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Resumen

TITULO: ALGORITMO DE SUPER-RESOLUCIÓN APLICADO A IMÁGENES
ESPECTRALES ADQUIRIDAS MEDIANTE LA TÉCNICA DE COMPRESSIVE
SENSING1

AUTOR: HOOVER FABIAN RUEDA CHACÓN 2

PALABRAS CLAVE: Imágenes espectrales, super-resolución, compressive sens-
ing, sistemas ópticos basados en aperturas codificadas

Los sistemas ópticos para la obtención de imágenes basados en aperturas cod-
ificadas se encuentran a la vanguardia del modelado óptico debido a que per-
miten capturar la información espectral de una escena tridimensional en una
única medicion bidimensional, a diferencia de los instrumentos ópticos basados
en ranuras que deben escanear la región completa lı́nea por lı́nea. El sistema
de adquisición de imágenes espectrales basado en apertura codificada de única
captura (CASSI) es una sobresaliente arquitectura óptica, la cual sensa la infor-
macion spectral de una escena real utilizando los conceptos fundamentales de
compressive sensing (CS). El objetivo de este trabajo es transformar escenas
de alta resolución en señales comprimidas capturadas por detectores de baja
resolución. Super-resolución espacial y espectral son logradas a través de la
solución de problemas inversos a partir de un conjunto de mediciones codifi-
cadas de baja resolución. En este proyecto, se presentan dos modelos ópticos
complementarios para super-resolución espacial y espectral (SR-CASSI). Es-
tos modelos permiten la reconstrucción de cubos de datos hyper-espectrales
super-resueltos, donde el número de bandas o planos espectrales y resolución
espacial son aumentadas significativamente. Los sistemas propuestos no solo
ofrecen ahorros significativos en tamaño, peso y energı́a, sino además en costos
debido a que detectores de baja resolución pueden ser utilizados. Los resulta-
dos de las simulaciones del sistema propuesto muestran un mejoramiento de
mas de 4 dB en relación señal a ruido (SNR) para el modelo de super-resolución
espacial y un cubo de datos cuatro veces más resuelto espectralmente. Los
resultados también muestran que el SNR de los cubos de datos reconstruidos
con detectores de baja resolución realizando capturas adicionales, se acercan
al SNR obtenido utilizando detectores de alta resolución.

1Trabajo de Grado
2Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́a de Sistemas e In-

formática. Director, Henry Arguello Fuentes.
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Abstract

TITLE: SUPER-RESOLUTION ALGORITHM APPLIED TO SPECTRAL IMAGES
ACQUIRED VIA COMPRESSIVE SENSING TECHNIQUE 1

AUTHOR:HOOVER FABIÁN RUEDA CHACÓN 2

KEYWORDS: Spectral imaging, super-resolution, compressive sensing, code-
aperture based optical systems

Code-aperture based optical imaging systems are at the forefront of optical imag-
ing modeling since they allow to capture three-dimensional scenes of spectral
information in a single two-dimensional snapshot, instead of scanning the whole
region line by line using spectral slit based optical instruments or similar sys-
tems. The Code Aperture Snapshot Spectral Imaging system (CASSI) is a re-
markable optical imaging architecture that senses the spectral information of a
scene using the underlying concepts of compressive sensing (CS). The goal of
this thesis is to capture high-resolution hyper-spectral scenes in compressed sig-
nals measured by low-resolution focal plane array (FPA) detectors. Spatial and
spectral super-resolution are attained through inverse problems from a set of
low-resolution coded measurements. In this research project, we present two
complementary optical models for spatial and spectral super-resolution imaging
(SR-CASSI). These models allow the reconstruction of super-resolved hyper-
spectral data cubes, where the number of spectral bands and spatial resolution
are significantly increased compared with CASSI. The proposed system not only
offers significant savings in size, weight and power, but also in cost, since low
resolution detectors can be used. The simulation results of the proposed sys-
tem show an improvement of up to 4 dB in signal to noise ratio (SNR) for spa-
tial super-resolution and a four-fold increase in spectral resolution. Results also
show that the SNR of the reconstructed data cubes approaches the SNR of the
reconstructed data cubes attained with high-resolution detectors, at the cost of
using additional measurements.

1Research Work
2Faculty of Physical-Mechanical Engineering. Department of Computer and Informatics

Engineering. Advisor, Henry Arguello Fuentes.
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Introduction

Spectrometers are a class of instruments, that measure the intensity, or polar-
ization of electromagnetic waves across a broad range of wavelengths. Most
instruments are restricted to narrow bands of the spectrum, which can include
large wavelengths such as infrared and microwaves, visible light and small
wavelengths as in ultraviolet, X-rays, and gamma rays [1]. Spectrometers in the
visible spectrum are sometimes referred to as spectrophotometers. Spectrom-
eters give precise wavelength information of a scene, but spatial information is
restricted to the measurement location. If a scene or object has many spectral
and spatial characteristics, it is necessary to scan the entire object. This is
referred to as pushbroom or whiskbroom scanning [2]. For a code-aperture
based spectral imager this is not necessary since the scene is encoded both
spatially and spectrally using the theory of compressive sensing (CS) [3; 4; 5].
Spectrometers of this type are referred to as spectral imagers or hyper-spectral
imagers. Hyper-spectral images are well suited for sparse representations as
they exhibit high correlation between spectral bands [6; 7].

