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RESUMEN

TÍTULO: TOWARDS INTELLIGENT, SECURE, AND ENERGY-EFFICIENT SYSTEMS-ON-EDGE *

AUTOR: LUIS EDUARDO RUEDA GUERRERO **

PALABRAS CLAVE: System-on-edge, eficiencia energética, seguridad, computación analógica, vari-

abilidad estocástica, rede neuronales, machine learning, computación en memoria, adminis-

tración de energı́a, ataques por perturbación transitoria de voltage.

DESCRIPCIÓN:

Con miles de millones (incluso billones, según estimaciones) de dispositivos interconectados,

el consumo de energı́a, la gestión de gran cantidad de datos y su seguridad, son algunos de

los principales desafı́os para las aplicaciones IoT (Internet de las cosas). La administración in-

teligente de la energı́a, basada en monitores de tensión, es una de las principales soluciones

en cuanto a la reducción del consumo de energı́a. Mientras tanto, la inferencia con sistemas

de deep-learning surge como una de las formas más efectivas de lidiar con gran cantidad de

datos para la toma de decisiones. Al mismo tiempo, la aceleración con hardware analógico ha

demostrado ser una alternativa prometedora para obtener sistemas de deep-learning para apli-

caciones IoT (systems-on-edge-SoE) energeticamente eficientes. La seguridad es otro de los

principales desafı́os para SoE. Con más nodos conectados, hay más oportunidades para com-

prometer la seguridad de sistemas completos, lo que podrı́a llevar a la filtración de información

sensible o dejar el sistema vulnerable a ataques desde diferentes frentes.

Esta tesis presenta contribuciones en los tres frentes mencionados anteriormente: SoE energeti-

camente eficientes, SoE para la toma de decisiones y vulneración de seguridad en SoE. Primero,

proponemos A-Connect, una novedosa metodologı́a para mejorar la resiliencia de las redes

neuronales contra la variabilidad estocástica, como cuando se implementan redes neuronales

en aceleradores analógicos imprecisos. Presentamos resultados de simulación aplicando A-

Connect a modelos populares de DNN (por ejemplo, LeNet-5 para el conjunto de datos MNIST,

AlexNet, VGG-16 y ResNet-20 para el conjunto de datos CIFAR-10, y ResNet-18 para el con-

junto de datos CIFAR-100). A-Connect muestra el mejor rendimiento en comparación con otros

enfoques ex-situ, al tiempo que presenta resultados comparables a métodos in situ e hı́bridos

(es decir, utilizando enfoques ex-situ e in situ) en la literatura.

Luego, proponemos un macro para Machine Learning (ML) con computación en memoria (CIM)

* Tesis de Doctorado
** Facultad de Ingenierı́as Fı́sico-Mecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Tele-

comunicaciones. Director: Elkim Felipe Roa Fuentes. PhD.
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usando memoria SRAM, con un amplio rango de frecuencia y alta eficiencia energética para

SoE multi-modo, que utiliza un enfoque de co-diseño de software-hardware con la ayuda de

la metodologı́a A-Connect. También presentamos un datapath completamente analógico, y de

señal mezclada, que incorpora no solo operaciones MAC, sino también operaciones de ML

comúnmente utilizadas dentro del dominio analógico (por ejemplo, ReLU, normalización, memo-

ria). Las simulaciones presentadas en un nodo tecnológico CMOS de 180 nm muestran que

los resultados del macro propuesto están cerca de los macros en 65 nm del estado del arte.

Además, mostramos estimaciones de rendimiento para un diseño en 28 nm que sitúan al macro

analógico propuesto por encima del rendimiento absoluto del estado del arte.

Continuamos con la propuesta de monitores de voltaje de múltiples niveles de ultra bajo consumo

para estrategias de administración de energı́a de granularidad fina en una tecnologı́a CMOS de

180 nm. También demostramos experimentalmente cómo estos monitores de voltaje podrı́an

usarse en una estrategia real de gestión de energı́a en un sistema en chip (SoC) con un micro-

controlador RISC-V. Al tener múltiples niveles para los umbrales de voltaje, es posible habilitar

tres modos de energı́a diferentes que utilizan un suministro de voltaje más bajo: activo, sleep

y deep sleep. En comparación con investigaciones anteriores que no consideran los efectos

de baja temperatura al usar ramas de alta impedancia, este trabajo logra un bajo consumo de

corriente en dichas condiciones.

Finalmente, exploramos mecanismos de vulneración de seguridad no convencionales en ataques

por hardware. Presentamos nuestro trabajo sobre ataques por perturbación transistoria del

voltaje de alimentación. Como contribución, logramos incluir la red de suministro de energı́a

de un SoC en el enfoque clásico de violación de restricciones de tiempo, lo que nos permitió

obtener una relación analı́tica entre el potencial de una perturbación de voltaje para inyectar una

falla en un sistema y los parámetros de la forma de onda de la perturbación (por ejemplo, du-

ración, amplitud). Anticipamos que nuestro trabajo permitirı́a un modelo de falla del sistema para

cualquier forma de onda de perturbación, incluso aquellas generadas por algoritmos genéticos o

redes neuronales.
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ABSTRACT

TITLE: TOWARDS INTELLIGENT, SECURE, AND ENERGY-EFFICIENT SYSTEMS-ON-EDGE *

AUTHOR: LUIS EDUARDO RUEDA GUERRERO **

KEYWORDS: System-on-edge, energy-efficiency, security, analog computation, stochastic variability,

neural networks, machine learning, computation-in-memory, power management, voltage glitch-

ing attacks.

DESCRIPTION:

With billions (even trillions, according to estimations) of devices interconnected, power consump-

tion, big data management, and security are some of the main challenges for IoT applications.

Intelligent power management, based on supply monitors, is one of the main solutions in regard to

lower power consumption. Meanwhile, inference on the edge with deep-learning systems arises

as one of the most effective ways to deal with big data for decision-making. At the same time,

to obtain energy-efficient deep-learning systems-on-edge (SoE), analog hardware acceleration

has shown to be a promising alternative. Security is another one of the main challenges for SoE.

With more connected nodes, more opportunities to break whole systems’ security. The latter

could lead to the filtration of sensitive information or leave the system vulnerable to attacks from

different fronts.

This thesis presents contributions on the three fronts mentioned above: energy-efficiency SoE

(power consumption), big data for decision-making SoE, and security infringement on SoE. First,

we propose A-Connect, a novel methodology to improve neural network resilience against stochas-

tic variability when deploying neural networks in imprecise analog accelerators. We present sim-

ulation results applying A-Connect to popular DNN models (e.g., LeNet-5 for the MNIST dataset,

AlexNet, VGG-16, and ResNet-20 for the CIFAR-10 dataset, and ResNet-18 for the CIFAR-100

dataset). A-Connect shows the best performance when compared to other ex-situ approaches

while having comparable results to in situ and hybrid (i.e., using ex-situ and in situ approaches)

methods in the literature.

Then, we propose a wide frequency range and high energy efficiency CIM SRAM-based ML

macro for multi-mode SoE, that uses a co-design software-hardware approach with the help

of the A-Connect methodology. We also present an end-to-end analog datapath that incorpo-

rates not only MAC operations but commonly used ML operations within the analog domain (e.g.,

* PhD Thesis
** Facultad de Ingenierı́as Fı́sico-Mecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Tele-

comunicaciones. Advisor:Elkim Felipe Roa Fuentes. PhD.
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ReLU, normalization, memory). The simulations in a 180nm CMOS technology node show that

the proposed macro’s results are close to state-of-art macros in 65nm. Furthermore, we show

performance estimations for a 28nm design that put the proposed analog macro above absolute

state-of-art performance.

We continue with the proposal of ultra-low-power multi-level voltage monitors for multi-mode fine-

grained power management strategies in a 180nm CMOS technology. We also show experi-

mentally how these voltage monitors could be used in a real power management strategy in a

system-on-chip (SoC) with a RISC-V MCU core. By having multi-level voltage thresholds we en-

able three different power modes that used lower voltage supply: active, sleep, and deep-sleep.

In comparison to previous research that neglected considering the low-temperature effects when

using large impedance branches, this work achieves a low current consumption in such condi-

tions.

Finally, we explore unconventional security infringement mechanisms in hardware-based attacks.

We present our work on voltage glitching attacks. As a contribution, we manage to include the

power delivery network of an SoC in the classical timing constraint violation approach. Doing so

allows us to obtain an analytical relation between the potential of a voltage glitch to inject a fault

into a system and the glitch waveform parameters (e.g., duration, amplitude). We anticipate that

our work would permit a system’s fault model for any glitch waveform, even those generated by

genetic algorithms or neural networks.
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1. PROJECT OVERVIEW

1.1. Introduction

The Internet of Things (IoT) is among the most used buzzwords by technology com-

panies and users. Still, it is a phenomenon we are experiencing, which has changed

and will continue to shape how we live and interact with everything around us, from

people to machines. IoT is the interconnection of physical devices, vehicles, smart

buildings, embedded electronic systems, sensors, etc., that allows sharing, exchang-

ing, collecting, and processing information between these objects. Although the term

was first used by technological pioneer Kevin Ashton in 19991, the concept of com-

bining computers with communication networks to monitor and control machines has

been around for decades. For example, in 1970, the systems to monitor the energy

consumption in buildings using telephone lines were already commercially available2,

and in 1990, with the progress of wireless networks, the machine-to-machine (M2M)

communication was born. For the first time, a device (a toaster) was controlled (on and

off) using commands sent through the internet protocol (IP).

There are tons of IoT devices in the market already. For example, sensors to measure

vital signals while doing any physical activity (wearable systems)3, or energy-saving

systems for smart buildings or homes4. Any imaginable application can be transformed

into an IoT system, turning this industry into one of the most promissory markets for

the near future. Recent projections estimate that hundreds of thousands of IoT devices

will be interconnected by 20255, with applications ranging from the healthcare sector

(including wearable devices)6 to entire connected cities (smart cities)7. In the same

1 Kevin ASHTON et al. “That ‘internet of things’ thing”. In: RFID journal 22.7 (2009), pp. 97–114.
2 P. T. Sensor monitoring device. US Patent 3,842,208. Oct. 1974.
3 S. M. R. ISLAM et al. “The Internet of Things for Health Care: A Comprehensive Survey”. In: IEEE

Access 3 (2015), pp. 678–708.
4 J. PAN et al. “An Internet of Things Framework for Smart Energy in Buildings: Designs, Prototype,

and Experiments”. In: IEEE Internet of Things Journal 2.6 (Dec. 2015), pp. 527–537.
5 The Internet of Thinks: An Overview. Accessed: 2016-10-17. Oct. 2015.
6 P. A. LAPLANTE et al. “The Internet of Things in Healthcare: Potential Applications and Challenges”.

