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RESUMEN

TÍTULO: DISEÑO DE ALGORITMOS DE APRENDIZAJE PROFUNDO PARA IMÁGENES MÉDICAS EN

TAREAS DE DIÁGNOSTICO ASISTIDO POR COMPUTADOR *

AUTOR: KAREN YANETH SÁNCHEZ QUIROGA **

PALABRAS CLAVE: APRENDIZAJE PROFUNDO, IMÁGENES MÉDICAS, ADAPTACIÓN DE DOMINIO, &

DIAGNÓSTICO ASISTIDO POR COMPUTADOR.

DESCRIPCIÓN:

Esta tesis doctoral examina la aplicación de la inteligencia artificial, específicamente modelos de aprendizaje

profundo, en tareas de diagnóstico asistido por computadora (CAD) dentro de imágenes médicas. Si bien

los modelos de aprendizaje profundo han revolucionado el campo médico, siguen dependiendo de grandes

volúmenes de datos etiquetados, a menudo escasos y privados, y que varían entre los centros médicos. Esta tesis

explora los conceptos de "adaptación de dominio" y "aumento de datos generativos" para abordar el problema

de sobreajuste que surge de la falta de datos disponibles y afecta la precisión y generalización de los modelos. El

primero aprovecha el conocimiento de un dominio de origen etiquetado para mejorar el rendimiento del modelo

en un dominio de destino con datos limitados o sin datos etiquetados. El último se centra en la creación de datos

sintéticos para aumentar el conjunto de entrenamiento, mejorando la generalización y precisión del modelo.

En una contribución doble, esta tesis presenta primero un método para la selección inteligente, transformación

e incorporación de radiografías de tórax de un conjunto de datos públicos en una red neuronal para mejorar la

precisión de la clasificación de la neumonía. Este método mitiga los desafíos de trabajar con conjuntos de datos

* Tesis de doctorado

** Facultad de Ingenierías Fisicomecánicas. Escuela de Ingenierías Eléctrica, Electrónica y telecomunicaciones.
Director: Ph.D. Henry Arguello Fuentes. Co-Director: Ph.D Adrian Basarab.
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pequeños y variables entre diferentes hospitales. En segundo lugar, esta tesis presenta un método novedoso

para el aumento de datos generativos para mejorar la precisión de la segmentación de tumores hepáticos en

imágenes de resonancia magnética de múltiples contrastes. Al crear datos sintéticos para aumentar el conjunto

de entrenamiento, este método busca mejorar la precisión y confiabilidad de la segmentación de tumores, una

tarea vital para un diagnóstico preciso y una planificación del tratamiento. La investigación, desarrollada en

colaboración con múltiples instituciones académicas y de investigación, tiene como objetivo en última instancia

superar los desafíos en el análisis de imágenes médicas presentados por la escasez de datos etiquetados y

mejorar las tareas CAD en diversas aplicaciones médicas.
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ABSTRACT

TITLE: DEEP LEARNING ALGORITHMS DESIGN FOR MEDICAL IMAGING IN COMPUTER-AIDED DI-

AGNOSIS TASKS *

AUTHOR: KAREN YANETH SÁNCHEZ QUIROGA **

KEYWORDS: DEEP LEARNING; MEDICAL IMAGING, DOMAIN ADAPTATION, & COMPUTER-AIDED

DIAGNOSIS.

DESCRIPTION:

This Ph.D. thesis examines the application of artificial intelligence, specifically deep learning models, in

computer-aided diagnostic (CAD) tasks within medical imaging. While deep learning models have revolu-

tionized the medical field, they remain dependent on large volumes of labeled data, often scarce and private,

and that vary among medical centers. This thesis explores the concepts of “domain adaptation” and “genera-

tive data augmentation” to tackle the overfitting problem that arises from the lack of available data and affects

the accuracy and generalization of models. The former leverages knowledge from a labeled source domain to

improve the model’s performance in a target domain with limited or no labeled data. The latter focuses on

creating synthetic data to augment the training set, enhancing the model’s generalizability and accuracy. In

a two-pronged contribution, this thesis first presents a method for smart selection, transformation, and incor-

poration of chest X-rays from a public dataset into a neural network to improve the accuracy of pneumonia

classification. This method mitigates the challenges of working with small, varying data sets across different

hospitals. Secondly, this thesis introduces a novel method for generative data augmentation to enhance the

* Doctoral thesis

** Facultad de Ingenierías Fisicomecánicas. Escuela de Ingenierías Eléctrica, Electrónica y telecomunicaciones.
Advisor: Ph.D. Henry Arguello Fuentes. Co-Advisor: Ph.D. Adrian Basarab.
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accuracy of liver tumor segmentation in multi-contrast magnetic resonance images. By creating synthetic data

to augment the training set, this method seeks to improve the precision and reliability of tumor segmentation, a

vital task for accurate diagnosis and treatment planning. The research, developed in collaboration with multi-

ple academic and research institutions, ultimately aims to overcome the challenges in medical imaging analysis

presented by the scarcity of labeled data and enhance CAD tasks in various medical applications.
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1. Introduction

Medical imaging plays a crucial role in modern healthcare, providing valuable insights

into the human body and diagnosing multiple diseases. The rapid advancements in technology

have led to the emergence of artificial intelligence (AI) as a powerful tool in medical imaging,

particularly in computer-aided diagnosis (CAD) tasks. AI techniques, such as deep learning, have

shown promising results in analyzing medical images and assisting healthcare professionals in the

prediction, diagnosis, or treatment of diseases (Doi, 2007; Cheng et al., 2016).

Medical imaging analysis strategies include Gaussian mixture models, conditional random

fields, statistical atlases, logistic regression, nearest-neighbour methods, support vector machines,

random forests, recurrent neural networks, convolutional neural networks (CNNs), auto-encoders,

deep reinforcement learning, among others (Riaz et al., 2020; Erickson et al., 2017; El-Naqa et al.,

2002; Htay and Maung, 2018). The development of deep learning models has revolutionized the

medical imaging computing field, offering the capability to process large amounts of data with

high speed and extract complex characteristics not visible to the human eye. This progress has

established deep learning as the most effective tool for analyzing medical images in recent years

(Ravì et al., 2016). In a wide array of problem domains, ranging from image reconstruction to seg-

mentation and registration, the current state-of-the-art solutions are based on deep neural networks

(Abdeltawab et al., 2020; Esteva et al., 2017; Raman et al., 2019; Rahman et al., 2020; Hashmi

et al., 2020; Toğaçar et al., 2020).

However, healthcare-oriented deep learning models face several challenges (Shen et al.,
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2020; Lee et al., 2017). One significant obstacle is the accuracy of deep learning models depends

heavily on large amounts of labeled data. Medical data, however, is often scarce, isolated, and

private, and varies in appearance across different medical centers (Frid-Adar et al., 2018). This

challenge limits the generalization of models, causing overfitting problems to a particular data

domain source in medical imaging. For instance, a deep learning model trained on a large dataset

from one medical center may not maintain its accuracy when tested on a dataset from another

center, because of image distribution discrepancies (Choudhary et al., 2020).

In response to these challenges, this Ph.D. thesis proposes novel algorithms that leverage

domain adaptation (Sanchez et al., 2022, 2021a) and generative data augmentation techniques

(Sanchez et al., 2023a) to enhance the accuracy of CAD tasks in medical imaging. The first con-

tribution addresses the limitation of over-fitting to a particular data domain. A novel method for

smart selection, transformation, and incorporation of chest X-rays from a public dataset into a neu-

ral network system has been proposed (Sanchez et al., 2022). This method aims to improve the

accuracy of classifying pneumonia and normal X-rays from a small and private dataset acquired at

a clinical center located in a different continent.

The second contribution tackles the challenge of scarcity of labeled medical data. A novel

method for generative data augmentation has been proposed, specifically, to enhance the accuracy

of liver tumor segmentation in multi-contrast magnetic resonance images (Sanchez et al., 2023a).

By generating synthetic data to augment the training set, the proposed method aims to improve

the precision and reliability of tumor segmentation, which is a critical task for accurate diagnosis

and treatment planning. The proposed method in this contribution was among the 2021 Artificial
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Intelligence Data Challenge winners of the Radiology French Society SFR.

Furthermore, this thesis addresses the broader challenge of increasing the accuracy of com-

puter vision tasks in medical applications. It covers the segmentation and follow-up of chronic

ulcers in RGB photography (Sanchez et al., 2023b), the classification of skin lesions in RGB im-

ages (Calderón et al., 2021), and the classification of gastrointestinal anomalies in endoscopy pho-

tograms (Escobar et al., 2021). By exploring innovative approaches and algorithms, this research

aims to contribute to the advancement of AI in medical imaging, ultimately improving patient care

and outcomes.

In summary, this Ph.D. thesis focuses on leveraging domain adaptation and generative data

augmentation techniques to overcome the challenges posed by the lack of labeled medical images

and the heterogeneous nature of clinical data processing. It explores the impact of datasets size and

multi-contrast images on the classification problem in CAD tasks, including pneumonia classifi-

cation in chest X-rays and liver tumor segmentation in multi-contrast magnetic resonance images,

while also addressing various computer vision tasks in medical applications. The overarching aim

is to contribute to the refinement and enhancement of AI applications in healthcare.
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1.1. Background

For a comprehensive and detailed understanding of this research thesis, it is necessary to

address various integral subjects. These involve exploring medical imaging modalities, and tech-

niques in computer-aided diagnosis, becoming familiar with domain adaptation principles, and

data augmentation approaches in medical imaging. In the following sections, these aforemen-

tioned subjects, along with additional theoretical background, will be described. This will estab-

lish a conceptual framework to guide the subsequent discourse, evaluation, and analyses within

this thesis.

1.1.1. Medical Imaging Modalities. Medical imaging is the set of techniques and

processes used to create images of the human body, or parts of it, for clinical purposes. The health-

care area widely uses these techniques to diagnose and predict diseases and treatments. Usually,

a radiologist reviews the patient’s acquired medical images and writes a report with the findings.

Then, the receiving physician defines a diagnosis and treatment plan based on the images and the

radiologist’s report. Besides, these types of images are essential for surgical planning and real-time

monitoring of surgeries.

As shown in Fig. 1, according to the range of the electromagnetic spectrum used to illumi-

nate, the type of sensor, and the technology of the acquisition equipment, medical images can be

in various modalities. Each type of image is remarkable for specific applications; the modalities

used in this thesis (X-ray and Magnetic Resonance) are detailed below:

X-ray/Radiography: The earliest form of medical imaging was the radiograph or X-ray.
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Figure 1. Medical imaging modalities according to the electromagnetic spectrum.

Even with all the new complex imaging techniques available, radiography is still an invaluable

tool, particularly for imaging the skeleton. In radiography, the production of an image starts with

a high-voltage electric current which creates a stream of electrons that are fired at a metal plate.

The resulting interaction is the creation of X-rays which are collimated into a beam. This source

produces X-rays which are directed toward the desired object to be imaged, in this case, the pa-

tient. The X-ray could pass through the patient, be absorbed by the patient, and/or be attenuated

according to the density of each tissue and its respective atomic weights. The remaining X-rays

are acquired on a film or digital detector (DXR), as shown in Fig. 2 (Ahmad et al., 2014). De-

spite its limitation as a 2D image with only a spectrum of black to white, X-ray remains one of

the most helpful imaging techniques in clinical practice with the major advantages, disadvantages,
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and applications listed in Table 1.

Figure 2. X-ray from source to image. Source: (Ahmad et al., 2014).

Table 1
Radiography: applications, advantages, and disadvantages

Applications
Fractures; bone diseases; pneumonia; pulmonary edema;
intestinal obstructions; renal or gallblader stones.

Advantages Low cost; widely available; portable; bedside.
Disadvantages Radiation; limited color spectrum; 2D information.

Some applications of X-ray images, such as diagnosis of fractures, bone diseases, pneumo-

nia, pulmonary edema, intestinal obstruction, or Hirschsprung’s disease, are shown in Fig. 3.

Figure 3. Some applications of X-ray images. Source: Adapted from (Dai et al., 2023).

Magnetic Resonance Imaging (MRI): is a powerful and non-invasive imaging technique
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widely used in medical diagnosis and research. It provides detailed anatomical and functional in-

formation about the human body, enabling clinicians and researchers to visualize internal structures

with exceptional clarity and precision.

At its core, MRI relies on the principle of nuclear magnetic resonance (NMR), a phe-

nomenon observed in the 1940s. NMR occurs when atomic nuclei with an odd number of protons

or neutrons are exposed to a strong magnetic field and radiofrequency pulses. In response to these

stimuli, the nuclei align with the magnetic field and subsequently emit radiofrequency signals as

they return to their original state.

A computer processes the detected signals to construct highly detailed images of the body’s

internal structures. MRI can distinguish between different types of tissues based on variations

in the behavior of hydrogen atoms. For instance, hydrogen atoms in water molecules produce

strong signals, allowing the differentiation of various soft tissues. By manipulating parameters

such as the timing of radiofrequency pulses and the direction of magnetic gradients, MRI can

generate different types of images, such as T1-weighted, T2-weighted, and proton density images,

providing specific information about the tissue characteristics.

One of the significant advantages of MRI is its ability to visualize soft tissues, such as

the brain, spinal cord, muscles, and internal organs, without the use of ionizing radiation. This

makes MRI particularly valuable in diagnosing and monitoring a wide range of medical conditions,

including neurological disorders, musculoskeletal injuries, cardiovascular diseases, and cancer.

MRI has revolutionized medical imaging and has become an indispensable tool in clinical

practice and research. Its non-invasive nature, exceptional image quality, and versatility make it
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invaluable for understanding and diagnosing human health and disease. Other imaging modali-

ties such as computed tomography (CT), ultrasound, thermal imaging, visible spectrum imaging

(endoscopic or dermatological), and gamma-ray imaging can be found in (Suetens, 2017).

1.1.2. Computer-aided Diagnosis: Traditional and Data-driven Techniques.

The automated interpretation of medical images, facilitated by algorithms that strive to deduce

mathematical or physical correlations between input and output parameters (commonly known

as computer-aided diagnosis), has been a focal point of investigation for several decades. Some

traditional model-based approaches that have been applied to this end are:

1. Generic models.

• Mathematical models.

• Biological or physics-based models.

2. Probabilistic models.

• Gaussian mixture models.

• Graphical models, including Markov (MRFs) and conditional random fields.

3. Population-based models.

• Single-subject atlases.

• Probabilistic atlases.

• Statistical atlases (shape and appearance models).

The introduction of deep learning models has revolutionized the field of medical image

computing. The following learning or data-driven approaches are some of the newer techniques
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for computer-aided diagnosis:

1. Shallow learning models.

• Regression.

• Nearest-neighbor methods.

• Support vector machines (SVMs).

• Random forests

2. Deep learning (DL) models.

• Recurrent neural networks.

• Convolutional neural networks (CNNs).

• Autoencoders.

• Deep reinforcement learning.

In almost all medical imaging domains’ tasks, including image reconstruction, organ seg-

mentation, image registration, and interpretation, the current state-of-the-art, with better perfor-

mance, is based on deep neural networks. Applications of deep learning to medical image analysis

began to appear first in workshops and conferences and later in journals and have grown rapidly

since 2015. Figure 4 shows a review of the number of articles published per year, the type of

neural network, the task undertaken, imaging modality, and application area. Deep learning is now

a dominant topic in medical conferences and in leading medical journals. In (Litjens et al., 2017),

the authors published a comprehensive and dedicated review on deep learning in medical imaging.

Although the report in (Litjens et al., 2017) shows the literature review until 2017, the same trend is
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evidenced nowadays. Table 2 lists some recent medical imaging applications where deep learning

has achieved state-of-the-art results.

Figure 4. Breakdown of deep learning in medical image analysis. In quadrant (a) at the top-left,
the chart displays the number of papers published by year and technique. Blue bars represent the
total papers for each year, while orange, gray, yellow, and sky blue bars indicate papers using
specific techniques like CNN (Convolutional Neural Networks), RBM (Restricted Boltzmann
Machine), RNN (Recurrent Neural Networks), and AE (Autoencoders), respectively. Green bars
denote other papers, and dark blue bars represent those utilizing multiple techniques. Quadrant
(b), at the top right, shows the number of papers per task addressed. Quadrant (c) at the bottom
left discriminates papers by medical imaging modality. Finally, quadrant (d) at the bottom right
exhibits the number of papers per medical application area.

Source: (Litjens et al., 2017).

1.2. Related Works - Computational Techniques

1.2.1. Domain Adaptation in Medical Imaging. In recent years, medical imag-

ing computing has made great strides due to the rapid development of deep learning techniques.
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Table 2
Some relevant applications in the health area based on deep learning methods.

Ref Title Year Journal Application

(Kooi et al., 2017)
Large scale deep learning for computer
aided detection on mammographic lessions

2017
Medical
Image Analysis

Mammography

(Raman et al., 2019)
Fundus photograph-based deep learning
algorithms in detecting diabetic retinopathy

2019 The Eye Optometry

(Esteva et al., 2017)
Dermatologist-level classification of skin
cancer with deep neural networks

2017 Nature Dermatology

(Chouhan et al., 2020)
A Novel Transfer Learning Based Approach
for Pneumonia Detection in Chest X-ray Images

2020
Applied
Sciences

Chest X-ray

(Yu et al., 2017)
Volumetric ConvNets with mixed residual
connections for automated prostate segmentation
from 3D MR images

2017
AAAI
Conference

Prostate
segmentation

However, access to large annotated medical image datasets is limited due to the tedious labeling

process and privacy concerns. While multi-center datasets can increase the amount of annotated

data, these sets vary due to different hospital technology configurations and diverse patient popu-

lations. Medical image databases with expert annotations are still at least one order of magnitude

smaller than comparable databases in computer vision, e.g., ImageNet or MS-COCO. A disadvan-

tage of deep learning approaches is that they often do not generalize well beyond data that are very

similar to the training data. Additionally, the changes in distribution between the available training

dataset and the dataset found in clinical practice lead to that the model previously trained by one

dataset may fail when evaluating another dataset. In particular, the generalization ability of deep

learning approaches is difficult to predict, often leading to failures during clinical deployment. Do-

main Adaptation (DA) is a transductive transfer learning approach that aims to transfer knowledge

between domains by learning domain invariant transformations, which align the domain distribu-

tions (Figure 5). DA assumes that the source data is labeled, while the target domain can consist
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of a fully-labeled dataset (supervised learning), a small set of labeled data (semi-supervised), or a

completely unlabeled dataset (unsupervised).

Figure 5. An overview of domain adaptation methods. Source: (Choudhary et al., 2020)

Figure 6 shows a categorization of medical imaging DA publications as per a) imaging

modality, b) anatomy, and c) learning scenarios. Until today, MRI is the most used modality,

followed by CT and X-rays. Anatomically, the brain, lungs, and heart are the most studied organs

in this type of work. Regarding labeling approaches, a large percentage of the works correspond

to applications on unlabeled target databases.

Some of the most outstanding domain adaptation works for classification in the health area are

presented in Table 3.

This thesis addresses the problem of chest X-ray image classification on a small dataset and

proposes a solution based on domain adaptation (Chapter 2).

1.2.2. Data Augmentation in Medical Imaging. Synthetic image generation meth-

ods have been developed in the literature to improve segmentation task results in medical imaging
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Figure 6. Categorization of medical imaging Domain Adaptation publications as per a) imaging
modality; b) anatomy; c) learning scenarios. Source: (Choudhary et al., 2020)

Table 3
Summary of recent domain adaptation studies in medical imaging.

Ref Short Title Year Journal Application

(Tang et al., 2019) TUNA-Net 2019
MICCAI
Conference

Lung X-ray (different
demographics)

(Pan et al., 2018) MRI to PET 2018
MICCAI
Conference

Brain supervised.

(Lafarge et al., 2017) Variability of Histopathology 2017
DLMIA
Workshop

Variability of Histopathology
Images for Breast supervised

(Zhang et al., 2020b) DA for Medical Diagnosis 2020
IEEE Trans. on
Image Processing

Colon unsupervised from
microscopy images

(Zhang et al., 2020a) COVID-DA 2020 Arxiv (pending)
Chest X-ray (different
diseases)

applications (Kebaili et al., 2023). State-of-the-art generative adversarial network (GAN) based

architectures for medical image augmentation in segmentation tasks have been developed for dif-

ferent types of medical imaging modalities, including Fundus photography (Platscher et al., 2020),

X-ray (Neff et al., 2017; Shen et al., 2023), computed tomography (CT) (Sandfort et al., 2019;

Jiang et al., 2020; Shi et al., 2020), and mostly MRI. For instance, (Mok and Chung, 2019) pro-

poses a coarse-to-fine generator architecture to capture the diversity of training sets and generate
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augmented data, which led to a 3.5% improvement in Dice’s coefficient on the Multimodal Brain

Tumor Image Segmentation Benchmark BRATS2015 MRI dataset (Bakas et al., 2017) compared

to traditional data augmentation methods. Another technique for producing artificial MRI images

with brain tumors is suggested in (Shin et al., 2018), where a GAN is trained using two public sets

of brain MRI, the BRATS2015 dataset and the Alzheimer’s Disease Neuroimaging Initiative ADNI

dataset (Jack Jr et al., 2008). In (Jiang et al., 2019), the authors propose a cross-modality model

that encodes the transformation of CT to pseudo-MRIs, achieving a segmentation DSC of 0.75 on a

private dataset of 81 MRI scans of 28 patients with non-small cell lung cancers. Moreover, (Qasim

et al., 2020) presents a DA protocol based on GANs that conditions networks at pixel-level and

global-level information and injects synthetic images into the training set, significantly improving

segmentation accuracy. This approach was validated on two medical datasets: BRATS2015 and

the International Skin Imaging Collaboration ISIC (Codella et al., 2019). Lastly, (Platscher et al.,

2022) combines image-to-image translation models (Pix2Pix, SPADE) and a CycleGAN to create

a large database of synthetic stroke images using a small private dataset. This method outperforms

the model trained on clinical images alone and yields significant improvements even with a small

clinical dataset.

