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Resumen

TÍTULO: Bus de Periférico y de Sistema Energéticamente Eficiente para Aplica-

ciones de SoC de Bajo Consumo. ∗

AUTOR: Juan Pablo Romero Galindo †

PALABRAS CLAVES: Bus, sistemas en chip, bus de sistema, comunicación

dentro del bus.

DESCRIPCIÓN:

Hoy en dı́a, un SoC integra una gran cantidad de módulos dentro de un único circuito inte-

grado, por lo cual es necesario implementar un sistema de comunicación robusto para comunicar

cada componente del chip. Los buses son una solución conveniente para la conexión entre los

módulos, arbitrar la comunicación y controlar el tiempo en el que se transfiere la información a

lo largo del SoC. Aunque el bus es un componente esencial en las aplicaciones de SoC, Hay

una falta de literatura que especifique problemas relacionados a este tema. Este trabajo destaca

los problemas de tiempo, medido en ciclos de reloj, relacionados con la comunicación ineficiente

entre un maestro y un periférico en propuestas de buses estándar. Este trabajo presenta un pro-

tocolo de bus alternativo que permite la comunicación directa entre maestros y esclavos vincula-

dos al dominio de bus de periféricos y de sistema, en aplicaciones de bajo consumo de energı́a.

Como resultado de implementar el bus propuesto dentro de un SoC, se presenta una reducción

de 5 veces el número de ciclos gastados para realizar transacciones múltiples en comparación

con otras propuestas como TileLink y AHB-Lite / APB.

∗Trabajo de Investigación.
†Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de

Telecomunicaciones. Director: Élkim Felipe Roa Fuentes.
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Abstract

TITLE: A Scalable System Bus for Low-end Performance SoC ‡

AUTHOR: Juan Pablo Romero Galindo §

KEYWORDS: Buses,

DESCRIPTION: system-on-a-chip, scalable buses, peripheral bus, low power on-

chip communication

Nowadays, an SoC integrates a large number of modules within a single die,

which requires implementing a robust communication system to link the whole

chip. Buses are a convenient solution for the connection of modules, arbitrat-

ing communication, timing, and transferring information along the SoC. Although

the bus is an essential component in SoC applications, there is a lack of accu-

rate literature about the topic. This paper spotlights the energy issues related

to inefficient communication between a master and a time-constrained peripheral

in standard bus approaches. Here we introduce an alternative bus protocol to

allow direct communication among masters and slaves linked to the peripheral

and system domains in low-energy applications. As a result of implementing the

proposed bus within an SoC, we present a 5X clock cycle reduction for multiple

transactions when compared to TileLink and AHB-Lite/APB approaches.

‡Research Work
§Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de

Telecomunicaciones. Advisor: Élkim Felipe Roa Fuentes.
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INTRODUCTION

Several technological devices have become indispensable on a daily basis.

As a result, the market has reacted by offering a wide variety of gadgets with fast

generational renewal. Now companies want to quickly launch products, to be able

to stand out in the market. To meet demand, the integrated circuit industry has

had to reduce the design time and production cost.

Processors, microcontrollers, and systems on a chip (SoCs) are essential

parts of consumer electronics. These devices are generally structured by sev-

eral subsystems, such as cores, digital, analog, or mixed-signal peripherals, and

one or more modules in charge of the on-chip network communication.

The increasing number of subsystems integrated into a modern SoC entails

the need for implementing energy-efficient and high-yield on-chip communication

links. Currently, the most common approach to interface the modules of an SoC

relies on bus interconnects, as depicted in Fig. 1. The block diagram shows

a common distribution of an SoC, highlighting two main performance domains

controlled by a specialized bus, adapted according to the requirements of each

domain. As illustrates, the main aim of the peripheral and system buses is to

manage the on-chip communication. Therefore, the buses’ performance directly

influences several relevant features of an SoC such as area, power consumption,

and speed (4).

Despite the relevance of buses regarding the yield of an SoC, literature is

limited in real approaches and reported works within this field. A small number

of reported works are associated with real implementations that show complete

interaction among masters and slaves, as well as issues and limitations regarding

10



Figure 1. Simplified block diagram of an SoC, using two different buses to
manage communication.

system communication. The lack of available documentation is mainly associated

with the extensive use of commercial AMBA buses from Arm. These regular

buses implementations include protocol for high, medium and low performance

applications. AXI has been widely employed for high-speed interconnections and

peripherals, given its capability to make read and write transactions at the same

time (5). Another AMBA bus example is AHB, which is a bus interface suitable

for high-performance system designs with moderate power consumption. Finally,

APB of AMBA also appears within the most common Arm buses, and is defined as

a low-cost interface optimized for minimal power consumption and low interface

complexity. Besides licensing problems of the AMBA buses, their specification

constrains some applications that require direct access to peripherals (6).

Existent bus-based approaches for low-power applications exhibit some short-

comings for direct peripheral communication. For instance, Fig. 5 depicts a com-

mon SoC structure using AHB-Lite as the system bus and APB as the peripheral

bus. In the example, it is not possible for a slave connected to APB to start

a transaction with a slave connected to the AHB-Lite. This constraint appears
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due to the definition of the APB protocol itself. APB bus limitations include few

control signals to manage multi-master transactions, poor versatility regarding op-

erating modes and 3 states within its handshake in contrast to 2 states of AHB.

Specifically, the states-number constraint leads to the development of elaborated

synchronization interfaces between APB as a master and AHB as a slave, thus

complicating the implementation and deteriorating the system efficiency. This sit-

uation may occur when an ADC needs to send data directly to RAM, ROM, or an

output port, leading to an undesired feature that limits energy saving and speed

of SoCs.