In: IT Professional 18.3 (May 2016), pp. 2–4.
7 A. ZANELLA et al. “Internet of Things for Smart Cities”. In: IEEE Internet of Things Journal 1.1 (Feb.
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way, an economic growth of billions of dollars is expected for the year 20255. Although

many companies in the industry do not agree with exact numbers, with others not even

optimistic about the hype around this movement, the forecasts show substantial growth

and influence of this industry over society in general.

Due to its massive development and rapid growth, experts foresee this industry to face

significant challenges, from the technical point of view, as well as ethical and social5,

creating different research branches focused on the solution of these problems8. There

are three main challenges of great interest to this work:

Creation of knowledge and big data: In an IoT world, extraordinary quanti-

ties of unprocessed and noisy data are continuously collected. Developing tech-

niques that allow us to convert this data into usable knowledge, and make proper

inferences for decision-making, is crucial. Deep neural networks (DNNs) are fore-

seeing as one of the most promising alternatives to solve this problem9.

Security: At the same time, users need to trust that their information (which in

many cases could be very sensitive, e.g., healthcare industry) is safe from any

external intruder who may steal it or perform an attack to the system. Devices

and servers with low-security levels could be targeted as access points by these

hackers, ending in catastrophic and lethal consequences.

Energy-efficiency: In the past, devices with power consumption on the order

of micro-Watts (10−6W) were considered ultra-low power. That has shifted for

today and future systems-on-edge standards. Perhaps with tens of millions of

interconnected devices, this power range is still acceptable (will be equivalent to

consuming tens of Watts), but if we are expecting interconnections on the order

of trillion devices, with each of them consuming on the order of micro-Watts,

the total power consumption will be on the order of Mega-Watts (106W). On the

other hand, tons of these systems-on-edge are expected to be in areas where

continuous access will be difficult (e.g., within a patient’s body). Hence, these

2014), pp. 22–32.
8 J. A. STANKOVIC. “Research Directions for the Internet of Things”. In: IEEE Internet of Things

Journal 1.1 (Feb. 2014), pp. 3–9.
9 H. LI et al. “Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing”.

In: IEEE Network 32.1 (Jan. 2018), pp. 96–101.
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Turpial - 2016
● First RISC-V on silicon!
● RISC-V IM 32-bit MCU 160MHz.
● ADC 10-bit.
● DAC 12-bit.

Tucan - 2017 (with SiFive)
● RISC-V IMAC 32-bit cacheable MCU 200MHz.
● ADC 10-bit.
● DAC 12-bit.
● PMU (BOD, POR, Regulators, RCO).
● Deep Sleep / Sleep Modes.

Guerinii - 2018
● RISC-V IMAC 32-bit cacheable MCU 40MHz.
● Sensor-based enabled (IoT) <10nA deep sleep.
● PMU, AON, TRNG.
● AES 128-b, USB 1.1/2.0, DMA.

SRAM SPI
Master I2C JTAG

PMU
(BOD, POR, LDO, 
Bias, BGAP, etc.)

CLK Gen
(RCO, XTAL)

Always-On

RISC-V
CORE

Others... GPIOs SPI

Peripherals

Others...ADC/
DAC

Main Bus (e.g., AHB-Lite, Tilelink)

Secondary Bus (e.g., APB)Secondary Bus (e.g., APB)

3.3V
1.8V

1.8V/3.3V

Others...
General MCU Block Diagram

Figure 1. Three MCU generations: Turpial (first ever RISC-V on silicon), Tucan (in collaboration with
SiFive), and Guerinii (IoT platform).

systems need a long life span, translating to ultra-low power consumption. For

these systems-on-edge, nano-Watts (10−9W) or even pico-Watts (10−12W) range

are needed.

The idea behind this thesis is to devise possible solutions to these challenges and to

envision a new wave of problems regarding intelligent, secure, and energy-efficient

systems on edge.

1.2. A RISC-V based SoC platform for systems-on-edge

To talk about this work, it is necessary to talk about its foundation and the required

infrastructure for its realization. The conception of the ideas for this thesis came from

17



the work that has been done in the research group OnChip for the last seven years, in

which I have been one of the leaders: the creation of an SoC platform for systems-on-

the-edge, better known as the internet of things (IoT)10,11,12.

IoT platforms capable of processing big data for decision-making or providing a secure

interface when sharing information while keeping low-cost, high-speed, and low-power

features are necessary to fulfill the market needs. The problem arises when licensed

hardware increases the costs and restricts the process of modifying platform cores

for different purposes, such as enhancing performance and adapting it to other IoT

applications.

OnChip has adopted an open-source hardware (OSH) platform based on the instruc-

tion set architecture RISC-V13 to solve the aforementioned problem. OnChip is a pio-

neer in the OSH community and the first-ever to fabricate on silicon a functional RISC-V

based microcontroller14,15,16.

Through the course of seven years, the RISC-V community has grown at an acceler-

ated pace (>300 members), attracting huge names within its ranks, such as17: Google,

Nvidia, Samsung, Western Digital, among others. In the same period, OnChip has

designed and fabricated three generations of RISC-V based microcontrollers for IoT

applications. Figure 1 shows the three generations of microcontrollers units (MCUs),

their key characteristics, as well as a general block diagram of the platform:

• Turpial10 ,11: Turpial is the first silicon-proven 32-bit microcontroller with a RISC-

V instruction set in the world. It is a 32-bit microcontroller fabricated in a 130nm

10 C. DURAN et al. “A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-bit SAR ADC”. in: 2016
IEEE 7th Latin American Symposium on Circuits Systems (LASCAS). Feb. 2016, pp. 315–318.

11 C. DURAN et al. “A system-on-chip platform for the internet of things featuring a 32-bit RISC-V based
microcontroller”. In: 2017 IEEE 8th Latin American Symposium on Circuits Systems (LASCAS). Feb.
2017, pp. 1–4.

12 C. DURAN et al. “An Energy-Efficient RISC-V RV32IMAC Microcontroller for Periodical-Driven Sens-
ing Applications”. In: 2020 IEEE Custom Integrated Circuits Conference (CICC). 2020, pp. 1–4.

13 Andrew WATERMAN et al. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version
2.1. Tech. rep. UCB/EECS-2016-118. EECS Department, University of California, Berkeley, May
2016.

14 EENEWS EUROPE. RISC-V MCU grown in Colombia. Sept. 2016.
15 NAVA WHITEFORD. A COMPLETELY OPEN MICROCONTROLLER. Oct. 2016.
16 BRIAN BENCHOFF. OPEN-V, THE FIRST OPEN SOURCE RISC-V MICROCONTROLLER. Nov.

2016.
17 RISC-V FOUNDATION. Members at a Glance. 2020.
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CMOS technology, mounted through AXI4-Lite and APB buses for communica-

tion. The microcontroller contains a 10-bit SAR ADC, a 12-bit DAC, an 8-bit

GPIO module, a 4kB-RAM, an SPI AXI slave interface for output verification, and

an SPI APB slave interface for checking the correct behavior of the APB bridge.

The RISC-V and SPI AXI master interface (used for programming the device

and checking the data flowing through all the slaves) control all peripherals. We

reported a total power density of 167µW/MHz. The area for this RISC-V micro-

controller was around 2.1mm × 2.1mm.

• Tucan12: Tucan is our second 32-bit RISC-V IMAC-based microcontroller (MCU)

in a 180nm CMOS technology. We developed this microcontroller in collabora-

tion with the silicon valley company SiFive. It features a low-energy always-on

(AON) subsystem extending minimum-energy (ME) adaption by including periph-

erals. Reported work on ME computing for low-power applications was focused

on tracking the microprocessor ME voltage supply. However, using low-power

systems requires accounting for regulator losses, voltage monitors, biasing, pe-

ripheral, clock sources, and start-up energies to adapt the correct ME supply to

different operation modes. We developed an MCU with low-energy clock sources

and voltage monitors that enabled 32.768kHz to 55MHz operation and power-

gate the MCU into three power states adjusted to work at the ME supply opera-

tion. Measured start-up energies using integrated RC-based oscillators showed

restarting energies down to 6pJ, which is 1000X less than the energy required

in MCUs that apply crystal oscillators. AON peripherals enabled the MCU for

low-duty-cycle sensor node applications.

• Guerinii: Guerinii is our third and last 32-bit RISC-V IM-based microcontroller

unit. It is an MCU shielded against supply voltage attacks while apprising SoC

interoperation. The MCU peripherals comprise a 145nW multi-level brown-out

detector, repurposed as a supply glitch detector, to identify different amplitude

glitches and security instances. Such instances include a 10.8pJ/bit true random

seed generator block and a 3.58pJ/bit 256b advanced encryption standard (AES)

substitution box (Sbox) accelerator.
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Turpial was our starting point, the one that helped us understand the difficulties of

designing microcontrollers, as well as the responsible for us gaining international at-

tention. Because of Turpial, the collaboration with SiFive was possible: Tucan. With

Tucan, we started to test ideas for power management strategies for energy-efficient

systems focused on IoT. With Tucan, we also investigated conventional security mech-

anisms for SoE, such as the generation of secure keys with the design of a true ran-

dom number generator (TRNG)18,19. Then we designed Guerinii, an MCU thought for

IoT applications. In Guerinii, we continued developing power management strategies

with even lower energy consumption. In terms of security, we expanded our portfolio:

in addition to continuing with our work in TRNGs, we also tested other conventional

mechanisms with physical unclonable functions (PUFs)20, as well as our first custom

instruction-based accelerator for advanced encryption standard AES-25621,22.

Having in mind all the research the OnChip group has done, we wanted to portray in

this thesis some of my contributions through the years. In particular, we wanted to

include my work on designing crucial blocks that enable the development of different

power management strategies for systems-on-edge, as well as my work on under-

standing unconventional mechanisms to infringe SoE security, such as power supply

glitching. We even wanted to go further, thinking about the next generations of MCUs.

Inspired by the custom instruction-based AES acceleration, we also investigate how

to apply traditional computer architecture techniques to mixed-signal machine learning

accelerators for decision-making intelligent SoEs. Considering all of the above, the

following section presents this thesis’ goals and the outline of this work.

18 Juan CARTAGENA et al. “A fully-synthesized TRNG with lightweight cellular-automata based post-
processing stage in 130nm CMOS”. in: 2016 IEEE Nordic Circuits and Systems Conference (NOR-
CAS). 2016, pp. 1–5.

19 Hector GOMEZ et al. “Low-cost TRNG IPs”. In: IET Circuits, Devices & Systems 14.7 (Oct. 2020),
pp. 942–946.

20 Javier ARDILA et al. “A Stable Physically Unclonable Function Based on a Standard CMOS NVR”.
in: 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 2020, pp. 1–4.

21 Ckristian DURAN et al. “AES Sbox Acceleration Schemes for Low-Cost SoCs”. In: 2021 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). 2021, pp. 1–5.

