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for classification, or even reconstructing the signal. This thesis studies estimating and using the second statistical

moment of the hyperspectral images in compressive spectral imaging (CSI). Hence, this thesis proposes an algorithm

for reconstructing the second statistic moment from low-dimensional random projections of hyperspectral images

and an algorithm for designing the sensing protocol using the CM. A convex optimization problem, an algorithm,

and an optical architecture that take advantage of this approach are proposed. Furthermore, this thesis presents the

convergence guarantees analysis and some theoretical properties to ensure a correct reconstruction. The proposed

algorithm is tested over hyperspectral image reconstruction and classification tasks, including land cover estimation

using the recovered CM.
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Introduction

Remote sensing devices and applications usually rely on images acquired from satellite or

airborne cameras to collect data from difficult access places. Traditionally, these cameras capture

high spatial resolution RGB data from the scene, allowing the identification of targets based on

shape and color. However, the resolution is affected by sensor distance to the target and light

propagation medium (such as the atmosphere), making the classification based on shape and color

challenging (Manolakis et al., 2003). Hyperspectral imaging (HSI) is a tool for classification and

target detection that is not based on shape but on spectrum analysis only (i.e., color analysis). In

particular, HSI acquires a spectral signature of each spatial position instead of only three colors, as

in RGB images. The spectral signature comprises hundreds of narrow bands of color, referred to as

wavelengths, associated with the scene composition. Hence, a target can be identified by analyzing

the shape of the spectral signature instead of the object’s shape, which allows target identification

even in a subpixel size (Manolakis et al., 2003, 2009).

HS image reconstruction is usually expensive because of the signal’s dimension. Some ap-

plications do not even use the HS image but require estimated statistical parameters. For instance,

tasks such as linear discriminant analysis or principal component analysis use the covariance ma-

trix (CM) to learn a linear projector that reduces the dimensionality of the data while maximizing

an ℓ2 based metric (Balakrishnama and Ganapathiraju, 1998; Fowler, 2009; Xanthopoulos et al.,

2013). For instance, in target detection algorithms, the CM of the background is used to detect

unusual spectral signatures, which is the objective (Manolakis et al., 2009). Adaptative detection
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problems also use the CM to guide the sensing strategy to detect a signal embedded in perturbations

(Besson et al., 2008b; Monsalve et al., 2020).

Therefore, estimating the Covariance Matrix of a HS image is a central problem in ma-

chine learning and signal processing applications. Traditionally, the CM is approximated using the

sample covariance matrix estimator (Chen et al., 2014; Fowler, 2009), which requires many real-

izations to be accurate. In HSI applications, it implies that many pixels must be acquired before

the CM estimation occurs. However, acquiring a large number of pixels is time-consuming due to

the scanning approach used in image sensing. Additionally, the resulting image needs to be stored,

transmitted, or processed, which is also complex due to its huge size. If not enough samples are

available, another common approach to estimate the covariance matrix consists in shrinking the

CM towards a simple estimator, which presents a lower variance resulting in a better estimation

(Chen et al., 2010; Steland, 2018). However, if the simpler estimator has a large bias, shrinking

the solution toward this estimator can lead to poor results.

To reduce the amount of data captured by hyperspectral cameras, compressive sensing cap-

tures a set of random measurements known as compressive measurements. This is done by ap-

plying a random pattern on the incident ligh field and capturing a two-dimensional projection.

Although it reduces the amount of data, it also add complexity to extract information of this set

of compressive measurements. A common approach consists in reconstruct the signal and then

extract any usefull inforrmation such as statistical information or classification maps. However,

another approach is to recover the statistical information from the measurements. Reconstructing

the CM from compressive measurements also allows for recovering a low-dimensional approxi-
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mation of the HS image based on the PCA strategy. This low-dimensional HS image is suitable

for classification tasks such as vegetation cover estimation from satellite images (Gelvez et al.,

2017). Note that this implies that the signal is not fully reconstructed but just a low-dimensional

projection, reducing the complexity of dealing with HS images. This research thesis addresses the

problem of recovering the Covariance Matrix of the signal and using it to guide the sensing process

and reconstruct the signal in Compressive Spectral Imaging (CSI). Specifically, this thesis proposes

designing the sensing protocol using the CM of hyperspectral imaging in an adaptative approach

via a greedy binary algorithm. In CSI, the CM is unknown hence the CM recovery must also be

addressed. CM estimation is addressed using a projected gradient algorithm with an Armijo search

strategy to speed up the recovery. Additionally, this thesis proposes a compact optical architecture

capable of capturing the random projections required for the CM estimation. Finally, a deep learn-

ing algorithm for land cover estimation is used with the proposed reconstruction methodology to

test the correct performance in the application of HSI. The thesis organization is summarized as

follows:

Chapter 2: Describes the proposed optimization problem and a greedy algorithm to design

the sensing protocol of a compressive optical camera. The optimization problem seeks to maximize

the quotient of binary patterns in the signal’s subspace. That is, to maximize the product between

the binary vectors and the scene covariance matrix. The optimization problem is solved via a

greedy algorithm that finds a single vector at the time. The influence of the previous binary vectors

is subtracted from the covariance matrix to find the next vector. Extensive simulations show that a

few binary patterns can effectively preserve the covariance matrix’s variance.
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Chapter 3: Presents a convex optimization problem and a gradient descent algorithm to

estimate the covariance matrix from random projections. The optimization problem uses a sig-

nal multi-partition set-up and a low-rank restriction to shrinkage the solution. The convergence

guarantees and error terms are given. The problem is solved using a projected gradient descent

algorithm using an Armijo search approach to speed up the convergence. Computational simu-

lations and laboratory experiments show that the proposed strategy outperforms state-of-the-art

algorithms based on second statistic moment estimation.

Chapter 4: Presents the implementation of the methods in chapter 3 for a video setup.

The speed of the proposed approach enables the use of the proposed framework in a video setup.

Hence this chapter proposes a new optical architecture and a modified optimization problem for

a video set-up. The proposed architecture uses a lenslet array to capture multiple scene views

simultaneously, avoiding the multishot requirement. Additionally, the optimization problem incor-

porates a low-rank restriction in the time dimension to take advantage of the temporal correlation

of the scene. Experiments in the laboratory show that the proposed method can reconstruct around

8 frames per second and outperforms in terms of reconstruction quality to some state-of-the-art

algorithms based on ADMM for image reconstruction.

Chapter 5: Addresses the land cover estimation problem from multispectral satellite im-

ages. For this use case, an area of 440 × 680 spatial pixels located at Valle de San José, Santander

was selected. The image was acquired with the sentinel sensor in september 2022. The classifica-

tion used 5 classes: grass, urban, forest, water, and other. The classes were validated via an in-situ

visit in which multiple GPS points were acquired to generate an inventory of pixels for training.
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The main objective is to validate the correct reconstruction of the image and the ability to classify

correctly the information of the recovered images.

Publications

The contributions of this dissertation have been led to the following publications

International Journal Papers

1. J. Monsalve, H. Rueda-Chacon and H. Arguello, "Sensing Matrix Design for Compressive

Spectral Imaging via Binary Principal Component Analysis," in IEEE Transactions on Image

Processing, vol. 29, pp. 4003-4012, 2020, doi: 10.1109/TIP.2019.2959737.

2. J. Monsalve, J. Ramirez, I. Esnaola and H. Arguello, "Covariance Estimation From Com-

pressive Data Partitions Using a Projected Gradient-Based Algorithm," in IEEE Transactions

on Image Processing, vol. 31, pp. 4817-4827, 2022, doi: 10.1109/TIP.2022.3187285.

International Conference Papers

1. Díaz, E., J. Monsalve, Guerrero, A., and Arguello, H. Covariance Matrix Estimation from

Multiple Subsets in Compressive Spectral Imaging. Imaging and Applied Optics 2018 ,

OSA, Orlando, FL, USA, 2018, CTu5D.

2. Rojas, K., J. Monsalve, Gelvez, T., and Arguello, H. Correlation Matrix Estimation from

Compressed Measurements in a Pattern Recognition System. Imaging and Applied Optics

2018, OSA, Orlando, FL, USA, 2018



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 22

3. J. Monsalve, M Marquez, I Esnaola, H Arguello Compressive Covariance Matrix Estimation

from a Dual-Dispersive Coded Aperture Spectral Imager. IEEE International Conference on

Image Processing (ICIP), Anchorage, Alaska, USA, 2021.

4. M Marquez, J. Monsalve, H Rueda, H Arguello Compressive spectral virtual multishot

imager via lenslet array. Optical Sensors and Sensing Congress, Washington, DC, USA,

2021.

5. G Blanco, J Perez, J. Monsalve, M Marquez, I Esnaola, H Arguello Single Snapshot System

for Compressive Covariance Matrix Estimation for Hyperspectral Imaging via Lenslet Array.

XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Popayán,

Colombia, 2021.

6. J. Monsalve, M Marquez, I Esnaola, H Arguello Cocosvi: Single Snapshot Compressive

Spectral Video Via Covariance Matrix Estimation. Workshop on Hyperspectral Imaging and

Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 2022



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 23

Dissertation Overview

Research question

How to improve the accuracy in the recovery of the first and second sample statistical mo-

ments from low-dimensional random projections and how to use these statistics to enhance the

reconstruction of the data in compressive spectral imaging?

Hypothesis

The first and second sample statistical moments of a dataset can be accurately estimated

directly from low-dimensional random projections and they can be used to improve the reconstruc-

tion of the high dimensional data using compressive spectral imaging using principal component

analysis based techniques.

General objective

To design and optimize method to retrieve sample statistics from compressive spectral mea-

surements preserving the original data’s sub-space and to analyze the use of the sample statistics

to reconstruct the underlying signal using compressive sensing theory.

Specific Objectives.

• To determine the most suitable sensing/projection protocols based on compressive sensing

and random projections from the state-of-the-art applicable to hyperspectral imaging to be

used in the statistics recovery.

• To design an algorithm based on the gradient descent method to recover the first and second

sample statistical moments from low-dimensional random projections.
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• To test the performance of the proposed algorithm to recover the sample statistics in hyper-

spectral imaging reconstruction.

• To adapt a state-of-the-art algorithm to estimate the vegetation cover using sample statistics

and random low-dimensional projections of hyperspectral images based on the proposed

approach.

• To verify the performance of the adapted algorithm comparing the accuracy in vegetation

cover estimation with state-of-the-art algorithms.
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1. Theoretical Background

1.1. General Notation

Throughout this thesis the following notation is used:

• R Set of real numbers.

• RD D-dimensional linear space.

• The lowercase boldface letters denote vectors such as x ∈ RD.

• Uppercase boldface letters denote matrices, such as X ∈ RD×N .

• The transpose of the matrix X ∈ RD×N is denoted as XT ∈ RN×D.

• ∥.∥p represents the ℓp norm for p > 0.

• ∥.∥F represents the Frobenius norm.

• E[.] is the mathematical expectation.

1.2. Spectral imaging

Spectroscopy is a powerful technique that enables material identification based on its spec-

tral response along the electromagnetic spectrum, by capturing the spectral response of a single

spatial position (Bioucas-Dias et al., 2013). When a light source illuminates a target, the reflected

photons are measured, and since each material absorbs and reflects different wavelengths, the re-

sulting spectral signature is unique for each material. This signature comprises hundreds of narrow

spectral bands, making spectroscopy highly effective when analyzing a few spots, particularly in
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scenes with homogeneous spatial distribution.

On the other hand, traditional RGB imaging captures only three central wavelengths for

each spatial position, providing a more accurate spatial map distribution of the scene, but far less

spectral information. Consequently, RGB imaging is more appropriate for shape-based classifica-

tion, but fails when classifying a single spatial position or irregular objects.

To address this issue, spectral imaging has emerged as a solution, acquiring dense spatial

and spectral information in a 3-dimensional image known as a datacube (Manolakis et al., 2003).

These images are known as multispectral images (MS) or hyperspectral images (HS), depending

on the number of acquired spectral bands, and enable material identification since each material

has its unique spectral signature. The concept of spectral imaging is illustrated in Fig. 1.
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Figure 1. Schematic representation of a spectral image. Each pixel contains information along the
electromagnetic spectrum used for material identification.
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The number of spectral bands is related to the classification specificity. For instance, tens

of bands are enough to differentiate between green paint and trees, while hundreds of bands make

possible even tree species classification. Nevertheless, one important difficulty in hyperspectral

imaging acquisition is that cameras can only acquire 2-dimensional images at each time. Since

a hyperspectral image contains 3 dimensions, it can not be captured in a single shot. Different

approaches have been proposed to acquire this type of image (Lu and Fei, 2014).

• Point scanning: Point scanning methods acquire a single spatial position each time along

the spectrum. At the end of the process, the captured points are concatenated to form the 3D

image, see Fig. 2 A). This is one of the most time-consuming approaches, but the spectral

resolution is usually higher (Fun, 2022).

• Spatial scanning: This approach is also known as push-broom since it scans a whole spatial

line along the spectral dimension, See Fig. 2 B). This approach is the most common in

remote sensing applications since the platform where the camera is transported is moving

(Sousa et al., 2022).

• Spectral scanning: Spectral scanning methods use color filters to acquire the whole image

in a single spectral band; the number of spectral bands that can be captured depends on the

number of filters and their spectral response. This approach is sketched in Fig. 2 C) (Foley

et al., 2022).

• Snapshot acquisition: This approach is a 2D projection of the 3D image; for that reason, a

reconstruction step is needed. However, it does not require a scanning process resulting in
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less acquisition time (see Fig. 2 D) (Arce et al., 2013).

Figure 2. Schematic representation of the different approaches to acquire a hyperspectral image.
a) Point scanning, b) Spatial scanning, c) Spectral scanning, d) Snapshot acquisition .

Hyperspectral imaging has been successfully used in many areas such as precision farming

(Candiago et al., 2015), (Xiong et al., 2015), medical diagnosis (Levenson and Mansfield, 2006),

and others (Markas and Reif, 1993; Manolakis et al., 2003). Nevertheless, the huge dimensions

of the resulting datacube in HS imaging come with challenges related to its storage, transmission,

and processing. To mitigate these problems, many approaches are based on lossy compression

algorithms that require capturing the full image to compress it. However, this procedure does not

solve the problem but transfers the bottleneck from the acquisition, transmission, and storage to

the computation field. For that reason, approaches that compress the signal while it is acquired are

vital to solving these inconveniences.
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1.3. Compressive sensing and random projections

Random projections consists in projecting/compressing a signal f ∈ Rl onto a random low-

dimensional subspace given by

y = Hf+n, (1)

where H ∈ Rm×l is the sensing/projection matrix, with m < l and n ∈ Rl is additive noise. Since

(1) is underdetermined estimating f from y is a challenging problem (Arce et al., 2014a; Candes

and Wakin, 2008; Fowler, 2009). One of the most traditional ways to recover f is by using the

least squares approach, which consists in solving the optimization problem (Cline and Plemmons,

1976)

f∗ = arg. min
f

∥f∥2
2

subject to y = Hf,

(2)

where ∥.∥2
2 represents the ℓ2 norm. An advantage of (1) is that it can be solved via a closed-form

as f̃ = HT (HHT )−1y, nevertheless, the mean squared error of the estimated signal is usually large,

especially when the compression increases, i.e., m≪ n (Romero et al., 2016a).

On the other hand, Compressive sensing is a theory that dictates that a signal can be accu-

rately reconstructed from a set of low-dimensional random projections if the signal admits a sparse

or low-rank representation in some domain (Arce et al., 2014a; Candes and Wakin, 2008; Galvis-

Carreño et al., 2014; Mojica et al., 2017). Let ΨΨΨ ∈ Rl×l be an orthonormal basis such as discrete

cosine or wavelet basis. Then, a signal f is said to be s-sparse in ΨΨΨ domain if its representation

θθθ = ΨΨΨf contains at much s non-zero coefficient. Using this concept, (1) can be reformulated to
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take into account the orthonormal basis as

y = HΨΨΨ
T

θθθ +n, (3)

using this sparsity property, the recovery problem (2) can be reformulated to promote the signal to

be sparse in the basis domain

θθθ
∗ = arg. min

θθθ

||θθθ ||0

subject to y = HΨΨΨ
T

θθθ ,

(4)

where ||.||0 is the ℓ0 norm. However, (4) has two problems, first is that the restriction y = HΨΨΨ
T

θθθ

could never be satisfied due to the noise, and second it is an NP-hard problem because it requires

to calculate an ℓ0 norm (Candes and Tao, 2005). For that reason, (4) is usually relaxed to an

optimization problem known as Basis Pursuit, which uses ℓ1 norm instead (Candes and Tao, 2005;

Liu and Zhang, 2014) and is formulated as

θθθ
∗ = arg. min

θθθ

g(θθθ)

subject to y−HΨΨΨ
T

θθθ < ε.

(5)

where g(.) is a function that promote sparsity through the ℓ1 norm, low-rank through trace, or

smoothness trhough total variation; and ε is an error term. Further (5) can be cast to an equivalent
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problem called lasso as

θθθ
∗ = arg. min

θθθ

||y−HΨΨΨ
T

θθθ ||22 +λg(θθθ), (6)

(6) can be solved if θθθ is sparse and if the sensing matrix is incoherent with the domain basis H.

1.3.1. Incoherence. Incoherence is an important property in the compressive sens-

ing area since they give an idea of the reconstruction probability of a signal from compressed

measurements (Arce et al., 2014a; Candes and Wakin, 2008).

The coherence µ is defined as the maximum correlation that exists between any of the atoms

of the sensing matrix H = [h1,h2, · · · ,hm]
T and the representation basis ΨΨΨ = [ψψψ1,ψψψ2, · · · ,ψψψ l].

Mathematically, it can be expressed as (Candes and Wakin, 2008)

µ(H,ΨΨΨ) =
√
(n) max

1≤m, j≤l
|hT

k ψψψ j|. (7)

It has been proved that the amount of measurements needed to reconstruct the signal is given by

(Candès and Romberg, 2007)

m≥Cµ(H,ΨΨΨ)2s log(l), (8)

Where C is a constant. Hence, to reduce the number of measurements, the sparsity s and the

coherence must be as small as possible, i.e. the signal must be sparse, and the sensing matrix must

be incoherent with the representation basis.
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1.3.2. Restricted isometry property . Another important property is the restricted

isometric property (RIP). RIP measures the behavior of a matrix as an orthonormal system when

sparse combinations are used (Candes and Tao, 2005). This ensures that the pairwise distances of

sparse vectors are preserved under the low-dimensional projection. Mathematically, the RIP for an

S-sparse vector is defined as the smallest constant δs such that

(1−δs)||θθθ ||22 ≤ ||HΨΨΨ
T

θθθ ||22 ≤ (1+δs)||θθθ ||22. (9)

The signal’s reconstruction probability increases as δs decreases (Pinilla et al., 2016). Hence, based

on these two properties RIP and incoherence, multiple sensing matrix designs have been proposed.

However, the signal reconstruction can fail if the signal is not sparse on a given representation

basis. Hence, another important aspect is constructing a representation basis where the data is

sparse. Universal representation basis such as DCT and Wavelet promotes sparsity in many natural

scenes. Nevertheless, a better representation basis can be constructed by considering the signal’s

statistical information. This problem is known as dictionary learning.

1.3.3. Processing on random projection. Another commonly used approach in

random projection is to process the data directly in the compressed domain. Many algorithms

have been proposed to work with random projections in applications such as clustering, and deep

learning Hinojosa et al. (2018a). Similarly to RIP in CS, theoretical results support using random

projections. One of the most used results is known as Johnson–Lindenstrauss lemma (Johnson

and Lindenstrauss, 1984; Dasgupta and Gupta, 2003), which basically states that for any high
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dimensional data set there exist a mapper to a lower-dimensional subspace such that the pairwise

distances are preserved. Mathematically, for any set [f1, f2, · · · , fp] ∈Rl there exists a map function

g : Rl −→ Rm such that

(1− ε)||fi− f j||22 ≤ ||g(fi)−g(f j)||22 ≤ (1+ ε)||fi− f j||22, (10)

for ε > 0, and i, j = {1,2, · · · , p}. In contrast with to RIP, the JL lemma does not impose any

sparsity restriction on the data, allowing it to work with the data directly in the compressed domain.

1.4. Compressive covariance sampling

In many fields, reconstructing the signal is not the main goal, instead, statistical information

is more relevant. Thus, the compressive covariance matrix (CCS) surged as a solution. The covari-

ance matrix (CM) plays a central role in spectral imaging applications such as dictionary learning

(Rubinstein et al., 2012), dimensionality reduction (Van Der Maaten et al., 2009), and classification

among others (Romero et al., 2016a; Bioucas-Dias et al., 2014; Mohammadi et al., 2014). Con-

ventional CM estimators require full knowledge of the spectral image, and therefore, traditional

spectral imagers require high communication, storage, and processing capabilities. To overcome

these challenges, recent approaches have explored the use of Compressive Spectral Imaging (CSI)

theory (Foucart and Rauhut, 2013; Arce et al., 2013). Because CSI imagers acquire a compressed

version of the spectral image (Marquez et al., 2020b, 2019, 2017), conventional CM estimators

require the reconstruction of the signal. Compressive Covariance Sampling (CCS) has emerged as

an alternative to estimate the covariance matrix, directly from the compressive measurements to
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avoid this costly reconstruction step. Although several strategies related to second-order statistics

estimation have been proposed (Bioucas-Dias et al., 2014; Fowler, 2009), real optical implemen-

tations have not been considered.

1.4.1. Unbiased covariance estimator:. The covariance matrix is a statistical mea-

sure that is theoretically computed using the expectation operator. However, in real-world scenarios

where the number of samples is limited, it is not feasible to calculate it this way. Therefore, various

estimators have been developed to compute this statistic under limited sample sizes. Depending

on the situation, one estimator may be considered better than another if it is unbiased.

