Efecto electrostático de la inclusión de la región MM de la proteína sobre las interacciones entre (*R*,*S*)-propranolol y lipasa B de *Candida antarctica*

Presentado por:

Luisa Fernanda Amado Tavera

Trabajo de Grado para Optar el Título de Química

Director

Markus Hans Oliver Doerr

Dr. rer nat

Codirector

David Alejandro Rincón Daza

Dr. en Química

Universidad Industrial de Santander

Facultad de Ciencias

Escuela de Química

Bucaramanga

2022

Dedicatoria

A mi madre

Por ser mi apoyo incondicional en cada meta, sueño y objetivo planteado. Por ser mi guía, mi compañera, mi consejera y mi amiga. Espero hoy puedas apreciar los frutos de todo el esfuerzo, la dedicación y el amor que has puesto en mí.

Agradecimientos

3

A los profesores *Martha Cecilia Daza Espinosa* y *Markus Hans Oliver Doerr* por darme la oportunidad de realizar este proyecto y por estar presentes desde el primer momento para guiarme y apoyarme en su realización.

A *David Alejandro Rincón Daza* por la orientación, el tiempo dedicado y los conocimientos transcendidos durante el desarrollo de este proyecto.

A la *Universidad Industrial de Santander*, a la Escuela de Química, a mis maestros y compañeros por hacer parte fundamental de mi formación como profesional.

A mi madre por su compañía constante y ser mi fuente de inspiración.

A mis amigos por siempre estar ahí para escucharme y apoyarme.

Muchas gracias a todos.

Tabla de contenido

Introd	lucción	11
1	Objetivos	13
1.1	Objetivo general	13
1.2	Objetivos específicos	13
2	Marco teórico	14
2.1	Agentes β-bloqueantes: Propranolol	14
2.2	Resolución de compuestos enantioméricamente puros	15
2.2.1	Resolución cinética catalizada por lipasas	16
2.3	Mecanismo de reacción para la acetilación del (<i>R</i> , <i>S</i>)-propranolol	18
2.4	Métodos teóricos	20
2.4.1	Teoría del funcional de la densidad	20
2.4.2	Método de simulación QM/MM	21
2.4.3	Teoría cuántica de átomos en moléculas	22
3	Estado del arte	23
4	Metodología	26
4.1	Obtención de la función de onda de la región QM de la proteína	26
4.2	Análisis QTAIM	27
4.3	Análisis de resultados	28
5	Resultados y discusión	28

5.1	Cargas atómicas en complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y
comp	lejos producto (PDC)
5.2	Cargas atómicas de residuos aminoacídicos en complejos de Michaelis (MCC),
intern	nediarios tetraédricos (TI) y complejos producto (PDC)
5.3	Perfiles de energía QM para la conversión de (R)- y (S)-propranolol en (R,S)-O-acetil-
propra	anolol
5.4	Propiedades topológicas representativas de los enlaces de hidrógeno
6	Conclusiones
Refer	encias Bibliográficas
Apén	lices

Lista de Figuras

Figura 1. Enantiómeros (R)- y (S)-propranolol 14
Figura 2. Bolsillo de unión de la CalB de Candida antarctica con la triada catalítica 17
Figura 3. Modos de unión del propranolol en el bolsillo de unión de CalB 17
Figura 4. Mecanismo de reacción de la acetilación del (R,S)-propranolol catalizada por la CalB de
Candida antarctica
Figura 5. Diferencias absolutas de las cargas atómicas calculadas sin incluir e incluyendo la región
MM para el camino de reacción ORI 29
Figura 6. Diferencias en las cargas atómicas calculadas cuando se incluye o no la región MM de
la proteína, para la histidina en los complejos de Michaelis (MCC), intermediarios tetraédricos
(TI) y complejos producto (PDC) de los caminos de reacción para los enantiómeros R y S 33
Figura 7. Perfiles de energía QM para la conversión de (R)-(izquierda) y (S)-propranolol (derecha)
a propranolol O-acetilado
Figura 8. Gráficos moleculares de los enlaces de hidrógeno de MCC del ORIV y TI del ORII 37

Lista de Tablas

7

Lista de Apéndices

Apéndice A. Cargas atómicas individuales	45
Apéndice B. Diferencias en las cargas atómicas para los estados MCC, TI y PDC de las rut	as de
reacción OR y OS.	60
Apéndice C. Cargas atómicas de los residuos aminoacídicos.	67
Apéndice D. Numeración atómica de las estructuras estudiadas	68
Apéndice E. Propiedades topológicas de los enlaces de hidrógeno seleccionados	69

9

Resumen

Título: Efecto electrostático de la inclusión de la región MM de la proteína sobre las interacciones entre (R,S)-propranolol y lipasa B de *Candida antárctica*.*

Autor: Luisa Fernanda Amado Tavera.**

Palabras Clave: región MM, QTAIM, enlaces de hidrógeno, CalB.

Descripción:

En este trabajo se continuó con el estudio del mecanismo de reacción de la acetilación catalizada por lipasa B de *Candida antárctica*, la cual permite la resolución cinética de los enantiómeros del (R,S)-propranolol, un compuesto de interés farmacéutico. Para esto, se realizó un estudio computacional empleando métodos teóricos como: cálculos combinados de mecánica cuántica (QM) y mecánica molecular (MM), que permiten dividir la región activa de la proteína en una región QM y una región MM; y la teoría cuántica de átomos en moléculas (QTAIM), que permite evaluar las interacciones intermoleculares del sistema. El proyecto consistió en realizar un análisis QTAIM de los complejos de interés presentes en la reacción para determinar las propiedades químicas y topológicas de estos cuando se incluye la región MM y cuando no es incluida.

Se evaluó el efecto de la región MM sobre las cargas atómicas, las energías de la región QM y los enlaces de hidrógenos más relevantes para la reacción. La inclusión de la región MM afecta las cargas atómicas de los átomos de hidrógeno ubicados en la frontera con la región QM e incrementa la carga de la histidina catalítica 224. Además, el efecto de la inclusión de la región MM sobre los perfiles de energía QM produce cambios menores que 8 kcal/mol, mientras que, la inclusión de esta región no afecta las propiedades topológicas de los enlaces de hidrógeno relevantes en el proceso catalítico.

^{*}Trabajo de Grado

^{**}Facultad de Ciencias. Escuela de Química. Director: Markus Hans Oliver Doerr. Dr. rer nat. Codirector: David Alejandro Rincón Daza. Dr. en Química.

Abstract

Title: Electrostatic effect of the inclusion of the MM region of the protein on the interactions between (R,S)-propranolol and *Candida antarctica* lipase B.*

Author: Luisa Fernanda Amado Tavera.**

Key Words: MM region, QTAIM, hydrogen bonds, CalB.

Description:

This work continued with the study of the reaction mechanism of acetylation catalyzed by Candida antarctica lipase B, which allows the kinetic resolution of the enantiomers of (R, S)-propranolol, a compound of pharmaceutical interest. For this, a computational study was carried out using theoretical methods such as combined calculations of quantum mechanics (QM) and molecular mechanics (MM), which allow dividing the active region of the protein into a QM region and a MM region; and the quantum theory of atoms in molecules (QTAIM), which allows evaluating the intermolecular interactions of the system. The project consisted of performing a QTAIM analysis of the complexes of interest present in the reaction to determine their chemical and topological properties when the MM region is included and when it is not.

The effect of the MM region on the atomic charges, the energies of the QM region, and the most relevant hydrogen bonds for the reaction were evaluated. The inclusion of the MM region affects the atomic charges of the hydrogen atoms located on the border with the QM region and increases the charge of the catalytic histidine 224. In addition, the effect of the inclusion of the MM region on the QM energy profiles produces changes of less than 8 kcal/mol, while the inclusion of this region does not affect the topological properties of the relevant hydrogen bonds in the catalytic process.

^{*}Bachelor tesis

^{**}Facultad de Ciencias. Escuela de Química. Director: Markus Hans Oliver Doerr. Dr. rer nat. Codirector: David Alejandro Rincón Daza. Dr. en Química.

Introducción

Los fármacos β -bloqueantes son agentes que antagonizan de forma estereoselectiva la unión de la noradrenalina al receptor β -adrenérgico y se utilizan para el tratamiento de la hipertensión arterial y otros trastornos cardiovasculares (Besterman & Friedlander, 1965). El propranolol ((*R*,*S*)-1-isopropilamino-3-(1-naftoxi)-2-propanol) pertenece a este grupo de medicamentos y su presentación se encuentra en forma de mezcla racémica. Sin embargo, se ha demostrado que el enantiómero *S* es el que presenta una mayor afinidad de unión al receptor β y que la administración de la mezcla racémica conlleva a efectos adversos (Lindner et al., 1989).

Entre las diferentes estrategias elaboradas para el aislamiento del *S*-propranolol se encuentran rutas de síntesis química, enzimática y quimioenzimática (Barbosa et al., 2010). Sin embargo, la metodología más adecuada para la preparación de fármacos enantioméricamente puros es la resolución cinética catalizada por lipasas (Ávila-González et al., 2005). Una de las reacciones catalizadas por lipasa más estudiadas es la acilación enantioselectiva de aminas racémicas y alcoholes secundarios en disolventes orgánicos utilizando acetato de vinilo o etilo como donante de acilo, y la lipasa B de *Candida antarctica* (CalB) es la enzima que ha demostrado ser la más eficiente para este tipo de reacciones.

La reacción de acetilación del (*R*,*S*)-propranolol catalizada por la lipasa B de *Candida antarctica* ha sido estudiada en el Grupo de Bioquímica teórica para determinar el origen de su quimio y enantioselectividad. Se ha demostrado que esta reacción ocurre en dos pasos y que el intermedio tetraédrico del segundo paso (TI-2) es el responsable de la estereoselectividad de la reacción. Así mismo, se han realizado simulaciones de dinámica molecular clásica (MD) y cálculos combinados de mecánica cuántica/mecánica molecular (QM/MM) que comprobaron la enantioselectividad observada experimentalmente a favor del (*R*)-propranolol. Además, se ha estudiado la influencia de los enlaces de hidrógeno con los residuos del hueco oxianiónico y las interacciones $CH - \pi$ en la estabilización de los intermediarios tetraédricos implicados en la reacción (Escorcia et al., 2013, 2014, 2017; Rincón et al., 2021).

En los estudios previos se han analizado los detalles de la reacción modelando el sitio activo de la proteína como la región de la mecánica cuántica (QM) y el resto de la proteína como la región de la mecánica molecular (MM). Sin embargo, en el estudio más reciente se tuvieron en cuenta todos los átomos involucrados en las interacciones entre el sustrato y la proteína para formar parte de la región QM, incluyendo los aminoácidos del hueco oxianiónico que antes no se habían tenido en cuenta, y se aplicó la teoría cuántica de átomos en moléculas (QTAIM) para analizar los enlaces de hidrógeno y las interacciones $n \rightarrow \pi^*$ entre el propranolol, la triada catalítica y el hueco oxianiónico (Rincón et al., 2021). Continuando con esta línea de estudio, en este trabajo de investigación se realizaron cálculos QTAIM para analizar las interacciones intermoleculares entre el (*R*,*S*)-propranolol y la lipasa sin incluir la región MM de la proteína. De este modo se evaluó el efecto de la inclusión de la región MM sobre las interacciones intermoleculares (puentes de hidrógeno) y la distribución de cargas en los diferentes caminos de la reacción de O-acetilación del (*R*,*S*)-propranolol catalizada por la lipasa B de *Candida antarctica*.

El contenido de este libro se encuentra distribuido en cuatro secciones. En la primera sección se describen los conceptos más importantes que se tuvieron en cuenta para desarrollar este trabajo de investigación. La segunda sección incluye la metodología empleada para realizar los cálculos QTAIM. En la tercera sección se presenta el análisis y discusión de los resultados, y en la cuarta sección las conclusiones. En la sección de anexos se presenta la información complementaria para el análisis de resultados.

1 Objetivos

1.1 Objetivo general

Implementar un estudio computacional para analizar el efecto de la inclusión de la región MM de la proteína sobre las interacciones intermoleculares en la O-acetilación del (R,S)propranolol catalizada por la lipasa B de *Candida antarctica*.

1.2 Objetivos específicos

Determinar las propiedades topológicas de la densidad electrónica en la reacción de Oacetilación del (R,S)-propranolol catalizada por CalB, a partir de la función de onda calculada para la región QM de la proteína.

Evaluar el efecto de la región MM de la proteína sobre las propiedades topológicas de la densidad electrónica en la reacción de O-acetilación del (R,S)-propranolol catalizada por CalB.

Evaluar el efecto de la región MM de la proteína sobre las interacciones intermoleculares no covalentes en la reacción de O-acetilación del (R,S)-propranolol catalizada por CalB.

2 Marco teórico

2.1 Agentes β-bloqueantes: Propranolol

El propranolol (1-iso-propilamino-3-(1-naftoxy)-2-propanol) es un aminoalcohol conformado por un anillo naftilo, un grupo hidroxilo y un grupo amino (**Figura 1**) (Al-Majed et al., 2017). En su estructura presenta un centro quiral que, además de originar la pareja de enantiómeros, es responsable de bloquear los receptores adrenérgicos β e impedir la acción de la epinefrina y la norepinefrina, por lo que se denomina como fármaco β -bloqueador (Walle et al., 1988).

Figura 1.

Enantiómeros (R)- y (S)-propranolol.

El propranolol se ha usado en el tratamiento de hipertensión, angina de pecho, problemas de ritmo cardíaco y otras enfermedades cardiovasculares (Prichard & Gillam, 1969; Rabkin et al., 1966; Shand, 1975). Este tipo de fármacos se suelen vender en su forma racémica, aunque se ha evidenciado que el enantiómero (S) es más efectivo en la actividad de bloqueo mientras que el enantiómero (R) muestra poca efectividad (Lindner et al., 1989) y podría ser responsable de efectos

secundarios como el aumento en los niveles de glucosa en la sangre y la broncoconstricción en pacientes asmáticos (Patakas et al., 1983).

2.2 Resolución de compuestos enantioméricamente puros

En diferentes campos de la industria química se ha evidenciado un creciente interés en obtener compuestos ópticamente puros. Debido a esto se han desarrollado múltiples métodos de obtención de enantiómeros teniendo en cuenta el tipo de sustrato inicial y su aplicación final. Entre estos métodos encontramos: la síntesis a partir de "pozos quirales", la síntesis asimétrica de compuestos proquirales y la resolución de mezclas racémicas (Ghanem & Aboul-Enein, 2004). El primero es un proceso simple y de bajo costo que utiliza un conjunto de sustancias ópticamente activas presentes en la naturaleza (pozo quiral), el segundo consiste en inducir un centro quiral en un compuesto no quiral mediante el uso de un agente ópticamente activo y el tercero se basa en la separación de los enantiómeros de una mezcla racémica con el objetivo de recuperar al menos uno de ellos (Collins et al., 1997).

La resolución de mezclas racémicas es el método más usado a escala industrial para la obtención de compuestos enantioméricamente puros (Eliel & Wilen, 1994). Así mismo, existen múltiples técnicas para llevar a cabo este proceso: la cristalización preferencial directa, utilizada para un conjunto reducido de mezclas racémicas que pueden formar conglomerados; la cristalización de sales diastereoméricas, haciendo uso de un agente enantiomérico puro; y la resolución cinética, basada en el hecho de que los dos enantiómeros de una mezcla racémica reaccionan con una entidad quiral a diferentes velocidades (Ghanem & Aboul-Enein, 2004). La resolución cinética de mezclas racémicas ha demostrado ser un método versátil que permite utilizar tanto biocatalizadores (enzimas o microorganismos) como quimiocatalizadores (ácidos o bases

quirales), siendo las enzimas los catalizadores más utilizados para este tipo de síntesis (Santaniello et al., 1992).

2.2.1 Resolución cinética catalizada por lipasas

La biocatálisis es una alternativa limpia y ecológica para llevar a cabo síntesis químicas en condiciones de reacción suaves y con alto grado de selectividad. El uso de enzimas, en especial las lipasas, en disolventes orgánicos es una excelente metodología para la preparación de fármacos quirales (Gotor-Fernández et al., 2006).

Las lipasas pertenecen a la familia de las triacilglicerol hidrolasas (EC 3.1.1.3) y su función principal es catalizar la hidrólisis de triacilgliceroles y la esterificación de ácidos grasos con glicerol (Santaniello et al., 1993). Sin embargo, estas enzimas son muy utilizadas en síntesis orgánica ya que exhiben una amplia especificidad de sustrato, estereoselectividad y enantioselectividad, además de encontrarse disponibles en diversas preparaciones y no necesitar cofactores para su actividad catalítica (Naik et al., 2010).

En la resolución cinética de mezclas racémicas, las lipasas son de gran importancia debido a su capacidad de discriminar entre los dos enantiómeros (enantioselectividad). Esto las ha convertido en los catalizadores por excelencia de la resolución cinética de ácidos carboxílicos, alcoholes, ésteres y aminas, entre otros compuestos (Ghanem & Aboul-Enein, 2004; Naik et al., 2010). La enantioselectividad de la reacción es la que garantiza la efectividad de la misma y puede verse afectada por varios parámetros como el tipo de enzima, las condiciones de reacción (temperatura, solvente, etc) y el tipo de sustratos (Reetz, 2002).

Para este proyecto se utilizará la lipasa B (CalB) de *Candida antarctica*, constituida por 317 aminoácidos y con un peso molecular de 33 kDa. Su sitio activo (**Figura 2**) se conforma de:

la triada catalítica, compuesta por los aminoácidos serina (S105), histidina (H224) y ácido aspártico (D187); el hueco oxianiónico (treonina(T40) y glutamina (G106)); y el bolsillo de unión al ligando formado por el bolsillo hidrofóbico grande por encima de la triada catalítica y el bolsillo mediano por debajo de ella (Escorcia et al., 2014).

Figura 2.

Bolsillo de unión de la CalB de Candida antarctica con la triada catalítica.

Nota. Tomado de (Escorcia et al., 2014).

Cuando el anillo naftilo del propranolol está orientado hacia el bolsillo hidrofóbico grande se considera que el propranolol interactúa con el sitio activo en el modo de unión I, donde la cadena lateral naftoxi del propranolol se encuentra en el bolsillo hidrofóbico grande y su cadena lateral de isopropilamina en el bolsillo mediano. Mientras que, en el modo de unión II, el anillo naftilo se encuentra en el bolsillo hidrofóbico mediano (**Figura 3**).

Figura 3.

Modos de unión del propranolol en el bolsillo de unión de CalB.

Nota. Tomado de (Escorcia et al., 2014).

2.3 Mecanismo de reacción para la acetilación del (R,S)-propranolol

Mediante estudios previos en nuestro grupo de investigación de bioquímica teórica se ha definido un mecanismo de reacción para la acetilación del (R,S)-propranolol catalizada por la CalB de *Candida antarctica* (**Figura 4**). Este mecanismo inicia por la reacción de acilación de la serina catalítica (S105) por parte del donador acilo (acetato de vinilo) produciendo el primer intermediario tetraédrico (TI-1) enzima acilo. El intermediario tetraédrico oxianiónico es estabilizado por los grupos funcionales NH y OH en el llamado hueco oxianiónico de la enzima y se produce la CalB acetilada mediante la reacción de acilación. La CalB acetilada forma complejos de Michaelis (MCCs) con el (R,S)-propranolol y se produce la desacilación mediante el ataque nucleofílico del grupo OH del sustrato al carbono electrodeficiente de la S105, generándose el segundo intermediario tetraédrico (TI-2). Los productos de la reacción son el (R,S)-O-acetil-propranolol y la enzima regenerada (Escorcia et al., 2017). Este mecanismo se ha estudiado previamente en nuestro grupo y se encontró que la enzima acetila solo el grupo hidroxilo del propranolol, es decir, es quimioselectiva hacia la O-acetilación (Escorcia et al., 2013) y preferiblemente reacciona con el enantiómero (R) (Escorcia et al., 2014).

Figura 4.

Mecanismo de reacción de la acetilación del (R,S)-propranolol catalizada por la CalB de Candida antarctica.

Nota. Tomado de (Escorcia, 2015).

Se definieron diferentes perfiles de reacción QM/MM para la transformación de (R,S)propranolol en *O*-acetilpropranolol con base en las configuraciones de TI-2. Estas configuraciones se conocen como ORI-IV y OSI—IV. En los caminos de reacción ORI y ORII, el (R)-propranolol se orienta en modo de unión I, y en ORIII y ORIV, en modo de unión II. En el camino de reacción OSI, el (*S*)-propranolol se une en el modo de unión I, mientras que, en las otras tres rutas de reacción, se une en el modo de unión II (Escorcia et al., 2017).

2.4 Métodos teóricos

2.4.1 Teoría del funcional de la densidad

La teoría del funcional de la densidad (DFT) es uno de los métodos más utilizados para los cálculos computacionales de la estructura de átomos, moléculas, cristales, superficies y sus interacciones. Esta se basa en el teorema de Hohenberg-Kohn que establece dos enunciados: i) la energía del estado fundamental de un sistema de electrones es una función única de la densidad del estado fundamental y ii) el funcional que entrega la energía del estado fundamental del sistema proporciona la energía más baja si y solo si la densidad de entrada es la verdadera densidad del estado fundamental. Teniendo en cuenta esto, el parámetro más fundamental en DFT es la densidad electrónica $\rho(r)$, en términos de la cual se expresan todas las cantidades químicas. Dado que la teoría es más simple que la mecánica cuántica clásica, ha aumentado el interés por comprender la estructura, las propiedades, la reactividad y la dinámica de los átomos, moléculas y grupos mediante DFT, por lo que ahora se simulan de forma regular grandes sistemas que involucran muchos átomos o moléculas (Argaman & Makov, 2000; Jones, 2015; Obot et al., 2015).

Los métodos tradicionales dentro de las teorías de la estructura electrónica de la materia, en particular la teoría de Hartree-Fock y los derivados de este formalismo, se basan en una función de onda multielectrónica. Si bien la resolución de la ecuación de Schrödinger permite describir de forma exacta el comportamiento de los sistemas muy pequeños, su capacidad de predicción se ve limitada por el hecho de que sus ecuaciones son demasiado complejas de resolver de forma analítica. En cambio, en DFT se adopta un enfoque diferente donde, en lugar de la función de onda de muchos cuerpos, se utiliza la densidad de un cuerpo como variable fundamental. Dado que la densidad es una función de solo tres coordenadas espaciales (en lugar de las coordenadas 3N de la función de onda), DFT es computacionalmente factible incluso para sistemas grandes (Kurth et al., 2005).

