end-to-end sequence modelling
with deep recurrent cnn-hmms”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 4297–4305.

20 Yuancheng Ye et al. “Recognizing American Sign Language Gestures from within Continuous Videos”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018,
pp. 2064–2073.
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and text. These approaches, however, require sophisticated alignment strategies between signs

and corresponding glosses. To overcome these limitations, a Connectionist Temporal Classifi-

cation loss function (CTC) was proposed to find the best dependencies of text sentences with

visual sequences, being independent of the spatial sign distribution21. From CTC "Sequence-to-

sequence" learning strategies were introduced with the main advantage to operate over weakly

labeled sign videos11,12. However, CTC has almost no inference on visual sign modeling and

both the structure and grammar of utterances are poorly exploited. Based on CTC limita-

tions, advanced strategies have been faced with SLT by using an encoder-decoder architecture

with RNN units between signs and text13. This scheme includes a CNN video representation

that, together with temporal attention mechanisms, align both modes of language, achieving

translations with structural and grammatical coherence. Similar works have proposed a hier-

archical attention and a hierarchical LSTM Encoder module that combines a 3D-CNN video

description to achieve sub visual words, words, and video clips translation22,23. However, clip-

level processing limits complex sign recognition and verbal agreements, related to the sentence

structure, which depends on the entire context. To cover such limitations, Guo et al.24 used

dense temporal convolutions to extract short-term relationships and long-term dependencies.

Also, Song et al. 25 proposed to learn global and local dependencies from a Bidirectional LSTM

21 Alex Graves et al. “Connectionist temporal classification: labelling unsegmented sequence data with recurrent
neural networks”. In: Proceedings of the 23rd international conference on Machine learning. ACM. 2006,
pp. 369–376.

22 Jie Huang et al. “Video-based sign language recognition without temporal segmentation”. In: Thirty-Second
AAAI Conference on Artificial Intelligence. 2018.

23 Dan Guo et al. “Hierarchical lstm for sign language translation”. In: Thirty-Second AAAI Conference on
Artificial Intelligence. 2018.

24 Dan Guo et al. “Dense temporal convolution network for sign language translation”. In: Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI Press. 2019, pp. 744–750.

25 Peipei Song et al. “Parallel Temporal Encoder For Sign Language Translation”. In: 2019 IEEE International
Conference on Image Processing (ICIP). IEEE. 2019, pp. 1915–1919.

17



and temporal correlation modules. These methods, nevertheless, fail in structural modeling due

to the use of the CTC loss function, typically used for independently aligned word sequences.

A more detailed sign grammatical structure was explored from a multi-classification task that

recognizes isolated words in sentences, while an n-gram module classifies sub-sentences26. This

approach mitigates the error sentence propagation but the architecture remains limited by the

vocabulary size. As an alternative to these appearance-based architectures, Ko et al.14 intro-

duced a strategy to model signs as randomly selected human body poses from 124 key-points

and Guo et al.15 proposed a hierarchical scheme of two different streams of information to

describe signs and capture directional and positional verbs. These approaches prove the im-

portance of incorporating a complementary source of sign information by adding skeletons as

input to encoder and decoder modules, respectively. Despite current encode-decoder advances,

the architectures require a huge quantity of parameters to learn sign representation, which re-

sults in complex computational approaches. As an alternative, motion processing can reduce

architecture complexity and contribute to temporal sign modeling.

26 Chengcheng Wei et al. “Deep Grammatical Multi-classifier for Continuous Sign Language Recognition”. In:
2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). IEEE. 2019, pp. 435–442.
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2. RESEARCH PROBLEM

The deaf community, today, faces great challenges of inclusion, mainly related to the absence of

mechanisms or interfaces that allow the direct translation of sign language into written and/or

spoken languages. This problem is even more critical, considering that each country has its

own sign language, and that even regionally these languages can vary drastically. Therefore, it

is essential to create tools that support translation by decoding signs into sentences of a given

spoken language. However, sign languages, like any natural language, have a high variability

in their linguistic units and a richness of multiple signs to represent similar concepts. Also, the

multiple grammatical, syntactic and lexical rules contain complex spatial and temporal correla-

tions, which also admit variations during communication. Therefore, the coding and modeling

of the linguistic structures represented in a set of signs entails a challenge for the development

of systems that support automatic translation. Specifically, there are still challenges for the

characterization of visual and motion primitives that allow the compaction of sign representa-

tion. On the other hand, there are still reported limitations for the structured and continuous

recognition of language, so it is necessary a better coding and modeling of implicit temporality

during communication.

Research Question

How contribute temporal, shape and movement patterns to the structured and continuous recog-

nition of signs in sign language recorded on video?

19



3. OBJECTIVES

General Objective

To propose a computational method for the structured and continuous recognition of signs in

sign language using temporal shape and motion patterns on video.

Specific Objectives

• To select a statistically significant set of videos containing continuous signs of a specific

sign language.

• To encode visual features of shape and motion in temporal patterns that represent the

signs of sign language.

• To develop a translation architecture that approaches the continuous and structured recog-

nition of signs in sign language.

• To evaluate the strategy developed in the selected set of video signs.

20



4. PROPOSED APPROACH

In recent years, the emerging neural architectures have allowed the analysis and processing

of sequential information, providing new representation to very complex tasks, such as the

translation of sign language, from video to text. Today, the most remarkable approaches for

translation use "Sequence to Sequence" architectures27. The main objective of these archi-

tectures is to transform the input image sequence (sign representation) into a text sequence

translation. Let the sign video x = (x1, x2, . . . , xt), with t frames, and representing target se-

quence as y = (y1, y2, . . . , ym) ∈
∑M

tgr, over a vocabulary of M words, the base probabilistic

model of seq2seq is solved, as:

P (y|x) chain rule
=

m∏
j=1

P (yj|yj−1, x), (1)

So, the the grammatical and structural dependencies of the translation depends on the condi-

tional probability P (yj|yj−1, x) and the chain rule statement refers to the recurrent relationship

present in the language model. To solve this statement, this work introduces a based encoder-

decoder model dedicated to extracting and correlating motion patterns with the grammatical

structure of signs. A general pipeline of the proposed approach is illustrated in figure 1. The

main concepts and components of the architecture are explained in the following subsections.

Part of the content of this chapter is in the second round of evaluation in the international

journal IET Computer Vision (see Appendix A).

27 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural networks”. In:
Advances in neural information processing systems. 2014, pp. 3104–3112.
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Figure 1. Proposed structured SLT architecture: Optical flow video is the input to the network. The
encoder processes at low level extracting structured kinematic descriptors. Then, at a higher level, the
Encoder sequentially processes the descriptors. Finally, the descriptors are passed to the Decoder to
generate the translation.

4.1. An Attention-based Encoder-Decoder for Sequential Motion Learning

Signs are articulated motions, drawn on a spatio-temporal canvas, that follow a temporal coher-

ence to communicate an idea28,29. Motion is a fundamental, but poorly analyzed, a component

28 Scott K Liddell and Robert E Johnson. “American sign language: The phonological base”. In: Sign language
studies 64.1 (1989), pp. 195–277.

29 Wendy Sandler and Diane Lillo-Martin. “Natural sign languages”. In: The handbook of linguistics (2001),
pp. 533–562.
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of sign language, which results communicative by itself and determines transitions between ges-

tures contributing to the grammatical structure of language. Therefore, we have designed an

architecture based on the encoder-decoder model to include the kinematic component in the

structural and temporal modeling of the signs. Initially, motion fields (optical flow) were cal-

culated on the RGB sequence to process the temporal motion dependencies directly. Then, the

first part of the Encoder generates latent feature motion vectors Zn from a low level 3D-CNN

architecture that computes robust kinematic responses. Also, a self-attentional module was

designed to include long-term structural relations that facilitate the sequential learning in the

second part using a 2-layer RNN that propagate and represent the global temporal behavior of

the sequence. In this stage, was also used standard self-attention modules to refine the temporal

RNN descriptions of the signs. Finally, the Decoder uses these representations to estimate the

recurrent term in equation 4, by associating the motion sign representation vectors c(l)(x) with

the language translation model in multiple iteration steps. Namely, a set of 2 recurrent neural

networks (RNNs) are used to process such sequences. In detail, for each step j, the Decoder

estimates the probability P (y|x) in 4 as:

m∏
j=1

P (yj|yj−1, x) = g(yj|sj−1, yj−1, c(l)(x)), (2)

where sj−1 is the final hidden state of the RNN Decoder, g(.) is a Fully Connected Deep Net-

work (FCNN) with softmax activation and l = {1, 2} is the RNN index Decoder layer. The

g(yj|sj−1, yj−1, c(l)(x)) is the estimated word distribution over all M words in the vocabulary.