Let XXX be a random vector in Rl , the first-statistic moment of the random vector is given by

µµµ = E[XXX ], (11)

The covariance matrix is given by

ΣΣΣ = E[(XXX−µµµ)(XXX−µµµ)T ], (12)

where E represents the mathematical expectation. Given a set of realizations xi of a random vector

XXX ∈ Rl x1,x2, . . . ,xn, the maximum likelihood estimator for the mean is given by

x̃ =
1
n

n

∑
i=1

xi (13)
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and for the covariance matrix is

S =
1

n−1

n

∑
i=1

(xi− x̃)(xi− x̃)T , (14)

both x̃,S are unbiased estimators for µµµ,ΣΣΣ. The later means that µµµ = E[x̃] and ΣΣΣ = E[S]. The

problem of finding an unbiased estimator for the mean and the covariance matrix becomes more

challenging when the random vector is projected in a random subspace as

Y = PT X+N, (15)

where P ∈ Rl×m,m < l is the projection matrix, and X = [x1, . . . ,xn] ∈ Rl×n are the realization

of the random vector. In this scenario, the unbiased estimator for the mean is given by (Qi and

Hughes, 2012; Pourkamali-Anaraki, 2016)

x̂ =
l

mn

n

∑
i=1

P(PT P)−1yi. (16)

For the covariance matrix, finding an unbiased estimator is more challenging; an intuitive estimator

(assuming zero mean) is given by

Cp =
1
n

n

∑
i=1

(P(PT P)−1yi)(P(PT P)−1yi)
T . (17)

However, it should be noted that (17) is a biased estimator, but the eigenvectors are preserved (Qi
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and Hughes, 2012; Pourkamali-Anaraki, 2016). In fact, the sample covariance matrix S = WΛΛΛWT

is related to Cp as

lim
n→∞

Cp = WCWT +
m
l

ε
2I, (18)

where C is a diagonal matrix

C = diag
(

λ1k1 +
∑

d
j=1, j ̸=1 λ 2

j k2

l−1
, . . . ,λ 2

d k1 +
∑

d
j=1, j ̸=d λ 2

j k2

l−1
,
∑

d
j=1, j ̸=d λ 2

j k2

l−1
, . . .
)
, (19)

where λi are the eigenvalues of S, k1 = m2/l2 + 2m(l−m)/(l3 + 2l2) and k2 = m/l− k1. Hence,

(17) is a biased estimator of ΣΣΣ, but it preserves its eigenvectors as long as n→ ∞.

1.4.2. Compressive-Projection Principal Component Analysis. Compressive-

Projection Principal Component Analysis (CPPCA) is a technique to recover second-order moment

information from random projection. In contrast to (17), this method does not require an infinite

number of samples. This method uses the Rayleigh-Ritz theory to bound the angle between the

eigenvectors of the sample covariance matrix and the compressed version of the covariance matrix

(Jia and Stewart, 2000). Let

S =
1
n

XXT , (20)

be the sample covariance matrix, and

S̃ =
1
n

YYT =
1
n

PT XXT P, (21)
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be the compressed version of the covariance matrix. the eigen-decomposition of (20) and (21) are

respectively S = WΛΛΛWT ∈ Rl×l and S̃ = ŨΛ̃ΛΛŨT ∈ Rm×m. Given that W and Ũ have different

dimensions, let us define U = PŨ as the projection onto the subspace of P. Additionally, let

vi = PPT wi/∥PPT wi∥2
2. Defining φn as the angle between wn and vn; and θk as the angle between

uk and wn it holds that (Fowler, 2009)

|sinφn| ≤ |sinθk| ≤
∥Suk−ukuT

k SUk∥2

γk
, (22)

where γk is the minimum separation between two eigenvalues; i.e., the difference between the

estimated eigenvector uk and an eigenvector wn depends on the separation of the corresponding

eigenvalue with the rest of eigenvalues. To decrease this angle, authors propose to divide the signal

into J subsets Xi ∈ Rl×n/J and project it using its own matrix Pi. The intuition with this partition

setup is that the sample covariance matrix of each partition Si approximates the sample covariance

matrix S. Hence the intersection between the recovered eigenvectors uk for each partition will be

closer to wn as long as the separation condition holds. For that, let us construct a projector

Q = P⊥⊕ span{v}, (23)
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Figure 3. The recovered eigenvector is the intersection of the recovered eigenvectors onto the
different subspaces Pi.

where P⊥ is the orthogonal complement of P; then, the resulting Q contains the null space of P

and the 1-D space of the projection v. The intersection of each recovered eigenvector is done via

w̃i =
1
J

J

∑
j=1

Q jQT
j w̃(i−1). (24)

Equation (24) averages the J eigenvectors associated with each partition. The intuition of (24) is

shown in Fig. 3.

1.5. Deep learning in hyperspectral imaging

Traditionally, inverse problems have been solved via a model-based approach; in this sce-

nario, a mathematical model of the observations is proposed and solved using an optimization

algorithm that penalizes a loss function. However, the main problem with this approach is that

the model usually simplifies the real observation. Model simplification is important because the
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resulting problem could be impossible to solve if the model is too complex. The deep learning

approach uses a setup that trusts more in the data than in the mathematical model. Hence, many

deep learning algorithms aim to minimize the expectation of a loss function with respect to a

known dataset. The most common deep-learning algorithms in imaging are convolutional neural

networks (CNN) (Arguello et al., 2021; Monroy et al., 2022; Ramirez et al., 2021; Wang et al.,

2022). This kind of algorithm uses kernels that perform multiple convolutions in different scales

of the image extracting the key features of the images, allowing multiple tasks such as classifi-

cation (Redmon and Farhadi, 2018), reconstruction (Monroy et al., 2022; Arguello et al., 2021),

denoising (Xu et al., 2015), segmentation (Ronneberger et al., 2015), among others. The CNN

algorithms for inverse problems can be classified into three types depending on the strategy used

to solve the problem: supervised, unsupervised, and plug-and-play. More methods can be classi-

fied as a mixture of supervised and unsupervised. For instance, self-supervised, internal learning,

fine-tuning, and transfer learning, among others.

1.5.1. Supervised CNN. This approach requires a full dataset containing the mea-

sured image and the solution or classification, usually known as ground truth. For instance, in a

segmentation problem, the captured images and their respective segmentations are required. The

training consists of showing the image and the expected response to the network, in order to min-

imize the error with respect to the solution of the CNN model. The CNN model is usually made

up of convolutional, non-linear, fully connected, and regularization layers. There exist a lot of

models that have a general purpose, meaning they can be used for many problems (Ronneberger

et al., 2015; Simonyan and Zisserman, 2014). The specific application is given to the model in the
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refining and training step.

1.5.1.1. CNN models for classification. This was, perhaps, the first task to be

addressed using CNN models. The classification consists in assigning a label to an image related

to its content/concept. The classification concept in CNN is shown in Fig. 4-a). The first CNN

successfully implemented for classification was Alexnet (Krizhevsky et al., 2017). Alexnet was a

CNN model that require a huge number of learnable parameters. For that reason, many subsequent

works focused on reducing the number of parameters while improving the accuracy. VGG net

was proposed as a very deep CNN that reduces the number of parameters, mainly decreasing the

number of fully connected layers and using more convolutional layers to reduce the image size

(Simonyan and Zisserman, 2014). Inception v3 used a 1-D kernel strategy to reduce the number of

parameters even more. This strategy uses two filters with dimensions 1×3 and 3×1, in contrast

to a single kernel 3× 3 reducing from 9 to 6, the number of learnable parameters for a window

(Szegedy et al., 2016). Lightweight CNN models that can be executed in computationally limited

devices have also been proposed. These models usually have less accuracy, but the number of

parameters allows them to be executed on mobile platforms. An example of this kind of model is

MobileNet (Howard et al., 2017).

1.5.1.2. CNN models for object detection. A more challenging task is object detec-

tion. It consists of classifying an image’s content and locating it inside the image using a bounding

box. This computer vision technology has been used to detect generic objects such as houses, cars,

animals, etc (Redmon and Farhadi, 2018). Also, as part of the biometric applications by locating

faces (Serengil and Ozpinar, 2021). There exist two types of object detection algorithms; single-
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stage and multi-stage. The multi-stage algorithm detects possible objects, and then a classifier

assigns a label to the detected objects. The most popular multi-stage CNN model is RCNN and

its variations (Girshick et al., 2013; Girshick, 2015). A schematic representation of this technique

is shown in Fig. 4-b). The single-stage algorithms require only one step for the detection and

classification. The most popular algorithm is Yolov3 (Redmon and Farhadi, 2018). However, mul-

tiple versions have been published after the original Yolo work (Bochkovskiy et al., 2020; Li et al.,

2022).

1.5.1.3. CNN models for segmentation:. Segmentation is a higher-level classifica-

tion task consisting of labeling every pixel in an image with a concept. This type of classification is

more accurate than object detection since the classification must be exact in a pixel-wise manner.

Unet is the most common CNN architecture used for this task (Wang et al., 2022; Ronneberger

et al., 2015). A representation of this type of task is depicted in Fig. 4-c).

1.5.1.4. CNN models for regression. In imaging, regression consists in recovering

a signal from a set of degraded measurements. For that, let x be an image and f an operator

corresponding to a degradation to the image. Hence the measurements are given by

y = f (x)+n, (25)

where n represents stationary additive Gaussian noise. The objective of a regression algorithm is

to estimate the relation between the measurements y and any information related to x. Traditional

model-based methods start by finding an inverse operator of f . In contrast, most CNN approaches
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CNN Model

- Dog        0.99

- Person   0.96

- Playing   0.91

a) Classification task

b) Object detection task

c) Segmentation task

CNN Model

Person 0.96

Dog 0.96

d) Regression tasks

Figure 4. Schematic of the different types of tasks performed by CNN and the differences
between them.
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Encoder Decoder

a)

b)1st iteration                                        kth iteration

Figure 5. Schematic representation of CNN models for inverse problems. a) representation of a
supervised encoder-decoder architecture. b) representation of an unrolling method

do not consider the operator f . The approach consist in minimizing a loss given by

minθ L(gθ (y)−x), (26)

where gθ represents the convolutional model, and L is any differentiable penalty function.

In the training process, the degraded signal y and the true signal x are required to update the weights

θ such that (26) is minimized.

Most popular CNN models to perform regression are based on an encoder-decoder architec-

ture. This architecture performs multiple analyses on different scales, down-sampling the features

on the encoder side and up-sampling the features on the decoder side. This concept is depicted

in Fig. 5. Unet is a common architecture that uses this approach, which is not only used for seg-
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mentation tasks (Miao et al., 2019; Xiao et al., 2022). However, encoder-decoder models do not

use any intuition of an inverse problem in the solution and only want to minimize the loss. An-

other method for inverse problems using deep learning takes advantage of the existing literature

in convex optimization. For that, the neural network is modeled as multiple layers representing

iterations of a traditional algorithm such as an ADMM or gradient descent. This method is known

as unrolling algorithms (Khader et al., 2022; Marquez et al., 2022; Zhao et al., 2018).

1.5.2. Unsupervised CNN. This deep learning approach could require a single

image or a whole dataset, but the labels or respective classifications are not required. The loss

function of these methods only depends on the known unlabeled data. Depending on the applica-

tion, different types of neural networks exist for unsupervised tasks.

1.5.2.1. Autencoders. Autoencoders are a powerful technique to learn data char-

acteristics by reducing its dimensionality. This architecture comprises two parametrized functions

Eθ1,Dθ2 . The encoder function takes as input an image x∈Rn and returns a coded version y∈Rm;

usually, the dimension of the coded version is smaller than the input signal, i.e., m < n (Tao et al.,

2015; Zhou et al., 2019). The encoder depends on a set of parameters θ1 learned during the training

stage. The decoder function performs the inverse operation and recovers an approximation of the

image, Dθ2(y) = x. Hence, the autoencoder is trained in an end-to-end manner minimizing the loss

that usually looks like

min.θ1,θ2 L(Dθ1(Eθ2(x))−x), (27)
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note that the loss only depends on the known data x. Autoencoders are useful in feature extrac-

tion and dimensionality reduction since they learn to convert an input into a compact version by

preserving important information.

1.5.2.2. Deep prior. Deep prior (DP) is a type of neural network used in imaging

inverse problems, that assumes that neural networks can learn the posterior distribution of an im-

age. Hence, DP can reconstruct an image from a set of degraded measurements. DP only requires

the degraded signal and a mathematical degradation model to perform the training. In contrast to

other CNN methods, DP is only suitable for a single image, i.e. ,the training consists in learning

the posterior distribution of a single image (Lin et al., 2020; Monroy et al., 2022). This type of

neural network (NN) minimizes the loss function

min.θ1 L(H( fθ (y))−y), (28)

where H is the mathematical degradation model and fθ is the neural network.

1.5.2.3. Generative adversarial neural networks. Generative adversarial neural

networks (GAN’s) are a type of NN intended for data generation. GANs learn the data distribution

from a training dataset and can generate real-looking data. The data generator is a neural network

known as a generator Gθ . The generator learns to create new data to make it look real, while

another network, known as a discriminator Dθ , tries to identify real and generated samples. This is

an unsupervised method since the data does not need a label. The loss function minimized is given
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by

minG maxD logDθ (x)+ log(1−Dθ (Gθ (z))) (29)

Although this type of network provides realistic results, it is also very unstable in the training

stage, and some modifications have been proposed to solve the problem such as use change the

discriminator function D = [0,1] for a function E = [0,∞].
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2. Binary Sensing Protocol Design using the Covariance Matrix of the Signal

This chapter addresses the first objective of the thesis:

• To determine the most suitable sensing/projection protocols based on compressive sensing

and random projections from the state-of-the-art applicable to hyperspectral imaging to be

used in the statistics recovery.

2.1. Introduction

Compressive spectral imaging (CSI) is a framework to acquire and compress spectral im-

ages by means of coded bi-dimensional projections, such that, the number of required measure-

ments for reconstruction are fewer than those needed by traditional techniques based on the Shannon-

Nyquist sampling theorem (Arce et al., 2014b; Cao et al., 2016; Candes and Wakin, 2008; Candes

and Tao, 2005). CSI exploits the fact that natural scenes can be accurately represented in a lower

dimensional subspace. This concept is known as sparsity or low rank behavior (Candes and Wakin,

2008; Arguello and Arce, 2012a; Donoho, 2006; Fowler, 2009). Further, the linear projector, so-

called sensing matrix, used to capture the compressed version of the spectral image has to be inco-

herent with the representation basis, where the data becomes sparse. This, in turn, guarantees with

high probability an accurate reconstruction, since an incoherent matrix has a dense representation

in the basis domain, and so, no assumption on the behavior of the data is required.

Principal component analysis (PCA) is a technique used to reduce the dimensionality of a

signal by projecting it into a lower dimension, such that, most of its variance is explained (Fowler,
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2009; Qi and Hughes, 2012; Zhang et al., 2012). In particular for spectral images, PCA projects the

spectral data using the eigenvectors associated with the m greatest eigenvalues of the covariance

matrix ΣΣΣ, resulting of the signal F = [f1, · · · , fn] ∈ Rl×n, where l is the number of spectral bands,

n the number of spatial pixels, and fi ∈ Rl is a pixel, for i = 1, · · · ,n. Thus, a matrix Wm ∈ Rl×m,

with the m eigenvectors as columns, is used to project the data as F̃ = WT
mF, with F̃ ∈ Rm×n and

m < l. This formulation has shown to achieve a small error in the Euclidean sense, described by

||F−WmF̃||, while preserving the structure of the data in the low-dimensional space, and thus the

direction of greatest variability (Kwak, 2008).

In a similar way, the noiseless CSI sensing procedure can be expressed as Y = QT F, where

Q∈Rl×m is the sensing matrix and F is the input image (Fowler, 2009; Bioucas-Dias et al., 2014a).

CSI can be categorized as a dimensionality reduction technique, since it projects the spectral signal

in a low-dimensional subspace spanned by the rows of the sensing matrix Q. Note however that,

Q is either randomly generated or designed based on, the restricted isometry property (RIP) or

its incoherence with a representation basis (Correa et al., 2016a; Rueda et al., 2016; Correa et al.,

2016d; Lin et al., 2014a). In other words, Q does not rely, conventionally, on the input signal.

Therefore, much effort has been done in the signal processing community to design Q such that,

the structure of the data is preserved in the low-dimensional subspace. Figure 6 shows an example

of how PCA better preserves the direction of greatest variability of the data compared to random

matrices. In this figure a dataset in R3 is projected onto a R2 subspace using the eigenvectors

associated with the covariance matrix of the data and compared against a conventional random

matrix. Note that the PCA projection better preserves the data separability in the R2 subspace
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whereas the random projection mixes them all.

PCA Projection

Figure 6. Example of how PCA preserves the structure of the data. Blue data points are projected
to the yellow ones, and orange data points are projected to purple ones. (Left) Data in R3

projected onto a subspace in R2 using 2 eigenvectors, where the separability and direction of
greatest variability of data is preserved. (Right) The same data is projected using a random matrix.

Remark that, if the CSI sensing matrix Q is equal to the PCA matrix Wm, the compression

or low-dimensional projection, can be considered optimal in the least squares sense (Bioucas-Dias

and Nascimento, 2008). However, PCA is data-dependent, which requires to know the spectral

image to be compressed beforehand, thus prohibiting its usage in CSI, where the target data are

unknown a priori. Nevertheless, important information about the spectral data can be extracted

from some random compressed measurements Y, so that, an approximation of the covariance

matrix of F can be attained, and thus exploited to design the subsequent sensing matrices via PCA.

Another problem that appears in the design of Q via PCA is that the entries of Q are usually binary,

as required by CSI optical architectures, while the entries of the principal component matrix Wm

are usually real. Therefore, the goal of this work is to use the PCA intuition to design binary

matrices Q that span a subspace where most of the variance of the signal F is explained. More
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precisely, we aim to approximate the behavior of Wm with a binary matrix Q to be used as the

CSI sensing matrix. For that reason, the traditional optimization problem, to find the eigenvectors,

is modified by adding a binary constraint, and a computational algorithm is proposed to solve it

efficiently.

2.1.1. Related Work. The use of PCA in compressive sensing has been previously

studied to improve the signal reconstruction quality. For instance, Masiero et al., in (Quer et al.,

2012), used PCA to choose the best representation basis in the reconstruction process, whereas, Ke

et al. used PCA to design sensing matrices for low-light-level imaging (L3-imaging) (Ke and Lam,

2016) and feature-specific imaging (Ke et al., 2010). Although in (Ke et al., 2010) the design is

adaptively obtained, the resulting vectors are chosen from a fixed basis like Hadamard. The ideas

proposed in this chapter are closely related to the work reported in (Ke and Lam, 2016), where

the authors design binary matrices by solving an optimization problem that directly minimizes the

error between the PCA matrix and its binary version using the Frobenius norm. However, (Ke and

Lam, 2016) focused on data captured by L3-imaging and solve the Frobenius-based optimization

problem by using the sign operator to force the binary restriction. In contrast, this work focuses on

the correct acquisition of compressed spectral images through real implementable optical architec-

tures and casts the Frobenius-based optimization problem as a non-convex optimization problem

that maximizes the variance explained by the binary principal components. To solve it, a greedy-

search-based algorithm is proposed.

2.1.2. Contributions. The main contribution of this chapter is the development of a

methodology to design binary sensing matrices, suitable for CSI architectures, using the structure-
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preserving PCA properties from the covariance matrix. The proposed methodology includes 3

steps: first, a set of conventional random measurements/projections are captured in order to es-

timate the covariance matrix ΣΣΣ of the spectral signal, if it is unknown; second, the subsequent

sensing matrix is designed by solving a non-convex optimization problem that maximizes the vari-

ance explained by the approximated binary principal component matrix; finally, new compressive

measurements are acquired with the designed matrix. Subsequently, the underlying data cube is

reconstructed using the concatenation of both kind of compressive measurements i.e. those ac-

quired with random and designed matrix, in a single linear system. Theoretical results show that

the RIP constant can be considerably small when the sensing matrix is related to the eigenvectors.

Additionally, computational results show an improvement in the reconstruction quality of up to

3 dB in terms of PSNR. This chapter is organized as follows: Section 2.2 poses the non-convex

optimization problem to find the binary principal components. Section 2.3 shows the theoretical

results, specifically the RIP analysis for the proposed sensing matrix. Finally, Section 2.4 shows

the simulated experiments, and Section 2.5 discusses the findings, before concluding this work in

Section 2.6.

2.2. Sensing matrix design via binary PCA

Let F = [f1, · · · , fn] be a matrix representation of the spectral image, where fi ∈ Rl is the

ith spectral pixel of the image with l bands. PCA projects the data into a subspace spanned by its

own eigenvectors, such that a pixel fi is projected as f̃i = WT fi, where the columns of W are the

eigenvectors associated to the covariance matrix ΣΣΣ = FFT/n, assuming that F is zero mean. The

dimensionality reduction is achieved by constructing a matrix Wm ∈Rl×m that contains only the m
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eigenvectors associated with the m largest eigenvalues of ΣΣΣ. Therefore, the projection of the matrix

F can be obtained as

F̃ = WT
mF. (30)

PCA plays an important role in data dimensionality reduction and compression. The main ad-

vantage of PCA is that it preserves the structure of the data in a lower dimension by minimizing

the error given by the signal F and its orthonormal projection in the low-dimensional subspace

WmWT
mF. However, PCA is data dependent, thus, it requires the encoder to capture and calculate

the projection matrix before the compression procedure can be applied. On the other hand, CSI

is a framework used to capture and compress data directly in the detector, allowing to accurately

recover them by assuming some specific behavior as sparsity, low-rank or eigenvalues eccentricity

(Arce et al., 2014b; Candes and Wakin, 2008; Li and Fowler, 2011; Bioucas-Dias et al., 2014a).

Let Q ∈ Rl×m be a sampling matrix with m < l, thus, the noiseless sensing problem in CSI can be

modeled as

Y = QT F, (31)

where Y ∈ Rm×n are the compressed measurements. Note that CSI does not require any prior

knowledge of the data, and data compression is achieved without any calculation performed in

the detector side. Note however that, the matrix Q must be binary since implementable CSI ar-

chitectures use optical devices that modulate the input source with binary patterns. A traditional
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optimization problem to recover the signal F from Y is given by

F =argmin
F

||Y−QT F||2F + τ||ΨΨΨvec(F)||1, (32)

where ||·||F and ||·||1 represent the Frobenius and ℓ1 -norms respectively, ΨΨΨ is a sparsity-promoting

representation basis, and vec(·) represents the vectorization of a matrix.

Paraphrasing, the objective of this work is to design the matrix Q in (31), so that, it approx-

imately behaves as Wm in (30). The motivation of making Q ≈Wm is to preserve the ℓ2-norm of

the data in the low dimensional space, which translates to a better RIP constant in the compressive

sensing sense and thus to a better quality of the image reconstruction (as will be discussed in Sec-

tion 2.3.1). The matrix Wm is conventionally found by solving the optimization problem (Kwak,

2008)

Wm = argmin
Wm

||F−WmWT
mF||2F

subject to WT
mWm = I,

(33)

where I ∈Rm×m is an identity matrix. This problem can be easily solved with an alternate gradient

algorithm, however, a binary restriction must be added to meet the requirements of the CSI archi-

tectures. To find the binary matrix, we first solve the intermediate problem, obtained by adding

the restriction Qk, j ∈ {0,1/
√

b j} to (33), that limits the entries of the columns of the matrix. This
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leads to the problem

Qn = arg min
Qn,b j

||F−QnQT
n F||2F

subject to QT
n Qn = I, Qk, j ∈ {0,1/

√
b j},

(34)

where Qn is the designed matrix, b j is the number of non-zero entries in its jth column, for k =

1,2, · · · , l and j = 1,2, · · · , m̃, with m̃ the number of binary vectors. Note that, although the solution

of (34) is not binary, in the sense that the entries of Qn can take more than two values, it is

indeed a binary matrix with normalized columns. The binary matrix can be obtained as Q =

[
√

b1q1, · · · ,
√

bm̃qm̃], since Q spans the same subspace of Qn. Solving (34) is hard due to the non-

convexity entailed by the binary restriction. Therefore, we propose to solve a maximization-based

problem that allows to directly design each binary vector, without relying on threshold operators.