This work introduces the scalable system bus approach as an efficient solution

to enhance interconnect protocols. Instead of interconnecting bridges, a scalable

system bus offers a smooth data translation between a master placed on the

secondary bus and a slave on the system bus. Compared to commercial and

open standard interconnects, the proposed scheme performs with a fivefold clock

cycle efficiency. Moreover, this work contrasts three verification approaches for

the bus and finally shows supplementary contributions realized all along the time

of the master.
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1. PROBLEM STATEMENT

There is a wide variety of processors and SoCs, which can be categorized

according to their performance level. These can range from high-performance

features such as server processors to energy-efficient applications such as the

Internet of Things (IoT). This last group of applications is the interest focus of this

project.

The bus within an SoC is in charge of communicating the processing circuits

with the peripherals. For that, it is necessary to implement a bus in SoC design.

Some of the main aspects to take into account for the employment of a bus are

the communication protocol to implement and his architecture.

The problem for which there are few open-source bus proposals and literature

reports at hand resides in the difficulty of having fully tested processors avail-

able to connect a bus. This leads to complications to verify the proposed buses

together a whole system (processor-bus-peripherals), which leads to unreliable

proposals. Thanks to the proposed RISC-V instruction set by Andrew Waterman

and Krste Asanovic (7), the difficulty of having a processor has been greatly re-

duced. Now, it is possible to implement processors open-source based on the

RISC-V instruction set, removing the barrier of having agreements with large pro-

cessor design companies such as ARM or Intel, to have a processor to connect

the bus.

This research shows a study of the buses that are currently available, differen-

tiating the advantages and characteristics of the buses used in low-consumption

applications. Besides, as a result of the research, this report shows a proposal

of a bus system, which includes peripheral and system bus, characterized for his

13



scalability, compatibility with processors based on the RISC-V, easy operation,

and low power consumption.

Finally, The bus behavior was validate for 3 methods; first, performing mul-

tiple simulations using the Cadence simulation tool (SimVision) and exposing it

to diverse operating conditions that verify its correct operation in the different

scenarios where it can be compromised, second, implementing in an FPGA the

proposed bus within of an SoC, third, a first approach to formal verification.

1.1. CURRENT PROPOSED BUSES

Using a standard bus is important in order to increases the probability of success

when a project is integrated for the first time. Design or integrate a circuit to-

gether with another intellectual property (IP) module or facilitate the integration of

macro projects. In addition, a standard bus ensures performance under various

operating conditions and ease modular component design in an SoC (8).

1.1.1. Wishbone The Wishbone architecture offers flexible integration and

easy adaptation for specific applications. This was developed as an interface

that facilitates structured design methodologies in projects with large numbers of

people.

The most outstanding feature that Wishbone offers is the data size modular-

ization of the bus, different interconnection modes, and the support of transfers in

a two clock cycle. Figure 2 shows one of the types of interconnection described

in the specifications given by Wishbone (1).

1.1.2. On-Chip Peripheral Bus On-Chip Peripheral Bus (OPB) developed by

IBM, is a bus designed to connect peripherals, describing a comfortable point-to-
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Figure 2. Basic Wishbone architecture. Figure adapted from (1).
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point communication for on-chip peripherals. OPB implements the management

of different levels of bus hierarchy. Low power or low performance peripherals

(such as clocks, meters, slaves, and other internal peripherals) are linked on the

OPB bus. A bridge is provided between the processor and the local bus (PLB)

and OPB to enable the transfer of data from the PLB master to and from OPB

slaves. OPB also provides support for different types of peripherals, these can be

8-bit, 16-bit and 32-bit. Transfers between slaves and masters can take at least

two clock cycles. Furthermore, OPB supports multiple OPB master buses and

protocols with sequential addressing (2).

Figure 3 shows the architecture proposed by IMB, through its OPB bus.

1.1.3. STBus STBus is a set of protocols, interfaces, and architectures de-

veloped by STMicroelectronics, which specify the interconnection of subsystems.

This offers versatility in configuration based on performance, architecture, and

implementation.

STBus is a bus dedicated to consumer microcontrollers. Currently, STBus is

not only a characterization of protocols and interfaces, but it is also focused on
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Figure 3. Basic OPB architecture. Figure adapted from (2)
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Figure 4. Basic STBus architecture. Figure adapted from (3).
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allowing the development of ecosystems that include tools at the level of design

and exploration of architectures, design in silicon, physical implementation and

verification (3). Figure 4 shows the main signals used in the STBus protocol,

together with a typical bus configuration described within its specifications.

1.1.4. MBUS MBus is an ultra low power system, originally designed by the

University of Michigan. The Mbus interconnect is designed for general-purpose

interfaces. The description of its protocol covers a wide functionality of IP cores.

Among its main features are the support of transfer in two clock cycle, modulariza-
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tion of data size, interrupt vector, control of cache operations, support of various

types of connection between IP cores, such as point-to-point and interconnection

by bus medium (9).

1.1.5. Tilelink TileLink is a scalable standard based on the management of

priority channels. This approach provides a connection between multiple mas-

ters with coherent memory-mapped access to memory and other slave devices,

as well as low-latency and high-throughput transfers. The TileLink protocol is

designed mainly for its use in SoCs, as it enables the interconnection of general-

purpose multiprocessors and modules with different levels of complexity. How-

ever, it was developed mainly for medium and high-performance systems, cache

management, and memory transactions, overlooking low-power and low-area ap-

plications.

In addition to prevalent commercial Arm implementations, TileLink, an alterna-

tive bus specification proposed by U. C. Berkeley and SiFive, is gaining academic

attraction. This protocol is structured as an interconnector of three different levels

of links. Each link has different privileges, including basic read and write mem-

ory transactions and the handling of cache blocks and special operations. Within

the three levels of links, two of them are appropriate for low-power applications:

TileLink Uncached Lightweight (TL-UL) and TileLink Uncached Heavyweight (TL-

UH). TL-UL is the simplest level of TileLink, supporting only simple read and write

memory operations without having the possibility to perform burst transactions.

TL-UH inherits the capabilities of TL-UL and provides additional operations such

as burst messages, atomic operations, and hint operations (10).

17



Table 1. Comparison of protocol buses for low-power applications

Open
Standard

Number
of Ch.