22 Ckristian DURAN et al. “A 10pJ/bit 256b AES-SoC Exploiting Memory Access Acceleration”. In:
IEEE Transactions on Circuits and Systems II: Express Briefs 69.3 (2022), pp. 1612–1616.
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Figure 2. Thesis contributions summary: a) feasibility of applying in mixed-signal accelerators
traditional computer architecture and ML techniques; b) mixed-signal power management strategies for
energy-efficient SoE; c) impact of power supply glitching as a way to infringe SoE security.

1.3. Dissertation Goals and Outline

1.3.1. Project Goal

To devise solutions in unconventional domains (analog-mixed signal) to some of the

conventional problems regarding IoT challenges, as well as to envision the rise of new

challenges in secure and efficient systems-on-edge. In security, attack actions on al-

ready implemented SoCs will be performed to study their nature and to be able to pro-

pose new ways to counter them. In regards to energy efficiency, power-management

schemes will be tested on already implemented SoCs to study their effectiveness,

as well as to propose new power-management strategies. Finally, to further improve

the energy efficiency of systems-on-edge with decision-making capabilities, machine-

learning accelerator architectures in the analog-mixed signal domain will be explored.

1.3.2. Dissertation Outline

We decided to dissect the main goal in the following three objectives, which helped us

to accomplish the completion of this thesis:
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Introduction 
(Chapter I)

A-Connect: Enabling Imprecise 
Analog Computation 

(Chapter II)

Analog Machine Learning 
Accelerator 
(Chapter III)

Multi-Level VMs To Enable 
Fine-Grained PM Strategies In SoE

(Chapter IV)

SoC Power Delivery Network: An 
In-Depth Look At Voltage Glitching

(Chapter V)

Contributions and Summary 
(Chapter VI)

Figure 3. Dissertation roadmap.

• To explore the feasibility of applying in mixed-signal accelerators traditional com-

puter architecture and machine learning techniques. To improve the energy ef-

ficiency of systems-on-edge with decision-making capabilities, machine-learning

accelerator architectures in the analog-mixed signal domain will be explored.

• To devise mixed-signal power management strategies for energy-efficient systems-

on-edge. Power-management schemes will be tested on already implemented

SoCs to study their effectiveness, as well as to propose new power-management

strategies.

• To study the impact of power supply glitching as a way to infringe systems-on-

edge security. Attack actions on already implemented SoCs will be performed to

study their nature, in order to be able to propose new ways to counter them.

During the course of the project, the objectives were transformed into milestones and

now constitute both the contributions of my work and the chapters of this book. I

present in Figure 2 the main contributions of my thesis, placing special emphasis on

how these contributions fit into the research work of the OnChip group shown before.

To conclude this introduction, Figure 3 shows the roadmap of this thesis dissertation. I

give a brief abstract of each chapter in the following paragraphs so that the reader can

have an idea of what can be found in this work:

Chapter I: ”A-Connect: Enabling Imprecise Analog Computation”

Objective: to explore the feasibility of applying in mixed-signal accelerators traditional
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computer architecture and machine learning techniques

Analog-based neural network accelerators outperform digital-based accelerators in en-

ergy efficiency by trading accuracy. Analog computation is susceptible to hardware

stochastic variability, incurring limited signal-to-noise and aggravating for compact and

low-power applications. Chapter 2 introduces A-Connect, an ex-situ statistical method-

ology to improve analog neural network resilience against stochastic variability. Our

methodology achieves state-of-art performance in analog environments with heavy

stochasticity levels by injecting noise during the neural network forward propagation

and considering the same injected noise during the backward propagation. Further-

more, we developed a Keras/Tensorflow library with fully-connected and convolutional

layers versions using our training methodology, which can be coupled easily to stan-

dard machine learning platforms. We present simulation results applying A-Connect

to popular DNN models, like LeNet-5 for the MNIST dataset, AlexNet, VGG-16, and

ResNet-20 for the CIFAR-10 dataset, and ResNet-18 for the CIFAR-100 dataset. When

validating the CIFAR-10 or CIFAR-100 recognition tasks, the results with the A-Connect

methodology showed an improvement over the baseline model of around 15 to 68 per-

centage points for the median accuracy at a 70% of stochastic variability. The devia-

tion of the results with A-Connect is around 20X lower than the baseline at this level of

stochasticity. A-Connect also showed the best performance when compared to other

ex-situ approaches while having comparable results to in situ and hybrid (i.e., using

ex-situ and in situ approaches) methods in the literature. We anticipate that the A-

Connect methodology could enable emergent memory technologies, such as ReRAM

and PCM, for accurate computation-in-memory applications.

Chapter III: ”Analog Machine Learning Accelerator”

Once we tackled the problem of hardware stochastic variability in analog-based neural

network accelerators with the A-Connect methodology, we continue with our hardware

implementation proposal in chapter 3: a wide frequency range and high energy effi-

ciency CIM SRAM-based ML macro for multi-mode systems-on-edge. The proposed

analog macro can perform at high energy efficiency by following two principles: avoid-

ing data conversion by staying in the same physical domain (i.e., current) and the use
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of simplified and low-area circuits by using co-design software strategies that mitigate

stochastic and deterministic errors (i.e., the A-Connect methodology in chapter 2). We

propose an end-to-end analog datapath that incorporates not only MAC operations

but commonly used ML operations within the analog domain, such as ReLU and scal-

ing (the latter enabled normalization operations), as well as memory capabilities for

pipeline execution. Since all analog operations in our macro are current-based, we im-

plement a wideband current mirror that enables a wide range of operating frequencies

while improving energy efficiency. The simulation results, presented in a 180nm CMOS

technology node, show that the analog macro performed at a wide range of frequencies

(200kHz-15MHz) over an ultra-low and broad range of current levels (i.e., 1nA to 100nA

biasing) while maintaining a relatively similar energy efficiency (760-1076 1b-TOPS/W).

When compared to other works, the proposed macro’s results were compatible with

state-of-art macros in 65nm. Furthermore, we showed performance estimations for

a 28nm design that put the proposed analog macro above absolute state-of-art per-

formance. To our knowledge, our work is the only study investigating multi-mode ML

accelerators performing efficiently at different current levels and clock rates.

Chapter IV: ”Multi-Level Voltage Monitors to Enable Fine-Grained PM Strategies

in SoE”

Objective: to devise mixed-signal power management strategies for energy-efficient

systems-on-edge

In chapter 4, we present ultra-low-power multi-level voltage monitors for multi-mode

fine-grained power management strategies. Simulation results over PT variations, as

well as measurements at nominal temperature, showed a robust performance within

the industrial temperature range from -40◦C to 125◦C and a wide supply rise and fall

times, ranging from 1us to 1s. In the first version of the POR (POR1), we obtained a

current consumption of 7µA. In the second version (POR2), the POR had a nominal

current consumption of 19nA. Both PORs had up to 3 different voltage threshold lev-

els. In regards to the BOD, we presented an architecture with low-temperature slew

compensation for low-power applications, multiple voltage threshold levels, and current

consumption of 200nA. We also showed experimentally how these voltage monitors
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could be used in a real power management strategy. By having multi-level voltage

thresholds we enabled three different power modes that used lower voltage supply:

active, sleep, and deep-sleep. According to measurements, the SoC had an 8mA cur-

rent consumption at 16MHz in active mode, 27.5µA at 32.768kHz in sleep mode, and

530nA at 32.768kHz in deep-sleep mode. In comparison to previous research that ne-

glect to consider the low-temperature effects when using large impedance branches,

this work achieved a low current consumption even by considering these temperature

effects. Current consumption, programmability, and reduced area make the proposed

voltage monitors enablers of different fine-grained power management schemes.

Chapter V: ”System-on-Chip Power Delivery Network: An in-Depth Look at Volt-

age Glitching”

Objective: to study the impact of power supply glitching as a way to infringe systems-

on-edge security

As we stated before, the group OnChip has been investigating conventional security

mechanisms for system-on-edge in the past, from the generation of secure keys and

unclonable functions (e.g., TRNG and PUF circuits) to the acceleration of the encryp-

tion of data through AES. We wanted to investigate in this work a more unconventional

way to cause fault injections within SoCs that did not involve software-based attacks.

Chapter 5 presents our work on voltage glitching, one of the most researched fault

injection mechanisms in systems-on-chip (SoC) at a hardware level. The easiness

of execution and permanent availability of an external pin for the power supply make

glitching injection one of the preferred methods for security tampering. Previous works

have provided experimental evidence demonstrating that voltage glitching fault injec-

tions cause time constraint violations. However, there is still a lack of understanding

of the voltage glitching nature, which has prevented obtaining a direct link between

the glitch characteristics and the likelihood of the glitch injecting a fault into a system.

In Chapter 5, we include the power delivery network in the timing constraint violation

approach. We derive expressions and analyses relating glitch waveform parameters

(e.g., duration and amplitude) with the fault injection potential of that voltage glitch. We

present simulation results and measurements of over 4500 experiments attacking an
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in-house RISC-V MCU across multiple glitch voltage amplitudes and MCU’s operat-

ing frequencies, supporting our findings. We foresee that the analyses and results in

this chapter will allow designers to fully characterize SoC against voltage glitching fault

injection without restricting the characterization to only squared pulse glitches. For ex-

ample, our approach could permit a system’s fault model for any glitch waveform, even

those generated by genetic algorithms or neural networks.
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2. A-CONNECT: ENABLING IMPRECISE ANALOG COMPUTATION

2.1. Introduction

The new wave of neural networks in the last decade placed computation-in-memory

(CIM) architectures as one of the most effective approaches to solve the energy cost

problem of data movement (the von Neumann bottleneck23). To further increase the

energy efficiency, recent works have combined CIM architectures with analog process-

ing/memory technologies that act like the synapses of the neural network24 (Figure

4(a) shows some examples of these technologies). Figure 4(b) shows the common

crossbar analog-based CIM architecture. Each memory/processing unit (squares with

different shades of red) is typically composed of an analog-based non-volatile memory

(NVM) technology, e.g., resistive random-access memory (ReRAM)25,26, and phase-

change memory (PCM)27. There is also a recent interest in hybrid approaches that use

SRAM extended cells (more than six transistors) to execute analog operations within

the same cell28,29,30.

The energy-efficiency performance achieved by the latest works in analog-based ac-

23 John BACKUS. “Can Programming Be Liberated from the von Neumann Style? A Functional Style
and Its Algebra of Programs”. In: Commun. ACM 21.8 (Aug. 1978), 613–641.

24 Hsinyu TSAI et al. “Recent Progress in Analog Memory-Based Accelerators for Deep Learning”. In:
Journal of Physics D: Applied Physics (June 2018).

25 S. YIN et al. “Monolithically Integrated RRAM- and CMOS-Based In-Memory Computing Optimiza-
tions for Efficient Deep Learning”. In: IEEE Micro 39.6 (Nov. 2019), pp. 54–63.

26 C. XUE et al. “Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro With Multibit Input and
Weight for CNN-Based AI Edge Processors”. In: IEEE JSSC 55.1 (Jan. 2020), pp. 203–215.