In code-aperture based optical system, the intensity on the detector cannot
directly be correlated to spectral density as when common slit is used. Instead,
the image captured at the detector must be processed using a reverse model
of the system. This model includes the aperture code and some previous
knowledge of the optical elements in the instrument. Code aperture snapshot
spectral imager (CASSI) [8] is an imaging system that effectively exploits CS
principles. It uses a single measurement to sense a complete spatio-spectral
data cube. The CASSI instrument is depicted in Figure 1.
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Figure 1: Code Aperture Snapshot Spectral Imaging (CASSI) optical model

CASSI is composed by an objective lens, which focuses the 3D scene, a
code aperture that modulates spatially the spatio-spectral information, and a
band-pass filter allowing limiting the spectral range of action. CASSI has also a
dispersive element (commonly a prism), which shifts horizontally each spectral
band respect to their wavelength and a focal plane array (FPA) detector, which
integrates, and captures the 3D scene in a 2D array. For energy transmission
between optics elements detailed above, a set of relay lenses is used. Recent
studies have shown that using multiple CASSI [9] measurements instead of a
single measurement provides better data cube reconstructions [10; 11; 12; 13].

High quality in data cube reconstructions depends directly on the resolu-
tion of the detector. But high-resolution detectors mean high costs. Spatial
and spectral super-resolution in code aperture based optical imagery systems
(SR-CASSI) are of high interest because high-resolution reconstructions can
be attained from low-resolution/cost detectors. Spectral imaging in infrared
(IR) wavelengths is one of the principal examples where FPAs are critical com-
ponents because they become very costly with increased resolution [14]. In
our previous works [15; 16], we explored spatial and spectral super-resolution
in CASSI where slightly results in spatial and spectral resolution were ob-
tained. Here, we propose and detail the mathematical model to obtain spatial
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and spectral super-resolution in code-aperture based optical imaging systems.
Also, we deepen into the simulations and experiments, obtaining significantly
improvements in both spatial and spectral data cube reconstructions.

Formally, a hyper-spectral signal F ∈ RM×N×L, or its vector representation
f ∈ RM ·N ·L, is S-sparse on some basis ΨΨΨ, such that f = ΨΨΨθ can be approxi-
mated by a linear combination of S vectors from ΨΨΨ with S � (N ·M · L). The
spectral data cube F has L spectral bands, and N ×M pixels in spatial reso-
lution. The theory of compressive sensing (CS) shows that f can be recovered
from m random projections with high probability, when m ≤ S log(N ·M · L)�
(N ·M ·L). The random projections in CASSI are represented by g = Hf where
H represents the transmission optical function of the system accounting for
the code aperture and the dispersive element [17]. The random projections
for SR-CASSI are given by g = DHf , where D represents the decimation
transformation due to the low-resolution detector. For spatial SR-CASSI the H

matrix represents the effect of the high-resolution code aperture T (x, y) and
the dispersive element. On the other side, for spectral SR-CASSI the H matrix
represents both high-resolution code apertures T1(x, y) and T2(x, y), and the
dispersive element operation.

Organization of the thesis: Code aperture snapshot spectral imaging sys-
tem is presented in Section 1. The proposed methodology to obtain spatial
super-resolution in code aperture-based hyper-spectral imagery systems is
presented in Section 2. Thereafter, an extension for spectral super-resolution
is detailed in Section 3. In Section 4, the simulations and experimental con-
figurations are shown. Finally in Section 5, the conclusions, contributions and
future work are presented.
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Chapter 1

Code Aperture Snapshot Spectral
Imaging (CASSI)

1.1 CASSI description

Code aperture snapshot spectral imaging (CASSI) uses combinations of code
apertures and one or more dispersive elements to modulate the optical field
from a scene [18]. A 2D detector array captures a single multiplexed projec-
tion of the full 3D datacube. The nature of the multiplexing performed depends
on the relative position of the code aperture(s) and the dispersive element(s)
within the instruments. The number of measurements is significantly smaller
than the number of voxels in the datacube that are eventually reconstructed.
Compressive sensing techniques, may be used to reconstruct the datacube.
Due to the modulation of the datacube using a code aperture, CASSI systems
do not measure certain voxels.

The CASSI instrument developed in [8] is shown in Fig. 1.1. A standard
imaging lens is used to form an image of a remote scene in the plane of the
code aperture. The code aperture modulates the spatial information over all
wavelengths in the datacube with the coded pattern. Imaging the datacube
from this plane through the dispersive element results in multiple images of
the code-modulated scene at wavelength-dependent locations on the detector
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Figure 1.1: Code Aperture Snapshot Spectral Imager architecture

array. The intensity pattern measured on the detector contains a coded mixture
of spatial and spectral information about the scene.

Figure 1.2 demonstrates the three step sensing process on the datacube
(spatial modulation, spectral shearing and detector integration). The instru-
ment disperses spectral information from each spatial location in the scene
over a certain area across the detector. Thus, spatial and spectral information
from the scene is multiplexed on the detector pixels. In CASSI, measuring just
one spectrally-dispersed projection of the datacube that is spatially modulated
by the aperture code over all wavelengths can be used to estimate the entire
datacube.

