
A VERIFIED RISC-V I BASED PROCESSOR WITH AN EXTERNAL DEBUGGING

CAPABILITY

HANSSEL ENRIQUE MORALES NORATO

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERÍAS FÍSICOMECÁNICAS

ESCUELA DE INGENIERÍAS

ELÉCTRICA, ELECTRÓNICA Y DE TELECOMUNICACIONES

BUCARAMANGA

2021

A VERIFIED RISC-V I BASED PROCESSOR WITH AN EXTERNAL DEBUGGING

CAPABILITY

HANSSEL ENRIQUE MORALES NORATO

Trabajo de Grado para optar al título de

Ingeniero Electrónico

Director

Elkim Felipe Roa Fuentes,

Philosophy Doctor.

UNIVERSIDAD INDUSTRIAL DE SANTANDER

FACULTAD DE INGENIERÍAS FÍSICOMECÁNICAS

ESCUELA DE INGENIERÍAS

ELÉCTRICA, ELECTRÓNICA Y DE TELECOMUNICACIONES

BUCARAMANGA

2021

CONTENTS

pág.

INTRODUCTION 9

1. OBJECTIVES 11

1.1. GENERAL OBJECTIVES 11

1.2. SPECIFIC OBJECTIVES 11

2. PROCESSOR MICROARCHITECTURE 12

2.1. INSTRUCTION FETCH 13

2.2. INSTRUCTION DECODE 14

2.3. EXECUTE 15

2.4. MEMORY 16

2.5. WRITE-BACK 17

3. SOC IMPLEMENTATION 18

3.1. DEBUG MECHANISM 19

3.2. PROGRAMMING MECHANISM 19

4. VERIFICATION AND EVALUATION 22

4.1. COVERAGE DRIVEN VERIFICATION 22

4.2. FORMAL VERIFICATION 24

4.3. FPGA PROTOTYPING 25

4.4. BENCHMARKING 28

5. PHYSICAL DESIGN 30

6. FURTHER CONTRIBUTIONS 33

3

7. SUMMARY 35

BIBLIOGRAFÍA 36

4

LIST OF FIGURES

pág.

Figure 1. Qualitative example of the energy consumption in an IoT processor 10

Figure 2.1. Arcabuco microarchitecture block diagram. 12

Figure 2.2. Memory access subsystem block diagram 14

Figure 2.3. Saturation counter FSM 15

Figure 3.1. Testing SoC block diagram 18

Figure 3.2. Debug interface 20

Figure 3.3. UART programming flow 21

Figure 4.1. Test generation in coverage driven verification 23

Figure 4.2. Code coverage metrics comparison between two C test programs

and the best individual generated by the µGP framework. 24

Figure 4.3. RISC-V formal framework 26

Figure 4.4. Placed and routed design using an A7-35T FPGA 27

Figure 5.1. Arcabuco’s layout in TSMC 180nm technology node 32

5

LIST OF TABLES

pág.

Table 4.1. Utilization results using an A7-35T FPGA 26

Table 4.2. Benchmarks and power comparison 29

Table 5.1. 1.8V Library characterization corners 30

Table 5.2. Synthesis results 31

6

RESUMEN

TÍTULO: UN PROCESADOR VERIFICADO BASADO EN RISC-V I CON CAPACIDAD DE DEPU-

RACIÓN EXTERNA *

AUTOR: HANSSEL ENRIQUE MORALES NORATO **

PALABRAS CLAVE: RISC-V, ARQUITECTURA DE COMPUTADORES, MICROELECTRÓNICA, CIR-

CUITOS DIGITALES.

DESCRIPCIÓN:

Alcanzar un bajo consumo de energía es uno de los desafíos críticos, en los nodos de sensores

de Internet de las cosas (IoT) que funcionan con baterías de bajo costo. Estos nodos suelen estar

coordinados por un procesador que recopila, opera y transmite datos desde múltiples sensores a

la nube. Los procesadores de IoT deben administrar cargas de trabajo caracterizadas por ráfagas

intermitentes de operaciones de procesamiento intensivo mezcladas con períodos prolongados de

baja actividad. La minimización de la potencia dinámica a través de microarquitecturas de baja con-

mutación ha sido el foco de soluciones recientes. Aunque esto puede conducir a una baja eficiencia

de ejecución aumentando el tiempo de ejecución por lo tanto, conduciendo a un alto aumento de la

energia consumida. Este trabajo explora la adición de técnicas de aceleración de bajo costo para

mejorar la eficiencia computacional en el diseño de Arcabuco, un procesador en orden de un solo

problema basado en RISC-V I / IM. Lo que logra 2.7 CoreMark/MHz y 1.13 DMIPS/MHz, con un

consumo de energía de 84.46µW/MHz. Proporcionando una solución alternativa a las aplicaciones

de bajo consumo de energía.

* Trabajo de grado

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingenierías Eléctrica, Electrónica y Tele-
comunicaciones. Director: Elkim Felipe Roa Fuentes, Philosophy Doctor.

7

ABSTRACT

TITLE: A VERIFIED RISC-V I BASED PROCESSOR WITH AN EXTERNAL DEBUGGING CAPABI-

LITY *

AUTHOR: HANSSEL ENRIQUE MORALES NORATO **

KEYWORDS: RISC-V, COMPUTER ARCHITECTURE, MICROELECTRONICS, DIGITAL CIRCUITS.