Burst
Mode Pipeline Scalable

AXI4-lite No 5 No No No
AHB-Lite No 3 Yes Yes No

APB No 3 No No No
TileLink Yes 5 Yes Yes Yes

This Work Yes 3 Yes Yes Yes

1.2. SOME PROTOCOL BUSES FOR LOW-POWER APPLICATIONS

Different approaches have been proposed to manage on-chip communication.

Arm, one of the world’s leading suppliers of silicon IP and custom SoCs, offers

AMBA family with different bus specifications for a wide variety of SoCs. Table 1

presents some of the most popular AMBA buses for low-power applications and

summarizes some of their most important features.

AXI4-lite is an AMBA family common protocol. A relevant characteristic of

AXI4-lite is having five independent communication channels that allow multiple

outstanding transactions, and out-of-order completion of transactions. Nonethe-

less, since there are other bus proposals with fewer communication channels,

the implementation of AXI4-lite may entail a larger final chip area for some ap-

plications. Another AXI4-lite protocol drawback is the lack of burst transaction

specifications, which limits throughput, unlike other buses.

AHB-Lite is another one of the most employed protocol buses in low-power

systems. This approach defines the interface among modules such as masters,

slaves, and interconnects. Main features of the AHB-Lite include the support of

burst transactions, locked sequences, and the implementation of a low level of

protection. APB bus, defined within AMBA, is a low-cost peripheral interface op-

timized for low-power and low-complexity interfaces. Commonly, the AHB bus is

18



implemented next to the APB bus so that the AHB-Lite is responsible for han-

dling some peripherals through the APB bus. However, due to differences in their

handshakes, the interaction between these buses is not optimal, demanding the

addition of a bridge to synchronize signals and protocols.

In the public domain, there are two interconnect standards: Wishbone (1)

and TileLink (10). Wishbone establishes common standard interfaces for data

exchange among modules within integrated circuits. Likewise, Wishbone became

a popular protocol to communicate independent SoC projects. However, the last

revision of this protocol, published ten years ago, lacks features to satisfy the

current requirements of low-power SoCs.

Some previous works have preferred to look for alternative ways to improve

communication within SoCs, avoiding proposing new buses. One of the men-

tioned works proposes the addition of a DMA block between peripherals and

memory (11). However, the addition of a new module like a DMA involves increas-

ing the complexity of the system and affects the final area of the chip negatively.

Pullini et al. (12) presents an example of the described area issue, where the size

of the DMA may exceed the total area occupied by the bus and the interconnect

of the SoC.
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2. CONDOR AND COLIBRI: A PROPOSAL FOR SYSTEM AND PERIPHERAL

BUSES

This chapter introduces a scalable bus scheme composed of a system bus

and a peripheral bus, called Condor and Colibri, respectively. The proposed

scalable bus system offers the possibility of communicating modules from the

system bus with modules in the peripheral bus and vice versa, flexibility design,

and low complex handshake. Also, here is described a particular bus problem

in some current low-performance SoCs. AHB-lite and APB is used to exemplify

the issue, for later provide a solution using Condor and Colibri. Then, is showed

the synthesis of Condor and Colibri in a 180nm CMOS standard technology, and

integrated within an SoC along with a RISC-V based core, a 2kB RAM and a 10-

bit ADC. Finally, in order to compare the performance of the proposed bus with

conventional approaches, we also assessed conventional TileLink and AHB-Lite

& APB bus implementations. As a result, the proposed buses system exhibits a

5X clock cycle reduction when sending data from a peripheral module to another

module at the system bus.

2.1. CURRENT BUS SCHEMES ISSUES

Most SoCs implement two or more buses to manage on-chip communication.

Peripherals usually include a specialized bus that interconnects them as slaves

to the system bus. Given its characteristics, the ADC is an example of a module

that might be connected as a peripheral on the secondary bus. The ADC, as an

active peripheral, continuously updates conversion data at a constant rate and

sends it to the SRAM memory or to an output port. Existent bus schemes for low-

20



Figure 5. ADC transactions to RAM using APB and AHB-Lite protocols.
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power consumption perform the ADC-SRAM transaction inefficiently. Figure 5

shows an SoC implementing conventional interconnection through AHB-Lite and

APB buses. Using this configuration entails spending two transactions to send

a packet of data from ADC to RAM. Regarding performance, five clock cycles

are required. At the beginning of the transaction, the core is a master, starts the

transaction and requests data from the ADC, spending one clock cycle. After this

operation, two clock cycles are needed to reach the APB access state status.

Finally, the core sends the data to the RAM within two clock cycles, using five

clock cycles in total. In subsequent transactions, the clock cycles are reduced

to four due to the AHB-Lite pipeline. The timing diagram in Figure 5 plots the

procedure mentioned above.

Figure 6 shows the implementation of a 10-bit ADC within a full SoC in a

180nm CMOS standard technology. Through the implementation of this periph-

eral, we realized that maintaining constant communication between peripherals
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Figure 6. 10-bit ADC block diagram and die micrograph.

and the SRAM does not require the inclusion of a DMA block into the system. This

approach avoids the final silicon area increment disclosed in (12). Additionally, as

data processing is not necessary for applications of only data acquisition, it is

possible to disable the core for these transactions. Therefore, having direct mem-

ory communication through the bus allows the core to turn off, reducing power

consumption in applications where data sampling performs in sleep mode. In this

operating state, the SoC might perform simple tasks such as periodically carrying

out conversions of the ADC and storing them in the SRAM blocks.