27 W. KIM et al. “Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000
Programmable States for Deep Learning”. In: 2019 Symposium on VLSI Technology. June 2019,
T66–T67.

28 P. SRIVASTAVA et al. “PROMISE: An End-to-End Design of a Programmable Mixed-Signal Acceler-
ator for Machine-Learning Algorithms”. In: ACM/IEEE 45th Annual ISCA. June 2018, pp. 43–56.

29 M. KANG et al. “An Energy-Efficient VLSI Architecture for Pattern Recognition via Deep Embedding
of Computation in SRAM”. in: IEEE ICASSP. May 2014.

30 X. SI et al. “A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge
Processors”. In: IEEE JSSC (Jan. 2020).

31 Thomas DALGATY et al. “In Situ Learning Using Intrinsic Memristor Variability via Markov Chain
Monte Carlo Sampling”. In: Nature Elect. (Jan. 2021).
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Figure 4. Computation in Memory (CIM) with analog memory technologies. a) Examples of analog
synaptic cells. b) Analog-based CIM architecture with probability density function of the stochastic
variability in synaptic cells (bottom-left corner). c) Drain current stochastic variability values (standard
deviation) for the smallest devices in a commercial CMOS 180nm technology (data obtained from
Monte Carlo simulations). d) Programmed conductance stochastic variability for a
hafnium-dioxide-based (HfOx) random access memory (data obtained from 31). e) Example of a two
fully-connected layers neural network for the MNIST handwritten dataset. f) Effect of the analog
synaptic cells stochastic variability on the first three neurons weights of the first neural network layer
(see b. and e.). The weights are in float32 precision format. g) Effect of the analog synaptic cells
stochastic variability on the neural network (see e.) test accuracy.

celerators outperforms their digital counterparts by factors ranging between 10X to

100X32,33,34, which is one of the reasons for the latent interest in this field. On the

other hand, the performance in terms of accuracy is generally better in digital accel-

erators than in analog ones. Digital computation can achieve high signal-to-noise and

distortion ratio, while analog computation is very susceptible to hardware non-idealities.

32 H. VALAVI et al. “A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-
Domain Compute”. In: IEEE JSSC (2019).

33 W. KHWA et al. “A 65nm 4Kb Algorithm-Dependent Computing-in-Memory SRAM Unit-Macro with
2.3ns and 55.8TOPS/W Fully Parallel Product-Sum Operation for Binary DNN Edge Processors”. In:
IEEE ISSCC. Feb. 2018.

34 D. MIYASHITA et al. “Time-Domain Neural Network: A 48.5 TSOp/s/W Neuromorphic Chip Optimized
for Deep Learning and CMOS Technology”. In: IEEE A-SSCC. Nov. 2016.
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Commonly, analog circuit non-idealities fall into two distinctive groups: deterministic

and stochastic (random) non-idealities. In regards to deterministic non-idealities in

analog accelerators for inference, one of the most prominent is the non-linearity of

the synaptic cells24. Fortunately, recent works have demonstrated that if the actual

non-linear model (or an approximation) of the synapse is used instead of the ideal

multiply-accumulate operation, it is possible to achieve almost complete immunity in

terms of performance35.

Stochastic variability, either temporal (noise) or spatial (mismatch), is the other type of

analog non-ideality that worsens signal-to-noise and distortion ratio. Although neural

networks have shown some intrinsic immunity to noisy environments24, such as analog

accelerators, either the performance is still not comparable to digital counterparts, or

the techniques employed are impractical in many cases. The effect of stochastic vari-

ability is even worse for smaller and ultra-low power consumption synaptic cells, which

are fundamental towards more compact and energy-efficient DNN accelerators.

Figures 4(c)-(d) show the spatial stochastic variability in two synaptic cell analog/hy-

brid technologies: Figure 4(c) shows the drain current stochasticity with respect to the

absolute drain current value in a commercial 180nm CMOS technology; Figure 4(d)

shows the stochasticity in the conductance value in a ReRAM technology (hafnium-

dioxide-based RAM) with respect to the current employed for programming a single

cell36. It is possible to see how on different synaptic cell technologies, the stochastic

variability increases when working in the low-power regime. Other works using ReRAM

technologies as synaptic cells show similar behaviour of the stochastic variability with

respect to the current through the devices37,38,39,40, while the stochasticity gets worse

35 Hyungjun KIM et al. “Deep Neural Network Optimized to Resistive Memory with Nonlinear Current-
Voltage Characteristics”. In: JETCS 2 (July 2018).

36 Thomas DALGATY et al. “In Situ Learning Using Intrinsic Memristor Variability via Markov Chain
Monte Carlo Sampling”. In: Nature Elect. (Jan. 2021).

37 Bin GAO et al. “Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Imple-
mentation of Robust High-Accuracy Neuromorphic Computation Systems”. In: ACS Nano (June
2014).

38 Qiangfei XIA et al. “Memristive Crossbar Arrays for Brain-Inspired Computing”. In: Nature Materials
18.4 (Mar. 2019), pp. 309–323.

39 Shinhyun CHOI et al. “Data Clustering using Memristor Networks”. In: Scientific Reports 5.1 (May
2015).

40 S. AMBROGIO et al. “Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset
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with more advanced CMOS technology nodes (e.g., 7nm and beyond)41,42,43. These

technological walls limit the achievable energy-efficiency of an analog accelerator.

Figure 4(e) shows an example with two fully-connected layers for the MNIST handwrit-

ten digit classification problem, which will help understand the effect of the synaptic

cells’ stochastic variability on the learned parameters of a neural network. Figure 4(f)

shows the rearranged floating-point 32-bits precision weights corresponding to the first

three neurons of the first layer. From this figure, it is possible to distinguish some

patterns from the learned weights. These patterns are less identifiable when adding

more stochastic variability, to the point that they are almost lost when considering high

stochasticity levels (σw/µw ≥30%).

To quantify the effect of the synaptic cells’ stochastic variability in the neural network

performance, Figure 4(g) shows the test accuracy of the trained neural network in Fig-

ure 4(e). The performance results were obtained using floating-point 32-bits precision

weights. The results show that the stochastic variability has a crucial impact on the

network accuracy, with a decrease of around eight percentage points (from 98% to

90%) in the median values for the floating-point 32-bits precision weights when using a

stochasticity level of 70%. When considering the deviation of the results, the accuracy

levels can get as low as 75%.

Towards enabling energy-efficient and compact imprecise analog DNN accelerators,

such as ReRAM-based accelerators, this work focuses on increasing the accuracy

resilience to synaptic cells’ stochastic variability. This work makes the following contri-

butions:

• We introduce A-Connect, an ex situ statistical training methodology to mitigate

analog computation stochastic variability in neural networks, like the ones caused

by mismatch and noise in the synaptic cells. We provide simulation results where

Variability”. In: IEEE Trans. on Electron Devices (2014).
41 Qiang HUO et al. “Physics-Based Device-Circuit Cooptimization Scheme for 7-nm Technology Node

SRAM Design and Beyond”. In: IEEE Transactions on Electron Devices 67.3 (2020), pp. 907–914.
42 Sourav DE et al. “Neuromorphic Computing with Fe-FinFETs in the Presence of Variation”. In: 2022

International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). 2022, pp. 1–2.
43 N. RONCHI et al. “A Comprehensive Variability Study of Doped HfO2 FeFET for Memory Applica-

tions”. In: 2022 IEEE International Memory Workshop (IMW). 2022, pp. 1–4.
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popular DNNs are deployed in an imprecise environment (e.g., analog hardware).i

• We developed a library with the A-Connect methodology44. The library is avail-

able for Keras/TensorFlow, and contains the A-Connect modified versions of fully-

connected and convolutional layers.

2.2. Related Work

In regards to stochasticity in analog accelerators, it is possible to divide research works

into two categories: those that try to exploit the inherent stochastic behavior of analog

computation and those that try to mitigate this effect. Ensemble learning45 and ex-

treme learning machines (ELMs)46 are examples of the former. In ensemble learning,

the idea is to achieve better accuracy performance by using several learners (possibly

inaccurate). Bagging47 and Boosting48 are two examples of ensemble learning algo-

rithms. There have been works focusing on the implementation of weak classifiers

to accelerate ensemble learning algorithms at hardware level49, as well as algorith-

mic proposals applying Boosting techniques50. Along with ensemble learning, extreme

learning machines are the other type of neural networks that can exploit stochastic-

ity. ELMs are feedforward neural networks with single or multiple hidden layers with

parameters that do not need to be tuned, nor updated, and in many cases randomly

assigned. Because of this capability, ELMs are a perfect fit for imprecise analog ac-

44 Luis E. RUEDA G et al. A-Connect for TensorFlow. [Online] Available: https://github.com/onchipuis/A-
Connect. 2021.

45 D. OPITZ et al. “Popular Ensemble Methods: An Empirical Study”. In: Journal of Artificial Intelligence
Research (Aug. 1999).

46 Guang-Bin HUANG et al. “Extreme Learning Machine: Theory and Applications”. In: Neurocomput-
ing 70.1-3 (2006), pp. 489–501.

47 Leo BREIMAN. “Bagging Predictors”. In: Mach. Learn. (Aug. 1996).
48 Robert E. SCHAPIRE. “The Strength of Weak Learnability”. In: Mach. Learn. 5.2 (July 1990),

197–227.
49 J. ZHANG et al. “In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM

Array”. In: IEEE JSSC (Apr. 2017).
50 Z. WANG et al. “Error Adaptive Classifier Boosting (EACB): Leveraging Data-Driven Training Towards

Hardware Resilience for Signal Inference”. In: IEEE TCAS-I (2015).

i Although we only provide evidence for spatial stochasticity mitigation, our methodology can be used
for temporal stochastic variability as well.
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celeration, exploiting device-to-device mismatch and noise51,52,53. The problem with

these accelerators is that they can only execute ELM algorithms and not other types of

artificial neural networks.

Instead of exploiting stochasticity and limit the acceleration to ELM algorithms, there

are works where the complete focus is the mitigation of synaptic cell’s stochastic vari-

ability. The idea is to match analog accelerators performance with their digital counter-

parts. Although the chosen technology in the majority of works found in this respect is

the ReRAM-based (memristor) synaptic cell, their contributions and conclusions can be

generalized to any analog accelerator. Different mitigation approaches can be distin-

guished in these works: ex situ54,55,56,57,58,59,60, in situ61,62, or a combination of both

51 Y. CHEN et al. “A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine
Interfaces”. In: IEEE TBioCAS (2016).

52 O. RICHTER et al. “Device Mismatch in a Neuromorphic System Implements Random Features for
Regression”. In: IEEE BioCAS. 2015.

53 A. TRIPATHI et al. “Analog Neuromorphic System Based on Multi Input Floating Gate MOS Neuron
Model”. In: IEEE ISCAS. May 2019.

54 A.F. MURRAY et al. “Enhanced MLP performance and fault tolerance resulting from synaptic weight
noise during training”. In: IEEE Transactions on Neural Networks 5.5 (1994), pp. 792–802.