From recurrent methodology, the decoder learns to predict the next most likely word yj, con-

ditioned by sign language encoder motion representations c(l)(x) and the previous estimated

words y{j−1:1}. The Decoder can be codified from different alternatives such as LSTM and GRU
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modules, that compute the hidden states through the sequence30,14. Additionally, an attention

temporal model is herein included in the Decoder to highlight local temporal patterns that

mainly contribute to word translation. This mechanism allows finding complex higher-order

temporal relationships between the sequence modes.

4.1.1. A First Motion and Structural Level: Motion Structured Feature Volumes

(SFV). A low-level structural motion shape modeling is introduced to code visual sign

sequences from a 3D-CNN representation of flow velocity volumes. This representation works

as a low-level motion processing, capturing the main dynamic sign patterns without losing

the spatial representation. Furthermore, to model the structure, we designed a self-attention

module that operates on each CNN response and introduces structural relations present in each

filter. In this work, two main assumptions were considered to satisfy proper SL modeling: 1)

a motion representation able to capture exaggerated and abrupt sign motions, typically found

in daily language and 2) the capability to code dynamic patterns with long-term dependencies

during the sequence. As a base, a dense optical flow that considers large coherent motion

displacements was herein used31. This optical flow facing typical assumptions of very small

displacements to recover proper smoothed fields. The captured flow field volume result highly

described, keeping spatial coherence and aggregating motion information patterns as a low-

level representation. Large displacement in sign representation is very valuable because some

exclamation marks are represented by sharp motions and almost all signs have different velocities

and accelerations. In detail, this module manly codes short-term relations by processing the

optical flow sequences with successive 3D convolutions, capturing the most relevant features of

the sign. This hierarchical scheme obtains a volume Vr ∈ Nt′×h′×w′×f ′ with reduced t′, h′, w′

30 Necati Cihan Camgoz et al. “Neural sign language translation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 7784–7793.

31 Thomas Brox and Jitendra Malik. “Large displacement optical flow: descriptor matching in variational
motion estimation”. In: IEEE transactions on pattern analysis and machine intelligence 33.3 (2010), pp. 500–
513.

24



input dimensions and multiple non-linear kinematic responses (f ′). The Vr volume describes

the motion information at a low-level from different independent operations. Also, for modeling

the long-term dependencies and capture the complete context of the sign, we apply, on each

kinematic response f ′, self-attention32, along the time axis t′, in an independent and parallel

way. As a result, we obtain the square matrix M ′
b ∈ Nt′×t′ which codes the correlation among

frames in the same feature filter f ′b. The self-attention computes the weights matrix through

the independent projections K (keys) and Q (queries) of the volume V r in a latent space of

dimension p as follows:

M ′
b = softmax(

QVrK
>
Vr√
p

) . (3)

The scaling factor 1√
p
= 8 for p = 64 avoids small gradients in softmax 32 and the projections

are parameter matrices WQVr and WKVr ∈ Nh′w′×p. To include this structural information we

apply frame feature context, defined for each step t′i of the filter f ′b as:

f ′bt′i =
t′∑
l=1

f ′bt′iM
′
b
li . (4)

This frame feature context weights each slice f ′bt′i ∈ Nh′×w′ to include its structural relationship

with other slices in the filter. This motion structural representation progressively computes

linear transformations, projecting the final information on a set of d− dimensional Zn high level

descriptors, where n indicates the number of filters in the last convolutional layer. Figure 2

shows in detail the module with some additional normalization and activation layers.

4.1.2. A Second Motion and Structural Level: Recurrent Motion Structured Fea-

ture Vectors (RSFV). Sign language sequences have very complex compositions that de-

pend, among other things, on particular grammatical compositions, signers’ habits, or regional

32 Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing systems.
2017, pp. 5998–6008.
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Figure 2. Structured SL Features Volumes extractor: This proposed module extracts low-level spatio-
temporal features volumes through successive 3D-CNN. The SFV attention module takes each resulting
convolution and applies self-attention on the whole volume by calculating an attention matrix for each
filter in an independent and parallel way. Each feature frame is then related in different proportions to
the other frames according to the temporal relationship between them.

compositions. For instance, interrogative sentences have a strong non-linear correspondence

between the beginning and the end of the sentence. A motion encoder is then designed to com-

pute temporal non-linear correlations among the computed motion descriptions. A recurrent

multi-layer architecture was then implemented to propagate the structural shape-motion repre-

sentation (Zn). This architecture allows describing the global temporal behavior of a particular

video sequence. A total of two bi-directional network layers (BiRNN) form the architecture,

which together obtains a high-level temporal sign description by computing hidden states in for-

ward and backward directions. At the top of this representation, a single standard self-attention

layer was introduced to refine the captured structural relationships. Detailed, in first layer, the

deep motion features Zn = {z1, z2 . . . zn}, are sequentially propagated by a set of recurrent
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units, which compute the states:
−→
h

(1)
n = q1(zn,

−→
h

(1)
n−1). In this layer, a resulting mid-level rep-

resentation captures first temporal dependencies, computing the recurrent units in forward and

backward directions, with the resulting concatenated vectors described as: [
−→
h

(1)
1:n;
←−
h

(1)
n:1]. An

additional second layer was used to recover higher level propagation, taking as input the set

of resultant vectors from the first layer. Specifically, a second layer of BiRNN in our proposed

approach is designed to capture complex temporal correspondences for more consistent trans-

lations. Then, each recurrent unit propagate temporal information as:
−→
h

(2)
n = q2(

−→
h

(1)
n ,
−→
h

(2)
n−1).

In this layer, the propagation is also performed into a bidirectional scheme, with the resulting

concatenated vectors: [
−→
h

(2)
1:n;
←−
h

(2)
n:1] where (q1, q2) are the activation functions. The Decoder uses

the last Encoder output vectors h(l)n = c(l)(x) as initialization vectors for each Decoder layer l. It

should be noted that in our Encoder representation, the Decoder receives both layer representa-

tion, which enriches the description of motion sign translation and helps to the text generation

process. Also, to update the final higher hidden states h(2)1:n, we propose to include a self-attention

layer to refine the relationships between these resulting recurrent vectors. Therefore, the new

hidden states, are calculated by the following matrix way operation:

h
(2)
1:n = softmax(

QhK
>
h√

pn
)Vh , (5)

where the dimension of the latent space pn is the same as the hidden vectors h(2)n ∈ R512 and

the projections are parameter matrices WQh , WKh and W Vh ∈ Npn×pn . For this self-attention

the Vh (values) matrix is the result of a third projection of the hidden vectors.

4.1.3. A Motion Attention-based Decoder: Finally, the Decoder module predicts se-

quentially a set of {y1, y2, . . . , ym} words given the set of signs recorded in a video sequence.