First, note that the problem in (33) is equivalent to (Jiang et al., 2015; Journée et al., 2008)

w j = arg max
w j

wT
j ΣΣΣw j

subject to ||w j||22 = 1,

(35)

where w j ∈ Rl is the jth column of the matrix Wm. Problem (35) estimates a single eigenvector at

a time, and then deflates the covariance matrix with the expression ΣΣΣ j = ΣΣΣ j−1−w jwT
j ΣΣΣ j−1wT

j w j,

to remove the influence of the already estimated eigenvector. This is the procedure used in the

power iteration method. Then, by adding the binary constraint, problem (35) becomes
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q j = argmax
q j,b j

qT
j ΣΣΣq j

subject to qk
j ∈ {0,1/

√
b j},

(36)

where qk
j is the kth entry of the jth column of Qn. The problem in (36) aims to estimate the

subspace spanned by the binary vectors q j, that maximize the variance of the data concentrated in

ΣΣΣ. Therefore, q j is regarded as a binary principal component. Note that the covariance matrix ΣΣΣ is

unknown, since it depends on the data. Thus, a set of random projections must be acquired at first

in order to estimate it. For this, there exist multiple algorithms in the literature that can be used

(Fowler, 2009; Qi and Hughes, 2012; Bioucas-Dias et al., 2014a). This work employs the CPPCA

approach, proposed in (Fowler, 2009), due to its speed and reliability in estimating the covariance

matrix. This approach will be addressed in detail in Section 2.3.2.

Additionally, note that (36) is non-convex because the convex combination of two binary

vectors does not necessarily result in a binary vector, i.e. λq j+(1−λ )q j′ is not necessarily binary.

Thus, Algorithm 2.1 has been developed to approximate the solution of (36). This algorithm is

greedy-search-based since it iteratively looks for the best position within the vector that maximizes

the objective function. In spite of its greedy characteristics, the proposed algorithm exhibits good

performance, as it will be shown in the simulations, and furthermore, it is parameter-free.

In detail, Algorithm 2.1 requires an initial estimation of the covariance matrix ΣΣΣ1 and the

number of binary vectors m̃ to be designed. Then, it initializes the coding pattern q j with a vector

of zeros (Line 3). In each iteration, it looks for the best position where a binary value of 1/
√

b
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maximizes the objective function, but keeping fixed the positions previously found. That is, in

each iteration, a previously selected position is never evaluated or tested again. The for-loop in

Line 4 only iterates over (l/m̃) to promote the resulting vectors to be orthonormal to each other,

which implies that the transmittance of the resulting binary vector is forced to be less or equal than

1/m̃. Note that, the transmittance is defined as the ratio between the number of nonzero elements

and the total number of elements. In Line 6, a value of one is placed in a certain position and

the objective function is calculated (Line 7) and compared with its previous value. If the current

position maximizes the function, it is considered as a candidate (Line 8 to 10). To test other po-

sitions, the one is removed in Line 11. At the end of the loop, the best position is stored in the

Algorithm 2.1 B-PCA: Binary PCA estimation
1: input: ΣΣΣ1, m̃
2: for j = 1 to m̃ do
3: p j← 0; max← 0; list = 1,2, · · · , l
4: for k = 1 to round(l/m̃) do impose transmit. 1/m̃
5: for i = each element in list do
6: pi

j← 1 place a one in the ith position

7: ck← pT
j

||p j||Σ
ΣΣ j

p j
||p j|| objective function (36)

8: if ck > max then
9: max = ck; index = i

10: end if
11: pi

j← 0 remove the one value
12: end for
13: pindex

j ← 1 place the one in the best position
14: list.remove(index); index← 0
15: end for
16: Q← q jqT

j
||q j||2

17: ΣΣΣ j+1← ΣΣΣ j−ΣΣΣ jQ−QΣΣΣ j +QΣΣΣ jQ
18: end for
19: output: P = [p1,p2, · · · ,pm̃]
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variable index, such that a value of one is fixed there (Line 13). After that, the covariance matrix

ΣΣΣ is deflated by subtracting the influence of the vector q j (Line 16 and 17) and the for-loop con-

tinues. The proof that expression in Line 17 subtracts the influence of the subspace spanned by

q is shown in Appendix 6, in the supplementary material. Algorithm 2.1 has computational com-

plexity O(l3) and its proof is deferred to Appendix 6, in the supplementary material. Note that,

although the complexity of the algorithm is dominated by the cubic term, spectral images usually

span along few hundreds of bands, thus it does not considerably increase the computational com-

plexity of the problem. Additionally, an analysis of the convergence of the algorithm is presented

in Appendix 6, in the supplementary material, explaining why the restriction qk
j ∈ {0,1/

√
b j} is

needed. Furthermore, a flowchart that describes the Algorithm 2.1 is shown in Fig. 45, in the sup-

plementary material, and a Matlab code implementation of this algorithm can be found and tested

at https://codeocean.com/capsule/8658864/.

2.3. Theoretical Results

2.3.1. Restricted Isometry Property Analysis. This section shows that the use of

PCA satisfies the RIP in specific cases. It is important to show that the RIP holds when the sensing

matrix Q = Wm, and the signal can be accurately represented in the subspace given by span(Wm),

linking the use of PCA to the CSI sensing procedure. Additionally, it sets a relationship between

the variance and the expected value of the pixel norm linking PCA and the RIP.

Theorem 1. Let f = Wθθθ ∈ Rl be a pixel of a spectral image and W ∈ Rl×l be the matrix whose

https://codeocean.com/capsule/8658864/
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columns are the eigenvectors of the covariance matrix ΣΣΣ = WΛΛΛWT . It holds that

(1−δm)||θθθ P||22 ≤ ||APθθθ P||22 ≤ (1+δm)||θθθ P||22, (37)

with

δm = |P2|λm+1/(∑
i∈P1

λi + ∑
i∈P2

λi), (38)

and P1 ⊂ {1,2, · · · ,m},P2 ⊂ {m+1, · · · , l}, AP is a sub-matrix whose columns are a subset of the

columns of A = WT
mW , P = P1∪P2, and λi is the ith eigenvalue of the covariance matrix of the

data. Note that, in most natural scenes, pixels can be accurately represented in a low dimensional

space, hence, most of the information is kept in the first eigenvalues which implies that 0< δm≪ 1.

The proof of this theorem is deferred to Appendix 6, in the supplementary material.

Theorem 1 shows that, when the eigenvectors are used as linear projectors, the norm of a

vector changes in proportion to the least important eigenvalues. Further, note that binary versions

of the eigenvectors are used, given by Q and thus, (37) does not hold since QT W ̸= I. The RIP for

Q is stated in the Corollary 1.1

Corollary 1.1. For an arbitrary sensing matrix A, the RIP constant is bounded by δm̃ =(∑k∈P1 λk|βk|+

∑k′∈P2 λk′|βk′|)/(∑k∈P1 λk+∑k′∈P2 λk′) with |βk|= |1−∑
m̃
i=1(a

i
k)

2|= |1−∑
m̃
i=1(qT

k wi)
2| and |βk′|=

|1−∑
m̃
i=1(a

i
k′)

2|= |1−∑
m̃
i=1(qT

k′wi)
2| for k = 1, · · · , m̃ and k = m̃+1, · · · , l

The proof of the corollary is detailed in Appendix 6, in the supplementary material.

Corollary 1.1 shows that if the columns of the sensing matrix are unit-norm, the RIP con-
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stant is small. However, for the case of the eigenvectors, it is enough to ensure that this holds

for the columns related to the largest eigenvalues. Thus, in order to guarantee that δm̃ is small,

|β | = |1−∑
m̃
i=1(a

i
k)

2| = 0 should hold, i.e. ∑
m̃
i=1(a

i
k)

2 = ∑
m̃
i=1(qT

k wi)
2 = 1. Intuitively, it can be

seen that if qk ≈ wk, ak
k ≈ 1 and

m̃

∑
i=1

(ai
k)

2 ≈
k−1

∑
i=1

(ai
k)

2 +1+
m̃

∑
i=k+1

(ai
k)

2. (39)

Therefore, if qi is orthogonal to qk, for i ̸= k, we get that

m̃

∑
i=1

(ai
k)

2→ 1, and thus, δm̃→ 0. (40)

2.3.2. Covariance Matrix Estimation. For the covariance matrix estimation, the

CPPCA approach was adopted (Fowler, 2009). For that, define

Fi = [f
Ω1

i
, · · · , f

Ω
n/p
i′

],Ω
j
i ̸= Ω

l
k, i ̸= k,∀i,k, (41)

as a subset of the hyperspectral image F introduced in (30), where Ωi ⊂ Ω = {1, . . . ,n}, and Ω
j
i

refers to the jth element in the subset Ωi with i = 1, . . . , p such that p≪ n. Additionally, not only

one projection matrix Q∈Rl×v is used, but p different projection matrices Qi ∈Rl×v, which allow

to rewrite the problem in (31) as

Ỹ = H̃F̃, (42)
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Figure 7. Flowchart for the sensing and reconstruction algorithm. Solid lines show a block
diagram of the procedure and dotted lines show graphically the same procedure. First, the image
is divided into p subsets and projected using random matrices. The covariance matrix is estimated
using these random projections and it is used to design the binary sensing matrix.

where Ỹ = [YT
1 , · · · ,YT

p ]
T , Yi ∈ Rv×n/p, H̃ = diag(QT

1 , · · · ,QT
p ), F̃ = [FT

1 , · · · ,FT
p ] and v is the

number of random acquisitions or randomly generated rows. This p-partition sensing approach is

borrowed from (Martín et al., 2015) following the sensing strategy of HYCA (hyperspectral coded

aperture).

This sensing strategy can be implemented in CSI optical architectures, such as, the 3D-

CASSI (Cao et al., 2016) and the DD-CASSI (Gehm et al., 2007a). Using this approach, the

covariance matrix can be rapidly estimated from a set of random projections using a projection-

onto-convex-sets based algorithm (POCS). The reader is encouraged to check (Fowler, 2009) for

more details on POCS. Additionally, the data must be centered, but since the spectral images take

values between 0 and 2bits−1, the zero mean assumption is unrealistic. Reconstructing the image

in order to estimate its mean will result in high computational costs, therefore, the mean should

be calculated directly from the compressive measurements using the randomly generated sensing

matrices as [8]

f̂ = α

p

∑
i=1

k

∑
j=1

QT
i (QiQT

i )
−1y j

i , (43)
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where α = m/n, y j
i is the j-th pixel in the i-th partition or subset, and k is the number of pixels in

each partition p, such that pk = n. It was proved that Eq. (43) converges to the true mean when

n→ ∞ (Qi and Hughes, 2012). Once the mean is estimated, the measurements are centered by

subtracting it as Ỹi = Yi−QT
i (̂f⊗1T ), where ⊗ represents the Kronecker product, and 1 ∈Rk is a

k-long one-valued vector. This operation replicates the mean and subtracts it from the compressive

measurements. Performing this operation only once usually does not produce very accurate results,

however, estimating the mean and subtracting it multiple times in a for-loop usually produces better

results (Qi and Hughes, 2012).

2.3.3. Sensing and Reconstruction Methodology. In summary, the proposed sens-

ing and reconstruction methodology is detailed in Algorithm 2.2 and sketched in Fig. 7. First, p

randomly generated matrices {Qi}p
i=1 ∈ Rl×v, following a Bernoulli distribution, are used as the

initial sensing matrices. Using the random compressed measurements {Yi}p
i=1 of each disjoint sub-

set {Fi}p
i=1, the covariance matrix is estimated (Lines 6-7) and the subsequent matrix is designed

following Algorithm 1 (Line 8). Afterwards, the designed matrix Q ∈ Rl×m̃ is concatenated with

the initial random matrices Qi, as stated in Lines 9 to 12, and the sensing process is repeated using

the resulting matrix in Line 13. The concatenation of random and designed matrices is performed

in order to improve the condition of the problem. This is, the rank of the designed matrix is at most

m̃ and the rank of the concatenation is at most v+ m̃. However, if the covariance matrix is known

a-priori, the random measurements are not required. Finally, the optimization problem to recover

the image is solved in Line 14. The latter can be done using algorithms like GPSR (Figueiredo

et al., 2007), SALSA (Afonso et al., 2010), or SpaRSA (Wright et al., 2009).
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Algorithm 2.2 Proposed sensing and reconstruction protocol

1: input: {Fi}p
i=1, m̃

2: for i = 1 to p do
3: Qi← randbinary(l,v)
4: Yi←QT

i Fi
5: end for
6: {F̃i}p

1 = CPPCA({Qi}p
1 ,{Yi}p

1) ▷ Image estimation
7: Σ̃ΣΣ = 1

n ∑
p
i=1 F̃iF̃T

i ▷ Estimate covariance matrix
8: Q← B-PCA(Σ̃ΣΣ, m̃) ▷ Find binary principal components
9: for i = 1 to p do

10: Qi← [QT
i ,QT ]T ▷ Concatenate sensing matrices

11: Yi← [YT
i ,(QT Fi)

T ]T ▷ Update measurements
12: end for
13: H̃← diag(QT

1 , · · ·Q
T
p )

14: F̃← argmin F̃||Ỹ− H̃F̃||2F + τ||ΨΨΨvec(F̃)||1
15: Output: F̃

2.4. Simulations and Results

In this section, two hyperspectral images are used as input, to demonstrate the effectiveness

of the designed binary PCA matrices. The hyperspectral scenes are the Urban dataset (Zhu et al.,

2014) with 256×256 pixels of spatial resolution and l = 128 spectral bands, and a section of the

Pavia centre recorded by the ROSIS sensor (Mueller et al., 2002), with 512×512 pixels of spatial

resolution and l = 102 spectral bands. A single spectral band and three pixels of each dataset are

shown in Figs. 8 and 9, respectively.

The random sensing matrices Qi are generated following a Bernoulli distribution. The

reconstruction of the full datacube from the set of random+designed measurements, Line 14 in

Algorithm 2, is performed using the Split Augmented Lagrangian Shrinkage Algorithm (SALSA)

(Afonso et al., 2010), using a signal sparsity prior over the 3D Kronecker basis formed by the
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P1

P2

P3

Figure 8. Urban dataset. (Left) RGB composite of Urban datset. (Right) Three spectral signatures
at different pixels of the image.

P1

P2

P3

Figure 9. Pavia centre dataset. (Left) RGB composite of Pavia datset. (Right) Three spectral
signatures at different pixels of the image.

Wavelet 2D Symlet 8 and the Discrete Cosine transform (DCT). The relative variation of the ob-

jective function is used as the stopping criterion, and it is set to 1e−5. The number of partitions

is set to p = l, for simplicity. The performance is measured in terms of the spectral peak signal to

noise ratio (PSNR), defined as PSNR = 1/n∑
n
i=1(10logA2/||fi− f̃i||22), where A is the maximum
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amplitude value of a pixel, fi is the ith pixel of the reference image and f̃i is the reconstructed

pixel, the mean squared error (MSE), defined as 1/n∑
n
i=1 ||fi− f̃i||22, and the spectral angle mapper

(SAM) defined as arccos(fT f̃/(||f||||f̃||))(180/π).

2.4.1. Mean estimation. As hyperspectral images do not have zero mean, it is

first estimated following Eq. (43), and then subtracted from the measurements. For Urban and

Pavia, we test the quality of this estimation by setting p = l and varying the number of random

projections from 6 to 18. The normalized mean squared error, NMSE = MSE/||f||, is used to

measure the quality of the estimated means. Table 1 shows the overall results in terms of the

NMSE and SAM, where it can be seen that the estimated mean does not differ much from the true

mean as the number of projections increases.

Table 1
NMSE of the estimated mean varying the number of shots

Shots
Image Metric 6 10 14 18

Urban
NMSE 0.182 0.116 0.074 0.046
SAM 10.402 6.470 4.172 2.574

Pavia
NMSE 0.171 0.095 0.053 0.031
SAM 9.3690 5.1879 3.0096 1.6407

2.4.2. Quality of the PCA-based Designed Matrices. First, the quality of the

designed sensing matrices is evaluated by testing only the ℓ2 approximation in (32), setting τ = 0.

Note that the reconstruction using only the ℓ2-term can be done in closed-form via the Moore-

Penrose pseudo-inverse. The results attained with the designed matrices are compared against the

ones with randomly generated matrices, the ones generated with the algorithm proposed in (Ke and
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Table 2
Overall performance of the sensing matrices. The column “Random" represents the randomly gen-
erated matrices, “Estimated ΣΣΣ" represents the designed matrices using the estimated covariance
matrix and “A-priori ΣΣΣ" the designed matrices but using the true covariance matrix.

Image Metric Random Estimated ΣΣΣ A-priori ΣΣΣ

Prop. Qpca Prop. Qpca

Urban
MSE 292.03 106.1 240.6 105.3 230.7
PSNR 10.31 19.27 11.51 20.31 12.82
SAM 35.86 4.692 27.50 4.59 21.64

Pavia
MSE 324.7 147.9 212.1 135.2 186.3
PSNR 10.12 16.30 11.74 16.47 13.38
SAM 37.34 6.23 29.99 5.82 14.44

Lam, 2016)(which will be termed Qpca) and the ground-truth data. In this test, the results attained

with the designed matrix but calculated from the ground-truth covariance matrix are also included,

in order to check the induced error when it is designed directly from the random projections.

Table 2 shows the overall results in terms of MSE, PSNR and SAM, and Fig. 10 depicts the

behavior of the reconstruction at a specific pixel of the datasets. It can be noticed that the proposed

sensing matrices achieve a better performance in terms of the three metrics, disregarding how ΣΣΣ

is estimated. In terms of MSE, the proposed matrices achieve a 3-fold improvement compared

with random measurements, and around 2-fold in terms of PSNR. Remark that the results with

the estimated ΣΣΣ closely approximate the ones from the true ΣΣΣ, confirming the good quality of the

statistics estimated from the random projections.

Additionally, the optimization problem proposed in (36) was compared with the standard

PCA problem given in (35). For that, the variance explained by varying the number of vectors is
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Figure 10. Comparison of a reconstructed pixel solving only the ℓ2 term in (32) via the
Moore-Penrose pseudo-inverse, using 8 random measurements (black line), 8 designed
measurements with prior ΣΣΣ (blue lines), and designed matrix with estimated ΣΣΣ (green lines).
(Top-Left) Results for the Urban dataset using the proposed matrix. (Top-Right) Results for the
Urban dataset using Qpca. (Bottom-left) Results for Pavia dataset using the proposed matrix.
(Bottom-right) Results for Pavia dataset using Qpca.

analyzed. The variance explained or retained is defined as

d = trace(QT
ΣΣΣ(Q†)T )/trace(ΣΣΣ). (44)
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Figure 11. Explained variance by varying the number of eigenvectors with different methods. Red
- solid line represents the variance for traditional PCA (theoretical limit). Blue dot-dashed line is
used for the proposed binary eigenvectors when no transmittance restriction is imposed, dashed
line with triangles represents the proposed binary eigenvectors when the transmittance is set to
12.5% (1/8), green-solid line with marks represents Qpca, whereas Black-dashed line is for a
random matrix.

Figure 11 was generated by designing 35 vectors using the proposed optimization problem

and the method proposed in (Ke and Lam, 2016), and then calculating the explained variance us-

ing (44) when a subset of vectors is used. Figure 11 shows that the proposed binary eigenvectors

explain better the variance of the data in comparison with Qpca and random vectors when no re-

striction in the transmittance is imposed. For instance, for 98% of variance, standard PCA requires

only 3 eigenvectors, the proposed binary PCA requires 5 to 7 depending on the image, and Qpca

is not able to reach this amount of explained variance. However, as the theoretical results suggest,

restricting the transmittance improves the RIP, thus the sensing matrices for the reconstruction

experiments are calculated with the transmittance restriction imposed. Although the explained

variance reduces, it is still larger than Qpca and random. As an example, Fig. 12 shows a realiza-
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Figure 12. Realization of the designed matrices for Urban and Pavia datasets with 15 vectors.
(Top-row) Designed matrices when no transmittance is imposed. (Bottom-row) Designed
matrices with 1/8 of transmittance.

tion of the binary matrix obtained by our method, when no transmittance is imposed and when it

is imposed, for both datasets.

2.4.3. Reconstruction Performance under Noisy Scenarios. In this experiment,

the performance of the designed matrices is evaluated by reconstructing the datasets using the

ℓ2− ℓ1 optimization problem in (32). For this, the number of measurements is varied from 18

to 36, which roughly represents a 14% to 28% compression ratio for the Urban dataset, and a

17% to 35% compression ratio for the Pavia dataset. Intuitively, it will be ideal to use as many

designed measurements as possible, however, since the covariance matrix is estimated from the
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Table 3
Relationship between the number of random and designed vectors used in the sensing procedure.

Shots
Image Kind 18 21 24 27 30 33 36

Urban
Random 10 13 15 18 21 24 27
Designed 8 8 9 9 9 9 9

Pavia
Random 13 15 18 20 23 26 28
Designed 5 6 6 7 7 7 8

compressed measurements, some of these vectors should be generated at random. For instance,

when 18 measurements are being captured, one could use 9 random and 9 designed, or 10 random

and 8 designed, or any other combination. However, the number of designed binary vectors m̃ in

this work is calculated by computing the variance explained by the binary eigenvectors as in (44).

Thus, by fixing this percentage to be 98%, different numbers of random and designed vectors were

used for the reconstructions, as shown in Table 3.

Remark that the different proportions are due to the fact that, at some point, using more

designed measurements do not contribute significantly in terms of data variance, but, as shown in

Table 1, since the covariance matrix is estimated from the random measurements, increasing its

number improves the estimation of ΣΣΣ.