The spatial resolution of the reconstructed datacube depends on (i) the
point spread function (PSF), h(x′, x, y′, y, ), of the relay optics and dispersive
element, (ii) the pixel size, ∆, (iii) the size of a feature on the code aperture,
and (iv) numerical estimation effects. However, ignoring numerical estimation
effects, the spatial resolution is approximately given by the width and height
of the smallest feature on the code aperture. The spectral resolution of the
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Figure 1.2: CASSI light propagation

reconstructed datacube is the separation between spectral channels in the
reconstructed datacube (in nanometres). The spectral resolution of the re-
constructed datacube depends on (i) the amount of dispersion induced by the
dispersive element, (ii) the PSF, (iii) the pixel size, and (iv) the size of the small-
est feature on the code aperture

1.2 CASSI system model

Here it is presented the model that describes the propagation of light through
the instrument. The power spectral density of the image of the scene formed
by the objective lens at the plane of the aperture code is denoted as f0(x, y, λ).
Denoting the code aperture transmission function by T (x, y), the power spec-
tral density immediately after spatially modulated by the code aperture is,

f1(x, y, λ) = T (x, y)f0(x, y, λ). (1.1)

The pattern printed in T (x, y) is designed as an array of square features (pixels)
with size similar to the detector pixels ∆. Let ti,j represent the binary value at
the (i, j)th element, with a 1 representing a transmissive code element and a 0
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representing a obstructing code element. Then, T (x, y) can be described as,

T (x, y) =
∑
i,j

ti,jτ(i, j;x, y), (1.2)

where τ(i, j;x, y) represents the pixel function,

τ(i, j;x, y) = rect
( x

∆
− i, y

∆
− j
)
. (1.3)

After propagation through relay optic lens and the dispersive element, the
power spectral density in front of the FPA detector is given by,

f2(x, y, λ) =

∫∫
f1(x, y, λ)h(x′ − S(λ)− x, y′ − y)dx′dy′ (1.4)

where h(x′−S(λ)−x, y′−y) represents the relay lenses and dispersive element
operation and S(λ) the dispersion induced by the dispersive element. Finally,
the FPA detector measures the intensity of incident light rather than the spectral
density as in spectrometers. This is done by integrating the power spectral
density along the wavelength axis over the FPA spectral range Λ. Then, the
measurement at the FPA is given by,

g(x, y) =

∫
Λ

f2(x, y, λ)dλ. (1.5)

Replacing Eq. (1.4) in Eq. (1.5) conduces to,

g(x, y) =

∫
Λ

∫∫
T (x′, y′)f0(x′, y′, λ)h(x′ − S(λ)− x, y′ − y)dx′dy′dλ. (1.6)

Assuming, (i) the PSF h(x′−x, y′−y) is shift invariant, (ii) the dispersion by the
dispersive element is linear, and (iii) that there is one-to-one mapping between
elements of the aperture code to the detector pixels, the FPA measurement
can be succinctly expressed as,

g(x, y) =

∫
Λ

T (x− S(λ), y)f0(x− S(λ), y, λ)dλ. (1.7)
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These assumptions permit to interpret the CASSI measurement as a linear
process. Experimentally, however, the PSF varies across the field, the dis-
persion is non-linear over CASSI’s spectral range, and there are sub-pixel mis-
alignments between the aperture code features and detector pixels. In discrete
form, the measurement at the (m,n)th FPA pixel is given by,

gm,n =
L∑
k=1

ti−k,jfi−k,j,k (1.8)

with L being the number of datacube hyperspectral bands. In matrix form, (1.8)
can be expressed as,

g = Hf , (1.9)

where H matrix represents the CASSI sensing process accounting for CASSI
optical elements operation on the discretized datacube.

Assuming a N×M×L datacube as in Fig. 1.2, a prism exhibiting linear dis-
persion, shift horizontally each spectral band along x-axis by one pixel each,
causing the power spectral density impinges into N(M + L − 1) FPA pixels.
Then, CASSI sensing matrix H is of size N(M +L− 1)×NML. Hence, a dat-
acube reconstruction f̃ in CASSI relies on the solution of an under-determined
ill-posed equations system.

1.3 CASSI reconstruction process

CASSI datacube reconstructions uses the measurement g and an estimation
of H matrix. As the number of pixels on the detector used for the measure-
ment is smaller than the number of voxels in the discrete datacube, the equa-
tions system depicted in Eq. (1.9) is under-determined. If linear inversion is
attempted, this problem has an infinite number of solutions since the associ-
ated null space is non-trivial.

The signal processing theory proposes several ways to recover compressed
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signals. A relatively new field of study called compressive sensing (CS), gives
a widely set of solutions where sensing under Shannon-Nyquist theorem is
performed [3; 4]. The CS theory suggests that an under-determined problem
is well-posed for inversion if the signal of interest (the datacube) is sparse or
compressible in some orthonormal basis, ΨΨΨ and, the measurement system
(CASSI) is designed so that the linear projection implemented by the sensing
matrix (H), does not significantly damage the information in any sparse or com-
pressible signal through the dimensionality reduction [5]. Hence, the datacube
is represented by,

f = ΨΨΨθ, (1.10)

where θ are the sparse coefficients representation of the datacube on the basis
ΨΨΨ. Then, the compressive FPA measurements are given by,

g = HΨΨΨθ. (1.11)

In this way, a hyper-spectral image datacube reconstruction f̃ for CASSI can
be achieved by solving the optimization problem,

f̃ = ΨΨΨ{argminθ′‖f −HΨΨΨθ′‖2
2 + τ‖θ′‖1} (1.12)

where τ > 0 is a regularization parameter that balances the conflicting tasks of
minimizing the least square of the residuals, while at the same time, yielding a
sparse solution.
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Chapter 2

Spatial Super-Resolution in CASSI

The principal objective in spatial hyper-spectral super-resolution is to obtain
a high-resolution reconstruction from a set of measurements captured with
low-resolution FPAs. Figure 2.1 shows the optical architecture proposed for
spatial SR-CASSI to achieve this objective. In there, the image source den-
sity denoted as f0(x, y, λ) is first coded by the high-resolution code aperture
T (x, y). The resulting coded field f1(x, y, λ) is subsequently shifted horizon-
tally by a dispersive element before it impinges onto the FPA, resulting in the
signal f2(x, y, λ). The output f2(x, y, λ) is then optically relayed into the FPA,
where the compressive measurements are realized by the integration over the
detector’s spectral range sensitivity.