As was mentioned before, other methods for medical image augmentation in segmentation

tasks are based on variational autoencoders (VAE). Some methods combine GAN and VAE for

segmentation tasks. For instance, (Liang and Chen, 2021) generates realistic images of thyroid

ultrasound and helps train a U-Net model to get better segmentation results. In (Gan and Wang,

2022), they propose an adversarial learned variational autoencoder method composed of only one
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encoder and one generator. The discriminate objective is added to the encoder so that the method

requires no extra discriminators. Results are evaluated on esophageal optical coherence tomogra-

phy segmentation. The authors of (Huo et al., 2022) propose a brain lesion synthesis framework

to expand both the quantity and diversity of the training dataset in 47 MRI scans of brain tumors,

achieving 74.18 DICE in segmentation.

Finally, hybrid methods combine three deep learning strategies: GAN, VAE, and diffusion

models. In MRI applications, some examples include Denoising Diffusion Probabilistic Models

(DDPM) (Khader et al., 2022), which utilizes a two-stage process to encode the images into a

low-dimensional latent space before training a diffusion probabilistic model on the latent represen-

tation of the data. Another method, brainSPADE (Fernandez et al., 2022), combines a synthetic

diffusion-based label generator with a semantic image generator to produce fully synthetic brain

labels on-demand for use in segmentation models, with or without specific pathologies of interest.

Lastly, IITM-Diffusion (Wolleb et al., 2022) proposes a method for image-to-image translation

using denoising diffusion implicit models, with both a regression and segmentation problem in-

corporated to guide image generation to the desired output. That approach was evaluated on both

facial photos and MRI scans of brain tumors.

1.3. Related Works - Clinical Context

1.3.1. Chronic wounds medical assessment. Chronic wounds treatment involves

periodic visual inspection by medical staff for infection control, and moisture balance, where edge

and size analysis are typically used to determine wound evolution (Bowers and Franco, 2020).

However, incorrect wound management is common (Bowers and Franco, 2020), and can lead to
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limb amputations, infection or even mortality (Yazdanpanah et al., 2015). For instance, (Gupta

et al., 2021) shows that the incidence of wound complications increases in developing countries, as

access to medical centers in rural areas is troublesome due to insufficient medical infrastructures

and poor rural transportation, which leads to infrequent patient visits, inadequate treatment, and

interrupted wounds tracking.

Computational methods (CM) have emerged as an alternative to support medical staff in the

prognosis, diagnosis, and treatment of diseases through automatic medical image (Calderón et al.,

2021), (Escobar et al., 2021). In the particular case of chronic wound analysis, image processing

algorithms have been successfully employed to detect the region of interest containing the wound,

or find segmentation maps that highlight the image pixels where the wound is present (Hsu et al.,

2019; Mukherjee et al., 2017; Chairat et al., 2021). For instance, in (Song and Sacan, 2012) wound

images are segmented using different algorithms like K-means clustering, region growing, edge

detection, and thresholding. The outputs of these algorithms are then used as input to a multi-layer

perception (MLP) and a radial basis function, which find the best segmentation map. Further, the

work in (Fauzi et al., 2015) generates a Red-Yellow-Black-White (RYKW) probability map, that

provides a segmentation according to granulation, slough, and eschar tissues. These probability

maps work as a support to two segmentation algorithms, optimal thresholding and region growing.

More recently, fully convolutional networks with a transfer learning scheme have been used

to address the segmentation task (Goyal et al., 2017; Long et al., 2015). They initialize its weights

from generic image datasets like Imagenet or Pascal VOC segmentation dataset, and a refinement

training is later performed with a dataset containing wound images (Goyal et al., 2017). Other
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approaches adapt state-of-the-art networks like the VGG net or GoogleNet to perform the segmen-

tation task (Long et al., 2015), build a two-step process to locate and segment the wound (Liu

et al., 2017) or use specifically developed architectures like the U-net (Ronneberger et al., 2015).

It is worth noting that most of these works focus on just obtaining a wound segmentation from the

full image, i.e., without any pre-processing. In consequence, background details may negatively

affect the network’s performance. For this reason, the most recent studies on chronic wound anal-

ysis use a wound detection stage before segmentation to improve the results (Scebba et al., 2022),

(Anisuzzaman et al., 2020), reducing errors induced by the background.

Even though the reported works provide accurate segmentation maps, the wound analysis is

limited to individual images, which prevents medical staff from tracking the evolution/involution

of the wound. Further, a general drawback of the deep learning segmentation methods lies in the

fact that they are designed to work with a particular dataset (Goyal et al., 2017), which introduces

a typical limitation for medical imaging applications, known as overfitting to a particular data

domain (Sanchez et al., 2022). This problem implies that methods trained on a particular dataset

exhibit lower performance when tested on other datasets acquired for different clinical centers or

populations, due to substantial differences related to wound features, etiology of the wound, and

image acquisition protocols. Chapter 4 presents the contribution of this thesis to this problem.

1.3.2. Skin lesions classification. Over the last decades, the research on computer-

aided diagnostic (CAD) techniques has intensified to verify, support, or provide a second opinion to

physicians’ decisions (Haggenmüller et al., 2021; Adegun and Viriri, 2021; Göçeri, 2020b, 2021;

Monroy et al., 2021).
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Several works have used convolutional neural networks (CNN) to extract features and iden-

tify anomaly types on the HAM10000 dataset (Tschandl et al., 2018), which contains seven skin

lesions labels tagged by experts. Miglani and Bathia (Miglani and Bhatia, 2020) used a pre-trained

EfficientNet-B0 CNN architecture to train and classify via fine-tuning seven skin lesion types with

0.89 precision and 0.97 AUC. Mohapatra et al. (Mohapatra et al., 2020) used the lightweight Mo-

bileNetV1 model to classify skin lesions of the same dataset with 0.86 precision and incorporated

it into an online platform. Chaturvedi et al. (Chaturvedi et al., 2020) also used a pre-trained Mo-

bileNet model to classify the HAM10000 dataset; they achieved 0.89 of precision. Emara et al.

(Emara et al., 2019) proposed a modified version of the Inception-V4 architecture, adding a resid-

ual connection to fuse low-level to high-level features and achieving an accuracy of up to 0.8617

and 0.88 AUC. Chopade et al. (Chopade, 2020) proposed a lightweight CNN built from scratch

with which they reach 0.89 of precision. Finally, Rishu Garg et al. (Garg et al., 2019) used image

processing to remove noise, add resolution, make previous segmentation, including data augmen-

tation and transfer learning on a pre-trained ResNet model achieving 0.88 of precision and 0.905 of

accuracy. For comparison purposes, the accuracy classification results of the HAM10000 dataset

with non-deep learning-based methods are 0.659, 0.6515, and 0.6586 for the random forest, XG-

Boost, and support vector classifiers, respectively. In Chapter 5, we present the state-of-the-art

method for skin lesion classification on the HAM10000 dataset as part of the contribution of this

thesis.

1.3.3. Gastrointestinal diseases classification. The automatic detection of dis-

eases and gastrointestinal tract anomalies is challenging for medical experts, affecting patient
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treatment decisions. Therefore, it is essential to implement CAD systems (Pang et al., 2021) that

support the detection of anomalies and diseases in endoscopic images. Therefore, in (Pogorelov

et al., 2017), the authors propose the classification of the Kvasir V1 dataset using three approaches,

using global features, deep learning in CNNs, and transfer learning in deep learning. The best re-

sult was obtained by training from scratch a three-layer CNN, with an accuracy of 95.9%. In

(Cogan et al., 2019), they performed a pre-processing of edge removal, contrast enhancement,

filtering, color mapping, and scaling to each image in the Kvasir-V2 dataset and used the data

augmentation technique. These images were used to train and test three CNNs: Inception-v4,

Inception-ResNet-v2, and NASNet, obtaining the best result with the CNN of Inception-ResNet-

v2 with an accuracy of 98.48% accuracy. On the other hand, taking advantage of the transfer

learning technique, in (KahsayGebreslassie et al., 2019), the authors implemented a transfer learn-

ing technique with fine-tuning on two deep CNNs: ResNet50 and DenseNet121, pre-trained with

the ImageNet dataset. Then, they classified the Kvasir V1 dataset, resulting in an accuracy of

87.8% in the residual network and 86.9% in the dense model. An approach of combining features

extracted by several CNNs was addressed in (Gamage et al., 2019), they proposed to classify the

Kvasir-V2 dataset using a set of six CNNs: DenseNet-201, ResNet-18, VGG-16, InceptionV3,

Xception, InceptionResnetV2, with a global average pooling layer to obtain feature vectors. Then,

they obtained the final feature vector for the classification task by adding the vectors generated in

each CNN. Finally, they feed a single layer of decision that allows them to obtain an accuracy of

97.38%. Chapter 6 presents an efficient and highly accurate method that uses only one-fifth of the

trainable parameters compared to the state-of-the-art methods.
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1.4. Evaluation Metrics

The developed algorithms and methods in this dissertation for classification, segmentation,

and image synthesis tasks are evaluated using the following metrics. In these equations, TP corre-

sponds to true positives, FP to false positives, TN to true negatives, and FN to false negatives. The

datasets used in all studies throughout this thesis were divided into train, validation, and test sets,

with specific percentages detailed in each chapter. Consistently, for all chapters, we employed a

k-fold cross-validation approach during the ablation studies and hyper-parameter selection, con-

ducting this on both the train and validation sets. Whereas, the final reported results are based on

a single run performed on the test sets. In chapters 1 to 5, we used a 10-fold strategy for k-fold

cross-validation, while in the 6th chapter, we employed a 5-fold strategy.

Accuracy measures the ratio of correct predictions over the total number of samples evalu-

ated. The Accuracy is calculated as

Accuracy =
T P+T N

T P+T N +FP+FN
. (1)

Precision measures samples correctly identified as positive between the total identified pos-

itive samples. High precision relates to the low false positive rate. The Precision is calculated as

follows

Precision =
T P

T P+FP
. (2)

Recall is the ratio of samples correctly identified as positive among all existing positive
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samples. The Recall is calculated as

Recall =
T P

T P+FN
. (3)

F1 score is defined as the harmonic mean between precision and recall. Therefore, this

score takes both false positives and false negatives into account. The F1 score is calculated as

F1 Score = 2∗ Precision∗Recall
Precision+Recall

. (4)

Specificity measures the proportion of actual negatives that are correctly identified as such.

The Specificity is calculated as follows

T N
T N +FP

(5)

AUC. The Area under the ROC Curve assesses the ability of the model to distinguish be-

tween classes. The Receiver operating characteristic (ROC) curve represents the True positive rate

(TPR) versus False Positive Rate (FPR) parameters. TPR is the ratio between true positive and all

positive data points, calculated as

T PR =
T P

FN +T P
. (6)

FPR is the ratio between the negative data points mistakenly considered as positive and all

negative data points, calculated as
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FPR =
FP

FP+T N
. (7)

Matthews correlation coefficient (MCC) is a measure for the quality of binary classifi-

cations, known as a correlation coefficient between all predicted and true values. The MCC is

calculated as follows

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
. (8)

Furthermore, the quality of the generated synthetic images in this thesis is evaluated via

the Frechet Inception Distance (FID) score (Heusel et al., 2017). FID quantifies the distance

between original and synthetic images created by a model generator. Mathematically, the quality

assessment of the generated images can be expressed as follows

ℓFID = ∥µR −µF∥2 −Tr (ΣR +ΣF −2ΣRΣF) , (9)

where Tr (·) is the trace of the argument matrix, the pair (R,F) denotes the distributions of the

real and generated data, (µR,µF) represents the mean of each distribution, and (ΣR,ΣF) indicates

their covariance matrices, respectively. A lower FID score indicates better quality images, while a

high FID stands for lower quality synthetic images in a nearly linear relationship with those in the

training dataset.
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1.5. Research Overview

General objective

To develop computational algorithms through deep learning approaches to address the challenge

raised by the lack of labeled medical images, the heterogeneous clinical data processing, and the

classification problem in computer-aided diagnostic tasks.

Specific objectives

1. To process a small chest X-ray database acquired in the Toulouse Hospital and to select a

freely available chest X-ray database to be used in a proposed classification system.

2. To design computational algorithms for the selection, synthetic generation, and classification

of chest X-ray images with the statistical properties of a small database and a freely available

database.

3. To develop a methodology to arrange and process heterogeneous clinical data that include

medical images and feed a deep learning algorithm in a computer-aided diagnosis task.

4. To evaluate the algorithms designed in objectives 2 and 3 through simulations and compare

the obtained classification results against other state-of-the-art approaches.

5. To verify the algorithms developed in objectives 2 and 3 in a real scenario with a medical

specialist in the area.
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1.6. Summary and Thesis Overview

This research thesis, consisting of six chapters, embodies two primary novel contributions

in chapters 2 and 3. It also includes a research project with a societal perspective carried out in

a Colombian hospital in chapter 4. As well as the application of deep learning in two practical

medical imaging scenarios explored in chapters 5 and 6.

Specifically, this research thesis addresses the challenges presented in Chapter 1 by incorpo-

rating a carefully designed domain adaptation technique in Chapter 2. This technique will enable

the selection, transformation, and integration of a limited number of X-ray images from a public

dataset, thereby enhancing the classification task results of a smaller target dataset. Additionally,

an investigation into a mask-guided data augmentation technique will be undertaken in 3 to im-

prove the segmentation of liver tumors in multi-contrast magnetic resonance scans (MRI). This

will involve integrating realistic-looking synthetic images generated using the proposed method.

Moreover, this thesis will present three data-driven approaches to applying deep learning in the

field of medicine. The extensions detailed in Chapters 4, 5, and 6 enable the measurement of

chronic wounds resulting from leprosy, the classification of skin lesions, and the detection of gas-

trointestinal anomalies, respectively. The evaluation of these methods will primarily utilize RGB

images of ulcers (chronic wounds), skin lesions, and endoscopic RGB images captured from within

the human body.

1.6.1. Contributions and Outline. In summary, the main contributions of this

thesis can be summarized as follows:
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• Chapter 2: This chapter proposes the CX-DaGAN architecture, a three-step domain adap-

tation technique to overcome the overfitting problem of scarce medical datasets availability.

This method uses a small chest X-ray dataset acquired during this thesis in the Hospital of

Toulouse in France as the target domain and a public-large labelled dataset from China as

the source domain. It is important to remark that an expert clinician in radiology validated

the collected dataset, method, and results. Content of Chapter 2 includes the development

of the Specific Objectives 1 and 2 of this PhD thesis and the partial development of Specific

Objectives 4 and 5.

• Chapter 3: This chapter introduces the LT-SyGAN architecture, an innovative mask-guided

synthetic image generation technique designed to tackle the challenge of scarcity of labeled

data in medical imaging segmentation tasks. The method demonstrates enhanced accuracy

in the segmentation of tumors in multiparametric MRIs and was recognized as one of the

winners in the 2021 Data Augmentation Challenge hosted by the French Society of Radiol-

ogy in Paris. Chapter 3 presents the development of Specific Objective 3 of this PhD thesis

and the partial development of Specific Objectives 4 and 5.

• Chapter 4: This chapter presents a new algorithm for chronic wound tracking based on

deep learning, which works on RGB images captured with smartphones, avoiding bulky

and complicated acquisition setups. The framework integrates mainstream algorithms for

medical image processing, including wound detection, segmentation, and quantitative anal-

ysis of area and perimeter. In addition, a new data set of chronic wounds of leprosy patients
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residing in Contratación, Santander, Colombia, is provided to the scientific community. Cur-

rently, this algorithm is used by the medical staff of the Sanatorio de Contratación to support

the treatment of their patients. The extension work presented in Chapter 4 contributes sig-

nificantly to the development of Specific Objective 5 and broadens the scope of the general

objective of this thesis.

• Chapter 5: This chapter presents a bilinear CNN approach capable of classifying seven

skin lesion classes with the highest state-of-the-art accuracy and low computational cost.

The framework proposed includes a data augmentation step to correct the data imbalance

problem, transfer learning and fine-tuning to improve the classification performance while

reducing the computational cost. Several simulations were executed over the HAM10000

dataset. The extension work presented in this Chapter 5 is related to Specific Objective 4

and addresses the classification problem raised in the general objective of this thesis.

• Chapter 6: This chapter presents a methodology to classify diseases and anomalies of the

gastrointestinal tract using image processing and a transfer learning strategy. The proposed

method is tested on the Kvasir-V2 dataset, containing 8000 endoscopic images divided into

eight classes. The experiments show that the proposed approach achieves more than 98%

accuracy during testing by only using one-fifth of the trainable parameters compared to the

state-of-the-art methods. The extension work presented in this Chapter 6 is related to Specific

Objective 4 and addresses the lack of labeled medical images and the classification problem

raised in the general objective of this thesis.
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All the algorithms and methods developed in this research were published in international

conferences and journals. In addition to the principal contributions listed above, the development

of novel methods to address other different research problems that are out of this thesis’ objectives

were published by the author of this dissertation in (Sanchez et al., 2021b), (Sanchez et al., 2021a),

(Hinojosa et al., 2022), (Marquez et al., 2022), (Monsalve et al., 2022). The following section lists

all the publications and author contributions during her doctoral studies.
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1.9. List of Abbreviations

Abbreviations and notations in Chapter 2:

S Source dataset (large)

T Target dataset (small)

SP,SN Pneumonia and normal classes images, respectively, in S

TP,TN Pneumonia and normal classes images, respectively, in T

D Number of pixels in one image

y An image sample in D×1 vector form

d Number of eigenvalues from T

UP,UN Subspaces of T by classes

Id Identity matrix

EP,EN Similarity scores between an image and the class subspace

n1,n2 Number of images from SP,SN

Abbreviations and notations in Chapter 3:

MRI Magnetic Resonance Imaging

CNN Convolutional Neural Network

mpMRI Multiparametric Magnetic Resonance Imaging

GAN Generative Adversarial Network

DA Data Augmentation

VAE Variational autoencoders
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MMHCC Macrotrabecular-Massive Hepatocellular Carcinoma

Abbreviations and notations in Chapter 4:

T L Transfer learning

DA Domain Adaptation

R, A Radius and Area

X ∈ RN×M×3 input RGB image

cw,cp Bounding boxes for the wound region and the calibration pattern

Dθ Detection network

Xw,Xp Crop wound and calibration pattern region

Sφ Segmentation network

Ŷ Estimated segmentation map

Aw,Pw Calculated wound area and perimeter

Abbreviations and notations in Chapter 5:

A and B The output matrix from the first and the second model

lr Learning rate

X ∈ Rb×L1×L2 The output computed from the two model outputs

m,n Spatial dimensions

Abbreviations and notations in Chapter 6:

CAD computer-aided diagnosis
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2. Domain Adaptation Method for Pneumonia Diagnosis on a Small Chest X-Ray Dataset

This chapter presents CX-DaGAN, a new three-step domain adaptation technique to over-

come the scarcity of labeled data in classification tasks. This method uses as the target domain a

small dataset of 573 chest X-ray images acquired and labeled during this thesis in the Hospital of

Toulouse in France. In contrast, a public-large labeled dataset of 5,849 chest X-ray images from

pediatric patients aged one to five years old at the Guangzhou Women and Children’s Medical

Center in China is used as the source domain. It is important to remark that three expert clinicians

in radiology validated the collected dataset, method, and results. Notice that the differences be-

tween these domains primarily pertain to the patient populations they represent and the geographic

origins of the data. An in-depth analysis of factors such as image acquisition systems, image qual-

ity, and acquisition protocols was beyond the scope of this study but could be explored in future

research.

Part of this section has been adapted from the journal paper (Sanchez et al., 2022) and the

conference paper (Sanchez et al., 2021a). Section 1.9 summarises the notation used in this chapter.

Chapter contribution. Recent advances in deep learning led to several algorithms for the

accurate diagnosis of pneumonia from chest X-rays. However, these models require large training

medical datasets, which are sparse, isolated, and generally private. Furthermore, these models in

medical imaging are known to over-fit to a particular data domain source, i.e., these algorithms do

not conserve the same accuracy when tested on a dataset from another medical center, because of

image distribution discrepancies. In this chapter, a domain adaptation and classification technique
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is proposed to overcome the over-fit challenges on a small dataset.

This method proposes a new data augmentation technique to classify a small chest X-ray

dataset taking advantage of a large public dataset acquired in different clinical center. The result-

ing algorithm is called CX-DaGAN, meaning Chest X-rays Domain adaptation with Generative

Adversarial Network. The proposed technique is composed of three stages. First, a data selection

from a source dataset through similarity constraints with the target dataset is performed. Then, a

translation of the selected source images to the target domain with a generative adversarial net-

work approach is processed. Finally, training of a CNN using both sets, target and translated sets,

is performed in order to classify the target set. For testing, a sub-set from the target set is used. As

we will detail later, the mean and standard deviation of the reported results are calculated using a

10-fold cross-validation strategy. The proposed approach achieved a notable increase in the target

dataset F1-score, reaching up to 96.91% compared to 90.03% by standard transfer learning. In

terms of Area under the curve (AUC), the proposed method reaches up to 0.96 against 0.87 ob-

tained by standard transfer learning.