2.2. CONDOR AND COLIBRI

This work introduces an alternative solution for communication among masters

connected to the peripheral bus and slaves linked to the system bus. Figure 7 de-

picts a simplified block diagram of our scalable system bus. Condor is the name

of the system bus, which controls the peripherals that require high-bandwidth op-

eration. Colibri is a scaled version of the Condor bus, which uses a minimum
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number of Condor signals to establish communication and complete the hand-

shake with the system bus. Condor is also the bus in charge of communicating

the low-bandwidth peripherals. Since the two buses have similar protocols and

handshakes, it is possible to establish a direct exchange of transactions between

Colibri and Condor buses. As shown in Figure 7, Colibri has one master inter-

face that performs two functions. The first function is working as a slave of Condor

and as a master for Colibri ’s slaves and the second function is being responsible

for connecting the Colibri ’s masters to Condor master interface. This interface

is capable of supporting multi-master transactions through the addition of a ba-

sic arbiter. Relevant features of the proposed buses such as the critical path or

maximum frequency are limited, as normally occurs in conventional approaches,

by the hardware description performed. Additionally, as Colibri and Condor are

independent buses, they can work with different clock frequencies by adding a

clock synchronizer between them. For instance, if Colibri has a lower clock speed

than Condor, the behavior is the same, adding wait states within each read or

write transaction. Common applications have peripheral buses running on lower

speed clocks seeking for energy savings and better peripheral performance.

Figure 8 shows the list of signals in the proposed buses system (Condor in red

and Colibri in blue). The signal naming convention follows AMBA specification in

order to maintain the correspondence. Condor comprises more signals because

it is responsible for several functions such as configuring the transactions’ size,

adding waiting states to previously initialized transactions or selecting among non-

sequential, sequential and busy operating modes. On the other hand, Colibri has

two different structures, the first one is shown on the left side of Figure 8, defined

with a minimum number of signals to perform basic read and write transactions

with low-performance peripherals. The second structure is presented on the right
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Figure 7. Connections of proposed bus scheme between the system and the
peripheral bus.

Master

Master

Slave

Slave

Arbiter

Decoder

C
ol

ib
ri

 M
as

te
r 

In
te

rf
ac

e

C
ol

ib
ri

 S
la

ve
 in

te
rf

ac
e

Colibri Domain

Slave

Slave

D
ecoder

A
rbiter

Master Master Master

SlaveSlaveSlave

Condor Master Interface

Condor Slave interface

Condor Domain

Slave

side of Figure 8. In this case, the signals and the protocol are designed to connect

masters in the peripheral bus, which require sequential or non-sequential trans-

actions and being a master of Colibri or Condor buses. Both the Colibri protocol

and its signals list are based on the Condor bus, enabling more fluid and efficient

communication among buses. At the bottom, Figure 8 also shows the transac-

tion handshake signal dependencies. In the case of Colibri slaves, SVALID and

SREADY must assert the signals before changing SDONE to indicate that valid

data is available. SDONE may also indicate wait state transactions. Regarding

Colibri masters, it must wait for PBUSY to assert before changing SDONE.

Figure 10 provides a description of the arbitration implemented in Condor and

Colibri buses. The priority designation for each master is the main advantage of

the proposed buses approach over conventional implementations. This priority

is related to the bits assigned to the Priority M signal. Priority M is the result of

the master concatenation Sready signal. The LSB bit is assigned to the master
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Figure 8. List of signals, handshake and scalability of the proposed buses
system.

with the lowest priority and the MSB to the master with the highest priority. In the

diagram of Figure 10, Master 1 was assigned to the MSB and had the highest

priority, in contrast to the Master n, which has the lowest priority. When a new

master transaction is requested, the Priority M signal changes. Once the change

is detected, the first hot bit of Priority M associated to a master will take control

of the bus. The change of the current master will follow after SDONE slave signal

asserts. As the arbiter only adds one clock cycle delay for each change of master,

its contribution to the total number of clock cycles per transaction is negligible.

However, in multiple and individual transactions, an additional clock cycle implies

a higher impact on the total number of cycles per transaction.

The handshake is another relevant feature when assessing the performance

of a buses approach. For comparison purposes, Figure 9 exhibits a signaling

handshake representation for AXI4 and the proposed buses Condor and Colibri.

The illustration shows the control signals among masters and slaves to establish
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Figure 9. (1) AXI4 write transaction handshake dependencies. (2) AXI4 read
transaction handshake dependencies. (3) Condor transaction handshake
dependencies. (4) Colibri transaction handshake dependencies.

communication, which is represented with arrows. Single-headed arrows point

towards signals that may assert before or after the prior signal is asserted. In

the double-headed case, the arrows point to signals that must settle only after

the settlement of the previous signal. Figure 9 (1) summarizes the AXI4 write

transaction handshake dependence, which has a considerable amount of signals

to maintain control of all steps in write transactions. For read transactions, Figure

9 (2) depicts the AXI4 handshake signal dependence. In contrast, AHB has a

simple handshake where its control signals just indicate the start and the end of

a transaction. For Condor and Colibri, the transaction handshake dependence is

even simpler as indicated in Figure 9 (3) and Figure 9 (4), respectively.

As a result of having a scalable bus managing on-chip communication, it is

now possible to perform bidirectional communication between domains. There-

fore, masters located in the Colibri domain can communicate directly through the

bus with a slave in the Condor domain, as shown in Figure 7. For the particular
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Figure 10. Master priority assignation of the bus arbiter.

case of the ADC, it may be placed in the low-bandwidth domain and commu-

nicate directly through the bus with the SRAM on the main bus. The described

strategy optimizes the information exchange, decreasing clock cycles spent in the

transaction, and reducing dynamic power consumption.

2.3. SOC IMPLEMENTATION AND RESULTS

The proposed bus scheme described in Figure 7 was implemented and synthe-

sized in a 180-nm CMOS standard technology node. To assess the performance

of the proposed scheme, we implemented the SoC of Figure 11, composed of

our system and peripheral buses. The SoC includes a 10-bit ADC capable of op-

erating at up to 10MS/s, a 32-bit RV32IM RISC-V ISA core and a 2 kB RAM (7).

The ADC connected to the Colibri bus is able to establish communication with

any slave connected to the Condor bus.