Reconstruction results using the PSNR as the performance metric, for the two datasets, are

summarized in Fig. 13. In this figure, two noisy scenarios are tested, with signal-to-noise-ratios

(SNR) of 15 and 25 dB. Overall, the designed matrices (solid lines) outperform the random (dotted

lines) by up to 3 dB in the two noisy scenarios, and up to 2 dB in comparison with Qpca (dot-dashed

lines) with high compression ratios. Additionally, note that, the entries of the matrices produced
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Figure 13. Average PSNR of the reconstructed hyperspectral datasets for various compression
ratios, at 2 noise scenarios with SNR = 15 and 25 dB. “D" stands for designed (solid lines), “Q”
for those proposed in (Ke and Lam, 2016) (Qpca) (dot-dashed lines) and “R" for random (dotted
lines) matrices. Different colors represent different noise levels. (Left) Urban dataset. (Right)
Pavia dataset

.

by (Ke and Lam, 2016) are {−1,1}, which entail problems when being implemented, such as the

requirement of an additional all-pass shot in order to produce the −1 code word. Furthermore,

since this type of coding cannot be implemented directly, its emulation increases the noise by a

factor of 5 (Pinilla et al., 2016). Under this scenario the reconstructions obtained by the Qpca in

Figs. 13 to 15 would be dramatically affected.

Additionally, to visually compare the attained reconstructions, Figs. 14 and 15 show the re-

constructions at two randomly selected spatial pixels, denoted as P1 and P2, and a specific spectral

band when 21 measurements are captured (16% and 20% of the data for Urban and Pavia datasets,

respectively). There, it can be noticed that the spectral signatures attained with the designed ma-

trices closely resemble the ground truth, and the difference of the spectral bands show finer details
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P1

P2

0.2

0.1

0

Random                                        Qpca                                     Proposed

Figure 14. Comparison between some pixels (P1, P2) of the Urban dataset using 21
measurements (20.58% of the data, 13 random and 8 designed). (Top-left) RGB composite of the
ground-truth. (Top-middle) Comparison between reconstructed and ground-truth for P1.
(Top-right) Comparison between reconstructed and ground-truth for P2. (Bottom-left)
Normalized residual of the reconstruction using random matrices. (Bottom-middle) Normalized
residual using Qpca. (Bottom-right) Normalized residual using the proposed matrices.
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P1
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0.4

0.2

0

Random                               Qpca                                  Proposed

Figure 15. Comparison between some pixels (p1, P2) of the Pavia dataset using 21 measurements
(16.41% of the data, 15 random and 6 designed). (Top-left) RGB composite of the ground-truth.
(Top-middle) Comparison between reconstructed and ground-truth for P1. (Top-right)
Comparison between reconstructed and ground-truth for P2. (Bottom-left) Normalized residual of
the reconstruction using random matrices. (Bottom-middle) Normalized residual using Qpca.
(Bottom-right) Normalized residual using the proposed matrices.
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in the reconstructions attained with the designed matrices.

2.5. Discussion

We present a brief analysis of the differences in the explained variance of the proposed al-

gorithm in comparison to Qpca. Additionally, it is discussed why the proposed binary eigenvectors

exhibit a close behavior to those obtained with standard PCA in terms of explained variance.

2.5.1. Explained Variance Comparison. The proposed algorithm performs very

well in terms of explained variance in contrast to Qpca. This behavior is expected since the Qpca

algorithm minimizes the objective function given by

arg min
D

||
√

NDWT
m− sign(DWT

m)||2F

subject to DDT = I,

(45)

which does not take into account the eigenvalues. Considering the eigenvalues is critical in hyper-

spectral imaging, since usually the first eigenvectors are much more important than the last ones. In

fact, the proposed algorithm uses the covariance matrix rather than just the eigenvectors as in (Ke

and Lam, 2016), which implicitly takes into account the eigenvalues. To show that, we present ad-

ditional results in Fig. 16, when the matrix Wm is scaled by a diagonal matrix B such that, the first

eigenvector is scaled by a larger number than the last eigenvector, i.e. Wm = WmB. Note however

that by doing this, the Qpca algorithm should be adjusted since it assumes that WT
mWm = I, and

it does not hold for Wm = WmB. Nevertheless, it can be seen that by scaling the eigenvectors ac-

cording to their eigenvalues, the explained variance of the resulting Qpca binary matrix improves,
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Figure 16. Explained variance with different realizations of Qpca. Qpca represents the explained
variance when the pure eigenvectors are used; Qpca2 is obtained by scaling the eigenvectors with
a diagonal matrix whose values are shown in Fig. 17(b); Qpca3 is obtained by scaling the
eigenvectors with a diagonal matrix whose values are shown in Fig. 17(c); Qpcae is obtained by
scaling the eigenvectors with the eigenvalues, which are shown in Fig. 17(d)

.

at the cost of rank deficiency as shown in Fig. 17.

In Figs. 16 and 17, it can be seen that by taking into account the importance of each

eigenvector (determined by its associated eigenvalue) the Qpca algorithm converges to a solution

where the variance is better explained. However, its convergence is not guaranteed since the rank

of the resulting matrix degenerates as the matrix B resembles the eigenvalues. Note that, when

the actual eigenvalues are used, the resulting binary matrix is rank 1, which negatively affects the

conditioning of the problem. In contrast, in Figs. 16 and 12 it can be seen that the proposed method

better explains the variance while the rank of the designed matrix does not degenerates.

2.5.2. Binary Matrix vs. Discrete Matrix. On the other hand, note that during

the designing procedure, the sensing matrix is not binary at all, but discrete. However, once the

algorithm finishes, the matrix is scaled to become binary. Hence, it should be highlighted that this
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(a)                                                       (b)

(c)                                                       (d)

Figure 17. Values used in the diagonal matrix B to scale the eigenvectors of the Qpca algorithm,
along with the resulting binary matrix. (a) Not scaling. (b) Smooth scaling. (c) Steep scaling. (d)
Eigenvalue scaling.
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scaling does not affect the resulting matrix, since an eigenvector defines a direction of projection,

and so, any scaled version of an eigenvector is also an eigenvector. To see that, let’s use the

eigendecomposition of the covariance matrix

ΣΣΣ = WΛΛΛW−1. (46)

Hence, if W is scaled by a constant b, it holds that,

ΣΣΣ = bWΛΛΛb−1W−1, (47)

is still an eigenvector. We expect the latter holds also for binary eigenvectors. To further support

this affirmation, Fig. 46 shows that the explained variance is exactly the same when the binary or

their discrete (normalized-column) version are used.

Furthermore, it can be seen in Fig. 46 of the supplementary material, that the explained

variance obtained with the proposed binary eigenvectors is quite close to the standard PCA. This

behavior is mainly due to hyperspectral images exhibit a low-rank behavior (Fowler, 2009). For a

signal with not such behavior, the explained variance using binary eigenvectors is not that close to

the standard, as shown and discussed in Fig. 47 of the supplementary material, where a random

signal is compared against the Urban dataset.

2.6. Conclusions

This chapter introduced the design of binary sensing matrices, commonly used in real CSI

architectures, via binary PCA. The designed matrices exploit the structure-preserving properties



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 77

of PCA, where most of the data variance is explained by a set of binary vectors, estimated directly

from some compressed random measurements. The performance of the designed matrices was

evaluated over two real hyperspectral datasets, Urban and Pavia center, achieving an overall 3 dB

improvement in the reconstruction quality compared with conventional random sensing matrices

and up to 2 dB compared with state-of-art sensing matrices based on PCA. Additionally, an analysis

of the RIP for the proposed method was introduced, which provided a bound for the RIP when the

standard PCA technique is performed and when the binary PCA is used. The proposed algorithm

to design the matrices is greedy-search-based with low computational complexity, and the results

show that it is able to retain variance of the data in a better fashion than state-of-art methods.
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3. Reconstruction of the Covariance Matrix via A Projected Gradient Descend

This chapter addresses the second and third objective of the thesis:

• To design an algorithm based on the gradient descent method to recover the first and second

sample statistical moments from low-dimensional random projections.

• To test the performance of the proposed algorithm to recover the sample statistics in hyper-

spectral imaging reconstruction

3.1. Introduction

The previous chapter addressed the problem of using the CM to guide the sensing process

in CSI. When the covariance matrix is known beforehand, the algorithm performance is optimal.

However, in CSI, only a set of compressed measurements is known, and reconstructing the signal

to estimate the covariance matrix is computationally expensive. Hence, in chapter 2, we used the

CPPCA algorithm (Fowler, 2009) to recover an approximation of the CM. CPPCA is a fast algo-

rithm but suffers from multiple problems when applied to CSI. CPPCA requires that the sensing

matrices be orthonormal, which can not be easily achieved in an optical implementation. Addition-

ally, the CM eigenvalues must follow an eccentric distribution maximizing the separation between

each other. Finally, the mathematical formulation of CPPCA does not consider the signal noise

reducing the performance in real applications.

There exist also other algorithms for CM estimation reported for hyperspectral imaging.

These methods have been used in different applications such as image reconstruction (Fowler and



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 79

Du, 2011; Li et al., 2013b), anomaly detection (Fowler and Du, 2012), and image classification (Li

et al., 2013a). For example, the SpeCA approach introduces a spectral image recovery algorithm

tailored to a particular sensor (Martin and Bioucas-Dias, 2016). More precisely, this method recov-

ers the principal components of images by using a linear mixture model. Notice that the reported

sensor requires sensing the entire image before obtaining the random compressive projections. Bi-

oucas et al. proposed COVALSA (Bioucas-Dias et al., 2014b), an algorithm based on the ADMM

approach that estimates the covariance matrix from compressive measurements assuming differ-

ent structures such as Toeplitz, sparseness, and low rank. However, this method approximates the

inverse function to use the ADMM approach adding extra hyperparameters. Our approach esti-

mates the covariance matrix from compressive samples without using assumptions about the PCA

coefficients compared to previous methods. Furthermore, the proposed approach can estimate the

covariance matrix for a broader range of sampling operators, including random projections and

CSI samples. In contrast to CPPCA and SpeCA, our method is evaluated using real compressive

measurements captured by a practical optical setup. In addition, we analytically obtain the optimal

number of partitions that recovers a reliable estimation.

Chapter contribution. This chapter develops an algorithm based on the projected gradient

method to estimate the covariance matrix from compressive measurements. To this end, compres-

sive measurements are divided into data subsets and projected onto multiple subspaces to improve

the condition of the problem. Expressly, the estimation problem aims at recovering a low-rank

or Toeplitz representation of a positive semidefinite matrix that minimizes the Frobenius norm

of the projection errors. The proposed algorithm is evaluated for estimating the covariance ma-
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trix embedded in hyperspectral image signatures using different compressive acquisition schemes,

including random projections and binary encoding. It should note that, although the proposed

method has been mainly tested on compressive samples derived from hyperspectral images, it can

be extended to other image processing and communications applications. The contributions of this

paper are summarized as follows: i) This paper proposes an optimization problem and a projected

gradient-based covariance estimation method from compressive measurements using an Armijo

search strategy to speed up convergence. The proposed method splits compressive samples into

partitions projected on different subspaces to improve the estimation accuracy. The lower bound

of the optimal number of partitions to obtain a reliable covariance matrix estimation is also derived

(Lemma 2). ii) Moreover, this work derives theoretical guarantees for the global convergence of the

proposed algorithm and determines the error term induced by the data splitting approach (Lemma

1). Likewise, a filtering strategy is proposed to mitigate the error induced by this error. iii) Finally,

an implementable sensing protocol based on the DD-CASSI optical architecture is proposed and

tested in the lab.

3.1.1. Chapter organization. The chapter is organized as follows: Section 3.2 in-

troduces the covariance matrix estimation problem from random projections. Section 3.3 presents

the optimization problem to be solved and the proposed algorithm for estimating covariance ma-

trices from compressive projections in multiple subspaces. Sections 6 and 3.4 includes the global

convergence guarantee of the proposed algorithm along with the error analysis. In Section 3.5, the

performance of the proposed algorithm is evaluated using extensive numerical simulations using

hyperspectral images. Additionally, an optical implementation is proposed to validate the thoreti-
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cal findings. Some concluding remarks are summarized in Section 3.8.

3.2. Compressive covariance sampling formulation

Let X = [x1, . . . ,xn] be a matrix whose columns x j ∈ Rl for j = 1,2, . . . ,n, are independent

realizations of a zero-mean Gaussian random vector with covariance matrix ΣΣΣ i.e., the distribution

of x conditioned to ΣΣΣ is

f (x|ΣΣΣ) = π
−l/2|ΣΣΣ|−l/2etr

(
1
2

ΣΣΣ
−1xxT

)
, (48)

where etr(.) denotes the exponential of the trace. Under this context, the maximum likelihood

estimator (MLE) for the covariance matrix reduces to the sample covariance matrix given by

S =
1
n

XXT =
1
n

n

∑
j=1

x jxT
j , (49)

where ΣΣΣ = E [S], ΣΣΣ ∈ Sl×l
++, with E[·] denoting the statistical expectation and Sl×l

++ represents the

set of positive definite matrices of size l × l. However, in many practical applications, lower-

dimensional signal projections are available instead of the target high-dimensional signal. In this

regard, the sampling process that obtains lower-dimensional signal projections can be modeled as

Y = PT X+N = [PT x1, · · · ,PT x2]+N, (50)

where Y = [y1,y2, . . . ,yn] ∈ Rm×n is the matrix containing the compressive projections y j ∈ Rm

for j = 1,2, . . . ,n, P ∈ Rl×m with m < l represents the projection matrix; and N ∈ Rm×n is the ad-

ditive noise matrix whose entries are characterized as independent and identically distributed (iid)
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random samples following a zero-mean Gaussian model with variance σ2
N , i.e. Ni, j ∼N (0,σ2

N).

Notice that the sample covariance matrix obtained from the observation matrix is obtained as

S̃ =
1
n

YYT =
1
n
(PT X+N)(PT X+N)T , (51)

with S̃ ∈ Rm×m. Since x ∼N (0,ΣΣΣ) and P is a fixed matrix, the projected vectors {y j}n
j=1 can

be modeled as zero-mean Gaussian vectors with covariance given by PT ΣΣΣP + σ2
NI, i.e. y ∼

N (0,PT ΣΣΣP+σ2
NI). Furthermore, it can be observed that nS̃ follows a Wishart distribution, that

is, nS̃∼W (PT ΣΣΣP+σ2
NI,n)(Besson et al., 2008a).

The above assumptions lead to the minimization of the Frobenius norm of the residuals

between the covariance matrix of the projected vectors and the projected version of the covariance

matrix estimate as the optimal performance criterion. However, this approach leads to ill-posed

optimizations with significant performance losses at high compression rates. To overcome this

limitation, a regularization term is aggregated to the cost function based on a particular covari-

ance matrix structure, e.g., low-rank or Toeplitz. The optimization problem to recover the sample

covariance matrix ΣΣΣ from S̃ is formulated as (Bioucas-Dias et al., 2014b)

ΣΣΣ
∗ = argmin

ΣΣΣ∈D
∥S̃−PT

ΣΣΣP∥2
F + τψ(ΣΣΣ), (52)

where ψ(·) is a convex function that regularizes the problem, τ is the regularization parameter,

∥ ·∥F denotes the Frobenius norm, and D is a proper convex and closed set, e.g., the set of positive
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semi-definitive or Toeplitz matrices.

Moreover, note that the zero-mean assumption in (49) does not hold in different image

processing applications. Hence, the random projections can be alternatively written as:

Y = PT (X+ X̃)+N, (53)

where X̃ = x̃1T is a matrix whose columns are the mean vector, i.e., x̃ = E [x], and 1 ∈ Rn is an

n-dimensional vector with one-valued entries. Notice that an estimate of the mean vector can be

obtained from the compressive projections (Qi and Hughes, 2012; Anaraki and Hughes, 2014) as

follows

x̃ = α

n

∑
j=1

P(PT P)−1y j, (54)

where α = m/n and y j is the j-th vector in PT X. It has been proved in (Qi and Hughes, 2012) that

(54) converges to the mean vector when n→ ∞. Once the mean is estimated, the measurements

can be corrected by subtracting the projection of the estimated mean vector to the biased samples,

i.e., Ỹ = Y−PT (x̂1T ). Without loss of generality, we assume that signals are zero mean.

3.3. Recovery of the covariance matrix from compressed measurements

Solving (52) typically yields poor results at high compression ratios of the projection vec-

tors m/l. This behavior is attributed to all vectors being projected onto a single subspace and

possibly projected onto the null space. Hence, we split the data into disjoint subsets projected onto

different subspaces to improve the performance of the estimator. The partitioning into multiple

subsets has been previously used for the CPPCA sensing approach(Fowler, 2009). However, this
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approach requires that the sensing matrices be orthonormal.

3.3.1. Projection set up and optimization problem. Let’s split the dataset X

into p disjoint subsets, Xi, with columns defined as Xi = [xΩi1, · · · ,xΩib ] with i = 1,2, · · · , p and

Ωi j = Ωi′ j′ only if i = i′ and j = j′. Since each column xΩi1 ∼N (0,ΣΣΣ), it holds that the sample

covariance matrix of every subset bSi =XiXT
i ∼W (ΣΣΣ,b), where b= n/p is the number of columns

in each subset. Then, each subset Xi ∈ Rl×b is projected in a lower-dimensional subspace with an

independent matrix Pi ∈ Rl×m, this is,

Yi = PT
i Xi +Ni. (55)

Using this splitting procedure, each Si matrix can be estimated solving the optimization (52), in

other words,

S∗i = argmin
Si∈D

||S̃i−PT
i SiPi||2F + τψ(Si) (56)

where S̃i =
1
bYiYT

i for i = 1, · · · , p. Notice that the formulation in (56) involves p different opti-

mization problems, one for each matrix Si, which increases the number of unknowns and thus the

ill-posedness of the problem. However, note that for a sub-Gaussian process, it holds that

||Si−ΣΣΣ|| ≤ ε, (57)

with probability at least 1−2exp(−t2l), for b ≥ J(t/ε)2l, ε ∈ (0,1), t ≥ 1, and J depends on the

sub-Gaussian norm of X(Vershynin, 2010), i.e. the statistics of a subset can approximately describe
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the statistics of the whole random process.

Figure 18. The partition approach. For a matrix X, different subsets of columns are selected, and
their covariance matrices are computed. The matrix S1 represents the covariance matrix of the
yellow columns, and S2 represents the covariance matrix of the red columns.

Fig. 18 illustrates the similarity when the covariance matrices of two subsets of the signal

X are presented. To that end, two subsets of columns of the matrix X highlighted in yellow and red

are used to compute the covariance matrices S1 and S2. This example X is a matrix representation

of a hyperspectral image with a spatial resolution of 512× 512 (i.e. n = 262144) and l = 102

spectral bands, where each column of X represents the spectrum at a given spatial location. The

computation of the matrices S1 and S2 uses b = 2048 spectral signatures. As it can be seen, these

two matrices are similar as ||S1−S2||F = 0.0321. Instead of recovering all covariance matrices Si,
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we assume that S1 = S2 = · · · = Sp = ΣΣΣ. By doing this, we merge the separate problems in (56)

into a single optimization problem by replacing Si with ΣΣΣ, which results in

ΣΣΣ
∗ = argmin

ΣΣΣ∈D

p

∑
i=1
||S̃i−PT

i ΣΣΣPi||2F + τψ(ΣΣΣ). (58)

Theoretical results and simulations show that this splitting procedure improves the accuracy and

variance of the estimator (see Lemma 2). Additionally, an advantage of (58) in contrast to (52)

is that even if an eigenvector falls in the null space of a given matrix Pk, the probability that the

eigenvector falls in the null space of every matrix Pi is small as m× p≥ l, and thus the probability

of correct reconstruction increases. To see that, consider a matrix P = [P1,P2, · · · ,Pp]
T ∈ Rmp×l

whose entries are independent identically distributed subgaussian random variables with zero mean

and unit variance. In general, the row null space of the matrix P is empty if the minimum singular

value is greater than 0, i.e., smin(P) > 0. The probability that the minimum singular value is less

than a small number is given by(Vershynin, 2010)

P[null(P) = /0]≥ 1−P
(

smin(P)≤ ε(
√

mp−
√

l−1)
)
= 1− (Cε)mp−l+1 + cmp (59)

with ε ≥ 0, C > 0, and c∈ (0,1). Note that the probability that the null space to be empty increases

exponentially with respect to the subspace dimension m and the number of partitions p. Hence,

in the case of having a single partition p, the only way to increase P[null = /0] is to increase the

subspace dimension. In the hyperspectral imaging context, increasing m implies acquiring more
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snapshots reducing the compression. On the other hand, this can also be achieved by increasing

the number of partitions p while the compression remains constant.
3.3.2. Proposed projected gradient algorithm for covariance matrix recovery.

Problem (58) is solved following the projected gradient method. This method requires a differen-

tiable function f (ΣΣΣ) and a proper closed and convex set D to formulate the optimization problem

as

ΣΣΣ
∗ = argmin

ΣΣΣ∈Rl×l
f (ΣΣΣ)

subject to ΣΣΣ ∈ D.

(60)

Note that (58) has the form of (60), so it can be solved using the projected gradient algorithm as

illustrated in Algorithm 3.1. This algorithm is summarized in three main steps. First, a starting

point ΣΣΣ
0 ∈ D and the regularization parameter τ are selected. Parameter τ induces the low-rank

structure in the solution. Step two (line three), the learning step is selected using the Armijo

search(Iusem, 2003). For that, λk = λk−1/ηr, where η > 1, λ−1 > 0 and r is the smallest positive

integer (including 0) that satisfies

min
rrr

f (ΣΣΣkr ,τ)≤ f (ΣΣΣk,τ)+Tr(∇ f (ΣΣΣk,τ)T (ΣΣΣkr))+ ||ΣΣΣkr −ΣΣΣ
k||2F , (61)

where ΣΣΣ
k is the k-th iteration, ΣΣΣ

kr = PD(ΣΣΣ
k− (λk−1/ηr)∇ f (ΣΣΣk,τ)) is an intermediate step between

iterations k and k+1 and PD is the projection onto the set D. In step 3 (line 4), the variable ΣΣΣk is
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updated by using the gradient of the cost function

f (ΣΣΣ,τ)≡
p

∑
i=i
||S̃i−PT

i ΣΣΣPi||2F + τψ(ΣΣΣ), (62)

which for a fixed τ is given by

∇ f (ΣΣΣ,τ) =
p

∑
i=1

Pi(S̃i−PT
i ΣΣΣPi)PT

i + τ∇ψ(ΣΣΣ). (63)

When ψ(ΣΣΣ)=Tr(ΣΣΣ), which is used for low-rank structure, the gradient is given by ∇Tr(ΣΣΣ)=

I ∈ Rl×l . Once the variable ΣΣΣk is updated using the gradient, it is projected onto the set D, whose

computation depends on the set D itself. This work studies two sets:

1. Positive semi-definitive: The orthogonal projection onto the set of positive semi-definitive

matrices is given by(Grigoriadis et al., 1994)

PD(ΣΣΣ) = WΛΛΛ+WT , (64)

where W is the matrix containing the eigenvectors and ΛΛΛ+ is the matrix containing only the

positive eigenvalues of ΣΣΣ.