2.1. Proposed Method: CX-DaGAN

Overall, the proposed approach consists of three stages: first, it selects from the source

dataset the images which are the most similar to the ones of the target domain; these images

are chosen based on a similarity function that measures the subspace-projection error obtained by

projecting the source data onto the target subspaces of each class: pathological and normal images.

Second, it uses the selected source images as input for a Cycle-GAN to generate images in the
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Figure 7. Proposed domain adaptation and classification framework. First, the chest X-ray images
from the source and training target domains are fed into step (A) for the similarity-constrained
data selection process. In step (A), images from the source domain are selected using a similarity
function that measures the subspace-projection error obtained by projecting the source data onto
the training target data domain. Then, the selected source images and the train target set are used
as input to the proposed GAN-based image-to-image translation (Step B). The output of step (B)
consists of synthetic images generated from the GAN that follows the target image distribution.
Finally, we fine-tune a pre-trained CNN-based classification network for pneumonia diagnosis
using the generated images in step (B) and the training target set as input. The performance of the
proposed workflow is evaluated on the testing target set.

target domain. This second step uses images from the training target set to discriminate between

the real and images generated by the GAN. Finally, in the third stage, the translated images and

the small target train set are used to feed a CNN pneumonia/normal classification network and test

it on the test set from the target dataset. The network parameters are further reduced by proposing

a fine-tuning strategy. The proposed method is depicted in Fig. 7. The following sections provide

more details of each stage (A, B, and C). Note that stages A and B are preprocessing steps before

training a CNN network for pneumonia/normal classification of the X-ray images in step C.

2.1.1. Step A: Similarity-constrained Data Selection. This section introduces

step A of the proposed method shown in Fig. 7 and detailed in Fig. 8. Let us denote by S the set
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of medium to large labeled dataset (source), and by T the small labeled dataset (target). Through-

out this chapter, we refer to “small” a dataset with less than 1,000 images, “medium” a dataset

containing between 1,000 and 5,000 images, and “large” a dataset with more than 5,000 images.

This choice is based on the number of images needed to train an X-ray-based pneumonia classifier

from scratch with excellent (98%), good (95%), and insufficient (90%) accuracy (Barbedo, 2018).

Furthermore, let us denote by SP ⊆ S, and SN ⊆ S the subsets of images labeled as pneumonia and

normal, respectively, in the source domain. Similarly, TP ⊆ T and TN ⊆ T denote the subsets of

images labeled as pneumonia and normal in the target domain, respectively. Also, ySP ∈ RD×1

represents an image sample from the SP subset after reshaping it in a D-dimensional vector form,

i.e., D corresponds to the total amount of pixels in the image. Similarly, ySN ∈ SN ,yTP ∈ TP, and

yTN ∈ TN denote vectorized images from the corresponding subsets.

First, every source and target data from TP and TN is normalized to have zero mean and unit stan-

dard deviation. Then, principal component analysis (PCA) is applied to select, for each domain, d

eigenvectors corresponding to the d largest eigenvalues. These eigenvectors are used as bases of

the subspace for each subset. Specifically, the matrices UP ∈ RD×d and UN ∈ RD×d are obtained,

used as the subspaces. Note that UP and UN are semi-orthonormal, thus U ′
PUP = Id and U ′

NUN = Id ,

where Id is the identity matrix of size d2 and ′ denote the transpose of the matrix. Furthermore, two

types of projections are performed: (1) project every image from each source class onto the target

subspace of the same class, i.e., ySP is projected onto UP and ySN onto UN ; (2) project every image

from each source class onto the target subspace of the opposite class, i.e., ySP is projected onto UN

and ySN onto UP. Based on these projections, the following similarity functions considering the
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projection errors are defined

EP(y) = ∥UPU ′
Py−y∥2, (10)

EN(y) = ∥UNU ′
Ny−y∥2, (11)

where || ∗ ||2 stands for the ℓ2-norm. (10) and (11) are used to project all images in SP and SN

and build four error vectors: q1 ∈ Rn1 ,q2 ∈ Rn2,q3 ∈ Rn1 and q4 ∈ Rn2 . Specifically, the vec-

tor q1 is built as q1 =
{

EP(y1
SP
), · · · ,EP(yn1

SP
)
}

using all images (n1) from SP. Similarly, q2 ={
EN(y1

SN
), · · · ,EN(yn2

SN
)
}

is formed using all images (n2) from SN ; q3 =
{

EN(y1
SP
), · · · ,EN(yn1

SP
)
}

;

and q4 =
{

EP(y1
SN
), · · · ,EP(yn2

SN
)
}

.

The vectors q1 and q2 are sorted in ascending order, and vectors q3 and q4 in descending

order. Finally, considering the first k values from each error vector, the corresponding k images

from the source domain (SN and SP) are selected and used as input for the proposed cycle-GAN-

based network shown in step (B) of Fig. 7. Note that in this document, “similarity” is named for the

minimum mathematical difference between pixel values of two spatial sets. A human inspection

of the images was not considered to establish the similarity. This way of selecting images from

the source set is guided by the idea of choosing the images that are the most similar intra-class to

those from the target set, and the most different inter-class between the two domains.

2.1.2. Step B: GAN-based Image-to-Image Translation. After selecting the most

similar images from the source dataset (with respect to the target domain images) using the pro-

posed subspace-based approach, a multi-domain and unpaired image-to-image (I2I) translation
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Figure 8. Step A of Fig 7. Similarity-constrained data selection via subspace projection error. The
circled blue numbers represent the order of the stages in the figure. First, we calculate a subspace
basis for each target class using principal component analysis (PCA). Second, the images from
each class in the source domain are projected onto the subspaces of T within their corresponding
classes. Third, the results of these projections are obtained. Fourth, each source image is projected
onto the opposite class subspace basis, and the results are obtained in the fifth line. Sixth, for each
case, we calculate the projection error between the projected and original corresponding image
through the similarity functions shown in Eq. (1)-(2). Finally, we select the images with the
lowest projection error when projecting the images onto subspaces of the same classes and the
largest error when projecting the images onto the subspaces of the opposite classes.
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network is used to generate images following the target domain distribution. Specifically, Step B

generates the same number of images that were selected from the source dataset by Step A. The

proposed network is depicted in Fig. 7 (step B) and detailed in Fig. 9. Specifically, the I2I transla-

tion strategy (Zhu et al., 2017) is adopted to map images from the two domains corresponding to

the same class (ySP ⇄ yTP , ySN ⇄ yTN ).

In this work, the Cycle-GAN (Zhu et al., 2017) is adopted to learn two mappings: S → T ,

and T → S, with generators GS→T (yS) and GT→S(yT ), so that discriminators DT and DS cannot

distinguish between real and synthetic images generated by the generators. In a Cycle-GAN net-

work, GS→T and its discriminator DT are used to define the adversarial learning objective loss

as

Ladv (GS→T ,DT ) = Eys∼yS [log(1−DT (GS→T (ys))] (12)

+Eyt∼yT [logDT (yt)] ,

where E [·] denotes the expected value over the data instances specified in the subindex.

A similar adversarial loss can be designed for mapping GT→S and its discriminator DS as

well, i.e., minGT→S maxDS Ladv(GT→S,DS). To preserve sufficient low-level content information,

we use the cycle-consistency loss (Zhu et al., 2017) to force the reconstructed synthetic images y′s
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and y′p to resemble their inputs ys and yt

Lcyc(GS→T ,GT→S) = Eys∼yS

[
∥y′s − ys∥1

]
(13)

+Eyt∼yT

[
∥y′t − yt∥1

]
,

where y′s = GT→S(GS→T (ys)), y′t = GS→T (GT→S(yt)), and ∥ ·∥1 is the ℓ1-norm. The generative ad-

versarial training with cycle consistency enables synthesizing realistic-looking radiographs across

domains. However, there is no guarantee that high-level semantics would be preserved during

translation, thus decreasing the classification accuracy.

To improve the classification accuracy on the generated synthetic target images, a classifi-

cation model F was included in the GAN-based network to guide the training by considering the

classification loss. Specifically, the classification model F is learned on the synthetic target data

T̄ = {GS→T (yS), L̄S}, where L̄S represent the corresponding labels (Normal or Pneumonia) of the

synthetic T̄ data. The binary cross-entropy loss was used to classify the two categories:

Lcls(F , T̄ ) =−Et̄∼T̄

C

∑
c=1

1c log
(

σ(F (c)(yt̄)
)
, (14)

where σ is the softmax function, 1c = 1 if an input image yt̄ belongs to class c∈C = {Normal,Pneumonia},

otherwise 1c = 0. The final objective of our proposed GAN-based network for synthetic target im-

ages generation is the sum of adversarial learning losses, cycle consistency loss, and classification
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Figure 9. Step B of Fig 7. Proposed GAN-based I2I architecture used to translate chest X-ray
images from the source domain (Normal or Pneumonia) to its corresponding class in the target
domain. The network also translates back the generated images to the source domain to maintain
cycle consistency. To ensure the generated synthetic images maintain the high-level semantics
after the transformation and improve classification accuracy, a classification model was
incorporated to guide the training by considering the classification loss. The training set of the
target domain was used to measure the adversarial loss during training.

loss:

L = Ladv (GS→T ,DT )+Ladv (GT→S,DS) (15)

+λLcyc(GS→T ,GT→S)+Lcls(F , T̄ ).

It is worth mentioning that, for ease of notation, the above equations were developed with-

out distinguishing between the two classes. However, during implementation, four generators de-

scribed the mappings from source/target images with pneumonia/normal to target/source images,

respectively. Similarly, four discriminators were associated with each generator output. Also, the

same classification network (F ) was used in the last step of the proposed framework shown in Fig.

7, which is described in the following section.



ALGORITHMS DESIGN FOR MEDICAL IMAGING 62

Figure 10. Step C of Fig 7. It starts by using the pre-trained weights of the Xception architecture
on ImageNet and investigating different fine-tuning settings to achieve the highest accuracy while
training fewer parameters. It uses the generated images obtained by following steps (A) and (B)
of the proposed workflow as input to this architecture.

2.1.3. Step C: CNN-based Classification. The augmented training dataset ob-

tained following steps A and B detailed in the previous sections is used to feed a convolutional

neural network (CNN) trained to perform the final classification. In this work, the Xception CNN

was adopted as the backbone (see ablation study in Table 7) to extract features and used a fully

connected layer at the end of the network to perform the classification. The Xception (Chollet,

2017a) is an extension of the Inception architecture which replaces the standard Inception modules

with depthwise separable convolutions. Instead of partitioning input data into several compressed

chunks, it maps the spatial correlations for each output channel separately and then performs a

1×1 depthwise convolution to capture cross-channel correlation. This is essentially equivalent to

an existing operation known as a “depthwise separable convolution”, which consists of a depth-

wise convolution (a spatial convolution performed independently for each channel) followed by a

pointwise convolution (a 1×1 convolution across channels). The Xception architecture is shown

in Fig. 10. In general, the network can be divided into three sections: the entry, middle, and exit
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flow, where the middle flow is repeated eight times. Given the limited size of the medical train-

ing dataset, pre-trained weights from the large ImageNet visual dataset were used to initialize the

network, and the layers of the Xception network were tuned to adapt to the specific pneumonia de-

tection task, avoiding training from scratch. Section 2.2.3 investigates different fine-tuning settings

to achieve high accuracy while training fewer parameters.

2.2. Simulations and Results

This section illustrates the efficiency of the proposed CX-DaGAN classification algorithm

for normal and pneumonia images on a small chest X-rays dataset. All simulations were imple-

mented in Python with Tensorflow 2.3 and ran on an Nvidia Quadro RTX 6000 GPU with 24 GB

of memory.

2.2.1. Datasets. The proposed CX-DaGAN algorithm was tested using two datasets

for domain adaptation: a large source dataset (S) from which we extracted and transformed a se-

lected number of images; second, a small target dataset (T ) from which we performed the classifi-

cation. This work used a private dataset as T and a publicly available dataset as S.

Specifically, the “Chest X-ray Images (Pneumonia) dataset”1 was used as S which consists

of 5,849 labeled images acquired in the Guangzhou Women and Children’s Medical Center in

China (Kermany et al., 2018). The 8-bit X-ray grayscale images are separated into 4,266 pneumo-

nia (SP) and 1,583 normal (SN).

On the other hand, 573 chest X-ray images acquired at the Toulouse University Hospital

1 The dataset is available for free download at https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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in France were used as the target dataset T . Two expert radiologists labeled each image of T as

pneumonia or normal class. The dataset T is divided into 275 normal and 298 pneumonia images.

In the following experiments, we split T in 400 images for training and the remaining 173 for

testing, corresponding to 69,8% and 30,2% of the data, respectively. To train and evaluate the

proposed CX-DaGAN method, images with a fixed size of 224 × 224 pixels were considered.

Metrics. To quantitatively evaluate the performance of the proposed method, three metrics

(Hossin and Sulaiman, 2015) were computed: Accuracy (ACC), F1 score (F1), and Area under the

ROC curve (AUC).

2.2.2. Quantitative Classification Results. For the testing chest X-ray images, the

CX-DaGAN algorithm was used to predict the probability of pneumonia. By comparing with the

binary ground-truth labels, the overall accuracy of the proposed method was calculated in extensive

simulations, as shown in Table 5. In this table, each value corresponds to the average and standard

deviation of a 10-fold cross-validation strategy of the proposed method, evaluated on 173 images

from the target dataset. In this Table 5, the number of images used for training throughout the entire

framework was varied. Specifically, between columns and rows, the number of images from the

target and source, respectively, changes. Since the small size of the target dataset, the maximum

number of target images used for training was 400 (see columns in Table 5). On the other hand,

the number of images from the source domain chosen by the similarity-constrained data selection

step was simultaneously varied. It is worth noting that this method was designed for selecting

the same amount of images from each class in S, i.e., after the similarity phase (A), the proposed

method ensures 50% of normal (disease-free) and 50% of pneumonia images to feed the step B.
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Thus, considering the composition of the unbalanced public dataset used in these experiments, the

maximum number of X-rays from S was 2400, corresponding to 1200 images of each class (see

rows in Table 5).

In deep learning, especially for CNNs, it is well known that a greater number of labeled

training samples leads to better classification (Diker et al., 2019), (Barbedo, 2018). In general

terms, Table 5 shows that the classification accuracy is lower using fewer target images for training

the CX-DaGAN algorithm. Conversely, the best results are concentrated in the right area of Table

5, where we used more images from the target dataset. However, it can also be observed vertically

that using more images from the source domain does not necessarily imply better accuracy. Instead,

there is a central area with combinations of data that are particularly interesting.

In the highest case of average precision, the data showed that the pneumonia prediction

accuracy obtained by the CX-DaGAN proposed algorithm is higher than 97% when training using

250 images from the target and 400 images from the source set. Similarly, high accuracy results

can be achieved by training the algorithm with 400 images from the target and 200 images from

the source. For a deeper analysis of results in Table 5, Fig. 11 presents the 20 highest average

classification results, without considering their standard deviation (STD), organized in descending

order and graphed with their respective STD. Note that the best classification average value is

97,78. However, its corresponding STD is 0,7. On the other hand, the third-highest average rating

in this plot is 96,75. In this case, the STD is lower (0,4), which can be interpreted as a statistically

more stable and reliable result. Therefore, selecting only one combination of target/source data as

the “best” is impossible since results can vary between the ranges defined by the STD. Note that
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this table aims to provide results with different source/target data combinations to allow the user

to select the best combination according to the data availability.

Figure 12 shows a histogram with all the error values of Table 5 to visualize their behavior. Note

that the mean of the error values is 0,732, and the standard deviation of the error values is 0,231.

The ten highest average accuracy results from Table 5, their STD, and the corresponding

target/source data combination for training are shown in Fig. 13. Note that the “x” and “y” axis

correspond to the number of “target” and “source” images used for training, respectively. The

size of each dot is associated with the accuracy value: larger dots indicate better precision, as

conventions dictate; the color of the dot indicates the value of the standard deviation, where red

corresponds to a higher STD and green to a lower one. The aim of this plot is to expose the most

accurate options achieved by the proposed method, according to the required number of images

for training and their STD.

The results shown in Tables 5, 6, and 7 were obtained using d = 200 in step A. Conversely,

OA results of the CX-DaGAN method using other values of d = 60,100,140,180 for step A are

presented in Table 4. Note that subspaces UP and UN have dimensions RD×d and consequently

the upper bound of d in this example is 298 for UP and 275 for UN , corresponding to TP and TN ,

respectively. One may remark from the OA values in Table 4 that the choice of d has limited

influence on the accuracy of the CX-DaGAN method. This observation is sustained by the fact

that 88% of the images selected from S within step A were the same for all d values evaluated.

Accordingly, d = 200 eigenvectors (≈ 70%) were chosen to run the following simulations, given

that this value leads to the best balance between classification accuracy and algorithm performance.
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Table 4
Classification results in terms of Overall Accuracy (OA) of the CX-DaGAN algorithm for different
values of d in Step A (average over 10 realizations).

d 60 100 140 180 200
(20,9%) (34,9%) (48,8%) (62,8%) (69,8%)

OA 95,0 ± 0,3 96,2 ± 0,3 95,5 ± 0,4 96,8 ± 0,3 97,6 ± 0,4

Table 5
Quantitative classification results for different data combinations (target/source) in the training
(average over 10 realizations).

(↑) Overall accuracy (%)
Images Target → 0 50 100 150 200 250 300 350 400

↓ Source % 0% 12,5% 25% 37,5% 50% 62,5% 75% 87,5% 100%
0 0% 51,33 ± 1,2 74,92 ± 1,1 84,51 ± 1,2 89,75 ± 1,0 90,56 ± 0,8 92,04 ± 0,9 92,81 ± 0,8 94,69 ± 0,8 91,09 ± 0,9

50 0,9% 52,33 ± 1,0 80,39 ± 1,1 81,32 ± 0,8 88,48 ± 0,9 90,92 ± 0,9 91,08 ± 0,6 94,09 ± 0,6 94,75 ± 0,9 95,75 ± 0,7
100 1,7% 52,23 ± 1,1 78,85 ± 0,8 90,15 ± 1,2 92,81 ± 1,0 90,81 ± 0,8 95,21 ± 1,1 94,12 ± 0,4 94,90 ± 0,8 94,90 ± 0,6
150 2,6% 58,64 ± 0,9 83,15 ± 1,0 84,84 ± 0,8 86,71 ± 0,8 89,90 ± 1,0 93,89 ± 0,8 93,81 ± 0,9 95,58 ± 0,7 95,56 ± 0,9
200 3,4% 59,34 ± 1,1 80,42 ± 1,0 89,27 ± 0,9 91,01 ± 0,9 89,38 ± 0,8 94,68 ± 0,9 94,85 ± 0,7 95,62 ± 0,6 97,02 ± 0,8
250 4,3% 59,77 ± 0,9 86,23 ± 0,7 83,07 ± 0,8 84,34 ± 1,2 89,38 ± 1,0 91,82 ± 1,2 94,95 ± 0,6 95,75 ± 0,6 95,66 ± 0,7
300 5,1% 62,44 ± 1,0 81,19 ± 0,8 84,84 ± 0,7 87,38 ± 0,6 90,06 ± 0,7 93,41 ± 0,4 94,35 ± 0,6 94,89 ± 0,5 95,46 ± 0,5
350 6,0% 61,88 ± 1,0 80,61 ± 0,9 84,84 ± 0,6 89,37 ± 0,7 91,04 ± 0,6 91,06 ± 0,7 94,51 ± 0,4 95,01 ± 0,5 96,70 ± 0,6
400 6,8% 63,11 ± 1,2 80,51 ± 0,9 83,96 ± 1,0 86,91 ± 0,8 92,61 ± 0,5 97,78 ± 0,7 95,02 ± 0,4 96,75 ± 0,4 95,85 ± 0,3
600 10,3% 66,37 ± 0,9 76,11 ± 1,0 83,19 ± 0,6 85,84 ± 0,7 87,61 ± 0,6 84,07 ± 0,6 87,61 ± 0,5 90,27 ± 0,4 92,04 ± 0,4

1000 17,1% 67,26 ± 0,9 79,65 ± 0,6 87,61 ± 0,8 85,84 ± 0,5 87,61 ± 0,4 88,5 ± 0,7 90,27 ± 0,5 86,73 ± 0,5 93,81 ± 0,5
1600 27,4% 68,14 ± 0,8 75,22 ± 0,6 76,99 ± 0,7 80,53 ± 0,5 87,61 ± 0,4 84,96 ± 0,4 86.73 ± 0,4 92,04 ± 0,4 90,27 ± 0,4
2400 41,0% 70,80 ± 0.7 82,3 ± 0,6 83,19 ± 0,5 80,53 ± 0,6 80,53 ± 0,7 89,38 ± 0,5 86,73 ± 0,5 88,5 ± 0,4 91,15 ± 0,3

Figure 11. Twenty highest overall accuracy results from Table 5 in descending order and their
STD.
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Figure 12. Histogram of the error values from the results presented in Table 5.

Figure 13. Ten highest overall accuracy average results achieved with the proposed method (dot
size), STD (dot color), and their corresponding data combinations of target/source in the training,
presented in the “x” and “y” axis, respectively.