Table 2 summarizes the contributions of each SoC block to the total area in

Figure 11. The largest components of the system are the core, with a contribu-

tion of 41%, and the ADC, which occupies 32% of the area. The equivalent area

of the buses is approximately 2% of the total chip area. Table 2 also offers a
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Figure 11. SoC layout including a 32-bit RV32IM RISC-V ISA core, a RAM, an
ADC and the proposed buses system.
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contrast concerning energy consumption, which allows appreciating that the pro-

posed buses use an energy-per-cycle comparable to the RAM’s or ADC’s digital

control consumption. This value is equivalent to just 4% of the total consumption

of the SoC.

Figure 12 illustrates a segment of 100-burst-transactions test between Colibri

and Condor. The diagram shows a transaction initialized from a master in Colibri

(peripheral bus) toward a slave in Condor (system bus). Figure12 also shows the

pipeline behavior of the communication system and some signals that share pro-

tocols. A successful reduction in the number of clock cycles and dynamic power

required to complete the transaction can also be noticed. Contrasting with the

conventional protocol represented in Figure 5, where AHB-Lite and APB buses

execute four transactions to communicate an ADC with a RAM, the proposed
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Table 2. Power, timing and area breakout of the SoC.

Core Energy Area
(pJ/cycle) (µm2)

RISC-V RV32IM 299.61 297976
RAM 9.56 179289

10bit ADC 8.71 230462
Colibri 0.19 583
Condor 14.30 8609
Total 332.07 721888

Figure 12. Burst mode timing diagram of the proposed buses.

approach allows completing the same communication in just one transaction.

Due to implementation and application differences, comparing the proposed

buses with other reported works in terms of energy and performance is problem-

atic. Most related works focus mainly on processor-to-memory communication

enhancement. Seeking for a fair comparison, both TileLink and AHB-Lite were

integrated into SoCs with different sizes and features in contrast to the SoC pre-

sented in Figure 11, whereby we report simulation of multiple transactions using

TileLink, AHB-Lite, and the proposed system. Each of them make transactions

continuously in their corresponding protocols. Figure 13 summarizes the results
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of a communication test implemented in different SoCs. We compared the num-

ber of clock cycles spent on sending a 100 data set from a slave connected to

the peripheral bus, toward another slave linked to the system bus. The test set

up consisted of performing 100 transactions, neglecting the clock cycles spent on

loading the program into memory, and including the clock cycles employed in the

initialization of the registers. Initially, we performed the TileLink measurements by

using the E31 coreplex core (shown in Figure 6), which spent 1000 clock cycles

to complete all of the transactions. We applied the same analysis on another SoC

with AHB-Lite as the system bus and APB as the peripheral bus, which utilized

900 clock cycles in the process. Finally, to assess the proposed bus performance,

we accomplished a simulation with continuous data in burst mode. As illustrated

in Figure 12, we carried out 100 transactions between a master connected to Col-

ibri bus and a slave attached to Condor bus. This test revealed the use of 202

clock cycles to complete the transactions, indicating that the proposed buses ap-

proach presents better speed and energy performance than TileLink or AHB-APB

implementations.
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Figure 13. Clock cycles comparison between TileLink, AHB-Lite/APB and the
proposed bus.
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3. APPLIED BUS VERIFICATION TECHNIQUES

Up to this point, the thesis has presented Condor and Colibri buses. Now,

this chapter describes the verification process performed for the proposed bus

system. The design was described in Chisel 3 language, and this was synthe-

sized to generate a Verilog file. The resulting Verilog was tested using different

methodologies and test benches to check and cover most of the possible cases

using System Verilog. In the first part of the chapter describes the simulation-

based process, which is one of the most common verification practices. The sec-

ond procedure presentes the FPGA verification, implementing the source code

in a simple demonstration. Finally, the first approach of formal verification is de-

scribed.

Figure 14. Simulation-based setup of Condor system bus.
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3.1. SIMULATION-BASED VERIFICATION

Simulation-based is part of a common practice in hardware and software verifi-

cation. It consists in defining a series of initial conditions and temporal stimuli to

excite the design, emulating the correct behavior of the circuit in order to verify

its accurate operation. Due to the complexity of the circuit, several test benches
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Figure 15. Terminal result test of 100 Condor transactions.

were developed to verify the different functionalities of the bus and excite the cir-

cuit in various scenarios. The system bus was the first part of the proposal tested.

Since the system bus is the most critical and essential part within the bus sys-

tem, the test bench was carefully designed, with the purpose of covering a large

number of cases, where the bus could be involved in a real implementation. A

pseudo-random function was used to set the read or write transactions, decide

the peripheral in which the communication will be executed, and establish the

data sent in each transaction.

Figure 16. A sample timeline test of 100 Condor transactions.
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Figure 14 represents the setup of the testbench developed to test the Condor
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Bus. Condor in Figure 14 is represented in red, and it is generated with 2 slaves

and 1 master. The other blocks are tasks used to automatize repetitive processes

like read and write transactions, generate new data to use in future operations,

and check all transactions performed. The latter blocks are represented in rose,

green and purple respectively in Figure 14. The transaction begins asserting

CWRITE, CADDR, CRDATA, and CWDATA signals from the pseudo-random func-

tion, also the CREQ, CVALID, CSIZE, COP, and CBURST are defined as a part

of one of the tasks detail in the test bench.

Figure 17. Simulation-based setup of Condor and Colibri system bus.
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Once started the transactions, the arbiter of the bus selects the correct slave,

and establishes the communication between the simulated master and slave.

Subsequently, the auto-handshake function, responds with CRESP, CRDTA, and

CREADY signals following the protocol. Finally, the comparator checks if the

transaction was successful and reports the total number of transactions per-

formed, the number of read or write transactions, out memory bus map transac-

tions, malfunction cases of the bus, and the time and type of transaction in which
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Figure 18. Terminal result test of 100 Condor and Colibri transactions.

Figure 19. A sample of timeline test of 100 Condor and Colibri transactions.
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it had an incorrect function, as shown in Figure 15. Additionally, the timeline sim-

ulation was checked to review the correct function of the test bench performed

and the handshake, as Figure 16 present.