2.4.2 Método de simulación QM/MM

La técnica híbrida de mecánica cuántica/mecánica molecular (QM/MM) es un método de simulación molecular que combina las fortalezas de ambos enfoques. Se caracteriza por la partición del sistema en dos regiones: una "región QM", que corresponde a la parte química relevante (el centro activo) y que se trata mediante un método basado en la mecánica quántica; y una "región MM", que incluye el resto del sistema y que se describe mediante un método de mecánica molecular. El cálculo QM/MM se define por los métodos QM y MM empleados, por cómo se combinan cada una de las regiones (según si es por acoplamiento mecánico o electrónico) y por la forma de tratar la interfase entre las regiones (Ardèvol, 2013; «QM/MM Studies of Enzymes», 2007).

La elección del método MM se define por el campo de fuerzas usado. Para ello hay una gran variedad de campos de fuerzas para proteínas (CHARMM22*, AMBERFF99SB-ildn, OPLS-AA/L, etc), carbohidratos (GLYCAM06h) o ácidos nucleicos (CHARM27, parmbsc0, etc). La evolución de los campos de fuerza para simulaciones QM/MM se centra en considerar el efecto de la región QM sobre las cargas parciales de la región MM mediante campos de fuerza polarizables (Ardèvol, 2013). La elección del método QM depende de la precisión que se desea y el coste computacional del método. En el estudio de las reacciones enzimáticas los métodos basados en la teoría del funcional de la densidad (DFT), los semiempíricos o los post-Hartree Fock (post-HF)

son los más usados. Entre los métodos DFT se encuentra el funcional híbrido B3LYP, desarrollado por primera vez para estudiar la absorción vibratoria y el dicroísmo circular, el cuál ha dado muy buenos resultados con un bajo coste computacional a comparación de otros métodos. Este funcional pertenece a una clase de aproximaciones para la función de la energía de intercambio y correlación, donde se incorpora una parte de la energía de intercambio exacto de la teoría de Hartree-Fock con el resto de la energía de intercambio y correlación proveniente de otros funcionales (ab initio o empírica). De este modo, el funcional B3LYP permite mejorar el cálculo de muchas propiedades moleculares como energías de atomización, longitudes de enlace y frecuencias de vibración (Tirado-Rives & Jorgensen, 2008).

2.4.3 Teoría cuántica de átomos en moléculas

La teoría cuántica de átomos en moléculas (QTAIM) se basa en el observable cuántico de la densidad electrónica $\rho(\mathbf{r}_c)$ para dar un enfoque teórico de la estructura electrónica de moléculas y sólidos (Bader, 1994; García-Revilla et al., 2019; Matta & Boyd, 2007). En esta teoría, los máximos pronunciados en la densidad electrónica en las posiciones de los núcleos dan lugar a una partición natural del espacio molecular en regiones mononucleares separadas, identificadas como átomos en moléculas y denominadas cuencas atómicas, Ω . Estas cuencas atómicas se caracterizan por estar separadas por las superficies de flujo cero del gradiente de la densidad electrónica, $\nabla \rho(\mathbf{r}_c)$. Los caminos de enlace entre tales átomos están asociados con la red de líneas de densidad máxima y cada uno consta de dos líneas de gradiente de densidad que se originan en los puntos críticos (CP) entre átomos, donde $\nabla \rho(\mathbf{r}_c) = 0$, y terminan en los núcleos correspondientes. La existencia de puntos críticos de enlace (BCP) en una línea interatómica, en un sistema en equilibrio, se considera como un parámetro de interacción de enlace entre el par de átomos correspondiente y el signo del

laplaciano de la densidad electrónica, $\nabla^2 \rho(\mathbf{r}_c)$, caracteriza el tipo de interacción (Khrenova et al., 2019; Matta & Boyd, 2007).

Los enlaces presentes en el sistema se pueden clasificar entre dos tipos de enlaces químicos, basado en la relación de Cremer y Kraka (Cremer & Kraka, 1984):

$$H(\mathbf{r}_c) = V(\mathbf{r}_c) + G(\mathbf{r}_c) \tag{1}$$

$$(\hbar^2/8m)\nabla^2\rho(\mathbf{r}_c) = H(\mathbf{r}_c) - V(\mathbf{r}_c)/2$$
⁽²⁾

La primera ecuación relaciona la densidad de energía potencial local, $V(\mathbf{r}_c)$, con la densidad de energía cinética local, $G(\mathbf{r}_c)$, para obtener la densidad de energía local, $H(\mathbf{r}_c)$. La segunda ecuación relaciona el laplaciano, $\nabla^2 \rho(\mathbf{r}_c)$, con la energía potencial local y las densidades de energía total. De este modo, los enlaces se clasifican en base a $H(\mathbf{r}_c)$ y $\nabla^2 \rho(\mathbf{r}_c)$ y pueden ser: interacciones de capa compartida (SS), interacciones de capa cerrada regular (rCS) e interacciones de capa cerrada pura (pCS). El primer tipo de enlaces suele estar asociado con enlaces covalentes mientras que las dos últimas se asocian con enlaces iónicos y otros enlaces (Hayashi et al., 2013). En el caso de los enlaces de hidrógeno (HBs), estos pueden ser HB covalentes (rCS) o HB iónicos (pCS); Los HB covalentes se caracterizan por tener $H(\mathbf{r}_c)$ negativa y $\nabla^2 \rho(\mathbf{r}_c)$ positiva, además de ser interacciones estabilizadoras, mientras que los HB iónicos se caracterizan por tener $H(\mathbf{r}_c)$ positivo y $\nabla^2 \rho(\mathbf{r}_c)$ positivo (Cremer & Kraka, 1984; Gibbs et al., 2008; Hayashi et al., 2013).

3 Estado del arte

Debido al gran interés en la resolución de fármacos enantioméricamente puros y el amplio uso de las lipasas como catalizadores de la resolución cinética de estos compuestos, la reacción de acetilación del (R,S)-propranolol catalizada por la lipasa B de *Candida antarctica* se ha utilizado como modelo de estudio para investigar el origen de la enantioselectividad de este tipo de reacciones y analizar las interacciones intermoleculares involucradas.

Para el estudio de esta reacción se han utilizado tanto técnicas espectroscópicas como simulaciones de dinámica molecular (MD) y cálculos mecano-cuánticos. Mediante espectroscopía RMN de ¹H y ¹³C se analizó la quimio- y enantioselectividad de la reacción utilizando acetato de vinilo como donante de acilo y una mezcla de tolueno/metanol como disolvente. Se identificaron las reacciones de hidrólisis y alcohólisis, además de la acetilación del propranolol, se observó la formación exclusiva del O-acetil-propranolol en todas las condiciones de reacción y la enantioselectividad a favor de la transformación del *R*-propranolol. Se llevó a cabo el modelado molecular de los complejos de Michaelis entre propranolol y CalB acetilada (AcCalB), y se encontraron modos de unión del sustrato que conducen a la formación del producto exclusivos para la *O*-acetilación, lo que explica la quimioselectividad observada experimentalmente de CalB (Escorcia et al., 2013).

En otro estudio se realizaron múltiples simulaciones MD en tolueno explícito para evaluar el comportamiento dinámico de los complejos de Michaelis de la reacción. El análisis de las trayectorias MD mostró que existen diferentes conformaciones reactivas de *R*- y *S*-propranolol que pueden transformarse en el segundo intermedio tetraédrico correspondiente; además, los complejos reactivos de R-propranolol presentaron una mejor capacidad para ser transformados por CalB que los de S-propranolol, lo que permite explicar la enantioselectividad de la reacción. El análisis de las interacciones enzima-sustrato sugirió que las interacciones CH- π entre los anillos de naftilo del propranolol y los residuos del bolsillo de unión de CalB (Ile189, Ala282 y Leu278) pueden desempeñar un papel importante en la estabilización de los estados de transición implicados en la transformación del *R*-propranolol (Escorcia et al., 2014).

Por otro lado, se realizaron simulaciones MD y cálculos combinados de mecánica cuántica/mecánica molecular (QM/MM) para calcular las barreras de reacción de la conversión de R- y S-propranolol en O-acetilpropranolol para varias conformaciones distintas de TI-2, realizar optimizaciones de geometría QM/MM y cálculos de trayectoria de reacción. Estos cálculos mostraron que la formación de TI-2 es el paso que determina la velocidad de la reacción y que la barrera energética para la transformación de R-propranolol es 4,5 kcal/mol menor que la de la reacción de S-propranolol. Además, se observó que los enlaces de hidrógeno con los residuos del hueco oxianiónico juegan un papel importante en el perfil energético de la reacción, al igual que las interacciones CH– π entre el anillo naftil del propranolol y los residuos hidrofóbicos circundantes pueden mejorar la enantioselectividad de la reacción exotérmica del R - propranolol (Escorcia et al., 2017).

QTAIM es una técnica de análisis con múltiples aplicaciones en varias áreas de la ciencia. Entre ellas está el análisis de interacciones moleculares entre proteínas y ligandos, lo que permite determinar cuáles de estas ayudan a estabilizar la formación de los diferentes complejos ligandoproteína, así como identificar los ligandos que presenten mayor afinidad a la enzima (Khrenova et al., 2019; Rojas et al., 2020). Esto es muy útil para el estudio de nuevos inhibidores que permitan desarrollar fármacos y tratamientos para diversas enfermedades (Campos et al., 2019; Gutiérrez et al., 2019). En el estudio más reciente se aplicaron cálculos QTAIM para analizar las interacciones enzima-sustrato y las propiedades topológicas de la densidad electrónica en el paso enantioselectivo de la acilación de (R, S)-propranolol, expandiendo la región QM para incluir aminoácidos del hueco oxianiónico. Se estudiaron también las interacciones $n \rightarrow \pi^*$ entre el OH del propranolol y el grupo carbonilo de la acil serina en el MCC, y entre el oxígeno OH de la serina y el grupo carbonilo del propranolol acilado en el complejo EP aplicando QTAIM y el análisis del orbital de enlace natural (NBO). Se encontró que D187 actúa como un depósito de electrones para H224, y H224 actúa como un depósito de electrones para el sitio activo de la proteína, se liberan electrones cuando el intermedio tetraédrico se forma a partir del complejo de Michaelis y los recibe cuando se forma el complejo enzima-producto (Rincón et al., 2021).

Continuando con esta línea de investigación, en este trabajo de grado se realizó un estudio QTAIM para analizar el efecto de la inclusión de la región MM de la proteína sobre las propiedades topológicas de la densidad electrónica, las interacciones intermoleculares (puentes de hidrógeno) y la distribución de cargas en los complejos de Michaelis (MCC), intermediaros tetraédricos (TI) y complejos producto (PDC) de la O-acetilación del (R,S)-propranolol catalizada por la lipasa B de *Candida antarctica*.

4 Metodología

4.1 Obtención de la función de onda de la región QM de la proteína

Se obtuvo la función de onda de la región QM de la proteína mediante un cálculo puntual de las estructuras QM/MM de los complejos de Michaelis, los intermediarios tetraédricos y los complejos producto formados entre la acetil-enzima (AcCalB) y el (R,S)-propranolol en cada camino de la reacción. En este cálculo la región MM de la proteína no se tuvo en cuenta.

Las estructuras QM/MM de los complejos de Michaelis, los intermediarios tetraédricos y los complejos producto se obtuvieron en un estudio previo (Rincón et al., 2021). En este estudio las coordenadas de la CalB se tomaron de la estructura cristalina (Protein Data Bank (PDB) ID:

1TCA) y los estados de protonación de los residuos titulables se asignaron utilizando el módulo PROPKA de PDB2PQR. Además, se remplazó el grupo hidroxilo de la cadena lateral S105 por acetato para obtener la AcCalB y se retuvieron todas las moléculas de agua. Usando la estructura dominante de AcCalB como objetivo para el acoplamiento covalente manual de (R)- y (S)propranolol, se realizaron simulaciones MD en tolueno explícito para construir las estructuras de partida para el intermedio tetraédrico (TI). Se crearon seis estructuras iniciales con distintas conformaciones variando los ángulos de torsión del propranolol en su forma TI. Las estructuras optimizadas se sometieron nuevamente a simulaciones MD de 1,5 ns en tolueno explícito. La región QM de estas estructuras solo incluye la triada catalítica y el propranolol. Sin embargo, para el análisis QTAIM se decidió expandir la región QM para incluir los residuos aminoacídicos del hueco oxianiónico, por lo que se optimizaron de nuevo las estructuras y se tomaron como puntos de partida para los posteriores cálculos QM/MM, utilizando la teoría funcional de la densidad (B3LYP/TZVP) para la región QM y el campo de fuerza CHARMM36 para la región MM. Estos cálculos QM/MM se realizaron con el paquete de programas de química cuántica ORCA (Neese, F, 2018) para posteriormente ejecutar un cálculo de un solo punto de las geometrías y obtener el archivo de la función de onda que se analizó en el marco de QTAIM.

4.2 Análisis QTAIM

Se analizaron las interacciones intermoleculares no covalentes (enlaces de hidrógeno) entre el sustrato, los residuos catalíticos del sitio activo (S105, H224 y D187) y los residuos aminoacídicos del hueco oxianiónico (T40 y Q106). Mediante este análisis se definieron las cuencas atómicas y sus propiedades correspondientes, como la carga atómica, q(Ω). Además, se obtuvieron las propiedades topológicas en los puntos críticos de enlace, BCP, como la densidad electrónica, $\rho(\mathbf{r}_c)$, el laplaciano de la densidad electrónica, $\nabla^2 \rho(\mathbf{r}_c)$, la densidad de energía potencial local, $V(\mathbf{r}_c)$, y la densidad de energía cinética local, $G(\mathbf{r}_c)$. Finalmente, se calculó la densidad de energía local, $H(\mathbf{r}_c)$, empleando la relación de Cremer y Kraka, y se clasificaron los enlaces presentes en las estructuras moleculares dependiendo del tipo de interacción (Hayashi et al., 2013). El análisis QTAIM de la densidad electrónica $\rho(\mathbf{r}_c)$ para todos los sistemas se realizó con el software AIMAll y la visualización molecular se renderizó utilizando Visual Molecular Dynamics y AIMStudio de AIMAll (Keith, 2013).

4.3 Análisis de resultados

Los resultados que se obtuvieron fueron comparados con los resultados obtenidos en el estudio anterior (Rincón et al., 2021). Se analizaron las cargas atómicas, perfiles de energía y propiedades topológicas de la densidad electrónica a lo largo de la coordenada de reacción en los casos: cuando se incluye la región MM de la proteína y cuando esta no está presente. De esta forma, se determinó el efecto de la región MM de la proteína sobre las interacciones y los cambios de la estructura electrónica en el transcurso de la reacción de O-acetilación del (R,S)-propranolol catalizada por CalB.

5 Resultados y discusión

5.1 Cargas atómicas en complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC)

Al no incluir la región MM de la proteína en los cálculos realizados se observaron cambios en las cargas atómicas de los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC). Estos cambios son representados en la **Figura 5** para el camino de reacción ORI. En todas las rutas calculadas (ORI-ORIV y OSI-OSIV) se observó una tendencia de cambio similar (**Apéndice A**), donde las mayores diferencias de carga se presentan en los átomos localizados en la frontera entre la región QM y MM de la proteína, representados por los colores verde y amarillo (ver **Figuras 1-24** en **Apéndice B**). Estos átomos tienen interacciones con la región MM que influyen en sus cargas atómicas y que pueden incidir en el mecanismo de la reacción. Sin embargo, estas diferencias de carga atómica tienen valores por debajo de 0.1 au, mientras que los demás átomos presentan valores menores, siendo la mayoría de las cargas calculadas sin la región MM mayores que las obtenidas con la región MM. El mayor cambio en su carga atómica lo presenta el átomo de oxígeno (O5) de la serina acetilada (AcS105), representado en color rojo en la **Figura 5**. El esquema de numeración atómica empleado para todas las estructuras es el propuesto por Rincón et al., 2021 (**Apéndice C**).

Figura 5.

Diferencias absolutas de las cargas atómicas calculadas sin incluir e incluyendo la región MM para el camino de reacción ORI. a) complejos de Michaelis (MCC), b) intermediarios tetraédricos (TI) y c) complejos producto (PDC).

Nota. En azul se representa el cambio menor y en rojo el cambio mayor.

5.2 Cargas atómicas de residuos aminoacídicos en complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC)

A partir de los valores de las cargas atómicas individuales se calculó las cargas totales de los residuos aminoacídicos involucrados en la reacción (**Apéndice C**): ácido aspártico (D187), histidina (H224), serina (S105), glutamina (Q106) y treonina (T40). Los valores de las cargas

atómicas sin incluir la región MM coinciden con los reportados por (Rincón et al., 2021) incluyendo la región MM. Las Tabla 1 y Tabla 2 muestran las diferencias en las cargas atómicas calculadas cuando se incluye o no la región MM para los residuos aminoacídicos de la triada catalítica y del hueco oxianiónico, y para el propranolol en las diferentes rutas de reacción. El ácido aspártico (D187), la glutamina (Q106), la treonina (T40) y el propranolol no presentan grandes variaciones en sus cargas atómicas; mientras que la serina (S105) y la histidina (H224) son las que presentan mayor cambio. Esta última es el residuo aminoacídico que se ve más afectado en su carga atómica en todas las rutas de reacción, no solo en el valor de la carga sino también en el signo de esta. Se observó que, en la mayoría de las rutas, este residuo presenta cargas de signo positivo cuando se incluyó la región MM (Rincón et al., 2021) en tanto que, cuando no se incluye la región MM se obtienen cargas de signo negativo para este residuo, específicamente en los complejos de Michaelis y producto. Este cambio de signo en la carga atómica de la histidina se debe al cambio de signo observado en uno de los átomos de hidrógeno del C_{β} de este residuo (Apéndice D), el cual hace parte del grupo de átomos localizados en la frontera entre la región MM y la región QM de la proteína.

Tabla 1.

Diferencias en las cargas atómicas, cuando se incluye o no la región MM de la proteína, para los residuos aminoacídicos de la triada catalítica y el hueco oxianiónico, y el propranolol en los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC) de los caminos de reacción para el enantiómero R.

Residuo		ORI			ORII			ORIII			ORIV	
aminoacídico	MCC	TI	PDC									
D187	0.000	0.004	0.000	0.005	0.009	0.002	0.001	0.004	0.001	0.002	0.000	0.004

H224	0.053	0.057	0.051	0.065	0.073	0.064	0.074	0.080	0.072	0.060	0.065	0.058
AcS105	0.036	0.047		0.028	0.044		0.025	0.042		0.038	0.048	
S105			0.035			0.039			0.038			0.042
Q106	0.014	0.019	0.014	0.017	0.020	0.018	0.019	0.020	0.023	0.021	0.027	0.026
T40	0.018	0.017	0.014	0.005	0.002	0.000	0.018	0.015	0.015	0.013	0.011	0.011
PRO	0.002	0.003		0.005	0.017		0.001	0.006		0.007	0.013	
AcPRO			0.000			0.009			0.004			0.009

Tabla 2.

Diferencias en las cargas atómicas, cuando se incluye o no la región MM de la proteína, para los residuos aminoacídicos de la triada catalítica y el hueco oxianiónico, y el propranolol en los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC) de los caminos de reacción para el enantiómero S.

Residuo		OSI			OSII			OSIII			OSIV	
aminoacídico	MCC	TI	PDC									
D187	0.002	0.005	0.002	0.001	0.004	0.000	0.003	0.001	0.002	0.001	0.002	0.005
H224	0.072	0.082	0.072	0.055	0.058	0.055	0.062	0.065	0.060	0.058	0.066	0.061
AcS105	0.022	0.032		0.026	0.041		0.025	0.030		0.035	0.048	
S105			0.034			0.032			0.031			0.040
Q106	0.012	0.012	0.016	0.014	0.020	0.022	0.018	0.018	0.018	0.020	0.024	0.022
T40	0.009	0.007	0.005	0.018	0.022	0.013	0.021	0.023	0.020	0.019	0.020	0.016
PRO	0.004	0.018		0.002	0.004		0.005	0.008		0.013	0.017	
AcPRO			0.010			0.003			0.004			0.008

En la **Figura 6** se muestran los cambios en la carga atómica de H224 en todas las vías de reacción y se observa que en las vías OSI y ORIII la diferencia de carga atómica es mayor que en

las demás rutas. Teniendo en cuenta que en el estudio anterior se determinó que D187 actúa como depósito de densidad electrónica para H224, y H224 actúa como depósito de densidad electrónica para el sitio activo de la proteína (Rincón et al., 2021), este cambio en la densidad electrónica de H224 afecta las observaciones realizadas anteriormente sobre el mecanismo de la reacción y, por tanto, evidencia la importancia de la inclusión de la región MM de la proteína en el estudio de la O-acetilación del (*R*,*S*)-propranolol.

Figura 6.

Diferencias en las cargas atómicas calculadas cuando se incluye o no la región MM de la proteína, para la histidina en los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC) de los caminos de reacción para los enantiómeros R y S.

5.3 Perfiles de energía QM para la conversión de (*R*)- y (*S*)-propranolol en (*R*,*S*)-O-acetilpropranolol

Al analizar las energías QM totales calculadas para cada camino de reacción cuando no se incluye la región MM y las energías QM/MM totales calculadas teniendo en cuenta la región MM

de la proteína y reportadas por (Rincón et al., 2021), se observa que se obtienen valores de energía menores cuando se incluye la región MM. Se determinó una diferencia promedio de \approx 200 kcal/mol, lo que indica que las estructuras obtenidas aquí son menos estables y qué la región MM de la proteína contribuye a la estabilización de las estructuras químicas. La **Figura 7** muestra los perfiles de energía de la región QM para todas las rutas de reacción, con y sin la región MM. La mayoría de las energías relativas calculadas son similares a las obtenidas anteriormente, a excepción de ORIV, OSII y OSIII. Puede que estas diferencias energéticas se deban a diferencias estructurales en los modelos de los complejos obtenidos al no incluir la región MM en los cálculos.

Figura 7.

Perfiles de energía QM para la conversión de (R)-(izquierda) y (S)-propranolol (derecha) a propranolol O-acetilado.

Nota. Las energías se dan en relación con el MCC. Las líneas punteadas corresponden a los valores calculados considerando la región MM, reportados por (Rincón et al., 2021) y las líneas continuas corresponden a los valores calculados sin tener en cuenta la región MM.

5.4 Propiedades topológicas representativas de los enlaces de hidrógeno

Las propiedades topológicas QTAIM de los puntos críticos de enlace (BCP) para los enlaces de hidrógeno (HBs) presentes en la ruta de reacción ORI se muestran en la **Tabla 3**. Estos enlaces se clasifican en interacciones de capa cerrada pura (pCS) o de capa cerrada regular (rCS). Al comparar los datos QTAIM para todas las rutas de reacción (**Apéndice E**) con los reportados por (Rincón et al., 2021) se observa que el efecto de la región MM sobre las propiedades topológicas es bajo.

Tabla 3.