2.2.3. Ablation Studies. Two ablation experiments were conducted to evaluate the

configuration of the proposed training pipeline. The first ablation study (Ablation study 1) evalu-
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ates the influence of fine-tuning training in step C of the proposed approach. The second ablation

study (Ablation study 2) validates the importance of each step of the CX-DaGAN algorithm in the

training procedure, evaluating the separate use of one or two of the three steps. Furthermore, in

the Ablation study 2, the number of training images of the two sets, target and source, are updated

simultaneously.

Ablation Study 1: In this experiment, the fine-tuning training on the Xception architecture

shown in Section 2.1.3 was performed. The pre-trained weights from the ImageNet dataset were

first loaded and then each block (entry, middle, and exit flow) was fine-tuned while freezing the

other layers. The network was trained using Adam optimizer with a learning rate of 0.0001, a

batch size of 16, a dropout of 0.2 before the decision layer, and 100 epochs. It is important to

note that we employed a training duration of 100 epochs to ensure thorough model convergence

and robustness, ultimately selecting the weights from the epoch with the highest performance for

the final model. The mean F1-score results when fine-tuning different blocks of the Xception are

shown in Fig. 14. Notice that, fine-tuning the middle flow block of the Xception architecture

leads to a very similar performance compared to fine-tuning the network; hence, it is unnecessary

to retrain all the Xception network. Consequently, in the following experiments, only the middle

flow was fine-tuned as it provides the best results.

Ablation Study 2: For this experiment, combinations of some number of images from

target/source data were selected from Table 5 to perform an ablation study presented in Table 4.

Specifically, the accuracy results of the proposed method were calculated for seven target/source

data combinations by eliminating one or two of the three main steps (A, B, and C) of our proposed
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Figure 14. Mean results when fine-tuning different blocks of Xception. Fine-tuning the middle
flow block of the Xception architecture leads to a very similar performance compared to
fine-tuning the network.

CX-DaGAN algorithm.

The column Step C, which gives the worst results in Table 6, presents the classification of the test

images of the small/target dataset through the Xception neural network. For this, the CNN was

fine-tuned with the number of source and target images indicated in each row. In this case, source

images used to complement the training dataset are randomly selected. Note that the most accurate

result is obtained in this column with the largest number of images from each dataset. It should be

noted that although 400 images from the target dataset are used in two cases, the highest precision

is obtained when more images (350) are incorporated from the source dataset. Thus, combining a

total of 750 tagged images for retraining, the accuracy was of 88.78%.

On the other hand, the results are better when we use two steps of our method. For instance, in

“Steps A + C”, the similarity-constrained stage selects the source images to train the CNN. In this

way, an increase of up to 7.91% in the average accuracy was achieved.
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Then, the “Steps B + C” column shows the results of randomly selecting images from target and

source, generating synthetic source images based on Cycle-GAN, and training the Xception. In this

case, an increase of up to 4.73% compared to using only stage C was observed. Finally, the last row

in Table 6 shows the result using the three steps (A + B + C). It is evident that the simultaneous

combination of all the steps allows a better performance of our proposed method, compared to

using a part of it, thus proving the importance of each of these steps. It is worth mentioning that

the results reported in the Tables 5, 6, and 7 include the cross-validation technique, which is used

to evaluate the results of statistical analysis and ensure that they are independent of the partition

between training and test data. Note that, as indicated in the table titles, each result in Tables 4 and

5 included 10 realizations, and each result in Tables 6 and 7 included 30 realizations.

Table 6
Quantitative classification results of the Ablation study 1. Importance of each step in the perfor-
mance of the CX-DaGAN algorithm (average over 30 realizations).

Images for Train (↑) Overall accuracy (%)

target source
Step

C
Steps
A + C

Steps
B + C

Proposed
method:

A + B + C
100 100 84.72±2.5 88.93±1.6 87.78±1.7 90.15 ± 1.2
250 100 83.78±3.6 90.86±0.4 89.09±1.1 95,21 ± 1,1
250 400 85.55±1.1 89.50±0.1 88.79±2.3 97,78 ± 1,5
350 250 82.60±1.7 94.40±1.7 89.09±1.1 95,75 ± 0,6
350 400 87.32±0.4 93.22±1.5 90.56±1.7 96,75 ± 1,0
400 150 87.91±0.4 94.69±0.7 90.27±0.7 97,02 ± 1,8
400 350 88.78±4.6 96.69±0.7 93.51±1.1 96,70 ± 1,4

2.2.4. Comparison Results. Other classification methods. In order to compare

the performance of our proposed CX-DaGAN algorithm with other state-of-the-art methods, the
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above reference approaches were implemented and tested:

• TL: Transfer learning with two chest X-rays datasets. This approach consists in consider-

ing a CNN previously trained with the ImageNet dataset and retraining it with all available

source images (5216 samples) + target images (400 samples). The resulting training network

was used to classify the test target set.

• NO-S: No source images. In this experiment, a CNN pre-trained with the ImageNet dataset

is re-trained with target images (400 samples), assuming no access to a second (source)

X-ray dataset.

• RAND-S: Random selection of source images. In this case, the CNN is retrained on a

training dataset consisting in target images and randomly selected source images. This ex-

periment aims at the contrast of increasing the training dataset randomly compared to our

source image selection method.

• SDASC: Subspace-based Domain Adaptation using Similarity Constraints (Sanchez et al.,

2021a), a recent method of augmenting a target dataset with source images to improve clas-

sification results.

In all cases, the average of over 30 realizations and the classification of 173 samples from

the target dataset are reported. To ensure a fair comparison, all the methods used the same network

backbone but with different optimization procedures. However, to broaden the comparison and

to evaluate the consistency of our method, a discussion with other backbones is included using

VGG-16, ResNet-50, and Xception networks. These results are reported in Table 7.
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Table 7
Quantitative classification results of five data-based methods (including our proposed method) for
three different CNNs. All methods include 400 images from the target domain for training (average
over 30 realizations).

Metric S VGG-16 ResNet-50 Xception
Method Images ACC F1 AUC ACC F1 AUC ACC F1 AUC

TL 5216 75.05 74.15 0.74 63.72 62.48 0.62 88.36 88.47 0.87
NO-S 0 85.84 85.83 0.85 90.27 90.26 0.90 90.03 90.03 0.88

RAND-S
100 85.84 85.84 0.85 87.61 87.61 0.88 89.52 88.19 0.90
200 81.42 81.41 0.82 90.27 90.27 0.90 89.98 89.68 0.89

SDASC
100 84.96 84.96 0.84 91.15 91.15 0.91 93.25 92.54 0.92
200 88.50 88.50 0.88 93.69 93.48 0.93 96.18 95.96 0.95

CX-DaGAN
100 85.25 86.22 0.86 92.04 92.03 0.92 94.90 92.03 0.92
200 90.02 90.12 0.90 94.12 93.97 0.94 97.02 96.91 0.96

In general, all the methods shown in Table 7 perform better using the Xception network

for the classification task, except for the NO-S method. NO-S method provides the best result by

using only the target dataset. Overall, the results shown in Table 7 suggest that the classification

accuracy is improved by adding data from another (source) dataset. However, the samples used to

increase the size of the training database should be adequately selected. In particular, the RAND-

S method, consisting in selecting randomly images from the source dataset, is shown to degrade

the classifier’s accuracy. On the other hand, the methods SDASC and CX-DaGAN achieve the

best results due to careful data selection. Indeed, the proposed CX-DaGAN method presents a

significant advantage in classification accuracy over the other algorithms in terms of ACC, F1, and

AUC results. It is worth highlighting that SDASC and the proposed CX-DaGAN method were

designed for binary classification. Therefore, a disadvantage of the proposed method, specifically

for step A, which is based on data selection through equal and crossed classes projection, is that it
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can not be applied directly to a multi-class problem.

2.2.5. Visual Results. This section presents the visual results of each stage of the

proposed method.

Step A: First, images from the source dataset are selected based on error metrics that ac-

count for the similarity between these images and the target domain when projected on their sub-

spaces. To get a deeper understanding of our CX-DaGAN, we visualized some of the images

selected by Step A. In Fig.15 the best and worst projected images are presented according to (1)

and (2). Therefore, the figure is divided into four parts, one for each error metric. The two top

rows depict the projection of each class into the same category of the target PCA subspaces. The

first row presents original images from the source domain, while the second row shows the result

of the projections. Specifically, we show the images with the best (a and c) and the worst (b and d)

projection error for each class, normal (left) and pneumonia (right). Note that the projected image

is visually more distorted when the error is larger than when the projection error is smaller. On the

other hand, the two bottom rows correspond to the projection of the source images on the target

subspaces with opposite classes. In this case, the error numbers are similar to those in the upper

part due to the remarkable similarity between all chest radiographs, regardless of their pathology.

However, our proposed method for cross-class projection involves this time, selecting the source

images with the highest error projection (b and d) as shown in the pink boxes.

Step B: The source samples selected in step A were used together with the training tar-

get images (400 images) to train the GAN-based image-to-image translation proposed in Section

2.1.2. New synthetic images are generated within the target domain from the transformation of



ALGORITHMS DESIGN FOR MEDICAL IMAGING 75

Figure 15. Selected X-ray images from the source domain considering the projection error when
projected onto target subspaces obtained by PCA. The selected images are highlighted in each
case with pink color. The first two rows depict the projection of each class into the same category
of the target PCA subspaces. The last two rows depict the projection of the source images on the
target subspaces with opposite classes.

the previously chosen source images. In such a way, the number of source images that feed the

GAN network is equal to the number of output synthetic images. Fig. 16 shows four random
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source images selected by step A that entered the GAN, and in the row below, their respective

transformations to the target domain.

Figure 16. Input (source domain) and output (synthetic data) examples of our GAN network.

Step C: Synthetic images and the target samples were used to train the Xception network

with a particular proposed fine-tuning strategy. Fig. 17 depicts some examples of the classification

results obtained when testing our method with step C on 173 images of the target domain. The

correct predictions are presented with black labels, and erroneous predictions are shown with a red

label.

2.3. Conclusions

The main contribution of the proposed method is to take advantage of information from

an extensive labeled public dataset to improve the classification accuracy of a small X-ray dataset

acquired in a different hospital. Specifically, the main goal of the proposed approach is to select

from a large dataset the images that best fit the small target dataset in the sense of their intra-
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Figure 17. Classification results of some chest X-ray images from the test subset. Correctly
classified samples are shown with black labels and incorrect ones with red.

class similarity and inter-class dissimilarity. In addition, a classification improvement is achieved

by generating new images through a GAN network that follows the target data distribution. This

chapter introduced the CX-DaGAN algorithm, an original method to address the problem of chest

X-ray pneumonia diagnosis on a small target dataset. To achieve this purpose, we propose to use

information extracted from a larger and publicly available chest X-ray source dataset. Specifically,

our proposed algorithm is a complete domain adaptation workflow that consists of three stages.
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First, we proposed a subspace-based domain adaptation method to select images from the large

dataset (source domain). We then used the selected images and the train set of the small dataset

(target domain) to train our proposed GAN-based image-to-image translation network. We fi-

nally used the synthetic images generated from GAN, which follow the target domain distribution,

and the training set of the target dataset to fine-tune a pre-trained CNN classification network to

achieve the final classification accuracy. During the experiments, we observed that training on tar-

get data without performing our proposed domain adaptation workflow led to an overall accuracy

of 88.36%. However, when we used our proposed workflow to augment the training set of targets

and carefully fine-tune the Xception network, we achieved an overall accuracy of up to 97.78%.

Future studies will consist of evaluating the performance of this new domain adaptation method

for the classification of small datasets in other related medical tasks and involving other medical

imaging modalities. Furthermore, it would be interesting to address the fundamental ideas behind

the CX-DaGAN algorithm to extend its scopes to multi-class classification tasks.
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3. Synthetic Imaging Approach To Improve Segmentation of Liver Tumors in

Multiparametric MRI

This chapter introduces a new data augmentation technique through synthetic images to

address the challenge of scarcity of labeled data in medical imaging segmentation tasks. The pro-

posed approach was recognized as one of the winners in the 2021 Data Augmentation Challenge,

an event hosted by the French Society of Radiology in Paris. Some of the material featured in

this section has been previously published in the international conference paper (Sanchez et al.,

2023a). Section 1.9 summarises the notation used in this chapter.

Chapter contribution. Automated segmentation of liver tumors in Magnetic Resonance

Images (MRI) is essential in medical image processing, supporting the detection, diagnosis, and

treatment planning for liver cancer patients. However, ensuring accuracy and reliability in tumor

segmentation remains a challenge due to the heterogeneity of tumor appearances in MRI and the

scarcity of labeled data for training robust machine learning models in the medical imaging field.

In this chapter, we present LT-SyGAN, a novel three-step methodology designed to enhance the

precision of liver and tumor segmentation in Multiparametric (T1 arterial, T1 portal, and T2) Mag-

netic Resonance Imaging (mpMRI) through the generation of realistic-looking synthetic images.

In particular, the LT-SyGAN framework produces synthetic mpMRI images with Massive Macro-

trabecular Subtype Hepatocellular Carcinoma (MMHCC), along with their corresponding tumor

masks, via a novel mask-guided procedure.

The proposed method first generates abdominal edges and liver tumor masks derived from
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geometric transformations of a source dataset. Then, three Generative Adversarial Networks

(GANs) – each assigned to a specific MRI contrast – utilize the edge masks to create synthetic

data. This procedure results in the generation of the desired number of MRI triplets within liver tu-

mors. The final stage leverages the synthetic data to train a U-net segmentation network, enabling

the prediction of pixel-wise tumor and liver labels with heightened accuracy.

Extensive simulations were conducted on a private dataset of 89 real patients, curated by

the French Society of Radiology for the 2021 challenge on this topic. Using the proposed method,

5,000 synthetic MMHCC mpMRI cases, along with their segmentation masks, were generated.

Additionally, our method was utilized for the segmentation of the liver and MMHCC tumor in

the test set of the dataset. The diversity and fidelity of the synthetic images were assessed both

qualitatively and quantitatively, utilizing the Frechet Inception Distance metric. These results were

compared with outcomes from other data generation strategies and with different segmentation

networks used as the backbone. The contributions of the proposed strategy are as follows:

1. This method generates diverse and realistic multiparametric (T1 arterial, T1 portal, and T2)

MRIs. Essentially, it preserves the overall structure, appearance, and interrelationship be-

tween tissues within the data distribution, enhancing the authenticity of the synthetic images.

2. It also yields the corresponding tumor segmentation mask for each synthetically generated

patient case. This not only aids in training machine learning models but also provides a

reference point for evaluating segmentation accuracy.

3. Experimental results underline the efficacy of the generated synthetic images. They con-
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tribute to increasing the accuracy of liver tumor segmentation in real MRIs across three

types of contrast (T1 arterial, T1 portal, and T2), demonstrating the practical implications

and utility of our proposed strategy.

3.1. Proposed Method: LT-SyGAN

This section describes LT-SyGAN, the proposed strategy for synthetic multiparametric

magnetic resonance imaging of liver tumors. This method consists of three stages: (1) first, using

a source dataset, it generates new tumor and abdominal edge masks; (2) in the second stage, the

proposed approach leverages the use of GANs to produce synthetic triplets (T1 arterial, T1 portal,

and T2) of MMHCC MRI from the input masks generated at the stage (1); (3) finally, the synthetic

images are used to train a segmentation network that validates the fidelity and usefulness of the

generated mpMRIs. The overall method is depicted in Fig. 18.

3.1.1. Step A: Mask Generation. This section introduces step A of the proposed

method shown in Fig. 18 as “Mask Generation”. The aim of this step A is to create valid anatomical

borders and tumor locations.

(i) Geometric transformations of tumor masks. Let us denote by X1m,X2m,X3m the training

data available, i.e., the three MRIs available for each patient affected by MMHCC. Furthermore,

let us denote the tumor segmentation masks of the training dataset as Xm, for m = 1...M, where M

is the total number of patients in the training database. Let s = 1...S be the subscript of synthetic

cases generated from each patient, where S is their total number. First, each Xm is modified with

multiple-random geometric operations, such as zoom, rotation, flip, and translation to generate

new tumor segmentation masks denoted as X̄ms and named “Output tumor mask” in Fig 18. In
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Figure 18. Proposed data augmentation and segmentation framework. First, the training set is fed
into step (A) for the novel tumor mask creation. In step (A), tumor masks from the training set are
geometrically transformed, intersected with liver masks, and superimposed on the computed
abdominal edges of the training MRIs. Then, the new masks are used as input to the GAN-based
image synthesis stage (Step B) to define the spatial distribution and liver tumor location of the
triplet-generated MRIs. Finally, a pre-trained U-net segmentation network is fine-tuned for
pixel-level liver and tumor classification using both the synthetic and original training images
(Step C). The performance of the proposed workflow for tumor and liver segmentation is
evaluated on the testing set.

this step, the zoom transformation for creating new masks is set within the range of minimum and

maximum tumor sizes of the original dataset. The translation operation was spatially limited by

the maximum area occupied by the centroids of the tumors in the original data. This ensured that

the centroid of the synthetic tumor is inscribed in the region that can anatomically correspond to the

liver of an average person, avoiding situs inversus. Note that this step provides the first condition

for generating our synthetic images since the mask created at this stage determines the position of

the tumor.

(ii) Manual liver segmentation. An experienced radiologist manually segmented the liver on all

X1m,X2m,X3m MRIs using a freely available computer vision annotation tool (CVAT)(CVAT.ai

Corporation, 2022). Output liver segmentation images are denoted as Lm.
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(iii) Algorithm for edge detection. The proposed method uses the traditional Canny edge detector

algorithm (Rong et al., 2014) to estimate all the contours inside X1m,X2m, and X3m images. In this

step, the method normalizes the input image pixels between 0 and 255. Then, the Canny operator

uses a multi-stage algorithm to detect a wide range of edges in the images with a randomly set of

P thresholds between 30 and 120, a heuristically defined range. Each contour image, denoted by

Emp, will be used to delimit the distribution of organs and tissues in the synthetic images. Since

the threshold to calculate the borders is variable, this method can generate multiple contour images

from the same MRI, which enhances the variability of the generated synthetic data.

(iv) Tumor and liver intersection mask. This fourth step aims to ensure that the synthetic MRIs

generated have a tumor located strictly inside the liver. For this purpose, the proposed method

calculates an intersection image, denoted as Is, between the tumor X̄ms and the liver masks Lm, i.e.,

Ims = X̄ms ∩Lm.

(v) New tumor and edges mask. The last step of the first stage overlays the tumor masks Ims

from the previous step on the edge detection images Emp. Let us denote these new images as Nmsp,

which will be used as input for the adversarial generative network of the second stage.

3.1.2. Step B: Image Synthesis. As illustrated in the second step of Fig. 18, Step

B covers synthetic image generation through an adversarial network. The data augmentation strat-

egy proposed in this method uses the Pix2Pix (Isola et al., 2017) architecture. In this network, the

output image generation is conditional on an input one, i.e., image-to-image translation. Specifi-

cally, three Pix2Pix networks are configured in parallel, the three generators are trained to receive

as input the same image Nmsp resulting from the first stage, and each network produces a different
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type of MRI contrast (T1-FS arterial, T1-FS portal, and T2) as output. On the other hand, the

discriminator part of each Pix2Pix network is fed with both the output images of the generator

(target) and the real training set (source) to determine through the loss function if the target is a

plausible transformation of the source image. Therefore, a different set of training data (X1m,X2m,

or X3m) is used as a source for each Pix2Pix. The GAN that receives the X1m images can generate

the synthetic Y 1msp. Similarly, networks trained with the images X2m and X3m will produce Y 2msp

and Y 3msp, respectively. Note that the Nmsp images were designed to delimit the distribution of

organs, tissues, and the location of MMHCC tumors on the synthetic images. This guarantees an

adequate anatomical composition of the new MRI, which is important for our final task, and tra-

ditional GANs do not set this condition by default. The quality of the generated synthetic images

was evaluated through the Frechet Inception Distance (FID) score (see Section 1.4).

3.1.3. Step C: Liver and tumor segmentation. The synthetic training dataset,

generated following the proposed approach in Steps A and B, is now used to train the final

computer-aided diagnosis task of this study: liver and tumor segmentation. This work exam-

ines the segmentation accuracy through a comparative analysis of various state-of-the-art networks

integrated into Step C of the LT-SyGAN framework. More precisely, in the following section,

we compare the results obtained from six segmentation networks: PSPNet (Zhao et al., 2017),

DeepLabV3 (Chen et al., 2018), FPN (Lin et al., 2017), Linknet (Chaurasia and Culurciello, 2017),

U-net++ (Zhou et al., 2018), and U-net (Ronneberger et al., 2015).
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3.2. Experiments and Results

This section illustrates the efficiency of the proposed LT-SyGAN algorithm. All simulations

were implemented using Python and PyTorch, and executed on an Nvidia TITAN RTX GPU with

24 GB of memory.

3.2.1. Dataset. The proposed approach was evaluated through a private dataset

of 267 multiparametric MRIs corresponding to 89 patients with MMHCC, made available by the

French Society of Radiology within the “GAN-based data augmentation of rare liver cancers: The

SFR 2021 Artificial Intelligence Data Challenge” (Mulé et al., 2022). The objective of this chal-

lenge was to design deep learning-based methods capable of generating any number of synthetic

MRI triplets (1,000 was the initial target of the challenge) from this available small dataset of MR

images. Specifically, a tumor segmentation mask and three acquisitions (MRI contrast images)

were available for each image: T1-FS arterial, T1-FS portal, and T2-weighted.