55 Y. LONG et al. “Design of Reliable DNN Accelerator with Un-reliable ReRAM”. in: DATE. 2019.
56 Sanjay KARIYAPPA et al. “Noise-Resilient DNN: Tolerating Noise in PCM-Based AI Accelerators via

Noise-Aware Training”. In: IEEE Trans. on Electron Devices (2021).
57 Z. HE et al. “Noise Injection Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption for

Neural Network Mapping”. In: ACM/IEEE DAC. 2019.
58 Y. ZHU et al. “Statistical Training for Neuromorphic Computing using Memristor-based Crossbars

Considering Process Variations and Noise”. In: DATE. 2020.
59 Vinay JOSHI et al. “Accurate deep neural network inference using computational phase-change

memory”. In: Nature Communications 11.1 (May 2020).
60 Julian BÜCHEL et al. “Network Insensitivity to Parameter Noise via Parameter Attack During Train-

ing”. In: International Conference on Learning Representations (ICLR). 2022.
61 M. HU et al. “Memristor Crossbar-Based Neuromorphic Computing System: A Case Study”. In: IEEE

TNNLS (2014).
62 A. MOHANTY et al. “Random Sparse Adaptation for Accurate Inference with Inaccurate Multi-Level

RRAM Arrays”. In: IEEE IEDM. 2017.
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(hybrid)63,64,65,66,67,68,69,70. In the ex situ approaches, the neural network parameters

are trained using a software-based model of the accelerator, while in situ approaches

use the actual hardware where the neural network will be deployed. In terms of infer-

ence performance, in situ methods can achieve better results than ex situ since the

former does consider the actual behavior of the synaptic cells. The problem with the in

situ approach is the cost associated with its implementation (e.g., high-resolution data-

converters, complex feedback control)64, which makes it impractical in some cases.

In this respect, ex situ approaches may be preferred since they avoid the hardware

overhead that comes with in situ training. We will focus our attention on ex situ training

approaches. Among the different works related to ex situ training, we have identified at

least four different subclasses that are not mutually exclusive:

Parameter noise-injection training: The idea in ex situ approaches is to consider

the synaptic cells’ stochastic variability through statistical training, which is commonly

achieved by injecting some signal corruption (e.g., noise) into the training data or di-

rectly over the neural network parameters (e.g., weights, biases). With this, the neural

network is regularized, which makes it robust against stochastic non-idealities. There

are two types of parameter noise-injection techniques: additive and multiplicative.

Additive noise-injection: This technique directly adds noise to the NN parameters (e.g.,

W = W0 + ∆W) during training (forward propagation phase) to mitigate stochastic vari-

ability57 ,59. The results in these works showed that additive noise-injection is very

63 Fabien ALIBART et al. “Pattern Classification by Memristive Crossbar Circuits Using ex situ and in
situ Training”. In: Nature Comm. (June 2013).

64 B. LIU et al. “Vortex: Variation-Aware Training for Memristor X-Bar”. In: ACM/EDAC/IEEE DAC. 2015,
pp. 1–6.

65 L. CHEN et al. “Accelerator-Friendly Neural-Network Training: Learning Variations and Defects in
RRAM Crossbar”. In: DATE. 2017.

66 A. BANAGOZAR et al. “Robust Neuromorphic Computing in the Presence of Process Variation”. In:
DATE. 2017.

67 G. CHARAN et al. “Accurate Inference With Inaccurate RRAM Devices: A Joint Algorithm-Design
Solution”. In: IEEE JXCDC (2020).

68 S. D. PYLE et al. “Leveraging Stochasticity for In Situ Learning in Binarized Deep Neural Networks”.
In: Computer 52.5 (2019), pp. 30–39.

69 Ziqi MENG et al. “Digital Offset for RRAM-based Neuromorphic Computing: A Novel Solution to
Conquer Cycle-to-cycle Variation”. In: DATE. 2021.

70 Ming-Guang LIN et al. “D-NAT: Data-Driven Non-Ideality Aware Training Framework for Fabricated
Computing-In-Memory Macros”. In: IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 12.2 (2022), pp. 381–392.
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effective in the mitigation of stochastic variability due to its regularization effect. Still,

there are several problems when training with this method. Additive noise injection

does not capture the real nature of many of the synaptic cells, where their stochasticity

level depends on the weight values, i.e., multiplicative noise nature56 ,70 (e.g., PCM

drift and programming noises, SRAM shot and thermal noises, the mismatch between

devices, etc.). Training with additive noise will inject too much noise in small weight

values while injecting too little in large weight values, which may not fully prepare the

trained model for inferring in a multiplicative noise environment. The work in56 shows

that training with multiplicative noise improves the network resilience when compared

to additive noise methods.

Multiplicative noise-injection: This technique injects noise to the network by multiply-

ing the parameters with a noisy signal (e.g., W = W0 · (1 + ϵ)), which captures bet-

ter the nature of several synaptic cells, as stated above. One of the first works im-

plementing multiplicative noise-injection (and noise-injection in general) dates back to

199454. The authors used this technique in a multilayer perceptron (MLP), and found

that when using this technique the dependence of the outputs on the weights is evenly

distributed across the weight set (i.e., NN regularization). In more recent years, sev-

eral works applying multiplicative noise-injection have emerged55 ,56 ,58 ,60. In partic-

ular, the device-variation-aware (DVA) training methodology in55, called in56 as multi-

plicative noise training (MNT), demonstrated updated versions of multiplicative noise-

injection in popular and recent DNNs. The DVA/MNT methodology injects noise to the

layer’s weights during the forward propagation training stage using a normal distribu-

tion (ϵ ∼ N (0, σ2)),ii creating a regularization effect. Still, they failed to indicate what

should be the procedure during back-propagation. In section 2.4, we will show how our

methodology outperforms the DVA/MNT one and why A-Connect could be seen as an

improved version of DVA/MNT, and multiplicative noise-injection techniques in general.

Modifications to training hyperparameters: Instead of injecting noise directly to the

NN parameters, some works have chosen to modify training hyperparameters to take

into account stochastic variations. As an example, the variation-aware training in64

ii Or the appropriate distribution according to the synaptic cells’ nature.
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included an L2-norm penalty to the cost function, based on the expected stochastic

variability using a linearization of a log-normal distribution. This penalty on the cost

function has been shown to be ineffective for large neural networks architectures in58.

Instead, the authors of58 used noise-injection within several operations of simple NN

layers (they modified the multiplication, addition, softplus, and sigmoid operations), but

also modified the cost function directly (not as a penalty). They only demonstrated

results for small NN (two-layer FC on the MNIST handwritten dataset), perhaps due to

the complex modifications proposed to the NN layers.iii

Adversarial attacks training: A recent work investigated adversarial attacks to mit-

igate stochastic variability by perturbing the parameters of the neural network during

training60. The latter is different to classical adversarial training methods where the

main objective is to attack the input space. Although their algorithm is effective in

producing models that are more robust to parameter noise, their adversarial training

method alone is not always better than DVA/MNT (as demonstrated by their exper-

iments, where they called this method as ‘Forward-Noise’). Their best results were

obtained when combining their method with DVA/MNT, which outperformed other ad-

versarial training algorithms71,72, as well as other training methods, such as Dropout73

and DVA/MNT.

Other works: There have been works related to spiking neural networks (SNNs)

which try to mitigate the stochasticity problem from a statistical training perspective as

71 Dongxian WU et al. “Adversarial Weight Perturbation Helps Robust Generalization”. In: NeurIPS.
2020.

72 Yaowei ZHENG et al. “Regularizing Neural Networks via Adversarial Model Perturbation”. In: CVPR.
2021.

73 Nitish SRIVASTAVA et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
JMLR (Jan. 2014).

iii The authors in58 consider the local process variation as correlated, unlike our work (and the majority
of multiplicative noise-injection papers) where we consider all process variation as uncorrelated. With
the former, the noise-injection during training is more complex as shown in58.
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well74,75,76,77. Although the nature of SNN is different from conventional artificial neu-

ral networks, we have found that some of their contributions are related to our work. As

an example, in75 regularization methods (such as DropConnect78) were found to be

successful in modelling stochastic behaviour of synaptic cells. According to our work, it

does make sense that these types of methods are effective in SNNs due to the binary

nature of their layers’ outputs. Including stochastic variability, either temporal or spa-

tial, may cause a spiking neuron to fire at a given time but not at another. The use of

DropConnect is a natural fit for spiking events since it can effectively model what would

happen in an SNN accelerator.

2.3. The A-Connect Methodology

In this section, we present A-Connect, a methodology to mitigate stochastic variability

present in neural network analog accelerators. We also show the intuition behind A-

Connect, using classical machine learning theories. Then, we extend the A-Connect

methodology for non-normal distributions. Finally, we calculate a global coefficient of

variation for the A-Connect stochasticity model.

2.3.1. A-Connect to Mitigate Stochastic Variability

Consider a generic deep neural network like the one presented in Figure 5(a), where

we include batch-normalization and activation layers after every hidden layer in the

network (the output layer is an activation layer itself, e.g., softmax layer). In general, for

the k-th hidden layer, a(k−1) represents its input (output from the preceding activation

layer), W(k) the synaptic weights of the layer, and a(k) the output of the subsequent

activation layer. In an ideal digital implementation, the weights W(k) are unmodified

74 D. QUERLIOZ et al. “Bioinspired Programming of Memory Devices for Implementing an Inference
Engine”. In: Proceedings of the IEEE (2015).

75 Emre O. NEFTCI et al. “Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines”. In:
Frontiers in Neuroscience 10 (June 2016).

76 N. ZHENG et al. “Learning in Memristor Crossbar-Based Spiking Neural Networks Through Modula-
tion of Weight-Dependent Spike-Timing-Dependent Plasticity”. In: IEEE Transactions on Nanotech-
nology (2018).

77 X. SHE et al. “Improving Robustness of ReRAM-based Spiking Neural Network Accelerator with
Stochastic Spike-timing-dependent-plasticity”. In: IJCNN. 2019.

78 Li WAN et al. “Regularization of Neural Networks Using Dropconnect”. In: ICML. 2013.
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Figure 5. The A-Connect methodology: a) A generic DNN showing training forward and backward
propagation paths; b) Creation and injection of error matrices/masks during forward propagation, and
inclusion of the same error matrix during backward propagation; c) Possible cases during weight
update using a gradient descent algorithm with and without considering the error matrices.

by the hardware executing the neural network, but in an analog implementation, the

weights will deviate from their ideal values due to hardware non-idealities, namely,

stochastic variability. We modeled this deviation as represented in Figure 5(b), by

multiplying (element-wise) the actual weights W(k) with several error masks Werr
(k). We

use these error masks during forward and backward propagation. Algorithm 1 shows

the steps followed during training with A-Connect:

• Forward Propagation: during forward-propagation, a mini-batch of inputs a(0)

are passed through the network. The weights Wt−1
(k) (as well as the biases bt−1

(k) ),

are multiplied element-wise by error matrices/masks randomly selected using a

probability distribution. Supposing the behaviour of the synaptic cells follow a

normal distribution (Werr
(k) ∼ N (1, c2

vlayer
)),iv this mask will have a mean equal

to 1 (ideal values), and cvlayer ∈ (0, 1], which represents the standard deviation

iv It is common to represent a physical quantity with a normal distribution, but if the actual distribution
is known, using this distribution instead may lead to better results.
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(or coefficient of variation) relative to the absolute mean of the layer’s weights

(cvlayer = σW/µW).v The algorithm creates an NM number of different error ma-

trices. The mini-batch is then split into NM sections and only one error matrix is

used per section. We show in section 2.4.1, that even for a number of 2 different

error masks (Werr
(k) and berr

(k)) per mini-batch, A-Connect is effective. In general,

between 2 to 16 different error masks are necessary, depending on the imple-

mentation.