Valores para la distancia (d), densidad electrónica (ρ), laplaciano de la densidad electrónica ($\nabla^2 \rho$) y densidad de energía local (H), así como la clasificación de los enlaces de hidrógeno presentes en la ruta de reacción ORI.

Ruta	Estado	Enlace	d(Å)	ρ(r _c)	∇²ρ(r _c)	H(r _c)	Тіро
ORI	MCC	Q106:N2H…AcS105:O5	2.047	21.4	82.9	2.5	pCS
ORI	MCC	T40:N2H…AcS105:O5	2.132	14.6	63.2	3.2	pCS
ORI	MCC	T40:O1…PRO:NH	2.106	15.9	66.8	3.2	pCS
ORI	MCC	T40:O3…Q106:N5H	1.994	22.1	83.2	2.5	pCS
ORI	MCC	D187:O…H224:NτH	1.703	48.8	108.8	-9.6	rCS
ORI	MCC	H224:Nπ…PRO:O2H	1.847	37.5	81.2	-4.4	rCS
ORI	MCC	T40:O3H…AcS105:O5	1.771	37.6	116.7	-3.1	rCS
ORI	TI	H224:NπH…PRO:O2	1.902	27.6	93.8	0.9	pCS
ORI	TI	Q106:N2H…AcS105:O5	1.964	26.2	86.9	1.1	pCS
ORI	TI	T40:N2H…AcS105:O5	1.927	25.3	95.5	2.0	pCS

ORI	TI	T40:O1…PRO:NH	2.075	17.5	71.6	3.1	pCS
ORI	TI	T40:O3…Q106:N5H	1.998	22.3	82.0	2.4	pCS
ORI	TI	D187:O…H224:NtH	1.498	82.2	99.7	-32.1	rCS
ORI	TI	T40:O3H…AcS105:O5	1.659	51.3	123.8	-10.8	rCS
ORI	PDC	Q106:N2H…PRO:O1c	2.406	9.4	35.0	1.9	pCS
ORI	PDC	T40:N2H…PRO:O1c	2.464	7.3	29.1	1.7	pCS
ORI	PDC	T40:O1…PRO:NH	2.185	14.4	57.7	2.8	pCS
ORI	PDC	T40:O3…Q106:N5H	1.940	24.9	93.1	2.2	pCS
ORI	PDC	D187:O…H224:ΝτΗ	1.666	53.3	112.3	-12.2	rCS
ORI	PDC	H224:Nπ…S105:O4H	1.678	57.4	88.5	-15.0	rCS
ORI	PDC	T40:O3H…PRO:O1c	1.681	43.7	139.6	-5.1	rCS

Nota. Los valores de las propiedades QTAIM en el BCP están dadas en 10³ au.

En general, los enlaces de hidrógeno evaluados presentan valores similares en sus propiedades topológicas cuando se incluye o no la región MM de la proteína en los cálculos. Sin embargo, los enlaces H224:N π -PRO:O2H en el MCC del ORIV y T40:N2H-AcS105:O5 en el TI del ORII presentan propiedades diferentes al no tener en cuenta la región MM. En el primer enlace la densidad de energía local $H(r_c)$ cambia de un valor positivo a uno negativo, correspondiendo a una interacción tipo rCS; mientras que, en el segundo enlace, $H(r_c)$ cambia de un valor positivo a uno negativo, correspondiendo a una interacción tipo pCS. Estos dos enlaces se muestran con más detalle en la **Figura 8**. Ambos enlaces están localizados en el sitio activo de la proteína y son importantes para la estabilización de los complejos durante la reacción. Teniendo en cuenta que el enlace H224:N π -PRO:O2H es de tipo rCS, significa que este aporta una interacción estabilizante para el MCC del ORIV. En cambio, el enlace T40:N2H-AcS105:O5 corresponde a una interacción no estabilizante para el TI del ORII.

36
Figura 8.

Gráficos moleculares de los enlaces de hidrógeno de a) MCC del ORIV y b) TI del ORII.

Nota. Los círculos amarillos indican el BCP para los enlaces de hidrógeno H224:Nπ-PRO:O2H y T40:N2H-AcS105:O5.

6 Conclusiones

Los átomos más afectados por la no inclusión de la región MM en los cálculos QTAIM fueron aquellos que se encuentran en la frontera entre la región MM y la región QM, y que, por tanto, están directamente ligados a la región MM. Sin embargo, a nivel de residuos aminoacídicos, la histidina es la que presentó un mayor cambio tanto en el valor de su carga atómica como en su signo; siendo esta molécula un actor clave en la reacción.

Los perfiles energéticos de las diferentes rutas de reacción indican una diferencia leve entre los dos estudios comparados. Sin embargo, se evidenció que las energías obtenidas sin incluir la región MM son mayores que las obtenidas en el estudio anterior, y, por lo tanto, las estructuras empleadas en este proyecto son menos estables.

Se observaron diferencias mínimas en los valores de las propiedades topológicas principales de los BCP, debido a las interacciones con la región MM que no se incluyeron en estos cálculos. La mayoría de los enlaces conservaron su tipo de interacción, ya sea tipo rCS o pCS. No obstante, los enlaces H224:N π -PRO:O2H en el MCC del ORIV y T40:N2H-AcS105:O5 en el TI del ORII presentaron cambios en el tipo de enlace, y, por tanto, en su capacidad estabilizante. Estos enlaces están localizados en el sitio activo de la proteína y podrían tener gran influencia en el mecanismo de la reacción.

Referencias Bibliográficas

- Al-Majed, A. A., Bakheit, A. H. H., Abdel Aziz, H. A., Alajmi, F. M., & AlRabiah, H. (2017).
 Chapter Six—Propranolol. En H. G. Brittain (Ed.), *Profiles of Drug Substances, Excipients and Related Methodology* (Vol. 42, pp. 287-338). Academic Press. https://doi.org/10.1016/bs.podrm.2017.02.006
- Ardèvol, A. (2013). Métodos de simulación QM/MM y de mecánica estadística: Una aproximación teórica a la biología molecular. *Anales de la Real Sociedad Española de Química*, *4*, 268-275.
- Argaman, N., & Makov, G. (2000). Density functional theory: An introduction. American Journal of Physics, 68(1), 69-79. https://doi.org/10.1119/1.19375
- Ávila-González, R., Pérez-Gilabert, M., & García-Carmona, F. (2005). Lipase-catalyzed preparation of S-propranolol in presence of hydroxypropyl β-cyclodextrins. *Journal of Bioscience and Bioengineering*, 100(4), 423-428. https://doi.org/10.1263/jbb.100.423
- Bader, R. F. W. (1994). Atoms in Molecules: A Quantum Theory.
- Barbosa, O., Ariza, C., Ortiz, C., & Torres, R. (2010). Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). *New Biotechnology*, 27(6), 844-850. https://doi.org/10.1016/j.nbt.2010.07.015
- Besterman, E. M., & Friedlander, D. H. (1965). Clinical experiences with propranolol. *Postgraduate Medical Journal*, 41(479), 526-535. https://doi.org/10.1136/pgmj.41.479.526
- Campos, L. E., Garibotto, F. M., Angelina, E., Kos, J., Tomašič, T., Zidar, N., Kikelj, D., Gonec, T., Marvanova, P., Mokry, P., Jampilek, J., Alvarez, S. E., & Enriz, R. D. (2019). Searching

new structural scaffolds for BRAF inhibitors. An integrative study using theoretical and experimental techniques. *Bioorganic Chemistry*, *91*, 103125. https://doi.org/10.1016/j.bioorg.2019.103125

- Collins, A. N., Sheldrake, G., & Crosby, J. (1997). *Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds*. Wiley. http://gen.lib.rus.ec/book/index.php?md5=7d834f114a7e7587eb491a156cd7bcc9
- Cremer, D., & Kraka, E. (1984). A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. *Croatica Chemica Acta*, *57*(6), 1259-1281.
- Eliel, E. L., & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. John Wiley & Sons.
- Escorcia, A. M. (2015). Enantioselective and Chemoselective Acylation of (R,S)-Propranolol Catalyzed by Candida antarctica Lipase B. Universidad Industrial de Santander.
- Escorcia, A. M., Daza, M. C., & Doerr, M. (2014). Computational study of the enantioselectivity of the O-acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B. *Journal of Molecular Catalysis B: Enzymatic*, 108, 21-31. https://doi.org/10.1016/j.molcatb.2014.06.010
- Escorcia, A. M., Molina, D., Daza, M. C., & Doerr, M. (2013). Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipase B: An experimental and computational study. *Journal of Molecular Catalysis B: Enzymatic*, 98, 21-29. https://doi.org/10.1016/j.molcatb.2013.09.019
- Escorcia, A. M., Sen, K., Daza, M. C., Doerr, M., & Thiel, W. (2017). Quantum Mechanics/Molecular Mechanics Insights into the Enantioselectivity of the O-Acetylation of (R,S)-Propranolol Catalyzed by Candida antarctica Lipase B. ACS Catalysis, 7(1), 115-127. https://doi.org/10.1021/acscatal.6b02310

- García-Revilla, M. A., Cortés-Guzmán, F., Rocha-Rinza, T., & Hernández-Trujillo, J. (2019). Latin American contributions to quantum chemical topology. *International Journal of Quantum Chemistry*, 119(2), e25789. https://doi.org/10.1002/qua.25789
- Ghanem, A., & Aboul-Enein, H. Y. (2004). Lipase-mediated chiral resolution of racemates in organic solvents. *Tetrahedron: Asymmetry*, 15(21), 3331-3351. https://doi.org/10.1016/j.tetasy.2004.09.019
- Gibbs, G., Downs, R., Cox, D., Ross, N., Prewitt, C., Rosso, K., Lippmann, T., & Kirfel, A. (2008).
 Bonded interactions and the crystal chemistry of minerals: A review. Z. Kristallogr. New Cryst. Struct. 222(2007)1,40, 223. https://doi.org/10.1524/zkri.2008.0002
- Gotor-Fernández, V., Brieva, R., & Gotor, V. (2006). Lipases: Useful biocatalysts for the preparation of pharmaceuticals. *Journal of Molecular Catalysis B: Enzymatic*, 40(3), 111-120. https://doi.org/10.1016/j.molcatb.2006.02.010
- Gutiérrez, L. J., Parravicini, O., Sánchez, E., Rodríguez, R., Cobo, J., & Enriz, R. D. (2019). New substituted aminopyrimidine derivatives as BACE1 inhibitors: In silico design, synthesis and biological assays. *Journal of Biomolecular Structure and Dynamics*, *37*(1), 229-246. https://doi.org/10.1080/07391102.2018.1424036
- Hayashi, S., Matsuiwa, K., Kitamoto, M., & Nakanishi, W. (2013). Dynamic Behavior of Hydrogen Bonds from Pure Closed Shell to Shared Shell Interaction Regions Elucidated by AIM Dual Functional Analysis. *The Journal of Physical Chemistry A*, *117*(8), 1804-1816. https://doi.org/10.1021/jp3098928
- Jones, R. O. (2015). Density functional theory: Its origins, rise to prominence, and future. *Reviews* of Modern Physics, 87(3), 897-923. https://doi.org/10.1103/RevModPhys.87.897

Keith, T. A. (2013). AIMAll (19.10.12) [Computer software]. Gristmill Software.

- Khrenova, M. G., Krivitskaya, A. V., & Tsirelson, V. G. (2019). The QM/MM-QTAIM approach reveals the nature of the different reactivity of cephalosporins in the active site of L1 metallo-β-lactamase. *New Journal of Chemistry*, 43(19), 7329-7338. https://doi.org/10.1039/C9NJ00254E
- Kurth, S., Marques, M. A. L., & Gross, E. K. U. (2005). Density-Functional Theory. En F. Bassani,
 G. L. Liedl, & P. Wyder (Eds.), *Encyclopedia of Condensed Matter Physics* (pp. 395-402).
 Elsevier. https://doi.org/10.1016/B0-12-369401-9/00445-9
- Lindner, W., Rath, M., Stoschitzky, K., & Semmelrock, H. J. (1989). Pharmacokinetic data of propranolol enantiomers in a comparative human study with (S)- and (R,S)-propranolol. *Chirality*, 1(1), 10-13. https://doi.org/10.1002/chir.530010105
- Matta, C. F., & Boyd, R. J. (2007). *The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design.* John Wiley & Sons.
- Naik, S., Basu, A., Saikia, R., Madan, B., Paul, P., Chaterjee, R., Brask, J., & Svendsen, A. (2010).
 Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. *Journal of Molecular Catalysis B: Enzymatic*, 65(1), 18-23.
 https://doi.org/10.1016/j.molcatb.2010.01.002
- Neese, F. (2018). Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, No. E1327. (4.0) [Computer software]. https://aip.scitation.org/doi/10.1063/5.0004608
- Obot, I. B., Macdonald, D. D., & Gasem, Z. M. (2015). Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. *Corrosion Science*, 99, 1-30. https://doi.org/10.1016/j.corsci.2015.01.037

- Patakas, D., Argiropoulou, V., Louridas, G., & Tsara, V. (1983). Beta-blockers in bronchial asthma: Effect of propranolol and pindolol on large and small airways. *Thorax*, 38(2), 108-112. https://doi.org/10.1136/thx.38.2.108
- Prichard, B. N. C., & Gillam, P. M. S. (1969). Treatment of Hypertension with Propranolol. *BMJ*, 1(5635), 7-16. https://doi.org/10.1136/bmj.1.5635.7
- QM/MM studies of enzymes. (2007). Current Opinion in Chemical Biology, 11(2), 182-187. https://doi.org/10.1016/j.cbpa.2007.01.684
- Rabkin, R., Stables, D. P., Levin, N. W., & Suzman, M. M. (1966). The prophylactic value of propranolol in angina pectoris. *American Journal of Cardiology*, 18(3), 370-380. https://doi.org/10.1016/0002-9149(66)90056-7
- Reetz, M. T. (2002). Lipases as practical biocatalysts. *Current Opinion in Chemical Biology*, 6(2), 145-150. https://doi.org/10.1016/s1367-5931(02)00297-1
- Rincón, D. A., Doerr, M., & Daza, M. C. (2021). Hydrogen Bonds and $n \rightarrow \pi^*$ Interactions in the Acetylation of Propranolol Catalyzed by Candida antarctica Lipase B: A QTAIM Study. *ACS Omega*. https://doi.org/10.1021/acsomega.1c02559
- Rojas, S., Parravicini, O., Vettorazzi, M., Tosso, R., Garro, A., Gutiérrez, L., Andújar, S., & Enriz,
 R. (2020). Combined MD/QTAIM techniques to evaluate ligand-receptor interactions.
 Scope and limitations. *European Journal of Medicinal Chemistry*, 208, 112792.
 https://doi.org/10.1016/j.ejmech.2020.112792
- Santaniello, E., Ferraboschi, P., & Grisenti, P. (1993). Lipase-catalyzed transesterification in organic solvents: Applications to the preparation of enantiomerically pure compounds. *Enzyme and Microbial Technology*, 15(5), 367-382. https://doi.org/10.1016/0141-0229(93)90123-J

- Santaniello, E., Ferraboschi, P., Grisenti, P., & Manzocchi, A. (1992). The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. *Chemical Reviews*, 92(5), 1071-1140. https://doi.org/10.1021/cr00013a016
- Shand, D. G. (1975). Propranolol. *New England Journal of Medicine*, 293(6), 280-285. https://doi.org/10.1056/NEJM197508072930606
- Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. *Journal of Chemical Theory and Computation*, 4(2), 297-306. https://doi.org/10.1021/ct700248k
- Veterans Administration Cooperative Study Group on Antihypertensive Agents. (1985).
 Propranolol or hydrochlorothiazide alone for the initial treatment of hypertension. IV.
 Effect on plasma glucose and glucose tolerance. Veterans Administration Cooperative
 Study Group on Antihypertensive Agents. *Hypertension (Dallas, Tex.: 1979)*, 7(6 Pt 1), 1008-1016. https://doi.org/10.1161/01.hyp.7.6.1008
- Walle, T., Webb, J. G., Bagwell, E. E., Walle, U. K., Daniell, H. B., & Gaffney, T. E. (1988). Stereoselective delivery and actions of beta receptor antagonists. *Biochemical Pharmacology*, 37(1), 115-124. https://doi.org/10.1016/0006-2952(88)90763-0

Apéndices

Apéndice A. Cargas atómicas individuales

Tabla 1.

Cargas atómicas de todos los átomos en el MCC, TI y EPC para cada ruta de reacción.

	MCG	2	TI		PDC	
Ruta	Átomo	q(A)	Átomo	q(A)	Átomo	q(A)
ORI	G39:C1	1.447010	G39:C1	1.437022	G39:C1	1.437159
ORI	G39:01'	-1.176347	G39:O1	-1.184976	G39:O1	-1.175397
ORI	T40:N2'	-1.159169	T40:N2	-1.177864	T40:N2	-1.145353
ORI	T40:N2'H	0.435755	T40:N2H	0.475826	T40:N2H	0.42345
ORI	T40:C2	0.362021	T40:C2	0.3625	T40:C2	0.363028
ORI	T40:C2H	0.006359	T40:C2H	0.005134	T40:C2H	0.00879
ORI	T40:C3	0.505757	T40:C3	0.530974	T40:C3	0.516715
ORI	T40:C3H	0.030436	T40:C3H	0.014474	T40:C3H	0.016576
ORI	T40:O3'	-1.144029	T40:O3	-1.157569	T40:O3	-1.149034
ORI	T40:O3'H	0.616895	T40:O3H	0.629544	T40:O3H	0.626773
ORI	T40:C4	0.012340	T40:C4	0.009559	T40:C4	0.011593
ORI	T40:C4H	0.025258	T40:C4H	0.020722	T40:C4H	0.021611
ORI	T40:C4H	-0.008992	T40:C4H	-0.013555	T40:C4H	-0.005577
ORI	T40:C4H	0.013580	T40:C4H	0.005229	T40:C4H	0.012966
ORI	T40:C1	1.473022	T40:C1	1.46253	T40:C1	1.471961
ORI	T40:O1'	-1.198899	T40:O1	-1.204602	T40:O1	-1.19528
ORI	G41:N2'	-1.143190	G41:N2	-1.141508	G41:N2	-1.14586
ORI	G41:N2'H	0.392933	G41:N2H	0.39288	G41:N2H	0.392028
ORI	G41:C2	0.339224	G41>:C2	0.340844	G41:C2	0.342999
ORI	G41:C2H	0.068789	G41:C2H	0.065034	G41:C2H	0.069347
ORI	G41:C2H	0.007972	G41:C2H	0.005213	G41:C2H	0.007389
ORI	W104:C1	1.454464	W104:C1	1.458272	W104:C1	1.45313
ORI	W104:O1'	-1.163377	W104:O1	-1.163458	W104:O1	-1.16658
ORI	AcS105:N2'	-1.137102	AcS105:N2	-1.137519	S105:N2	-1.137201
ORI	AcS105:N2'H	0.397703	AcS105:N2H	0.382616	S105:N2H	0.393011
ORI	AcS105:C2	0.368706	AcS105:C2	0.357898	S105:C2	0.339448
ORI	AcS105:C2H	0.059251	AcS105:C2H	0.041147	S105:C2H	0.051513
ORI	AcS105:C1	1.450168	AcS105:C1	1.436005	S105:C1	1.424792
ORI	AcS105:O1'	-1.162620	AcS105:O1	-1.17213	S105:O1	-1.166913
ORI	Q106:N2'	-1.139486	Q106:N2	-1.150166	Q106:N2	-1.1182
ORI	Q106:N2'H	0.413379	Q106:N2H	0.452281	Q106:N2H	0.40438
ORI	Q106:C2	0.340903	Q106:C2	0.338412	Q106:C2	0.334709
ORI	Q106:C2H	0.014190	Q106:C2H	0.007104	Q106:C2H	0.009672
ORI	Q106:C3	0.036564	Q106:C3	0.036782	Q106:C3	0.033578
ORI	Q106:C3H	0.009606	Q106:C3H	0.007904	Q106:C3H	0.007264
ORI	Q106:C3H	0.003649	Q106:C3H	0.016089	Q106:C3H	0.008361
ORI	Q106:C4	0.014636	Q106:C4	0.014135	Q106:C4	0.012668
ORI	Q106:C4H	0.011831	Q106:C4H	0.010058	Q106:C4H	0.008871
ORI	Q106:C4H	0.032873	Q106:C4H	0.027569	Q106:C4H	0.031998
ORI	Q106:C5	1.441579	Q106:C5	1.432329	Q106:C5	1.441012
ORI	Q106.O5'	-1.195379	Q106:O5	-1.200904	Q106.O5	-1.195699
ORI	Q106:N5'	-1.190881	Q106:N5	-1.191444	Q106:N5	-1.196181
ORI	Q106:N5'H	0.394374	Q106:N5H	0.389528	Q106:N5H	0.391745
ORI	Q106:N5'H	0.461971	Q106:N5H	0.46689	Q106:N5H	0.465966
ORI	D187:C3	-0.029257	D187:C3	-0.024941	D187:C3	-0.028076
ORI	D18/:C3H	-0.008545	D18/:C3H	0.005637	D187:C3H	-0.008097
ORI	D187:C3H	-0.012023	D187:C3H	-0.0007/94	D187:C3H	-0.010611