2. Toeplitz: The orthogonal projection onto the set of Toeplitz matrices is given by(Grigoriadis
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et al., 1994)

PD(ΣΣΣ) =



t0 t1 t2 . . . tl−1

t1 t0 t−1 . . . tl−2

t2 t1 t0 . . . tl−3

. . . . . . . . . . . . . . .

tl−1 tl−2 tl−3 . . . t0



, (65)

where tk = 1/(n− k)∑
n−k
i=1 Σi,(i+k), with ΣΣΣ = {Σi, j}.

Thus, the proposed gradient algorithm can be summarized by Alg. 3.1.

Algorithm 3.1 Projected gradient algorithm

1: ΣΣΣ
0 ∈ D,τ,λ0

2: while stopping criteria is not satisfied do

3: pick λk > 0 ▷ Armijo search

4: ΣΣΣ
k+1← PD(ΣΣΣ

k−λk∇ f (ΣΣΣk,τ)) ▷ Using 1) or 2)

5: end while

Note that, Algorithm 3.1 works for both low-rank and Toeplitz cases. Nevertheless, for

the Toeplitz case, τ is set to zero since the low-rank constraint is unnecessary. The algorithm

convergence analysis is presented in the Supplementary material, Section 6

3.4. Error term of the proposed estimator

The assumption in (57) introduces an error term in the gradient. To show that, let us char-

acterize the difference of the ground-truth sample covariance matrix S and the covariance matrices
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Si as

Si = S+Ri, (66)

where Ri ∈ Rl×l is a matrix that accounts for the error between the covariance matrices. In the

ideal case, where S = Si∀i, the estimator is optimal and (63) holds. However, in the more realistic

scenario where S ̸= Si∀i, assuming (66), the error is described in lemma 1

Lemma 1. The gradient step for the proposed Algorithm 3.1 has an error term given by Error[∇ f̃ (ΣΣΣ)]=

−∑
p
i=1 PiPT

i RiPiPT
i .

where Error[·] = ∇ f −∇ f̃ , and ∇ f ,∇ f̃ are the optimal and actual gradients respectively.

Proof: See Appendix 3.6.

An important property of the error term is that it is proportional to the number of sub-

sets, and thus the error associated with Error[∇ f̃ (ΣΣΣ)] increases with the number of partitions p.

However, more partitions improve the condition of the information matrix of the problem. Con-

sequently, choosing the number of subsets is a trade off between improving the condition of the

problem and increasing the error. The following theorem bounds the latter.

Theorem 2. The variance for any Covariance matrix ΣΣΣ estimator for (55) with deterministic pro-

jection matrices Pi, assuming that is non-singular, satisfies

var(Σ̃ΣΣ)≥ p
n

Tr

( p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i

)−1
 , (67)

with Ai = (ΣΣΣN +PT
i ΣΣΣPi)

−1, and
(
∑

p
i=1 PiAT

i PT
i ⊗PiAiPT

i
)

is the information matrix. Proof: See
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appendix 6.

From Theorem 2 it is important notice that for small values of p the fisher information

matrix is singular. Hence, a large enough number of partitions (p > l2/m2) must be performed

based on lemma 2

Lemma 2. Let Pi ∈ Rl×m and Ai ∈ Rm×m, then the matrix ∑
p
i=1 PiAT

i PT
i ⊗PiAiPT

i is singular if

p < l2/m2. Proof: See appendix 6

From Lemma 2, it can be seen that the information matrix is non-singular for some d > 1

such that p ≥ dl2/m2. Nevertheless, choosing large p increase the norm of the error term given

in Lemma 1, as shown in (141). Hence, p should be chosen big enough to avoid the singularity

of (67) but small enough to decrease the error term in (75), which yields an optimal number of

partitions of p = ⌈(l2/m2)+1⌉. Additionally, this error term follows an important property given

by lemma 3

Lemma 3. Let {Ri} be the set of error matrices for the subsets covariance matrices Si, hence since

the sensing matrices Pi are deterministic and E[R] = 0 (Appendix 6), for any entry Bιρ of the

matrix PiPT
i RiPiPT

i = B it holds that

E[Bιρ ] = 0, (68)

Proof: See Appendix 6.

This result motivates the use of a filtered gradient to remove the effect of the error term.

Simulations show that this error is usually associated with high frequencies. Moreover, the pro-

posed algorithm filters the gradient in each iteration to mitigate this error, especially when the
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compression is high since more partitions are required (as can be seen in Lemma 2). The filtered

gradient is given by

∇ f̂ (ΣΣΣ) = K∗∇ f (ΣΣΣ), (69)

where ∗ represents the convolution operation, and K ∈ Rk×k is the filter kernel. This new gradient

is used in step 4 of algorithm 3.1. This filtering step reduces the error term variance, as shown in

Appendix 6 in the supplementary material. Additionally, the norm of the error term is bounded by:

P

{∥∥∥∥∥ p

∑
i=1

HiRiHi

∥∥∥∥∥
2

≥ t

}
≤ 2× l× e

−t2/2
p2σ2

H+σ2mεt/3 , (70)

for all t ≥ 0, σm = max(σmax(Hi)) and σH = σ4
mε2. Proof: See Appendix 6 in supplementary

material.

3.5. Simulations and Results

The performance of the proposed algorithm is tested using synthetic and real data. The

gradient is filtered using a Gaussian filter with σ = 1; however, it is only used along with the low-

rank restriction (i.e., τ > 0). Three different projection matrices P are used: i) Gaussian matrices

whose entries follow a standard normal distribution Pi, j ∼N (0,1); ii) Binary matrices with entries

Pi, j ∼ Bernoulli(p = 1
3); and iii) matrices whose elements obey to a standard uniform distribution,

{P}i, j ∼U(0,1). In simulations, two noisy scenarios of 20 and 30 dB SNR were tested with SNR

defined as SNR=10log ||PT X||2F/||N||2F .

3.5.1. Synthetic data performance evaluation. Synthetic data from a low-rank

and Toeplitz covariance matrices were generated. For the low-rank covariance matrix, the data
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points were generated using Matlab with µµµ = 0, the rank of ΣΣΣ set to 7, and the dimension of

the signal l = 100. The data from the Toeplitz matrix was generated as an autoregressive model of

order q= 8 and dimension of the signal l = 100. For the reconstruction algorithm τ = ρ ∗ trace(S0),

where S0 is the initialization of the covariance matrix, and ρ was chosen using cross-validation.

More details are available in the supplementary material.

Fig. 19 shows the average normalized mean squared error defined as NMSE=||ΣΣΣ−Σ̃ΣΣ||F/||ΣΣΣ||F

as a function of the number of partitions between the original and reconstructed covariance ma-

trices. It can be seen that Gaussian matrices have the best performance. Based on those results,

we set the number of partitions to 4 and 128 for Toeplitz and low-rank data, respectively in syn-

thetic data experiments. The proposed algorithm results are compared against sparse rulers and a

least squares autoregressive estimator for the Toeplitz matrix. The proposed algorithm is compared

against the compressive-projection principal component analysis (CPPCA)(Fowler, 2009) and the

spectral compressive acquisition (SpeCA) method for the low-rank matrix(Martin and Bioucas-

Dias, 2016).

Figure 20 shows that both the proposed and SpeCA algorithms outperform the CPPCA

algorithm because the generated random signal does not exhibit an eccentric behavior in the eigen-

values of the covariance matrix which is an essential assumption for the CPPCA algorithm. On

the other hand, the proposed algorithm achieves comparable results to the SpeCA when Gaussian

matrices are used but outperforms the SpeCA with binary matrices and in low SNR regimes.

Figure 21 compares the performance of different algorithms in the recovery of the Toeplitz

covariance matrix. The proposed algorithm outperforms two state-of-the-art algorithms, AR co-
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N. of partitions N. of partitions

N. of partitions N. of partitions

Figure 19. Average normalized mean square error of the reconstructed covariance matrix for the
(top) Toeplitz and (bottom) low-rank matrices varying the number of partitions using 8% of
compression ratio with two noise scenarios (left) SNR=30dB and (right) SNR=20dB. Each line
represents a different sensing matrix (Gaussian, Uniform, Binary). The shaded areas represent the
confidence interval (in some cases, it can not be seen in the plot).
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Figure 20. Average normalized mean square error of the reconstructed covariance matrix for the
low-rank covariance matrix varying the number of acquisitions using 128 partitions with two
noise scenarios (left) SNR=30dB and (right) SNR=20dB and two types of sensing matrices,
Gaussian (top) and Binary(Bottom)

efficient(Testa and Magli, 2016), and Sparse rulers(Romero et al., 2016b), especially with high

compression ratios. The proposed method is compared using two sensing matrices, Gaussian and

Binary. Note that both AR coefficients and sparse rulers propose a specific sensing protocol, and

hence the sensing matrix is fixed.
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Compression ratio Compression ratio

Figure 21. Average normalized mean square error of the reconstructed covariance matrix for the
Toeplitz covariance matrix varying the number of acquisitions using four partitions with two
noise scenarios (left) SNR=30dB and (right) SNR=20dB. The shaded areas represent the
confidence interval.

3.5.2. Computational simulations with Hyperspectral images. Additionally, the

proposed method is evaluated by estimating the covariance matrix of hyperspectral images using

subsets of random compressive projections. Two hyperspectral images are considered: the Urban

dataset (Zhu et al., 2014) with a spatial resolution of 256×256 pixels and l = 128 spectral bands;

and a section of the Pavia Centre dataset (Mueller et al., 2002) with dimensions 512×512×102.

The RGB composite and the spectral signatures of three pixels (at the spatial locations P1, P2, and

P3) for the Urban dataset are displayed in Fig. 22 (Top-Left) and (Top-Right), respectively. More-

over, Figs. 22(Bottom-Left)-(Bottom-Right) show the RGB composite and the spectral signatures

for the Pavia Centre dataset. The results obtained with the proposed method are compared with

those obtained using the CPPCA and the SpeCA algorithms. Three metrics are used to compare

the results, the Mean Square Error (MSE) between the covariance matrices, the error angle be-
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Figure 22. (Top) Urban dataset: (Left) RGB composite of the hyperspectral image, (Right)
spectral signatures of three different pixels at locations P1, P2, and P3.(Bottom) Pavia Centre
dataset: (Left) RGB composite of the spectral image, (Right) spectral signatures of three different
pixels.

tween the eigenvectors, and the Peak Signal to Noise Ratio (PSNR). The sample covariance matrix

S = XXT/n is used as the truth covariance matrix for the simulations.

3.5.3. Cramer-rao lower bound and optimal number of partitions. As de-

scribed in Section 3.3, the signal splits into p subsets projected using different matrices and

p ≥ l2/m2 as described by Lemma 2. This section evaluates the estimator’s variance using the

theoretical expression given in Theorem 2 and the empirical variance in the simulations. Table 4

shows the value l2/m2 for both images as m increases. Fig. 23 shows the theoretical variance given



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 98

Table 4
Minimum optimal number of partitions.

image/m 8 12 16 20 24 28 32
Urban p 256 114 64 41 29 21 16
Pavia p 163 72 41 26 18 13 10

by the Cramer-rao lower bound and the empirical variance defined as 1/rtr[∑r
i=1(σ̃σσ−σσσ)(σ̃σσ−σσσ)T ]

where r is the number of realizations. Fig. 23 presents three different compression ratio scenar-

N. of partitions N. of partitions

Figure 23. Comparison of the Cramer-rao lower bound and the empirical variance. Blue lines
represent the empirical value, and red lines represent the theoretical value. Note that the red lines
are shown only when the fisher information matrix is non-singular.

ios going from 6% to 30%. It can be seen that the values of p presented in table 4 match those

obtained in Fig. 23. Note that the red lines are shown only when the Fisher information matrix is

non-singular, which, as expected, is close to the point of most minor empirical variance.

3.5.4. Accuracy of the recovered covariance matrix. The quality of the recon-

structed covariance matrices was evaluated using the NMSE and the angle between the eigenvec-

tors of the ground-truth covariance matrix and the recovered eigenvectors using Algorithm 3.1.

In Fig. 24, the NMSE of the reconstructed covariance matrix using different types of matrices is
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Pavia Urban
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Figure 24. Average MSE of recovered covariance matrix when the compression ratio varies for
the Urban image using the number of partitions given in table 4

shown. It can be seen that the proposed method outperforms both traditional methods (CPPCA,

SpeCA), mainly when binary matrices are used. For the case of Gaussian matrices, P the proposed

algorithm obtain comparable results to SpeCA.

Fig. 26 shows the angle gap obtained with the two different images for the three different

types of random projections. Results in Fig. 26 are generated by running 20 times the proposed
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algorithm, along with CPPCA and SpeCA. The angles of the recovered eigenvectors are averaged.

The sensing protocol for the SpeCA algorithm is defined as Ya = AX ∈ Rma×n, with A ∈ Rma×l ,

Yb = [B1x1,B2x2, · · · ,Bnxn] and Bi ∈ Rmb×l , we set to ma = m− 1 and mb = 1. For these simu-

lations, the signal was corrupted with additive Gaussian noise as in (50) to yield 20 dB of SNR.

The results show that the angle gap of the recovered eigenvectors is less when the proposed al-

gorithm is used with any type of projection matrix. Note that SpeCA produces similar results

to the proposed algorithm when Gaussian projection matrices are used. However, the proposed

algorithm outperforms SpeCA when Binary and Uniform matrices are used. Additionally, Fig-

ure 25 shows the running time for the three algorithms by varying the dimension of the subspace

m. For the proposed method the stopping criterium was set to be the relative tolerance given

by ∥ΣΣΣk−ΣΣΣk−1∥/∥ΣΣΣk∥ ≤ 1e−4. It can be seen that SpeCA requires 37 seconds for Pavia in con-

trast to 0.6 and 0.2 seconds for proposed and CPPCA, respectively. Even though CPPCA is the

fastest method, the reconstruction quality is up to two orders of magnitude worst, as shown in Fig.

24. Note that the number of partitions for CPPCA and the proposed method is chosen following

Lemma (2); when the dimension m increases, the number of partitions p decreases reducing the

computation time.

3.5.5. Error term and filtered gradient analysis. In this section, the error term is

numerically analyzed. For test purposes, we assume that the truth covariance is known so that the

error matrices Ri are computed as Ri = S−Si, and the error is calculated as in (75). The covariance

matrix is estimated using the proposed algorithm without filtering the gradient, and its eigenvectors

are compared with the error term B. This is because when no filtering is applied, we observe in the
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Figure 25. Comparison of the average execution time for SpeCA, CPPCA and the proposed
algorithm. Note that the partition number is set to p = l2/m2 resulting in a reduction of the
execution time when m increases since the number of partitions decreases.

simulations that some eigenvectors are corrupted with high-frequency noise. Fig. 27 (left) shows

the eigenvector’s visual comparison when no filter is applied on the gradient and an eigenvector of

the bias term (75). It can be seen that the fourth eigenvector of the recovered covariance matrix

converges to the fourth eigenvector of B, which computationally validates the statement in Lemma

1.

However, when the filtering procedure is applied using a Gaussian filter with σ = 1, this

corrupted eigenvector converges to the actual one; this is shown in Fig. 27 (right). Further analysis

is shown in Appendix 6.
3.6. Error term of the proposed gradient method

The gradient of f (ΣΣΣ) is given in (63). However, as mentioned above, the covariance matri-

ces are not equal, thus (63) is rewritten as

∇ f̃ (ΣΣΣ) =
p

∑
i=1

Pi(Σ̃ΣΣi−PT
i SiPi)PT

i + τ∇ψ(ΣΣΣ). (71)
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Pavia Urban
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Figure 26. Average angle error of recovered eigenvectors with different compression ratios for
Pavia (left), and Urban(right) images with different sensing matrices. Rows show the angle gap of
the first, second, and third eigenvector.

Error term

Figure 27. Comparison of the fourth eigenvector of the estimated covariance matrix with: (left)
non-filtered gradient and the first eigenvector of the error term. (right) Filtered gradient and the
fourth eigenvector of the truth covariance matrix.

Plugging (66) into (71) and assuming that S = ΣΣΣ we have that

∇ f̃ (ΣΣΣ) =
p

∑
i=1

Pi(Σ̃ΣΣi−PT
i (S+Ri)Pi)PT

i + τ∇ψ(ΣΣΣ)

=
p

∑
i=1

Pi(Σ̃ΣΣi−PT
i (ΣΣΣ+Ri)Pi)PT

i + τ∇ψ(ΣΣΣ).

(72)
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After some algebraic operations, (72) can be rewritten as

∇ f̃ (ΣΣΣ) =
p

∑
i=1

Pi(Σ̃ΣΣi−PT
i ΣΣΣPi)PT

i −
p

∑
i=1

PiPT
i RiPiPT

i + τ∇ψ(ΣΣΣ). (73)

Comparing (69) and (73), we can see that

∇ f̃ (ΣΣΣ) = ∇ f (ΣΣΣ)−
p

∑
i=1

PiPT
i RiPiPT

i . (74)

Hence, the error term of the gradient induced by the splitting procedure is

Error[∇ f̃ (ΣΣΣ)] =−
p

∑
i=1

PiPT
i RiPiPT

i . (75)

3.6.1. Image reconstruction. The underlying signal is recovered with the esti-

mated eigenvectors using the method described in (Fowler, 2009). In particular, given the matrix

Wm ∈ Rl×m containing m recovered eigenvectors, the signal is estimated as

X = Wm(PT Wm)
†Y, (76)

where † is the Moore-Penrose inverse. Using this approach, the image is reconstructed, and the

performance is compared against SpeCA and CPPCA algorithms. Figure 28 shows the results for

the Pavia centre image using the PSNR as a quality measurement.
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Figure 28. Comparison of the different reconstruction methods in terms of PSNR as a function of
the compression ratio. The shaded areas represent the confidence interval.

It can be seen that using the estimator given in (76), the proposed method outperforms both

state-of-art counterparts, specially CPPCA, which exhibits a large dispersion on the performance.

Note that, SpeCA results are similar to those obtained when Gaussian matrices are used, but the

proposed method outperforms by up to 5 dB using binary matrices.

3.6.2. Optical implementation on DD-CASSI architecture. Many implementable

optical architectures model the sensing process as the vector formulation y = Hx + n(Correa

et al., 2016b; Gehm et al., 2007b), where x = vec(X) and H is the sensing matrix. However, the

proposed method requires dividing the sensing problem into multiple independent sub-problems

and expressing them in matrix form. This partition can be achieved in architectures like DD-

CASSI(Gehm et al., 2007b) or SSCSI(Lin et al., 2014b) since they preserve the spatial indepen-

dence in the sensor, i.e., the codification/compression occurs only along the spectral dimension. To

convert the vector problem into the multiples matrix sub-problems, note that the sensing problem
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in DD-CASSI can be expressed as

y =



y1

y2

...

yn


=



PT
1 0 . . . 0

0 PT
2 . . . 0

... . . . . . .
...

0 0 . . . PT
n





x1

x2

...

xn


+ r, (77)

with r noise. From (77) it can be seen that each pixel is coded by a different sensing matrix Pi. In

fact, (77) is equivalent to (55) with p = n. Hence, if the number of sensing matrices is limited to

p < n, (77) can be re-written as (Martín et al., 2015)

Y =



Y1

Y2

...

Yp


=



PT
1 0 . . . 0

0 PT
2 . . . 0

... . . . . . .
...

0 0 . . . PT
p





X1

X2

...

Xp


+E, (78)

where Xi ∈ Rl×n/p is a matrix whose columns are the pixels coded by the same matrix Pi, and

E = [NT
1 , . . . ,N

T
p ]

T is the noise. The schematic of the DD-CASSI, Figure 29, shows the distribution

of the optical elements. The sensing process consists of four main steps: first, the scene goes

through a prism that induces a dispersion effect; second, the scene is modulated by a binary coded

aperture C; third, a second prism undo the dispersion of the first prism, and fourth the scene is
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Figure 29. Schematic of DD-CASSI architecture.

integrated into the 2D sensor.

Limiting the number of sensing matrices Pi requires that the spatial distribution of the coded

aperture C be designed to produce a limited number of code patterns in the spectral domain. One

way to generate a limited number of sensing matrices consists of repeating a one-dimensional

binary pattern a ∈ R1×p along the spatial dimensions of the coded aperture C. Specifically, the

pattern a is repeated in each row of C in the same way; this concept is illustrated in Fig. 30. It can

be seen that by repeating the pattern a, we can construct the matrix X1 = [x(1,1),x(1,5),x(1,1),x(1,1)]

since they share the same matrix P1.

Figure 30. Sensing protocol design to limit the number of sensing matrices

In a multishot setup, the spatial distribution of the coded aperture must change i.e., there is

a Ct for each snapshot t. Nevertheless, to preserve the subsets distribution, only the entries of at
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change at each instant t. Hence, the coded aperture spatial distribution follows

vec(Ct) =
[
1ny⊗ (1Nx/p⊗at)

]
. (79)

We built a testbed in our laboratory as a proof-of-concept prototype based on(Marquez

et al., 2021c, 2020c, 2021a); the optical setup is shown in Fig. 31. This optical device is made

out of a Navitar lens (12mm FixedFocal Length, MVL12M23 - 12mm EFL, f/1.4) as the objec-

tive lens to image the scene onto the image plane of a matched achromatic doublet pair (Thorlabs

MAP10100100-A, f 1 = 100.0mm, f 2 = 100.0mm) to propagate the incoming wavefront through a

beam splitter until to a second matched achromatic doublet pair relay lens (Thorlabs MAP10100100-

A, f 1 = 100.0mm, f 2 = 100.0mm). This second relay lens transmits the wavefront through a dou-

ble Amici prism coupled to a rotation mount (Thorlabs CRM1P, 30mm cage rotation mount, Ø1")

to image a dispersed version of the scene onto the digital micromirror device (DMD, Texas In-

struments, D4120). Taking advantage of the DMD’s mirror surface, the now dispersed-modulated

wavefront is returned through to the prism until the L2 lens, where the prism undoes the disper-

sion effect. The resulting dispersed-coded-dispersed wavefront propagates through BS until a third

matched achromatic doublet pair relay lens (L3) (Thorlabs MAP105050-A, f 1 = 50.0mm, f 2 =

50.0mm). Finally, the L3 lens focuses the dispersed-coded-dispersed wavefront onto the sensor

(Stingray F-080B, 4.65µm pixel size).