DESCRIPTION:

Reaching low-energy consumption is one of the critical challenges in low-cost, and battery-powered

internet of things (IoT) sensor nodes. These nodes are usually coordinated by a processor which co-

llects, operates, and transmits data from multiple sensors to the cloud. IoT processors must manage

workloads characterized by intermittent bursts of compute-intensive operations mixed with prolon-

ged periods of low activity. Dynamic power minimization through low switching microarchitectures

has been the focus of recent solutions. Though this can lead to low execution efficiency increasing

the execution time, and therefore, leading to high energy loss. This work explores the addition of soft-

acceleration techniques to enhance the computing efficiency in the design of Arcabuco, a RISC-V I/IM

based single-issue in-order processor. Which achieves 2.7 CoreMark/MHz and 1.13 DMIPS/MHz,

with a power consumption of 84.46µW/MHz. Providing an alternative solution to low-energy limita-

tions.

* Bachelor Thesis

** Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingenierías Eléctrica, Electrónica y Tele-
comunicaciones. Director: Elkim Felipe Roa Fuentes, Philosophy Doctor.

8

INTRODUCTION

Battery-constrained IoT processors design usually bases on low switching architec-

tures to reduce the overall power consumption. For example, the ARM Cortex-M0 1 is

a single-issue in-order core with three pipeline stages that implements the Armv6-M

instruction set architecture (ISA) and presents 2.33 CoreMarks2 per MHz in conjun-

ction with 66µW per MHz. In 3 C. Duran et. al. Present a RISC-V based processor

called mRISC-V which comprises an area-optimized implementation of the integer

and iultiplicative ISA extensions that exposes 97µW per MHz and 0.305 MIPS4 per

MHz. The design of these processor designs focuses on low-area and low-power

although neglecting their computing efficiency.

Fig. 1 Illustrates a qualitative example of the energy consumption in an IoT sensor

node where most of the time the devices are in a “sleep-mode” and only “wake-up”

when an operation is required. Although core two has lower dynamic power consum-

ption (red), it spends more time running a certain program. Conversely, core one

presents a higher dynamic power consumption (green) but with a lower execution ti-

me for the same workload. Finally, the core with higher power consumes less energy

due to an appropriate design that prioritizes the use of the data-path to extract more

1 ARM. “Cortex-M specs”. En: Arm Developer (2021).

2 EMBC. “Coremark Benchmark”. En: Embedded Microprocessor Benchmark Consortium (2021).

3 C. DURAN y col. “A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-bit SAR ADC”. En:
2016 IEEE 7th Latin American Symposium on Circuits Systems (LASCAS). 2016, págs. 315-318.
DOI: 10.1109/LASCAS.2016.7451073.

4 Reinhold P. WEICKER. “Dhrystone: A Synthetic Systems Programming Benchmark”. En: Com-
mun. ACM 27.10 (oct. de 1984), 1013–1030. DOI: 10.1145/358274.358283.

9

https://doi.org/10.1109/LASCAS.2016.7451073
https://doi.org/10.1145/358274.358283

Figure 1. Qualitative example of the energy consumption in an IoT processor

~hours Time

Po
w

er

Δt1

sleep zone
ΔE1

~hours Time

Po
w

er

sleep zone
ΔE2

Δt2

ΔE1 < ΔE2

Core one

Core two

computation per cycle, allowing to achieve execution efficiency.

To address the energy reduction problem, this work explores the addition of soft-

acceleration techniques (i.e, pipelining, branch prediction, forward unit, direct me-

mory access(DMA)) to enhance the computing efficiency in the design of a RISC-V

based processor. To measure computing efficiency this work utilises two embedded

processor benchmarks, Dhrystone4 and Coremark2. In addition, a set of verifica-

tion strategies (formal verification and coverage-driven test generation) were applied

in order to obtain a reliable design. Besides, to accomplish an optimal post-silicon

verification, this processor comprises a debug interface. The implemented debug in-

terface enables the to control and monitor internal processor execution states even

after silicon chip fabrication trough a debug platform5.

5 Wilmer. RAMIREZ, SARMIENTO. Marco y ROA. Elkim. “A Flexible Debugger for a RISC-V Based
32-bit System-on-Chip”. En: 2020 IEEE 11th Latin American Symposium on Circuits Systems
(LASCAS). 2020, págs. 1-4.

10

1. OBJECTIVES

1.1. GENERAL OBJECTIVES

To design and to verify a RISC-V I based processor with external debug capa-

bility.

1.2. SPECIFIC OBJECTIVES

To implement an RTL description of a RISC-V I based processor in Chisel.

To synthesize the RTL in TSMC 180nm technology node and perform post-

synthesis simulations to achieve netlist validation.

To design interfaces circuitry for supporting an external debug platform able to

monitor and control the processor.

To validate the processor RISC-V I specification accomplishment using an ins-

truction set compliance verification framework.

11

2. PROCESSOR MICROARCHITECTURE

Figure 2.1. Arcabuco microarchitecture block diagram.

Register
File

Instruction Fetch

Inst.
memory

addr data

Instruction Decode

rs1

rs2

Imm

Inst.
Decoder

Branch
Prediction

Engine

Jump or Branch
address pre-calculator

Next PC
Generator

Data
memory

Execute Memory

ALU

addr rdata

wdata

Write Back

ACC

Operand
Selector

Forwarding Unit

Mul
Div

rd

rd

Fig. 2.1 presents the microarchitecture implemented, a single issue in order (SIIO)

five-stage pipelined processor. This implementation was based on the computer ar-

chitecture book6 which shows the architectural design process from a higher-level

of abstraction. The five stages are divided by their functional purpose: Instruction

Fetch, Instruction Decode, Execute, Memory, and Write-Back stages.