ORI	D187:C4	1.668877	D187:C4	1.648382	D187:C4	1.672318
ORI	D187:O	-1.260105	D187:O4	-1.25193	D187:O4	-1.263695
ORI	D187:O	-1.264611	D187:O4	-1.24497	D187:O4	-1.264397
ORI	H224:CB	0.021275	H224:CB	0.023539	H224:CB	0.019206
ORI	H224:CBH	-0.006209	H224:CBH	0.011187	H224:CBH	-0.003653
ORI	H224:CBH	0.063852	H224:CBH	0.078207	H224:CBH	0.06751
ORI	H224:C4	0.332920	H224:C4	0.350137	H224:C4	0.33639
ORI	H224:C4H	0.018217	H224:C4H	0.084864	H224:C4H	0.023837
ORI	H224:C5	0.370707	H224:C5	0.394739	H224:C5	0.37068
ORI	H224:N3	-1.162219	H224:Npi	-1.22263	H224:Npi	-1.169122
ORI	PRO:O2H	0.616609	H224:NpiH	0.526653	S105:O4H	0.6206
ORI	H224:N1	-1.215700	H224:Ntau	-1.191013	H224:Ntau	-1.216519
ORI	H224:N1H	0.551560	H224:NtauH	0.579503	H224:NtauH	0.557082
ORI	H224:C2	0.946625	H224:C2	1.01393	H224:C2	0.951539
ORI	H224·C2H	0.055361	H224·C2H	0.135233	H224·C2H	0.058889
ORI	Ac\$105:C6	0.038111	Ac\$105:C6	0.020456	AcPRO:C2b	0.026937
ORI	AcS105:C5	1.579060	Ac\$105:C5	1.465887	AcPRO:C1b	1.597985
ORI	Ac\$105:04	-1.089910	Ac\$105:04	-1.050352	\$105:04	-1.173226
ORI	Ac\$105:C3	0.418479	Ac\$105:C3	0.499991	\$105:C3	0.553781
ORI	AcS105:05	-1.252108	Ac\$105:05	-1.265693	AcPRO:O1b	-1.251404
ORI	AcS105:C6H	0.075470	AcS105:C6H	0.0071	AcPRO:C2bH	0.0772
ORI	AcS105:C6H	0.039188	AcS105:C6H	-0.007115	AcPRO:C2bH	0.028421
ORI	AcS105:C6H	0.033271	AcS105:C6H	0.011694	AcPRO:C2bH	0.044519
ORI	AcS105:C3H	0.055919	AcS105:C3H	0.053898	S105:C3H	-0.016764
ORI	AcS105:C3H	0.081827	AcS105:C3H	-0.011912	S105:C3H	0.016937
ORI	PRO:C2	0.533480	PRO:C2	0.501264	AcPRO:C2	0.427899
ORI	PRO:C2H	-0.016213	PRO:C2H	0.025434	AcPRO:C2H	0.036417
ORI	PRO:O2	-1.144431	PRO:O2	-1.032358	AcPRO:O2	-1.091272
ORI	PRO:C3c	-0.023001	PRO:C3c	-0.022436	AcPRO:C3c	-0.021415
ORI	PRO:C3cH	0.022719	PRO:C3cH	0.023731	AcPRO:C3cH	0.025594
ORI	PRO:C4c	-0.033818	PRO:C4c	-0.035286	AcPRO:C4c	-0.03025
ORI	PRO:C4cH	0.016306	PRO:C4cH	0.015679	AcPRO:C4cH	0.017491
ORI	PRO:C5c	-0.001626	PRO:C5c	-0.000782	AcPRO:C5c	0.000327
ORI	PRO:C10c	-0.002816	PRO:C10c	-0.001537	AcPRO:C10c	0.001181
ORI	PRO:C1c	0.528890	PRO:C1c	0.523866	AcPRO:C1c	0.50503
ORI	PRO:C2c	-0.030799	PRO:C2c	-0.038332	AcPRO:C2c	-0.037108
ORI	PRO:C2cH	0.025280	PRO:C2cH	0.033531	AcPRO:C2cH	0.030224
ORI	PRO:C6c	-0.032524	PRO:C6c	-0.032952	AcPRO:C6c	-0.030568
ORI	PRO:C6cH	0.017635	PRO:C6cH	0.017157	AcPRO:C6cH	0.020607
ORI	PRO:C9c	-0.018539	PRO:C9c	-0.021329	AcPRO:C9c	-0.017641
ORI	PRO:C9cH	0.070565	PRO:C9cH	0.071329	AcPRO:C9cH	0.069323
ORI	PRO:C8c	-0.029217	PRO:C8c	-0.031223	AcPRO:C8c	-0.02799
ORI	PRO:C8cH	0.022940	PRO:C8cH	0.020658	AcPRO:C8cH	0.024506
ORI	PRO:C7c	-0.032833	PRO:C7c	-0.033395	AcPRO:C7c	-0.029751
ORI	PRO:C7cH	0.018085	PRO:C7cH	0.01709	AcPRO:C7cH	0.020925
ORI	PRO:O1c	-1.086125	PRO:O1c	-1.085503	AcPRO:01c	-1.087739
ORI	PRO:C3	0.488307	PRO:C3	0.461195	AcPRO:C3	0.509846
ORI	PRO:C3H	0.005956	PRO:C3H	0.030781	AcPRO:C3H	0.038667
ORI	PRO:C3H	0.004585	PRO:C3H	0.01373	AcPRO:C3H	0.008414
ORI	PRO:C1	0.358736	PRO:C1	0.373974	AcPRO:C1	0.370998
ORI	PRO:C1H	0.022801	PRO:C1H	0.004174	AcPRO:C1H	0.021765
	PRO:CIH	-0.01119/	PKU:UIH	-0.030/14	ACPRO:CIH	0.024/93
	PKU:Na	-1.019695	PKU:Na	-1.013/11	ACPKU:Na	-1.008/85
	PKU:NaH	0.37/030	PKU:NaH	0.388/94	ACPKU:NaH	0.308062
	PKU:C2a	0.385323	PKU:U2a	0.005292	ACPKU:U2a	0.376221
	PKU:C2aH	-0.014962	PKU:U2aH	-0.005282	ACPKU:U2aH	-0.001512
		-0.000437	PRO:Clau	-0.000273		-0.003997
		0.002113		0.014305		0.010/83
OKI	гко.стап	-0.018034	гко.стап	-0.01/003	ACENDICIAH	-0.010442

ORI	PRO:C1aH	-0.008894	PRO:C1aH	-0.029118	AcPRO:C1aH	-0.00692
ORI	PRO:C3a	0.008846	PRO:C3a	0.009922	AcPRO:C3a	0.010439
ORI	PRO:C3aH	-0.003671	PRO:C3aH	-0.00024	AcPRO:C3aH	-0.00359
ORI	PRO:C3aH	0.000380	PRO:C3aH	-0.012224	AcPRO:C3aH	-0.002543
ORI	PRO:C3aH	-0.016985	PRO:C3aH	-0.016683	AcPRO:C3aH	-0.012334
ORII	G39:C1	1.453239	G39:C1	1.446127	G39:C1	1.440378
ORII	G39·O1	-1 173681	G39·01	-1 184737	G39:01	-1 173725
ORI	T40·N2	-1 161785	T40·N2	-1 193573	T40·N2	-1 155107
ORI	T40:N2H	0.431681	T40:N2H	0.483634	T40:N2H	0.434092
ORI	T40.10211	0.451001	T40:02	0.463034	T40.0211	0.454072
ORI	T40.C2	0.002057	T40.C2	0.001810	T40.C2	0.005405
ORI	Т40.С2П	0.003937	T40.C2n	0.001810	T40.C2H	0.003403
ORI	140:C3	0.500709	140:C3	0.528552	140:C3	0.511011
ORII	140:C3H	0.045131	140:C3H	0.027842	140:C3H	0.037998
ORII	140:03	-1.140316	140:03	-1.153406	140:03	-1.142862
ORII	T40:O3H	0.616143	T40:O3H	0.626844	T40:O3H	0.626661
ORII	T40:C4	0.013899	T40:C4	0.010292	T40:C4	0.011787
ORII	T40:C4H	0.031134	T40:C4H	0.025508	T40:C4H	0.026824
ORII	T40:C4H	-0.00945	T40:C4H	-0.014029	T40:C4H	-0.008167
ORII	T40:C4H	0.009391	T40:C4H	0.000526	T40:C4H	0.006038
ORII	T40:C1	1.472792	T40:C1	1.462723	T40:C1	1.470044
ORII	T40:O1	-1.201024	T40:O1	-1.213658	T40:O1	-1.207044
ORII	G41:N2	-1.139121	G41:N2	-1.140883	G41:N2	-1.141861
ORII	G41:N2H	0.393927	G41:N2H	0.395312	G41:N2H	0.394411
ORII	G41:C2	0.335251	G41:C2	0.336486	G41:C2	0.337286
ORII	G41:C2H	0.06528	G41:C2H	0.062765	G41:C2H	0.063571
ORII	G41:C2H	0.007324	G41:C2H	0.004625	G41:C2H	0.007269
ORII	W104:C1	1.455911	W104:C1	1.462706	W104:C1	1.463228
ORII	W104:01	-1.160868	W104:01	-1.161198	W104:01	-1.166439
ORII	Ac\$105.N2	-1 137966	Ac\$105.N2	-1 14321	\$105·N2	-1 148245
ORI	Ac\$105:N2H	0 397109	Ac\$105:N2H	0 384278	\$105·N2H	0 392697
ORI	Ac\$105:C2	0.365813	Ac\$105:C2	0.359217	\$105:C2	0.350593
ORI	Ac\$105:C2H	0.058027	Ac\$105:C2H	0.041298	\$105:C2H	0.046433
ORI	Ac\$105:C1	1.457813	Ac\$105:C1	1 445177	\$105:C1	1 /313/1
ORI	Ac\$105:01	1.457815	Ac\$105:01	1.445177	\$105:01	1.451541
ORI	ACS105.01	-1.103039	ACS105.01	-1.172203	0106·N2	-1.100895
ORII	Q100.N2	-1.149008	Q106:N2	-1.130200	Q100:N2	-1.122123
ORI	Q100:N2H	0.416231	Q100:N2H	0.443800	Q100:N2H	0.400603
ORI	Q100:C2	0.346313	Q106:C2	0.344730	Q106:C2	0.341/31
ORII	Q106:C2H	0.011/68	Q106:C2H	0.005841	Q106:C2H	0.010355
ORII	Q106:C3	0.03325	Q106:C3	0.034215	Q106:C3	0.034893
ORII	Q106:C3H	0.007875	Q106:C3H	0.007267	Q106:C3H	0.009133
ORII	Q106:C3H	0.008145	Q106:C3H	0.017922	Q106:C3H	-0.002264
ORII	Q106:C4	0.016766	Q106:C4	0.016003	Q106:C4	0.013468
ORII	Q106:C4H	0.010404	Q106:C4H	0.009010	Q106:C4H	0.008081
ORII	Q106:C4H	0.032176	Q106:C4H	0.027153	Q106:C4H	0.032614
ORII	Q106:C5	1.449894	Q106:C5	1.441118	Q106:C5	1.447701
ORII	Q106:O5	-1.200363	Q106:O5	-1.205108	Q106:O5	-1.198529
ORII	Q106:N5	-1.198394	Q106:N5	-1.201179	Q106:N5	-1.200829
ORII	Q106:N5H	0.395923	Q106:N5H	0.390922	Q106:N5H	0.393119
ORII	Q106:N5H	0.461036	Q106:N5H	0.469542	Q106:N5H	0.465481
ORII	D187:C3	-0.029404	D187:C3	-0.025763	D187:C3	-0.027526
ORII	D187:C3H	-0.008934	D187:C3H	0.003258	D187:C3H	-0.007797
ORII	D187:C3H	-0.014468	D187:C3H	-0.006003	D187:C3H	-0.011937
ORII	D187:C4	1.678997	D187:C4	1.661686	D187:C4	1.678481
ORII	D187:O4	-1.266457	D187:O4	-1.259358	D187:O4	-1.264655
ORII	D187:O4	-1.268805	D187:O4	-1.255341	D187:O4	-1.266763
ORII	H224:CB	0.023047	H224:CB	0.027356	H224:CB	0.018334
ORII	H224:CBH	-0.007897	H224:CBH	0.006414	H224:CBH	-0.005487
ORII	H224·CBH	0.075862	H224·CBH	0.091198	H224·CBH	0.077634
ORII	H224·C4	0.331225	H224·C4	0.350921	H224·C4	0.340458
0		0.001220		0.000741		0.010700

ORII	H224:C4H	0.020207	H224:C4H	0.081137	H224:C4H	0.024551
ORII	H224:C5	0.378238	H224:C5	0.399316	H224:C5	0.37199
ORII	H224:Npi	-1.159719	H224:Npi	-1.232527	H224:Npi	-1.166295
ORII	PRO:O2H	0.616386	H224:NpiH	0.542827	S105:O4H	0.616268
ORII	H224:Ntau	-1.210914	H224:Ntau	-1.195528	H224:Ntau	-1.216194
ORII	H224:NtauH	0.543938	H224:NtauH	0.571459	H224:NtauH	0.554438
ORII	H224:C2	0.943184	H224:C2	1.013376	H224:C2	0.95021
ORII	H224:C2H	0.063481	H224:C2H	0.141499	H224:C2H	0.06484
ORII	AcS105:C6	0.004439	AcS105:C6	0.030804	AcPRO:C2b	0.02935
ORII	AcS105:C5	1.569991	AcS105:C5	1.456671	AcPRO:C1b	1.596398
ORII	AcS105:O4	-1.091391	AcS105:O4	-1.053626	\$105:O4	-1.179449
ORII	AcS105:C3	0.418516	AcS105:C3	0.496962	S105:C3	0.552803
ORII	AcS105:05	-1.245642	Ac\$105:05	-1.260604	AcPRO:01b	-1.252488
ORII	AcS105:C6H	0.048247	AcS105:C6H	0.002582	AcPRO:C2bH	0.070638
ORII	Ac\$105:C6H	0.125324	AcS105:C6H	0.020043	AcPRO:C2bH	0.032389
ORII	AcS105:C6H	0.028161	AcS105:C6H	0.003836	AcPRO:C2bH	0.041911
ORII	AcS105:C3H	0.056829	AcS105:C3H	0.050100	\$105.C3H	-0.003745
ORI	AcS105:C3H	0.079137	Ac\$105:C3H	-0.011313	\$105:C3H	0.008564
ORI	PRO:C2	0.535791	PRO:C2	0.494597	AcPRO:C2	0.41908
ORI	PRO:C2H	0.003406	PRO:C2H	0.049698	AcPRO:C2H	0.064187
ORI	PRO:02	-1 162744	PRO:02	-1.043069	AcPRO:02	-1 085945
ORII	PRO:C3c	-0.022731	PRO:C3c	-0.024262	AcPRO:C3c	-0.021227
ORII	PRO:C3cH	0.022141	PRO C3cH	0.021868	AcPRO:C3cH	0.025363
ORII	PRO:C4c	-0.033821	PRO:C4c	-0.033475	AcPRO:C4c	-0.030977
ORII	PRO:C4cH	0.017793	PRO:C4cH	0.017626	AcPRO:C4cH	0.021723
ORII	PRO:C5c	0.000357	PRO:C5c	-0.000518	AcPRO:C5c	0.001027
ORII	PRO:C10c	-0.002195	PRO:C10c	-0.001762	AcPRO:C10c	0.000355
ORII	PRO:C1c	0.526628	PRO:C1c	0.512796	AcPRO:C1c	0.511934
ORII	PRO:C2c	-0.034698	PRO:C2c	-0.036848	AcPRO:C2c	-0.031066
ORII	PRO:C2cH	0.03015	PRO:C2cH	0.028492	AcPRO:C2cH	0.029847
ORII	PRO:C6c	-0.031094	PRO:C6c	-0.033044	AcPRO:C6c	-0.029721
ORII	PRO:C6cH	0.019854	PRO:C6cH	0.019446	AcPRO:C6cH	0.022814
ORII	PRO:C9c	-0.020738	PRO:C9c	-0.014541	AcPRO:C9c	-0.019807
ORII	PRO:C9cH	0.056604	PRO:C9cH	0.061227	AcPRO:C9cH	0.052281
ORII	PRO:C8c	-0.02994	PRO:C8c	-0.026720	AcPRO:C8c	-0.026432
ORII	PRO:C8cH	0.022329	PRO:C8cH	0.028425	AcPRO:C8cH	0.028555
ORII	PRO:C7c	-0.030385	PRO:C7c	-0.030869	AcPRO:C7c	-0.026502
ORII	PRO:C7cH	0.022729	PRO:C7cH	0.022558	AcPRO:C7cH	0.026397
ORII	PRO:Oc	-1.087227	PRO:Oc	-1.079039	AcPRO:Oc	-1.091609
ORII	PRO:C3	0.444561	PRO:C3	0.449829	AcPRO:C3	0.471597
ORII	PRO:C3H	0.011945	PRO:C3H	0.023984	AcPRO:C3H	0.027397
ORII	PRO:C3H	0.02498	PRO:C3H	0.013786	AcPRO:C3H	0.034925
ORII	PRO:C1	0.384282	PRO:C1	0.392492	AcPRO:C1	0.405628
ORII	PRO:C1H	-0.001403	PRO:C1H	-0.026942	AcPRO:C1H	0.014444
ORII	PRO:C1H	0.005211	PRO:C1H	0.012342	AcPRO:C1H	0.025487
ORII	PRO:Na	-1.056593	PRO:Na	-1.068539	AcPRO:Na	-1.065173
ORII	PRO:NaH	0.395552	PRO:NaH	0.418825	AcPRO:NaH	0.399113
ORII	PRO:C2a	0.396794	PRO:C2a	0.396112	AcPRO:C2a	0.398233
ORII	PRO:C2aH	-0.027787	PRO:C2aH	-0.034023	AcPRO:C2aH	-0.020095
ORII	PRO:C1a	0.005322	PRO:C1a	0.005819	AcPRO:C1a	0.005768
ORII	PRO:C1aH	-0.016037	PRO:C1aH	-0.009718	AcPRO:C1aH	-0.020506
ORII	PRO:C1aH	-0.010212	PRO:C1aH	-0.011020	AcPRO:C1aH	-0.010301
ORII	PRO:C1aH	-0.003089	PRO:C1aH	0.001981	AcPRO:C1aH	0.003191
ORII	PRO:C3a	0.009125	PRO:C3a	0.011584	AcPRO:C3a	0.009417
ORII	PRO:C3aH	-0.026896	PRO:C3aH	-0.025686	AcPRO:C3aH	-0.02372
ORII	PRO:C3aH	-0.00597	PRO:C3aH	-0.014959	AcPRO:C3aH	-0.002543
ORII	PRO:C3aH	0.001026	PRO:C3aH	0.000591	AcPRO:C3aH	0.000795
ORIII	G39:C1	1.457087	G39:C1	1.453790	G39:C1	1.445435
ORIII	G39:O1	-1.178069	G39:O1	-1.187087	G39:O1	-1.179410

ORIII	T40:N2	-1.156596	T40:N2	-1.173585	T40:N2	-1.159670
ORIII	T40:N2H	0.428616	T40:N2H	0.457468	T40:N2H	0.441716
ORIII	T40:C2	0.352245	T40:C2	0.356609	T40:C2	0.356207
ORIII	T40:C2H	0.003372	T40:C2H	-0.001961	T40:C2H	0.005569
ORIII	T40:C3	0.491979	T40:C3	0.516544	T40:C3	0.491200
ORIII	T40:C3H	0.047877	T40:C3H	0.034889	T40:C3H	0.041166
ORIII	T40:O3	-1.135547	T40:O3	-1.154747	T40:O3	-1.129430
ORIII	T40:03H	0.612364	T40:03H	0.629085	T40.03H	0.605929
ORIII	T40.C4	0.013977	T40.C4	0.012971	T40.C4	0.015044
ORIII	T40:C4H	-0.007101	T40:C4H	-0.011017	T40:C4H	-0.004570
ORIII	T40.C4H	0.000067	T40.C4II	0.002358	T40.C4H	0.012377
ORIII	T40.C4H	0.007707	T40.C4II	0.002358	T40.C4H	0.012377
ORIII	T40.C4II	1 479297	T40.C4II	1.469257	T40.C4II	1 480077
ORIII	T40.C1	1.476367	T40.C1	1.408337	T40.C1	1.460077
ORIII	C41.N2	-1.165510	C41.N2	-1.166505	C41.N2	-1.160603
ORIII	G41:N2	-1.144/02	G41:N2	-1.144492	G41:N2	-1.151692
ORIII	G41:N2H	0.391457	G41:N2H	0.389903	G41:N2H	0.391004
ORIII	G41:C2	0.343206	G41:C2	0.346067	G41:C2	0.345906
ORIII	G41:C2H	0.065143	G41:C2H	0.062799	G41:C2H	0.066026
ORIfI	G41:C2H	0.003460	G41:C2H	-0.000863	G41:C2H	0.001799
ORIII	W104:C1	1.467569	W104:C1	1.459235	W104:C1	1.461654
ORIII	W104:O1	-1.162798	W104:O1	-1.158118	W104:O1	-1.166878
ORIII	AcS105:N2	-1.151187	AcS105:N2	-1.135787	S105:N2	-1.141435
ORIII	AcS105:N2H	0.399775	AcS105:N2H	0.382043	S105:N2H	0.390244
ORIII	AcS105:C2	0.371383	AcS105:C2	0.336016	S105:C2	0.341179
ORIII	AcS105:C2H	0.059340	AcS105:C2H	0.022891	S105:C2H	0.044993
ORIII	AcS105:C1	1.450687	AcS105:C1	1.446472	S105:C1	1.428060
ORIII	AcS105:O1	-1.161464	AcS105:O1	-1.174263	S105:O1	-1.166817
ORIII	Q106:N2	-1.145154	Q106:N2	-1.185738	Q106:N2	-1.142870
ORIII	Q106:N2H	0.417409	Q106:N2H	0.483799	Q106:N2H	0.435668
ORIII	Q106:C2	0.341181	Q106:C2	0.343743	Q106:C2	0.339706
ORIII	Q106:C2H	0.013241	Q106:C2H	0.002160	Q106:C2H	0.006099
ORIII	0106:C3	0.034139	O106:C3	0.036592	0106:C3	0.039732
ORIII	O106:C3H	0.011842	O106:C3H	0.008798	O106:C3H	0.012275
ORIII	0106:C3H	0.008180	O106:C3H	0.018761	O106:C3H	-0.006169
ORIII	0106:C4	0.013495	0106:C4	0.013545	0106:C4	0.010993
ORIII	0106:C4H	0.010145	0106:C4H	0.006214	0106:C4H	0.006141
ORIII	0106:C4H	0.032474	0106:C4H	0.025555	0106:C4H	0.032438
ORIII	0106:C5	1.453962	0106:C5	1.445008	0106:C5	1.453049
ORIII	0106:05	-1 194619	0106.05	-1 200604	0106:05	-1 195575
ORIII	Q106:N5	-1 203455	Q106:N5	-1 206036	Q106:N5	-1 209315
ORIII	0106·N5H	0 396109	0106·N5H	0 390766	0106·N5H	0 393059
ORIII	Q106:N5H	0.462534	Q106:N5H	0.469812	Q106:N5H	0.465088
ORIII	D187.C3	-0.029360	D187.C3	-0.024736	D187.C3	-0.027638
ORIU	D187.C3H	-0.009854	D187.C3H	0.024750	D187.C3H	-0.008301
ORIII	D187.C3H	-0.012532	D187.C3H	_0.001530	D187.C3H	-0.000501
	D187.C31	1 668211	D187.C31	1 652821	D187.C31	1 667602
ORIII	D187.C4	1.008211	D187:04	1.052821	D187:04	1.007003
	D107.04	1 265510	D107.04	1 250676	D107.04	1 260965
ORIII	U107.04	-1.203310	U224.CD	-1.230070	U107.04	-1.200803
		0.022009	П224:UD Ц224:CDU	0.022293		0.020918
		-0.013393		0.0000099		-0.008030
	H224:CBH	0.081050	H224:CBH	0.106832	H224:CBH	0.085508
ORIII	H224:C4	0.331/05	H224:C4	0.350490	H224:C4	0.338/18
ORIII	H224:C4H	0.022622	H224:C4H	0.090687	H224:C4H	0.030161
ORIII	H224:C5	0.377443	H224:C5	0.399241	H224:C5	0.375563
ORIII	H224:Npi	-1.151369	H224:Npi	-1.230976	H224:Npi	-1.1/4776
ORIfI	PRO:O2H	0.616196	H224:NpiH	0.542319	S105:O4H	0.618430
ORIII	H224:Ntau	-1.207678	H224:Ntau	-1.193296	H224:Ntau	-1.212679
ORIII	H224:NtauH	0.535581	H224:NtauH	0.574369	H224:NtauH	0.550183
ORIII	H224:C2	0.936878	H224:C2	0.996053	H224:C2	0.946740