At this level, sign motion units are represented by the encoder outputs (h
(1)
n , h

(2)
n ), computed

at each BiRNN layer. These observed encoder motion vectors describe kinematic sign history

at different time dependence levels. Then, the decoder could be modeled by decomposing the

joint probability P (y|x) in sequential conditional probabilities as in 4.1. This conditional prob-
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ability is solved by integrating an unidirectional recurrent network with a motion attention

mechanism. The network herein considered has a total of two layers. From such integration,

it was possible to relate both language modes, i.e., video signs and text. The unidirectional

networks layers preserve encoder recurrent unit dimensions, allowing to initialize the hidden

states (s(1)0 , s
(2)
0 ) with (c(1)(x), c(2)(x)). Also, the attention mechanisms acts as a complementary

information, at each step j, with only dependency with final descriptors c(l)(x). Then, the A(l)

modules associate motion-encoder representations with the associated input word at different

representation levels. Each motion attention units A(l)
j−1, at a particular layer l and step j − 1,

relates all Encoder hidden states h(l)1:n to the hidden representations of each input word in the

Decoder through a new context vector c(l)j−1(x). This relationship is defined as the concatenation

of context vectors and hidden states, as A(l)
j−1 = [c

(l)
j−1(x); s

(l)
j−1]. In this case, the context vector

c
(l)
j−1(x) computes the weights of all encoder motion vectors h(l)1:n w.r.t each j − 1 input word,

which could be expressed as:

c
(l)
j−1(x) =

n∑
i=1

γlj−1,ih
l
i (6)

where γlj−1,i are the attention weights, that define the relevance of a particular encoder input

descriptor Zi to generate the yj word. From this mechanism, it is possible to capture global

and sequential motion patterns rather than isolated information based on hidden states. These

weights are calculated by comparing the decoder hidden state slj−1 against each encoder output

hli as:

γlj−1,i =
exp(sl>j−1Whli)∑n

i′=1 exp(s
l>
j−1Whli′)

(7)
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where sl>j−1Whli is the general scoring function33 and W are the learned parameters used to

match the temporal descriptors with the generated words. The hidden states of the Decoder

are then computed as follows:

s
(1)
j−1 = q3(ej−1, s

(1)
j−2) (8)

s
(2)
j−1 = q4(A

(1)
j−1, s

(2)
j−2) (9)

where ej−1 = Embedding(yj−1) and (q3, q4) are the activation functions. The final prediction

word yj is given by yj = softmax(WAA
(2)
j−1), with WA as the learned parameters of the fully

connected layer. The embedding layer transforms the one hot encoding words of the written

language into a dense representation, which allows to relate words with semantic components.

For each predicted word yj, the decoder uses the previous word and hidden states (yj−1, s
l(1,2)
j−1 ) to

update the next hidden states sl(1,2)j . Then, to start the sentence generation process, the y0 word

is the special token < s > that indicates the beginning of the sentence. Finally, this decoder,

based on two motion attention mechanisms, enables analysis of overall shape motion represen-

tation and highlights main patterns that contribute to a specific word translation. Finally, the

equation 4.1 can be rewritten as follows:

m∏
j=1

P (yj|yj−1, x) = g(yj|sj−1, yj−1, clj−1(x)) (10)

33 Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches to attention-based
neural machine translation”. In: arXiv preprint arXiv:1508.04025 (2015).
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5. CoL-SLTD: A New Structured Translation Dataset

In the literature, both new deep models for SLR and datasets that support these tasks have been

proposed, which together have allowed progress in modeling such challenging tasks. Particularly,

there are few SLT datasets and those available have long sentences, huge variability of sentences,

and words that limit the analysis of additional components of language. Hence, proposing new

datasets that allow the analysis of other components, such as movement or structure, could

be fundamental to understanding how approaches perform sign translation to improve current

performance. This chapter introduces a new sign language translation dataset (CoL-SLTD), that

focus on motion and structural information, and could be a significant resource to determine

the contribution of several language components. This new CoL-SLTD dataset is dedicated

to exploring temporal structure and motion information. The set of phrases and glosses, were

selected to analyze the structure and motion dependencies in the sentences, therefore, signers

naturally describe the motion using different articulators during communication. The dataset

is open to the scientific community. The content of this chapter has been published in Asian

Conference on Computer Vision (ACCV-2020) see Appendix A).

5.1. Sign Language Translation Datasets

In the state of the art, the few datasets public available are limited to carried out an easy

analysis of the grammatical sign structure. For example, RVL-SLLL34 is an American Sign

Language (ASL) dataset that allows to model the recognition of connected linguistic contexts

on short discourses (10 long sentences). This dataset has some limitations mainly related to

the small number of sentences that difficult the structural analysis of diverse expressions. Sim-

34 Aleix M Martínez et al. “Purdue RVL-SLLL ASL database for automatic recognition of American Sign
Language”. In: Proceedings. Fourth IEEE International Conference on Multimodal Interfaces. IEEE. 2002,
pp. 167–172.
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ilarly, the RWTH-BOSTON-104 Database35 has 201 sentences with a wide range of sentences

and structures. However, this dataset reports a reduced number of videos and signers, which

could biases the analysis. In a more linguistically controlled environment, Von et al.36 pro-

posed a private SIGNUM dataset with 780 pre-defined sentences from German Sign Language.

This dataset could be interesting because the sentences were built under strict linguistic rules,

but the private nature limit its exploration on scientific community. The RWTH-PHOENIX-

Weather 2014 dataset translation version30 represents a first large public dataset for SLT with

approximately 8000 videos and a vocabulary of 1066 signs and 2887 words. This dataset was

built in an uncontrolled scenario but its complexity prevents a detailed linguistic analysis and

the language components during communication. Recently, USTC-ConSents is a Chinese lan-

guage dataset with 5000 videos (wit repetition has 25000 samples) of 100 pre-defined sentences

and a lexicon of 178 signs22. The main disadvantage is that its structure varies considerably,

making grammatical analysis difficult. The proposed CoL-SLTD try to preserve the Subject-

Verb-Object structure, expressed as a visual combination of hand shapes, articulator locations

and movements3, with the main goal to study the interdependencies between signs in nega-

tive, interrogative and affirmative utterances. Table 1 shows a quantitative description of the

above-mentioned datasets.

5.1.1. CoL-SLTD Description: Sign language, in general, preserves the structural com-

munication Subject-Verb-Object, expressed as a visual combination of hand shapes, articulator

locations, and movements3. The motion shape information is considered the core of the SL,

allowing, among others, to differentiate signs related to the pose and also to define the verbal

35 Philippe Dreuw et al. “Speech Recognition Techniques for a Sign Language Recognition System”. In: Inter-
speech. ISCA best student paper award Interspeech 2007. Antwerp, Belgium, Aug. 2007, pp. 2513–2516.

36 Ulrich Von Agris and Karl-Friedrich Kraiss. “Towards a video corpus for signer-independent continuous sign
language recognition”. In: Gesture in Human-Computer Interaction and Simulation, Lisbon, Portugal, May
(2007).
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Table 1. Summary of sign language translation datasets.

Dataset Videos Sentences Signers Lexicon

BOSTON-104 201 113 3 104
RVL-SLLL 140 10 14 104
SIGNUM 780 780 25 450
RWTH-PHOENIX-T 8257 - 9 1066
USTC-ConSents 25000 100 50 178
CoL-SLTD (ours) 1020 39 13 ∼ 90

agreement in the sentences37. For instance, in American SL, the expression of "I give You" has

a similar geometrical description that "You give her", the biggest difference is given by motion

direction. Also, while the handshapes represent noun classes, the combination with motion

patterns could represent associated verbs and complete utterances38.

This work also presents an SLT dataset that focuses efforts on capturing well-formed utterances

with structural kinematic dependencies, allowing further analysis of this fundamental linguistic

component. To the best of our knowledge, this is the first dataset dedicated to quantify and

exploit motion patterns to analyze their correspondence with the sentence structures. The

proposed dataset incorporates interrogative, affirmative, and negative sentences from Colombian

Sign Language. Furthermore, this dataset includes different sentence complexities such as verbal

and time signs that define subject and object relationships, such as the phrase: "Mary tells

John that she will buy a house in the future".

In this dataset, the videos were pre-processed and interpreted first into written Spanish, as the

regional equivalence, and then also translated to English equivalence. This dataset also includes

37 Wendy Sandler. “The phonological organization of sign languages”. In: Language and linguistics compass
6.3 (2012), pp. 162–182.