Figure 2.1: Spatial Super-resolution optical model. The FPA pixel pitch is greater
than the one from the code aperture, there is not 1:1 matching between
pixels.
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2.1 Spatial SR-CASSI mathematical model

Assuming a N ×M × L data cube as depicted in Fig. 2.2, with N ×M repre-
senting the spatial dimensions and L the spectral depth, the spatial SR-CASSI
model is represented as follows. The spatial modulation realized by the code
aperture can be written as,

f1(x, y, λ) = T (x, y)f0(x, y, λ). (2.1)

The modulated spatio-spectral information is then shifted horizontally by the
dispersive element. The signal obtained after dispersion is denoted as,

f2(x, y, λ) =

∫∫
f1(x, y, λ)h(x′ − x− S(λ), y′ − y)dx′dy′ (2.2)

where h(x′ − x − S(λ), y′ − y) represents the dispersive element operation
with S(λ) representing the dispersion function which depends on the spectral
band wavelength. The compressive sensing measurements across the FPA
are realized by the integration of the field f2(x, y, λ) over the detector’s spectral
range sensitivity,

g(x, y) =

∫
Λ

f2(x, y, λ)dλ. (2.3)
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Assuming linear optical elements, we can express the analogous spatial SR-
CASSI measurement as,

g(x, y) =

∫∫∫
T (x− S(λ), y)f0(x− S(λ), y, λ)dxdydλ. (2.4)

Since the detector is spatially pixelated, the measurement at the (m,n)th pixel
is given by,

gm,n =

∫∫
p(m,n;x, y)g(x, y)dxdy + ωm,n, (2.5)

where ωm,n represents additive noise and p(m,n;x, y) the detector pixelation,
which is given by,

p(m,n;x, y) = rect
( x

∆
−m, y

∆
− n

)
, (2.6)

with ∆ being the pixel pitch ratio between the code aperture and the detector.
Then, we can express the (m,n)th measurement as,

gm,n =

∫ (n+1)∆

n∆

∫ (m+1)∆

m∆

∫
Λ

T (x−S(λ), y)f0(x−S(λ), y, λ)dλdxdy+ωm,n. (2.7)

A critical requirement for achieving super-resolution is that the pitch of the
modulating code aperture must be lower than that of the detector. Letting
∆c be the spatial pitch between elements in the code aperture, and ∆d the
one between detector pixels, then the pitch ratio between the code aperture
and the detector is defined as ∆ = ∆d

∆c
. Assuming that the side length of the

detector spans an integer number of code aperture elements, the horizontal
and vertical spatial super-resolution are thus limited by ∆c. Denoting the hyper-
spectral data cube in discrete form as (Fk)mn, and the code aperture as T, the
compressive sensing measurement at the (m,n)th detector pixel can be written
in discrete form as,

gm,n =

(n+1)∆∑
`=n∆+1

(m+1)∆∑
j=m∆+1

L∑
k=1

(Fk)j+k,` (T)j+k,` + ωm,n, (2.8)

for m = 1, . . . ,M ′ and n = 1, . . . , N ′, with M ′ ×N ′ being the FPA detector size.
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2.2 Matrix computational approach

In matrix notation, a spatial SR-CASSI measurement is represented by,

g = DHf , (2.9)

where f is the data cube in lexicographical notation, H is aN(M+L−1)×NML

matrix representing the transmission function of the system accounting for the
high-resolution code aperture, the dispersive element and the relay lenses.
The D matrix is a N(M+L−1)

∆2 ×N(M + L− 1) matrix which represents the dec-
imation transformation due to the low-resolution FPA. Note, that f represents
the high-resolution hyper-spectral data cube, whereas the vector g the low-
resolution measurement.

Multi-shot approach allows to obtain different information from the same
scene as different code patterns can be used. If they are highly decoupled or
independent among themselves, the full datacube voxels information can be
achieved. For a multi-shot spatial SR-CASSI model, the general system can
be written as, 

g1

g2

...
gK

 = D


H1

H2

...
HK

 f , (2.10)

g̃ = DH̃f , (2.11)

where H̃ ∈ {0, 1}N(M+L−1)K×NML. Notice that for multi-shot approach the code
aperture pattern changes each shot. Multi-shot approach is depicted in Figure
2.3. The optical transmission function of the system for each shot can be
expressed in matrix form as,

Hi = PTPTPTi (2.12)

where PPP is a N(M +L− 1)×NML matrix representing the dispersive element
operation and Ti a NML×NML block-diagonal matrix accounting for the ith
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Figure 2.3: Multi-shot spatial SR-CASSI sensing model

code aperture of the form,

TTTi=


diag(ti) 0NM×NM · · · 0NM×NM
0NM×NM diag(ti) · · · 0NM×NM

...
... . . . ...

0NM×NM 0NM×NM · · · diag(ti)

 , (2.13)

where ti represents the ith code aperture in lexicographical notation with size
NM × 1 and diag(·) a function which puts the elements in the argument in the
diagonal of a matrix. Note that 0NM×NM is zero-valued matrix with NM rows
and columns. In the same way, the dispersive element operation is given by,

PPP=


diag(1NM×1) 0N×NM · · · 0N×NM

0N×NM diag(1NM×1)· · · 0N×NM
...

... . . . ...
0N×NM 0N×NM · · ·diag(1NM×1)

 , (2.14)

where 1a×b is a one-valued matrix with a rows and b columns. Let define d =
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[11×∆ 01×N−∆]. Also, define d̃ = µs ⊗ d, where µs is a ∆ long one-valued
vector. Then, the decimation operation due to the low-resolution detector can
be modeled as,

D=


D̃̃D̃D 0NM×NM · · · 0NM×NM

0NM×NM D̃̃D̃D · · · 0NM×NM
...