ORIII	H224:C2H	0.060437	H224:C2H	0.127414	H224:C2H	0.068266
ORIII	AcS105:C6	0.028642	AcS105:C6	0.015645	AcPRO:C2b	0.024843
ORIII	AcS105:C5	1.583838	AcS105:C5	1.474172	AcPRO:C1b	1.568016
ORIII	AcS105:O4	-1.097926	AcS105:O4	-1.045810	S105:O4	-1.182984
ORIII	AcS105:C3	0.438070	AcS105:C3	0.506046	S105:C3	0.556383
ORIII	Ac\$105:O5	-1.239252	AcS105:O5	-1.248733	AcPRO:O1b	-1.226393
ORIII	AcS105:C6H	0.068949	AcS105:C6H	-0.013954	AcPRO:C2bH	0.066557
ORIII	AcS105:C6H	0.039499	AcS105:C6H	0.003087	AcPRO:C2bH	0.022102
ORIII	AcS105:C6H	0.039397	AcS105:C6H	0.017795	AcPRO:C2bH	0.065210
ORIII	AcS105:C3H	0.064124	AcS105:C3H	0.061600	\$105:C3H	0.002906
ORIII	AcS105:C3H	0.063131	AcS105:C3H	0.004135	\$105:C3H	0.004337
ORIII	PRO:C2	0.531165	PRO:C2	0.505075	AcPRO:C2	0.429728
ORIII	PRO:C2H	-0.000072	PRO:C2H	-0.000902	AcPRO:C2H	0.039174
ORIII	PRO:02	-1 151174	PRO:02	-1.040572	AcPRO:02	-1.084515
ORIII	PRO:C3c	-0.019598	PRO:C3c	-0.019460	AcPRO:C3c	-0.015885
ORIII	PRO:C3cH	0.027810	PRO:C3cH	0.026133	AcPRO:C3cH	0.033461
ORIII	PRO:C4c	-0.035304	PRO:C4c	-0.033828	AcPRO:C4c	-0.030683
ORIII	PRO:C4cH	0.018027	PRO:C4cH	0.019025	AcPRO:C4cH	0.023246
ORIII	PRO:C5c	-0.000884	PRO:C5c	-0.000540	AcPRO:C5c	0.023240
ORIII	PRO:C10c	-0.000112	PRO:C10c	0.000721	AcPRO:C10c	0.001230
ORIII	PRO:C1c	0.511791	PRO:C1c	0.502651	AcPRO:C1c	0.487303
ORIII	PRO:C2c	-0.026873	PRO:C2c	-0.026301	AcPRO:C2c	-0.023787
ORIII	PRO:C2cH	0.039322	PRO:C2cH	0.034689	AcPRO:C2cH	0.043099
ORIII	PRO:C6c	-0.031642	PRO:C6c	-0.031741	AcPRO:C6c	-0.029686
ORIII	PRO:C6cH	0.019849	PRO:C6cH	0.020792	AcPRO:C6cH	0.023639
ORIII	PRO:C9c	-0.021118	PRO:C9c	-0.020595	AcPRO:C9c	-0.021562
ORIII	PRO:C9cH	0.050470	PRO:C9cH	0.054693	AcPRO:C9cH	0.050109
ORIII	PRO:C8c	-0.030060	PRO:C8c	-0.028937	AcPRO:C8c	-0.027901
ORIII	PRO:C8cH	0.023986	PRO:C8cH	0.026465	AcPRO:C8cH	0.027967
ORIII	PRO:C7c	-0.032618	PRO:C7c	-0.031279	AcPRO:C7c	-0.029381
ORIII	PRO:C7cH	0.020533	PRO:C7cH	0.022586	AcPRO:C7cH	0.025958
ORIII	PRO:Oc	-1.094402	PRO:Oc	-1.091908	AcPRO:Oc	-1.092214
ORIII	PRO:C3	0.451846	PRO:C3	0.472993	AcPRO:C3	0.487628
ORIII	PRO:C3H	0.029950	PRO:C3H	0.044405	AcPRO:C3H	0.046203
ORIII	PRO:C3H	0.019434	PRO:C3H	0.009206	AcPRO:C3H	0.035790
ORIII	PRO:C1	0.358451	PRO:C1	0.356046	AcPRO:C1	0.381661
ORIII	PRO:C1H	0.003284	PRO:C1H	0.003912	AcPRO:C1H	0.018324
ORIII	PRO:C1H	0.013356	PRO:C1H	0.028853	AcPRO:C1H	0.015735
ORIII	PRO:Na	-1.009550	PRO:Na	-1.013434	AcPRO:Na	-1.017759
ORIII	PRO:NaH	0.334955	PRO:NaH	0.341162	AcPRO:NaH	0.349484
ORIII	PRO:C2a	0.395261	PRO:C2a	0.390729	AcPRO:C2a	0.385548
ORIII	PRO:C2aH	-0.021772	PRO:C2aH	-0.012827	AcPRO:C2aH	-0.018448
ORIII	PRO:C1a	0.010144	PRO:C1a	0.009569	AcPRO:C1a	0.011726
ORIII	PRO:C1aH	0.000450	PRO:C1aH	0.001719	AcPRO:C1aH	0.003473
ORIII	PRO:C1aH	-0.012242	PRO:C1aH	-0.014465	AcPRO:C1aH	-0.008225
ORIII	PRO:C1aH	-0.010522	PRO:C1aH	-0.011895	AcPRO:C1aH	-0.006899
ORIII	PRO:C3a	-0.005555	PRO:C3a	-0.003598	AcPRO:C3a	-0.004574
ORIII	PRO:C3aH	-0.004757	PRO:C3aH	-0.009881	AcPRO:C3aH	0.000196
ORIII	PRO:C3aH	-0.009019	PRO:C3aH	-0.008178	AcPRO:C3aH	0.000978
ORIII	PRO:C3aH	-0.003824	PRO:C3aH	-0.006238	AcPRO:C3aH	-0.008092
ORIV	G39:C1	1.447222	G39:C1	1.439590	G39:C1	1.454657
ORIV	G39:O1	-1.177873	G39:O1	-1.185680	G39:01	-1.179532
ORIV	T40:N2	-1.146673	T40:N2	-1.169296	T40:N2	-1.150520
ORIV	T40:N2H	0.423528	T40:N2H	0.467960	T40:N2H	0.422939
ORIV	T40:C2	0.355462	T40:C2	0.355358	T40:C2	0.366491
ORIV	T40:C2H	0.007739	T40:C2H	0.004364	T40:C2H	0.002425
ORIV	T40:C3	0.503899	T40:C3	0.533628	T40:C3	0.500822
ORIV	T40:C3H	0.038583	T40:C3H	0.015594	T40:C3H	0.039440
ORIV	T40:O3	-1.146567	T40:O3	-1.160903	T40:O3	-1.140442

ORIV	T40:O3H	0.619917	T40:O3H	0.631893	T40:O3H	0.620871
ORIV	T40:C4	0.013213	T40:C4	0.007704	T40:C4	0.001059
ORIV	T40:C4H	-0.009849	T40:C4H	-0.015172	T40:C4H	-0.009881
ORIV	T40:C4H	0.016936	T40:C4H	0.006611	T40:C4H	0.010853
ORIV	T40:C4H	0.017330	T40:C4H	0.013932	T40:C4H	0.018698
ORIV	T40:C1	1.470986	T40:C1	1.459432	T40:C1	1.475351
ORIV	T40:O1	-1.187941	T40:O1	-1.192228	T40:O1	-1.187863
ORIV	G41:N2	-1.135180	G41:N2	-1.133253	G41:N2	-1.137222
ORIV	G41·N2H	0 390682	G41·N2H	0 389297	G41·N2H	0 390916
ORIV	G41·C2	0 334144	G41·C2	0.336592	G41·C2	0.335257
ORIV	G41:C2H	0.073543	G41:C2H	0.071986	G41:C2H	0.073795
ORIV	G41:C2H	0.073345	G41:C2H	-0.000179	G41:C2H	0.00/911
ORIV	W104+C1	1 450830	W104:C1	1 455414	W104:C1	1 453482
ORIV	W104:01	-1 161679	W104:01	-1 1615/18	W104.C1	-1.16/816
ORIV	4 oS105 N2	-1.101079	4 oS 105 · N2	-1.101348	\$105.N2	-1.104810
ORIV	Ac\$105.N21	-1.137303	ACS105.N2U	-1.139299	\$105.N2U	-1.143317
ORIV	ACS105:N2H	0.402009	ACS105:N2H	0.387071	S105:N2H	0.397149
ORIV	ACS105:C2	0.364180	ACS105:C2	0.357504	S105:C2	0.347824
ORIV	AcS105:C2H	0.058770	Ac\$105:C2H	0.039784	S105:C2H	0.045359
ORIV	Ac\$105:C1	1.452865	Ac\$105:C1	1.446194	\$105:CI	1.433086
ORIV	Ac\$105:01	-1.163889	Ac\$105:01	-1.1/3619	S105:01	-1.166615
ORIV	Q106:N2	-1.144505	Q106:N2	-1.140928	Q106:N2	-1.122593
ORIV	Q106:N2H	0.417902	Q106:N2H	0.428716	Q106:N2H	0.400556
ORIV	Q106:C2	0.343527	Q106:C2	0.343808	Q106:C2	0.340893
ORIV	Q106:C2H	0.017311	Q106:C2H	0.009643	Q106:C2H	0.012601
ORIV	Q106:C3	0.035971	Q106:C3	0.035247	Q106:C3	0.036383
ORIV	Q106:C3H	0.012465	Q106:C3H	0.013770	Q106:C3H	0.011981
ORIV	Q106:C3H	-0.003941	Q106:C3H	0.009276	Q106:C3H	-0.009812
ORIV	Q106:C4	0.013356	Q106:C4	0.014071	Q106:C4	0.012535
ORIV	Q106:C4H	0.010975	Q106:C4H	0.008590	Q106:C4H	0.010264
ORIV	Q106:C4H	0.034145	Q106:C4H	0.028604	Q106:C4H	0.034516
ORIV	Q106:C5	1.449221	Q106:C5	1.441504	Q106:C5	1.446075
ORIV	Q106:O5	-1.193441	Q106:O5	-1.198465	Q106:O5	-1.193593
ORIV	Q106:N5	-1.196084	Q106:N5	-1.198965	Q106:N5	-1.196751
ORIV	Q106:N5H	0.395320	Q106:N5H	0.390579	Q106:N5H	0.393276
ORIV	Q106:N5H	0.458491	Q106:N5H	0.465941	Q106:N5H	0.457342
ORIV	D187:C3	-0.028644	D18/:C3	-0.023989	D18/:C3	-0.026797
ORIV	D187:C3H	-0.010991	D187:C3H	0.002019	D187:C3H	-0.009920
ORIV	D187:C3H	-0.013662	D187:C3H	-0.003069	D187:C3H	-0.011945
ORIV	D187:C4	1.672886	D187:C4	1.653704	D187:C4	1.673075
ORIV	D187:O4	-1.268465	D187:O4	-1.258830	D187:O4	-1.266833
ORIV	D187:O4	-1.269100	D187:O4	-1.253138	D187:O4	-1.265900
ORIV	H224:CB	0.021201	H224:CB	0.024387	H224:CB	0.015024
ORIV	H224:CBH	-0.006973	H224:CBH	0.011355	H224:CBH	-0.005021
ORIV	H224:CBH	0.066603	H224:CBH	0.080871	H224:CBH	0.072541
ORIV	H224:C4	0.327933	H224:C4	0.346269	H224:C4	0.333184
ORIV	H224:C4H	0.036790	H224:C4H	0.104700	H224:C4H	0.037467
ORIV	H224:C5	0.365131	H224:C5	0.386667	H224:C5	0.361639
ORIV	H224:Npi	-1.152102	H224:Npi	-1.232701	H224:Npi	-1.155947
ORIV	PRO:O2H	0.615744	H224:NpiH	0.542863	S105:O4H	0.618191
ORIV	H224:Ntau	-1.208221	H224:Ntau	-1.193480	H224:Ntau	-1.214257
ORIV	H224:NtauH	0.538371	H224:NtauH	0.573448	H224:NtauH	0.548566
ORIV	H224:C2	0.931453	H224:C2	1.011883	H224:C2	0.946157
ORIV	H224:C2H	0.053992	H224:C2H	0.131548	H224:C2H	0.055739
ORIV	AcS105:C6	0.031139	AcS105:C6	0.022262	AcPRO:C2b	-0.003470
ORIV	AcS105:C5	1.569377	AcS105:C5	1.468727	AcPRO:C1b	1.571662
ORIV	AcS105:O4	-1.083877	AcS105:O4	-1.041942	S105:O4	-1.172603
ORIV	AcS105:C3	0.412398	AcS105:C3	0.498397	S105:C3	0.530475
ORIV	AcS105:O5	-1.239352	AcS105:05	-1.271989	AcPRO:O1b	-1.228460
ORIV	AcS105:C6H	0.032351	AcS105:C6H	0.006383	AcPRO:C2bH	0.021477

ORIV	AcS105:C6H	0.073512	AcS105:C6H	0.006771	AcPRO:C2bH	0.120972
ORIV	AcS105:C6H	0.055352	AcS105:C6H	-0.004047	AcPRO:C2bH	0.039361
ORIV	AcS105:C3H	0.065874	AcS105:C3H	0.056881	S105:C3H	0.004074
ORIV	AcS105:C3H	0.084273	AcS105:C3H	-0.010115	S105:C3H	0.023825
ORIV	PRO:C2	0.533893	PRO:C2	0.507807	AcPRO:C2	0.431180
ORIV	PRO:C2H	-0.005933	PRO:C2H	-0.012166	AcPRO:C2H	0.036953
ORIV	PRO:O2	-1.141481	PRO:O2	-1.029006	AcPRO:O2	-1.082360
ORIV	PRO:C3c	-0.024860	PRO:C3c	-0.029935	AcPRO:C3c	-0.022841
ORIV	PRO:C3cH	0.023993	PRO:C3cH	0.022150	AcPRO:C3cH	0.028032
ORIV	PRO:C4c	-0.036248	PRO:C4c	-0.035841	AcPRO:C4c	-0.032740
ORIV	PRO:C4cH	0.015390	PRO:C4cH	0.015738	AcPRO:C4cH	0.019161
ORIV	PRO:C5c	-0.003216	PRO:C5c	-0.003910	AcPRO:C5c	-0.003440
ORIV	PRO:C10c	-0.001997	PRO:C10c	-0.000642	AcPRO:C10c	-0.000908
ORIV	PRO:C1c	0.523186	PRO:C1c	0.523707	AcPRO:C1c	0.492701
ORIV	PRO:C2c	-0.036291	PRO:C2c	-0.045879	AcPRO:C2c	-0.026235
ORIV	PRO:C2cH	0.028370	PRO:C2cH	0.025403	AcPRO:C2cH	0.026879
ORIV	PRO:C6c	-0.033857	PRO:C6c	-0.033907	AcPRO:C6c	-0.034126
ORIV	PROCOCH	0.013189	PROCOCH	0.012847	AcPRO:C6cH	0.016087
ORIV	PRO:C9c	-0.013239	PRO:C9c	-0.004539	AcPRO:C9c	-0.005535
ORIV	PRO:C9cH	0.088121	PRO:C9cH	0.077710	AcPRO:C9cH	0.081318
ORIV	PRO:C8c	-0.030710	PRO:C8c	-0.023511	AcPRO:C8c	-0.025516
ORIV	PRO:C8cH	0.034291	PRO C8cH	0.039971	AcPRO:C8cH	0.041571
ORIV	PRO:C7c	-0.035817	PRO:C7c	-0.033389	AcPRO:C7c	-0.034141
ORIV	PRO:C7cH	0.015671	PRO:C7cH	0.017662	AcPRO:C7cH	0.018790
ORIV	PRO:Oc	-1 096408	PRO:Oc	-1.093175	AcPRO:Oc	-1 078034
ORIV	PRO:C3	0 489407	PRO:C3	0.472168	AcPRO:C3	0 511404
ORIV	PRO:C3H	0.028641	PRO:C3H	0.042047	AcPRO:C3H	0.044281
ORIV	PRO:C3H	0.020576	PRO:C3H	0.053742	AcPRO:C3H	0.033894
ORIV	PRO:C1	0.355384	PRO:C1	0.342247	AcPRO:C1	0.362593
ORIV	PROCIH	-0.012717	PRO:C1H	-0.000327	AcPRO:C1H	0.023714
ORIV	PRO:C1H	-0.010065	PRO:C1H	-0.003101	AcPRO:C1H	-0.008866
ORIV	PRO:Na	-1.000367	PRO:Na	-0.992844	AcPRO:Na	-0.989721
ORIV	PRO:NaH	0.324773	PRO:NaH	0.320056	AcPRO:NaH	0.325596
ORIV	PRO:C2a	0.382563	PRO:C2a	0.382261	AcPRO:C2a	0.371447
ORIV	PRO:C2aH	-0.013886	PRO:C2aH	-0.008828	AcPRO:C2aH	-0.010344
ORIV	PRO:C1a	0.008980	PRO:C1a	0.006829	AcPRO:C1a	0.006199
ORIV	PRO:C1aH	-0.008821	PRO:C1aH	-0.008530	AcPRO:C1aH	-0.003659
ORIV	PRO:C1aH	-0.011541	PRO:C1aH	-0.013386	AcPRO:C1aH	-0.008263
ORIV	PRO:C1aH	0.009443	PRO:C1aH	0.012052	AcPRO:C1aH	0.013164
ORIV	PRO:C3a	-0.008961	PRO:C3a	-0.008953	AcPRO:C3a	-0.006272
ORIV	PRO:C3aH	-0.002058	PRO:C3aH	0.000224	AcPRO:C3aH	-0.001012
ORIV	PRO:C3aH	-0.005644	PRO:C3aH	-0.009601	AcPRO:C3aH	-0.005915
ORIV	PRO:C3aH	-0.010730	PRO:C3aH	-0.010321	AcPRO:C3aH	-0.007882
OSI	G39:C1	1.456992	G39:C1	1.449268	G39:C1	1.444586
OSI	G39:O1	-1.175996	G39:O1	-1.187950	G39:O1	-1.178527
OSI	T40:N2	-1.152969	T40:N2	-1.188665	T40:N2	-1.160126
OSI	T40:N2H	0.417934	T40:N2H	0.478304	T40:N2H	0.440271
OSI	T40:C2	0.350070	T40:C2	0.356146	T40:C2	0.353776
OSI	T40:C2H	0.001757	T40:C2H	-0.002068	T40:C2H	0.005240
OSI	T40:C3	0.490326	T40:C3	0.510280	T40:C3	0.493161
OSI	T40:C3H	0.050605	T40:C3H	0.042611	T40:C3H	0.042782
OSI	T40:O3	-1.136554	T40:O3	-1.147765	T40:O3	-1.129571
OSI	T40:O3H	0.613383	T40:O3H	0.622557	T40:O3H	0.609216
OSI	T40:C4	0.014321	T40:C4	0.012549	T40:C4	0.015504
OSI	T40:C4H	-0.005335	T40:C4H	-0.011068	T40:C4H	-0.004433
OSI	T40:C4H	0.014001	T40:C4H	0.002695	T40:C4H	0.011111
OSI	T40:C4H	0.020010	T40:C4H	0.011962	T40:C4H	0.015039
OSI	T40:C1	1.476242	T40:C1	1.461515	T40:C1	1.470606
OSI	T40:O1	-1.183672	T40:O1	-1.199476	T40:O1	-1.194783