6 David A. PATTERSON y John L. HENNESSY. Computer Organization and Design RISC-V Edi-
tion: The Hardware Software Interface. 1st. San Francisco, CA, USA: Morgan Kaufmann Pu-
blishers Inc., 2017.

12

2.1. INSTRUCTION FETCH

The design of an instruction fetch stage should focus on high instruction throughput

and low latency in order to maximize the usage of the following stages. As long as

the bus performance will variate depending on the number of masters connected

in the System-on-Chip (SoC) and the number of transactions required by the appli-

cation. The instruction throughput and latency will be imposed by the external bus

performance.

The design reduces this bus performance dependency by implementing a memory

hierarchy technique called scratchpad7, which consists of fast access dedicated me-

mory addressed on the SoC’s memory map but only accessed by the processor. The

implemented scratchpad architecture in Fig. 2.2 uses a true dual-port SRAM bank

from TSMC 180nm library. The SRAM counts with one cycle latency, 32 bits of word-

length, and parametrizable depth, which gives us on each port a reading bandwidth

of 32bits/cycle. The external bus is a 32bits AHB-lite based implementation 8 which

achieves maximum bandwidth of 32bits/cycle as long as the master interface takes

control of the system bus. The bus and scratchpad word lengths were selected, con-

sidering that the processor will execute RISC-V 32bits instructions and counts with

a single execution issue. With the word-length selection and the parallel generation

of the program counter value, the instruction fetch achieves one instruction per cycle

of throughput when accessing the scratchpad. The instruction fetch has one penalty

cycle on the latency side when there is a jump in the program counter and the target

7 RAJESHWARI BANAKAR y col. “Scratchpad Memory: Design Alternative for Cache on-Chip Me-
mory in Embedded Systems”. En: Proceedings of the Tenth International Symposium on Hardwa-
re/Software Codesign. CODES ’02. Estes Park, Colorado: Association for Computing Machinery,
2002, 73–78. DOI: 10.1145/774789.774805.

8 Juan. ROMERO, Nestor. CUEVAS y Elkim. ROA. “Energy Efficient Peripheral and System Buses
for Low-Area and Low-Power SoC Applications”. En: IEEE Transactions on Circuits and Systems
II: Express Briefs 67.5 (2020), págs. 866-870. DOI: 10.1109/TCSII.2020.2984018.

13

https://doi.org/10.1145/774789.774805
https://doi.org/10.1109/TCSII.2020.2984018

address is located in the scratchpad. The penalty occurs due to the inherent latency

of the memory and the register used to avoid merging combinational paths in the

SRAM and the instruction decoder.

Figure 2.2. Memory access subsystem block diagram

IF ID EX MEM WB

 Core

Scratchpad

0xFFFFFFFF

0x0

BASE

BASE+SIZE

DPSRAM Bus Master
Interface

System Bus

Bus Master
Interface

µDMA

2.2. INSTRUCTION DECODE

The instruction decoding stage is responsible for general purpose registers mana-

gement in the registers file and the identification of the previously fetched instruction

as the RISC-V ISA specification 9 requires. After the identification, the stage se-

lects which operands from the register file or the immediate value or the forwarding

unit should pass to the execution stage to be operated. In the case of conditional

jumps instructions, the instruction decoding stage uses the branch prediction engi-

ne to known the most likely result of the branch comparison based on the previous

branch results. This prediction is generated by a finite state machine known as satu-

ration counter exposed in Fig. 2.3. The saturation counter changes its state depen-

9 Andrew WATERMAN y col. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version
2.0. Inf. téc. UCB/EECS-2014-54. EECS Department, University of California, Berkeley, 2014.

14

ding on the previous result of the branch comparison, and the output converges to

the most used decision on the previous instructions. The assumption that the most

previously used result will be most likely to occur is based on iterative loops’ beha-

vior when the decision to jump or not jump will be repeated several iterations until

the loop breaks. If there is a conditional jump that will be taken or an unconditional

jump, the instruction decoding stage calculates the jump target address based on the

immediate value and the actual program counter or based on a register, depending

on the jump type to reduce stalling in jump instructions.

Figure 2.3. Saturation counter FSM

Strong
Jump

Weak
Jump

Weak
Don't
Jump

Strong
Don't
Jump

Correct

Wrong

Correct

Wrong

Correct

Correct

W
rong

W
ro

ng

Don’t jump zone

Jump zone

2.3. EXECUTE

The third stage of the processor contains the ALU and other execution units. The

implementation of the execution stage has been structured to be extended with addi-

tional instruction accelerators. Using a standard handshake interface, we can select

different multiplication and division units with variable latency or low area radix based

15

multiplication 10. As the processor has five pipeline stages, instruction dependency

hazards that occur when an instruction in the execute stage depends on a result

that hasn’t be stored yet in the register file. Stall and wait for the result is a com-

mon practice. However, it implies three cycles of penalty in the worst case, which

will reduce the instructions per cycle (IPC) metric drastically. To avoid IPC reduction,

the forwarding unit handles the dependency hazards, by monitoring the instructions

destine registers in memory and write-back stages. If it matches with one operator

in the execution stage, it replaces the value selected from the register file with the

correct value.

2.4. MEMORY

The transactions with the scratchpad or the system bus are launched from the me-

mory stage and pass through a scope selector in the scratchpad interface, which

selects based on the destination address if the transaction goes to the fast access

SRAM or the bus master interface. The master interfaces from the core are instan-

tiated from a unique module description and can be changed to support different bus

protocols. Due to the merge of the sampling cycle of the SRAM and the input pipe,

the fast access transactions do not need to stall the core. Conversely, there will be a

stall in bus transactions if the transaction takes more than two cycles, depending on

the target slave.