... . . . ...
0NM×NM 0NM×NM · · · D̃̃D̃D

 (2.15)

where D̃̃D̃D is given by,

D̃̃D̃D =
[
d̃ d̃

(
ΘT
R

)∆ · · · d̃
(
ΘT
R

)N−∆
]T

(2.16)

with ΘR being a N ·∆×N ·∆ permutation matrix of the form,

ΘR =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

... . . . ...
0 0 · · · 1 0


(2.17)

=

[
01×(N ·∆−1) 11×1

I(N ·∆−1)×(N ·∆−1) 0(N ·∆−1)×1

]
(2.18)

where I is a (N.∆−1)×(N.∆−1) identity matrix. The matrix operation d̃(ΘT
R)k

shifts the columns of d̃, k positions circularly to the right. In SR-CASSI, a set of
K low-resolution FPA measurements are first captured, each having N ′ ×M ′

compressed measurements, where N ′ = N
∆

and M ′ = dM+L−1
∆
e. The number

of sample measurements is often far less than the super-resolved spectral data
cube voxels, hence KN ′M ′ � NML.
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2.3 Reconstruction model for spatial SR-CASSI

A hyper-spectral image datacube reconstruction f̃ for spatial SR-CASSI can be
achieved by solving the optimization problem,

f̃ = ΨΨΨ{argminθ′‖f −DH̃ΨΨΨθ′‖2
2 + τ‖θ′‖1} (2.19)

where τ > 0 is a regularization parameter that balances the conflicting tasks of
minimizing the least square of the residuals, while at the same time, yielding a
sparse solution. A reconstruction scheme is depicted in Fig. 2.4.
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Figure 2.4: Spatial SR-CASSI data cube reconstruction
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Chapter 3

Spectral Super-Resolution in
CASSI

3.1 Spectral SR-CASSI model

Spectral super-resolution in code aperture multi-shot spectral imaging is at-
tained by the system depicted in Figure 3.1, where the image source density
f0(x, y, λ) is first coded by the code aperture T1(x, y). The resulting coded field
f1(x, y, λ) is subsequently shifted horizontally by the dispersive element before
it impinges onto the second code aperture T2(x, y). The output f3(x, y, λ) is
then optically relayed into the FPA where the compressive measurements are
realized by the integration over the detector’s spectral range sensitivity.

Figure 3.1: Spectral SR-CASSI architecture. The pixel pitch in both code apertures
is smaller than in the FPA

The power source density impinging into the detector, after propagation
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through optical elements in spectral SR-CASSI, can be written as,

f3(x, y, λ) = T2(x, y)

∫∫
T1(x′, y′)f0(x′, y′, λ)h(x′−x−S(λ), y′−y)dx′dy′, (3.1)

where h(x′ − x − S(λ), y′ − y) represents the optical impulse response of the
system, and S(λ) represents the coefficient of the dispersive element. The
combination of these operations, in essence, modulates the input data cube
both spatially and spectrally. Furthermore, the modulation code apertures are
set to have a much higher resolution than that of the detector. The source
f0(x, y, λ) can be written in discrete form as (Fk)mn where m and n index the
spatial coordinates, and k determines the kth spectral band. Then, the com-
pressed measurements obtained at the FPA can be written in discrete form as,

gm,n =

(n+1)∆d∑
`=n∆d+1

(m+1)∆d∑
j=m∆d+1

(
L∑
k=1

(Fk)j+k,` (T1)j+k,`

)
(T2)j,` + ωm,n, (3.2)

for n = 1, . . . , N ′, m = 1, . . . ,M ′, where N ′ ×M ′ is the number of pixels of the
FPA, ∆d is the FPA pitch. Equation (3.2) can be rewritten in matrix notation as,

g = DHf + ω (3.3)

where the matrix D represents the decimation factor originated by the low reso-
lution detector, H is the projection matrix accounting for the dispersive element
and both code apertures T1 and T2 operations, and ω representing the shot
noise.
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3.2 Multi-shot spectral SR-CASSI model

For a multi-shot approach, the general model for spectral SR-CASSI is similar
to that for spatial SR-CASSI, and can be written as,

g1

g2

...
gK

 = D


H1

H2

...
HK

 f , (3.4)

g̃ = DH̃f , (3.5)

where H̃ ∈ 0, 1N(M+L−1)K×NML. The difference between spatial and spectral
SR-CASSI lies in the optical transmission function H̃. Notice that for multi-shot
approach both code aperture patterns change every shot. Multi-shot approach
for spectral SR-CASSI is depicted in Figure 3.3. The optical transmission func-
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Figure 3.3: Multi-shot spectral super-resolution sensing model

tion of the system can be expressed in matrix form by,

Hi = TTTi2PTPTPT
i
1 (3.6)
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where PPP is a N(M +L− 1)×NML matrix representing the dispersive element
operation, TTTi1 a NML×NML block-diagonal matrix accounting for the ith first
code aperture of the form,

TTTi1 =


diag(ti1) 0NM×NM · · · 0NM×NM
0NM×NM diag(ti1) · · · 0NM×NM

...
... . . . ...

0NM×NM 0NM×NM · · · diag(ti1)

 (3.7)

where ti1 represents the ith first code aperture in lexicographical notation with
size NM × 1. Note that 0NM×NM is zero-valued matrix with NM rows and
columns. Straightforward, the second code aperture TTTi2 operation is modelled
in the system as a N(M +L− 1)×N(M +L− 1) matrix, with the values of the
ith second code aperture in its diagonal. Both, the dispersive element opera-
tion and the decimation due to the low-resolution FPA are modelled similarly to
those in spatial SR-CASSI, given by Eqs. (2.14) and (2.15).