Using the same methodology, two additional test benches were performed.

One of them to test the Colibri bus working with the system bus, as shown in

Figure 17.

The setup developed for the second test bench is composed of the Condor bus

with one master and slave interface, the bridge in charge of connecting Condor

and Colibri bus, and the Colibri bus with one master interface and two slaves as
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Figure 20. Simulation-based setup of Condor with multi-master bus.
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Figure 21. Terminal result test of 100 Condor transactions.

depicted in Figure 17. Summary reporting of the transaction performed shown in

Figure 18 works similarly to the first test described above. To be sure of its correct

operation, an inspection was performed on the simulator, checking its operation

in the time diagram as shown in Figure 19. From the setup represented in Figure

17 it was possible to scrutinize 100 pseudo-random transactions.

Finally, the multi-master arbitration function of the bus was validated using the

setup shown in Figure 20, which is similar to the test presented in Figure 17,

36



Figure 22. A sample of timeline test of 100 Condor transactions.
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with the difference of having two different master interfaces connected to verify

the management of the bus, when one or more masters are connected to the

system. The test was composed for 200 transactions, initialized using a pseudo-

random function. Figure 21 reports the results of applying this test. The bus is

operating correctly as Figure 22 presents.

3.2. FPGA Emulation

Figure 23 is a simplified block diagram of a microcontroller implemented. The pro-

posed system and peripheral buses were integrated within an FPGA to validate

the correct performance within a system. The SoC was synthesized in an Artix-7

35T Arty FPGA (13), it has the capability to be programmed in C code, using the

RISC-V GNU Compiler (14). One of the C code used to validate the bus is shown

in Figure 24, the code was written to perform multiple read and write transactions
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through the bus.

Figure 23. Simplified blog diagram integrated in an FPGA.
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In the first part of the code shown in Figure 24, between lines 5 and 9, the vari-

able a is loaded with the word deadbeaf byte by byte, performing 4 independent

transactions as Figure 25 illustrates. Figure 25 plots the protocol operation of

the system and peripheral bus in a time diagram, also, summarizes some of the

most relevant protocol signals of Condor master, Colibri slave, and SoC output

signals. Figure 25 plots the core behavior sending the data through the Condor,

bridge, and Colibri bus to the peripherals. The write data is assigned to CWDATA

in Condor bus and PWDATA signals in Colibri bus and finally, the word deadbeaf

is loaded in rego 0.

After writing the data, the C program reads the previously assigned data to

later assign it to the b variable. The read transaction is in a for loop, it has a

longer execution time due to the compiler have to translate the for function as

adds, comparisons, and reads instructions. The extra time can be evidenced in

Figure 26. After executed the for loop, rego 1 loads the deadbeaf word.

Subsequently, to verify read and write transactions, a blink in a GPIO was

programmed, this was connected to a LED as shown in Figure 28. The blink

begins if the comparison between a and b results equal. Figure 27 shows the
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Figure 24. Programming in C to test the behavioral bus.

1    #define GPIOBASE 0x209C
2
3    void main(int argc, char** argv) {
4   int data=0;
5   char * a = 0x2144; //address GPIO 1
6   a[0]=0xEF;
7   a[1]=0xBE;
8   a[2]=0xAD;
9   a[3]=0xDE;
10 char * b = 0x2144+4;//address GPIO 2
11  for(int i=0; i< 4 ;i++){
12  b[i]=a[i];
13 }
14 if( (*a) == (*b) ){
15 pinMode( 0,OUTPUT);
16  while(1){
17  digitalWrite( 0  ,  data&0x1 );
18  data = !data;
19  }
20 }
21 else {
22 pinMode( 0,OUTPUT);
23 digitalWrite( 0  ,  data&0x1 );
24 }

Figure 25. Write transfer generated in c cod lines from 5 to 9.
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blink in a GPIO in a time diagram. As a result of the C code tested, the behavior

of the bus works correctly, performing a blink in the LED as expected (Figure28).

3.3. FORMAL VERIFICATION

Formal verification is a recent paradigm of verification and circuit design. It con-

sists on verifying a design detailing some requirements (properties) and stimu-
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Figure 26. Read transfer generated in c code lines from 10 to 13.
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Figure 27. Blink generated in c cod lines from 14 to 24.
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Figure 28. Photograph of Blink running on the FPGA.
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Figure 29. Formal verification setup, including Condor bus.
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lating the circuit using clever mathematical techniques. Within the advantages

of formal verification are the complete coverage (possible design behaviors ana-

lyzed) depending on the constrains. This option of verification offers the possibil-

ity to find and simulate errors in corner cases, and understand infinite behaviors

thanks to the power of mathematical reasoning. Thereby, asking and answering

questions about model behavior is allowed over unbounded periods of time (15).

Formal Verification is a novel way to verify hardware design, that depicts a

new alternative in the building and verification of digital circuits. With the purpose

of testing the bus more rigorously, the first steps in formal verification were taken

into account. For that, a setup depicted in Figure 29 was made. Figure 29 depicts

a basic configuration used to test Condor bus. The setup includes a Condor bus

with a single master and 2 slaves, and the set of asserts and formal assumes to

verify the implementation of the protocol.

Since the full formal verification of the proposed bus is an extensive task,

it is beyond the objectives of the project. Thus only some examples of formal

verification properties were tested.

In the table 3 are enumerated a list of some basic properties of the bus. Three
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of these were translated into its equivalent formal rule (assumes and asserts).

The setup to verify formally the bus was made, and the full process of applying a

formal rule of formal verification is described afterward.
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Table 3. Condor and Colibri protocol properties list.

No Protocol properties list

1 The transactions have two phases: the first one establishes the

parameters of the transactions. In the second phase, the slave

sends the data if it is a read transaction or receives the data if it

is a write transaction simultaneously with CREADY in high.

2 CSEL in high indicates the slave the communication will be es-

tablished with.