10 David GUEVORKIAN y col. “A Radix-8 Multiplier Design and Its Extension for Efficient Implemen-
tation of Imaging Algorithms”. En: Embedded Computer Systems: Architectures, Modeling, and
Simulation. Ed. por Timo D. Hämäläinen y col. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, págs. 324-333.

16

2.5. WRITE-BACK

Finally, the write-back stage is in charge of the instruction retirement from the pipeline

by writing the register file with the instruction’s corresponding result that could come

from the memory, an instruction accelerator, or the ALU.

17

3. SOC IMPLEMENTATION

Figure 3.1. Testing SoC block diagram

UART

Condor Bus

Core
RV32IM

µDMA

Masters

SlavesJTAG
TAP & BS

Bus
Monitor

Debug
Module

JTAG
PADS

GPIO TIMER RAMPWM

2 kB
Scratchpad

AES

Fig. 3.1 exposes an SoC platform employed to test the processor under embedded

applications. The platform communications between masters and slaves are mana-

ged by an AHB-lite based bus 8. A JTAG based debug platform5 controls and monitor

the processor and the bus. An UART interface loads programs through the direct me-

mory access Controller µDMA 11.

A general-purpose input-output GPIO controller enables the core to access the pads.

Other peripherals connected in the SoC are a timer, a pulse modulated width PWM

controller, and an advanced encryption standard AES accelerator.

11 Hanssel. MORALES, Ckristian. DURAN y Elkim. ROA. “A Low-Area Direct Memory Access Con-
troller Architecture for a RISC-V Based Low-Power Microcontroller”. En: 2019 IEEE 10th La-
tin American Symposium on Circuits Systems (LASCAS). 2019, págs. 97-100. DOI: 10.1109/
LASCAS.2019.8667579.

18

https://doi.org/10.1109/LASCAS.2019.8667579
https://doi.org/10.1109/LASCAS.2019.8667579

3.1. DEBUG MECHANISM

Post-silicon testing has become a mandatory step of the design flow in modern SoC.

This process implies high effort due to the complexity of the integrated circuits12, the

integration of debugging systems to monitor and control the processor in simulation

and after fabrication has demonstrated being a reliable practice 13, which increments

productivity during testing and increase the probability of the detection of unexpected

flaws. The support for a flexible debugger5 in the processor requires the implemen-

tation of adaptation circuits for a debug interface as it is shown in Fig. 3.2. These

implementations enable the users to emulate interruptions, stop the processor with

or without breakpoints, insert instructions through the program buffer and, control

and monitor the general-purpose registers.

3.2. PROGRAMMING MECHANISM

Booting sequence is a critical consideration in the design of a computing system.

There are several options for loading a program into the memory. The most common

ways are by adding support for an external memory interface or using the debug

interface to load instructions to the system memory 14. In this case, we add a third

way by using a µDMA subsystem based on the low area DMA presented in 11, able

to load instructions from a UART interface directly into the scratchpad. The µDMA

12 HAMILTON B, Carter. y HEMMADY, Shankar G. Metric Driven Design Verification. Springer Scien-
ce Business Media, LLC, 2007.

13 F. REFAN, B. ALIZADEH y Z. NAVABI. “Bridging Presilicon and Postsilicon Debugging by
Instruction-Based Trace Signal Selection in Modern Processors”. En: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25.7 (2017), págs. 2059-2070. DOI: 10.1109/TVLSI.
2017.2675380.

14 Ckristian. DURAN y col. “An Energy-Efficient RISC-V RV32IMAC Microcontroller for Periodical-
Driven Sensing Applications”. En: 2020 IEEE Custom Integrated Circuits Conference (CICC).
2020, págs. 1-4. DOI: 10.1109/CICC48029.2020.9075877.

19

https://doi.org/10.1109/TVLSI.2017.2675380
https://doi.org/10.1109/TVLSI.2017.2675380
https://doi.org/10.1109/CICC48029.2020.9075877

Figure 3.2. Debug interface

Register
File

Instruction Fetch Instruction Decode

rs1

rs2

Imm

Inst.
Decoder

Jump or Branch
address pre-calculator

Next PC
Generator

Reset

Enable

Regs Access

ProgBuff Access

Break Point
Config

Inst.
Interface

addr data

Program
Buffer

addr data

Break Point
Monitor

Register access Interface

rd

Interruption

D
eb

ug
 I

nt
er

fa
ce

Debug Mechanism

rd

intervenes in the instruction port by sending nop operations to the processor whi-

le writing to the scratchpad. This instruction load method minimizes the processor

movement of instructions during the boot-loader execution and reduces the usage

complexity Fig. 3.3. Shows how a program is loaded into the system after its compi-

lation. The program’s binary source is sent as an argument for a script that uses a

serial converter driver to send it to the SoC.

20

Figure 3.3. UART programming flow

Python
script

USB to
UART

UART uDMA

Compiled
program

RAM

Computer

SoC

ft232r

21

4. VERIFICATION AND EVALUATION

Verification is a crucial process in the design of an integrated circuit. In recent years

multiple paradigms of verification have taken relevance in contrast with traditional

simulation-based test-benches Ckristian DURAN y MORALES. Hanssel et al. “Si-

mulation and Formal: The Best of Both Domains for Instruction Set Verification of

RISC-V Based Processors”. En: 2020 IEEE International Symposium on Circuits

and Systems (ISCAS). 2020, págs. 1-4. DOI: 10.1109/ISCAS45731.2020.9180589.