• Backward Propagation and Parameter Update: with A-Connect, the param-

eters update can be done using a gradient descent algorithm (GD) by back-

propagating gradients of the cost function C(a∗, a∗pred) with respect to the layer’s

parameters (see Figure 5(a)). The gradients of the cost function with respect to

the weights and biases are multiplied by the error masks Werr
(k) and berr

(k), respec-

tively, to obtain the proper gradients for the parameters update (e.g., gWt−1
(k)

=

gŴt−1
(k)
⊙Werr

(k)). Finally, when back-propagating the gradients to the preceding lay-

ers (ga(k−1)), the masked weight matrix (Ŵt−1
(k) = Wt−1

(k) ⊙Werr
(k)) is used instead

of the weight matrix (Wt−1
(k) ). The gradients for each parameter are averaged

over the training examples in each mini-batch for the parameters update (e.g.,

Wt
(k) = Wt−1

(k) − ηgWt−1
(k)

, see Figure 5(b)).

2.3.2. Intuition Behind the A-Connect Methodology

The A-Connect methodology inherits the regularization properties that make multiplica-

tive noise-injection methods to perform well under stochastic variability54. Still, the A-

Connect methodology has two main contributions and differences with respect to other

multiplicative noise-injection techniques (as shown in Algorithm 1): the use of multiple

error matrices (instead of only one), and the inclusion of such error matrices during

backward propagation.

Multiple Error Matrices/Masks: Although previous works using multiplicative noise-

injection training have shown strong results against stochasticity by using one single

v The total stochasticity of the weights’ values (σW) is a combination of the spatial (σWmis ) and temporal

(σWnoise ) stochastic variabilities: σW =
√

σ2
Wmis

+ σ2
Wnoise

.
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Algorithm 1: SGD training with A-Connect to take into account device stochastic variability. C is
the cost function for the mini-batch, L is the number of layers. (⊙) denotes element-wise multipli-
cation. FW(k) and BW(k) are the forward and backward operations of the k-th layer, respectively
(e.g., fully-connected, convolution, etc.). BN and BNback, indicate batch-normalization and batch-
normalization backpropagation, respectively. Act and ActBack, indicate activation layer forward and
backpropagation, respectively.
Input: a mini-batch of Na inputs and targets (a(0), a∗), previous parameters Wt−1 (weights), bt−1 (biases), θt−1

(batch-normalization parameters) and learning rate η. The weights are initialized using Glorot technique79.
Output: updated parameters Wt and bt.
Forward propagation:

for k = 1 to L do
Werr

(k) ∼ N (1, σ2
layer = c2

vlayer(k)
)[1:NM ][weight size]

berr
(k) ∼ N (1, σ2

layer = c2
vlayer(k)

)[1:NM ][bias size]

# Split mini-batch into NM sections

N′a = ⌊Na/NM⌋
for i = 1 to NM do

c = (i− 1) · N′a + 1
d = i · N′a
# One error matrix per section

Ŵt−1
[i](k)
←Wt−1

(k) ⊙Werr
[i](k)

b̂t−1
[i](k)
← bt−1

(k) ⊙ berr
[i](k)

s[c:d](k)
← FW(k)

(
a[c:d](k−1)

, Ŵt−1
[i](k)

)
+ b̂t−1

[i](k)
end
sb(k) ← BN(s(k), θt−1

(k) )

a(k) ← Act(sb(k) )

end
Backward propagation:

Compute ga(L) =
∂C

∂a(L)
knowing a(L) and a∗

for k = L to 1 do
(gsb(k)

)← ActBack(ga(k) , sb(k) )

(gs(k) , gθ(k)
)← BNback(gsb(k)

, s(k), θt−1
(k) )

(ga(k−1) , gŴt−1
(k)

)← BW(k)

(
gs(k) , a(k), Ŵt−1

(k)

)
gb̂t−1

(k)
← gs(k)

for i = 1 to NM do
c = (i− 1) · N′a + 1
d = i · N′a
# Same error matrices as in forward prop.

gWt−1
[c:d](k)

← gŴt−1
[c:d](k)

⊙Werr
[i](k)

gbt−1
[c:d](k)

← gb̂t−1
[c:d](k)

⊙ berr
[i](k)

end
end

Parameter update:

Compute g = 1
Na

l=Na
∑

i=1
g[i]

θt
(k) ← θt−1 − ηg

θt−1
(k)

Wt
(k) ←Wt−1

(k) − ηgWt−1
(k)

bt
(k) ← bt−1

(k) − ηgbt−1
(k)

error matrix54 ,55 ,56 ,60, it is possible to obtain a higher network regularization, and

better performance, if more error matrices are used, as we will show experimentally

in section 2.4. The DropConnect work showed a similar result when concluding that
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one of the key components in their method was the selection of one mask per training

example, since a single mask per mini-batch did not regularize the model enough78.

In a general implementation of A-Connect, it would be possible to use one error matrix

per image in the mini-batch (NM = Na), but for large NN, there are practical issues due

to the computational time required for training.

As well, it is possible to understand the A-Connect using multiple error matrices method-

ology as an ensemble learner, similar to80 where the Dropout method73 is analyzed

from the ensemble learning theory. In ensemble learning, the idea is to use several

learners to achieve better performance. However, ensemble learning might be compu-

tationally expensive since many learners are needed to obtain an accurate result. A-

Connect is an ensemble learner since several networks can be obtained and trained by

randomly modifying the layers’ parameters during the training process. The networks

created during training try to mimic the actual synaptic distribution due to stochastic

variability. In short, instead of having many learners, with A-Connect it is like statisti-

cally training many networks that are sampled from a distribution, using a Monte Carlo

method.

Error Matrices/Masks During Backpropagation: Because our methodology uses a

multiplicative noise-injection approach, we can treat the values on the error masks as

constants during forward and backward propagation of a mini-batch. Hence, if the

weights used during forward propagation are Ŵ = W ⊙Werr, the gradient of the cost

function with respect to the actual weights W is gW = gŴ⊙Werr. In this way, A-Connect

updates the weights with the same proportion they were modified by the error masks.

Figure 5(c) shows two possible cases during a weight update (using a gradient descent

algorithm) with and without considering the error value applied to the weight during

forward propagation. Suppose that the cost C is a function of the weight W[1,1](k) as

represented by the black line (same for both cases). Now, let’s suppose that during

forward propagation, we use a single error matrix Werr
(k) and multiply the weight W[1,1](k)

by an error value Werr
[1,1](k). If during backpropagation the algorithm does not multiply

the gradient of the weight by the error value, it would be like scaling the cost function

80 Kazuyuki HARA et al. “Analysis of Dropout Learning Regarded as Ensemble Learning”. In: ICANN.
2016.
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by 1/Werr
[1,1](k), which in return scales the gradients by the same amount. For “case I”

(Werr
[1,1](k) < 1) this would effectively increase the learning rate and lead to drastic weight

updates, which could be a problem if the current weight value is close to the ideal value.

On the contrary, for “case II” (Werr
[1,1](k) > 1), the learning rate would be reduced and lead

to mild weight updates, which could be a problem if the current update is far from the

ideal value.

Now, when using many error matrices (obtained from a normal distribution) the effect of

the errors will cancel each other when averaging to obtain the weight gradient across a

mini-batch. In theory, using this approach would allow us to have similar results in both

cases: when the error matrices are considered, and when they are not considered

during backpropagation. The problem with this approach is that the number of error

matrices would be prohibitively high, making it impractical for training. We show in the

experiments in section 2.4 that the major effect of considering the error matrices during

backward propagation is not only on the network median accuracy performance, but

on the accuracy deviation, which is diminished (in the majority of cases) when the NN

is tested across different accelerators (e.g., Monte Carlo simulations).

2.3.3. A-Connect using a log-Normal Distribution

In this section, we will consider the case when A-Connect is trained with a log-normal

distribution, to investigate how to apply our methodology to memory technologies such

as ReRAM. In general, the actual resistance of a ReRAM follows a log-normal distribu-

tion of the form R = R0eθ, with R being the analog representation of the actual weights

in a ReRAM memory, R0 the target resistance, and θ ∼ N (0, σ2) a normal distributed

random variable with mean zero and standard deviation σ ∈ (0, 1]81,69.

In these type of asymmetrical distributions, the mean and the median are not the same.

Therefore, when applying a log-normal distribution to obtain the error masks (Werr and

berr) in Algorithm 1, the mean (target) value of the layer’s parameter will be modified by

a deterministic factor µr = E[eθ] =
√

eσ2. The latter is particularly troublesome when

using batch normalization, because the calculated mean and deviation of the layer’s

81 C. MA et al. “Go Unary: A Novel Synapse Coding and Mapping Scheme for Reliable ReRAM-based
Neuromorphic Computing”. In: DATE. 2020.
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output will not correspond to the values obtained during training.

Suppose a NN (trained using A-Connect with a specific level of stochasticity σ0) is

deployed in a ReRAM with a measured stochastic variability of σ1. Because of the

difference between the trained and the real deviation, the mean value of the NN’s pa-

rameters and layer’s output will be modified by the factor µr1 =
√

eσ2
1 . The performance

of the NN will be greatly affected even for a deviation of 10% on the ratio µr1/µr0.

Fortunately, a correction factor is enough to compensate for the error introduced since

it is deterministic. There are two ways of compensating for this error: the straightfor-

ward solution is to multiply all the NN’s weights and biases by the correction factor

ρ =
√

eσ2
0−σ2

1 . The latter would imply a complete modification of the NN’s parame-

ters. A more practical solution is to modify the batch normalization parameter only. A

batch normalization layer performs the following operations (using the same notation

as Algorithm 1):

ŝ0(k) =
s0(k) − µB0

σB0
−→ sb0(k)

= γŝ0(k) + β (1)

with s0(k) being the output of the forward operation of the k -th layer, µB0 the trained

mean, σB0 the trained deviation, and γ and β are the learned parameters during train-

ing. The sub-index 0 indicates that the A-Connect methodology used a stochasticity of

σ0. The idea with the correction factor is to obtain the same sb0(k)
after the batch nor-

malization. Therefore, when deploying the NN obtained with A-Connect at a stochastic

variability of σ0, the new batch normalization becomes:

ŝ1(k) =
s1(k) − µB1

σB1
−→ sb1(k)

= γŝ1(k) + β (2)

Since s1(k) = s0(k)/ρ, only by applying µB1 = µB0/ρ and σB1 = σB0/ρ, we obtain

ŝ1(k) = ŝ0(k), hence sb1(k)
= sb0(k)

, and the NN would be compensated.