OSI	G41:N2	-1.137311	G41:N2	-1.136077	G41:N2	-1.139144
OSI	G41:N2H	0.389155	G41:N2H	0.389944	G41:N2H	0.390676
OSI	G41:C2	0.335049	G41:C2	0.337554	G41:C2	0.335880
OSI	G41:C2H	0.071518	G41:C2H	0.065607	G41:C2H	0.069523
OSI	G41:C2H	0.003621	G41:C2H	0.000440	G41:C2H	0.003882
OSI	W104:C1	1.457286	W104:C1	1.456164	W104:C1	1.458098
OSI	W104:O1	-1.158284	W104:O1	-1.157013	W104:O1	-1.164631
OSI	AcS105:N2	-1.140544	AcS105:N2	-1.130940	S105:N2	-1.138028
OSI	AcS105:N2H	0.397235	AcS105:N2H	0.379076	S105:N2H	0.387752
OSI	AcS105:C2	0.366306	AcS105:C2	0.336828	\$105:C2	0.342340
OSI	AcS105:C2H	0.057616	AcS105:C2H	0.025232	S105:C2H	0.047888
OSI	AcS105:C1	1.457000	AcS105:C1	1.450768	\$105:C1	1.431440
OSI	AcS105:O1	-1.160421	Ac\$105:O1	-1.173494	\$105:O1	-1.164689
OSI	0106:N2	-1.151902	0106:N2	-1.189497	0106:N2	-1.137239
OSI	0106:N2H	0.419441	0106:N2H	0.487037	0106:N2H	0.425717
OSI	0106:C2	0.342707	0106:C2	0.342966	0106:C2	0.340825
OSI	0106·C2H	0.019567	0106·C2H	0.007708	0106°C2H	0.013189
OSI	Q106:C3	0.035699	Q106:C3	0.036916	Q106:C3	0.036015
OSI	0106·C3H	0.009093	0106·C3H	0.011741	0106·C3H	0.007633
OSI	Q106:C3H	0.001168	Q106:C3H	0.010911	Q106:C3H	0.000483
OSI	Q106:C4	0.013538	Q106:C4	0.014492	Q106:C4	0.012519
OSI	0106:C4H	0.011501	0106:C4H	0.006193	0106:C4H	0.007290
OSI	Q106:C4H	0.033284	Q106:C4H	0.026322	Q106:C4H	0.032126
OSI	0106:C5	1.452592	0106:C5	1.445882	0106:C5	1.451510
OSI	0106:05	-1.196065	0106:05	-1.203583	0106:05	-1.198451
OSI	0106:N5	-1.196169	Q106:N5	-1.200321	0106:N5	-1.203441
OSI	0106:N5H	0.399727	0106:N5H	0.393643	0106:N5H	0.395612
OSI	0106:N5H	0.454168	0106:N5H	0.462489	O106:N5H	0.459621
OSI	D187:C3	-0.030615	D187:C3	-0.026616	D187:C3	-0.027470
OSI	D187:C3H	-0.009660	D187:C3H	0.004241	D187:C3H	-0.007713
OSI	D187:C3H	-0.010315	D187:C3H	0.000760	D187:C3H	-0.007314
OSI	D187:C4	1.667637	D187:C4	1.652354	D187:C4	1.667105
OSI	D187:O4	-1.266026	D187:O4	-1.258074	D187:O4	-1.265415
OSI	D187:O4	-1.264853	D187:O4	-1.250721	D187:O4	-1.260973
OSI	H224:CB	0.018431	H224:CB	0.019874	H224:CB	0.016644
OSI	H224:CBH	-0.011615	H224:CBH	0.008592	H224:CBH	-0.008456
OSI	H224:CBH	0.090076	H224:CBH	0.109471	H224:CBH	0.087702
OSI	H224:C4	0.325469	H224:C4	0.344752	H224:C4	0.332044
OSI	H224:C4H	0.026425	H224:C4H	0.093770	H224:C4H	0.023163
OSI	H224:C5	0.375629	H224:C5	0.395374	H224:C5	0.374545
OSI	H224:Npi	-1.156015	H224:Npi	-1.225232	H224:Npi	-1.175816
OSI	PRO:O2H	0.610668	H224:NpiH	0.525889	S105:O4H	0.616465
OSI	H224:Ntau	-1.210563	H224:Ntau	-1.193234	H224:Ntau	-1.216460
OSI	H224:NtauH	0.540824	H224:NtauH	0.577841	H224:NtauH	0.554735
OSI	H224:C2	0.933137	H224:C2	1.000397	H224:C2	0.949546
OSI	H224:C2H	0.060396	H224:C2H	0.131804	H224:C2H	0.070293
OSI	AcS105:C6	0.020254	AcS105:C6	0.019694	AcPRO:C2b	0.023939
OSI	AcS105:C5	1.571887	AcS105:C5	1.461215	AcPRO:C1b	1.574072
OSI	AcS105:O4	-1.093417	AcS105:O4	-1.046436	S105:O4	-1.179515
OSI	AcS105:C3	0.425002	AcS105:C3	0.499421	S105:C3	0.551459
OSI	AcS105:O5	-1.235662	Ac\$105:O5	-1.233830	AcPRO:O1b	-1.229086
OSI	AcS105:C6H	0.090883	AcS105:C6H	-0.006253	AcPRO:C2bH	0.070137
OSI	AcS105:C6H	0.029513	AcS105:C6H	-0.004053	AcPRO:C2bH	0.016754
OSI	AcS105:C6H	0.048595	AcS105:C6H	0.021488	AcPRO:C2bH	0.063559
OSI	AcS105:C3H	0.062815	AcS105:C3H	0.067152	S105:C3H	-0.000271
OSI	AcS105:C3H	0.070149	AcS105:C3H	-0.009233	S105:C3H	0.005045
OSI	PRO:C2	0.523112	PRO:C2	0.499901	AcPRO:C2	0.423455
OSI	PRO:C2H	-0.006235	PRO:C2H	0.007416	AcPRO:C2H	0.040992
OSI	PRO:O2	-1.147056	PRO:O2	-1.039241	AcPRO:O2	-1.091864

OSI	PRO:C3c	-0.022138	PRO:C3c	-0.020907	AcPRO:C3c	-0.018864
OSI	PRO:C3cH	0.022636	PRO:C3cH	0.025760	AcPRO:C3cH	0.028341
OSI	PRO:C4c	-0.032855	PRO:C4c	-0.034365	AcPRO:C4c	-0.028801
OSI	PRO:C4cH	0.018861	PRO:C4cH	0.016972	AcPRO:C4cH	0.022153
OSI	PRO:C5c	0.000579	PRO:C5c	0.000028	AcPRO:C5c	0.001703
OSI	PRO:C10c	-0.001942	PRO:C10c	-0.002038	AcPRO:C10c	0.001739
OSI	PRO:C1c	0.527772	PRO:C1c	0.528904	AcPRO:C1c	0.508117
OSI	PRO:C2c	-0.030903	PRO:C2c	-0.032400	AcPRO:C2c	-0.030525
OSI	PRO:C2cH	0.017187	PRO:C2cH	0.026689	AcPRO:C2cH	0.014476
OSI	PRO:C6c	-0.030559	PRO:C6c	-0.032396	AcPRO:C6c	-0.028467
OSI	PRO:C6cH	0.021702	PRO:C6cH	0.021071	AcPRO:C6cH	0.024922
OSI	PRO:C9c	-0.020892	PRO:C9c	-0.022079	AcPRO:C9c	-0.020525
OSI	PRO:C9cH	0.060501	PRO C9cH	0.060671	AcPRO:C9cH	0.059467
OSI	PRO:C8c	-0.029334	PRO:C8c	-0.031322	AcPRO:C8c	-0.027058
	PRO:C8cH	0.023334	PRO:C&cH	0.021833	AcPRO:C8cH	0.027030
	PRO:C7c	-0.023334	PRO:C7c	-0.030471	AcPRO:C7c	-0.027372
	PRO:C7cH	0.021445	PRO:C7cH	0.019232	AcPRO:C7cH	0.023565
		1.008672		1 100222		1.006006
	DRO:C2	-1.098072	DRO:C2	-1.100222	Acr RO.OC	-1.090090
	PRO:C3	0.470551	PRO:C3	0.402000	ACPKU:C3	0.467723
	PRO:C3H	0.004800		0.023143	ACPRO:C3H	0.013/31
OSI	PRO:C3H	0.030922	PRU:C3H	0.037340	ACPRUICI	0.072838
OSI	PRU:UI	0.343102	PRU:UI	0.368050	ACPRU:UI	0.365921
OSI	PRO:CIH	0.003105	PRO:CIH	0.006326	ACPRO:CIH	0.024507
OSI	PRO:CIH	-0.007543	PRO:CIH	-0.034183	ACPRO:CIH	0.01/45/
OSI	PRO:Na	-0.995480	PRO:Na	-1.000018	ACPRO:Na	-0.995905
OSI	PRO:NaH	0.355434	PRO:NaH	0.378588	ACPRO:NaH	0.366167
OSI	PRO:C2a	0.374689	PRO:C2a	0.371543	AcPRO:C2a	0.366233
OSI	PRO:C2aH	-0.037924	PRO:C2aH	-0.045359	AcPRO:C2aH	-0.028787
OSI	PRO:Cla	0.005499	PRO:Cla	0.005707	AcPRO:Cla	0.006302
OSI	PRO:C1aH	-0.015745	PRO:C1aH	-0.016368	AcPRO:C1aH	-0.010315
OSI	PRO:C1aH	-0.002089	PRO:C1aH	0.002690	AcPRO:C1aH	-0.000204
OSI	PRO:C1aH	-0.005101	PRO:C1aH	-0.009062	AcPRO:C1aH	-0.006143
OSI	PRO:C3a	0.011296	PRO:C3a	0.009113	AcPRO:C3a	0.009764
OSI	PRO:C3aH	0.004990	PRO:C3aH	0.013972	AcPRO:C3aH	0.009755
OSI	PRO:C3aH	0.002900	PRO:C3aH	0.006341	AcPRO:C3aH	0.004424
OSI	PRO:C3aH	-0.018557	PRO:C3aH	-0.017116	AcPRO:C3aH	-0.011380
OSII	G39:C1	1.455818	G39:C1	1.441022	G39:C1	1.455779
OSII	G39:O1	-1.182425	G39:O1	-1.188442	G39:O1	-1.180392
OSII	T40:N2	-1.167605	T40:N2	-1.176555	T40:N2	-1.154076
OSII	T40:N2H	0.441975	T40:N2H	0.472777	T40:N2H	0.412536
OSII	T40:C2	0.351854	T40:C2	0.354724	T40:C2	0.354756
OSII	T40:C2H	0.003677	T40:C2H	0.002475	T40:C2H	-0.000508
OSII	T40:C3	0.499156	T40:C3	0.526570	T40:C3	0.510040
OSII	T40:C3H	0.047132	T40:C3H	0.026330	T40:C3H	0.035055
OSII	T40:O3	-1.142928	T40:O3	-1.160368	T40:O3	-1.160280
OSII	T40:O3H	0.608805	T40:O3H	0.626925	T40:O3H	0.634795
OSII	T40:C4	0.014422	T40:C4	0.011027	T40:C4	0.007760
OSII	T40:C4H	-0.007973	T40:C4H	-0.015960	T40:C4H	-0.008150
OSII	T40:C4H	0.014339	T40:C4H	0.007764	T40:C4H	0.011801
OSII	T40:C4H	0.019742	T40:C4H	0.017584	T40:C4H	0.018968
OSII	T40:C1	1.474177	T40:C1	1.463932	T40:C1	1.481608
OSII	T40:O1	-1.183283	T40:O1	-1.189701	T40:O1	-1.185251
OSII	G41:N2	-1.151272	G41:N2	-1.149905	G41:N2	-1.150598
OSII	G41:N2H	0.394245	G41:N2H	0.393843	G41:N2H	0.395083
OSII	G41:C2	0.347498	G41:C2	0.349438	G41:C2	0.346901
OSII	G41:C2H	0.059157	G41:C2H	0.056837	G41:C2H	0.060602
OSII	G41:C2H	0.005046	G41:C2H	0.001337	G41:C2H	0.004955
OSII	W104:C1	1.460152	W104:C1	1.456632	W104:C1	1.452657
OSII	W104:O1	-1.161619	W104:O1	-1.160805	W104:O1	-1.165460

OSII	AcS105:N2	-1.139684	AcS105:N2	-1.135498	S105:N2	-1.137474
OSII	AcS105:N2H	0.398701	AcS105:N2H	0.386361	S105:N2H	0.395138
OSII	AcS105:C2	0.364586	AcS105:C2	0.336105	S105:C2	0.335982
OSII	AcS105:C2H	0.060355	AcS105:C2H	0.041136	S105:C2H	0.048544
OSII	AcS105:C1	1.452652	AcS105:C1	1.435643	S105:C1	1.428197
OSII	AcS105:O1	-1.162206	AcS105:O1	-1.170354	S105:O1	-1.164532
OSII	Q106:N2	-1.147089	Q106:N2	-1.146646	Q106:N2	-1.111675
OSII	Q106:N2H	0.423079	Q106:N2H	0.441807	Q106:N2H	0.390083
OSII	Q106:C2	0.340312	Q106:C2	0.337973	Q106:C2	0.338801
OSII	Q106:C2H	0.015416	Q106:C2H	0.008340	Q106:C2H	0.013868
OSII	0106:C3	0.036171	O106:C3	0.032657	0106:C3	0.029256
OSII	O106:C3H	0.01212	O106:C3H	0.009292	O106:C3H	0.001038
OSII	0106:C3H	0.000451	0106:C3H	0.021955	0106:C3H	0.013767
OSII	0106:C4	0.013619	0106:C4	0.014075	0106:C4	0.012590
OSII	0106:C4H	0.01042	0106:C4H	0.008651	0106:C4H	0.012463
OSII	Q106:C4H	0.032876	0106°C4H	0.026682	Q106:C4H	0.032738
OSII	Q106:C5	1 454977	0106.05	1 448704	0106:C5	1 450181
OSIL	0106:05	-1 193278	0106:05	-1 199331	0106:05	-1 193936
OSII	Q106:N5	-1.203336	Q106:N5	-1.200433	Q106:N5	-1 199214
OSII	Q106:N5H	0.30680	Q106:N5H	0.303822	Q100.105	0 307112
OSII	Q106:N5H	0.460194	Q106:N5H	0.373822	Q106:N5H	0.454867
OSII	D187:C3	-0.028763	D187:C3	-0.023903	D187:C3	-0.026700
OSII	D187:C3H	0.000226	D187.C3H	0.004002	D107.C3H	-0.020700
OSII	D187:C3H	-0.009220	D187.C3H	0.004902	D187.C3H	-0.008703
0511	D187.C311	1 662221	D187.C311	1.644066	D187.C311	-0.007850
0511	D107.C4	1.002231	D107.C4	1.044900	D107.C4	1.003214
	D187:04	-1.201039	D187:04	-1.249524	D187:04	-1.239739
OSII	U107:04	-1.205505	U224-CD	-1.243114	D187:04	-1.200343
OSII	H224:CB	0.020946	H224:CB	0.022380	H224:CB	0.018337
OSII	H224:CBH	-0.008472	H224:CBH	0.010/58	H224:CBH	-0.005692
OSII	H224:CBH	0.064438	H224:CBH	0.084586	H224:CBH	0.068/89
OSII	H224:C4	0.338915	H224:C4	0.354244	H224:C4	0.334170
OSII	H224:C4H	0.017948	H224:C4H	0.081460	H224:C4H	0.025971
OSII	H224:C5	0.3/634/	H224:C5	0.39/615	H224:C5	0.368905
OSII	H224:Npi	-1.159/54	H224:Npi	-1.226875	H224:Npi	-1.163497
OSII	PRO:O2H	0.623658	H224:Np1H	0.534602	S105:04H	0.618570
OSII	H224:Ntau	-1.209601	H224:Ntau	-1.195392	H224:Ntau	-1.220252
OSII	H224:NtauH	0.54333	H224:NtauH	0.580786	H224:NtauH	0.557546
OSII	H224:C2	0.945988	H224:C2	1.018224	H224:C2	0.947504
OSII	H224:C2H	0.057189	H224:C2H	0.125616	H224:C2H	0.054830
OSII	AcS105:C6	0.030743	AcS105:C6	0.016430	AcPRO:C2b	0.027120
OSII	AcS105:C5	1.579644	AcS105:C5	1.478667	AcPRO:C1b	1.565513
OSII	AcS105:O4	-1.092983	AcS105:O4	-1.050787	S105:O4	-1.170753
OSII	AcS105:C3	0.425101	AcS105:C3	0.515586	S105:C3	0.557776
OSII	AcS105:O5	-1.244436	AcS105:O5	-1.271746	AcPRO:O1b	-1.236842
OSII	AcS105:C6H	0.034337	AcS105:C6H	0.002373	AcPRO:C2bH	0.048597
OSII	AcS105:C6H	0.057009	AcS105:C6H	-0.008003	AcPRO:C2bH	0.074251
OSII	AcS105:C6H	0.07303	AcS105:C6H	0.004085	AcPRO:C2bH	0.037264
OSII	AcS105:C3H	0.068605	AcS105:C3H	0.048431	S105:C3H	-0.010016
OSII	AcS105:C3H	0.065046	AcS105:C3H	0.007972	S105:C3H	0.014854
OSII	PRO:C2	0.543147	PRO:C2	0.520011	AcPRO:C2	0.430987
OSII	PRO:C2H	0.013468	PRO:C2H	0.030547	AcPRO:C2H	0.044247
OSII	PRO:O2	-1.167651	PRO:O2	-1.043980	AcPRO:O2	-1.075265
OSII	PRO:C3c	-0.020711	PRO:C3c	-0.021765	AcPRO:C3c	-0.018284
OSII	PRO:C3cH	0.027009	PRO:C3cH	0.022461	AcPRO:C3cH	0.032047
OSII	PRO:C4c	-0.033532	PRO:C4c	-0.035721	AcPRO:C4c	-0.032448
OSII	PRO:C4cH	0.01541	PRO:C4cH	0.016249	AcPRO:C4cH	0.020827
OSII	PRO:C5c	-0.000133	PRO:C5c	0.000003	AcPRO:C5c	-0.000336
OSII	PRO:C10c	0.001191	PRO:C10c	0.001701	AcPRO:C10c	-0.000317
OSII	PRO:C1c	0.524756	PRO:C1c	0.521483	AcPRO:C1c	0.494905

OSII	PRO:C2c	-0.027319	PRO:C2c	-0.028345	AcPRO:C2c	-0.026618
OSII	PRO:C2cH	0.0381	PRO:C2cH	0.031091	AcPRO:C2cH	0.044172
OSII	PRO:C6c	-0.031426	PRO:C6c	-0.031986	AcPRO:C6c	-0.030935
OSII	PRO:C6cH	0.01824	PRO:C6cH	0.017864	AcPRO:C6cH	0.019656
OSII	PRO:C9c	-0.016993	PRO:C9c	-0.018802	AcPRO:C9c	-0.029757
OSII	PRO:C9cH	0.049253	PRO:C9cH	0.058111	AcPRO:C9cH	0.075001
OSII	PRO:C8c	-0.031721	PRO:C8c	-0.031073	AcPRO:C8c	-0.031742
OSII	PRO:C8cH	0.020893	PRO:C8cH	0.022666	AcPRO:C8cH	0.024517
OSII	PRO:C7c	-0.032497	PRO:C7c	-0.031799	AcPRO:C7c	-0.032298
OSII	PRO:C7cH	0.018445	PRO:C7cH	0.018859	AcPRO:C7cH	0.021663
OSII	PRO:Oc	-1 104364	PRO:Oc	-1.093102	AcPRO:Oc	-1 094820
OSII	PRO:C3	0.472537	PRO:C3	0.485369	AcPRO:C3	0.478695
OSIL	PRO:C3H	0.012289	PRO:C3H	0.014876	AcPRO:C3H	0.036087
OSIL	PRO:C3H	0.045875	PRO:C3H	0.032851	AcPRO:C3H	0.056192
OSII	PRO:C1	0.360934	PRO:C1	0.337639	AcPRO:C1	0.383385
OSIL	PROCIH	0.009682	PROCIH	0.006669	AcPRO:C1H	-0.000963
OSII	PRO:C1H	-0.047003	PRO:C1H	-0.0000053	AcPRO:C1H	0.016738
0511	DRO:No	-0.047003	DDO:No	1 000288	Acr KO.CIII	1.021258
OSII	PRO.NaU	-1.010202		-1.000288		-1.031238
OSII		0.333309		0.331009		0.308008
OSII	PKU:C2a	0.382349	PRU:C2a	0.381044	ACPKU:C2a	0.398249
OSII	PRO:C2aH	-0.040688	PRO:C2aH	-0.038984	ACPRO:C2aH	-0.01/525
OSII	PRO:CIa	0.00/96/	PRO:CTa	0.00/321	ACPRO:CIa	0.011303
OSII	PRO:CTaH	-0.018345	PRO:CTaH	-0.016894	ACPRO:CIaH	-0.007226
OSII	PRO:CIaH	0.013332	PRO:CIaH	0.002599	ACPRO:CIaH	-0.006/22
OSII	PRO:CIaH	-0.011159	PRO:CIaH	-0.010306	ACPRO:ClaH	0.002028
OSII	PRO:C3a	0.004947	PRO:C3a	0.003350	ACPRO:C3a	-0.010430
OSII	PRO:C3aH	0.014063	PRO:C3aH	0.009638	ACPRO:C3aH	0.005661
OSII	PRO:C3aH	-0.006768	PRO:C3aH	-0.009311	ACPRO:C3aH	-0.007984
OSII	PRO:C3aH	-0.014103	PRO:C3aH	-0.00/06/	ACPRO:C3aH	-0.008566
OSIII	G39:C1	1.45/63/	G39:C1	1.448933	G39:C1	1.460160
OSIII	G39:01	-1.1/8520	G39:01	-1.186321	G39:01	-1.1/9236
OSIII	140:N2	-1.154811	140:N2	-1.1/5/19	140:N2	-1.150122
OSIII	140:N2H	0.423952	140:N2H	0.463813	140:N2H	0.410134
OSIII	140:C2	0.356522	140:C2	0.360209	140:C2	0.359307
OSIII	140:C2H	0.005472	140:C2H	0.004657	140:C2H	0.000877
OSIII	140:C3	0.498455	140:C3	0.521515	140:C3	0.507398
OSIII	T40:C3H	0.038/08	T40:C3H	0.023031	140:C3H	0.032390
OSIII	140:03	-1.139981	140:03	-1.154913	140:03	-1.15//01
OSIII	140:03H	0.616122	140:03H	0.629755	140:03H	0.639485
OSIII	140:C4	0.014244	140:C4	0.010073	140:C4	0.011160
OSIII	140:C4H	0.019170	140:C4H	0.016105	140:C4H	0.013668
OSIII	140:C4H	-0.006159	140:C4H	-0.013250	140:C4H	-0.002991
OSIII	140:C4H	0.012/31	140:C4H	0.005606	140:C4H	0.009499
OSIII	140:C1	1.4/3868	140:C1	1.464351	140:CI	1.4/6916
OSIII	140:01	-1.188199	140:01	-1.194235	140:01	-1.188149
OSIII	G41:N2	-1.139991	G41:N2	-1.140050	G41:N2	-1.143566
OSIII	G41:N2H	0.392284	G41:N2H	0.390620	G41:N2H	0.391/58
OSIII	G41:C2	0.558892	G41:C2	0.340635	G41:C2	0.341348
OSIII	G41:C2H	0.06/358	G41:C2H	0.06/149	G41:C2H	0.069273
OSIII	G41:C2H	0.005046	G41:C2H	0.001705	G41:C2H	0.005197
OSIII	W104:C1	1.459157	W104:C1	1.459559	W104:C1	1.45/582
05111	w104:01	-1.102050	w 104:01	-1.102258	W 104:01	-1.104358
05111	ACS105:N2	-1.1398/4	ACS105:N2	-1.139122	\$105:N2	-1.144924
USIII USIII	Ac\$105:N2H	0.400538	Ac\$105:N2H	0.386387	5105:N2H	0.395685
	ACS105:C2	0.366163	ACS105:C2	0.340606	\$105:C2	0.345724
OSIII	Ac\$105:C2H	0.061965	Ac\$105:C2H	0.039513	\$105:C2H	0.043832
	Ac\$105:C1	1.455277	Ac\$105:C1	1.441938	S105:CI	1.431002
	Ac\$105:01	-1.164349	Ac\$105:01	-1.1/4022	S105:01	-1.168258
OSIII	Q106:N2	-1.138285	Q106:N2	-1.148819	Q106:N2	-1.121185