This work uses a combined scheme that integrates coverage-driven and formal veri-

fication with FPGA Emulation to produce a reliable design.

4.1. COVERAGE DRIVEN VERIFICATION

Coverage analysis consists of evaluating the percentage of the circuit excited in a

simulation. It groups a set of metrics that can be used to evaluate the quality of the

simulation:

Block coverage: measures the number of procedural blocks excited during the

simulation, usually correlated with the number of flops excited, depending on

the hardware description style.

Branch coverage: evaluates the ïf-elseçonditions reached.

Statement coverage: counts the number of assignments excited during the si-

mulation.

Expression coverage: the amount of arithmetical and logical expressions used.

Toggle coverage: expresses the percentage of signals that have changed from

one to zero or inversely.

22

https://doi.org/10.1109/ISCAS45731.2020.9180589

FSM coverage: covers the percentage of detected states reached in the simu-

lation.

Total coverage: is a weighted average of the above.

Figure 4.1. Test generation in coverage driven verification

.asm

.asm

=

Fitness
function

PUV

SpikePop.

Insn.
library

Conf.

Individual

Last best individual

(Bug
detect)

+µGP

Individual Merge +
Generation

Coverage Extraction
and Feedback

PUV Stimulus

Diff.
stack

Convectional verification of processors starts with the design of test programs and

simulation test-benches after this, the verification engineer evaluates the testing pro-

gram with the coverage reached, then the program is modified. This process is re-

peated until a desired coverage is achieved.

The used methodologyDURAN y et al., “Simulation and Formal: The Best of Both

Domains for Instruction Set Verification of RISC-V Based Processors” diverges from

conventional because it automatizes the process by using an evolutionary algorithm

called µGP, which generates assembly test programs and treats them as individuals

with a fitness function of its coverage metrics. This optimization loop is represented

in Fig. 4.1. While this process is running, the individuals are simultaneously executed

23

in a reference model the RISC-V instruction set simulator spike RISC-V Foundation.

Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim. 2019,

this to compare the internal registers with the processor under verification (PUV). Fig.

4.2. depicts a comparison of the code coverage reached executing with Arcabuco, a

widely used cryptography algorithm RSA, the official RISC-V torture unit testsRISC-V

Foundation. RISC-V Tortures Unit Tests. https://github.com/riscv/riscv-tests.

2020 and an assembly program generated by the µGP framework.

Figure 4.2. Code coverage metrics comparison between two C test programs and
the best individual generated by the µGP framework.

81% 88% 87% 97% 78% 58% 100%

92% 98% 98% 100% 91%
79%

100%

93%
99% 99% 100%

92%
80%

100%

Code Coverage Metrics

0%

25%

50%

75%

100%

Total Block Branch Statement Expression Toogle FSM

RSA algorithm RISC-V torture tests μGP generated individual

Test Programs Code Coverage Comparison

4.2. FORMAL VERIFICATION

Formal verification is a mathematical technique based on automata theory, discre-

te event dynamic systems, and graph theoryChristoph KERN y Mark R. GREENS-

24

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-tests

TREET. “Formal Verification in Hardware Design: A Survey”. En: ACM Trans. Des.

Autom. Electron. Syst. 4.2 (abr. de 1999), 123–193. DOI: 10.1145/307988.307989.

This technique creates a graph of dynamic states based on the fact that every digital

circuit can be expressed as a finite state machine. The verification engineer defines

a set of formal properties, e.g., assertions and assumptions, which describes the

subspace of valid states. The mathematical engine using Boolean satisfiability sol-

vers searches in the states graph if the formal properties can be violated. The costly

part when applying formal is the property description. It implies high engineering ti-

me and model checking of the reference ISA. In order to verify the correctness of

our implementation against a formal model of the ISA specification, we use RISC-V

formal.

RISC-V formal is a non-invasive processor-independent formal verification frame-

work of RISC-V based processors Symbiotic EDA. RISC-V Formal Verification Fra-

mework. https://github.com/SymbioticEDA/riscv-formal. 2019. It consists of a

formal description of the RISC-V ISA and the specification for the RISC-V formal in-

terface (RVFI). Fig. 4.3 exhibits a simplified diagram of the interconnection using the

RISC-V formal interface (RFVI) to verify the processor formally. The RVFI must carry

the state of execution of all the instruction to a formal environment, which requires

synchronizing all the necessary signals from any stage of the processor architecture

to the write-back stage. In this way, the formal properties inside the RISC-V formal

environment compare the instructions specifications against the processor’s internal

final-states.

4.3. FPGA PROTOTYPING

Prototyping in FPGA allows earlier testing of digital integrated circuits, therefore with

the purpose of earlier behavioral validation, benchmarking, and unit testing. The de-

sign showed in Fig.3.1 was synthesized with Vivado FPGA toolchain and mounted

25

https://doi.org/10.1145/307988.307989
https://github.com/SymbioticEDA/riscv-formal

Figure 4.3. RISC-V formal framework

Arcabuco

PC

Rs1
Rs2

Inst

PC PC

R
IS

C
-V

 F
or

m
al

 In
te

rf
ac

e
(R

VF
I)

Fetch Decode MEM

RS1
RS2

Inst

RD

Instruction check

Formal
properties

Instruction
specification

(RV32IM)

Additional checks

Liveness

RISC-V Formal Environment

Casual

Unique Registers

MEM

WB

PC

RS1
RS2

Inst

RD

MEM

Exec

PC

RS1
RS2

Inst

RD

in an Arty A7-35T FPGA Development Board. In order to achieve behavioral emu-

lation, Verilog models of technology-dependent-IP such as SRAM were described

using the dual-port Block RAMS (BRAM) from the Arty FPGA Xilinx. Artix-7 FPGAs

Data Sheet. https://www.xilinx.com. 2020. The RISC-V torture unit testsRISC-V

Foundation, RISC-V Tortures Unit Tests and other program demos were loaded in-

to the design in the FPGA in order to check functional correctness in the emulated

processor.