Implementation details. The Pix2Pix networks for the experiments reported in the next

section were trained using the Adam solver with 200 epochs, a learning rate of 0.0001, a batch

size of 24, and momentum parameters β1 = 0.5,β2 = 0.9. We utilized 200 epochs to ensure model

convergence, validated through visual inspection, and indeed, for our final model, we employed the

weights from the epoch with the highest performance, while the hyperparameters were heuristically

defined. Before the training, all MRIs were resized to 256×256 pixels.

3.2.2. Quantitative Results. Assessment of generated synthetic images. In this

subsection, the effectiveness of the proposed data augmentation framework to create realistic-



ALGORITHMS DESIGN FOR MEDICAL IMAGING 86

looking MRIs is evaluated quantitatively and compared to state-of-the-art methods. All the meth-

ods were trained on the dataset described previously and used to generate 1,000 synthetic mul-

tiparametric cases of MMHCC MRIs. Table 8 presents quantitative results with four methods: a

Pix2Pix network (Isola et al., 2017), a CycleGAN (Zhu et al., 2017), the proposed method, using a

CycleGAN in the second stage (LT-SyGAN-CycleGAN), and the proposed method using Pix2Pix

(LT-SyGAN-Pix2Pix) as described previously, in this chapter. Table 8 showcases the FID scores, a

crucial metric for measuring the quality of generated MRIs, achieved by four GAN-based methods.

This table comprises results for each MRI contrast, as well as an aggregate average across all gen-

erated MRIs. The FID is calculated from the distance between the training and the generated data.

Therefore, 89 real and 1,000 synthetic MRIs of each MRI type are used to calculate the results for

the first three columns. The score in the last column results from the 267 real images and 3,000

synthetic ones. The best result is shown in bold, and the second best is underlined. It is evident

from the results that the LT-SyGAN proposed method outperforms the others, achieving the lowest

FID scores, thus indicating superior quality synthetic MRIs. The same framework with Cycle-

GAN instead of Pix2Pix provides the second-best results. Conversely, well-known GANs such as

Pix2Pix and CycleGAN provide higher FID, thus less realistic synthetic MRIs, which effectively

highlights the superiority of our proposed method in generating high-quality synthetic MRIs. Fi-

nally, another major drawback of traditional GANs compared to our LT-SyGAN framework is that

they do not provide the tumor segmentation mask corresponding to the synthetic images.

Assessment of liver and tumor segmentation. To evaluate the usability of the synthetic im-

ages created with the proposed method, different segmentation networks were used. In particular,
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Table 8
Quantitative evaluation of generation of 3,000 synthetic MRI, measured by FID scores, comparing
two state-of-the-art methods with the proposed architecture in this study, employing CycleGAN
and Pix2PixGAN.

(↓) Frechet Inception Distance score (FID)

MRI type →
↓ Method

T1 Arterial T1 Portal T2 All

Pix2Pix (Isola et al., 2017) 274.87 284.95 267.77 234.39
CycleGAN (Zhu et al., 2017) 251.12 241.27 258.33 210.32

(ours) LT-SyGAN-CycleGAN 226.76 211.32 229.22 193.12

(ours) LT-SyGAN-Pix2Pix 115.13 102.47 123.37 86.55

Table 9 presents an ablation study of the proposed LT-SyGAN method, detailing the performance

of six segmentation networks as step C of the proposed framework, including PSPNet (Zhao et al.,

2017), DeepLabV3 (Chen et al., 2018), U-net (Ronneberger et al., 2015), Linknet (Chaurasia and

Culurciello, 2017), U-net++ (Zhou et al., 2018), and FPN (Lin et al., 2017). Each row in Table 9

corresponds to a different segmentation network, with its respective performance on both training

and testing sets. Performance is measured in terms of F1-score and Intersection over Union (IOU).

Furthermore, for comparison, we present the segmentation results, training the networks with two

numbers of synthetic images: 15,000 and 9,000, which correspond to 5,000 and 3,000 triplets,

respectively. Based on the results showcased in Table 9, Linknet emerged as the most effective

segmentation network within the LT-SyGAN framework, delivering the highest F1-score and IOU

results in the testing phase. Notably, these results are close to the performance of the U-net net-

work. It is worth noting from Table 9 that superior results are achieved when a greater number of

synthetic images are used. This underscores the significant role that synthetic image augmentation

plays in enhancing the performance of the segmentation task.
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Table 9
Quantitative tumor segmentation results with different CNNs in Step C of the LT-SyGAN proposed
method.

Synthetic
images

Backbone
segmentation

Training Testing
F1-Score IOU F1-Score IOU

15,000

PSPNet (Zhao et al., 2017) 89.29 85.06 79.19 71.94
DeepLabV3 (Chen et al., 2018) 92.83 89.23 81.53 74.47
U-net (Ronneberger et al., 2015) 94.93 92.10 83.26 76.19
Linknet (Chaurasia and Culurciello, 2017) 94.19 91.19 83.38 76.49

9,000

U-net++ (Zhou et al., 2018) 88.76 84.56 79.37 71.98
DeepLabV3 (Chen et al., 2018) 88.02 83.77 80.21 73.73
FPN (Lin et al., 2017) 90.04 87.06 81.96 75.69
U-net (Ronneberger et al., 2015) 89.30 85.32 81.32 75.07
Linknet (Chaurasia and Culurciello, 2017) 92.28 88.72 82.89 74.42

Table 10
Quantitative tumor segmentation results using a traditional data augmentation (DA) approach and
the LT-SyGAN proposed method with two numbers of synthetic images.

Results →
↓ Method

Number of Accuracy segmentation
synthetic images F1 Score IOU

Traditional DA
15000 77.90 71.03

9000 76.40 69.21

LT-SyGAN
15000 83.38 76.49

9000 82.89 74.42

Table 10 highlights the best segmentation outcomes on the test set achieved by our proposed

method when generating and employing 15,000 and 9,000 synthetic images, respectively. These

results were derived from Table 9, specifically from the rows associated with the Linknet network.

To facilitate result repeatability, we offer a thorough description of the implementation parameters

applied in Step C for achieving the results presented in Table 10.

The setup of the segmentation network used Python version 3.10.9, with a batch size of 33
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and a test size of 0.2. Depending on the number of synthetic images utilized, certain parameters

varied: - For 15,000 synthetic images: learning rate of 0.00024425, 125 epochs, and a training du-

ration of 1 day, 3 hours, 35 minutes, and 47 seconds. - For 9,000 synthetic images: learning rate of

0.0008752, 220 epochs, and a training duration of 19 hours, 17 minutes, and 8 seconds. Figures 19

and 20 depict the accuracy and loss curves during the training of the Linknet architecture. Specif-

ically, Figure 19 relates to a 125-epoch training with 15,000 images, while Figure 20 corresponds

to a 220-epoch training with 9,000 images (top and bottom row of Table 10, respectively).

Figure 19. (Left) Accuracy curves of Train and Test, and (Right) Loss curves of Train and Test. In
this experiment, the Linknet architecture was trained using 15,000 synthetic images.

Moreover, Figures 21 and 22 display the accuracy and loss curves for all architectures

listed in Table 9. Specifically, Figure 21 showcases the results of architectures trained with 15,000

synthetic images, while Figure 22 demonstrates the performance of networks trained with 9,000

synthetic images. It is important to underscore that, during the training of various neural networks

explored for stage C (segmentation) of the method presented in this chapter, the early stopping

condition was employed, as is demonstrated in Figures 19 to 22.
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Figure 20. (Left) Accuracy curves in Train and Test, and (Right) Loss curves in Train and Test. In
this experiment, the Linknet architecture was trained using 9,000 synthetic images.

3.2.3. Visual Results. This section presents the visual results of each stage of the

proposed method.

Step A: First, we detail one visual result of the first step of the proposed method, which

corresponds to the generation of masks through the overlapping of tumor-transformed shapes and

anatomical edges, as illustrated in Figure 23. From left to right, the Figure contains a real tumor

mask Xm of the original dataset, its transformation, and intersection with the liver mask Ims, and

the overlay of the tumor and the contour image Nmsp. Notice that the center image in this Figure

shows the result of an intersection mask Ims, where the liver manual segmentation Lm is in green,

the section of the tumor located inside the liver in yellow, and the tumor outside the liver in red.

In the right-hand side of Fig. 23, the intersecting tumor region Ims is overlaid with an edge image

Emp to generate a Nmsp image.

Step B: Figure 24 illustrates four random cases of synthetic patients, one per row, gener-

ated by the LT-SyGAN proposed method. The first column refers to the tumor segmentation mask
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Figure 21. (Left) Accuracy curves in Test, and (Right) Loss curves using 15,000 synthetic images
to train the Linknet, U-net, DeepLabV3, and PSPNet networks.

Figure 22. (Left) Accuracy curves in Test, and (Right) Loss curves using 9,000 synthetic images
to train the Linknet, U-net, FPN, U-net++, and DeepLabV3 networks.
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Figure 23. Visual results of Step A with one sample. The sequence, from left to right, showcases
the original tumor mask from the training set, the intersection between the modified tumor and the
liver mask, and the anatomical liver contour with the tumor mask.

created by our method (Ims), the second column to the synthetic T1-FS arterial Y 1msp, the third

corresponds to the synthetic T1-FS portal Y 2msp, and the last column to the synthetic T2-weighted

Y 3msp. The three synthetic images by row are associated with the tumor mask shown in the first

column. 1,000 results of triplets of image synthetic with their respective tumor masks are available

on the project website, showing the diversity and fidelity of the generated MRI. To assess the effi-

cacy of this method, we generated up to 5,000 triplets, as presented in Table 10. It is important to

highlight that this method can produce an indefinite number of unique triplets, thanks to the diverse

masks created in step A through geometric transformations of the tumor mask and adjustable edge

thresholding.



ALGORITHMS DESIGN FOR MEDICAL IMAGING 93

Figure 24. Visual results of Step B of the LT-SyGAN proposed method. In the figure, four triplets
of synthetic images, one per row. Each case (row) corresponds to three different
contrast-enhanced MRIs (arterial T1, portal T1, and T2-weighted) and their corresponding
segmentation tumor mask represented in the first column.

Step C: Both synthetic images and source training samples were utilized to train the Linknet

network. Figure 25 illustrates six examples of the liver (highlighted in green) and MMHCC tumor

(indicated in yellow) segmentation results obtained through testing our LT-SyGAN method on a

subset of 54 images from the source dataset—equivalent to 20% of the actual data. The top row

presents the test images, the middle row serves as a reference by displaying the ground truth, and

the bottom row shows the segmentation results achieved using LT-SyGAN.
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Figure 25. Visual liver and tumor segmentation results of some MRI images from the test subset
using the LT-SyGAN proposed method. (Top) original MRI. (Middle) ground truth. (Bottom)
segmentation result.

3.3. Conclusions

This chapter introduced an innovative framework for the generation of synthetic multi-

parametric MRIs, encapsulating two different sequence types (T1-FS and T2) and three different

acquisitions (arterial, portal, and delayed), specific to patients with a rare liver tumor. A crucial

element of our approach involved generating novel tumor masks via the intersection of liver seg-

mentation and augmented tumor masks, which was essential in ensuring anatomically accurate

tumor placements within the synthetically generated images.

From the use of new tumor masks, superimposed on real abdominal MRI edges, we initial-

ized three Pix2Pix networks trained to create three interrelated multiparametric MRIs, analogous

to a synthetic patient. Our method offers the capacity to generate an infinite number of cases, given
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its ability to produce limitless segmentation masks by incorporating various thresholds for Canny-

based edge detection and multiple geometric transformations of the tumor masks. The simulation

results demonstrated satisfactory FID scores and visually compelling outcomes.

Crucially, the synthetic images produced by our approach were employed to train a seg-

mentation network. It was demonstrated that these synthetic images significantly enhanced the

accuracy of the segmentation process, compared to the performance when training data was not

expanded. This establishes the synthetic images generated by our method as an effective tool for

augmenting training data and improving performance in image segmentation tasks.

In the future, we plan to evaluate the impact of replacing the manual liver segmentation

step of this chapter by using an additional MRI dataset from liver masks, which would improve the

automation of the method and increase the dependency on additional data.
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4. Automated Chronic Wounds Medical Assessment and Tracking Framework Based on

Deep Learning

This chapter presents the first extension of this doctoral thesis, a framework to effectively

acquire, detect, segment, and measure chronic wounds. Furthermore, it presents a new dataset

comprising 164 RGB images from 69 Colombian leprosy patients. Each image is accompanied

by its corresponding boundary coordinates and segmentation maps. The methodology proposed

in this study has been integrated into a web-based platform and implemented at the Sanatorio

de Contratación ESE, a Colombian hospital recognized for its specialization in treating Hansen’s

disease (leprosy) patients. Currently, the algorithm has become an integral component of the toolkit

employed by healthcare professionals at that hospital in their daily management of chronic wounds.

Part of this chapter has been adapted from the conference paper (Monroy et al., 2021) and

the accepted journal paper (Sanchez et al., 2023b). Section 1.9 summarises the notation used in

this chapter.

Chapter contribution. Chronic wounds are a latent health problem worldwide, due to the

high incidence of diseases such as diabetes and Hansen. Typically, wound evolution is tracked by

medical staff through visual inspection, which becomes problematic for patients in rural areas with

poor transportation and medical infrastructure. Alternatively, the design of software platforms for

medical imaging applications has been increasingly prioritized.

However, since the predominant cause of chronic wounds worldwide is type 2 diabetes,

there are a few public diabetes datasets, mainly from European and/or North American patients.
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This means that any neural model trained on public databases cannot be directly evaluated on

patients from different locations, including developing countries, due to differences in skin fea-

tures such as color or wound severity. This performance is even worse for different aetiologies

like leprosy, for which no public image datasets are available. Figure 26 illustrates a comparison

between images from the publicly available “Chronic wounds database (CW-DB)” (Krecichwost

et al., 2021), acquired in Poland from diabetes type-2 patients, and images captured in this study

from leprosy patients in the Contratación town, Colombia. Differences in wound characteristics

and skin type of the patients can be easily noted.

(a) (b)

Figure 26. Comparison of chronic wound images from (a) European diabetes patients (Chronic
wounds public dataset (Krecichwost et al., 2021)), and (b) Colombian patients with wounds
caused by leprosy.

Although several algorithms have tackled chronic wound analysis, to the best of the authors’

knowledge, a computational framework for automatic wound tracking, including leprosy ulcers,

has not been to date developed. Therefore, this chapter tackles this issue, employing deep learning

methods to sequentially detect, segment, and provide quantitative measures of the wound caused

by leprosy, allowing evolution tracking to support decision-making related to the effectiveness of

the medical treatment. The proposed “CO2Dnet” framework works on RGB images captured with

mobile devices like a smartphone, following a proposed protocol, which avoids the requirement
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of specialized and bulky acquisition setups, facilitating access to medical monitoring of patients

in rural communities from developing countries. To calculate quantitative measures of the wound,

i.e., area and perimeter, a calibration pattern was specifically designed to work as a reference

so that image pixels can be associated with metric units. Comprehensive tests in the collected

data show that the proposed framework overcomes the results of state-of-the-art methods on the

collected dataset by up to 16% in the F1-score metric. The developed framework was deployed to

an online platform so that medical staff from a local hospital and their patients could benefit from

it. The online-available framework enables a temporal evolution analysis of each specific wound,

allowing a personalized follow-up of patients’ conditions. The full implementation is available at

https://github.com/simatec-uis/CO2Dnet. To summarize, the specific contributions of this

work are as follows:

• The CO2Dnet framework for automated chronic wound tracking. A supervised deep

learning-based framework to detect, segment, and measure the area and perimeter of chronic

skin ulcers in metric units of the international system, and monitor the condition of a single

wound over time on leprosy patients, using RGB images.

• A general data acquisition protocol using smartphone cameras, which includes a designed

calibration pattern required to calculate quantitative wound measurements directly on the

RGB image.

• A chronic wounds dataset “CO2Wounds”, which contains 164 RGB images of chronic

wounds acquired from 69 leprosy patients, including the calibration pattern designed by the

https://github.com/simatec-uis/CO2Dnet
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authors, the detection boxes of wounds and calibration patterns, and the segmentation masks

of the wounds.

• Qualitative and Quantitative Study. Extensive cross-validation experiments were con-

ducted to evaluate and validate each step of the framework and the global proposed model

performance.

4.1. Proposed Method: CO2Dnet

The proposed CO2Dnet framework receives RGB images of chronic wounds as input, ac-

quired with commercial smartphones, and it mainly consists of four steps: A) data acquisition,

B) wound and calibration pattern detection, C) wound segmentation, and D) area and perimeter

calculation.

These steps are conducted so that the region of interest that contains the wound is cropped

and resized to obtain a standardized centered wound image, that is then segmented to extract the

wound. The calibration pattern is fully characterized in advance so that it is possible to calculate

the area and perimeter of the wound. Moreover, the estimated metrics from multiple captures

at different dates enable a temporal analysis of the evolution of the chronic wound and, allow the

medical staff to monitor the patient’s condition as well as the efficiency of the prescribed treatment.

Figure 27 depicts a general overview of the CO2Dnet proposed framework, and the key aspects are

summarized in Algorithm 1. The following subsections describe the procedure conducted at each

step of the framework.
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Figure 27. General scheme of the proposed CO2Dnet deep learning-based framework for
automatic segmentation and measurement of chronic wounds in skin ulcers RGB images acquired
with traditional smartphones.

4.1.1. Step A: Data Acquisition Protocol. The first step of the framework involves

the image acquisition process, in order to build a chronic wound dataset from Colombian leprosy

patients. A customized calibration pattern was designed, as illustrated in Fig. 28, which works as

a calibration tool to calculate the area and perimeter of ulcers in the International System of Units.

More specifically, the inner circle was designed to have radius R = 1.35cm, and the square side is

A = 3.5cm. These figures are used in the detection and metrics calculation processes, as will be

detailed in Sections 4.1.2 and 4.1.4 (Steps B and D, respectively). Additional characteristics of the

calibration pattern, i.e., colored squares were carefully selected, such that the detection network

can easily detect the pattern, due to color contrast. Further, colored squares are also intended for

color calibration purposes, that account for different smartphone camera responses. This process,

however, is relegated to future work. The top row includes the RGB and CMYK colors. The

bottom row contains six colors corresponding to the Fitzpatrick Skin Color Scale (Sachdeva et al.,

2009). This scale categorizes a person’s skin according to their complexion, hair color, propensity

to tan, and tolerance to sunlight, so-called skin phototypes. The squares of the two left columns and

the inner right column correspond to 22 colors specially defined and selected to match ulcer tissue
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representation as in (Wannous et al., 2012). Finally, the outer right column contains a grayscale,

traditionally used in pattern systems to calibrate the white and black sensor responses. It is worth

recalling that the acquisition of this dataset does not require a specialized setup, as this study is

intended to provide wound monitoring to patients in communities with insufficient medical assis-

tance. Therefore, images are acquired with smartphones, and they should include the calibration

pattern, located next to the wound. In addition, the following instructions were provided to health

personnel to complement the proposed acquisition protocol, so as to obtain good quality images:

i) the wound area to be photographed should be horizontally arranged, preferably on a background

of homogeneous color; ii) illumination should face the wound, and natural light is preferred; iii)

the calibration pattern should be located close to the wound, without covering it; iv) position the

smartphone camera parallel to (in front of) the wound; v) the complete wound and the calibration

pattern must be visible on the smartphone screen, without shadows over the wound or objects in

the background. Once all these conditions are satisfied, the image can be captured.

Figure 28. Calibration pattern to be used in Step A during the image acquisition and then in the
calculation of measurements in Stage D.

4.1.2. Step B: Wound and Calibration Pattern Detection. Captured wound im-

ages usually contain unnecessary information around the region of interest, i.e., the actual wound.
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This implies a class imbalance scenario, where a high percentage of image pixels correspond to

the background, while a small percentage actually belongs to the wound (Johnson and Khosh-

goftaar, 2019). Previous work has shown that working only with the region of interest improves

the performance of segmentation models (Monroy et al., 2021). Therefore, this work employs

a detection model YoloV4 (Bochkovskiy et al., 2020) to locate and crop the wound region from

the images, aiming to mitigate the impact of unnecessary information and improve segmentation

results. Specifically, the YoloV4 network is trained as a detection model, with the purpose of

detecting not only the chronic wound but also the calibration pattern. It is worth noting that the

pattern information is critical in the proposed framework because it works as a size reference object

to estimate the area and perimeter of the wounds.

The YoloV4 detection network receives the RGB images acquired in Step A as input, and

provides the bounding boxes of the detected regions of interest, i.e., the wound and the calibration

pattern, as illustrated by the green and magenta squares in Fig. 27. The detection YoloV4 archi-

tecture is composed of three sub-networks: a CSPDarknet53 (Wang et al., 2020b) as backbone,

which is pre-trained on the ImageNet dataset; an SPP module (He et al., 2015) and a PANet path

aggregation (Liu et al., 2018) are used to collect feature maps from different hidden layers of the

backbone network; and a YoloV3 (Redmon and Farhadi, 2018) as head, which is used to predict

classes and bounding boxes of objects.