38 Ted Supalla. “The classifier system in American sign language”. In: Noun classes and categorization 7
(1986), pp. 181–214.
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Figure 3. Proposed Col-SLTD: Video sequences were recorded under controlled lighting conditions,
on a green background, different clothes and signers with a wide age range. The first two signers (top
left) are CODAs (children of deaf adults) and interpreters, the rest of the signers are deaf.

signers of different ages to avoid bias in the analysis and to capture a large variability for the

same language. This dataset has been approved by an ethics committee of the Universidad

Industrial de Santander in Bucaramanga – Colombia (see Appendix B for a scanned copy with

the assent of the ethics committee). This approval includes informed consent and participants

authorize the use of this information for the research community. The proposed SLT dataset,

named CoL-SLTD (Colombian Sign Language Translation Dataset), obtains sign expressions

from a markerless strategy using a conventional RGB camera, which facilitates the naturalness

of each sign. Each video sequence was recorded under controlled studio conditions using a green

chroma key background, with lighting conditions, the position of the participants in front of the

camera, and the use of clothing of a different color than the background. In CoL-SLTD, there

are 39 sentences, divided into 24 affirmatives, 4 negatives, and 11 interrogative sentences. Each

of the sentences has 3 different repetitions, for a total of 1020 sentences, which allows capturing

sign motion variability related to specific expressions. Also, the phrases were performed by

13 participants (between 21 to 80 years old), with sentence length between two to nine signs.

Figure 3 illustrates the signers of the proposed dataset. All recorded videos were resized to a

spatial resolution of 448x448 with temporal resolutions of 30 and 60 FPS. Also, the whole set

was centered on the signer removing a lot of background. Videos have an average length of
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Figure 4. Top: CoL-SLTD sign example sequence. Bottom: The corresponding optical flow represen-
tation. This optical flow allows the accurate tracking and large movements codification, typical of sign
language.

3.8± 1.5 seconds and an average number of frames of 233± 90.

CoL-SLTD: The Sign Motion Component: To support the analysis of the motion com-

ponent, a kinematic vector field descriptor was calculated for each video sign. For this purpose,

an optical flow approach with the capability to recover large displacements and relative sharp

motions was selected to capture motion signs descriptions at low or high temporal resolutions31.

Such cases are almost present in any sign, which reports different velocity and acceleration

profiles but are especially observed in the exclamation marks. The resultant velocity field

u := (ux1 , ux2)
T , for a particular frame t is obtained from a variational Euler-Lagrange mini-

mization, that include local and non-local restrictions between two consecutive frames: I(x)t,

I(x)t+1. To capture large displacements, a non-local assumption is introduced by matching

key-points with similar velocity field patterns. This final assumption could be formalized as:

Ea(u) = |gt+1(x+ u(x))− gt(x)|2 where a is the descriptor vector and (g(t), g(t+1)) are the com-

puted velocity patterns in matched non-local regions. The captured flow field volume result

highly described, keeping spatial coherence and aggregating motion information patterns as a

low-level representation. In figure 4 is illustrated an optical flow sequence computed on the
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Figure 5. Motion analysis from optical flow magnitude at frame level: The top left chart compares
the quantity of movement present in each frame for the different sentence categories. The remaining
three figures analyze the amount of movement performed by signers grouped by age in each sentence
type.

RGB images. Also, it is interesting to note in Figure 5 how important sentence patterns are

discovered from the optical flow quantification (motion vector norm in each pixel). For exam-

ple, two big kinematic moments allow identifying affirmative sentences (bottom right). While

in interrogative sentences (top right) the movement peaks are not so marked and conversely

they tend to be constant which means that there is more expressiveness.
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6. EXPERIMENTAL SETUP

6.1. Sign Language Datasets and Evaluation Schemes

For the proposed approach evaluation, the CoL-SLTD was divided into two different splits, which

evaluate two different tasks. Additionally, the validation was performed over a public dataset

named RWTH-PHOENIX-Weather 2014T. The next subsection details the configuration of the

main components during the evaluation.

6.1.1. Evaluation Scheme on CoL-SLTD: Two different evaluations are proposed over

Col-SLTD. In a first evaluation, a signer independence split aims to evaluate the capability to

translate sequences of signers no seen during training. In this split, a total of 10 signers were

selected for training and 3 signers with different ages for testing. In a second evaluation, the task

should report the capability to generate sentences not seen during training. In this task, a total

of 35 sentences were selected in training and 4 sentences in testing. The words in test sentences

have the highest occurrence in training and the sentences involve affirmations, negations, and

interrogations. Table 2 summarizes the statistics per split.

6.1.2. RWTH-PHOENIX-Weather 2014T Dataset: To exhaustively evaluated the

proposed approach, the state-of-the-art RWTH-PHOENIX-Weather 2014T dataset and the pro-

posed NSLT13 (S2T) architecture was also considered in this work. This dataset record sequences

that correspond to German sign language with a total of 9 signers that explain weather news on

local TV. The vocabulary in such a dataset is composed of 1066 signs that correspond to 2887

words on German spoken language. The dataset is composed of 8257 videos, and the authors

suggest a subset of training with 7096 videos, a dev set with 519 videos, and a test set with 642

sequences. This dataset has widely used on current sign language translation strategies because

of the rich video information together with challenges of variability of signs recorded at each
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Table 2. Statistics of each split proposed for evaluation

SPLIT 1 SPLIT 2
Train Test Train Test

Number of videos 807 213 922 98
Number of signers 10 3 13 13
Number of sentences 24/10/5 24/10/5 22/9/4 2/1/1
Number of signs ∼ 90 ∼ 90 ∼ 90 ∼ 90
Number of words 110 110 110 16

sequence. This work uses the validation schemes proposed by the authors.

6.2. Configuration of the proposed architecture

The main goal of this work is to analyze the motion contribution on sign language translation

and how the proposed deep architecture can recover structural and grammar patterns. Some

preliminary experiments were carried out with a first version of CoL-SLTD and a simplified

"vanilla" version of our architecture. The first version of the CoL-SLTD dataset only has

affirmative sentences that correspond to approximately 50% of the dataset. Regarding the

vanilla approach, it works without self-attention modules. From such experiments, the encoder-

decoder approach was tuned together with hyperparameters to will be extended on complete

experiments. A complete description of the architecture components are described as follows:

• SFV Module: The SFV module is composed of six space-time convolutional layers

followed by three successive fully connected layers. Every filter is obtained from a (3×3×3)

kernel with a stride of 1 for all dimensions. Also, Batch normalization, ReLU activation,

and max pooling operation with a kernel size of (2× 2× 2) with a stride of 2 are applied

to the volumes resulting from the spatio-temporal convolution. The number of kernels

used were {32, 32, 64, 64, 128} and Zn filters, where Zn is a validation parameter. The

structural attention modules were applied only to the last two CNN layers with a dense

layer of 64 units.
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• RSFV Module: For this second module, as mentioned above, we only use two layers of

bidirectional RNNs with tanh recurrent activation functions. Then, to keep the encoder

and decoder fully connected, the first layer has a total of 128 neurons for initial experi-

ments and 256 for finals while for the second layer the total number of neurons is double

respectively. The self-attention layer has the same number of neurons used in the second

RNN layer.

• Decoder architecture: Unlike the Encoder module, the Decoder uses two recurrent

layers in only one direction with tanh activation functions. Each layer has twice the

number of neurons used in its corresponding layer in the Encoder. The input is a 64-

dimensional sparse vector, which is subsequently transformed into a 300-dimensional dense

representation vector by the embedding layer, with masked padding tokens. Also, for all

experiments, we use general attention modules33. Each attention module has a single dense

layer with the same number of neurons defined in each layer of the Decoder ensuring a

fairly compact network.

Model training and learning parameters: The cost function used for training is the fol-

lowing word-level cross entropy:

` = 1−
m∏
j=1

M∑
d=1

p(ydj )p(ŷ
d
j ) , (11)

where p(ydj ) represents the ground truth probability of word yd at decoding step j and M is the

target language vocabulary size. The scheme used to train the architecture was the Teaching

forcing algorithm39 while the optimizer selected was the stochastic gradient descent (with mini-

batches of size 1 because of GPU limitations). For each experiment, a learning rate of 0.0001

was used with a learning rate decay of 0.1 and a dropout of 0.2. The convolutional weight

39 Ronald J Williams and David Zipser. “A learning algorithm for continually running fully recurrent neural
networks”. In: Neural computation 1.2 (1989), pp. 270–280.
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decay was set to 0.0005. The gradient clipping was also used. In initial experiments was fixed a

gradient clipping with a threshold of 5 and 10 epochs, while for the final experiment was fixed

to 20 epochs.