Table 4.1. Utilization results using an A7-35T FPGA

Circuit LUT
(20800)

Registers
(41600)

BRAM
(50)

Arcabuco(RV32I) 1839 1458 1
Arcabuco(RV32IM) 2107 1618 1
Test SoC (RV32IM) 5645 4819 2

To achieve a higher correlation between syntheses reports and place and route final

reports. A compact floor-plan and structured IO planning is required to avoid enor-

26

https://www.xilinx.com

mous net delay due to parasitic capacitance in sparse routes across the FPGA chip.

Fig. 4.4 shows the place and route result of the implemented prototype in the Arty

FPGA. The utilised IO were selected in order to occupy the upper tiles of the FPGA

chip and the floor-plan was structured to get a smooth data-flow from the UART and

the Debug Module (left) to the processor core(right).

Figure 4.4. Placed and routed design using an A7-35T FPGA

Arcabuco RV32IM

AES Accelerator

AHB-lite based bus &
GPIO & Timer

UART

Debug Module

Scratchpad (2 Kb SRAM)

27

4.4. BENCHMARKING

Two widely used industry benchmarks for embedded processors CoremarkEMBC,

“Coremark Benchmark” and DhrystoneWEICKER, “Dhrystone: A Synthetic Systems

Programming Benchmark”, were ported to the core to evaluate the performance and

compare it against commercial and academic embedded processors. Both bench-

marks contain integer arithmetic and control code operations, which represent com-

monly used programs in embedded applications. But Coremark complements the

integer arithmetic with matrix operations, and the Embedded Microprocessor Bench-

mark Consortium promotes cormark as a compiler independent benchmark. Both

benchmarks export results as a value calculated dividing the number of executed

iterations on time spent in the execution of the workload; therefore, a common prac-

tice is to normalize the value with the core frequency to evaluate execution efficiency.

The FPGA prototype exposed in Fig. 4.4 was utilized to characterize the performan-

ce of Arcabuco, running both benchmarks. The memory size was adjusted depen-

ding on the benchmarks requirements (18Kb for Dhrystone and 36Kb for CoreMark),

and the timer peripheral was used to obtain the corresponding execution time. The

benchmarking results are exposed in Table 4.2, and compared against the results ex-

posed in the ARM-Cortex-M Specifications ARM, “Cortex-M specs”. Arcabuco achie-

ves higher computational performance than an Arm cortex-M0+, and lower perfor-

mance than an Arm cortex-M3. An hypothesis for the drop in performance in the co-

remark benchmark between Arcabuco RV32IM and RV32I implementations. Is that

the matrix operations increase the amount of multiplication and division instructions

utilized, leading to higher time spent on the software emulation of the multiplication

extension instructions.

28

Table 4.2. Benchmarks and power comparison

Processor Drystone
(DMIPS/MHz)

CoreMark
(CoreMarks/MHz)

Power Efficiency
(µW/MHz)

Arm cortex-M3 1.25 3.34 141
Arcabuco RV32IM 1.13 2.7 84.45

Arm cortex-M0+ 0.95 2.46 47.4
Arm cortex-M0 0.87 2.33 66

Arcabuco RV32I 0.87 1.2 69.1
mRISC-V RV32IM 0.305 97

29

5. PHYSICAL DESIGN

TSMC 0.18µm technology provides two standard cells libraries 1.8V (low area/high

frequency/low dynamic-power) and 3.3V (low leakage). Each library comes with a to-

tal of six voltage, process, and temperature (PVT) characterization corners showed

in Table 5.1. The synthesizer uses these libraries to map RTL designs to standard

cells net-list. And then this net-list is analyzed to get power, timing, and area infor-

mation. With the results the synthesizer performs optimizations depending on the

specified targets in the synthesis process. These optimizations will variate depen-

ding on the implemented flow, and the strategies enabled.

Table 5.1. 1.8V Library characterization corners

Corner Voltage(V) Temperature (C) Process
BC 1.98 0 FF
LT 1.98 -40 FF
ML 1.98 125 FF
TC 1.80 25 TT
WC 1.62 125 SS

WCL 1.62 -40 SS

In the case of Arcabuco, the 1.8V library was used in conjunction with Cadence low

power synthesis flow, which includes a clock gating strategy. Clock gating consists

of the automatic identification of enable logic to zero the clock when the flip-flops

are disabled to reduce switching activity in the design. The results of the synthesis

applied are exposed in Table 5.2. As transistor-level models of the standard cells are

not provided, the power and operating frequency results that we are able to extract

are limited to the characterization corners. The synthesis also provides an area esti-

mation of 478x478µm2 for the processor core, including cells and nets area.

In digital Integrated circuit design flow, the place and route is the process that ge-

nerates layout based on the results from the synthesis step. Fig. 5.1 illustrates the

30

Table 5.2. Synthesis results

Corner WC TC BC LT ML WCL
Operating

Frequency [MHz] 122 200 273 286 231 149

Power Efficiency
[µW/MHz] 66.55 84.45 110.51 108.21 117.51 62.14

Leakage
Power [µW] 4.426 0.58 1.24 0.32 127 0.18

final layout from the Arcabuco core. This layout occupies an Area of 500x500 µm2.