2.3.4. Stochasticity Model - Coefficient of Variation Calculation

The stochasticity level (σ), used in the error matrices Werr in Algorithm 1, represents

the stochastic variability of an entire NN’s layer (σlayer). In this subsection, we will

define how the stochasticity of a layer is related to that of a synaptic cell (σc) by using
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the coefficient of variationvi (cv) at each level of abstraction (i.e., layer, weight, cell).

Considering a bit level representation of the NN layers’ parameters (i.e., weights and

biases), and that these parameters may be stored in synaptic multi-level cells (MLC),

the coefficient of variation for a layer (cvlayer) is different from that of a weight (cvw),

which in turn is different from the variability of an MLC (cvc), as shown in the levels of

abstraction hierarchy in Figure 6.a.

In a general sense, a number can be represented in a positional numeral system as

w(b) = [dn−1 . . . d1d0](b), with di ∈ [0, b− 1]. In this system, n is the number of digits

that represents the number, and b is the base of the numeral system, or equivalently,

the number of levels of the MLC. The number w(b) in base b can be represented in the

decimal system as:

w(10) =
n−1

∑
i=0

mi → mi =


dibi : Positional System

di : Unary

(3)

Since each MLC follows an independent random distribution, the coefficient of variation

of a single weight is (the weight being represented with an n number of MLCs, with each

vi As defined in section 2.3.1, the coefficient of variation is the ratio between the standard deviation and
the mean of a variable.
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MLC having b-levels):

c2
vw =

n−1
∑

i=0
m2

i(
n−1
∑

j=0
mj

)2 · c2
vc (4)

with cvc ∈ (0, 1]. Hence, it is possible to calculate the coefficient of variation for any

given weight value with any numeral system (wl(b)) using eqs. (3) and (4).

The next step is to obtain the layer’s coefficient of variation (cvlayer). For the latter, it

is important to consider the probability distribution of the weights and biases since the

NN’s parameter values are not uniformly distributed. Dividing the problem into the NN’s

layers, the cvlayer can be expressed as a function of the different cvwl
obtained from eqs.

(3) and (4). Therefore, the layer’s coefficient of variation is calculated as:

c2
vlayerk

=
N−1

∑
l=0

pW(wl) · c2
vwl

(5)

where pW(wl) is the discrete probability function of the quantized weights (wl) in the k -

th layer, and N is the number of weights (or biases) quantization levels (i.e., for a base

b, N = bn for the positional system, and N = (b− 1) · n + 1 for the unary system).

As an example, Figure 6.b shows the layer’s coefficient of variation (cvlayer) normalized

to that of the cell’s (cvc), using eq. (5). For more clarity, we provide the steps used to

obtain cvlayer/cvc for the case of N = 256 (see Figure 6.c):

1. We used the positional system described in eq. (3), with b = {2, 3, 4}.

2. We obtained the weight’s coefficient of variation cvw normalized to cvc for half of

all possible weights wl(10) = {0, 1, . . . , 127}.vii Notice how the maximum peaks

(cvw /cvc = 1) occur whenever wl(b) = [dn−1 . . . d1d0](b) has a single one of its

digits di active and the rest of its digits to zero (i.e., for any base, the peaks occur

at w(b) = dibi). On the other hand, there are (b − 1) distinguishable minimum

peaks between weights bi−1 and bi, which correspond to weights represented

using all the d0 to di−1 digits to non-zero values (i.e., for any base, the minimum

vii We only show half of the weights in Figure 6.c since we used a sign-magnitude representation;
negative numbers have the same cvw /cvc behavior as their positive counterpart, e.g., cvw /cvc is the
same for weights -37 and 37.
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peaks occur at w(10) = (di−1 + 1) · bi − 1). We can conclude that for any value

of wl, cvw ≤ cvc ,
viii reaching its maximum value (cvw = cvc) when only one device

is used to represent a weight, and getting lower as more devices are used to

represent the weights.

3. In the final step, we multiplied the (cvwl
/cvc)

2 to their corresponding probability

value to obtain the points for N = 256 in Figure 6.b. The discrete probability func-

tion pW(wl) used is a discretized approximation of a normal distribution N (0, s2),

with s = (N/2− 1)/3,ix as shown in Figure 6.c (the x-axis is in log-scale).

Note: The tendency in cvlayer/cvc (Figure 6.b) is a consequence on the behavior of the

minimum values achievable by cvw /cvc (Figure 6.c). The (b − 1) minimums be-

tween the bi and bi−1 weights tend to finite values when increasing the number

of levels N, and consequently, the number of digits (devices) n. The reader can

verify that these values (from eq. (4)) tend to:

(
cvw

cvc

)2

min(j)
=

(
j

j + 1

)2

+

(
b− 1
j + 1

)2

·
(

1
b2 − 1

)

with j = {1, . . . , b− 1} for b ≥ 3, and j = 0 for b = 2. Hence, the layer’s coefficient

of variation will tend to a value in between the maximum and minimum of cvw , or:

(
cvw

cvc

)
min(j)

<
cvlayer

cvc

< 1

Finally, by using equations (3) to (5) one can obtain the stochasticity levels for the layers

(cvlayer→σlayer), for the weights (cvw→σw), and for the cells (cvc→σc), depending on the

probability distribution followed by the cells. For example, for a variable with a normal

distribution N (1, σ2), the coefficient of variation is cv = σ; for a log-normal distribution

r = eθ, with θ ∼ N (0, σ2), cv =
√

eσ2 − 1.

viii This is a direct consequence of eq. (4), since
n−1
∑

i=0
m2

i ≤
(

n−1
∑

j=0
mj

)2

.

ix It is common that the layer’s parameters of a NN follow a normal distribution (e.g.,55 ).
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2.4. Experimental Results

In this section, we present the experiment results to validate the A-Connect methodol-

ogy. For this reason, we developed a library with the A-Connect methodology44.x The

library is available for Keras/TensorFlow, and contains the A-Connect modified versions

of fully-connected and convolutional layers. We used the Google Colab (Tesla K80

GPU) and Kaggle (Tesla P100 GPU) platforms to perform all the tests in this section.xi

2.4.1. A-Connect in Deep Neural Networks

In this set of experiments, we provide evidence on the A-Connect effectiveness in

DNNs. We used three popular architectures: LeNet-582 (trained in the MNIST dataset),

AlexNet83, VGG-1684, and ResNet-2085 (the last three trained in the CIFAR-10 dataset86),

and ResNet-1885 (trained on the CIFAR-100 dataset86 ).

General training conditions: We used stochastic gradient descent with momentum

of 0.9 (SGDM) as the training method for the experiments in this section. The train-

ing images for both datasets (i.e., MNIST and CIFAR-10)xii were divided into mini-

batches of 256 images each, with data-shuffling every epoch. The activation layer

implemented was ReLU. We used quantization-aware training modules provided by

TensorFlow (based on87) in conjunction with the A-Connect training methodology to

quantize all our layers’ parameters (i.e., weights and biases) and outputs to 8-bits.

82 Y. LECUN et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the
IEEE (1998).

83 Alex KRIZHEVSKY et al. “ImageNet Classification with Deep Convolutional Neural Networks”. In:
NIPS (Jan. 2012).

84 Karen SIMONYAN et al. Very Deep Convolutional Networks for Large-Scale Image Recognition. Ed.
by Yoshua BENGIO et al. 2015.

85 Kaiming HE et al. Identity Mappings in Deep Residual Networks. 2016. arXiv: 1603.05027 [cs.CV].
86 A. KRIZHEVSKY. “The CIFAR-10 and CIFAR-100 datasets”. In: https://www.cs.toronto.edu/ kriz/ci-

far.html/ (2009).
87 Benoit JACOB et al. “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-

Only Inference”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). June 2018.

x Also available as a pip package: pip install aconnect
xi All the experiments performed in this chapter can be found in https://github.com/onchipuis/

Tests_A-Connect.
xii Both MNIST and CIFAR-10 datasets consist of 50000 training images and 10000 test images. We

divided the original training sets into 40000 training-only images, and 10000 validation images.
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Specific training conditions: Due to memory limitations in Google Colab and Kaggle,

we made some modifications on the DNN architectures for the experiments in this

subsection. Below, we indicate specific training conditions for each DNN:

• LeNet-5: The model was trained with a learning rate of 0.01, and 20 epochs.

• AlexNet: the AlexNet architecture uses two fully connected layers of 4096 out-

puts before the output layer. We replaced these layers with two layers of 1024

outputs plus one layer of 512 ousputs. We used a resize layer as the first layer of

the model to upscale the 32x32 images from the CIFAR-10 dataset to 227x227.

The model was trained with an initial learning rate of 0.01 (decaying every 20

epochs), and 100 epochs.

• VGG-16: the VGG-16 uses three FC layers before the output layer (2-FC layers

of 4096 outputs in cascade, followed by an FC layer of 10 outputs). We replaced

these layers with 2-FC layers of 256 and 10 outputs, respectively. We used sev-

eral data augmentation techniques, such as normalization, random flip, random

translation, and random zoom. The model was trained during 50 epochs with a

learning rate using exponential decay, with an initial rate of 0.1, decaying by half

every 30 epochs. We also used a pre-trained model,xiii using the same training

conditions as before but during 90 epochs.

• ResNet-20 and ResNet-18: we used the ResNet version in85, implementing

the residual blocks with two 3x3 convolutional layers, with a batch-normalization

layer after the addition.xiv Both models (ResNet-20 and ResNet-18) were trained

through 120 epochs with an initial learning rate of 0.1 (decaying by a factor of ten

at epochs number 30, 60, and 100) without data augmentation. We also used a

pre-trained model, trained through 200 epochs, with an initial learning rate of 0.1

(decaying by a factor of ten at epochs number 80, 120, and 160), and with data

augmentation techniques such as normalization, random flip, random translation,

and random zoom.

xiii We started from a model trained in ImageNet.
xiv We also tried with the full pre-activation version ResNet-20 (the final version in85 ), but the results

were worse (e.g., around 5 percentage points lower at 70% of stochasticity with A-Connect). The
lack of a batch-normalization layer in the main signal path might be one of the possible causes.
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Table 1. DNNs training conditions with A-Connect methodology.