The coded aperture was designed using (79) to produce a limited number of patterns with

m = 8 snapshots. We placed the prism in a distance such that the dispersion generated l = 37
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Figure 31. Optical implementation of the DD-CASSI architecture.

spectral bands in the sensor, and the spatial resolution of the scene was 356× 512 pixels; this

setup achieves a 79% of compression of the image. Based on Lemma (2), the optimal number

of partitions must be p > l2/m2 = 21.4, so we generated 24 partitions. The sample mean was

computed using (54) and subtracted from the measurements. Additionally, we used τ = 2e−4 and

200 iterations in the covariance recovery algorithm. We took the first five eigenvectors for the

image reconstruction, and used them in (76). Overall, the whole process, including covariance

matrix recovery and image reconstruction, took 0.85 seconds on average. Figure 32 shows an

RGB composite of the hyperspectral image reconstructed and the RGB image captured with a

commercial camera for comparison purposes. Fig. 32-b) shows four out of the 37 reconstructed

spectral bands; these 37 spectral bands are in the range of 450 nm to 650 nm with a spectral

resolution going from 2nm in blue spectral bands until 10nm in the red spectral bands. Figure

32-c) shows the recovered covariance matrix; Fig. 32-d) shows the sample mean and the three
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eigenvectors associated with the largest eigenvalues. The figure shows that the RGB composite

resembles the colors obtained with the commercial camera’s high-resolution camera, which gives

insights into the correct reconstruction.

3.7. Discussion

One limitation of the proposed method is that it requires multi-shot acquisition to correct

covariance reconstruction. Specifically, in the reconstruction step, when a single shot is acquired,

inverse problem (76) produces a rank-one solution that is not accurate. However, nowadays, cam-

eras can acquire shots at a high-speed rate, reducing the impact of these limitations. Addition-

ally, prior knowledge of the covariance matrix is required to set the convex set (e.g., Low-rank or

Toeplitz). On the other hand, the partition of the data makes the method impractical to work with

few realizations compared to the number of spectral bands. That is because the sample covariances

matrices Si will be poor estimators, and the error associated with the partition will increase dra-

matically. Nevertheless, the number of pixels is much greater than the number of spectral bands in

imaging applications.

3.8. Conclusion

We proposed an algorithm to recover the covariance matrix from a set of compressive mea-

surements using a strategy-based projection onto convex subsets. The algorithm is based on the

projected gradient method. The theoretical results show that although the splitting procedure in-

duces an error term, it can be mitigated using a filtered gradient. Additionally, this error is pro-

portional to the number of partitions; nevertheless, more partitions improve the condition of the

information matrix; thus, choosing the correct number of partitions is critical. For that reason, a
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Figure 32. Reconstruction of the covariance matrix and hyperspectral image from data captured
in our lab using the DD-CASSI optical architecture. a)-top RGB composite of the reconstructed
hyperspectral image, a)-bottom RGB image acquired with a commercial camera. b) four out of
the 37 spectral bands of the reconstructed hyperspectral image. c) Recovered covariance matrix.
d) Sample mean and first three eigenvectors of the covariance matrix.
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lower bound for the optimal number of partitions is proposed. Experimental results show that the

proposed method outperforms state-of-art algorithms CPPCA and SpeCA. The experiments were

performed using two different hyperspectral images, for which the proposed method attained bet-

ter results in terms of MSE and angle GAP, which translates in a gain of up to 10 dB of PSNR in

comparison with CPPCA and up to 4 dB PSNR concerning SpeCA. Additionally, the algorithm

was tested with real data from the laboratory using DD-CASSI architecture. It can be seen that the

reconstruction process is fast and robust since the RGB composite resembles the RGB image of

the scene.
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4. Covariance Estimation for Spectral Video Recovery using a Projected Gradient based

Algorithm

This chapter addresses the second and third objective of the thesis:

• To design an algorithm based on the gradient descent method to recover the first and second

sample statistical moments from low-dimensional random projections.

• To test the performance of the proposed algorithm to recover the sample statistics in hyper-

spectral imaging reconstruction

4.1. Introduction

Chapter 3 introduced a novel algorithm and an optical architecture to recover the covari-

ance matrix. However, the proposed methodology requires multiple acquisitions at different times

to recover an accurate CM. this approach relegates the temporal CM estimation to a sequential

uncorrelated problem, i.e., ignoring the inter-temporal CM correlation. Therefore, it is desirable

to design an SCSV methodology based on CCS theory to estimate the CM exploiting the inter-

temporal correlation from a single compressive measurement per frame. This single snapshot

approach enables to use of the CCS theory for spectral video applications.

Spectral video (SV) can be seen as a 4D tensor that contains the spatial (x,y), spectral (λ ),

and temporal (t) information of a dynamic scene. SV plays a central role in high-level computer

vision applications such as classification (Hu and Hsu, 2013; Leon-Lopez et al., 2022), detection

(Liu et al., 2019), food safety (Gao et al., 2020; Al-Sarayreh et al., 2020), among others. Tra-
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ditional SV acquisition relies on scanning approaches that compromise the temporal resolution,

i.e., the changes in the scene must be slower than the acquisition of the frame. In contrast, snap-

shot compressive spectral video (SCSV) acquires 2D projections of the 4D tensor, preserving the

spatio-spectral features with high accuracy and reducing the acquisition times.

Conventional SCSV optical systems use spatial light modulators and dispersive elements to

encode and compress the 4D tensor into a set of 2D measurements. One of the most used meth-

ods in the SCSV state-of-the-art is the binary mask-based method. Their increasing popularity is

associated with the high codification variability, low calibration complexity, high light through-

put, and high-speed modulation rates(Arguello and Arce, 2012b; Correa et al., 2016a; Marquez

et al., 2021b, 2020a; Correa et al., 2016c). Specifically, this sensing geometry is inspired by the

compressive coded aperture spectral imaging (CASSI) architecture. CASSI-based imagers fall on

two sensing approaches, multiple acquisitions (Arguello and Arce, 2014) or single acquisition per

frame (Gehm et al., 2007b). The first one enables better reconstruction performances than the sin-

gle acquisition approach, but it is unfeasible in scenarios with fast temporal changes. In contrast,

the single acquisition approach enables the acquisition of fast-moving targets at the expense of

spatial-spectral reconstruction quality. Although both methods enable the acquisition and recovery

of SV at different frame rates, their main shortcoming lies in using high-complexity reconstruc-

tion algorithms that limit their feasibility in real-time computer vision applications(Arguello et al.,

2013; Zhang et al., 2019).

This chapter proposes a snapshot spectral video imager founded on the CCS theory, named

compressive covariance spectral video (CoCoS-Vi). Specifically, the CoCoS-Vi sensing geometry
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aims to generate multi-views of the scene with a lenslet array followed by a disperse-code-disperse

process using a single dispersive element, a digital mirror device (DMD), and a beam splitter. The

resulting compressed measurement contains multiple low-spatial resolutions encoded versions per

frame. These encoded views can be seen as a different snapshot per frame, e.i., a virtual multishot

approach. Moreover, we propose a reconstruction algorithm based on a spectro-temporal low-rank

approximation of the CM. This reconstruction methodology requires a specific coded aperture

design to re-cast the traditional vector sensing model into a tensor sensing model. CoCoS-Vi

claims are validated via experimental measurements acquired with a proof-of-concept prototype.

An spectral scene was acquired and reconstructed using the CoCoS-Vi methodology achieving a

reconstruction time of 0.12 seconds per frame for a spectral image of dimension 151×196×15.

4.2. Spectro-temporal low-rank covariance matrix estimation

4.2.1. Discrete sensing model. A hyperspectral video can be represented as a 4D

tensor F ∈RNx×Ny×Nλ×Nt , where Nx×Ny indexes the spatial dimension, Nλ the wavelength bands,

and Nt the frames. The CoCos-Vi sensing protocol is based on the DD-CASSI multishot sensing

model, which can expressed as



gi1

gi2

...

gin


=



HT
1 0 . . . 0

0 HT
2 . . . 0

...
... . . . ...

0 0 . . . HT
n





fi1

fi2

...

fin


+ εεε i, (80)
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where n = NxNy, fi j ∈ RNλ and gi j ∈ RK are the spectral signature and compressed measurement

for the j-th pixel in the i-th frame, respectively, with j = {1, . . . ,n} and i = {1, · · · ,Nt}; K ∈ N is

the total of snapshots per-frame, H j ∈ RNλ×K represents the sensing matrix for the j-th spectral

signature, and εεε i ∈RnK is the additive noise. Based on (Monsalve et al., 2021, 2022b), the number

of sensing matrix in (80) can be limited to a small set of ρ ∈ N primary sensing matrices Pℓ ∈

RNλ×K (with ℓ= {1, · · · ,ρ} and ρ < n) that repeats arbitrarily through the block-diagonal matrix.

Taking this into account, the sensing model in (80) can be re-cast in matrix form as



Gi1

Gi2

...

Giρ


=



PT
1 0 · · · 0

0 PT
2 · · · 0

...
... . . . ...

0 · · · · · · PT
ρ





Fi1

Fi2

...

Fiρ


+Ei , (81)

where Fiℓ ∈ RNλ×(n/ρ) contains all the spectral signatures fi j that share the same primary sensing

matrix Pℓ for the i-th frame, Giℓ ∈RK×(n/ρ) is the matrix version of the compressed measurements,

and Ei ∈ R(ρ·K)×n/ρ is the sensor noise. CoCoS-Vi sensing protocol aims to avoid the multiple

snapshots dependence using a lenslet array to acquire different encode versions simultaneously at

the cost of the spatial resolution. Specifically, each row of Giℓ is the same arbitrary spatial position

replicated by the lenslet array but modulated by a different section of the coded aperture. Hence,

from here and onward on the document, the variable K refers to the number of lenses that compose
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the lenslet array.

4.2.2. Covariance matrix recovery. The objective of the CoCos-Vi methodology

is to recover the spectral video via the spectral covariance matrix i ∈RNλ×Nλ =Eℓ[fiℓfT
iℓ] using the

sample covariance matrices S̃iℓ = GiℓGT
iℓ/(n/ρ) ∈RK×K . The state-of-the-art CM approaches aim

to solve an uncorrelated temporal problem given by(Monsalve et al., 2021, 2022b; Blanco et al.,

2021):

ΣΣΣ
∗
i =argmin

ΣΣΣi∈S++

ρ

∑
ℓ=1
∥S̃iℓ−PT

ℓ ΣΣΣiPℓ∥2
F + τTr(ΣΣΣi), (82)

where Tr represents the matrix trace, τ a regularizer parameter that penalize the solution rank,

and S++ is the positive-semidefinitive set. Note that problem (82) lacks exploiting the temporal

correlation. Therefore, to exploit the intrinsic spectral-temporal correlation in the natural videos

and the resulting DMD time-invariant structure in the CoCoS-Vi sensing protocol, we propose

reconstructing the third-order tensor ΣΣΣ ∈ RNλ×Nλ×Nt at once. Let’s ΣΣΣi ∈ RNλ×Nλ be the i-th slice

of the tensor ΣΣΣ. Then, the recovery problem can be defined as

ΣΣΣ
∗ =argmin

ΣΣΣ

Nt

∑
i=1

ρ

∑
ℓ=1
||S̃iℓ−PT

ℓ ΣΣΣiPℓ||2F

+ τ

Nt

∑
i=1

Tr(ΣΣΣi)

s.t. rank(R3(ΣΣΣ)) = r and ΣΣΣi ∈ S++∀i,

(83)

where R3(·) : RNλ×Nλ×Nt → RNt×(Nλ ·Nλ ) is a function that takes a third-order tensor as input and

outputs a two-order tensor, commonly know as the unfolding 3-mode (Rabanser et al., 2017). Note
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that forcing low-rank approximations in the unfolding 3-mode of the tensor promotes reconstruc-

tions with high temporal correlation. As (83) is non-convex due to the rank restriction, it can be

rewritten in a convex unconstrained form given by

ΣΣΣ
∗ =argmin

ΣΣΣ

Nt

∑
i=1

ρ

∑
ℓ=1
∥S̃iℓ−PT

ℓ ΣΣΣiPℓ∥2
F

+ τ

Nt

∑
i=1

Tr(ΣΣΣi)+µ∥R3(ΣΣΣ)∥∗+
Nt

∑
i=1

ιS(ΣΣΣi),

(84)

where ιS is the indicator function for the set of positive semidefinite matrices, µ is a regularization

parameter, and ∥.∥∗ is the nuclear norm. Problem (84) can be seen as the sum of a differentiable

convex term

f (ΣΣΣ) =
Nt

∑
i=1

ρ

∑
ℓ=1
∥S̃iℓ−PT

ℓ ΣΣΣiPℓ∥2
F + τ

Nt

∑
i=1

Tr(ΣΣΣi), (85)

and a convex non differentiable term

g(ΣΣΣ) =µ∥R3(ΣΣΣ)∥∗+
Nt

∑
i=1

ιS(ΣΣΣi). (86)

Problem (84) is solved using a proximal gradient method, that implies estimated the gradient of

(85) and the proximal operator of (86). Specifically, the gradient and the proximal operator are

defined as

∇ f (ΣΣΣ) =
Nt

∑
i=1

ρ

∑
ℓ=1

Pℓ(S̃iℓ−PT
ℓ ΣΣΣiPℓ)PT

ℓ + τNI, (87)

and

Pg(ΣΣΣ) = (ΣΣΣ∗+ΣΣΣS)/2. (88)
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where τN = Nt × τ , λk is the learning rate, ΣΣΣ∗ and ΣΣΣS are the nuclear norm and the positive-

semidefinite proximal operator outputs, respectively. Specifically, these two operators can be de-

fined as ΣΣΣ∗ = P∗(R3(ΣΣΣ)) and ΣΣΣS = PS({ΣΣΣi}Nt
1 )), where

P∗(X) = Us(ΛΛΛ)VT , (89)

and

PS(X) = W(Λ̃ΛΛ)+WT , (90)

with X = UΛΛΛVT is the singular value decomposition, s(.) is the soft threshold operator (Cai et al.,

2010; Gelvez and Arguello, 2021), X = WΛ̃ΛΛWT is the eigenvalue decomposition and (Λ̃ΛΛ)+ is the

nonnegative part of ΛΛΛ (Bioucas-Dias et al., 2014). Note that the proximal Pg can be expressed as

the average of the individual proximal (89) and (90) because g()̇ is the average of the two convex

terms (Parikh and Boyd, 2013). Finally, the update step for the proximal gradient method is given

by (Beck, 2017)

ΣΣΣ
k+1 = Pg(ΣΣΣ

k−λk∇ f (ΣΣΣk)) (91)

The proximal gradient algorithm is compiled as follows
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Algorithm 4.1 Proximal gradient algorithm

1: ΣΣΣ
0,τ,λ0

2: while stopping criteria is not satisfied do

3: pick λk > 0 ▷ Armijo search

4: ΣΣΣ
k+1← ΣΣΣ

k−λk∇ f (ΣΣΣk)

5: ΣΣΣ
k+1← Pg(ΣΣΣ

k+1)

6: end while

Algorithm 4.1 is summarized in four main steps. First, initializations for the covariance

matrices ΣΣΣ, regularizer τ , learning rate λ are set. In line 3, the learning rate λk is updated based

on the Armijo search(Iusem, 2003), then, in line 4, the covariance matrix is updated following the

gradient. Finally, the result is updated using the proximal operator Pg.

The reconstruction of the spectral video is accomplished by pseudoinverse regularized by

the eigenvectors. This step is modeled as

F̃i j = Wi(PT
j Wi)

†Gi j, (92)

where Wi are the eigenvectors associated with the greatest eigenvalues of the covariance matrix

ΣΣΣi.

4.3. Simulations and Experimental validations

4.3.1. Simulations. Simulations used a spectral video of dimensions 512×480×

31 and 20 frames and the acquisition emulates a 2× 2 lenslet. The coded aperture spatial dis-
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tribution is generated following the process described in (Monsalve et al., 2022b) from a random

Gaussian pattern which generated 64 partitions ρ . The covariance matrix is reconstructed using the

proposed Algorithm 4.1 with hyperparameters τ = 0.001 and 100 iterations. We compare against

the results obtained by using the uncorrelated covariance temporal algorithm proposed in (Mon-

salve et al., 2022b)(termed as CoCoS-Vi w/o temporal) and a PnP ADMM-based algorithm that

reconstructs the video without computing the covariance matrix(Yuan et al., 2020); for that, the

CM for the PnP algorithm is computed directly from the recovered video. Fig. 33 illustrates five

reconstructed CM for frames {1, 10, 15, and 20} for the proposed algorithm and the two state-of-

the-art algorithms. Each covariance matrix image contains the normalized mean squared error as

a title for numerical comparison. Note that the proposed algorithm achieves an NMSE around one

and a half order of magnitude less than the PnP-ADMM-based algorithm and almost half of the

obtained with the CoCoS-Vi w/o temporal.

The spectral video is also reconstructed and the performance is evaluated using Peak Signal-

to-Noise Ratio (PSNR), structural similarity index measure (SSIM) and Spectral Angle Map-

per(SAM) metrics. Fig. 34 shows the box plot for the 3 metrics. Note that the proposed method

outperforms both state-of-the-art algorithms in average for all the metrics. The low variance of

the results in the PnP-ADMM-based algorithm can be the result of the over-smoothing applied

to the statistical behavior shown in the covariance matrix estimation. Additionally, the proposed

method requires around 0.43 seconds to reconstruct each frame in contrast to 163 seconds of the

PnP-ADMM-based method, which is a speedup of 379x.
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Figure 33. Five selected recovered spectral covariance matrices for the frames {1,5,10,15,20}.
Here, for the PnP-ADMM approach, the covariance matrix is calculated directly from the
reconstructed datacube. The NMSE metric is used to measure the CM reconstruction, defined as
ξ = ∥ΣΣΣi− Σ̃ΣΣi∥F/∥ΣΣΣi∥F .

4.3.2. CoCoS-Vi testbed. We built a testbed in our laboratory to demonstrate the

validity of the proposed ideas, through a proof-of-concept prototype, as shown in Fig. 35. This

prototype uses a matched achromatic doublet pair relay lens (Lens 4) (Thorlabs MAP10100100-

A, f 1 = 100.0mm, f 2 = 100.0mm) as an objective lens to propagate the incoming wavefront

through a lenslet array (38.1mm focal length, Edmunds 63-230, 46×46mm Lenslet Array, 4×3mm

Lenslets). Then the lenslet array and the doublet lens located in tandem generate multi-views of
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Figure 34. Numerical comparison of the spectral video reconstruction quality; PnP represents the
results for the PnP-ADMM based algorithm, Cw/oT represents the results for the algorithm
proposed in (Monsalve et al., 2022b) and CT is the proposed CoCos-Vi methodology.

the scene to image it by a Navitar lens (Lens 1) (12mm Fixed Focal Length, MVL12M23 - 12mm

EFL, f/1.4) to their back focal length. Following, a matched achromatic doublet pair lens (Lens

2) (Thorlabs MAP105050-A, f 1 = 50.0mm, f 2 = 50.0mm) propagates and images a magnificate

multi-view scene version onto the image plane of a matched achromatic doublet pair lens (Lens

3) (Thorlabs MAP105050-A, f 1 = 50.0mm, f 2 = 50.0mm) to propagate the incoming wavefront

through a beam splitter until to a matched achromatic doublet pair relay lens (Lens 4) (Thorlabs

MAP10100100-A, f 1 = 100.0mm, f 2 = 100.0mm). Lens 4 transmits the wavefront through a dou-

ble Amici prism coupled to a rotation mount (Thorlabs CRM1P, 30mm cage rotation mount, Ø1")

to image a dispersed version of the scene onto the digital micromirror device (DMD, Texas In-

struments, D4120). Taking advantage of the DMD’s mirror surface, the now dispersed-modulated

wavefront is returned through to the prism until lens 4, where the prism undoes the dispersion

effect. The resulting dispersed-coded-dispersed wavefront propagates through BS until a mounted

achromatic doublets lens (Lens 5) (100mm Focal length, Thorlabs AC254-100-A-ML - ARC: 400-
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Figure 35. (Upper row) CoCoS-Vi optical setup. (Bottom row, left column) CoCoS-Vi
compressed raw measurements for Chicken video in the first frame and (Bottom row, right
column) RGB reference acquired with a commercial camera.
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700 nm). Finally, this lens focuses the dispersed-coded-dispersed wavefront onto the sensor.

4.3.3. Experimental results. The experiments evaluate one target scene named

Chicken, for which and array of 2×2 lenslet were used. The raw compressive projections exhibit

Figure 36. Four selected spectral bands and the RGB composite from the reconstruction
.



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 125

a spatial resolution of 151×196 pixels with Nλ = 15 spectral bands ranging from 490 to 650 nm

and a total of 20 frames. The coded aperture spatial distribution is generated following the process

described in (Monsalve et al., 2022b) from a random binary pattern which generated 16 partitions

ρ . The raw measurements for the frame 1 and 20 are shown in Fig. 35(bottom row)).

Figure 37. Five selected reconstructed frames in an RGB composite for (left column)
PnP-ADMM, (middle column) CoCoS-Vi w/o temporal, and (right column) CoCoS-Vi w
temporal.



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 126

Figure 38. Five selected recovered spectral covariance matrices for the frames {1,5,10,15,20}, see
Fig. 37. Here, for the PnP-ADMM approach, the covariance matrix is calculated directly from the
reconstructed datacube.

.

These measurements were processed by the proximal gradient algorithm 4.1 with the hy-

perparameters τ = 0.001 and 90 iterations and the video frames are reconstructed using (92) with

4 eigenvectors associated with the 4 largest eigenvalues. All simulations were conducted using

an Intel Core i7 3960X 3.30 GHz processor with 32 GB RAM memory and Matlab 2021.b . We

compare against the results obtained by using the CoCoS-Vi measurements with the uncorrelated

covariance temporal algorithm proposed in (Monsalve et al., 2022b) (termed as CoCoS-Vi w/o

termporal) and a PnP ADMM based algorithm that reconstruct the video without computing the

covariance matrix (Yuan et al., 2020). Figure 36 depicts four out of the 15 representative re-
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constructed bands and a RGB composition. Notice that the spatial reconstruction achieve by the

"CoCoS-Vi w temporal" method is smoother than the obtained via "CoCoS-Vi w/o temporal" and

"PnP-ADDM", respectively. Finally, Fig. 38 illustrates five reconstructed spectral CM for the

frames shown in Fig. 36, Note that the reconstructed covariance matrices using PnP follows the

same over-smoothed behaviour shown in simulations section. The execution time for the whole

video reconstruction with 90 iterations in the PnP-ADMM, CoCoS-Vi w/o temporal, and CoCoS-

Vi w temporal approach were measured as 556.42, 1.4, and 2.4 seconds, respectively. Note that,

the CM-based approaches obtain a speedup of 397x (w/o temporal) and 231x (w temporal). This

implies that the proposed method achieves 8.3 reconstructed frames per second.