The increase in the area against the synthesis report is 8 %. The hypothesis for that

discordance, is that this increase is related to the power ring area and the solution of

some routing problems not considered in the synthesis estimation. The sub-module

with the highest area consumption in the core is the register file. The Register File

module has 31x32-bit registers. A relevant area reduction could be obtained by using

an SRAM block for the register file. This could introduce additional latency and timing

issues, which could be addressed in future works.

31

Figure 5.1. Arcabuco’s layout in TSMC 180nm technology node

500 μm

50
0

μm

RegFile

EX
(MULDIV & ALU)

WB

CONTROL

DEBUG
INTERFACE DECO

IF

MEMCSR
BP

U
RegFile

EX

WB

CONTROL

DEBUG
INTERFACE DECO

IF

MEMCSR

BP
U

32

6. FURTHER CONTRIBUTIONS

The processor, test-benches, and the FPGA implementation presented in this

paper were utilized as a reference design in the laboratories of the computer

architecture elective, in the electronics engineering program, at the Universi-

dad Industrial de Santander a long semester 2020-1. This project enabled the

students to use, explore and modify the processor design. With the purpose to

add custom instructions and peripherals to the testing system.

Three master’s theses are using the Arcabuco core to test their projects. The

first thesis explore processor’s advanced verification methodologies for embed-

ded systems. The second is related to the design of bus communication proto-

cols in low-power systems. And in the third thesis Arcabuco helped to verify a

feed-forward non-harmonic oscillator model

The designs involved in this project were presented in an application to ob-

tain funds for manufacturing, to the ASIC Program of the Society of Electronic

Devices (EDS) Region 9 (Latin America). This request was approved and Ar-

cabuco will be sent to manufacturing in May 2021. Additionally, the post-silicon

measurements that will be performed must be reported at an IEEE EDS event,

accordingly, to the commitments accepted.

The work depicted in this document was developed from conclusions gathered

in:

• A paper presented as first-author in the 2019 IEEE 10th Latin American

33

Symposium on Circuits and Systems (LASCAS) tittled .A Low-Area Direct

Memory Access Controller Architecture for a RISC-V Based Low-Power

Microcontroller "11.

• A paper presented as co-author in the 2020 IEEE Custom Integrated Cir-

cuits Conference (CICC) titled .An Energy-Efficient RISC-V RV32IMAC Mi-

crocontroller for Periodical-Driven Sensing Applications"14.

• A paper presented as co-author in the 2020 IEEE International Sympo-

sium on Circuits and Systems (ISCAS) titled "Simulation and Formal: The

Best of Both Domains for Instruction Set Verification of RISC-V Based Pro-

cessors "??.

• A journal presented as co-author in the IEEE Transactions on Circuits and

Systems I: Regular Papers (Volume: 67, Issue: 4, April 2020) titled .On the

Cross-Correlation Based Loop Gain Adaptation for Bang-Bang CDRs "15.

• Finally one recently accepted coauthored paper in the 2021 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS) titled .A Low-Cost

Bug Hunting Verification Methodology for RISC-V-based Processors "(not

published yet).

These papers belong to the fields of low-power, high-frequency digital integra-

ted circuits design, and verification.

15 Javier. ARDILA, MORALES. Hanssel y ROA. Elkim. “On the Cross-Correlation Based Loop Gain
Adaptation for Bang-Bang CDRs”. En: IEEE Transactions on Circuits and Systems I: Regular
Papers 67.4 (2020), págs. 1169-1180. DOI: 10.1109/TCSI.2019.2952532.

34

https://doi.org/10.1109/TCSI.2019.2952532

7. SUMMARY

This work demonstrated a RISC-V IM based processor synthesized and place and

routed in CMOS 180nm technology with 200MHz of maximum operating frequency

and a power consumption of 84.46µW per MHz in nominal conditions. The design

was tested in FPGA and verified among formal verification and with a coverage dri-

ven framework. The processor achieves 2.7 CoreMarks/MHz and 1.13 DMIPS/MHz,

occupying an area of 500x500 µm2.

35

BIBLIOGRAFÍA

ARDILA, Javier., MORALES. Hanssel y ROA. Elkim. “On the Cross-Correlation Ba-

sed Loop Gain Adaptation for Bang-Bang CDRs”. En: IEEE Transactions on Circuits

and Systems I: Regular Papers 67.4 (2020), págs. 1169-1180. DOI: 10.1109/TCSI.

2019.2952532 (vid. pág. 34).

ARM. “Cortex-M specs”. En: Arm Developer (2021) (vid. págs. 9, 28).

BANAKAR, RAJESHWARI y col. “Scratchpad Memory: Design Alternative for Cache

on-Chip Memory in Embedded Systems”. En: Proceedings of the Tenth International

Symposium on Hardware/Software Codesign. CODES ’02. Estes Park, Colorado:

Association for Computing Machinery, 2002, 73–78. DOI: 10.1145/774789.774805

(vid. pág. 13).

DURAN, C. y col. “A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-bit

SAR ADC”. En: 2016 IEEE 7th Latin American Symposium on Circuits Systems

(LASCAS). 2016, págs. 315-318. DOI: 10.1109/LASCAS.2016.7451073 (vid. pág. 9).

DURAN, Ckristian y MORALES. Hanssel et al. “Simulation and Formal: The Best of

Both Domains for Instruction Set Verification of RISC-V Based Processors”. En: 2020

IEEE International Symposium on Circuits and Systems (ISCAS). 2020, págs. 1-4.