OSIII	Q106:N2H	0.411167	Q106:N2H	0.441022	Q106:N2H	0.400308
OSIII	Q106:C2	0.340478	Q106:C2	0.340485	Q106:C2	0.339791
OSIII	Q106:C2H	0.014396	Q106:C2H	0.006361	Q106:C2H	0.010557
OSIII	Q106:C3	0.035366	Q106:C3	0.033749	Q106:C3	0.032092
OSIII	Q106:C3H	0.011797	Q106:C3H	0.009295	Q106:C3H	0.004235
OSIII	O106:C3H	0.003122	O106:C3H	0.018624	O106:C3H	0.007283
OSIII	0106:C4	0.014587	0106:C4	0.014633	Q106:C4	0.012848
OSIII	0106·C4H	0.012804	0106°C4H	0.010687	0106°C4H	0.012665
	Q106:C4H	0.032893	Q106:C4H	0.026678	Q106:C4H	0.032804
OSIII	0106:C5	1 446445	0106:05	1 441442	0106:C5	1 447484
OSIII	0106:05	1.104012	0106:05	1.441442	0106:05	1.107215
	Q106.05	-1.194913	Q106.05	-1.201021	Q100.05	-1.19/313
OSIII	Q100.N5	-1.199990	Q100:N5	-1.202036	Q100:N5	-1.204937
OSIII	Q106:N5H	0.396470	Q106:N5H	0.391461	Q106:N5H	0.393973
OSIII	Q106:N5H	0.461599	Q106:N5H	0.468058	Q106:N5H	0.466/04
OSIII	D187:C3	-0.031688	D187:C3	-0.026080	D187:C3	-0.028670
OSIII	D187:C3H	-0.012147	D187:C3H	0.002504	D187:C3H	-0.008760
OSIII	D187:C3H	-0.014371	D187:C3H	-0.003156	D187:C3H	-0.009968
OSIII	D187:C4	1.673069	D187:C4	1.656887	D187:C4	1.670001
OSIII	D187:O4	-1.269894	D187:O4	-1.259017	D187:O4	-1.266744
OSIII	D187:O4	-1.270093	D187:O4	-1.253270	D187:O4	-1.263148
OSIII	H224:CB	0.021109	H224:CB	0.025156	H224:CB	0.019262
OSIII	H224:CBH	-0.005834	H224:CBH	0.018915	H224:CBH	-0.000031
OSIII	H224:CBH	0.059823	H224:CBH	0.073256	H224:CBH	0.063095
OSIII	H224:C4	0.334582	H224:C4	0.358043	H224:C4	0.332267
OSIII	H224:C4H	0.032103	H224:C4H	0.105955	H224:C4H	0.037105
OSIII	H224:C5	0.366967	H224:C5	0.387324	H224:C5	0.367189
OSIII	H224·Nni	-1 151201	H224·Nni	-1 230600	H224·Nni	-1 162984
OSIII	PRO:02H	0.614559	H224:NniH	0.539288	\$105:04H	0.616276
OSIII	H224·Ntau	-1 205163	H224:Npm	-1 103872	H224:Ntau	-1 213253
	H224.Ntau	0.532155	H224.Ntau	0.577254	H224.Ntau	0 554146
OSIII	11224.INtau11	0.028810	H224.Maul1	1.009426	11224.Mau11	0.045949
	П224.С2	0.920019		0.122050	П224.С2	0.943646
OSIII	П224:С2П А. \$105.00	0.033073	П224:С2П А. 0105.00	0.123039	П224:С2П А. DDO. C21	0.037350
OSIII	Ac\$105:C6	-0.00//14	Ac\$105:C6	0.024492	ACPRO:C2b	0.026250
OSIII	Ac\$105:C5	1.552806	Ac\$105:C5	1.461008	ACPRO:CID	1.594270
OSIII	Ac\$105:04	-1.088224	Ac\$105:04	-1.044601	<u>\$105:04</u>	-1.174234
OSIII	Ac\$105:C3	0.420890	Ac\$105:C3	0.509048	\$105:C3	0.543429
OSIII	Ac\$105:O5	-1.241499	AcS105:O5	-1.268874	AcPRO:O1b	-1.241944
OSIII	AcS105:C6H	0.140965	AcS105:C6H	0.000267	AcPRO:C2bH	0.070282
OSIII	AcS105:C6H	0.031608	AcS105:C6H	-0.004724	AcPRO:C2bH	0.030496
OSIII	AcS105:C6H	0.048094	AcS105:C6H	0.001304	AcPRO:C2bH	0.047041
OSIII	AcS105:C3H	0.063209	AcS105:C3H	0.055678	S105:C3H	0.003701
OSIII	AcS105:C3H	0.073105	AcS105:C3H	0.004587	S105:C3H	0.016026
OSIII	PRO:C2	0.523603	PRO:C2	0.516925	AcPRO:C2	0.426191
OSIII	PRO:C2H	0.021431	PRO:C2H	0.043475	AcPRO:C2H	0.069053
OSIII	PRO:O2	-1.146770	PRO:O2	-1.036840	AcPRO:O2	-1.088191
OSIII	PRO:C3c	-0.018406	PRO:C3c	-0.031152	AcPRO:C3c	-0.021943
OSIII	PRO:C3cH	0.031965	PRO:C3cH	0.023718	AcPRO:C3cH	0.031502
OSIJI	PRO:C4c	-0.033447	PRO:C4c	-0.039678	AcPRO:C4c	-0.033867
OSIII	PRO C4cH	0.019951	PRO C4cH	0.016059	AcPRO:C4cH	0.020511
OSIII	PRO:C5c	-0.001022	PRO:C5c	-0.006064	AcPRO:C5c	-0.002692
05111	PRO:C10c	0.000438	PRO:C10c	-0.006409	AcPRO:C10c	0.0002072
0511	PRO:Clo	0.494035	PRO:C1c	0 510007	AcPRO-C1c	0.481410
	PROCOC	-0.025025	PRO:C2c	-0.041056	AcPRO-C2c	_0.0258/8
		0.020446		0.032170		0.022027
		0.029440		0.032170		0.033027
	PRU:U00	-0.031029	PRU:U00	-0.034/8/	ACEKU:U00	-0.034144
OSIII	PKU:C0CH	0.019603	PKU:CocH	0.010405	ACPKU:CbCH	0.018934
	PRU:C9C	-0.020328	PKU:C9C	-0.018554	ACPKU:C9C	-0.019038
OSIII	PRO:C9cH	0.0/1619	PRO:C9cH	0.101536	ACPRO:C9cH	0.08/432
OSIII	PRO:C8c	-0.029009	PRO:C8c	-0.029299	AcPRO:C8c	-0.027796

OSIII	PRO:C8cH	0.027050	PRO:C8cH	0.032923	AcPRO:C8cH	0.035021
OSIII	PRO:C7c	-0.031002	PRO:C7c	-0.033456	AcPRO:C7c	-0.032466
OSIII	PRO:C7cH	0.015790	PRO:C7cH	0.017137	AcPRO:C7cH	0.019167
OSIII	PRO:Oc	-1.092708	PRO:Oc	-1.087845	AcPRO:Oc	-1.079009
OSIII	PRO:C3	0.476166	PRO:C3	0.487470	AcPRO:C3	0.487017
OSIII	PRO:C3H	0.039303	PRO:C3H	0.030500	AcPRO:C3H	0.065527
OSIII	PRO:C3H	0.017509	PRO:C3H	0.018734	AcPRO:C3H	0.026965
OSIII	PRO:C1	0.357900	PRO:C1	0.345576	AcPRO:C1	0.350781
OSIII	PRO:C1H	-0.010893	PRO:C1H	-0.014601	AcPRO:C1H	0.008175
OSIII	PRO:C1H	-0.020704	PRO:C1H	-0.004493	AcPRO:C1H	0.000491
OSIII	PRO:Na	-0.997998	PRO:Na	-1.005710	AcPRO:Na	-0.997907
OSIII	PRO:NaH	0.349018	PRO:NaH	0.340592	AcPRO:NaH	0.344457
OSIII	PRO:C2a	0.376982	PRO:C2a	0.384692	AcPRO:C2a	0.377773
OSIII	PRO:C2aH	-0.015494	PRO:C2aH	-0.016256	AcPRO:C2aH	-0.012359
OSIII	PRO:C1a	0.008275	PRO:C1a	0.008152	AcPRO:C1a	0.009714
OSIII	PRO:C1aH	0.004694	PRO:C1aH	0.005620	AcPRO:C1aH	0.008328
OSIII	PRO:C1aH	-0.013533	PRO:ClaH	-0.013374	AcPRO:C1aH	-0.000320
OSIII		0.000800	DDO:C1aH	0.006832	AcI RO.ClaH	0.002603
		-0.000890		-0.000832		-0.002003
OSIII	PRU:C3a	-0.00/426	PRU:C3a	-0.009949	ACPKU:U3a	-0.010521
OSIII	PRO:C3aH	-0.004546	PRO:C3aH	-0.007653	ACPRO:C3aH	-0.010903
OSIII	PRO:C3aH	-0.008025	PRO:C3aH	-0.011123	ACPRO:C3aH	-0.004/03
OSIII	PRO:C3aH	-0.008120	PRO:C3aH	-0.000632	ACPRO:C3aH	0.001346
OSIV	G39:C1	1.444899	G39:C1	1.440173	G39:C1	1.435142
OSIV	G39:O1	-1.178823	G39:01	-1.185949	G39:01	-1.177203
OSIV	T40:N2	-1.153600	T40:N2	-1.179236	T40:N2	-1.144961
OSIV	T40:N2H	0.438878	T40:N2H	0.479277	T40:N2H	0.433732
OSIV	T40:C2	0.355020	T40:C2	0.356179	T40:C2	0.355523
OSIV	T40:C2H	0.005474	T40:C2H	0.002286	T40:C2H	0.006397
OSIV	T40:C3	0.507485	T40:C3	0.535368	T40:C3	0.520101
OSIV	T40:C3H	0.042560	T40:C3H	0.007818	T40:C3H	0.028122
OSIV	T40:O3	-1.147312	T40:O3	-1.158870	T40:O3	-1.145466
OSIV	T40:O3H	0.619200	T40:O3H	0.631516	T40:O3H	0.623538
OSIV	T40:C4	0.012087	T40:C4	0.007665	T40:C4	0.007865
OSIV	T40:C4H	-0.009536	T40:C4H	-0.013234	T40:C4H	-0.007206
OSIV	T40:C4H	0.007503	T40:C4H	0.005196	T40:C4H	0.008094
OSIV	T40:C4H	0.018295	T40:C4H	0.009848	T40:C4H	0.013725
OSIV	T40.C1	1 472248	T40.C1	1 468279	T40.C1	1 472970
OSIV	T40:01	-1 188434	T40:01	-1 188027	T40:01	-1 188163
OSIV	G41·N2	-1 148204	G41:N2	-1 148672	G41·N2	-1 149916
OSIV	G41:N2H	0.301006	G41:N2H	0 389925	G41:N2H	0 302201
OSIV	G41:C2	0.371700	G41:C2	0.367723	G41:C2	0.372271
OSIV	G41:C2H	0.040500	G41:C2H	0.065346	G41:C2H	0.070258
OSIV	G41:C2H	0.009049	G41:C2H	0.003340	C41:C2H	0.070238
	W104.C1	1.451615	W104-C1	-0.001932	W104.C1	1 45 45 00
	W104:C1	1.431013	W104:C1	1.457055	W104:C1	1.434399
OSIV	W104:01	-1.160513	W104:01	-1.159991	W104:01	-1.163614
OSIV	ACS105:N2	-1.1316/9	Ac\$105:N2	-1.134800	S105:N2	-1.140256
OSIV	Ac\$105:N2H	0.396817	Ac\$105:N2H	0.381395	S105:N2H	0.391117
USIV	Ac\$105:C2	0.357405	Ac\$105:C2	0.347606	\$105:C2	0.342419
OSIV	AcS105:C2H	0.057195	AcS105:C2H	0.040355	S105:C2H	0.052441
OSIV	AcS105:C1	1.453677	AcS105:C1	1.437451	S105:C1	1.433332
OSIV	AcS105:01	-1.163964	AcS105:01	-1.168294	S105:O1	-1.164171
OSIV	Q106:N2	-1.152040	Q106:N2	-1.143431	Q106:N2	-1.124179
OSIV	Q106:N2H	0.433086	Q106:N2H	0.440962	Q106:N2H	0.396536
OSIV	Q106:C2	0.340628	Q106:C2	0.334566	Q106:C2	0.337895
OSIV	Q106:C2H	0.016228	Q106:C2H	0.011348	Q106:C2H	0.016767
OSIV	Q106:C3	0.037323	Q106:C3	0.034773	Q106:C3	0.038461
OSIV	Q106:C3H	0.011288	Q106:C3H	0.009366	Q106:C3H	0.011619
OSIV	Q106:C3H	0.005558	Q106:C3H	0.021843	Q106:C3H	-0.003876
OSIV	Q106:C4	0.013484	Q106:C4	0.013538	Q106:C4	0.011000

OSIV	Q106:C4H	0.009673	Q106:C4H	0.009978	Q106:C4H	0.010596
OSIV	Q106:C4H	0.031099	Q106:C4H	0.026829	Q106:C4H	0.031371
OSIV	Q106:C5	1.441140	Q106:C5	1.438455	Q106:C5	1.446380
OSIV	Q106:O5	-1.197574	Q106:O5	-1.202238	Q106:O5	-1.200892
OSIV	Q106:N5	-1.190911	Q106:N5	-1.193047	Q106:N5	-1.198482
OSIV	O106:N5H	0.392606	O106:N5H	0.390604	O106:N5H	0.392421
OSIV	0106:N5H	0.462424	Q106:N5H	0.463296	0106:N5H	0.467057
OSIV	D187·C3	-0.028451	D187·C3	-0.022545	D187:C3	-0.024543
OSIV	D187:C3H	-0.009761	D187:C3H	0.003967	D187:C3H	-0.008112
OSIV	D187:C3H	-0.011710	D187:C3H	-0.003207	D187:C3H	-0.008084
OSIV	D107.C31	1 660262	D107.C311	-0.001074	D107.C311	1 664705
OSIV	D107.C4	1.009303	D107.C4	1.051250	D107.C4	1.004703
OSIV	D187:04	-1.203820	D187:04	-1.233729	D187:04	-1.201331
OSIV	D18/:04	-1.265016	D18/:04	-1.248/13	D18/:04	-1.259/54
OSIV	H224:CB	0.019289	H224:CB	0.016605	H224:CB	0.014567
OSIV	H224:CBH	-0.010285	H224:CBH	0.014469	H224:CBH	-0.008048
OSIV	H224:CBH	0.078327	H224:CBH	0.092788	H224:CBH	0.083436
OSIV	H224:C4	0.337001	H224:C4	0.359229	H224:C4	0.340098
OSIV	H224:C4H	0.013068	H224:C4H	0.085323	H224:C4H	0.017433
OSIV	H224:C5	0.374518	H224:C5	0.395844	H224:C5	0.374029
OSIV	H224:Npi	-1.159240	H224:Npi	-1.228219	H224:Npi	-1.168752
OSIV	PRO:O2H	0.606275	H224:NpiH	0.536113	S105:O4H	0.618779
OSIV	H224:Ntau	-1.207513	H224:Ntau	-1.194650	H224:Ntau	-1.216164
OSIV	H224:NtauH	0.542690	H224:NtauH	0.578659	H224:NtauH	0.556277
OSIV	H224:C2	0.934175	H224:C2	1.005280	H224:C2	0.949047
OSIV	H224:C2H	0.057326	H224:C2H	0.125148	H224:C2H	0.065551
OSIV	AcS105:C6	-0.005624	AcS105:C6	0.019440	AcPRO:C2b	0.035333
OSIV	Ac\$105:C5	1 562459	Ac\$105:C5	1 450532	AcPRO:C1b	1 604417
OSIV	Ac\$105:04	-1.086683	Ac\$105:04	-1.043708	\$105:04	-1 177148
OSIV	Ac\$105:C3	0.422289	Ac\$105:C3	0 504347	\$105:C3	0 560793
OSIV	Ac\$105:05	1 245554	Ac\$105:05	1 268557		1 251521
OSIV	Ac\$105:C6U	0.129462	Ac\$105:C6U	-1.200337	AcI KO.010	0.020272
OSIV	AcS105:C6H	0.020046	Ac\$105:C6H	0.043048	Acr KO.C2011	0.029372
OSIV	ACS105:COH	0.029040	ACS105:C0H	-0.007008	ACPRO:C20H	0.050487
OSIV	ACS105:C0H	0.054090	ACS105:C0H	-0.002280	ACPRO:C20H	0.000/00
OSIV	AcS105:C3H	0.064818	ACS105:C3H	0.058302	S105:C3H	-0.013196
OSIV	ACS105:C3H	0.072579	ACS105:C3H	-0.015444	S105:C3H	0.009322
OSIV	PRO:C2	0.508231	PRO:C2	0.503158	ACPRO:C2	0.419605
OSIV	PRO:C2H	0.051398	PRO:C2H	0.049290	ACPRO:C2H	0.071559
OSIV	PRO:O2	-1.137147	PRO:O2	-1.041062	AcPRO:O2	-1.089798
OSIV	PRO:C3c	-0.029256	PRO:C3c	-0.027533	AcPRO:C3c	-0.029790
OSIV	PRO:C3cH	0.022325	PRO:C3Ch	0.024463	AcPRO:C3cH	0.022633
OSIV	PRO:C4c	-0.032556	PRO:C4c	-0.031343	AcPRO:C4c	-0.031333
OSIV	PRO:C4cH	0.019981	PRO:C4cH	0.020011	AcPRO:C4cH	0.021776
OSIV	PRO:C5c	-0.003002	PRO:C5c	-0.002700	AcPRO:C5c	-0.002403
OSIV	PRO:C10c	-0.009715	PRO:C10c	-0.009787	AcPRO:C10c	-0.009169
OSIV	PRO:C1c	0.511271	PRO:C1c	0.518467	AcPRO:C1c	0.499225
OSIV	PRO:C2c	-0.025085	PRO:C2c	-0.019963	AcPRO:C2c	-0.023644
OSIV	PRO:C2cH	0.040405	PRO:C2cH	0.049666	AcPRO:C2cH	0.042780
OSIV	PRO:C6c	-0.025791	PRO:C6c	-0.026622	AcPRO:C6c	-0.026125
OSIV	PRO:C6cH	0.022490	PRO:C6cH	0.023107	AcPRO:C6cH	0.022808
OSIV	PRO:C9c	-0.024168	PRO:C9c	-0.026625	AcPRO:C9c	-0.020800
OSIV	PRO:C9cH	0.044126	PRO:C9cH	0.037526	AcPRO:C9cH	0.045992
OSIV	PRO:C8c	-0.022163	PRO:C8c	-0.029755	AcPRO C8c	-0.019140
OSIV	PROCRAH	0.032623	PROCReH	0.0227735	AcPRO C8cH	0.035704
OSIV	PRO:C7c	-0.021758	PRO:C7c	-0.025803	AcPRO:C7c	-0.0211/8
	DDO-C7-U	0.021736	DRO-C7-U	0.025805		0.022777
		1.077020		1.074079		1.072025
	PRU:UC	-1.077020	PRU:UC	-1.0/40/8	ACEKU:UC	-1.072033
0517	PKU:U3	0.454565	PKU:U3	0.4/6/08	ACPKU:U3	0.490489
OSIV	PRO:C3H	0.039752	PKO:C3H	0.026959	ACPRO:C3H	0.047529
OSIV	PRO:C3H	0.021305	PRO:C3H	0.011199	AcPRO:C3H	0.039293

OSIV	PRO:C1	0.316607	PRO:C1	0.341721	AcPRO:C1	0.345087
OSIV	PRO:C1H	0.009390	PRO:C1H	0.000916	AcPRO:C1H	0.018186
OSIV	PRO:C1H	-0.004742	PRO:C1H	-0.012547	AcPRO:C1H	0.007525
OSIV	PRO:Na	-0.976587	PRO:Na	-0.980014	AcPRO:Na	-0.982623
OSIV	PRO:NaH	0.312618	PRO:NaH	0.325226	AcPRO:NaH	0.318089
OSIV	PRO:C2a	0.368412	PRO:C2a	0.382008	AcPRO:C2a	0.376859
OSIV	PRO:C2aH	-0.004297	PRO:C2aH	-0.006518	AcPRO:C2aH	0.000498
OSIV	PRO:C1a	0.007259	PRO:C1a	0.008190	AcPRO:C1a	0.008978
OSIV	PRO:C1aH	0.009024	PRO:C1aH	0.014056	AcPRO:C1aH	0.010480
OSIV	PRO:C1aH	-0.006642	PRO:C1aH	-0.012415	AcPRO:C1aH	-0.004746
OSIV	PRO:C1aH	-0.018667	PRO:C1aH	-0.014076	AcPRO:C1aH	-0.015150
OSIV	PRO:C3a	-0.008831	PRO:C3a	-0.008685	AcPRO:C3a	-0.007981
OSIV	PRO:C3aH	-0.008088	PRO:C3aH	-0.011981	AcPRO:C3aH	-0.004980
OSIV	PRO:C3aH	0.010436	PRO:C3aH	-0.001226	AcPRO:C3aH	0.001280
OSIV	PRO:C3aH	-0.018927	PRO:C3aH	-0.019079	AcPRO:C3aH	-0.017557

Apéndice B. Diferencias en las cargas atómicas para los estados MCC, TI y PDC de las rutas de reacción OR y OS.

Figura 1.

Figura 2.

Diferencias en las cargas atómicas para el

MCC de ORI.

PDC de ORI.

Diferencias en las cargas atómicas para el

Figura 3.

Diferencias en las cargas atómicas para el TI

de ORI.

Figura 4.

Diferencias en las cargas atómicas para el

MCC de ORII.

Figura 5.

Diferencias en las cargas atómicas para el TI de ORII.

Diferencias en las cargas atómicas para el MCC de ORIII.

Figura 7.

Diferencias en las cargas atómicas para el

PDC de ORII.

Figura 8.

Diferencias en las cargas atómicas para el TI

de ORIII.

Diferencias en las cargas atómicas para el PDC de ORIII.

Diferencias en las cargas atómicas para el TI

de ORIV.

Figura 11.

Diferencias en las cargas atómicas para el MCC de ORIV.

Diferencias en las cargas atómicas para el

Figura 12.

Diferencias en las cargas atómicas para el

PDC de ORIV.

Figura 13.

MCC de OSI.

Diferencias en las cargas atómicas para el

PDC de OSI.

Figura 15.

Diferencias en las cargas atómicas para el TI

de OSI.

Figura 16.

Diferencias en las cargas atómicas para el

MCC de OSII.

Diferencias en las cargas atómicas para el TI de OSII.

Diferencias en las cargas atómicas para el

MCC de OSIII.

64

Figura 19.

Diferencias en las cargas atómicas para el

PDC de OSII.

Figura 20.

Diferencias en las cargas atómicas para el TI

de OSIII.

Figura 21.

Diferencias en las cargas atómicas para el PDC de OSIII.

Diferencias en las cargas atómicas para el TI

de OSIV.

65

Figura 23.

Figura 24.

Diferencias en las cargas atómicas para el

MCC de OSIV.