In spectral SR-CASSI, as in spatial SR-CASSI a set of K low-resolution
FPA measurements are first captured, each one having M ′ × N ′ compressed
measurements. The number of sample measurements is often far less than
that of the super-resolved hyper-spectral data cube. Hence, KN ′M ′ � NML,
N ′ and M ′ are given by N ′ = N

∆
and M ′ = dM+L−1

∆
e. Assume the distance

between elements in both code apertures be ∆c. Then, the pitch ratio between
the FPA and the aperture codes can be defined as ∆ = ∆d

∆c
. Also, assuming that

the band pass filter of the instrument limits the spectral components between
λ1 and λ2, the number of super-resolvable bands L have an upper bound given
by L = α∆λ2−λ1

∆d
. The spectral super-resolution is then determined by α

∆c
.

3.3 Reconstruction model for spectral SR-CASSI

A hyper-spectral image datacube reconstruction f̃ for spectral SR-CASSI can
be achieved similarly to spatial SR-CASSI, by solving the optimization problem,
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f̃ = ΨΨΨ{argminθ′‖f −DH̃ΨΨΨθ′‖2
2 + τ‖θ′‖1} (3.8)

where τ > 0. Notice that spectral SR-CASSI sensing matrix H̃, differs from the
spatial SR-CASSI, in that, it accounts also for the second code aperture T2T2T2.
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Chapter 4

Simulations and Results

4.1 General assumptions

A hyper-spectral image datacube making the role of the reality is obtained
from the scene depicted in Fig. 4.1, by illuminating the object using specific
monochromatic sources along visible spectral range (450 nm - 642 nm), and
by using a 256× 256 FPA.

Figure 4.1: Original scene

Hence, a high-resolution data cube F exhibiting L = 24 spectral bands and
256×256 pixels in spatial domain is experimentally obtained. The 256×256×24

high-resolution hyper-spectral datacube is depicted in Fig. 4.2.

Having defined the power spectral source, the next step is to find the best
compression basis to represent the hyperspectral datacube. As shown in Fig.
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451 nm 459 nm 467 nm 475 nm

483 nm 491 nm 499 nm 507 nm

515 nm 523 nm 531 nm 539 nm

547 nm 555 nm 563 nm 571 nm

579 nm 587 nm 595 nm 603 nm

611 nm 619 nm 627 nm 635 nm

Figure 4.2: 256× 256× 24 hyperspectral data-cube
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4.3, three different basis are evaluated and their representation coefficients an-
alyzed. The hyperspectral datacube coefficients are depicted in Fig. 4.3(a).

The first compression basis evaluated is the Wavelet 1D which is applied
at each datacube pixel along the spectral domain; results are depicted in Fig.
4.3(b). A second attempt is done by using the Wavelet 2D compression basis,
which is applied at each spectral datacube band; the quantity of coefficients
as well as the compression result is showed in Fig. 4.3(c). Finally, a 3D repre-
sentation basis is obtained by using the Kronecker matrix product [19] in order
to exploit the best representation basis for both spatial and spectral domain.
Hence, a Discrete Cosine Transform for spectral domain and the Wavelet 2D
transform for spatial compression are used, and the compression achieved is
depicted in Fig. 4.3(d).

(a) Original datacube (b) Wavelet 1D basis (c) Wavelet 2D basis (d) Kronecker basis

Figure 4.3: Compression basis comparison. (a) Original scene. (b) Wavelet 1D. (c)
Wavelet 2D. (d) Kronecker (DCT-Wavelet 2D)
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4.2 Spatial SR-CASSI experiments performance com-

parison

For spatial SR-CASSI simulations, a high-resolution image cube F is exper-
imentally obtained with L = 6 spectral bands and N = M = 256 pixels in
spatial dimensions. In order to compare super-resolution results, we use a sub-
sampled version data cube of size 64× 64× 6. Note, the spectral range is the
same for the high and low resolution data cubes, which is between 450−642nm.
The comparison method is depicted in Fig. 4.4.
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Figure 4.4: Comparison methodology for spatial SR-CASSI vs. CASSI. The SR-
CASSI experiment is executed normally and a high-resolution datacube
estimation is obtained. On the other side, a low-resolution datacube esti-
mation is obtained when CASSI is used, then a spatial interpolation equiv-
alent to the decimation factor is performed to comparison.

In our simulations, the code aperture for SR-CASSI T is set to the high-
resolution size 256× 256. The decimation ratio between the high and low reso-
lution FPA is 16 : 1 (∆ = 4). The low-resolution FPA used in all the experiments
is of size 69×64. For comparison, the CASSI code aperture was of size 64×64,
exhibiting 1 : 1 correspondence between pixels with the FPA. Figure 4.5 shows
the code aperture and FPA characteristics.
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The Gradient Projection for Sparse Reconstruction algorithm (GPSR) is
used to reconstruct the spectral data cubes as it exhibits faster computational
speed [20]. The base representation ΨΨΨ is the Kronecker product of three basis
ΨΨΨ = ΨΨΨ1⊗ΨΨΨ2⊗ΨΨΨ3, where the combination ΨΨΨ1⊗ΨΨΨ2 is the 2D-Wavelet Symlet 8
basis and ΨΨΨ3 is the Discrete Cosine basis. All the simulations were conducted
and timed on the same workstation with an Intel Core 2 Duo 2.40 GHz that
has 2 cores and 8 GB memory (DDR3 at 1067 MHz), running Mac OS X Snow
Leopard (v. 10.6.8) and Matlab (v. 7.11.0 R2010b).
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Figure 4.5: High/low-resolution code aperture and FPA characteristics. (a) High-
resolution code aperture for SR-CASSI. (b) Low-resolution code aperture
used in CASSI. (c) Low-resolution FPA used in both experiments. (d) Ra-
tio between high-resolution code aperture and the FPA. (e) Ratio between
low-resolution code aperture and the FPA.