DOI: 10.1109/ISCAS45731.2020.9180589 (vid. págs. 22, 23, 34).

DURAN, Ckristian. y col. “An Energy-Efficient RISC-V RV32IMAC Microcontroller for

Periodical-Driven Sensing Applications”. En: 2020 IEEE Custom Integrated Circuits

Conference (CICC). 2020, págs. 1-4. DOI: 10.1109/CICC48029.2020.9075877 (vid.

págs. 19, 34).

36

https://doi.org/10.1109/TCSI.2019.2952532
https://doi.org/10.1109/TCSI.2019.2952532
https://doi.org/10.1145/774789.774805
https://doi.org/10.1109/LASCAS.2016.7451073
https://doi.org/10.1109/ISCAS45731.2020.9180589
https://doi.org/10.1109/CICC48029.2020.9075877

EMBC. “Coremark Benchmark”. En: Embedded Microprocessor Benchmark Consor-

tium (2021) (vid. págs. 9, 10, 28).

GUEVORKIAN, David y col. “A Radix-8 Multiplier Design and Its Extension for Ef-

ficient Implementation of Imaging Algorithms”. En: Embedded Computer Systems:

Architectures, Modeling, and Simulation. Ed. por Timo D. Hämäläinen y col. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, págs. 324-333 (vid. pág. 16).

HAMILTON B, Carter. y HEMMADY, Shankar G. Metric Driven Design Verification.

Springer Science Business Media, LLC, 2007 (vid. pág. 19).

KERN, Christoph y Mark R. GREENSTREET. “Formal Verification in Hardware De-

sign: A Survey”. En: ACM Trans. Des. Autom. Electron. Syst. 4.2 (abr. de 1999),

123–193. DOI: 10.1145/307988.307989 (vid. pág. 24).

MORALES, Hanssel., Ckristian. DURAN y Elkim. ROA. “A Low-Area Direct Memory

Access Controller Architecture for a RISC-V Based Low-Power Microcontroller”. En:

2019 IEEE 10th Latin American Symposium on Circuits Systems (LASCAS). 2019,

págs. 97-100. DOI: 10.1109/LASCAS.2019.8667579 (vid. págs. 18, 19, 34).

PATTERSON, David A. y John L. HENNESSY. Computer Organization and Design

RISC-V Edition: The Hardware Software Interface. 1st. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2017 (vid. pág. 12).

RAMIREZ, Wilmer., SARMIENTO. Marco y ROA. Elkim. “A Flexible Debugger for a

RISC-V Based 32-bit System-on-Chip”. En: 2020 IEEE 11th Latin American Sympo-

sium on Circuits Systems (LASCAS). 2020, págs. 1-4 (vid. págs. 10, 18, 19).

REFAN, F., B. ALIZADEH y Z. NAVABI. “Bridging Presilicon and Postsilicon De-

bugging by Instruction-Based Trace Signal Selection in Modern Processors”. En:

37

https://doi.org/10.1145/307988.307989
https://doi.org/10.1109/LASCAS.2019.8667579

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.7 (2017),

págs. 2059-2070. DOI: 10.1109/TVLSI.2017.2675380 (vid. pág. 19).

RISC-V Foundation. RISC-V Tortures Unit Tests. https : / / github . com / riscv /

riscv-tests. 2020 (vid. págs. 24, 26).

— Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim. 2019

(vid. pág. 24).

ROMERO, Juan., Nestor. CUEVAS y Elkim. ROA. “Energy Efficient Peripheral and

System Buses for Low-Area and Low-Power SoC Applications”. En: IEEE Transac-

tions on Circuits and Systems II: Express Briefs 67.5 (2020), págs. 866-870. DOI:

10.1109/TCSII.2020.2984018 (vid. págs. 13, 18).

Symbiotic EDA. RISC-V Formal Verification Framework. https : / / github . com /

SymbioticEDA/riscv-formal. 2019 (vid. pág. 25).

WATERMAN, Andrew y col. The RISC-V Instruction Set Manual, Volume I: User-

Level ISA, Version 2.0. Inf. téc. UCB/EECS-2014-54. EECS Department, University

of California, Berkeley, 2014 (vid. pág. 14).

WEICKER, Reinhold P. “Dhrystone: A Synthetic Systems Programming Benchmark”.

En: Commun. ACM 27.10 (oct. de 1984), 1013–1030. DOI: 10.1145/358274.358283

(vid. págs. 9, 10, 28).

Xilinx. Artix-7 FPGAs Data Sheet. https://www.xilinx.com. 2020 (vid. pág. 26).

38

https://doi.org/10.1109/TVLSI.2017.2675380
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1109/TCSII.2020.2984018
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://doi.org/10.1145/358274.358283
https://www.xilinx.com

	INTRODUCTION
	OBJECTIVES
	GENERAL OBJECTIVES
	SPECIFIC OBJECTIVES

	PROCESSOR MICROARCHITECTURE
	INSTRUCTION FETCH
	INSTRUCTION DECODE
	EXECUTE
	MEMORY
	WRITE-BACK

	SOC IMPLEMENTATION
	DEBUG MECHANISM
	PROGRAMMING MECHANISM

	VERIFICATION AND EVALUATION
	COVERAGE DRIVEN VERIFICATION
	FORMAL VERIFICATION
	FPGA PROTOTYPING
	BENCHMARKING

	PHYSICAL DESIGN
	FURTHER CONTRIBUTIONS
	SUMMARY
	BIBLIOGRAFÍA