Metrics for evaluation: A total of three metrics are used to evaluate model performance,

namely: BLEU score40, ROUGE-L score (F1-score value41 and WER error. The BLEU score

measures precision to recover a set of consecutive n-grams. The last two calculate sentence level

score and error. The ROUGE-L takes into account similarity regarding sentence structure and

identifies the longest co-occurrence in compared n-grams sequences and WER error provides

complementary information to the scoring metrics.

40 Kishore Papineni et al. “BLEU: a method for automatic evaluation of machine translation”. In: Proceedings
of the 40th annual meeting on association for computational linguistics. Association for Computational
Linguistics. 2002, pp. 311–318.

41 Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In: Text Summarization
Branches Out. Barcelona, Spain: Association for Computational Linguistics, July 2004, pp. 74–81.
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7. EVALUATION AND RESULTS

The experiments herein proposed were conducted to evaluate and validate motion performance

on the proposed SLT deep architecture at different levels of learning and processing. To high-

light the contribution of motion patterns on sign representation, the validation of proposed

architecture was carried out over two different datasets: the proposed CoL-SLTD, dedicated to

motion analysis and the RWTH-PHOENIX Weather dataset, a state-of-the-art large continu-

ous sign database. Next subsections summarize an ablation study over a reduced CoL-SLTD

version, as well as, the results obtained on the two complete datasets.

7.1. Results on CoL-SLTD

Firstly, an ablation study of the proposed SLT architecture was carried out over the first compact

version of our CoL-SLTD. To explore each principal component of our approach, a "vanilla"

version was herein implemented, i.e., without using the proposed self-attention components.

Regarding dataset splits, 70% of the participants were used for training, and the remaining 30%

for evaluation (signer independent). The contribution of each motion and translation component

was analyzed according to the sign translation task. After general net adjustment and validation,

the best configuration was evaluated over the complete CoL-SLTD and the RWTH-Phoenix

dataset. Additional experiments were also included to compare NLST architecture and self-

attention modules.

Parameter searching and adjustment: The shape representation from motion was eval-

uated as the first stage of the proposed architecture. Then, two different inputs were used in

the architecture: velocity frame fields for video sequences (Flow) and RGB raw video informa-

tion. Sequences were fixed at 128 frames and the last convolutional layer was also fixed with

an output of Zn = 128. For the second motion processing, the GRU units were selected as
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Table 3. Comparison of translation performance (blue-4 score) using GRU units, video clips of 128
frames and Zn = 128 filters on CoL-SLTD.

Train Test
Type Rouge-l Meteor Bleu-4 Rouge-l Meteor Bleu-4

Double Attention (Top and Middle)
Flow 70.01 73.18 72.05 51.00 49.55 44.28
RGB 15.67 11.63 7.80 6.96 9.79 6.74

Single Attention (Top)
Flow 80.91 79.83 77.90 53.00 51.37 43.53
RGB 14.74 8.84 9.75 16.14 8.87 8.78

Single Attention (Middle)
Flow 63.60 61.88 59.97 52.12 51.05 44.87
RGB 29.94 29.94 29.09 19.63 18.99 17.22

recurrent layers. Also, the attention units were positioned at the top and middle of the decoder

to obtain single configurations. Also, double attention was configured using the top and middle

attention modules, at the same time. In table 3 is summarized the obtained results for both

sequences: flow and RGB, regarding training and test sets. As expected, the motion-shape

descriptor improves translations compared to RGB descriptors with a remarkable difference in

all experiments. Specifically, in test, the proposed motion-shape representation achieves on av-

erage a bleu-4 score of 44.22, while the RGB only achieved an average score of 11.00 computed

on the Decoder predictions. This fact could be attributed to invariant representation of motion

patterns with spatial shape description on convolutional vectors.

Secondly, the impact of recurrent networks was analyzed by also applying LSTM units, that

allows encoding motion with non-consecutive temporal relationships. Table 4 reports the ob-

tained results from which the flow sequences also achieve the best performance. A remarkable

result, was the LSTM contribution on the second motion level, being able to recover the non-

linear dependencies of motion by capturing important patterns along the sequence. It should

also be noted that a single attention module in the middle of the architecture obtains the best

result. In general, a gain of 10.78% was then obtained for bleu-4 score in test compared to GRU

units using the motion shape representation, obtained from the flow velocity patterns. This
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Table 4. Comparison of translation performance (blue-4 score) using LSTM units, video clips of 128
frames and Zn = 128 filters on CoL-SLTD.

Train Test
Type Rouge-l Meteor Bleu-4 Rouge-l Meteor Bleu-4

Double Attention (Top and Middle)
Flow 76.44 75.43 74.33 55.85 53.77 52.17
RGB 20.79 19.06 16.04 24.10 21.82 19.56

Single Attention (Top)
Flow 78.46 77.40 76.72 57.70 55.70 54.34
RGB 28.74 25.80 21.64 21.14 18.15 13.96

Single Attention (Middle)
Flow 75.14 73.91 72.85 60.88 59.58 58.69
RGB 14.94 11.29 8.29 6.63 3.27 0.0

configuration was selected for more comprehensive and exhaustive element-architecture evalu-

ations. Figure 6 shows the performance (Blue-4 in the y-axis) for different number of input

frames (x-axis), but varying the number of filters (stylish lines) and attention modules (colored

lines), for training (left panel) and testing set (right panel). As expected, a higher number of

frames in the input (128) improves the representation of the sign, obtaining the best result for

the SLT task (63.04), with a gain of 6.52 and 10.87 with respect to results obtained for 60-frame

and 30-frame video inputs, respectively. The same quantitative result was also obtained using a

configuration of a top attention layer with 60 filters, with a gain of 8.7 and 10.86, w.r.t 128 and

256 CNN filters, respectively. Clearly, the configuration with 60 filters and 128 frames allows an

effective coding and compact representation, reducing noise from non-zero activation responses.

In addition, the top attention has a gain of 10.87 and 4.35 w.r.t. middle and double attention,

respectively. This result could be associated with the temporal dependence of words at the top

of the architecture. Also, at the low-level, there exist a major variability that difficult a proper

correspondence with words at the semantic level.

Structural component evaluation: From the best-obtained configuration (60 filters, LSTM

units, and top attention) we proceeded to validate the SVF and RSVF components in the com-
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Figure 6. Results obtained from the architecture parameter validation: A complete validation was
performed by changing the frame number of the video, the amount of descriptors or filters used to
represent the cinematic patterns and the attention module location to perform a better correlation
between information sequences.
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plete CoL-SLTD dataset for the two tasks. This complete set includes 510 videos of interrogative

and negative sentences. To cover the whole temporal video range, we selected 250 frames, ac-

cording to the results display in figure 5. The complete model considered in this evaluation

has only around 12M of parameters. Table 5 summarizes the achieved result for each indepen-

dent and combined component in both CoL-SLTD splits. Overall, translation results decrease

by about 23% in bleu-4 score for the signer independent task. This fact could be attributed

to the complexity of interrogative and negative sentences and the variability introduced by all

signers. In particular, for the first task, split 1, the architecture with the RSFV self-attention

module effectively complements the temporal structure, initially learned by the LSTM. Inter-

estingly enough, the combination of RSFV y SFV modules improves the Bleu-1 and rouge-l

scores, incorporating relevant short-term dependencies captured in SFV. Similarly, for the sec-

ond task (using split 2), the proposed network achieves similar performance highlighting the

relevance of coding, short and structural motion dependencies, and their relationships with sign

recognition. These relevant kinematic and structural relationships are principally attributed

to SVF (short-term dependencies) allowing the achievement of the best performance regarding
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Table 5. Obtained results using the proposed modules in both splits on CoL-SLTD. The architecture
was initially evaluated without the proposed modules ("Vanilla"), but they were progressively added
to quantify the contribution to the translation process.