Figure 4.6 shows a comparison between the super-resolution reconstruc-
tion approach described here, and the original CASSI system without super-
resolution. Clearly, the super-resolution approach obtains better PSNR than
the non-super-resolution case as number of shots increases. The improve-
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ment is approximately 3.5 dB better when 48 shots are measured. A 4.25 dB
gain is attained with 96 shots. Notice, that CASSI does not improve as number
of shots increase. This is due to the fact that no extra sub-pixel information is
exploited as in the super-resolution approach.
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CASSI

SR−CASSI

Shots PSNR (dB)
CASSI SR-CASSI

1 11.76 12.38
4 15.59 15.46
8 21.70 19.66

16 24.71 23.74
24 24.94 26.67
32 24.95 27.88
48 24.95 28.83
96 24.96 29.18

Figure 4.6: Comparison between CASSI and SR-CASSI imaging systems. The dec-
imation in the super-resolution approach has a ratio of 4:1. SR-CASSI
approach gives an approximate improvement of 4.35 dB, compared with
CASSI approach that remains quasi-constant when the number of shots
increases.

The six-bands datacube reconstructions results when 96 shots are cap-
tured are depicted in Fig. 4.7. Particularly, different small regions are zoomed
in to see the difference between using CASSI and SR-CASSI, the results are
depicted in Fig. 4.8, where the 1st, 3rd and 6th spectral bands of the data cube
are evaluated. In this figure, we confirm that better reconstruction results can
be obtained when the super-resolution model developed is used. The PSNR
remains almost constant (25 dB) indistinctly of the number of shots when the
CASSI model is used. This is unlike the SR-CASSI where the PSNR increases
as the number of shots grows.

Finally, the resulting reconstruction of spectral data cubes are shown in Fig.
4.9 as they would be viewed by a CCD Color Camera.
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(a) CASSI datacube reconstruction at 96 shots

(b) Spatial SR-CASSI datacube reconstruction at 96 shots

Figure 4.7: Six-bands datacube reconstructions. (a) CASSI reconstruction result. (b)
SR-CASSI datacube reconstruction when ∆ = 4.
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Band =1 CASSI Shots=192 Band =1 SR CASSI Shots=192

(a) 1st spectral band

Band =3 CASSI Shots=24 Band =3 SR CASSI Shots=192

(b) 3rd spectral band

Band =6 CASSI Shots=192 Band =6 SR CASSI Shots=192

(c) 6th spectral band

Figure 4.8: Visual comparison of the reconstructions of the 1st, 3rd and 6th spectral
bands from the 6 spectral band data cube. (a)-(c) CASSI vs SR-CASSI
result for 1st, 3rd and 6th, 192 shots. The averaged PSNR results were
25.04 dB for CASSI, and 29.31 dB for spatial SR-CASSI using 192 shots.
SR-CASSI improves on CASSI by approximately 4.27 dB
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Original

(a) Original data cube

CASSI PSNR=24.95

(b) CASSI

Spatial−SR−CASSI PSNR=29.34

(c) Spatial SR-CASSI

Figure 4.9: The resulting data cube reconstructions are shown as they would be
viewed by a CCD Color Camera

40



4.3 Spectral SR-CASSI simulations

For the experiments realized in this section, a high-resolution spectrally coarse
256× 256× 6 data-cube is used. For SR-CASSI the high-resolution code aper-
tures, T1(x, y) and T2(x, y) exhibit spatial resolution of 256× 256 and 279× 256,
respectively. CASSI, on the other hand uses a low-resolution code aperture
matching with the pixel pitch of the low-resolution FPA. Three different low-
resolution 133× 128, 69× 64, and 37× 32 FPAs are used and compared in the
experiments. That is, the decimation ratios between both high code apertures
and the low resolution FPA varies between 2, 4 and 8 (∆ = 2, 4, 8). Hence,
CASSI code aperture resolution varies between 128×128, 64×64, and 32×32.
The comparison method between both approaches is depicted in Fig. 4.10.
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Figure 4.10: Comparison methodology for spectral SR-CASSI vs. CASSI. The SR-
CASSI experiment is executed normally and a high-resolution spatially
and refined spectrally datacube estimation is obtained. On the other
side, a low-resolution datacube estimation is obtained when CASSI is
used, then a spatial interpolation equivalent to the decimation factor is
performed. Also an interpolation in the spectral domain equivalent to the
ratio between the second code aperture and the FPA is realized.

Notice that, the spectral range remains the same for the high and low-
resolution data cubes, which is between 451 and 642 nanometers. The band-
width of each spectral slice in the high-resolution data cube is 8 nanometers,
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while the low-resolution data cube exhibits 32 nanometers per band. The rep-
resentation basis ΨΨΨ is the Kronecker product of three basis ΨΨΨ = ΨΨΨ1 ⊗ΨΨΨ2 ⊗ΨΨΨ3,
where the combination ΨΨΨ1 ⊗ΨΨΨ2 is the 2D-Wavelet Symlet 8 basis and ΨΨΨ3 the
Discrete Cosine basis. The Gradient Projection for Sparse Reconstruction al-
gorithm (GPSR) was used to reconstruct the spectral data cubes as it exhibits
faster computational speed.