4.4. Conclusions

This chapter introduced a compressive optical system (CoCoS-Vi) along with a sensing pro-

tocol to estimate the scene spectro-temporal covariance matrix from a single compressed measure-

ment per frame. Further, the performance of the proposed sensing protocol is confirmed through a

proof-of-concept implementation, which confirmed that the proposal represents an efficient alter-

native to estimate directly the CM. We validated that using a temporal correlation in the covariance

improves the reconstruction of the spectral video without compromising the computational com-

plexity. Additionally, the CM-based reconstruction methodology achieved an speed up of 231x

against a traditional PnP-ADMMM algorithm.
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5. Application of Covariance Matrix Recovery to Land Cover Estimation using Deep

Learning. A Case Study at Valle de San José

This chapter addresses the fourth and fifth objective of the thesis:

• To adapt a state-of-the-art algorithm to estimate the vegetation cover using sample statistics

and random low-dimensional projections of hyperspectral images based on the proposed

approach

• To verify the performance of the adapted algorithm comparing the accuracy in vegetation

cover estimation with state-of-the-art algorithms

5.1. Introduction

This chapter validates the proposed CCS recovery approach with a land cover classification

scheme involving four components: (i) using the compressed SI modeling described in Chapter 2,

(ii) the SI fast low-rank approximation based on the CCS technique also described in Chapter 2

(iii) the feature extractor learning, training a deep-learning model with several SI publicly available

datasets, and (iv) the classification step, taking advantage of the support vector machine to classify

with a few in-situ acquired samples. The proposed classification scheme is evaluated as a case

study at Valle de San José in Santander, Colombia, considering the crop variety of the region

and ease of access to the rural areas. Specifically, a set of SIs acquired with the Sentinel 2B

satellite were employed for the compressive acquisition simulation. Further, the computational

simulations were performed using a fast reconstruction from the estimated CV. The experiments
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section analyzes the obtained accuracy when varying the compression ratio, showing that the CCS-

based classification performs comparably to the classification using full data, while using a lower

computational load.

5.2. Spectral Images Acquisition Details

This section describes the spectral image (SI) acquisition and pre-processing in the studio

area, including details of the visit to the rural region and the analyzed classes.

5.2.1. Area of studio. The studio was conducted in Valle de San Jose, Santander,

Colombia, presenting a mountainous geography characterized by the cultivation of coffee, sugar

cane, and cattle pastures, coffee being the most significant crop with the highest presence. Fig-

ure 39 shows an RGB image of the selected region, centered on the WGS84 geographic coordinates

of 6o 590 1300 N, 73o 400 6200 W.

The referenced image was acquired on September 10, 2022, using the Sentinel-2 VNIR

sensor (Dechoz et al., 2015). For the study, we selected a subregion of 440 × 680 spatial pixels

and 10 spectral channels covering the 490 nm to 2190 nm spectral range. Originally, the spatial

resolution is of 10m for the 2,3,4 and 8 spectral channels; and 20m for the 5,6,7,11, and 12 spectral

channels. Nonetheless, the spatial resolution was adjusted at 10m for all channels by sub-sampling

the latter channels.

5.2.2. Definition of the Classes. The identification of the predominant classes was

carried out by means of a visit in-situ in the area of the studio, analyzing the ground truth of the

vegetation at some specific locations to create a land-cover inventory. In particular, the region

contains a large agricultural area, mostly corresponding to coffee crops, followed by sugar cane,
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Figure 39. Visualization of the studio area located at 6o 590 1300 N, 73o 400 6200 W in Valle de
San José, Santander, Colombia. The red line boxes the entire municipality. The yellow box limits
the observed region, covering a mountainous area with agricultural vegetation.
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cocoa, and pastures. Hence, we define the following five classes:

1. Coffee crops and trees class.

2. Agricultural vegetation class, excluding coffee.

3. Bare soil class, land preparation for future crops.

4. Urban areas class.

5. Water class.

Figure 40 shows the visit to the region and the geo-reference process of the selected classes and

areas, by taking control points with a sub-meter GPS and photographs to identify the pixels in the

Sentinel-2b SI. Through this visit, around 500 pixels per class were identified in the satellite image

using the captured GPS points on-site.

Figure 41 shows some locations of the pixels whose spectral signatures were extracted for

the training and testing process for each defined land-cover class. There, notice the high similarities

between the spectral response of the defined classes, indicating that the classification of such image

is a challenging task.

5.3. Proposed Classification Method

This section describes the mathematical details of the proposed scheme to perform the semi-

supervised land cover classification based on compressive covariance sensing ( CCS) involving

four components: (i) The modeling of the SI compressed version. (ii) The low-rank approximation

of the SI based on CCS. (iii) The learning of a feature extractor with a convolutional neural network
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a) Urban class                                          b) Coffee crops

c) Agricultural vegetation                         d) Bare soil

Figure 40. Visit in Valle de San José, taking the control checkpoints of the selected classes and
areas.

(CNN) model. And (iv) a support vector machine (SVM) classifier. Each component is detailed in

the following subsections.

5.3.1. Compressive Spectral Imaging. Let F ∈ Rl×n, denote the matrix form of a

SI with l spectral bands and n spatial pixels. The acquisition of a compressed version Y ∈ Rm×n,

with m≪ n can be modelled by the following CSI forward model

Y = PT F+N, (93)
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where P∈Rl×m denotes a random projection matrix, and N∈Rm×n models acquisition noise(Monsalve

et al., 2022b,a).

5.3.2. Compressive Covariance Sensing Recovery. Given the compressed SI,

CCS recovers the complete SI based on the CM, reducing the computational load of traditional

CSI reconstruction algorithms. Nonetheless, in most cases the CM S is unknown and must be

estimated from Y. Therefore, this work is based on the fast CM estimation approach presented

in (Monsalve et al., 2022b, 2021), which demonstrated that splitting the signal F into p disjoint

subsets Fi ∈ Rl×n/p and projecting them onto different subspaces Pi ∈ Rl×m allows to accurately

estimate the CM S from compressed measurements by solving the optimization problem in (58)

After estimating the CM S, a low-rank approximation of the SI is computed via the follow-

ing preconditioned pseudo inverse problem

F̃ = (PT W)†Y, (94)

where F̃ ∈ Rk×n denotes the SI low-rank approximation with the first k PCA coefficients, and W

is a matrix containing the first k eigenvectors of S(Fowler, 2009).

5.3.3. Feature Extractor Learning using a Convolutional Neural Network .

The architecture of a CNN usually compresses the input into a latent space before applying a

dense layer with a softmax to assign a class to the input. Literature on self-supervised learning has

shown that such learned latent space can act as a descriptor or feature extractor where the model

is fine-tuned for a specific task, useful in classification tasks with few available samples, as is our
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case with few images captured in the area of the studio(Zhai et al., 2019; Hendrycks et al., 2019).

Unlike traditional pixel-wise classification approaches operating over single pixels, the

proposed scheme learns the latent space using a patch-based classification approach, which ex-

tracts and labels spatial patches of the image, promoting spatial priors and smooth classifica-

tions (Makantasis et al., 2015). The used CNN architecture consists of two convolutional layers

and two dense layers, a simple architecture for fast and accurate SI classification with few train-

able parameters. Notice that the input of the CNN corresponds to the first PCA coefficients of each

spatial patch, given the low-rank approximation estimated in the previous component, resulting in

a reduction of the computational complexity of the process.

5.3.4. Support Vector Machine Classifier. The fine-tuning removes the last layer

of the CNN model used to learn the feature extractor and trains the model with new classes and

data, taking advantage of the SVM generalization capabilities when dealing with a few sam-

ples (Tang, 2013). Additionally, the computational complexity is also reduced since only the SVM

needs to be trained using the latent projection of the signal generated by the CNN model.

Formally, let gθ : Rl −→ Rs be a CNN model whose last layer has been removed. Addition-

ally, let (fi,yi) be a labeled pair of data for training. The corresponding optimization problem for

the SVM is given by

min
u,b

1
2
∥u∥2 +C

N

∑
i=1

max(1− yi(uT gθ (fi)+b),0)2, (95)

where u contains the normal vectors to the hyperplane separating the classes (Tang, 2013).
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Figure 42 illustrates and summarizes the proposed scheme to perform the semi-supervised

land cover classification using CCS. In a), the input corresponds to compressed SI Y in (93). In

b), the CM is estimated by solving the problem in (58), and a low-rank approximation of the SI is

obtained using the matrix W containing the first k eigenvectors of the estimated CM S∗, following

the CCS solution in (94). Subsequently, in c), a patch-based classification CNN is used to learn a

latent space used as the feature extractor, where the CNN architecture consists of two convolutional

layers and two dense layers, trained with literature SI datasets covering various classes. Finally,

in d), an SVM replaces the last layer of the CNN to fine-tune the classification task over the few

samples acquired at Valle de San José using the training process according to the solution of (95).

5.4. RESULTS AND DISCUSSION

This section describes the experiments carried out to evaluate the performance of the pro-

posed land-cover classification scheme. Specifically, the classification scheme is used over sim-

ulated data to validate the effectiveness; and then is used to classify the acquired satellite image

with the defined classes in Valle de San José.

5.4.1. Experimental Setup. The experiments use four SI datasets. The Indian

Pines hyperspectral dataset, acquired by the AVIRIS sensor from the Northwestern Indian Pines

test site in June 1992 with 145× 145 spatial pixels and 200 spectral bands (Baumgardner et al.,

2015). The Pavia University and Pavia Center datasets, acquired by the Reflective Optics System

Imaging Spectrometer (ROSIS) sensor during a flight campaign over Pavia, Northern Italy with

610× 340 spatial pixels and 103 spectral bands (, GIC). And Salinas dataset, a high spatial reso-

lution image collected by the 224-band AVIRIS sensor over Salinas Valley with 512×217 spatial
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pixels (, GIC).

The performance of the proposed methodology is evaluated using four metrics. First, the

Average Accuracy (AA) computes the average accuracy for each class useful to evaluate unbal-

anced datasets. The overall accuracy (OA) measures the correct number of pixels across the

classes. The F1 score is used for the binary classification problems as a ratio between preci-

sion and recall, hence the F1 score is computed as the average of the F1 for each class. Finally,

kappa statistics is also used since it considers that assigning labels randomly has a certain degree of

accuracy, making this metric a robust way to measure classification performance (Hinojosa et al.,

2018b).

5.4.2. Feature Extractor Training. The training process to learn the feature ex-

tractor uses three of the four datasets, addressing a completely supervised training (University of

Pavia, Salinas, Indian Pines). The model is trained progressively using each dataset, applying a

PCA, and adjusting the model with the following corresponding classes.

For each dataset do:

• Apply PCA to obtain a dimensionality-reduced version using six components.

• Adjust the dense layer to match the number of classes in the dataset.

• Run 1000 iterations to retrain the feature extractor with the current classes.

The process is repeated until the model converges, no matter which image is used. The intuition

of this process is that the model can learn to extract characteristics of the spectral signatures inde-

pendently of the classes.
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5.4.3. Classification with Pavia Center dataset. The remaining dataset (Pavia

Center) is used for semi-supervised training using the SVM as the classification layer keeping the

CNN model weights fixed, used as the feature extractor. For the training, 100 pixels of each class

were used to fine-tune the CNN model and to train the SVM classifier in the experiments. This

experiment tests two scenarios, using full data with no compression other than the PCA dimen-

sionality reduction and applying a random compression on the data using the CCS approach as

described in Section 5.3 acquiring only 10% of the data.

Table 5 shows the results for different scenarios labeled as follows: using full data and

the CNN model with a dense layer and a Sigmoid activation as a classifier (CNN-full); using full

data and the CNN model with the SVM as a classifier (SVM-full); using compressed data and the

CNN model with a dense layer and a Sigmoid activation as a classifier (CNN-CCS); and using

compressed data and the CNN model with the SVM as a classifier (SVM-CCS).

There, it can be seen that the classification performance when using compressed versions

of the dataset achieves comparable results in terms of classification accuracy with those obtained

using full data. Furthermore, using the SVM achieves comparable or even improves the Kappa

metric and F1 score, indicating that the SVM approach provides a better classification agreement

and balance between the recall and precision metrics.

Figure 43 shows a visual comparison between the four evaluated scenarios. It can be seen

that the results of the compressed datasets are comparable to those obtained using full data, espe-

cially when the SVM classifier is used as visualized in the boxed region where the CNN scenario
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presents artifacts.

5.4.4. Experiments with Valle de San José data. The Valle de San José data was

compressed following equation (93) using 60% of the information. The classification results are

compared against the results obtained using full data. Figure 44 illustrates the obtained classifica-

tions over the real data, where using the compressed measurements achieves comparable results

with those obtained with full data. Since no ground truth is available, we present a qualitative

analysis of the predicted classes. Based on the knowledge of the zone and the visit in situ, we

observed a high correlation with the expected distribution of the classes. The (A) region in figure

44 corresponds to the location of the town which is correctly predicted. Region B corresponds

to bare soil, it is interesting that using the compressed measurements, the algorithm was able to

predict it correctly meanwhile, using full data misclassified it. Finally, region C was predicted as

water in both compressed measurements, but there is no water in that zone. Overall, using an SVM

with compressed data exhibits a better performance than using only a CNN model.

Model AA(%) OA(%) Kappa F1 score
CNN-Full 98.6±0.2 93.8±0.8 91.5±1 87.0±1.3
SVM- Full 98.6±0.2 93.8±0.9 91.5±1.3 86.7±1.8
CNN-CCS 98.5±0.4 93.3±1.8 90.6±2.5 85.2±2.4
SVM-CCS 98.6±0.1 93.8±0.8 91.3±1.1 85.8±1.1

Table 5
Classification quantitative results Pavia Center Image.
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5.5. Conclusions

This work presented a land cover classification scheme based on the compressive covariance

sensing technique. In particular, the classification scheme was developed to be used in a case study

over a region in Vallé de San José, Santander, Colombia. For this, we carried out a visit in-situ to the

region, analyzing the vegetation present at different locations and defining the predominant classes

to build a land cover inventory containing the corresponding spectral signatures. Furthermore,

we used a spectral image of the region acquired by the Sentinel-2 VNIR sensor to be used in the

classification. The developed classification scheme involves a deep-learning feature extractor and

a support vector machine classifier, considering the few observed samples of the different classes

of interest in the real study case. We conducted experiments over different configurations, showing

the effectiveness of the proposed classification scheme to discriminate the predominant classes in

the area of the studio and, more importantly, achieving a comparable performance of literature

methods using complete data at a reduced computational load.
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(a) Geographic location of the checkpoints per (b) P1 Coffee crop spectral signature 

(c) P2 Vegetation spectral signature

(e) P4 Urban spectral signature

(d) P3 Bare Soil spectral signature

(f) P5 River spectral signature

Figure 41. Average spectral response of the five land-cover classes defined in the present study.
(a) Location of the main areas where the pixels can be found on the Sentinel-2 image (10 m). (b)
Coffee crop, P1. (c) Agricultural vegetation without coffee, P2. (d) Bare soil, P3. (e) Urban areas,
P4., and (f ) River, P5.
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Figure 42. Schematic representation of the semisupervised patch-based classification approach
from compressed measurements. a) The input consists of a compressed spectral image. b) The
low-rank approximation with just k principal components, estimated following the compressive
covariance sensing technique. c) The convolutional neural network (CNN) model architecture is
used to learn the feature extractor. d) The support vector machine classifier replaces the CNN
model’s last layer to classify the few samples at Valle de San José.
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Figure 43. Visual comparison of the classification results. Note that the black regions are
unlabeled zones hence, it was masked out in the results for interpretability
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Figure 44. Visual comparison of the results obtained using the data from valle de san josé



COMPRESSIVE SENSING SAMPLE STATISTICS ESTIMATION 144

6. Conclusions

This dissertation proposed a framework to improve compressive spectral imaging applica-

tions using the first and second statistical moments. This framework includes the estimation of the

mean and covariance matrix (CM), its use in the acquisition process, an extension to be applied in

a spectral video setup along with an optical architecture for this purpose, and finally, an application

to land cover estimation using deep learning and the recovered covariance.

The hypothesis of this dissertation was: The first and second sample statistical moments

of a dataset can be accurately estimated directly from low-dimensional random projections and

they can be used to improve the reconstruction of the high dimensional data using compressive

spectral imaging and principal component analysis based techniques. Chapters 2 to 5 introduced

4 algorithms and its respective experimental validations that provide sufficient evidence to support

that the hypothesis is true.

Chapter 2 introduced an algorithm to design the sensing matrix in compressive spectral

imaging using the covariance matrix. The algorithm uses a greedy strategy to maximize the vari-

ance of the projected signal in the resulting binary subspace. This chapter proved that by max-

imizing the variance retained by a few binary vectors, the reconstruction performance improves

up to 3 dB in terms of PSNR compared to random matrices. Additionally, the proposed approach

preserves the variance of the compressed data in a better way than other methods, such as Q-PCA.

However, the CM must be known either as priori information or by estimating it in a addaptive

manner.
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Therefore, Chapter 3 proposed a fast algorithm to recover a low-rank approximation of the

CM. This algorithm used the idea that the interception of multiple approximations in different sub-

spaces improves the reconstruction. The algorithm is based on a projected gradient method and

used an Armijo search strategy to speed up the convergence. This chapter also presented theoret-

ical convergence guarantees and error analysis. The algorithm was tested using binary, normally

distributed, and uniformly distributed matrices achieving the best performance with normally dis-

tributed matrices. The algorithm performance was tested against two state-of-the-art algorithms

achieving better results in most scenarios and faster convergence in terms of computing time. For

the CPPCA algorithm, the proposed algorithm achieved up to 2 orders of magnitude of improve-

ment in terms of MSE but is one order of magnitude slower. In the case of SpeCA the proposed

method was up to one order of magnitude faster but achieved comparable results in terms of MSE.

This Chapter also presented a novel optical architecture that can capture the structured measure-

ments that were designed theoretically, validating the theoretical findings.

Motivated by the previous chapter’s findings, Chapter 4 proposed an extension of the algo-

rithm to take advantage of the temporal correlation allowing to use of it in a spectral video setup.

The temporal correlation was exploited by adding a low-rank restriction in the temporal dimension.

However, the multishot approach used in the last chapter is infeasible in the video; hence, Chap-

ter 4 also proposed a new optical architecture that captures multiple random projections using a

lens-let array. The validation was performed in the optical laboratory achieving up to two orders of

magnitude of improvement in terms of NMSE and a speedup of 231x in comparison to an ADMM

algorithm. This speedup enabled to use of the proposed algorithm in a real-time scenario achieving
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up to 8.3 reconstructed frames per second.

Chapters 3 and 4 proved that the proposed algorithms behaves well in terms of MSE and

PSNR. However, to fully validate the algorithm it must be tested in a higher level task such as clas-

sification. To this end, Chapter 5 used the algorithm from Chapter 3 to reconstrcut spectral images

from satellital platforms and perform a land cover estimation task. This was achieved by using

an state-of-the-art classification algorithm based on deep learning using the reconstructed data.

The results showed that the classification using compressed measurements achieved comparable

results to those obtained using full data and in some scenarios achieving the same performance. In

general, the proposed framework supports the hypothesis of the dissertation and demonstrates its

potential for improving compressive spectral imaging applications.
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Appendices

Appendix . Appendix for Sensing Matrix Design using the Signal Covariance Matrix

Deflate Covariance Matrix

In Algorithm 2.1 the covariance matrix ΣΣΣ is deflated by using the expression

ΣΣΣ j+1← ΣΣΣ j−ΣΣΣ jP−PΣΣΣ j +PΣΣΣ jP, (96)

where P = qqT/||q||2 is a symmetric matrix. To proof that the influence of q in ΣΣΣ is removed in

(96), first define P⊥ = (I−P) as the projection matrix for the orthogonal complement of span(P).

Thus, the orthogonal projection of a set of vectors F = [f1, · · · , fn] onto the subspace spanned by

P⊥ is given by

FP⊥ = (I−P)F. (97)

Then, the covariance matrix of the projected data, which can be estimated as

ΣΣΣP⊥ =
1
n

FP⊥FT
P⊥ =

1
n
(I−P)FFT (I−P) (98)

yields to

ΣΣΣP⊥ = (I−P)ΣΣΣ(I−P) = ΣΣΣ−ΣΣΣP−PΣΣΣ+PΣΣΣP, (99)
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after replacing ΣΣΣ = FFT/n. Thus, (99) is a closed-form for the covariance matrix of the orthogonal

projection of the data. Additionally, it is easy to see that qT ΣΣΣP⊥q = qT ΣΣΣq− qT ΣΣΣq− qT ΣΣΣq+

qT ΣΣΣq = 0.

Complexity of Algorithm 2.1

The computational complexity involved in the calculation of the product c =
qT

j
||q j||Σ

ΣΣ
q j
||q j|| , in

Line 8 of Algorithm 2.1 has time-complexity of O(l2). To reduce its complexity, the result from

the previous iteration is taken into account. Specifically, define q j = q1:k−1
j +qk

j as the vector in

the kth iteration, where q j has k ones, q1:k−1
j has k−1 ones in the positions selected in the previous

k− 1 iterations, and qk
j has a single one in a position being evaluated. Then, in the kth iteration,

this product can be calculated as

ck = (q1:k−1
j +qk

j)
T

ΣΣΣ(q1:k−1
j +qk

j) = ck−1 +2(q1:k−1
j )T

ΣΣΣqk
j +(qk

j)
T

ΣΣΣqk
j. (100)

Let q1:k−1
j = [q1,q2, · · · ,ql], qk

j = [0,0, · · · ,ek, · · · ,0,0] with ek = 1 and Σr
j the elements of the

matrix ΣΣΣ. Then, the product qT
j ΣΣΣq j can be written as

qT
j ΣΣΣq j =

l

∑
r=1

er

l

∑
j=1

q jΣ
r
j =

l

∑
j=1

q jΣ
k
j, (101)

where the equality comes from the fact that, the term on the left-side is different from zero only

when r = k. This latter product demands time-complexity O(l). Finally, the value of c is computed

as c = (1/k)ck, since ck = qT
j ΣΣΣq j and the vector q j has not been normalized. Additionally, note
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that the product in (101) is computed inside three for-loops, the first one iterates l times in the

worst case, the second one performs l/m̃ iterations and the last one spends l iterations; resulting in

a computational complexity of O(l3).

Convergence of Algorithm 2.1

Note that the cost function f (q) = qT ΣΣΣq, defined in (36), is in the feasible set of

λmax(ΣΣΣ) = max
w∈Rl ,||w||=1

wT
i ΣΣΣwi (102)

which is bounded (Strang, 2005). Additionally, since Algorithm 2.1 is a greedy-search-based

strategy, ck > ck−1, where ck is the value of the function f (q) at the kth iteration. Then, since (36)

is bounded and it increases in every iteration, it converges to a local optimum. Note that it holds,

only if ||q||= 1, hence the restriction qk
j ∈ {0,1/

√
b j} is required.