Diferencias en las cargas atómicas para el

PDC de OSIV.

Apéndice C. Cargas atómicas de los residuos aminoacídicos.

Tabla 2.

Suma de las cargas atómicas calculadas sin incluir la región MM de la proteína para los residuos aminoacídicos de la triada catalítica y del hueco oxianiónico, y el propranolol en los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC) de los caminos de reacción para el enantiómero R.

Residuo		ORI			ORII			ORIII			ORIV		
aminoacídico	MCC	TI	PDC										
D187	0.000	0.004	0.000	0.005	0.009	0.002	0.001	0.004	0.001	0.002	0.000	0.004	
H224	0.053	0.057	0.051	0.065	0.073	0.064	0.074	0.080	0.072	0.060	0.065	0.058	
AcS105	0.036	0.047		0.028	0.044		0.025	0.042		0.038	0.048		
S105			0.035			0.039			0.038			0.042	
Q106	0.014	0.019	0.014	0.017	0.020	0.018	0.019	0.020	0.023	0.021	0.027	0.026	
T40	0.018	0.017	0.014	0.005	0.002	0.000	0.018	0.015	0.015	0.013	0.011	0.011	
PRO	0.002	0.003		0.005	0.017		0.001	0.006		0.007	0.013		
AcPRO			0.000			0.009			0.004			0.009	

Tabla 3.

Suma de las cargas atómicas calculadas sin incluir la región MM de la proteína para los residuos aminoacídicos de la triada catalítica y del hueco oxianiónico, y el propranolol en los complejos de Michaelis (MCC), intermediarios tetraédricos (TI) y complejos producto (PDC) de los caminos de reacción para el enantiómero S.

Residuo aminoacídico -		OSI			OSII		OSIII			OSIV		
aminoacídico	MCC	TI	PDC									
D187	0.002	0.005	0.002	0.001	0.004	0.000	0.003	0.001	0.002	0.001	0.002	0.005
H224	0.072	0.082	0.072	0.055	0.058	0.055	0.062	0.065	0.060	0.058	0.066	0.061
AcS105	0.022	0.032		0.026	0.041		0.025	0.030		0.035	0.048	
S105			0.034			0.032			0.031			0.040
Q106	0.012	0.012	0.016	0.014	0.020	0.022	0.018	0.018	0.018	0.020	0.024	0.022
T40	0.009	0.007	0.005	0.018	0.022	0.013	0.021	0.023	0.020	0.019	0.020	0.016

PRO	0.004	0.018		0.002	0.004		0.005	0.008		0.013	0.017	
AcPRO			0.010			0.003			0.004			0.008

Apéndice D. Numeración atómica de las estructuras estudiadas.

Figura 25.

Numeración atómica de a) ácido aspártico b) histidina c) serina d) acetil-serina e) glutamina f) (R,S)-propranolol y g) (R,S)-acetilpropranolol.

68

Apéndice E. Propiedades topológicas de los enlaces de hidrógeno seleccionados.

Tabla 4.

Propiedades QTAIM en el BCP (en au $x10^3$), energía de enlace (en kcal/mol) y clasificación de enlaces de hidrógeno seleccionados.

			r		r			1	
Ruta	Estado	Enlace	d(Å)	ρ(rc)	∇²ρ(rc)	V(rc)	G(rc)	H(rc)	Тіро
ORI	MCC	D187:O…H224:NτH	1.703	48.8	108.8	-46.5	36.8	-9.6	rCS
ORI	TI	D187:O…H224:NtH	1.498	82.2	99.7	-89.0	57.0	-32.1	rCS
ORI	PDC	D187:O…H224:NtH	1.666	53.3	112.3	-52.5	40.3	-12.2	rCS
ORII	MCC	D187:O…H224:NτH	1.800	38.3	98.3	-32.9	28.7	-4.2	rCS
ORII	TI	D187:O…H224:NτH	1.623	60.1	104.8	-60.1	43.1	-16.9	rCS
ORII	PDC	D187:O…H224:NτH	1.693	49.6	110.5	-47.7	37.6	-10.0	rCS
ORIII	MCC	D187:O…H224:NτH	1.902	30.3	84.6	-22.8	22.0	-0.8	rCS
ORIII	TI	D187:O…H224:NτH	1.606	62.8	101.4	-63.3	44.3	-19.0	rCS
ORIII	PDC	D187:O…H224:NτH	1.749	43.4	103.2	-39.4	32.6	-6.8	rCS
ORIV	MCC	D187:O…H224:NτH	1.859	33.3	90.4	-26.6	24.6	-2.0	rCS
ORIV	TI	D187:O…H224:NτH	1.591	65.1	104.5	-66.7	46.4	-20.3	rCS
ORIV	PDC	D187:O…H224:NτH	1.739	44.4	105.1	-40.7	33.5	-7.2	rCS
OSI	MCC	D187:O…H224:NτH	1.851	34.1	91.2	-27.4	25.1	-2.3	rCS
OSI	TI	D187:O…H224:NτH	1.573	68.1	102.4	-70.2	47.9	-22.3	rCS
OSI	PDC	D187:O…H224:NτH	1.707	48.1	107.6	-45.5	36.2	-9.3	rCS
OSII	MCC	D187:O…H224:NτH	1.798	38.7	97.4	-33.3	28.8	-4.5	rCS
OSII	TI	D187:O…H224:NtH	1.496	82.6	98.7	-89.6	57.1	-32.5	rCS
OSII	PDC	D187:O…H224:NtH	1.660	54.0	112.7	-53.5	40.9	-12.7	rCS
OSIII	MCC	D187:O…H224:NtH	1.939	27.7	80.7	-20.0	20.1	0.1	pCS
OSIII	TI	D187:O…H224:NτH	1.554	71.2	104.4	-74.7	50.4	-24.3	rCS
OSIII	PDC	D187:O…H224:NtH	1.702	48.6	108.1	-46.3	36.6	-9.6	rCS
OSIV	MCC	D187:O…H224:NtH	1.807	37.8	97.3	-32.3	28.3	-4.0	rCS
OSIV	TI	D187:O…H224:NtH	1.514	78.6	105.8	-84.8	55.6	-29.2	rCS
OSIV	PDC	D187:O…H224:NtH	1.665	53.2	113.2	-52.6	40.4	-12.1	rCS
ORI	MCC	H224:Nπ…PRO:O2H	1.847	37.5	81.2	-29.0	24.7	-4.4	rCS
ORII	MCC	H224:Nπ…PRO:O2H	1.752	47.0	90.3	-40.3	31.4	-8.9	rCS
ORIII	MCC	H224:Nπ…PRO:O2H	1.787	44.4	84.8	-36.6	28.9	-7.7	rCS
ORIV	MCC	H224:Nπ…PRO:O2H	2.008	25.7	66.2	-16.6	16.6	0.0	rCS
OSI	MCC	H224:Nπ…PRO:O2H	1.819	41.0	83.8	-32.8	26.9	-5.9	rCS
OSII	MCC	H224:Nπ…PRO:O2H	1.777	45.4	86.1	-37.9	29.7	-8.2	rCS
OSIII	MCC	H224:Nπ…PRO:O2H	2.147	19.0	56.1	-10.8	12.4	1.6	pCS
OSIV	MCC	H224:Nπ…PRO:O2H	1.924	31.9	75.3	-22.8	20.8	-2.0	rCS
ORI	PDC	H224:Nπ…S105:O4H	1.678	57.4	88.5	-52.1	37.1	-15.0	rCS
ORII	PDC	H224:Nπ…S105:O4H	1.633	64.3	88.9	-60.5	41.4	-19.1	rCS
ORIII	PDC	H224:Nπ…S105:O4H	1.574	73.9	90.0	-73.0	47.8	-25.3	rCS
ORIV	PDC	H224:Nπ…S105:O4H	1.774	46.3	83.6	-38.5	29.7	-8.8	rCS
OSI	PDC	H224:Nπ…S105:O4H	1.605	68.4	90.2	-66.0	44.3	-21.7	rCS

Ruta	Estado	Enlace	d(Å)	o(rc)	$\nabla^2 o(rc)$	V(rc)	G(rc)	H(rc)	Tino
OSII	PDC	H224:Nπ···S105:O4H	1.734	50.1	89.3	-43.6	33.0	-10.6	rCS
OSIII	PDC	H224:Nπ…S105:O4H	1.711	53.6	87.4	-47.3	34.6	-12.7	rCS
OSIV	PDC	H224:Nπ…S105:O4H	1.637	63.2	90.2	-59.4	41.0	-18.4	rCS
ORIII	TI	H224:NπH…AcS105:04	1.712	44.8	120.1	-42.8	36.4	-6.4	rCS
OSI	TI	H224:NπH…AcS105:04	1.826	34.4	102.7	-29.1	27.4	-1.7	rCS
OSII	ТІ	H224:NπH…AcS105:04	1.829	33.7	109.9	-29.3	28.4	-0.9	rCS
OSIII	ТІ	H224:NπH…AcS105:04	1.770	39.2	114.5	-35.8	32.2	-3.6	rCS
OSIV	TI	H224:NπH…AcS105:O4	1.809	36.5	107.1	-32.1	29.4	-2.7	rCS
ORI	TI	H224:NπH…PRO:O2	1.902	27.6	93.8	-21.6	22.5	0.9	pCS
ORII	TI	H224:NπH…PRO:O2	1.734	42.4	119.6	-40.0	35.0	-5.1	rCS
ORIV	TI	H224:NπH…PRO:O2	1.736	42.5	118.9	-40.0	34.9	-5.1	rCS
OSII	PDC	PRO:O1c…PRO:NH	2.286	13.9	64.2	-10.4	13.2	2.8	pCS
ORIII	TI	T40:O3…Q106:N5H	1.995	22.7	81.8	-16.0	18.2	2.3	pCS
ORI	MCC	Q106:N2H…AcS105:O5	2.047	21.4	82.9	-15.7	18.2	2.5	pCS
ORI	ТІ	Q106:N2H…AcS105:O5	1.964	26.2	86.9	-19.6	20.6	1.1	pCS
ORII	MCC	Q106:N2H…AcS105:O5	2.013	22.8	86.7	-17.0	19.4	2.3	pCS
ORII	ТІ	Q106:N2H…AcS105:O5	2.079	20.0	69.5	-12.9	15.1	2.2	pCS
ORIII	MCC	Q106:N2H…AcS105:O5	1.981	24.8	95.8	-19.8	21.9	2.1	pCS
ORIII	ТІ	Q106:N2H…AcS105:O5	1.710	47.8	127.5	-47.2	39.5	-7.6	rCS
ORIV	MCC	Q106:N2H…AcS105:O5	2.052	20.7	80.5	-14.9	17.5	2.6	pCS
ORIV	ТІ	Q106:N2H…AcS105:O5	2.309	12.4	44.0	-6.5	8.8	2.2	pCS
OSI	MCC	Q106:N2H…AcS105:O5	1.989	23.8	90.0	-18.2	20.3	2.2	pCS
OSI	TI	Q106:N2H…AcS105:O5	1.709	47.3	127.8	-46.7	39.3	-7.4	rCS
OSII	MCC	Q106:N2H…AcS105:O5	1.935	26.8	99.9	-21.8	23.4	1.6	pCS
OSII	ТІ	Q106:N2H…AcS105:O5	2.028	23.2	77.3	-16.0	17.6	1.7	pCS
OSIII	MCC	Q106:N2H…AcS105:O5	2.105	18.4	71.6	-12.4	15.1	2.8	pCS
OSIII	TI	Q106:N2H…AcS105:O5	2.080	20.5	69.7	-13.2	15.3	2.1	pCS
OSIV	MCC	Q106:N2H…AcS105:O5	1.898	29.2	104.9	-24.4	25.3	0.9	pCS
OSIV	ТІ	Q106:N2H…AcS105:O5	2.106	19.1	65.4	-11.8	14.1	2.3	pCS
ORI	PDC	Q106:N2H…PRO:O1c	2.406	9.4	35.0	-5.0	6.8	1.9	pCS
ORII	PDC	Q106:N2H…PRO:O1c	2.977	2.8	9.5	-1.4	1.9	0.5	pCS
ORIII	PDC	Q106:N2H…PRO:O1c	1.997	22.7	85.8	-16.7	19.1	2.4	pCS
OSI	PDC	Q106:N2H…PRO:O1c	2.141	15.4	61.6	-9.6	12.5	2.9	pCS
OSII	PDC	Q106:N2H…PRO:O1c	2.902	3.4	11.2	-1.6	2.2	0.6	pCS
OSIII	PDC	Q106:N2H…PRO:O1c	2.890	3.4	11.7	-1.7	2.3	0.6	pCS
OSIV	PDC	Q106:N2H…PRO:O1c	2.859	0.6	11.6	-1.8	2.3	0.6	pCS
ORI	MCC	T40:N2H…AcS105:O5	2.132	14.6	63.2	-9.4	12.6	3.2	pCS
ORI	TI	T40:N2H…AcS105:O5	1.927	25.3	95.5	-19.9	21.9	2.0	pCS
ORII	MCC	T40:N2H…AcS105:O5	2.169	13.4	57.3	-8.3	11.3	3.0	pCS
ORII	TI	T40:N2H····AcS105:O5	1.823	32.4	115.3	-28.7	28.8	0.1	pCS
ORIII	MCC	T40:N2H····AcS105:O5	2.212	12.0	51.8	-7.2	10.1	2.9	pCS
ORIII	TI	T40:N2H····AcS105:O5	2.082	18.7	69.0	-12.1	14.7	2.6	pCS
ORIV	MCC	T40:N2H···AcS105:O5	2.377	8.4	34.7	-4.6	6.6	2.1	pCS

			-	1					
Ruta	Estado	Enlace	d(Å)	ρ(rc)	∇²ρ(rc)	V(rc)	G(rc)	H(rc)	Тіро
ORIV	TI	T40:N2H···AcS105:O5	2.030	19.2	77.8	-13.6	16.5	2.9	pCS
OSI	MCC	T40:N2H···AcS105:O5	2.363	8.8	35.9	-4.8	6.9	2.1	pCS
OSI	TI	T40:N2H···AcS105:O5	1.888	29.5	99.5	-24.0	24.4	0.5	pCS
OSII	MCC	T40:N2H…AcS105:O5	1.979	20.8	89.6	-15.8	19.1	3.3	pCS
OSII	TI	T40:N2H…AcS105:O5	1.919	25.7	97.5	-20.5	22.4	1.9	pCS
OSIII	MCC	T40:N2H···AcS105:O5	2.276	10.4	44.4	-6.0	8.5	2.6	pCS
OSIII	TI	T40:N2H···AcS105:O5	2.024	20.2	78.4	-14.2	16.9	2.7	pCS
OSIV	MCC	T40:N2H···AcS105:O5	2.101	15.8	67.6	-10.5	13.7	3.2	pCS
OSIV	TI	T40:N2H···AcS105:O5	1.876	28.3	106.1	-23.8	25.2	1.4	pCS
ORI	PDC	T40:N2H…PRO:O1c	2.464	7.3	29.1	-3.9	5.6	1.7	pCS
ORII	PDC	T40:N2H…PRO:O1c	2.262	11.5	48.0	-6.8	9.4	2.6	pCS
ORIII	PDC	T40:N2H…PRO:O1c	2.098	17.1	69.0	-11.2	14.2	3.0	pCS
OSI	PDC	T40:N2H…PRO:O1c	2.143	16.0	62.4	-9.9	12.7	2.9	pCS
OSIV	PDC	T40:N2H…PRO:O1c	2.257	11.5	48.9	-7.0	9.6	2.6	pCS
ORI	MCC	T40:O1…PRO:NH	2.106	15.9	66.8	-10.4	13.5	3.2	pCS
ORI	TI	T40:O1…PRO:NH	2.075	17.5	71.6	-11.7	14.8	3.1	pCS
ORI	PDC	T40:O1…PRO:NH	2.185	14.4	57.7	-8.8	11.6	2.8	pCS
ORII	MCC	T40:O1…PRO:NH	2.183	12.7	56.2	-7.9	11.0	3.1	pCS
ORII	TI	T40:01…PRO:NH	2.020	18.7	82.3	-13.5	17.1	3.5	pCS
ORII	PDC	T40:01…PRO:NH	2.239	11.3	48.2	-6.6	9.3	2.7	pCS
OSI	MCC	T40:01…PRO:NH	3.421	1.1	4.3	-0.5	0.8	0.3	pCS
OSI	TI	T40:01…PRO:NH	2.562	6.0	22.8	-3.1	4.4	1.3	pCS
OSI	PDC	T40:01…PRO:NH	2.730	4.2	15.8	-2.2	3.1	0.9	pCS
ORI	MCC	T40:O3…Q106:N5H	1.994	22.1	83.2	-15.7	18.3	2.5	pCS
ORI	TI	T40:O3…Q106:N5H	1.998	22.3	82.0	-15.6	18.1	2.4	pCS
ORI	PDC	T40:O3…Q106:N5H	1.940	24.9	93.1	-19.0	21.1	2.2	pCS
ORII	MCC	T40:O3…Q106:N5H	2.031	20.6	77.0	-14.0	16.6	2.6	pCS
ORII	TI	T40:O3…Q106:N5H	2.000	22.6	81.6	-15.8	18.1	2.3	pCS
ORII	PDC	T40:O3…Q106:N5H	1.970	23.6	87.4	-17.2	19.5	2.3	pCS
ORIII	MCC	T40:O3…Q106:N5H	2.017	21.4	79.1	-14.7	17.3	2.5	pCS
ORIII	TI	T40:O3…Q106:N5H	1.995	22.7	81.8	-16.0	18.2	2.3	pCS
ORIII	PDC	T40:O3…Q106:N5H	1.945	25.4	91.4	-19.3	21.1	1.8	pCS
ORIV	MCC	T40:O3…Q106:N5H	2.063	18.8	72.1	-12.3	15.1	2.9	pCS
ORIV	TI	T40:O3…Q106:N5H	2.036	20.2	75.9	-13.5	16.3	2.7	pCS
ORIV	PDC	T40:O3…Q106:N5H	2.050	20.0	74.4	-13.3	15.9	2.7	pCS
OSI	MCC	T40:O3…Q106:N5H	2.106	17.3	65.4	-10.6	13.5	2.9	pCS
OSI	TI	T40:O3…Q106:N5H	2.058	19.6	71.7	-12.6	15.3	2.6	pCS
OSI	PDC	T40:O3…Q106:N5H	1.993	22.5	82.9	-16.0	18.3	2.4	pCS
OSII	MCC	T40:O3…Q106:N5H	2.026	21.0	77.7	-14.3	16.8	2.6	pCS
OSII	TI	T40:O3…Q106:N5H	2.079	18.6	69.4	-11.8	14.6	2.8	pCS
OSII	PDC	T40:O3…Q106:N5H	2.048	19.2	74.9	-12.9	15.8	2.9	pCS
OSIII	MCC	T40:O3…Q106:N5H	2.045	20.1	75.0	-13.4	16.1	2.7	pCS
OSIII	TI	T40:O3…Q106:N5H	2.018	21.5	78.7	-14.7	17.2	2.5	pCS

Ruta	Estado	Enlace	d(Å)	ρ(rc)	∇²ρ(rc)	V(rc)	G(rc)	H(rc)	Тіро
OSIII	PDC	T40:O3…Q106:N5H	1.974	23.1	87.3	-16.9	19.4	2.5	pCS
OSIV	MCC	T40:O3…Q106:N5H	2.001	22.0	82.0	-15.5	18.0	2.5	pCS
OSIV	TI	T40:O3…Q106:N5H	2.044	20.1	74.7	-13.4	16.0	2.7	pCS
OSIV	PDC	T40:O3…Q106:N5H	1.942	24.9	92.3	-18.9	21.0	2.1	pCS
ORI	MCC	T40:O3H…AcS105:O5	1.771	37.6	116.7	-35.4	32.3	-3.1	rCS
ORI	TI	T40:O3H…AcS105:O5	1.659	51.3	123.8	-52.7	41.8	-10.8	rCS
ORII	MCC	T40:O3H…AcS105:O5	1.781	36.6	115.1	-34.0	31.4	-2.6	rCS
ORII	TI	T40:O3H…AcS105:O5	1.648	53.3	124.4	-55.3	43.2	-12.1	rCS
ORIII	MCC	T40:O3H…AcS105:O5	1.812	33.8	109.4	-30.4	28.9	-1.5	rCS
ORIII	TI	T40:O3H…AcS105:O5	1.641	53.1	128.8	-55.4	43.8	-11.6	rCS
ORIV	MCC	T40:O3H…AcS105:O5	1.776	36.5	115.3	-34.1	31.5	-2.7	rCS
ORIV	TI	T40:O3H…AcS105:O5	1.637	54.1	125.8	-56.4	43.9	-12.5	rCS
OSI	MCC	T40:O3H…AcS105:O5	1.812	33.1	110.7	-29.9	28.8	-1.1	rCS
OSI	TI	T40:O3H…AcS105:O5	1.679	49.7	120.2	-50.3	40.2	-10.1	rCS
OSII	MCC	T40:O3H…AcS105:O5	1.787	36.9	116.2	-34.4	31.7	-2.7	rCS
OSII	TI	T40:O3H…AcS105:O5	1.685	47.1	126.7	-47.6	39.6	-8.0	rCS
OSIII	MCC	T40:O3H…AcS105:O5	1.790	35.5	112.9	-32.6	30.4	-2.2	rCS
OSIII	TI	T40:O3H…AcS105:O5	1.662	49.9	125.5	-51.0	41.2	-9.8	rCS
OSIV	MCC	T40:O3H…AcS105:O5	1.739	40.7	123.3	-39.7	35.3	-4.4	rCS
OSIV	TI	T40:O3H…AcS105:O5	1.633	54.8	128.0	-57.5	44.7	-12.7	rCS
ORI	PDC	T40:O3H…PRO:O1c	1.681	43.7	139.6	-45.2	40.0	-5.1	rCS
ORII	PDC	T40:O3H…PRO:O1c	1.682	43.8	143.6	-45.5	40.7	-4.8	rCS
ORIII	PDC	T40:03H…PRO:01c	1.755	38.8	120.4	-37.5	33.8	-3.7	rCS
ORIV	PDC	T40:03H…PRO:01c	1.764	36.5	119.2	-34.5	32.2	-2.4	rCS
OSI	PDC	T40:O3H…PRO:O1c	1.758	37.8	121.2	-36.3	33.3	-3.0	rCS
OSII	PDC	T40:O3H…PRO:O1c	1.740	37.5	124.5	-36.3	33.7	-2.6	rCS
OSIII	PDC	T40:O3HPRO:O1c	1.662	45.0	145.4	-47.4	41.9	-5.5	rCS
OSIV	PDC	T40:O3H…PRO:O1c	1.709	42.2	136.4	-42.8	38.4	-4.3	rCS