The process can be mathematically modeled as follows. Let X ∈ RN×M×3 be the input

RGB image with N ×M pixels, and c = [i1, j1, i2, j2] is the boundary box provided by the YoloV4

network, surrounding the detected object, where (i1, j1) and (i2, j2) are the top-left and bottom-
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right coordinates of the box, respectively. Since, in this work, the detection network DDDθ (·) with

parameters θ are adjusted to detect two objects: the wound and the calibration pattern, the current

output of the YoloV4 network is

cw,cp = Dθ (X ), (16)

where cw and cp are the coordinates of the boundary boxes for the wound region and calibration

pattern, respectively. Then, the boundary boxes are used to crop the image X , so as to obtain two

independent sub-images: the wound Xw ∈RH×W×3 and the calibration pattern Xp ∈RH×W×3 as

Xw = CropResize(X ,cw), (17a)

Xp = Crop(X ,cp), (17b)

where CropResize(·) represents the operator that crops an image according to the bounding

box coordinates, and provides a resized output of H ×W pixels, with H = W = 320 as input pa-

rameters. Further, considering that task-relevant information varies for different image resolutions

(Van Noord and Postma, 2017), the size parameters H ×W for which the wound image is resized

must match the size of the images used in the segmentation model training.

4.1.3. Step C: Wound Segmentation. The segmentation step can be seen as a

classification task at the pixel level of the wound image Xw ∈ RH×W×3, where each pixel in the

image is associated with a class (wound/background), yielding a binary map of the wound region.

Given a segmentation network SSSφ (·) and its networks parameters φ , the estimated segmentation
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map can be mathematically modeled as

ŶYY = SSSφ (Xw), (18)

where ŶYY ∈ {0,1}H×W is the estimated segmentation map, with one value indicating that a pixel

corresponds to the wound region, and zero otherwise. Based on our previous analysis (Monroy

et al., 2021), the segmentation model used in this work follows a U-net architecture. The U-net is

divided into three parts: 1) a max-pooling path composed of down-scaling blocks, 2) a bottleneck

composed of convolutional layers, and 3) an up-sampling path composed of up-scaling blocks. As

illustrated in Fig. 29, a U-net is composed of L levels of pairs of down-scaling and up-scaling

blocks, with each pair connected by a skip connection. For the network configuration, we set the

number of levels to L = 5 with 24 features for the first level, and a multiplier factor of 2 in each

level, i.e., 48 features for the second level, 96 features for the third level, etc. Finally, a convolution

layer with a Sigmoid activation function is used to obtain the binary segmentation map.

4.1.4. Step D: Calculation of Wound Area and Perimeter. At the request of

the medical staff involved in this project, it was decided to quantify two key variables for wound

assessment: area and perimeter. These measurements are routinely used to document the current

condition of wounds, enabling the monitoring of their progression or regression over time, in

accordance with established medical procedures. For this aim, the estimated binary segmentation

map ŶYY of the wound region and the calibration pattern region Xp are used. This process requires

the conversion factor from image pixels to centimeters, so as to estimate the wound area (Aw)
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and perimeter (Pw). Since the dimensions of the calibration pattern are known a priori (See Fig.

28), as well as the input image size, the relation between camera pixels and centimeters can be

estimated via cross-multiplication. Specifically, we first employ a circle detection algorithm to

measure (in pixels) the radius Rp of the circle in the detected calibration pattern Xp, as Rp =

calculateRadius(Xp). Then, since the actual radius of the circle is known, i.e., R = 1.35 cm, the

conversion factor can be calculated as C f =
R

Rp
. Thus, the conversion factor is used to calculate the

area Aw and perimeter Pw of the wounds from the segmented images Ŷ as

Aw =C f ∥ŶYY∥0, Pw =C2
f ·P(ŶYY ), (19)

where, ∥ · ∥0 is the ℓ0 norm, namely, the amount of non-zero values, and P(·) denotes the

contour perimeter of the binary segmentation map. To compute the contour perimeter of a closed

shape, we employ the arcLength(·) function included in the OpenCV library. The input parameters

1  Level
st

2   Level
nd

L  Level
th

Figure 29. Illustration of the U-net architecture used for the wound segmentation task in Step C.
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of arcLength(·) function are an input vector of 2D points that describes the shape to analyze and a

flag indicating whether the shape is closed or not.

Algorithm 1 Chronic Wounds Analysis Algorithm
Require: X ▷ RGB input image
Ensure: ŶYY

1: cw,cp = DDDθ (X ) ▷ Wound and calibration pattern detection with YoloV4
2: Xw = CropResize(X ,cw) ▷ Crop wound region
3: Xp = Crop(X ,cp) ▷ Crop calibration pattern region
4: ŶYY = SSSφ (Xw) ▷ Wound segmentation
5: Rp = calculateRadius(Xp) ▷ Measure circle radius in pixels
6: C f =

R
Rp

▷ Compute pixels to cm conversion ratio

7: Aw =C f ∥ŶYY∥0, Pw =C2
f ·P(ŶYY ) ▷ Calculate wound area and perimeter

Training Procedure and Data Augmentation. Network training involves the ad-

justment of parameters so that the error between network predictions and original labels is reduced.

Thus, a successful implementation is obtained for a particular task. During the training procedure

of a specific network Mα(·), the error between the model predictions for input data x, ŷ = Mα(x)

and the ground-truth labels y is measured given an objective loss function Ltask(·), accordingly

selected to the desired task. Thus, network parameters are iteratively updated during training so

that the loss function is minimized. The training process is conducted until optimal performance is

achieved or a stopping criterion is reached. In general, the training procedure consists of solving

the following optimization problem

α
∗ ∈ arg min

α

E[Ltask(Mα(x(i)),y(i))], (20)

where the expected value E [·] is calculated for the training data set that contains labeled
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image pairs, i.e., {x(i),y(i)}N
i=1. Specifically, for the training procedure of step B (Section 4.1.2),

corresponding to the YOLO network, the parameters are initialized from pre-trained values using

the ImageNet database, and the parameters configuration suggested by the authors in (Bochkovskiy

et al., 2020). This strategy is known as transfer learning (TL). Mathematically, the training of the

YOLO detection model Dθ is described as follows

θ
∗ = arg min

θ

E[Lyolo(Dθ (X ),cw,cp)], (21)

where Lyolo is the detection loss function (YOLO MSE-based loss) proposed by authors

in (Redmon and Farhadi, 2018). Analogously, the training of the U-net segmentation model Sφ in

step C, with binary cross-entropy loss is described as follows

φ
∗ = arg min

φ

E[LBC(Sφ (Xw),YYY )]. (22)

A data augmentation (DA) scheme was implemented for both the detection and segmenta-

tion models to add robustness to the networks against image rotations and close-ups, caused by dif-

ferent camera positions across acquisitions. For the detection model, random values for saturation

and exposure were used following the default configuration provided by the Darknet framework

(Bochkovskiy et al., 2020; Wang et al., 2021). Conversely, for the segmentation model, the data

augmentation scheme accounts for varying distances between the wound and the camera. To this

end, the original data set was randomly cropped following the detection box labels, simulating

zoom alterations in the images, comparable to different acquisition distances.
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4.2. Experiments and Results

This section illustrates the performance of the CO2Dnet proposed framework for segmen-

tation and tracking of chronic wound images on an RGB data set acquired from leprosy patients.

All simulations were implemented in Python with Tensorflow 2.3 and ran on an Nvidia Quadro

Tesla T4 GPU with 16 GB of memory. Image data sets and evaluation metrics employed in these

experiments are described below.

4.2.1. Datasets. The performance of the proposed framework was evaluated using

two chronic wounds datasets: first, the new “CO2Wounds” dataset constructed, manually labeled,

and introduced in this chapter; second, the public database “Chronic wounds” (CW-DB) (Krecich-

wost et al., 2021). Specifically, the CO2Wounds, whose images contain the designed calibration

pattern, were used to evaluate all steps of the proposed framework, i.e., detection, segmentation,

and area and perimeter estimation. While the CW-DB was used to evaluate the segmentation step.

In the following, a detailed description of both datasets is provided.

The new CO2Wounds dataset contains 164 chronic wound RGB images from leprosy pa-

tients, compiled in this study, following the acquisition process described in Step A of the proposed

framework (Section 4.1.1). The images were acquired by the Leprosy program control from the

Sanatorio de Contratación in Colombia. Images from 69 consenting patients were collected by

medical staff for 7 months (November 2021 to June 2022), using different smartphone references

and the provided calibration pattern from Fig. 28. The dataset includes 164 RGB images with
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their corresponding binary segmentation maps. The public dataset is available2 and it is being

constantly updated.

The Chronic wounds database (CW-DB) contains images of diabetes patients from Poland,

including four different modalities: color (RGB) photography, thermovision, stereovision, and

depth perception, recorded along the same axis. The binary segmentation maps of the RGB ulcer

images are also provided by the authors. Moreover, the binary ulcer segmentation maps are delin-

eated by an experienced surgeon providing a ground truth for image segmentation algorithms. In

total, 737 images of 47 patients are available. However, this work only employed the 188 RGB

images and their corresponding segmentation maps.

4.2.2. Quantitative Segmentation Results. A cross-dataset validation experiment

was carried out to verify the overfitting domain assumption in the segmentation model from Step

C (Section 4.1.3). Considering that the two datasets (CW-DB and CO2Wounds) are available to

test the proposed segmentation model, this experiment evaluates its accuracy for the four possible

training and validation data combinations as indicated in Table 11. Here, a 10-fold configuration

was employed, where the original data set was randomly partitioned into ten equal-sized sub-

datasets so that a single sub-dataset is used for testing and the others for training. The framework

performance was evaluated using four metrics: precision, recall, Intersection over union (IoU),

and F1-score, calculated given the ground truth and the predicted segmentation masks YYY and ŶYY ,

respectively.

2 CO2Wounds database: https://doi.org/10.17632/nkw5gx57hw.1

https://doi.org/10.17632/nkw5gx57hw.1
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Thus, a 10-fold configuration was employed in the cross-validation process, where the orig-

inal data set was randomly partitioned into ten equal-sized sub-datasets so that a single sub-dataset

is used for testing and the others for training. The model was trained from scratch with the cor-

responding dataset at each run. The results in Table 11 show that, as expected, the proposed

framework obtains a suitable performance when training and validation data belong to the same

data set, reaching an F1-score value of 87.2% when CW-DB was used, and 64.3% in the case for

CO2Wounds. Otherwise, poor metrics were obtained as a consequence of domain overfitting.

Further, it should be noted that the highest metrics were obtained when CW-DB was used

for training and validation, because of the homogeneity of the images in this data set, as it was ac-

quired under controlled illumination conditions and a fixed camera setup. In contrast, CO2Wounds

is a more heterogeneous data set, containing images acquired with several smartphone cameras un-

der different illumination conditions in uncontrolled environments. Nonetheless, these character-

istics should not be considered shortcomings since they are inherent to the nature of the proposed

framework, intended to be accessible for hard-to-reach communities with limited medical infras-

tructure. Moreover, the experiments in the subsequent sections will show that fully employing the

proposed framework improves the results of just using the segmentation model.

To illustrate the cross-dataset results, Fig. 30 presents a qualitative and quantitative com-

parison of the segmentation maps of four different images from the CO2Wounds data set. The first

column contains the original input image of the wound; the second column shows the ground truth

of the binary segmentation map; the third column illustrates the results obtained from training with

CW-DB and evaluation with CO2wounds; and the fourth column depicts the results of training and
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evaluation with the CO2Wounds data set. Wounds at each result image are mapped to 4 colors:

green representing the true positives, blue the false positives, red the false negatives, and black the

true negatives. The F1 Score, precision, and recall are indicated in the black, dark gray, and light

gray rectangles. Note that the fourth column exhibits more true positive (green) and true negative

(black) pixels, with fewer false negative (red) and false positive (blue) pixels, in comparison to the

results in the third column. Also, the CO2W/CO2W column results are closer to the ground truth

images, with better F1-score, precision, and recall metrics. Conversely, the results of evaluating the

CO2W data set on a model trained on CW-DB show demonstrate the impact of domain overfitting.

Table 11
Cross-dataset validation results. Metrics are the result of 10-fold cross-validation.

Dataset (↑) Metrics (mean±std)
Training Validation F1-Score Precision Recall

CW-DB CW-DB 87.2±1.43 89.3±1.42 88.6±1.33
CW-DB CO2Wounds 43.6±4.34 79.8±8.75 34.0±5.60
CO2wounds CW-DB 21.7±5.44 93.2±4.07 12.7±3.33
CO2wounds CO2wounds 64.3±5.92 82.7±7.02 66.7±8.45

Estimation Error for Area and Perimeter. This section provides a general error

estimation for calculating the wound area and perimeter in units of the international metric system

using the Step D of the CO2Dnet framework. It should be pointed out that real wound area and

perimeter measurements are not available, because manually measuring chronic wounds typically

yields erratic values. These errors are related to the difficulties of appropriately locating a metric

instrument close to the wound. Therefore, the error evaluation performed in this work consists of

digitally crafted binary masks of a known object, i.e., rectangles in the calibration pattern, and uses
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Background
Wound

Image

F1-score Precision Recall

Ground Truth (CW-DB/CO2W) (CO2W/CO2W)
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FP
FN
TN

Figure 30. Segmentation results of example images from the test subset in the CO2Wounds
(CO2W) database. (First column) Input image; (Second column) Segmentation ground-truth
maps; (Third-Fourth columns) Segmentations from the (train/test) dataset evaluation case. Color
conventions in the top-right indicate True positives (TP), False positives (FP), False negatives
(FN), and True negatives (TN) pixels.

the resulting binary masks and photos as inputs for Step D . In this evaluation, we are working

with regular figures, allowing us to calculate the error by comparing the area and perimeter values

obtained through Step D with the actual known measurements of this object, described in Fig. 28.
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Specifically, five images of the calibration pattern were acquired with five different smart-

phone cameras. Then, the CO2Dnet framework was used to estimate the area and perimeter of

fifteen elements within the pattern. Specifically, the ruler with the metric units included in the

calibration pattern was used to define fifteen rectangular pieces of different sizes on each image,

as follows. Each of the n rectangles has a width of 1+ n cm, with n = {0, · · · ,14}, along the

grey ruler of the pattern, and a fixed height 2.95 cm. Figure 31(a-e) shows the five images of the

calibration pattern used in this procedure, and Figure 31(1-15) illustrates the rectangular elements

of Fig. 31(b) used for error calculation.

For each image, the area and perimeter of the 15 rectangles were calculated using Equation

19, where C f was automatically obtained by CO2Dnet using the area and perimeter in pixels of the

inner circle from the calibration pattern detected at each image (Fig. 31(a) ). The mean squared

error (MSE) between the real and estimated area, and perimeter of the fifteen pieces was calculated

for each of the five images. The average error results along with the standard deviation are shown

in Fig. 32.

Note that these numerical results show that the error in the area estimation is inversely

proportional to the element size, i.e., smaller pieces are more prone to larger errors in the area

estimation. Numerically, area relative errors vary between 7% and 11%, reaching a maximum of

15.6%. On the other hand, the error in the estimation of the perimeter is smaller, more stable, and

slightly independent of the object size, as observed in Fig. 32 (Right). Specifically, this error varies

between 4.6% and 6.5%, reaching a maximum of 8%. Consequently, these results show that area

and perimeter calculations are useful for quantitative wound tracking, providing more confident
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Figure 31. (Top) Images of the calibration pattern acquired with five different smartphones. (b)
Rectangular pieces of different known sizes are highlighted in blue. (Bottom) Ground truth of the
circle in the calibration pattern, and (1-15) Fifteen rectangles of known size along the ruler, used
to determine the estimation error of area and perimeter calculation on each image. Rectangles are
2.95 cm tall and n+1 cm wide, with n = {0, · · · ,14}.

Figure 32. Average MSE along with standard deviation (Left) area and (Right) perimeter
calculation using Step D (Section 4.1.4) of CO2Dnet framework. The method was evaluated in
fifteen pieces of known size in the calibration pattern through images acquired with five different
smartphone cameras.



ALGORITHMS DESIGN FOR MEDICAL IMAGING 115

results for larger wounds that, in turn, represent medically critical scenarios.

4.2.3. Ablation Study. In this section, an ablation study was conducted to assess

the contribution of the detection step (Step B in Section 4.1.2) to the performance of the overall

segmentation process. In addition, the impact of typical deep learning strategies on the segmen-

tation neural network was also evaluated. Specifically, we consider the contribution of transfer

learning (TL) and data augmentation (DA) strategies to the overall pipeline, as explained below:

i) Transfer learning (TL): This strategy, commonly used to improve the performance of neu-

ral networks, avoids training a model from scratch by initializing its weights with those from a

pre-trained network using a different data set. In this work, the segmentation network was ini-

tially trained with the CW-DB data set, so this pre-trained model was afterward retrained with the

CO2Wounds images.

ii) Detection (D) step (Sec. 4.1.2): enables image cropping and calibration pattern detection for

subsequent use in the area and perimeter calculation step. Here, the contribution of this step is eval-

uated by comparing the obtained results when detection is employed with respect to those from the

segmentation without detection, i.e., the full image.

iii) Data augmentation (DA) scheme: This strategy was included to consider image rotations and

close-ups, caused by image cropping performed by the YOLOV4 detection model. Essentially, DA

aims at preserving performance and reducing over-fitting.

This ablation study consists in evaluating the segmentation performance using different

combinations of the evaluated processes in the network training, i.e., TL, D, and DA, as indicated

in Table 12. It is worth noting that these processes should follow a particular sequence since, for
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instance, the data-augmentation stage requires the results of the detection stage (first detecting the

calibration pattern). For this reason, the data-augmentation without detection scenario was not

considered. The results are summarized in Table 12, in terms of F1-score, Precision, and Recall,

for which higher values indicate better results. A cross-validation strategy was used to statistically

evaluate the results and ensure they were independent of the data partition for training and testing.

Thus, the dataset is split into 90% data for training and 10% for testing. Further, each result is

the average of ten different model runs. The results in bold correspond to the best configuration,

and the underlined ones are the second best. It can be noted that combining the segmentation

with transfer learning, detection, and data augmentation provides the best results, while the second

best results were obtained for different configurations depending on the evaluation metric. Figure

33 presents visual results of the segmentation step C in Section 4.1.3, for 3 testing images of

the CO2Wound data set. From left to right, each column contains the RGB images, the wound

segmentation ground truth from a specialist, and the segmentation results obtained with transfer

learning (TL), transfer learning with the detection step (TL+D), detection step (D), detection and

data augmentation (D+DA), and all processes together (TL+D+DA). Each image includes the three

metrics from top to bottom, i.e., F1-score, Precision, and Recall. Further, true positive (TP), false

positive (FP), false negative (FN), and true negative (TN) values are represented by green, blue, red,

and black, respectively. In particular, green represents the properly segmented wound tissue (TP);

blue corresponds to tissue segmented as wound in healthy (no-wound) areas (FP); red indicates

wound tissue that was segmented as no-wound (FN); and black represents correctly segmented

regions where in fact no wound was present (TN). In summary, better-segmented images should
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contain a few blue and red pixels and more green and black pixels. Thus, it can be seen that this

behavior occurs for the case TL+D+DA in the last column.

Table 12
Quantitative segmentation results of the Ablation study 1. Importance of each step in the perfor-
mance of the proposed framework (10-fold cross-validation).

TL=Transfer-Learning, D=Detection, DA=Data-Augmentation.
Ablation Settings (↑) Metrics (mean±std )
TL D DA F1-score Precision Recall
✓ - - 71.2±6.36 79.8±11.3 66.6±8.69
✓ ✓ - 79.2±3.96 77.7±5.79 81.0±4.68
- ✓ - 77.4±5.59 75.3±6.58 80.4±4.24
- ✓ ✓ 76.7±4.44 80.7±6.55 79.7±5.39
✓ ✓ ✓ 83.2±3.81 84.5±4.51 81.9±4.71

4.2.4. Visual Results. To provide a visual representation of the results obtained by

each step of the proposed framework, Fig. 34 illustrates the images resulting from Steps A, B,

C, and D for six different wound images in the CO2Wounds data set. Specifically, the first col-

umn presents the wound images acquired following the data protocol proposed in Step A (Section

4.1.1), which are the input to the proposed framework. The second column illustrates the results

of Step B (Section 4.1.2), where the wound and calibration pattern is detected; specifically, the

calibration pattern is highlighted by the magenta box, while the wound is enclosed by the lime

green box. The third column depicts the resulting binary wound segmentation maps from Step

C (Section 4.1.3). Finally, the fourth column presents the numerical results for wound area and

perimeter estimation from Step D (Section 4.1.4). These results show that the proposed framework

is able to work on images of different wound severity and locations within the lower limbs. Also,

in all cases, the wound and the calibration pattern were appropriately detected. Further, when more
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Figure 33. Visual results of step C -wound segmentation. (First column) RGB testing images
from the CO2Wound database. (Second column) Expected ground truth wound segmentation;
(Remaining columns) Segmentation results from the proposed framework with different
combinations of transfer learning (TL), detection (D) and data augmentation (DA) schemes.

than one wound is present in the image, as in the last row of Fig. 34, the proposed framework is

able to detect and segment both of them.