For spectral SR-CASSI the density distribution of the pattern printed in the
code apertures is analyzed. That is, the code apertures exhibits a binary
pattern with equiprobable entries {0, 1}. A zero-valued pixel means the light
propagates through this code aperture pixel, and a one-valued pixel blocks
the incident light. The zero-to-ones pixel ratio in the code aperture causes
the datacube reconstruction becomes harder or easier to obtain. Thereby, as
more zeros a patterned code aperture exhibit, more complex the estimation
becomes, due to more datacube voxels impinge onto the FPA, i.e. more un-
knowns appear while the number of equations remain the same. The PSNR
of the reconstructed data cubes, as a function of the number of FPA measure-
ments captured, is shown in Figs. 4.11 - 4.13, where the ratio between ones
and zeros in the code apertures varies between 30% (30% ones and 70% ze-
ros) and 50% (50% ones and 50% zeros).

Analyzing the best results, SR-CASSI obtains better PSNR than CASSI
when more than 40 FPA measurements are taken for ∆ = 2, 4 and more
than 80 for ∆ = 8. This improvement is approximately 8 dB, 6 dB and 2.6
dB for ∆ = 2, 4, 8 respectively. The CASSI PSNR remains static as num-
ber of shots increase, due to the fact that no sub-pixel information can be
exploited, unlike SR-CASSI which exploits sub-pixel information by using the
high-resolution code apertures. Datacube reconstructions by using CASSI and
spectral SR-CASSI are depicted in 4.14. In Fig. 4.15 the zoomed version of
the 1st, 5th, 9th, 13th, 17th and 24th spectral bands of the data cube are shown, in
order to notice the visual improvement. The resulting reconstruction of spectral
data cubes are shown in Fig. 4.16 as they would be viewed by a CCD Color
Camera.
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Figure 4.11: Spectral SR result for ∆ = 2
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Figure 4.12: Spectral SR result for ∆ = 4
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Figure 4.13: Spectral SR result for ∆ = 8
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(a) CASSI datacube reconstruction at 192 shots

(b) Spatial SR-CASSI datacube reconstruction at 192 shots

Figure 4.14: 24-bands datacube reconstructions. (a) CASSI reconstruction spa-
tio/spectral interpolation result. (b) SR-CASSI datacube reconstruction
when ∆ = 2.
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(a) Measuring 16 shots

(b) Measuring 192 shots
Figure 4.15: Reconstruction of zoomed portions from 1st, 5th, 9th, 13th, 17th and 24th

hyper-spectral bands. First row shows the results for CASSI. Second,
third and fourth rows show the results for spectral SR-CASSI for decima-
tion factors 2, 4 and 8 respectively. (a) For 16 FPA measurements. (b)
For 192 FPA measurements.
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Original

(a) Original

CASSI PSNR=24.95

(b) CASSI

SR−CASSI PSNR=33.16

(c) SR-CASSI: ∆ = 2

SR−CASSI PSNR=31.15

(d) SR-CASSI: ∆ = 4

SR−CASSI PSNR=27.84

(e) SR-CASSI: ∆ = 8

Figure 4.16: The resulting data cube reconstructions are shown as they would be
viewed by a CCD Color Camera
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Chapter 5

Conclusions

• A super-resolved methodology for code-aperture based multi-shot spec-
tral imaging systems in the visible spectral range was developed. The
proposed methodology and optical architectures provide a way to effec-
tively obtain more information from the original hyper-spectral signal by
taking multiple shots where sub-pixel information can be exploited.

• Inversion of the snapshot or multishot projection for recovery of the data
cube is an ill-posed problem because the number of measurements (equa-
tions) available is significantly smaller than the number of voxels (un-
knowns) in the datacube. Thus, the Gradient Projection for Sparse Rep-
resentation method was used to numerically estimate the datacube by
assuming hyperspectral signal sparsity of the scene in a Kronecker rep-
resentation basis, combining the discrete cosine transform and the 2D
wavelet transform.

• For spatial SR-CASSI, the simulation results show an improvement of up
to 4.27 dB when the proposed methodology is used. It also represents
significant savings in cost as low resolution detectors can be used instead
of costly high-resolution FPAs.

• For spectral SR-CASSI, improvements of 8 dB, 6 dB and 2.6 dB in PSNR
were achieved for pixel pitch ratios of 2, 4 and 8, respectively. Also,
a four-fold improvement in spectral resolution was attained where a 24
spectral datacube could be reconstructed, rather than the 6-band cube
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made possible by the CASSI architecture.

• Multi-shot approaches improve single-shot code aperture based optical
systems at the cost of take multiple FPA measurements. This approach
requires that the objective remains static while multiple shots are being
captured.

Contributions

• H. Arguello, H. Rueda, and G. R. Arce. ”Spatial super-resolution in code
aperture spectral imaging”. SPIE Conference on Defense, Security and
Sensing, Baltimore, MD, April 2012.

• H. Arguello, H. Rueda, and G. R. Arce. ”On super-resolved coded aper-
ture spectral imaging”. Submitted to IEEE Workshop on Signal Process-
ing Systems, Quebec, Canada, April 2012.

• H. Rueda and H. Arguello. ”Super-resolution algorithm applied to spectral
images acquired by Compressive Sensing”. In preparation to be submit-
ted to Journal of Engineering and Research, Universidad Nacional de
Colombia, June 2012.

Future work

• H. Arguello, H. Rueda, and G. R. Arce. “Hyperspectral Super-resolution
in coded aperture based optical imagery systems”. In preparation to be
submitted to IEEE Transactions on Image Processing, 2012.

• H. Arguello, H. Rueda, Y. Wu, D. Prather and G. R. Arce. “High-Order
Precision Models for Coded Aperture Spectral Imaging”. In preparation
to be submitted to Optics Express, 2012.
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