SPLIT 1 WERRouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4 # Params

Vanilla approach 64.12 44.39 42.16 33.43 29.91 27.96 11M
SFV module 63.88 45.01 45.90 36.65 32.85 31.02 11.1M
RSFV module 58.33 48.39 47.80 40.44 37.39 35.81 11.9M
SFV+RSFV modules 59.33 49.45 48.98 39.98 35.88 33.81 12M
SPLIT 2 WERRouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4 # Params

Vanilla approach 90.42 25.59 26.12 10.89 5.21 2.77 11M
SFV module 88.85 30.59 30.05 12.86 7.09 4.65 11.1M
RSFV module 89.95 24.63 26.08 9.15 4.07 2.41 11.9M
SFV+RSFV modules 88.85 26.56 27.45 8.94 3.20 1.70 12M

the vanilla approach. Remarkably, there exists a significant performance difference between the

two translation tasks, which may be attributed to a possible biased of the model to the most

frequent words in sentences.

7.2. Baseline Comparison

In this section was adopted two evaluation baseline schemes: 1) Regarding state-of-the-art

approaches on the proposed CoL-SLTD dataset and 2) projecting the proposed approach on a

public dataset. Next subsection detail the results obtained in each validation scheme.

7.2.1. Evaluation and results over CoL-SLTD: In this baseline scheme validation, the

proposed approach was compared with the state-of-the-art NSLT approach13 on CoL-SLTD.

To validate motion coding capability, the NSLT architecture was also adapted to encode the

optical flow inputs. This NSLT strategy is a very large architecture that considers more than 65

million parameters for training. Specifically, the architecture has 4 RNN layers, 1000 neurons

in each layer, and uses the AlexNet as a convolutional feature extraction backbone. Table 6

shows the results achieved by NLST, trained with 20 epochs, in both RGB and optical flow
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Table 6. Translation results for RGB and Flow images in both splits on CoL-SLTD. Top of table:
results for split 1, Bottom: split 2. The experiments were performed with the complete base architecture
and then reduced in different proportions.

SPLIT 1 DataWERRouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4

NSLT 100% RGB 77.41 31.83 30.56 19.78 16.24 14.50
Flow 34.94 69.91 68.53 63.73 61.42 60.24

NSLT reduced to 50% Flow 44.00 62.82 57.09 50.34 47.45 46.07
NSLT reduced to 25% Flow 62.67 43.92 37.89 26.21 19.67 15.56
OURS (RSFV) Flow 58.33 48.39 47.80 40.44 37.39 35.81
SPLIT 2 DataWERRouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4

NSLT 100% RGB 77.55 23.43 21.68 7.01 2.91 1.74
Flow 78.33 36.96 39.67 18.94 12.17 8.69

NSLT reduced to 50% Flow 77.08 33.73 32.91 11.41 7.18 5.17
NSLT reduced to 25% Flow 80.06 24.90 26.61 8.05 0.0 0.0
OURS (SFV) Flow 88.85 30.59 30.05 12.86 7.09 4.65

sequences. For Signer Independence evaluation (split 1), the translations generated using the

optical flow report around 43% less word error than sentences from the RGB model (first row).

The Bleu-4, obtained from flow sequences, also highlights the translation consistency with a

46% margin over RGB. These results prove the relevance of the motion in sign recognition

and translation. Regarding the second CoL-SLTD task, to generate unseen sentences (split

2), the table 6 summarizes the obtained results over NSLT. Despite poor local representation

and language model bias, the motion shape information shows remarkable results in w.r.t RGB

sequences. Secondly, the NSLT network complexity was reduced to compare with the proposed

architecture, in similar conditions, and number of parameters. Then, the NLST was reduced

to 50% and 25% (around 35M and 50M parameters less respectively) regarding the original

configuration. For both splits, we can see how the best results obtained by the proposed

approach outperforms the NSLT net reduced to 25% and are close to the NSLT reduced to

50% using approximately 15 million fewer parameters. Surprisingly, the reduced versions of the

NSLT network obtain better results than the original RGB representation demonstrating again

the potential use of motion components of language to support sign translation.
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Table 7. Evaluation of the proposed approach on RWTH-PHOENIX Dataset. The first row compared
the performance of the NSLT architecture using optical flow against RGB sequences. The following
rows compared our proposed architecture with reduced versions of NSLT using optical flow.

DEV TEST
Data Bleu-1 Bleu-2 Bleu-3 Bleu-4 Bleu-1 Bleu-2 Bleu-3 Bleu-4

NSLT 100% RGB 31.87 19.11 13.16 9.94 32.24 19.03 12.83 9.58
Flow 32.81 20.50 14.59 11.31 33.70 21.01 14.70 11.30

NSLT reduced to 25% Flow 16.43 6.91 4.98 4.09 17.39 7.32 5.26 4.30
OURS (Vanilla) Flow 14.25 7.48 5.05 3.81 14.75 8.41 5.87 4.56
OURS (SFV + RSFV) Flow 20.89 7.65 5.35 4.70 20.19 8.08 6.01 4.82

7.2.2. Evaluation over RWTH-Phoenix Dataset: To reinforce motion analysis on real

scenarios, the proposed strategy was also evaluated over RWTH-Phoenix dataset and compared

with NSLT net. The RWTH-Phoenix Dataset (used to validated NSLT), is a large dataset for

SLT (about 8000 videos in total), which includes less controlled scenarios and involve both static

and motion linguistic expressions obtained from a German television channel13. To follow the

main purpose of this work, the optical flow sequences were obtained for this dataset. Table 7

summarizes results w.r.t. NSLT approach and for both: RGB and flow sequences. Despite the

non-controlled sequences, larger set, and more variable linguistic expressions, the flow represen-

tation shows major capability to translation task. For instance, the Bleu-4 score of the NSLT

architecture with flow was 1.72 higher than RGB information, a fact associated with better dis-

crimination when geometrical signs are closer. Secondly, the proposed approach was compared

with the reduced and compact version of NSLT (25% of parameters, i.e., a total of 15 million

parameters with only one recurrent layer of 250 neurons). Table-bottom 7 shows the results

obtained using our vanilla version and the version with the proposed modules (SFV and RSFV).

Remarkably, the proposed approach achieves better results than the obtained with the reduced

NSLT version, being even better the vanilla version in some particular n-grams. Such results

can justify the special design of the architecture to recover and properly model motion patterns,

enhancing translation on both datasets. Interestingly, the best bleu-1 obtained improves 4.46

to the reduced NSLT, a fact that could be associated with the capability of SFV modules to
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extract more important features on SLT.
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8. DISCUSSION

An SL motion modeling was herein introduced by using a deep end-to-end low-complexity neu-

ral architecture (∼ 12 million of parameters). This architecture was able to model, analyze,

and measure the motion patterns capability to support automatic text translation of video sign

sequences. The motion was here modeled at different levels and analyzed hierarchically up to

the dynamic text spoken translation. As a second contribution in this work, it was proposed

Colombian Sign Language Dataset (CoL-SLTD), dedicated to model well-formed phrases where

motion is determinant on gestural information. To the best of our knowledge, this is the first

dataset dedicated to quantify and exploit kinematic patterns to analyze their correspondence

with the sentence structures. The proposed dataset incorporates interrogative, affirmative, and

negative sentences from Colombian Sign Language, incorporating verbal and time signs, cap-

turing also large variability from different signers. The proposed approach was firstly evaluated

in both: the CoL-SLTD and the RWTH-Phoenix state-of-the-art dataset.

The proposed network, in general, is composed of two main modules. The first module (Encoder)

was designed to extract and code spatio-temporal and structural motion patterns, starting from

a low-level layer and then capturing recurrent dependencies at a high-level. The Encoder receives

the dense optical flow sequences that admit large displacements, which can be useful to charac-

terize the limb movements in conventional cameras. Also, the flow sequences serve as input to

a deep 3D-convolutional network to extract the main structural local motion patterns related

to signs during the translation process. The implemented 3D CNN is capable of decomposing

the volumetric information by operating with 3D learning kernels, progressively organized in a

total of six layers. Each layer then retrieves a set of kernels that highlight non-linear motion

patterns, which mainly explain particular glosses. Also, to include sign structural information

at a local level, we designed an attentional module (SFV) that operates on each feature map

resulting from the CNN convolutional layer. This module introduces structural information of
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the sentence by finding the temporal dependencies among the convoluted frames. To achieve

optimal training convergence, tolerance to high learning rates, and better feature discrimina-

tion in this stage, batch normalization was applied on each layer followed by ReLu activations.