Proof of theorem 1: Restricted Isometry Property for the Eigenvectors

Let f = [ f1, f2, · · · , fl]
T ∈ Rl be an arbitrary pixel of the image such that f = Wθθθ , with W

being an orthonormal matrix with the eigenvectors of the covariance matrix ΣΣΣ as columns and θθθ a

sparse vector with the PCA coefficients. Without loss of generality, assuming E(f) = 0,

E
(
||θθθ ||22

)
= E

(
fT WWT f

)
= E

(
fT f
)
= E

(
l

∑
r=1

f 2
r

)

=
l

∑
r=1

E
(

f 2
r
)
=

l

∑
r=1

var( fr) = trace(ΣΣΣ) =
l

∑
r=1

λr,

(103)

with ΣΣΣ being the covariance matrix of the signal, E(·) the expected value, and λr an eigenvalue

such that λ1 ≥ λ2 ≥ ·· · ≥ λr ≥ ·· · ≥ λl ≥ 0. Recall that the RIP measures the behavior of a matrix
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as an orthonormal system, when sparse combinations are used (Candes and Tao, 2005). Thus, let

Wm ∈ Rl×m be a matrix composed by m eigenvectors associated with the m largest eigenvalues of

the covariance matrix. If Wm = [w1, · · · ,wm] is used as the sensing matrix, then

y = WT
mf = WT

mWθθθ = Aθθθ (104)

with A = WT
mW = [I,0] ∈ Rm×l . Additionally, define L = {1, · · · , l} as the set of indices

for the columns of the sensing matrix A = [a1, · · · ,al]. Then, let AP be a sub-matrix of A with

columns described by indices P = P1 ∪ P2 ⊂ L with P1 ⊆ {1, · · · ,m} and P2 ⊆ {m + 1, · · · , l},

cardinality |P| ≤m, and θθθ P a vector with coefficients in the positions given by P. The norm of the

measurements is then calculated as

E(||APθθθ P||22) = E(||θθθ P1||
2
2) = E(||WT

P1
f||22) = E(fT WP1WT

P1
f) = E(∑

i∈P1

(wT
i f)2)

= ∑
i∈P1

E((wT
i f)2) = ∑

i∈P1

var(wT
i f) = trace(WT

P1
ΣΣΣWP1) = trace(ΛΛΛP1) = ∑

i∈P1

λi.

(105)

Note that AP is a subset of columns of a identity matrix, ΣΣΣ = WΛΛΛWT , and ΛΛΛ is a diagonal matrix

with the eigenvalues of the covariance matrix. Further, from (103) it can be concluded that

E(||θθθ P||22) = ∑
i∈P

λi = ∑
i∈P1

λi + ∑
i′∈P2

λi′. (106)
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Then, replacing (106) in (105)

E(||APθθθ P||22) = E(||θθθ P||22)− ∑
i′∈P2

λi′ = E(||θθθ P||22)
(

1− ∑i′∈P2 λi′

E(||θθθ P||22)

)
= E(||θθθ P||22)

(
1− ∑i∈P2 λi

∑i∈P1 λi +∑i′∈P2 λi′

)
.

(107)

Taking into account that ∑i′∈P2 λ(m+1) = |P2|λ(m+1) ≥ ∑i′∈P2 λi′ , then

E(||APθθθ P||22)≥ E(||θθθ P||22)
(

1−
|P2|λ(m+1)

∑i∈P1 λi +∑i′∈P2 λi′

)
. (108)

Then, δm = |P2|λm+1/(∑i∈P1 λi +∑i′∈P2 λi′). Since in natural scenes most of the information is

usually kept by some of the first eigenvectors, ∑i∈P1 λi≫ |P2|λm+1, thus 0 < δm≪ 1, and the result

holds.

Proof of corollary 1.1 Restricted Isometry Property for Arbitrary Matrices

Recall that the sensing problem is given by QT f = QT Wθθθ = Aθθθ , where

A =



qT
1 w1 qT

1 w2 . . . qT
1 wl

qT
2 w1 qT

2 w2 . . . qT
2 wl

...
... . . . ...

qT
mw1 qT

mw2 . . . qT
mwl


=



a1
1 a1

2 a1
3 . . . a1

l

a2
1 a2

2 a2
3 . . . a2

l

...
...

... . . . ...

am
1 am

2 am
3 . . . am

l


. (109)
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Then, the norm is given by

E(||APθθθ P||22) = E(||QT WPθθθ P||22) = E(θθθ T
PWT

PQQT WPθθθ P) = E(
m

∑
i=1

(qT
i WPθθθ P)

2)

=
m

∑
i=1

E((qT
i WPθθθ P)

2) =
m

∑
i=1

var((qT
i WPθθθ P)) = trace(QT WPΛΛΛPWT

PQ).

(110)

By replacing A = QT WP, (110) becomes

trace(APΛΛΛPAT
P) = ∑

k∈P
λk

m

∑
i=1

(ai
k)

2. (111)

From (111) it can be concluded that the norm of the vector changes if the sum of the squared

elements of the sensing matrix columns is different from 1. However, since the first eigenvalues

concentrate most of the variance, it is enough to guarantee that ∑
m
i=1(a

i
k)

2 = 1 holds just for the

first columns. Thus, the problem splits as

trace(APΛΛΛPAT
P) = ∑

k∈P
λk

m

∑
i=1

(ai
k)

2 = ∑
k∈P1

λk

m

∑
i=1

(ai
k)

2 + ∑
k′∈P2

λk′
m

∑
i=1

(ai
k′)

2. (112)

Then, defining βk = 1−∑
m
i=1(a

i
k)

2 and βk′ = 1−∑
m
i=1(a

i
k′)

2, leads to

E(||APθθθ P||22) = E(||θθθ P||22)− ∑
k∈P1

λkβk− ∑
k′∈P2

λk′βk′ = E(||θθθ P||22)
(

1− ∑k∈P1 λkβk +∑k′∈P2 λk′βk′

∑k∈P1 λk +∑k′∈P2 λk′

)
.

(113)
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Additionally, note that (−∑k∈P1 λkβk−∑k′∈P2 λk′βk′) can be either positive or negative. For the

case when it is positive, note that (113) becomes

E(||APθθθ P||22)≤ E(||θθθ P||22)+ ∑
k∈P1

λk|βk|+ ∑
k′∈P2

λk′|β ′k′|

= E(||θθθ P||22)
(

1+
∑k∈P1 λk|β |+∑k′∈P2 λk′|β ′k′|

∑k∈P1 λk +∑k′∈P2 λk′

)
,

(114)

for the case when (−∑k∈P1 λkβ −∑k′∈P2 λk′β
′
k′) is negative, (113) becomes

E(||APθθθ P||22)≥ E(||θθθ P||22)− ∑
k∈P1

λk|βk|− ∑
k′∈P2

λk′|β ′k′|

= E(||θθθ P||22)
(

1− ∑k∈P1 λk|βk|+∑k′∈P2 λk′|β ′k′|
∑k∈P1 λk +∑k′∈P2 λk′

) (115)

holds.

Note that (114) and (115) represent both sides of the RIP. Then, the RIP constant δm̃ is

defined as

δm̃ =
∑k∈P1 λk|βk|+∑k′∈P2 λk′|β ′k′|

∑k∈P1 λk +∑k′∈P2 λk′
. (116)
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Figure 45. Flowchart of Algorithm 2.1. The algorithm begins by initializing a zero-valued vector,
then estimates the best position for a one-value by seeking for the position where this entry
maximizes the objective function. This step is repeated until placing an additional one-value does
not increase the objective function or the transmittance restriction is satisfied.

Figure 46. Explained variance for binary and discrete (column-normalized) sensing matrices.
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Figure 47. Explained variance with different eigenvalue distributions. (Top-left) Eigenvalue
distribution for a random signal. (Top-right) Eigenvalue distribution for the Urban dataset.
(Bottom-left) Explained variance for a random signal using Standard PCA (red-solid line),
proposed without transmittance restriction (dash-dotted blue line), proposed with 1/8 of
transmittance (dotted green line), random (dot-dashed green line). (Bottom-right) Explained
variance for the Urban dataset.
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Appendix . Mathematical Proofs and Additional Algorithms

Proof: The expected value of the error term is zero.

The proposed method assumes the covariance matrix of each subset Xi is

Si = S+Ri, (117)

where Ri is the error of the subset covariance matrix estimate. Note that

S =
1
n

n

∑
j=1

x jxT
j =

1
n

(
∑

j1∈S1

x j1xT
j1 + ∑

j2∈S2

x j2xT
j2 + · · ·+ ∑

jp∈Sp

x jpxT
jp

)
, (118)

=
1
n
(X1XT

1 +X2XT
2 + · · ·+XpXT

p )

which yields to

S =
1
p
((S+R1)+(S+R2)+ · · ·+(S+Rp)) (119)

Computing the expectation in both sides yields to

E[S] =E[S]+
1
p
E[R1 +R2 + · · ·+Rp], (120)

which implies that E[R1+R2+ · · ·+Rp] = 0. Additionally, since Ri is a realization of the random

variable R and using the linearity independence of the expectation we have

0 = E[R1 +R2 + · · ·+Rp] = [E[R]+E[R]+ · · ·+E[R]] = pE[R], (121)
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which implies that E[R] = 0.

Proof of the lemma 3

Let us define Hi ≡ PiPT
i = [h1,h2, · · · ,hl], and define the matrix

Bi ≡HiRHi, (122)

where Hi is symmetric, and E[R] = 0 (proof in appendix 6). For simplicity, the i index of matrices

B and R is dropped. The expected value of the entries of the matrix Bk, j = hT
k Rh j is given by

E[hT
k Rh j] = E[tr(hT

k Rh j)] = = tr(E[Rh jhT
k )]. (123)

Additionally, the matrix h jhk is deterministic, and E[R] = 0, hence

E[hT
k Rh j] = 0. (124)

Proof of the Cramér-Rao Lower Bound for the estimator

The variance of the estimator is bounded by

var(Σ̃ΣΣ)≥ tr(I(ΣΣΣ)−1) (125)
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where I(ΣΣΣ) is the fisher information matrix. To compute I(ΣΣΣ) we observe that

S̃i =
n
p

YiYT
i , (126)

with n
p S̃i ∼W (PT

i ΣΣΣPi +ΣΣΣN ,n/p), and set r = n/p so that that each subset contains n/p samples.

The likelihood function is given by

f (S̃1, · · · , S̃p|ΣΣΣ) ∝

p

∏
i=1

1

|ΣΣΣN +PT
i ΣΣΣPi|

n
p
×
∣∣YiYT

i
∣∣ n

p−m× etr
{
−(ΣΣΣN +PT

i ΣΣΣPi)
−1(YiYT

i )
}
, (127)

where |.| stands for the determinant and etr{.} the exponential of the trace. Applying the logarithm

in both sides yields

F(S̃1, · · · , S̃p|ΣΣΣ) ∝
−n
p

p

∑
i=1

log |ΣΣΣN +PT
i ΣΣΣPi|+

(
n
p
−m)

p

∑
i=1

log |YiYT
i |−

p

∑
i=1

tr
(
(ΣΣΣN +PT

i ΣΣΣPi)
−1(YiYT

i )
)
,

(128)

where F(S̃1, · · · , S̃p|ΣΣΣ) = log f (S̃1, · · · , S̃p|ΣΣΣ). Differentiating twice with respect to σσσ = vec(ΣΣΣ)

yields

∂ 2F(S̃i|ΣΣΣ)
∂σσσ∂σσσT =

n
p

p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i +PiAT

i S̃AT
i PT

i ⊗PiAiPT
i −PiAT

i PT
i ⊗PiAiS̃AiPT

i ,

(129)
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with Ai = (ΣΣΣN +PT
i ΣΣΣPi)

−1. The fisher information matrix is computed by calculating the expec-

tation of (129) which yields to

I(ΣΣΣ) =
n
p

p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i . (130)

Note that, from (129) to (130) we used E
[
PiAT

i S̃AT
i PT

i ⊗PiAiPT
i
]
= n

pPiAT
i PT

i ⊗PiAiPT
i , since

Pi,Ai are deterministic matrices and E
[
S̃
]
= n

p(ΣΣΣN +PT
i ΣΣΣPi). Hence, the estimator variance of ΣΣΣ

is bounded by

var(Σ̃ΣΣ)≥ p
n

Tr

(
p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i

)−1

. (131)

Proof lemma 2

Given matrices Pi ∈ Rl×m and Ai ∈ Rm×m with m <= l it holds that

rank(PiAiPT
i ) = rank(PiAT

i PT
i )≤ m, (132)

using the fact that rank(C⊗D) = rank(C)rank(D) and rank(C+D) ≤ rank(C)+ rank(D), it can

be concluded that

rank

(
p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i

)
≤ m2 p. (133)

Hence, for fixed values of m and l the matrix

I(ΣΣΣ) =
p

∑
i=1

PiAT
i PT

i ⊗PiAiPT
i ∈ Rl2×l2

, (134)
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is singular if p < l2/m2.

Filtering reduces the variance of the error term

Note that, note that EB( f̂ (ΣΣΣ)i j) = f (ΣΣΣ)i j with σ f = var( f (ΣΣΣ)i j) = var(Bi, j) assuming that

the entries of B are i.i.d.; then averaging in k× k window yields to

EB
[
K∗∇ f̂ (ΣΣΣ)

]
i, j =

1
k2E

[
k/2

∑
ι ,ρ=−k/2

∇ f̂ (ΣΣΣ)i+ι , j+ρ

]
, (135)

with EB the expectation over B. Replacing (73) into (135)

E
[
K∗∇ f̂ (ΣΣΣ)

]
i, j =

1
k2 ∑

ι ,ρ

E
[
∇ f (ΣΣΣ)i+ι , j+ρ +Bi+ι , j−ρ

]
=

1
k2 ∑

ι ,ρ

∇ f (ΣΣΣ)i+ι , j+ρ .

[
K∗∇ f̂ (ΣΣΣ)

]
i j =

1
k2 ∑

ι ,ρ

∇ f (ΣΣΣ)i+ι , j+ρ +Bi+ι , j−ρ

(136)

The variance is

EB

[{(
K∗∇ f̂ (ΣΣΣ)

)
i, j−EB

[
K∗∇ f̂ (ΣΣΣ)

]
i, j

}2
]
= E

( 1
k2 ∑

ι ,ρ

Bi+ι , j−ρ

)2
=

σ f

k2 . (137)

Bound of the norm for the error term

Defining Hi = PiPT
i , the ℓ2 norm of the error term for a fixed i in lemma (1) is given by

∥HiRiHi∥2 ≤ σmax(Hi)∥RiHi∥2 ≤ σmax(Hi)
2∥Ri∥2. (138)
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From (10) we have that with probability at least 1−2exp(−t2l) it holds that ∥Ri∥ ≤ ε . Using this

fact, with high probability it holds

∥HiRiHi∥2 ≤ σmax(Hi)
2
ε ≤ σ

2
mε, (139)

with σm = max(σmax(H1)
2, . . . ,σmax(Hp)

2), using ||AAH ||2 = ||A||22 yields to

∥(HiRiHi)
2∥2 ≤ σ

4
mε

2, (140)

Additionally, using the triangle inequality and (139), yields to

∥∥∥∥∥ p

∑
i=1

(HiRiHi)
2

∥∥∥∥∥
2

≤ pσ
4
mε

2 = pσH , (141)

hence, the non-commutative Bernstein-type inequality(Tropp, 2011) establishes that for all

t ≥ 0

P

{∥∥∥∥∥ p

∑
i=1

HiRiHi

∥∥∥∥∥
2

≥ t

}
≤ 2l× e

−t2/2
p2σ2

H+σ2mεt/3 , (142)

with high probability. Equation (141) shows that the error term increases linearly with the

number of partitions, but additionally more partitions also increase the error term ε which increases

in a quadratic manner.

Experimental distribution of the error term
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Figure 48. Error term of the partition procedure given in (66). Top: Histogram of the error term
matrix entries. Bottom: Spatial distribution of the error term.

In order to validate it computationally this term (66) is computed. Figure 48-bottom shows

the spatial distribution of the error term for both images. Figure 48-top shows the histogram of the

error term values. It can be seen that the values are placed around zero and the sample mean is

−3.25e−5, −3.75e−6 for Pavia and Urban respectively.

Error term analysis

Additionally, to test the impact of the error term given in lemma 1, this term is computed

and subtracted from the gradient and the results shown in Fig. 49. Results show an important

improvement when the filtered gradient is used specially using uniform sensing matrices. Addi-

tionally, when the error term is computed (only for comparison purposes) the improvement is up
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to one order of magnitude, note that this is only possible if the covariance matrix is known be-

forehand; in the case of the Uniform matrices the simulations shows no improvement when the

error term is subtracted. However, the error always decrease using the filtered gradient and the im-

provement is larger when using Uniform matrices. Additionally, the stability of the reconstruction

appears to improve as well.

Noise analysis

Several simulations varying the noise level were performed to test how robust to noise the

proposed algorithm is. The Figure 50 shows the NMSE of the reconstructed covariance matrix

varying the SNR from 40 dB to 15 dB. It can be seen that the proposed algorithm outperforms all

methods when high levels of noise are present in the measurements. For instance, in the Gaus-

sian scenario, the NMSE does not vary that much even though the noise level increases. SpeCA

algorithm obtains better results using Gaussian matrices but only for low levels of noise.

Choosing regularizer parameter.

The optimal parameter should be chosen as τ = ρtrace(ΣΣΣ), where ρ ∈ [0,1] and depends

on the rank of the covariance matrix and variance of the noise. Since ΣΣΣ is unknown we used the

initialization S0 of the algorithm in order to approximate it as

S0 =
1
p

p

∑
i=1

(PT
i )

†S̃(Pi)
†, (143)

where † represents the Moore-Penrose pseudo-inverse. The figure 51 shows the NMSE of the

reconstructed covariance matrix by varying the ρ parameter for two levels of noise (30 dB, 20 dB).
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Figure 49. NMSE of the recovered covariance matrix when the filtered gradient is used. Dotted
green line represents the unfiltered gradient results. Blue solid lines with dot markers show the
results with filtered gradient. Red solid line presents the results of filtered gradient when the error
term (75) is subtracted in each gradient step.

It can be seen that the
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Figure 50. NMSE of the reconstructed covariance matrix by varying the noise levels for 8% of
compression ratio. Top: Results for Binary sensing matrices. Middle: Results for Gaussian
sensing matrices. Bottom: Results for Gaussian Uniform matrices

Convergence analysis

This section studies the convergence properties of the projected gradient Algorithm 3.1 to

solve (58). Consider the function ψ(ΣΣΣ) = Tr(ΣΣΣ) in (58), and let

g(ΣΣΣ) =
p

∑
i=1
||vec(S̃i)−Qivec(ΣΣΣ)||22 + τdT vec(ΣΣΣ), (144)
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Figure 51. NMSE of the reconstruction by varying the ρ parameter. Top: NMSE for Binary
matrices. Middle: NMSE for Gaussian matrices. Bottom: NMSE for Uniform matrices

be the vector formulation of (62), with Qi = PT
i ⊗PT

i , where ⊗ is the Kronecker product, vec(·)

denotes the operation that stacks the columns of a given matrix into a column vector, d = vec(I)

with I ∈ Rl×l the l× l identity matrix, and || · ||2 is the ℓ2 norm. Given that g(ΣΣΣ)≡ f (ΣΣΣ)(Bioucas-
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Dias et al., 2014b), the function g(ΣΣΣ) is considered instead of f (ΣΣΣ),

ΣΣΣ
∗ = argmin

ΣΣΣ∈Rl×l
g(ΣΣΣ)+h(ΣΣΣ), (145)

where h(ΣΣΣ) is an indicator function of the positive semi-definitive and Toeplitz set. For simplicity,

and taking into account that the function g(ΣΣΣ) vectorizes the input matrix, both g(ΣΣΣ) and g(σσσ) will

be used indistinctly, where σσσ = vec(ΣΣΣ) and s̃ = vec(S̃). Further, Fejér proved that sequence of

points generated by the projected gradient converges to a solution(Beck, 2017, Theorem 10.23).

Theorem 3 (Fejér monoticity theorem). Suppose that g(ΣΣΣ) and h(ΣΣΣ) are proper closed and convex

functions, additionally, dom(h(ΣΣΣ)) ⊆ int(dom(g(ΣΣΣ))) and g(ΣΣΣ) is L-smooth. Let {ΣΣΣk}k≥0 be the

sequence of points generated by the projected gradient algorithm. Then for any optimal point ΣΣΣ
∗

and k ≥ 0 it holds that

||ΣΣΣk+1−ΣΣΣ
∗|| ≤ ||ΣΣΣk−ΣΣΣ

∗||. (146)

It can be seen that (145) is convex and differentiable, thus the first assumption of theorem

3 is accomplished. Additionally, a function g is said to be L-smooth if it is differentiable and there

exists L > 0 such that ||∇g(x)−∇g(y)||2 ≤ L||x− y||2(Beck, 2017), for all x,y ∈ E, with E the

domain of the function g. Thus, for the function g(ΣΣΣ) defined in (144), the gradient is given by

∇g(x) = ∑
p
i=1 QT

i (Qix− s̃)+ τd. Plugging it in ||∇g(x)−∇g(y)||2 yields

∣∣∣∣∣
∣∣∣∣∣
(

p

∑
i=1

QT
i (Qix− s̃i)+ τd

)
−

(
p

∑
i=1

QT
i (Qiy− s̃i)+ τd

)∣∣∣∣∣
∣∣∣∣∣
2

, (147)
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and after some algebraic manipulations, (147) can be rewritten as

∣∣∣∣∣
∣∣∣∣∣ p

∑
i=1

(QT
i Qi)(x−y)

∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣ p

∑
i=1

(QT
i Qi)

∣∣∣∣∣
∣∣∣∣∣ ||x−y||2. (148)

This implies that L = ||∑p
i=1(Q

T
i Qi)||. Thus, it can be concluded that the sequence of points

generated by Algorithm 3.1 is Fejér monotone which guarantees convergence.

Incidence of the kernel size of the filtering gradient in the estimation accuracy

The kernel size in the filtering step affects the reconstruction accuracy since, as shown in

Fig. 27, no filtering of the gradient results in poor reconstruction in the eigenvectors associated

with the smallest recovered eigenvalues. On the other hand, an over-smoothed gradient can also

affect the reconstruction process. To select the correct kernel size k and variance σ , we perform

multiple simulations to show the error versus the variance of the Gaussian kernel. The kernel size

was chosen following k = 2⌈2σ⌉+1. From Fig. 52, it can be seen that the optimal variance value

is σ = 1.
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Figure 52. Reconstruction error by varying the variance and size of the Gaussian kernel. Note that
the kernel size was set to 2⌈2σ⌉+1.
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