3 When receiving or sending the data, the slave responds with

CREADY in high and CRESP in low if the transaction was done

properly, otherwise the slave responds with both CRESP and

CREADY in high to indicate an error.

4 The master requests to occupy the bus asserting the CREQ sig-

nal in high. The signal to start the transaction by the master is

given by the CVALID signal.

5 To extend the time of the transaction, the CREADY signal is low-

ered to 0 and the data phase of the next transaction is main-

tained, following the pipeline.

6 More than one transaction is never performed at the same time.

7 The data phase can only be extended by a CREADY of previous

transaction.

8 The address phase of some transactions occurs during the data

phase of the previous a transaction. Both phases overlap com-

pletely in a pipeline transaction.
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9 Only the slave with which the transfer is proceeding must receive

the information corresponding to the data phase.

10 The master can assert CVALID and CRESP signals in the same

clock cycle.

11 The bus will be occupied by the master without the possibility of

change until it sets the CREQ signal to 0.

12 If the address does not correspond to any slave, the master must

receive CREADY and RESP signals in high indicating that an er-

ror occurs.

13 The master should not receive read data during write transac-

tions.

14 The slave must not send data during read transactions.

15 The data phase must hold at least one clock cycle.

16 Transactions are handled in the same order in which they are

requested.

Formal verification is a non common verification technique, the procedure in-

volves different tools from simulation-based. The methodology to apply formal

verification is explained below.

To employ the formal verification process, it is necessary to detail some files

in advance. One of them is the verilog file of the module to apply this verification

strategy. The file is generated from the scale specifying outputs, inputs, and

internal signals as ports (bundles in scale) to be used in the formal verification

process. In this case, a Condor bus with 1 master and 2 slaves was specified.

Further, the SymbiYosys environment must be described. This configuration file
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Figure 30. Sby code description to configure the engine and setup.

[options]
mode bmc
depth 10

[engines]
smtbmc

[script]
read -formal wrapper.sv
read -formal BUS_formal.v
prep -top wrapper

[files]
BUS_formal.v
wrapper.sv

Figure 31. Formal verification code to check CSEL behavior.

1    if (!reset ) begin   // selector  test 
2      assert ((!io_s1_csel ) | | ( !io_s2_csel ));
3      if($past(!reset))begin 
4        if($past((io_m1_caddr > addr1 )&&(io_m1_caddr < (addr1+size1-2'h1)))&&$past(io_m1_creq))
5          assert (io_s1_csel == 1); 
6        else if($past((io_m1_caddr > addr2 )&&(io_m1_caddr < (addr2+size2-2'h1)))&&$past(io_m1_creq))
7          assert (io_s2_csel == 1); 
8      end
9    end

has included the operation modes, number of checking steps, the mathematical

engines, and the files which will be verified, as shown in Figure 30. Finally, the

main file to build is a SystemVerilog file. This file includes the instances of verilog

file and the description of formal rules using assumptions and assertions. The

interaction between the components of the formal verification process is depicted

in Figure 29.

The first formal verification test performed was the prove of item 2 on the table

3. The CSEL is one of the most significant signals in the protocol, it indicates

with which slave the communication is being established. First, it was necessary
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to describe a time of reset in high as a assume rule, thereby to ensure that the

registers define an initial state. Regarding the CSEL signal two aspects were

proven: first, just one CSEL signal has to be asserted at the same time. It was

defined as a assert ((!io s2 csel)|| (!io s1 csel)). The only state when the condi-

tion false is that io slave1 csel add io slave2 csel signals are both raised at the

same time. The second aspect proved about CSEL signal was that CSEL sig-

nal activation corresponds to the slave assigned in the addressing map. For this

case, the condition was described as $past((io m1 caddr > addr1 ) && (io m1 -

caddr < (addr1+size1-2’h1))) && $past(io m1 creq). This previous expression is

the condition to discriminate between the slave address. The pass is used to em-

phasize that the expression is sensitive to a previous response. Figure 31 shows

the final formal description of CSEL behavior.

After running the first formal test, a problem was detected as depicted in

Figure 32. The formal tool declares a valid address in CADDR, which corre-

sponds to slave 1, the correct behavior should have changed the IO S1 CSEL

to high in the next clock cycle and transmit all signals from master to slave. How-

ever, no signals were sent. It was because only the IO S1 CREADY OUT and

IO S2 CREADY OUT signals in high were taken into account. It was expected

that the slaves would initiate the transaction by setting CREADY OUT signal;

however, it is not part of the protocol and the slave is not forced to do it. The

problem was not detected in simulation-based verification and this problem will

not affect the communication in the actual system, nevertheless, verify that the

bus works in cases like this makes the bus more robust. After the error was de-

tected, the solution was patched in the bus code and was verified with formal

verification.
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Figure 32. Formal verification Time diagram using Gtkwave.
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4. SUMMARY

4.1. CONCLUSIONS

In this work, we introduced a scalable bus scheme composed of a system bus and

a peripheral bus, called Condor and Colibri respectively. The proposed buses

system offers the possibility of communicating modules from the system bus with

modules in the peripheral bus and vice versa. Condor and Colibri were synthe-

sized in a 180nm CMOS standard technology and integrated within an SoC along

with a RISC-V based core, a 2kB RAM and a 10-bit ADC. The energy consump-

tion of the bus system was 14.49pJ/cycle while the area was 91.92µm2, equiv-

alent to 4% of the total area of the SoC. In order to compare the performance

of the proposed bus with conventional approaches, we also assessed conven-

tional TileLink and AHB-Lite & APB buses implementations. As a result, the pro-

posed buses system exhibits a 5X clock cycle reduction when sending data from

a peripheral module to another module at the system bus. The proposed bus

was tested using three verification methods; simulation-based verification, FPGA

emulation and formal verification. About this last one, the methodology was de-

scribed and a list of rules was defined in table 3.

Future microcontrollers in development by the OnChip research group would

use this work in order to ease communication among peripherals and the core.