During the initial evaluation, these flow sequences outperformed experiments regarding raw

RGB sequences, with a strong difference of 43.88 on BLEU-4 score average on CoL-SLTD. For

SFV evaluation, we found that the module increases the performance and reduces the error in

the set of sentences not seen in training (split 2). This could indicate that it improves feature

extraction by decreasing translation bias compared to the other configurations. However, the

performance is much lower compared to split 1 (gap difference of 31.16 for blue-4). Afterward,

a bidirectional recurrent neural network was then used to identify the highly recurrent tem-

poral relationships present in these extracted patterns. At this level, a standard and simple

self-attention module (RSFV) was used to refine the recurrent Encoder vectors. Hence, these

recurrent motion descriptors are received by the Decoder (second network) as input to be corre-

lated with individual words through gestural temporal attention units. The motion descriptors

are decoded by using a unidirectional recurrent network. For the entire network, we analyze

the performance of the LSTM and GRU units. As a result, the LSTM units showed superior

performance with a bleu-4 gain of 10.78. For RSFV it was evident a good performance in split

1 reaching a bleu-4 of 35.81. This indicates that the structural dependencies learned by RNN

are effectively improved at a high level. Likewise, temporal attention modules were evaluated

at different levels of decoder architecture to correlate encoder descriptors with the intermediate

and higher words vectors. We found that the attention module at top-level reports the best

performance in our scheme with a gain bleu-4 of 10.87 w.r.t to double attention modules and

4.35 bleu-4 score for single middle attention. Such a fact could be associated with a high-level

description of encoder-decoder embedding.

Many computational approaches have been proposed in the literature to support SLT or to

49



solve some related sub-task such as continuous independent sign recognition11,8,42,12. Some of

these approaches have tried to model temporal sign associations using a Connectionist Tem-

poral Classification loss function21. However, the structure and grammar of the utterances are

poorly modeled. Despite the demonstrated importance of the motion patterns in language to

include temporal connections, almost all approaches are fully based on the characterization of

isolated gestures or on pure appearance information. For instance, one of the most salient works

implemented a 4-layer recurrent encoder-decoder network using raw RGB input sequences, in

an architecture with 1000 neurons in each layer and more than 65 million of parameters (S2T)13.

This work coarsely obtains temporal motion patterns from the recurrent units, but there is no

analysis of the contribution of these patterns. In fact, the authors only argue for the use of

GRU units instead of LSTM units because of over-fitting issues on the testing set. This fact may

associate with the feature extraction process at frame level using 2D convolutions. In contrast,

our work introduces an encoder-decoder framework dedicated to analyzing the contribution of

motion and structure in SL, demonstrating the powerful and compact representation over the

CoL-SLTD dataset. An additional advantage of the motion representation is the compact de-

sign of the architecture which allows the use of fewer parameters and results reliable in real

applications. Indeed, we developed an additional experiment reducing the S2T architecture to

obtain the same number of parameters as our strategy. Then, these architectures were com-

pared over RWTH-Phoenix dataset using flow images to analyze motion propagation. Initially,

as expected, the motion input was sufficient to improve the state of the art RGB results using

the S2T network. Particularly, the proposed approach achieved a similar performance w.r.t re-

duced S2T. Interestingly enough, the best configuration of the proposed architectures improves

all scores in dev and test sets with respect to the reduced S2T method to 25% and was very

close to the results with the S2T architecture reduced to 50%.

42 Junfu Pu, Wengang Zhou, and Houqiang Li. “Dilated Convolutional Network with Iterative Optimization
for Continuous Sign Language Recognition.” In: IJCAI. 2018, pp. 885–891.
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In summary, the proposed approach is able to exploit motion and structural representation,

from non-controlled video sequences, allowing the translation of sentences of a natural SL.

Motion and structural information allows the design of a compact representation and could be

useful as a complementary module in more sophisticated architectures based on appearance

and geometry. Some limitations were found in recognizing a wide range of sign variations and

sentence structures in split 2. The main assumption is that many more samples are needed to

capture overall sentence structure and thus decrease translation bias. Similar limitations were

also observed in large datasets, from which proposed architecture could be insufficient and very

compact regarding the low-level representation, learned by the 3D-CNN, designed with only 60

filters. This last layer could be insufficient to represent properly many variations of the signs.

From the current version, the proposed approach will work properly in a specific domain without

much computing power.
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9. CONCLUSIONS AND FUTURE WORK

This work introduced a novel strategy to SLT based on a deep-learning representation that fully

codes velocity apparent pattern inputs. This work takes advantage of a hierarchical encoder-

decoder deep representation and introduces modules to code structural patterns in sign language

for continuous translation of video sequences. A total of two encoder levels were here imple-

mented to analyze motion and include structural information from the spatio-temporal scene.

First, a low motion representation was obtained from a 3D convolutional strategy using optical

flow volumes that support special large displacements as an input. These convoluted volumes

are refined with self-attention modules to capture the structural relationships in each feature

volume. The resulting motion and structural embeddings were able to capture kinematic pat-

terns, invariant in appearance, and represent robustly the structure of the sign for translation.

Then, a set of recurrent bi-directional units propagate motion embeddings over time, capturing

history on long-term temporal scales. These recurring vectors are refined to highlight those

time relationships captured and find patterns not seen by the LSTM. From these two levels of

representation, a visual attention module, on a higher level of representation, allowing the text

correlation with the embedded sign vectors. The proposed work showed the relevance to in-

clude motion sign patterns on automatic translation tasks, resulting in an invariant and compact

sign structural representation. The proposed approach was evaluated on a dedicated motion

proposed Colombian sign language dataset (CoL-SLTD). Also, the strategy was evaluated on a

more general dataset showing promising results from a very compact architecture. Future works

include the development of additional attention modules that properly capture motion patterns

and deal with complexity in SLT, but remaining compact on deep architecture.
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Anexo B. Informed Consent

ESCUELA DE INGENIERÍA DE SISTEMAS 
UNIVERSIDAD INDUSTRIAL DE SANTANDER - Laboratorios Vive Digital 

CONSENTIMIENTO INFORMADO 
Proyecto: Grabación y cuantificación de un conjunto de signos gestuales con           
significado semántico en la lengua de señas colombiana. 
Responsables: Fabio Martínez Carrillo, Juan Felipe Chacón López, Jefferson David          
Rodriguez Chivatá. 
 
Con base en los reglamentos establecidos en la Resolución Nº 008430 del 4 de octubre de                
1993 por la cual se establecen las normas científicas, técnicas y administrativas para la              
investigación en salud en Colombia y según el artículo 15 relacionado con el             
Consentimiento Informado usted deberá conocer de forma completa y clara los aspectos de             
la investigación que se desarrollará. Usted ha sido convocado para este proyecto por             
cumplir con los requisitos de inclusión para la grabación de un conjunto de datos de la                
lengua de señas Colombiana. Por tal motivo se le invita formalmente a que participe del               
estudio teniendo en cuenta los siguientes criterios de inclusión: 

● Ser mayor de edad. 
● Tener la capacidad de sentarse en una postura cómoda y relajada que le permita              

centrar su atención en una cámara. 
● Saber la lengua de señas colombiana. 

De acuerdo con lo anterior y en cumplimiento de estos criterios, por favor indique con una X                 
en una de las  siguientes opciones qué tipo de participante es usted: 

___ Persona con discapacidad auditiva o sordo. 
___ Oyente, hijo de padres sordos (CODA). 
___ Oyente, hijo de padres oyentes. 

 
Tenga en cuenta que su participación en este proyecto es absolutamente voluntaria. Por             
favor lea con cuidado el documento y haga todas las preguntas que desee hasta su total                
comprensión. 
 