In addition, the performance of the proposed framework was compared with respect to other

state-of-the-art segmentation methods for the analysis of chronic wounds. Specifically, the follow-

ing segmentation methods were considered: VGG16 (Goyal et al., 2017), SegNet (Wang et al.,

2015), MobileNetV2 (Wang et al., 2020a), and Unet (Ronneberger et al., 2015). All methods were

implemented and tested using the CO2Wounds data set acquired in this work, following the net-

work configurations suggested by the authors. Hyperparameters were tuned to achieve the best

performance for the data set. Average results for 10 runs of each model are reported in Table 13,

where it can be seen that the proposed framework outperforms its counterparts by at least 16%,
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Figure 34. Step-by-step visual results of the proposed framework for six images from the
CO2Wounds data set (rows). Each column corresponds to one step of the framework.

1.8%, and 11.2% in IoU, precision, and recall, respectively. It is worth highlighting the robustness

of the proposed framework, as indicated by the standard deviation values, which are the lowest
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overall. These results validate the positive influence of the detection, transfer learning, and data

augmentation tasks in the proposed framework.

Table 13
Segmentation comparison with state-of-the-art and deep-learning-based segmentation methods on
the CO2Wounds data set.

Methods
(↑) Metrics (mean±std )

IoU F1-Score Precision Recall
VGG16 (Goyal et al., 2017) 53.6±7.25 60.6±7.33 68.7±12.7 53.9±8.71
SegNet (Wang et al., 2015) 48.4±5.45 58.80±5.23 68.4±11.4 51.5±7.17
MobileNetV2 (Wang et al., 2020a) 60.1±7.72 68.2±8.12 65.9±12.5 70.7±12.6
Unet (Ronneberger et al., 2015) 64.3±5.92 73.9±7.19 82.7±7.02 66.7±8.45
CO2Dnet framework (Ours) 80.3±2.83 83.2±3.81 84.5±4.51 81.9±4.71

4.2.5. Clinical Tracking Validation. Considering that, the proposed framework

was designed as an alternative for chronic wound assessment in rural areas where medical in-

frastructure is insufficient, or poor transportation prevents appropriate treatment and tracking, we

deploy it on an online platform so that medical staff can benefit from its functionality. For con-

tinuous integration, scalability, and integrity, the proposed framework for the segmentation and

measurement of chronic wounds was deployed in a cloud computing service and integrated with

the web platform via an API gateway connection. To date, nurse practitioners from the Leprosy

Control program of Sanatorio de Contratación, in the Colombian town of Contratación, Santander,

are the main users of this platform. Each user can manage their patients, as well as upload wound

images that are automatically processed by the framework, which provides a visual comparison

of the original and the segmented wound with the corresponding measures of area and perimeter,

calculated as in Section 4.1.4. Thus, images of the same wound uploaded at different dates are
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grouped in a temporal set, so that a temporal analysis can be performed. In essence, the temporal

analysis provides insights into the evolution of the wound, with visual and numerical results that

determine whether the wound is improving or progressing with respect to the oldest image. In this

way, medical staff can make informed decisions related to the treatment.

Figure 35 illustrates examples of the wound tacking results with the proposed framework deployed

online. In particular, the evolution of four different ulcers is presented in terms of the area and

perimeter, in cm2 and cm, respectively. Also, the segmented wound image is included at the

top for each date, corresponding to the activation maps of each chronic wound image in the last

convolutional layer of the segmentation neural network (step C in Section 4.1.3). Since image ac-

quisition and uploading dates are independent of the algorithm, the top two cases have five records

each, while the cases at the bottom have four records each.
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Figure 35. Tracking results in four leprosy chronic wounds using the proposed framework.

4.3. Conclusions

The CO2Dnet, a deep learning-based framework for chronic wounds assessment and track-

ing has been presented. The proposed framework includes four steps that include: image acquisi-

tion, wound and calibration pattern detection, wound segmentation, and wound area and perimeter

estimation, where detection and segmentation employ deep neural networks with transfer learning

and data augmentation schemes to avoid overfitting and improve performance. In addition, a new

leprosy chronic wound data set (CO2 Wounds) from a developing country has been built. This

new data set is intended to provide more variability in chronic wound data sets so that to enable

future works in this context. Experimental results validate the proposed framework, with 80.3%

IoU, 84.5% precision, and 81.9% recall over the CO2Wounds dataset. These results overcome
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those from state-of-the-art segmentation methods (VGG16, SegNet, MobileNetV2, and U-net).

Moreover, temporal analysis of the wounds is allowed by the proposed calibration pattern, which

enables wound area and perimeter estimation. In this way, wounds can be monitored over time.

Future works can take advantage of the calibration pattern for color calibration purposes, aiming

at considering skin and ulcer color variations. Also, a deep-skin approach could be considered,

where analysis of the wounds contemplates underlying tissues and below-skin information that

can support wound healing.
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5. A bilinear convolutional neural network approach for skin lesion classification

This chapter presents the second extension of this doctoral thesis, an accurate method based

on deep learning for the classification of skin lesions. Specifically, this section introduces a frame-

work to classify seven classes of skin lesions on RGB photographs through a bilinear convolutional

neural architecture, achieving the highest state-of-the-art accuracy -as far as the authors know- over

the well-known HAM10000 dataset.

Part of this chapter has been adapted from the journal paper (Calderón et al., 2021). Section

1.9 summarises the notation used in this chapter.

Chapter contribution. Skin lesions are dermis areas with abnormal growth or appearance

compared to the surrounding area. They can be harmless such as a small scrape or severe skin

cancer. These dermis abnormalities increase in size over time and cause morbidity problems. Cor-

rectly diagnosing these skin lesions is crucial for successful treatment, which is generally too ex-

pensive. Convolutional neural networks (CNN) have been investigated for classifying skin lesions

with different training methods and techniques. However, the best results obtained by previous

works show that there is a wide range to be achieved regarding detection, precision, and compu-

tational costs. The HAM10000 dataset is one of the best-known public data sets of skin lesion

images (Tschandl et al., 2018), containing seven experts tagged classes. Some works that have

addressed the classification of this data set are described below. In (Miglani and Bhatia, 2020),

the authors fine-tuned the pre-trained EfficientNet-B0 architecture allowing 0.89 of precision and

0.97 of area under the curve (AUC). In (Mohapatra et al., 2020), they used the lightweight Mo-
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bileNetV1 model to classify skin lesions of the same dataset with 0.86 of precision. In (Chaturvedi

et al., 2020), they used a pre-trained MobileNet, achieving a similar 0.89 precision. Authors in

(Emara et al., 2019) proposed a modified version of the Inception-V4 network, adding a residual

connection to fuse low-level to high-level features and achieving 0.8617 of accuracy and 0.88 of

AUC. (Chopade, 2020) proposed a lightweight CNN built from scratch with which they reach 0.89

of precision. Finally, in (Garg et al., 2019), they proposed a framework with a pre-processing

step, which includes removing noise, adding resolution, pre-segmentation, data augmentation and

transfer learning over a ResNet architecture, achieving 0.88 of precision and 0.905 of accuracy.

For comparison purposes, the accuracy classification results of the HAM10000 dataset with non-

deep learning-based methods are 0.659, 0.6515, and 0.6586 for the random forest, XGBoost, and

support vector classifiers, respectively.

This chapter presents a bilinear CNN approach capable of classifying the seven skin lesion

classes of the HAM10000 dataset (Tschandl et al., 2018), achieving the highest state-of-the-art ac-

curacy and low computational cost. Specifically, this work proposes a framework of three steps: (i)

image pre-processing (preparation, data augmentation, resize), (ii) transfer learning via fine-tuning

on a bilinear CNN model composed by the pre-trained ResNet50 + VGG16 architectures working

in parallel, and (iii) features extraction for classification. Several simulations were executed over

the HAM10000 dataset. The results show that a bilinear approach composed of the ResNet50 and

the VGG16 architectures increases the accuracy by up to 2.7% compared to the state-of-the-art.

Specifically, the proposed approach achieves 0.9321 in accuracy, 0.9292 in precision, 0.9300 in

recall, 0.9321 in F1 score, and requires 238.6 minutes for training. This performance increase
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can help support the clinicians’ diagnosis to provide a second opinion, reducing morbidity and

treatment costs.

5.1. Proposed Method: BILSK

This method focuses on classifying skin lesion images through a deep-learning approach

with a nontraditional bilinear CNN architecture. The model is trained in a transfer learning and

fine-tuning way.

5.1.1. Step A: Image preprocessing. The image preprocessing step for our exper-

iments includes preparation, data augmentation, and resizing.

First, we randomly divided the dataset into three subsets: 80%, 15%, and 5% for training,

testing, and validation, respectively. Second, in the training of CNNs, it is essential to have a

large amount of data available to obtain a good classification performance and avoid over-fitting

(Sanchez et al., 2021a; Göçeri, 2020c). Therefore, in this work, data augmentation is applied

to increase the size of the training subset through six transformations: flip horizontal, vertical,

displacement width, height, rotation, and zoom. Third, we resize each training image to 224×224

pixels.

The original number of images by each class and images by set (Train/ Validation/ Test) in

the HAM10000 dataset is shown in Table 14.

5.1.2. Step B: Bilinear CNN Architecture. A bilinear CNN architecture consists

of the disposition in parallel of two equal or different CNN models connected at the top and end.

Figure 36 shows a bilinear architecture of two CNN models, A and B. An input feed both networks

and a training step calculates the weights for each neuron; the two model tensor outputs are for the
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Table 14
Images by each class and set (Train/Validation/Test) in the HAM10000 dataset.

Class Train (80%) Validation (5%) Test (15%) Total per Class % per Class
Akiec 272 14 41 327 3.26%
Bcc 450 16 48 514 5.13%
Bkl 939 40 120 1099 10.97%
Df 101 3 11 115 1.14%

Mel 1030 21 62 1113 11.11%
Nv 5101 401 1203 6705 66.94%

Vasc 119 6 17 142 1.41%
Total 8012 501 1502 10015 100%

features at each image location and pooling to obtain an image descriptor, as denoted in 23. The

outer product and sum pooling for two model tensor outputs are denoted as

X b,L1,L2 = ∑
m,n

A b,m,n,L1Bb,m,n,L2, (23)

where A ∈ Rb×m×n×L1 and B ∈ Rb×m×n×L2 are the output matrix from the first and the second

model. Further, b denotes the batch size, m and n the spatial dimensions, and L1 and L2 the features.

The resulting matrix X ∈ Rb×L1×L2 captures pairwise correlations between the feature channels

and can provide richer representations than linear models (Ustinova et al., 2017). The resulting

matrix X can be reshaped to b×L1L2 and then is normalized by signed square root normalization

given by

Y = sign(X)
√

|X|, (24)

which is also normalized by ℓ2 norm
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Z =
Y

∥Y∥2
. (25)

Finally, the output is passed to a fully connected layer with a softmax activation to obtain

predictions.

Figure 36. Bilinear CNN for skin lesion classification.

Three CNN architectures were used in this approach to compose and compare two differ-

ent bilinear architectures. The selected CNNs have demonstrated strong performance in image

classification tasks. Each model is described in the following sub-sections.

This approach uses two bilinear CNN models; the first combines the ResNet50 and the

VGG16 architectures, and the second combines the ResNet50 and the Xception architectures. The

fully connected layers were removed from each model before combining them into the bilinear

CNN, and after outer product operation, a single fully connected layer was adjusted to the classifi-

cation task, i.e., seven neurons were added instead of 1000 neurons.

ResNet-50 with VGG16 The CNNs used in the first bilinear model addressed in this work
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are described below. ResNet-50 (He et al., 2016) is a deep CNN with high performance in com-

puter vision tasks, winning the ImageNet classification challenge in 2015. ResNet learns the resid-

ual representation functions instead of directly learning the signal representation. This network

uses the skip connection, which helps avoid the vanishing gradient problem and increases the

model convergence, forwarding the output of a layer to the input in subsequent next layers. In

particular, we use for this work the ResNet-50 model since it provides better performance for this

purpose than other ResNet architectures. This CNN performs the initial convolution with a kernel

size of 7×7 followed by a Max-pooling with 3×3 kernel size. Then, the model consists of four

stages with 3, 4, 6, and 3 residual blocks, respectively. Each residual block has three convolutional

layers of kernel sizes 1× 1, 3× 3, and 1× 1. The 1× 1 convolution layer is used for dimension

reducing and restoring, and the 3× 3 layer is used as a bottleneck with smaller input/output di-

mensions. Finally, the network has an average pooling layer followed by a fully connected layer of

1000 neurons. In total, the ResNet-50 has over 23 million trainable parameters. On the other hand,

VGG16 was proposed in (Simonyan and Zisserman, 2014). The model obtained 92.7% top-5 test

accuracy in an ImageNet Classification Challenge. This CNN has 16 layers using 13 convolutional

layers and three fully connected layers, reaching 138 million trainable parameters. The input layer

size is 224x224, followed by five convolutional blocks. The first and second blocks have two layers

of 3× 3 kernel size, with a max-pooling with size 2× 2. The third, fourth, and fifth blocks have

three layers with 3× 3 kernel size and a max-pooling of 2× 2. Finally, the model has three fully

connected layers of 4096, 4096, and 1000 neurons. Activation functions should be chosen care-

fully in deep networks with residual blocks (Göçeri, 2019). Although various activation functions
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have been applied in recent works (Yu et al., 2020; Göçeri, 2021; Tanaka, 2020; Goceri, 2021),

ReLU has been used in the proposed architecture due to its efficiency.

ResNet-50 with Xception The second bilinear CNN approach addressed in this work is

composed of a ResNet-50 in one arm and an Xception network in the other one. ResNet-50 was

detailed in 2.3.1. and Xception is described as: Xception (Chollet, 2017b) is a deep CNN with

36 convolutional layers, which outperformed the ResNet and the VGG-16 in the ImageNet classi-

fication challenge. The Xception model has 14 modules divided into three stages, the entry flow,

the middle flow, and the exit flow, reaching up to 22 million parameters. The entry flow has four

modules; the first one has an input layer of size 299× 299, followed by two convolutional layers

with a 3×3 kernel size. The second to the fourth modules have two separable convolutional layers

with a 3×3 kernel size followed by a 3×3 max pooling and a linear residual connection around

each module. In the middle flow, a three separable convolutional layer module is repeated eight

times, each layer with a 3×3 kernel size, and a residual connection around the module. The exit

flow starts with two separable convolutional layer modules with a 3× 3 kernel size, a 3× 3 max

pooling, and a residual connection. Finally, two separable convolutional layers are followed by a

global average pooling.

5.1.3. Step C: Transfer Learning and Fine-Tuning. Training a deep CNN from

scratch is challenging, especially in medical image classification due to a lack of large labeled

datasets. Therefore, the transfer learning technique emerges as an alternative to reuse a pre-trained

model as a starting point to generate a model for a new task of interest. This technique is useful

as an optimization that allows rapid progress or improved performance when modeling the second
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task.

For the purposes of this work, we use the ResNet50, VGG16, and Xception convolutional

neural networks previously trained with the ImageNet dataset, which are available in the Keras

library. ImageNet (see subsection 4.1.2) is a large visual database designed for visual object recog-

nition software research (Deng et al., 2009). Then, the fully connected layer with 1000 neurons is

replaced by a seven neurons layer; and the average pooling layer is removed to retrain the weights

to the target task, without the initialization being random.

For improving performance, we use the fine-tuning technique of freezing 70% of the layers

for the ResNet50 model, 75% of the layers for the VGG16 model, 70% of the layers for the Xcep-

tion model and adjust the weights of the remaining ones, this can potentially achieve meaningful

improvements, by incrementally adapting the pre trained features to the new data (Tajbakhsh et al.,

2016).

Hyperparameters. Table 15 describes the hyperparameters used for training the models.

Images were resized to 224x224 in order to have a balance in a good quality resolution and model

efficiency and the batch size was set in 32 for both models. Also, a decay function was used to

monitor the validation loss and decrease the learning rate (lr) when this metric stopped improving

after a certain number of epochs determined by the patience parameter, see Eq. 26.

Decreasedlr = lr · f actor, (26)

Adam optimizer was used in both models to improve the learning process and enhance the
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performance, and the epochs number was set at 10. Although several optimizers have been imple-

mented in deep networks to obtain results with high performance, such as Lagrangian optimizer

(Kervadec et al., 2019) or Sobolev gradient-based optimizer (Göçeri, 2020a), they generally cause

high computational costs. Therefore, we applied the Adam optimizer in this work.

Table 15
Hyperparameters for each proposed bilinear CNN.

Parameter ResNet50 & VGG16 ResNet50 & Xception
Image Size 224x224 224x224
Batch Size 32 32

Learning Rate 0.0001 0.001
Decay Factor 0.3 0.5

Patience 2 2
Optimizer Adam Adam

Epochs 10 10

5.2. Simulations and Results

This section evaluates the performance of the BILSK skin lesion classification proposed

method. We classify the lesions from the HAM10000 dataset described below, perform the data

augmentation technique, and quantitatively evaluate performance using six standard metrics in

medical image classification. This proposed approach gets the highest accuracy against current

state-of-the-art techniques in the classification of this skin lesions dataset. We compare the results

obtained against other methods of state-of-the-art. To evaluate the classification results, we use

the metrics: accuracy, precision, F1 score, recall, the area under the ROC curve (AUC), and the

Matthews correlation coefficient (MCC).
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5.2.1. Dataset. The HAM10000 dataset is an extensive collection of 10,015 der-

moscopic images of skin-pigmented lesions, annotated into seven classes (Tschandl et al., 2018).

This dataset became available in 2018 through the ISIC Challenge by Canfield Scientific, a bench-

marking initiative that gives tasks of diagnosis, detection, and segmentation to the research com-

munity. The classes included in the dataset are actinic keratoses and intraepithelial carcinoma

(Akiec), basal cell carcinoma (Bcc), benign keratosis (Bkl), dermatofibroma (Df), melanoma

(Mel), melanocytic nevi (Nv), and vascular lesion (Vasc). Figure 37 shows a random sample

of each skin lesion type from the dataset, with abbreviations at the top representing the name of

each class wound. The images for HAM10000 were taken on men and women ages 5 to 80 at two

locations, the Department of Dermatology at the Medical University of Vienna, Austria, and the

Cliff’s Skin Cancer Practice Rosendahl from Queensland, Australia. More than 50 % of the lesions

labeled in the dataset have been confirmed by pathology. Meanwhile, the ground truth of the rest

of the cases was determined by follow-up, expert consensus, or confirmation by in vivo confocal

microscopy.

Figure 37. Seven skin lesions classes in the HAM10000 dataset.

Regarding each skin lesion in the dataset, the Akiec is the most common precancer in skin

damaged by chronic exposure to ultraviolet rays (Goldenberg and Perl, 2014). Bcc is a slow-

growing, locally invasive malignant epidermal skin tumor (Rubin et al., 2005). Bkl is one of the
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most common non-cancerous skin neoplasms in older adults (Roh et al., 2016). Df is a common

benign fibrous nodule that most often arises on the skin of the lower legs (Cohen et al., 2019). Mel

is the most serious type of skin cancer, it develops in the melanocyte cells that produce melanin

(Miller and Mihm Jr, 2006). Nv are benign neoplasms or hamartomas composed of melanocytes,

the pigment producing cells that constitutively colonize the epidermis (Damsky and Bosenberg,

2017). Lastly, Vasc are relatively common abnormalities of the skin and underlying tissues, more

commonly known as birthmarks (Syed et al., 2016).

Table 14 shows that the distribution of the training image set is unbalanced; that is, there

are more images of some classes than others. This can cause the classifier to be biased and assign

the majority classes’ labels (e.g., melanocytic nevi or melanoma). For this reason, the data aug-

mentation technique was applied. To achieve this task, several transformations such as rotation,

zoom, width shift, height shift, horizontal flip, and vertical flip were applied to the original training

images in order to generate new training samples to the training set.Random rotations up to 180

degrees were applied to the images. Besides, random zoom was applied in a factor of 0.1; width

and height shift in a factor of 0.1; random horizontal and vertical flip were also performed. Fur-

thermore, input images were normalized into a standard range from [0,1]. The results of the data

augmentation for a random sample of the data set are shown in Fig. 38.

After applying the data augmentation technique, the training data is more balanced. The

new amount of data per class is shown in Table 16.

5.2.2. Quantitative Classification Results. The ROC curves of all seven classes

of the HAM10000 dataset, classified with the bilinear approach of CNN ResNet50 and VGG16,
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Figure 38. Data augmentation results with six transformations for a random sample of the
HAM10000 dataset.

Table 16
Distribution of the HAM10000 training dataset by classes after data augmentation.

Class Original Train Images Augmented Images
Akiec 272 5696
Bcc 450 5656
Bkl 939 5890
Df 101 4747

Mel 1030 5886
Nv 5101 5997

Vasc 119 5570

Total 8012 39442

are shown in Fig. 39. Note that the corresponding AUC values for each curve are recorded in the

labels of the conventions. Also, in these labels are reported the micro and macro-averages. Micro-

average corresponds to the contributions of all classes to compute the average metric, whereas

macro-average computes the metric independently for each class and then calculates the average.

In the same sense, the results with the ResNet50 and Xception bilinear approach and their

respective AUC values are shown in Fig. 40. Note that in both bilinear approaches, the extreme
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Figure 39. ROC curves for each class of the HAM10000 dataset using the ResNet50 and VGG16
bilinear approach.

point of curvature of the graphs is very close to the upper left corner. If the point of curvature

were to form a right angle, the AUC would be 1. Therefore, the curves obtained through this work,

with vertices close to forming angles of 90 degrees, demonstrate a good separation capacity of the

evaluated model.