Results indicate a potential solution for different SOC implementations, paving the

way to broader applications. This work is a contribution to the growth of the open

hardware/standard, featuring an alternative system bus and a peripheral bus for

low-performance applications
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4.2. FUTURE WORK

Integrated systems research group OnChip, associated to the Universidad Indus-

trial de Santander, works on proposing new solutions of high-speed interfaces,

novel IP solutions, and security circuits. These works are usually integrated with

SoCs to be measured and report the results. The OnChip group has a 28nm

tapeout planned for October 2020, where Condor and Colibri will be part of the

SoC, as a system and peripheral bus respectively. Having trust as a priority, and

to reduce the probability of failure, it is recommended for future works to apply

formal verification to the bus, using as a reference the remaining items presented

in table 3.

Figure 33. Formal verification setup, including Condor and Colibri buses.

SMT

Formal 
Engine

Wrapper

ASSUME

ASSERT

Condor BUS

Colibri BUS

Master Interface

Slave Interface

bridge

Master Interface

Slave Interface

Slave Interface

Condor and Colibri have similar behaviors. Errors found in Condor using for-

mal verification could be extrapolated to the peripheral bus, Colibri, and apply the

corrections on both buses. However, it is recommended to use formal verifica-

tion to test both buses working at the same time. Figure 33 depicts the advised
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Figure 34. Formal verification setup, including multi-master Condor and Colibri
bus.
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system configuration using Condor and Colibri to test both buses through formal

verification.

Figure 34 illustrates another relevant test to verify formally. In this case, the

multi-master feature is assessed. This aspect is pertinent due to the possibility of

modern microcontrollers and SoCs including more than one master connected to

the system bus.

4.3. CONTRIBUTIONS

As outcomes of this master’s research, a journal and an article were published in

two IEEE Computer Hardware Science conferences. One of these as the main

author and the second as a co-author. Moreover, a portable device for applying

temperature variation to chips on boards was made.
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4.3.1. Related Work The article titled ”Energy Efficient Peripheral and System

Buses for Low-Area and Low-Power SoC Applications” was submitted in IEEE In-

ternational Symposium on Circuits and Systems (ISCAS) conference. The paper

was accepted for oral presentation at ISCAS 2020, a conference of IEEE Circuits

and Systems (CAS) Society; it was also highlighted as one of the best papers in

the System on Chip, Network on Chip, & Multi-core System I session. Thanks to

the positive evaluation of the reviewers, the paper was promoted to be submitted

a paper extended version in the journal Transactions on Circuits and Systems II

(TCAS-II). Finally, the paper was published in TCAS-II (16).

4.3.2. Co-related Work In parallel with the thesis work, I was involved in dif-

ferent assignments within OnChip group projects. One of these was Tucan, a

project developed with SiFive. Tucan is an SoC with a RISC-V RV32IMAC based

processor developed by SiFive and analog IPs developed by OnChip. My contri-

bution in Tucan was related to the design of the digital interfaces between analog

IPs with the digital control managed through the Tilelink bus. The results of this

work were published in the IEEE Integrated Circuits Conferences 2020 (CICC),

one of the most relevant international conferences of engineering & computer sci-

ence. The paper titled ”An Energy-Efficient RISC-V RV32IMAC microcontroller for

Periodical-Driven Sensing Applications” shows the energy advantages of having

several power states in order to reduce the power consumption of the SoC (17).

This paper presents different techniques of power management in an SoC fo-

cused for low-performance tasks. The document presents the performance anal-

ysis, features and measures of the different operation modes.

Furthermore, I led the design and construction of a portable device to vary the

temperature of a chip. The device was built to perform temperature variation tests
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on integrated circuits performed by the OnChip research group. Some details and

features of this device are shown in the appendix.
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Appendix

Complementary work was made during the Master’s period, as an integral

part of the student’s development and training. This chapter shows a cooler-

warm prototype to increase or decrease the temperature in a controlled way for

SoCs.

The OnChip group has as a main field of work the design of microelectronic

circuits. Members of the OnChip group implement, propose, or improve IPs for

a high-speed interface, security circuits, or SoCs. The most relevant designs are

silicon integrated. After the circuits have been fabricated, the circuit specs have

to be tested. A relevant variable to consider when testing is how the response of

the circuit is modified by temperature variations.

For circuits expected to be fabricated on a large industrial scale, temperature

testing is essential to guarantee the right operation of the circuit in complex sit-

uations. As for example, cold or hot environments or when functioning nearby

temperature variable systems.

Current commercial devices to control and modify the temperature variations

on circuits are expensive. For this reason, to build a cheaper and portable alterna-

tive was necessary. Figure 35 shows the final prototype made. This is composed

of a power source, a bottle of water to supply the liquid cooling, hoses to transport

the liquid, two fans, a metal header to transmit the temperature of the system and

temperature control, and a case to secure the system. The case holds together

the system with the chip to enable the temperature variation.

The cooling system has two sensors to measure temperature. The first is a

thermocouple of a multimeter and the second is a W1209 digital thermostat (18),
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Figure 35. Portable device part list.

Figure 36. Cooler temperature sensors.

as shown in Figure 36. The system can vary the temperature between -15 and 50

degrees Celsius. Figure 37 shows the system operating at its maximum cooling

power, -22 degrees Celsius. This measurement corresponds to the temperature

near the Peltier cell, but the temperature at the contact point between the mecha-

nism and the chip is around 7 degrees more (-15 degrees). This heat is produced
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Figure 37. Cooler implementation in an OnChip develop board.

by the temperature exchange between the Peltier cell and the metal that makes

contact with the chip. The Peltier cell offers the most accurate measurement be-

cause the sensor is located closer to the contact surface.

Figure 38 displays the inclusion of a spring. This small piece plays a significant

role in the design of the system. There is a screw in each corner of support. The
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Figure 38. Adjustment system between the cooler and the board.

springs push the system from the PCB, creating a resistance to the pressure

generated by the weight of the device. The fine height adjustment is made by

adjusting the screws.
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