JUSTIFICACIÓN 
 
Usted está invitado a participar en este ejercicio que busca crear un conjunto de datos en                
video de gestos específicos pertenecientes la lengua de señas local          
(Bucaramanga-Colombia) para investigaciones futuras sobre estudio, análisis,       
procesamiento, caracterización, clasificación y reconocimiento automático de las mismas. El          
conjunto de datos registrados será de uso exclusivamente académico y científico. Este            
conjunto de datos serán capturados con una cámara convencional. 
 
OBJETIVO 
 
Registrar un conjunto de vídeos que permitan desarrollar métodos para la detección            
automática de las señas. 
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DESCRIPCIÓN 
 
Para la realización del estudio se cuenta con un laboratorio de grabación en el Punto Plus                
Vive Digital Tecnológico ubicado en la calle 10 # 28 - 77. Durante la sesión de captura                 
adicionalmente de los investigadores estará un intérprete de la lengua de señas colombiana             
quien facilitará la comunicación entre los investigadores y el participante. Cada participante,            
en presencia del intérprete que acompañe la sesión recibirá este consentimiento para su             
lectura y aclarar dudas, si decide participar, podrá proceder a firmarlo. 
 
Una vez firmado el consentimiento se le registran unos datos personales como mano hábil,              
condición de naturaleza por la cual sabe comunicarse mediante lengua de señas y se le               
asignará un ID respectivo para la confidencialidad de los datos . La grabación de los videos                
tiene un tiempo aproximado de 20 minutos. La indumentaria ideal es camiseta o blusa. (No               
busos) y preferiblemente sin gafas o cualquier otro tipo de accesorios adicionales. Antes de              
la grabación el intérprete se le mostrará un listado de frases las cuales serán las que él dirá                  
delante de la cámara. Ante la cámara, se le mostrará cada una de las frases anteriores para                 
que la diga en lengua de señas, como se puede ver en la Figura 1. 

Figura 1. Escenario de captura. el participante se sentará de la manera que considera más 
cómoda para la grabación de las señas. 

 
Al participar en este estudio, usted no recibirá ningún tipo de subvención económica o              
material ni deberá aportar herramienta alguna para la intervención. Al finalizar la            
investigación, usted podrá recibir los resultado obtenidos de la captura. Este material será             
presentado a usted por los investigadores cuando culmine la actividad. 
 
Las inquietudes adicionales que surjan en relación con el desarrollo e implicaciones del             
proyecto podrán ser aclaradas por Fabio Martínez Carrillo, Profesor de la Escuela de             
Ingeniería de Sistemas e Informática, a quien puede contactar en el teléfono 3103054041, o              
mediante correo electrónico dirigido a famarcar@saber.uis.edu.co ; o directamente en su           
oficina en la Universidad Industrial de Santander (sede principal) ubicada en la Cra. 27 #9               
Ciudad Universitaria, Edificio de Laboratorios Pesados, oficina 231; o al teléfono teléfono            
577- 6344000 extensión 2110. 
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RIESGOS 
 
De acuerdo con el Artículo 11 de la Resolución No. 8430 de 4 de octubre de 1993, esta                  
investigación se considera sin riesgo para el participante dado que el estudio únicamente             
emplea el registro de datos a través de un procedimiento común de captura de vídeos por                
medio de cámaras ordinarias. De tal forma, ninguno de los métodos utilizados es invasivo o               
penetra la piel. si durante la captura de los vídeos usted experimenta cualquier tipo de               
malestar, la grabación será suspendida de inmediato y se le ubicará en estado de reposo.               
Por cualquier motivo relacionado con esta jornada donde el participante requiere valoración            
médica inmediata será remitido al servicio de urgencias del Hospital Universitario de            
Santander o, si es su decisión al servicio de urgencias de la entidad donde se encuentre                
afiliado al sistema de seguridad social. Durante este proceso será acompañado por el             
investigador principal. 
 
DERECHO A RETIRARSE 
 
Su participación en este estudio es autónoma y voluntaria, en donde podrá actuar acorde a               
sus principios personales. Si usted decide no participar, no implicará sanción alguna.            
Además, usted cuenta con el derecho a negarse a responder a preguntas concretas si así lo                
desea. También puede optar por retirarse en cualquier momento y toda su información será              
descartada y eliminada. 
 
CONFIDENCIALIDAD 
 
Los resultados de las pruebas y la información que usted nos ha dado son de carácter                
absolutamente confidencial, de manera que solamente usted y el investigador principal           
tendrán acceso a estos datos. 
 
Una copia de los registros con la información de cada participante será archivada por el               
investigador principal y a cada registro se le asignará un número con el cual se identificará y                 
codificará para su ingreso a la base de datos durante la sistematización de la información.               
Por lo anterior, los nombres de los participantes no serán divulgados en forma alguna; y               
cuando los resultados de este estudio sean publicados en revistas o congresos científicos,             
la información personal de los participantes será debidamente anonimizada previamente. 
 
A menos que Usted dé una autorización específica cuando la ley lo permita, sus resultados               
personales no estarán disponibles para terceras personas como empleadores,         
organizaciones gubernamentales, compañías de seguros o instituciones educativas. Esto         
también aplica a su cónyuge, a otros miembros de su familia. Sin embargo, con el objetivo                
de realizar un manejo adecuado de los datos, un miembro del Comité de Ética de la                
Universidad Industrial de Santander podrá consultar sus datos y su registro. Por lo anterior,              
atentamente se le invita a participar en el estudio y si está de acuerdo, se le solicita su                  
nombre y la firma en las casillas abajo descritas. 
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AUTORIZACIÓN PARA EL USO DE LA INFORMACIÓN EN ESTUDIOS FUTUROS 
 
 
 
 
 
 
 
 
 
Dentro del equipo de investigación al que pertenecen los investigadores responsables           
(Grupo de Investigación BIVL2ab - Biomedical Imaging, Vision and Learning Laboratory) de            
la Universidad Industrial de Santander, se espera seguir utilizando la información registrada            
en este estudio para el desarrollo de estudios futuros y derivados. Por lo tanto, al firmar este                 
consentimiento usted puede autorizar al investigador principal a ceder su información a            
otros investigadores de su equipo de investigación, con previa aprobación del Comité de             
Ética de la Universidad Industrial de Santander para realizar los estudios mencionados. Por             
favor marcar con una X si autoriza o no autoriza, y firmar en caso de si autorizar. 
 
 
 
 
 

___ Si autorizo 
___ No autorizo 

 
 
 
 

_____________________________  
Firma Participante Huella digital 
Nombre: (En caso que se amerite) 
C.C. 

_____________________________  
Firma Investigador Principal Huella digital 
Nombre: (En caso que se amerite) 
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Yo________________________________________________________, identificado con   
______ N°_______________________ de _____________________ al firmar este       
consentimiento el día ___ de ___________ del ______, acepto participar de manera            
voluntaria en el presente estudio y autorizo la grabación de mis vídeos y el uso de mis datos                  
individuales para los análisis requeridos. He leído y entendido la información registrada en             
este documento y mis dudas fueron aclaradas. Entiendo que soy libre de retirarme del              
estudio. Por otro lado, se me ha garantizado justicia, equidad, autonomía en la participación              
y la confidencialidad en el manejo de toda la información recolectada, teniendo en cuenta              
que los resultados del procesamiento de dicha información podrán ser divulgados con fines             
científicos, mediante presentaciones en congresos o publicaciones en revistas científicas,          
con la debida protección de mi identidad 

_____________________________  
Firma Participante Huella digital 
Nombre: (En caso que se amerite) 

_____________________________  
Firma Intérprete (Testigo 1) Huella digital 
Nombre: (En caso que se amerite) 

_____________________________  
Firma Coinvestigador (Testigo 2) Huella digital 
Nombre: (En caso que se amerite) 

_____________________________  
Firma Investigador Principal Huella digital 
Nombre: (En caso que se amerite) 
 
Contacto Comité de Ética: Para preguntas o aclaraciones acerca de los aspectos éticos             
de ésta investigación pueden comunicarse con el Comité de Ética para la Investigación             
Científica de la Universidad Industrial de Santander (CEINCI-UIS), o con cualquiera de los             
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miembros del Comité, al teléfono 6344000 Extensión 3808 ó al correo           
comitedetica@uis.edu.co. 
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