The quantitative results of the proposed approaches are presented in Tables 4 and 5. In par-

ticular, Table 4 shows the numerical results for each of the seven skin lesion classes in HAM10000

using the ResNet50 and VGG16 bilinear approach. Meanwhile, Table 5 exposes the ResNet50 and

Xception bilinear structure results. These tables show the main classification results for each class,

the macro, and the weighted average obtained by the model.

Note that the results are very similar in both cases based on the metrics evaluated in the

tables. However, the precision, recall, and F1-Score are slightly higher in the VGG16 approach.



ALGORITHMS DESIGN FOR MEDICAL IMAGING 137

Figure 40. ROC curves for each class of the HAM10000 dataset using the ResNet50 and
Xception bilinear approach.

The confusion matrix is a quantitative-graphical way of analyzing the classification results.

In Figs. 41 and 42, the confusion matrices of each of the two bilinear approaches are shown when

evaluating the images in the Test column of Table 2. In these matrices, the vertical axis corresponds

to the true labels and the horizontal axis to the predicted labels.

Identity matrices are expected as a result of these graphs, which would indicate perfect clas-

sification of all images, while values outside the main diagonal are the errors of the classification.

In Fig. 6 a value of 0.55 was obtained for the mel class (melanoma), due to several images corre-

sponding to this class were predicted by the model as nv (melanocytic nevi) class images. In Fig.

7 the same confusion was also presented between the mel and nv classes. Also, with this model

there were some errors in the labeling of df (dermatofibroma) images, since they were predicted

as akiec (intraepithelial carcinoma), bkl (benign keratosis), or nv. However, in general it can be
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Table 17
ResNet50 and VGG16 Classification Report

Class Precision Recall F1-Score
Akiec 0.83 0.73 0.78
Bcc 0.78 0.81 0.80
Bkl 0.83 0.78 0.80
Df 1.00 0.73 0.84

Mel 0.65 0.55 0.60
Nv 0.96 0.98 0.97

Vasc 0.93 0.82 0.87

Macro Avg 0.86 0.77 0.81
Weighted Avg 0.9292 0.9321 0.9300

Table 18
ResNet50 and Xception Classification Report

Class Precision Recall F1-Score
Akiec 0.65 0.78 0.71
Bcc 0.86 0.77 0.81
Bkl 0.82 0.70 0.75
Df 0.67 0.55 0.60

Mel 0.62 0.55 0.58
Nv 0.97 0.99 0.98

Vasc 0.94 0.88 0.91

Macro Avg 0.79 0.74 0.76
Weighted Avg 0.9207 0.9261 0.9221

deduced from both confusion matrices that the results are highly accurate. The proposed models

were trained using Google Colab free GPU. Table 19 shows the computational costs in terms of

RAM and GPU used in Gigabytes, time per epoch, and total training time in seconds. The Table

shows that the ResNet50 and VGG16 models are less computationally expensive than the other

approach. This was expected since the combination of the ResNet50 and Xception architectures

of the second model has a significantly higher number of layers and trainable parameters than the

first approach.
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Figure 41. ResNet50 and VGG16 Confusion Matrix.

Table 19
Computational Costs

Model
ResNet50 and

VGG16
ResNet50 and

Xception
RAM (GB) 2.24 3.07
GPU (GB) 9.60 14.24
Time per epoch (s) 1432 1956
Training time (s) 14320 19560
Trainable Parameters (Million) 22.37 23.33

For comparison purposes, the most outstanding state of the art works in the classification of

the data set HAM10000 have been compiled in Table 7. These methods have been described in the

Introduction Section (Chopade, 2020; Mohapatra et al., 2020; Chaturvedi et al., 2020; Miglani and

Bhatia, 2020; Garg et al., 2019; Emara et al., 2019). Table 7 includes the results of the six state-of-
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Figure 42. ResNet50 and Xception Confusion Matrix.

the-art works, from lowest to highest accuracy, and of the two bilinear approaches addressed in this

chapter. The metrics that were not reported in the original documents of each work are indicated

with a dash (-) in the table and the best result of each column is highlighted in bold. Note that, in

general, all the best results were obtained with one of the proposed approaches. Specifically, in the

first four metrics Accuracy, Precision, Recall and F1-Score, the best results were achieved with the

CNN ResNet50 and VGG16, which is also the lightest model in computation terms. Finally, the

CNN ResNet50 and VGG16 achieved a higher MCC compared to the other approach.

5.3. Conclusions

Developing CAD systems for medical image classification tasks using bilinear CNN models

represents a significant performance improvement over single CNN, furthermore, balancing the
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Table 20
Quantitative results of different classification methods for the HAM10000 dataset.

Method Accuracy Precision Recall F1-Score MCC
EfficientNets (Miglani and Bhatia, 2020) - 0.89 0.89 - -

S-CNN (Mohapatra et al., 2020) 0.80 0.86 0.82 0.85 -
MobileNet (Chaturvedi et al., 2020) 0.8315 0.89 0.83 0.83 -

Modified Inception-v4 (Emara et al., 2019) 0.8617 - - 0.717 -
Incremental CNN (Chopade, 2020) 0.9026 0.89 0.89 0.88 -

Decision Support System (Garg et al., 2019) 0.905 0.88 0.77 0.74 -
ResNet50 and Xception 0.9261 0.9207 0.9261 0.9221 0.8210

BILSK: ResNet50 and VGG16 0.9321 0.9292 0.9321 0.9300 0.8330

data, using pre-trained models, and adapting them to new data through transfer learning and fine-

tuning improve model generalization. In general, the work carried out in this chapter overcomes the

state-of-the-art methods in terms of Accuracy in the classification of the public dataset HAM10000.

Fig. 42 shows that the ResNet50 and Xception improved the vasc and akieck class precision in

comparison with the results presented in Fig 41. However, the model is less accurate in other

classes, such as bcc, bkl, and df. It is observed that the use of bilinear approaches is a strategy that

can provide better results in the analysis or classification of medical images. Regarding the two

combinations addressed in this chapter, although there is no critical difference between the two

models’ precision, a distinction was evidenced in terms of precision by class. Therefore, if a single

specific lesion type is looked at, the most suitable model could be selected for the required class.
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6. Accurate Deep Learning-Based Gastrointestinal Diseases Classification via Transfer

Learning Strategy

This chapter presents the latest extension of this doctoral thesis, a lightweight, efficient,

and high-precision neural method for classifying diseases and abnormalities of the gastrointestinal

tract. The novelty and usefulness of the proposed method lie in the fact that it uses only one-fifth of

the trainable parameters compared to other more complex methods that achieve a similar precision.

Part of this chapter has been adapted from the conference paper (Escobar et al., 2021).

Chapter contribution. The automatic detection of diseases and gastrointestinal tract anoma-

lies is challenging for medical experts, affecting patient treatment decisions. Therefore, it is es-

sential to implement deep learning-based systems (Pang et al., 2021) that support the detection of

anomalies and diseases in endoscopic images.

For instance, in (Pogorelov et al., 2017), they propose the classification of the Kvasir-V1

dataset (endoscopic images) using global features and transfer learning, obtaining an accuracy of

95.9%. In (Cogan et al., 2019), they pre-processed the Kvasir-V2 dataset with edge removal, con-

trast enhancement, filtering, color mapping, resizing, and data augmentation. These images were

used to train and test three CNNs: Inception-v4, Inception-ResNet-v2, and NASNet, obtaining the

best result, 98.48% accuracy, with the Inception-ResNet-v2. In (KahsayGebreslassie et al., 2019),

they classified the Kvasir-V1 dataset using transfer learning and fine-tuning on the ResNet50 and

DenseNet121 models, achieving an accuracy of 87.8% and 86.9%, respectively. An approach of

combining features extracted by several CNNs was addressed in (Gamage et al., 2019). They
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classified the Kvasir-V2 with DenseNet-201, ResNet-18, VGG-16, InceptionV3, Xception, and

Inception-Resnet-V2, connected by a global average pooling layer to obtain feature vectors. This

method allows them an accuracy of 97.38%.

Notice that state-of-the-art methods for gastrointestinal anomaly classification have com-

plex architectures, which require multiple parameters to be trained. Then, there is a scope for

developing a light and easily replicable deep-learning-based method that maintains the high preci-

sion of more complex models in gastrointestinal anomaly classification.

This chapter addresses the Kvasir-V2 dataset classification problem using pre-processing,

transfer learning, and hyperparameter fitting. Due to the lack of labeled medical images, we first

use data augmentation with geometric transformations to generate new images. Then, we use

the VGG-16 network with previously trained weights for the Imagenet dataset to extract features.

Instead of retraining all the architecture from scratch, we explore different fine-tuning settings that

lead us to achieve the best accuracy with significantly fewer parameters. We found that performing

a fine-tuning of the weights from the convolutional layer 3 in block 4 of the VGG-16 architecture

to the fully connected layer led to the best results in terms of accuracy. Our proposed framework

provides high classification precision from light and a computationally inexpensive neural model.

In this way, we can show that it is unnecessary to readjust all the pre-trained weights of a neural

model for a long retraining period to achieve high performance in classifying endoscopic images in

eight classes of diseases or anomalies of the gastrointestinal tract. Our proposed approach achieves

98.20% accuracy during testing by only using the fifth part of trainable parameters compared to

the state-of-the-art methods.
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6.1. Proposed Method: GT-Net

In this section, we described our proposed approach for diseases and anomalies classifica-

tion of the GI tract. We separate the steps and explain them in the following subsections.

Figure 43. The proposed approach’s workflow to detect gastrointestinal anomalies and diseases
from endoscopic images using CNN and transfer learning.

6.1.1. Step A: Image Preprocessing. In the training of CNNs, it is essential to

have a large amount of data available to obtain a good classification performance and avoid over-

fitting. Therefore, in this work, data augmentation is applied to increase the size of the training set

by performing different geometric transformations. In our experiments, we randomly divided the

dataset into three subsets: 80 %, 15 %, and 5 % for training, testing, and validation, respectively.

Second, we perform data augmentation to the training subset through six transformations: flip hor-

izontal, vertical, displacement width, height, rotation, and zoom. Finally, we resize each training

image to 400×400 pixels before feeding the images to the CNN.

6.1.2. Step B: Transfer Learning Strategy. One of the main challenges of em-

ploying deep learning models in the medical area is the lack of training data (Alzubaidi et al.,

2020). Furthermore, computationally expensive models are more challenging to scale. For these

reasons, transfer learning is advantageous in the medical field. From a CNN model previously

trained with natural image data sets, the classification task can be efficiently transferred to a do-
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main with medical images avoiding the expensive training from the scratch process.

Consequently, we propose to use the transfer learning technique by comparing five different

CNN models to choose the best-performing network. Also, we use fine-tuning to re-train only

some layers of the neural networks using the preprocessed training data in II.A. For comparison

purposes, we retrain the layers of the last convolutional block for each of the five models and

keep all the other weights from their ImageNet pretraining unaltered. We replace the previous

layer of the five networks with a new layer of eight units representing the number of classes in the

Kvasir dataset. Figure 43 shows the pipeline of the proposed approach to detecting gastrointestinal

anomalies and diseases from endoscopic images using CNNs via a transfer learning strategy.

6.2. Simulations and Results

This section presents the numerical results of the proposed framework for gastrointestinal

disease classification through endoscopic images using the Kvasir-V2 dataset. We trained the

proposed model using the Adam optimizer with a batch size of 32 and an initial learning rate

of 1 × 10−4. We applied an inverse time-decay learning rate schedule with a decay factor of

1× 10−5/epochs that was triggered every epoch. We trained the network for 15 epochs, which

took about 45 minutes on an Nvidia Tesla T4 GPU.

6.2.1. Dataset. The Kvasir-V2 dataset (Pogorelov et al., 2017) is composed of

endoscopic images from inside the gastrointestinal tract. This version of the dataset consists of

8,000 images grouped into 8 different classes (i.e., 1000 per class), which have been annotated and

verified by experienced endoscopists. The classes are based on three anatomical landmarks (z-line,

pylorus, cecum), three pathological findings (esophagitis, polyps, ulcerative colitis), and two other
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Figure 44. Four random samples from each class in the Kvasir-V2 dataset.

classes related to the removal of polyps (dyed and lifted polyps, dyed resection margins) as shown

in Fig. 44. The dataset splits utilized in this study were recommended by the dataset owners. For

the ablation studies, we conducted a 5-fold cross-validation on the train and validation sets, while

the final reported results are based on a single run performed on the test set.

Data Augmentation. We perform data augmentation on the Kvasir-V2 dataset using the

geometrical transformations exposed in Section II.A. (see Fig. 45). Then, the training images were

doubled with the data augmentation, from 800 to 1600 training images for each class, obtaining

a total of 12800 training images, considering that there are 8 classes and 1600 training images in

each class, as seen in Table 21. Note that the number of images for testing and validation was not

changed.
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Figure 45. Geometric transformations in data augmentation.

Table 21
Images distribution before and after augmentations.

Before After

Images
per class

Total
images

Images
per class

Total
images

Train 800 6400 1600 12800
Test 150 1200 150 1200
Validation 50 400 50 400
Total 1000 8000 1800 14400

6.2.2. Quantitative Results. The results obtained for our proposed method are pre-

sented in the last row of Table 25, in which we calculated the metrics: accuracy (ACC), precision

(PREC), recall (REC), specificity (SPEC), f1-score (F1), and Matthews’s correlation coefficient

(MCC), from the true positive (TP), true negative (TN), false positive (FP), and false negative (FN)

cases, which are reported in the confusion matrix of Fig. 46. The AUC for each class, macro, and

micro-average of the proposed framework are reported in the ROC curves conventions in Fig. 47.

Macro-average focuses on aggregations and totals, representing the arithmetic mean or average of

precision values across all classes. In contrast, micro-average delves into individual class assess-
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ment. It calculates the sum of all true positives divided by the sum of both true positives and false

positives, effectively measuring the ratio of correctly identified predictions to the total number of

predictions. Otherwise, Fig. 48 shows the accuracy and loss curves of our model along the training

epochs. These curves show a training model converging smoothly and steadily towards weights

that allow high precision and low error in training and validation subsets. Besides, in Fig. 47, the

AUC of this model is 0.99, which shows a high capacity to distinguish among the eight classes.

Figure 46. Confusion matrix of the proposed classification approach for the Kvasir-V2 dataset.

6.2.3. Ablation Studies. We evaluate the performance of the proposed pipeline by

comparing our method with the baselines based on the same experimental setting. First, we tested

five CNNs pre-trained with the ImageNet dataset: DenseNet201, ResNet50, Xception, VGG19,

and VGG16. The results obtained are shown in Table 7. We reported the accuracy score for

each experiment and found the best result using the VGG16 network. Therefore, we selected this
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Figure 47. AUC values and ROC curves for each class in the Kvasir-V2 dataset using the
proposed classification framework.

Table 22
Accuracy for different tested CNN architectures.

Pretrained CNNs Accuracy

DenseNet201 78.55
ResNet50 90.42
Xception 78.26
VGG19 97.64
VGG16 98.20

network to continue with our study.

Once the network was defined, we tested the fine-tuning in the different convolutional

blocks of the VGG16 network. As shown in Table 23, the best performance was obtained by

training from “block4_conv1”. Next, we performed the tests described in Table 24, where we ap-

plied the fine-tuning from each of the three internal layers of block 4. We observed that the best
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Table 23
Accuracy for Different VGG16 blocks.

Block with
Fine-tuning

Trainable
Params

Non
Trainable
Params

Computacional
Time [s]

Accuracy

block1_conv1 14,714,688 0 5849.254 0.9764
block2_conv1 14,675,968 38,720 4395.321 0.9781
block3_conv1 14,454,528 260,160 2253.218 0.9792
block4_conv1 12,979,200 1,735,488 2877.035 0.9808
block5_conv1 7,079,424 7,635,264 2363.919 0.9803

Table 24
Accuracy for the different layers of block 4.

Layer with
Fine-tuning

Trainable
Params

Non
Trainable
Params

Computacional
Time [s]

Accuracy

block4_conv1 12,979,200 1,735,488 2877.035 0.9808
block4_conv2 11,799,040 2,915,648 2607.204 0.9820
block4_conv3 9,439,232 5,275,456 2462.092 0.9791

accuracy was obtained by training from "block4_conv2". Therefore, in our proposal, we use the

VGG16 architecture previously trained with the ImageNet dataset, and the fine-tuning technique

is applied by training from "block 4_conv2".

6.2.4. Comparison Results. We compare the performance of our proposed method

with existing related methods, which have been reported for endoscopic image classification and

described in the first part of this chapter. As shown in Table 25, our method outperforms three of the

baseline methods in terms of accuracy. The best results are shown in bold font, and the second-

best is underlined. Although our method did not outperform the work in (Cogan et al., 2019)

by a difference of 0.28%, our method is significantly faster and less computationally complex.
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Specifically, the authors in (Cogan et al., 2019) proposed a bilinear architecture that fuses extracted

features with both Inception and ResNet networks. This method needs training over 55.8 million

parameters to achieve the reported results. On the other hand, our method requires only 11.7

million trainable parameters to achieve very similar accuracy results.

Table 25
Applications of machine learning in GI tract analysis research using the Kvasir-V2 dataset.

Year Method
Dataset

Distribution ACC PREC REC SPEC F1 MCC

Train Test Validation

2017 3 Layer CNN (Pogorelov et al., 2017) 50% 50% - 0.959 0.589 0.408 0.890 0.453 0.430
2019 Inception-ResNet-v2 (Cogan et al., 2019) 85% 15% - 0.9848 0.940 0.939 0.991 0.939 0.930
2019 ResNet50 CNN with Transfer Learning (KahsayGebreslassie et al., 2019) 60% 30% 10% 0.878 - - - - -
2019 ANN with pre-trained CNN feature extractors (Gamage et al., 2019) 80% 20% - 0.9738 0.9715 0.9727 - 0.9721 -
2021 Proposed Method 80% 15% 5% 0.9820 0.9286 0.9275 0.99 0.9276 0.9173

Figure 48. Epochs vs accuracy and loss classification curves
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6.3. Conclusions

We studied convolutional neural networks and transferred learning to classify gastrointesti-

nal endoscopic images. We showed that a method based on pre-processing and fine-tuning transfer

learning on a light convolutional neural network, such as the VGG-16, could classify eight cate-

gories of diseases and abnormalities in the gastrointestinal tract with high precision. Experiments

on the Kvasir-V2 dataset show that our proposed framework for endoscopic image processing and

classification outperforms other state-of-the-art works. Furthermore, our method achieves an accu-

racy very similar to the most accurate work of the state-of-the-art, using only a fifth of the number

of trainable parameters.
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Conclusions

Throughout this PhD research, we have extensively explored the challenges posed by the

lack of labeled medical images, the heterogeneous nature of clinical data processing, and the classi-

fication problem in computer-aided diagnostic (CAD) tasks. The conclusions and the explorations

undertaken are:

Scarcity of Labeled Medical Images: Through developing computational algorithms that

utilized deep learning, we have successfully addressed one of the most pressing challenges in

the field – the scarcity of labeled medical data. Our novel algorithms for domain adaptation and

generative data augmentation have shown promise in overcoming the limitations of dataset sizes,

providing a feasible solution to this widespread problem.

Heterogeneous Clinical Data Processing: The methodology developed to arrange and

process multiparametric MRIs, was used effectively to feed this data to a deep learning algorithm.

We have taken significant steps towards making a CAD system for liver tumor segmentation more

accurate through the synthetic image generation of heterogeneous contrast.

Overcoming Overfitting in CAD: The smart selection, transformation, and incorporation

of chest X-rays from a public dataset have addressed the challenge of models overfitting to a

specific data domain. Our approach enhanced the accuracy of classifying pneumonia in chest X-

rays and showcased the methodology’s broader applicability for other medical imaging challenges.

Addressing Various Medical Imaging Challenges: Beyond the primary objectives, this

research explored the realms of chronic ulcer segmentation in RGB photography, skin lesion clas-
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sification, and gastrointestinal anomaly detection in endoscopy photograms. These additional stud-

ies underscore the breadth of the challenges in medical imaging and emphasize the importance of

diverse approaches to address them.

Comparative Overcome: The evaluation of our algorithms against state-of-the-art ap-

proaches showcased the advancements made in the field during this thesis. Through rigorous

simulations and real-world verifications with medical specialists, the proposed solutions exhibited

superior or competitive performance.

Potential contributions to Healthcare: This thesis has introduced algorithms with the

potential for future integration into clinical scenarios for Computer-Aided Diagnostic (CAD) eval-

uation, although such integration is beyond the scope of this work. The AI applications developed

herein offer promising avenues for advancing AI in medical imaging and, consequently, the broader

healthcare sector.

Impact of Exogenous Variables: The algorithms presented in this thesis have been evalu-

ated with specific data sets mentioned in each chapter. It is essential to recognize that the perfor-

mance of these models can be negatively affected when applied to images acquired under different

technological, professional, and demographic conditions. The numerical results shown here serve

as valuable benchmarks, and practitioners should exercise caution and consider contextual factors

when applying these algorithms to diverse data sets. The analysis of the influence of each exoge-

nous variable on the impact of the models could be a topic of future research and exploration.

In retrospect, this PhD thesis has achieved the planned objectives and provided a foundation

for potential further studies in the field of AI in medical imaging. The methodologies and algo-
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rithms developed here offer a stepping stone for additional applications, contributing to ongoing

efforts to enhance healthcare through artificial intelligence.
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