LeNet-5 AlexNet VGG-16 ResNet-20 ResNet-18

Dataset MNIST CIFAR-10 CIFAR-100
Method SGDM
Mini-batch size 256
Quant. (act./weights) 8b/8b
#Images (train./val./test) 40k/10k/10k
Initial LR 0.01 0.01 0.1 0.1 0.1
Decaying LR no yes yes yes yes
Epochs 20 100 50 120 120
Data Augmentation no no yes no no
Kernel Regularizer no no no L2(1e-4) L2(1e-5)
Transfer Learning no no yes no no
Pre-trained model no no yes yes yes
#Error Matrices (FC/Conv) 2/2 8/8 2/2 2/8 2/4
#Trainable params. 0.06M 14.8M 14.9M 0.27M 11.2M

Effect of the number of error masks/matrices

We performed several experiments to determine the effect of the number of error ma-

trices on the neural networks accuracy and training time. We varied the number of

error matrices up to 32 for LeNet-5, and up to 16 for AlexNet, VGG-16, ResNet-20, and

ResNet-18. We performed 100 Monte Carlo simulations per experiment.

The results in Figure 7 show that the improvement on the test accuracy and the in-

terquartile range almost settled after using 2 different error matrices per mini-batch.

The intuition behind this improvement (e.g., more than 3 percentage points when train-

ing at a 70% of stochasticity) is that using at least 2 different error matrices, gives the

necessary regularization for A-Connect to be effective.

The experiments also show the training time against the number of error matrices used,

as well as a comparison with the baseline NN training time. It is possible to see that

our algorithm incurs an additional training time that increases linearly with the number

of error matrices.xv

For the remaining experiments, we decided to use the best accuracy-time to train trade-

off for the LeNet-5, VGG-16, and ResNet-18 experiments in Table 2 (i.e., 2 error ma-

trices for LeNet-5 and VGG-16, and 4 error matrices for ResNet-18). On the other

xv The linear increment in time is a direct consequence on the code implementation shown in Algorithm
1. Because the mini-batch is split into NM sections (there are NM error matrices), we apply a for-
loop in order to use one error matrix per section. Since only the multiply-accumulation of multiple
images is performed in the GPU (parallel), when the mini-batch is split into more sections (more error
matrices), then, more calls are needed to the GPU. The algorithm then has the time complexity of a
for-loop, or O(NM), making it linearly dependent on the number of error matrices.
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Figure 7. Effect of the number of error matrices on the DNNs performance. Test accuracy for: a)
LeNet-5 on MNIST; b) AlexNet on CIFAR-10; c) VGG-16 on CIFAR-10; d) ResNet-20 on CIFAR-10; e)
ResNet-18 on CIFAR-100. Training Time for: f) LeNet-5; g) AlexNet; h) VGG-16; i) ResNet-20; j)
ResNet-18.

hand, we used the number of matrices that performed best in terms of accuracy (and

accuracy deviation) for the AlexNet and ResNet-20 experiments (i.e., 8 error matrices).

Table 1 summarizes the final set of training conditions for the DNN used in this chapter.

Results

Table 2 summarises the results obtained for the experiments of A-Connect in DNNs
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Table 2. Test accuracy rates on the MNIST, CIFAR-10, and CIFAR-100 datasets using popular DNNs:
LeNet-5, AlexNet, VGG-16, ResNet-20, and ResNet-18. The median (M) and the interquartile range
(IQR) are presented for each experiment (M/IQR). The best results (M-wise) for each simulated error
(σlayer) are highlighted.

Dataset DNN Sim. Error
(σlayer)

Baseline A-Connect Baseline A-Connect

30% 50% 70% 30% 50% 70%

MNIST LeNet-5a

0% 98.9%/0.0% 98.9%/0.0% 98.8%/0.0% 98.4%/0.0% 98.8%/0.0% 99.3%/0.0% 98.9%/0.0% 98.5%/0.0%
30% 88.7%/10.7% 98.5%/0.2% 98.6%/0.1% 98.3%/0.2% 87.7%/10.4% 98.8%/0.3% 98.7%/0.1% 98.2%/0.2%
50% 61.7%/18.5% 97.7%/0.6% 98.2%/0.3% 98.0%/0.3% 56.0%/18.43% 96.2%/2.3% 98.0%/0.5% 97.7%/0.5%
70% 46.7%/17.1% 96.3%/1.5% 97.6%/0.6% 97.4%/0.5% 30.1%/13.9% 78.7%/10.9% 93.8%/3.6% 96.4%/1.4%

CIFAR-10

AlexNetb

0% 84.1%/0.0% 82.3%/0.0% 81.7%/0.0% 80.6%/0.0% 84.1%/0.0% 85.1%/0.0% 83.0%/0.0% 80.0%/0.0%
30% 79.8%/4.1% 81.4%/0.2% 81.0%/0.2% 80.1%/0.3% 82.7%/0.8% 84.1%/0.5% 82.2%/0.7% 79.4%/0.7%
50% 71.9%/11.4% 79.4%/0.6% 80.0%/0.4% 79.8%/0.5% 75.4%/3.2% 80.6%/1.4% 80.7%/1.6% 78.0%/2.0%
70% 65.3%/14.3% 75.5%/1.4% 77.7%/0.8% 80.0%/0.6% 53.7%/8.1% 72.6%/3.2% 76.9%/2.0% 74.9%/3.1%

VGG-16c

0% 92.0%/0.0% 92.7%/0.0% 92.6%/0.0% 92.6%/0.0% 92.0%/0.0% 92.3%/0.0% 92.6%/0.0% 92.9%/0.0%f

30% 90%/1.0% 91.5%/0.4% 91.7%/0.5% 92%/0.4% 90%/0.9% 91.2%/0.4% 91.7%/0.4% 92.4%/0.2%f

50% 83.9%/3.0% 88.9%/0.9% 89.9%/0.7% 90.7%/0.6% 81.4%/3.6% 87.5%/1.4% 89.4%/0.8% 91.3%/0.5%f

70% 74.0%/6.9% 83.3%/2.4% 86.4%/1.8% 89.1%/0.7% 53.6%/13.1% 72.2%/5.9% 81.7%/2.4% 88.0%/0.9%f

ResNet-20d

0% 91.6%/0.0% 90.1%/0.0% 89.3%/0.0% 85.6%/0.0% 91.6%/0.0% 91.1%/0.0% 87.1%/0.0% 83.6%/0.0%g

30% 74.8%/7.3% 87.2%/0.6% 87.7%/0.4% 84.3%/0.9% 75.2%/8.3% 87.1%/1.3% 85.7%/0.6% 82.6%/0.7%g

50% 41.3%/13.5% 80.0%/2.5% 84.7%/0.8% 82.3%/1.6% 33.2%/13.3% 72.5%/5.6% 81.2%/1.5% 80.0%/1.1%g

70% 20.7%/7.7% 64.4%/7.0% 78.7%/2.6% 81.6%/1.2% 12.3%/3.9% 29.6%/10.9% 64.8%/6.8% 72.9%/3.1%g

CIFAR-100

ResNet-18e

(Top-1)

0% 70.3%/0.0% 71.7%/0.0% 71.8%/0.0% 68.4%/0.0% 70.3%/0.0% 71.7%/0.0% 71.8%/0.0% 68.4%/0.0%
30% 64.9%/0.5% 69.0%/0.4% 69.9%/0.5% 66.7%/0.8% 64.9%/1.7% 68.7%/0.4% 70.2%/0.3% 70.3%/0.3%
50% 54.8%/4.6% 63.9%/1.2% 66.6%/0.7% 65.3%/1.1% 51.0%/5.6% 61.3%/1.6% 65.8%/0.7% 67.6%/0.5%
70% 36.2%/8.2% 52.9%/3.2% 59.7%/2.0% 64.7%/0.8% 25.2%/8.0% 43.1%/4.1% 54.7%/1.7% 61.4%/1.0%

ResNet-18e

(Top-5)

0% 90.4%/0.0% 90.8%/0.0% 90.9%/0.0% 90.8%/0.0% 90.4%/0.0% 90.8%/0.0% 90.9%/0.0% 90.8%/0.0%
30% 87.8%/0.9% 89.1%/0.3% 89.6%/0.2% 87.6%/0.4% 87.8%/1.2% 89.2%/0.3% 89.7%/0.3% 90.3%/0.2%
50% 81.6%/3.4% 86.0%/0.7% 87.5%/0.5% 86.7%/0.7% 79.0%/4.4% 84.8%/1.0% 86.9%/0.6% 88.7%/0.4%
70% 65.2%/9.1% 78.1%/2.5% 82.7%/1.4% 86.2%/0.6% 54.1%/10.6% 72.1%/3.2% 79.1%/1.5% 84.5%/0.7%

Sim. Error Distribution Normal log-Normal

Training Times:
a Baseline: 2s/epoch; A-Connect: 5s/epoch. Log-Normal distribution trained up to 50 epochs.
b Baseline: 26s/epoch; A-Connect: 39s/epoch.
c Baseline: 13s/epoch; A-Connect: 19s/epoch.
d Baseline: 8s/epoch; A-Connect: 21s/epoch.
e Baseline: 31s/epoch; A-Connect: 41.5s/epoch.
f Trained with 100 epochs more, with an initial learning rate of 0.02 and restarted at 50 epochs. No random zoom data augmentation.
g Used transfer learning from the model trained at 70% stochasticity with normal distribution. Used 60 epochs, an initial learning rate of 1e-2, decreased

to 1e-3 at epoch 30.

Table 3. Equivalent cell’s stochasticity (σc) for different layer’s stochasticity (σlayer) and MLC levels (the
NN’s parameters used 8-bit quantization). The equivalencies are presented for cells’ stochastic
variability following normal/log-normal distributions.

Sim. Error
(σlayer)

Equivalent σc

1bit MLC 2bit MLC 4bit MLC 8bit MLC

30% 37.5% / 37.1% 35.3% / 35% 33.3% / 33.1% 30%
50% 62.5% / 60.6% 58.8% / 57.6% 55.5% / 54.8% 50%
70% 87.5% / 82.9% 82.4% / 79.3% 77.8% / 76% 70%

using Monte Carlo simulations.xvi Table 3 shows the equivalency between the layers’

stochasticity (σlayer, used during training and simulation) and cells’ stochasticity (σc,

xvi Monte Carlo simulations with 100 runs (1000 for LeNet-5 and AlexNet) were performed to test the
accuracy resilience of the trained networks against stochastic variations (we used the same 10000
test images for each of the 100 Monte Carlo runs). In each run, an error matrix is created per layer
and then multiplied (element-wise) with the layers’ parameters (weights and biases). The elements
of the error matrices were sampled randomly either from a normal distribution N (1, σ2

layer), or from

a log-normal distribution eθ, where θ = N (0, σ2
layer), and σ2

layer represents the layers’ stochastic
variation, different from the cells’ stochastic variation σc (see section 2.3.4).
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Figure 8. Accuracy resilience against layers’ stochasticity (σlayer) of NNs. Comparison between NN
baseline (red), trained with forward-noise only and single error matrix (light gray), trained with
forward-noise only and multiple error matrices (dark gray), and the trained version with the A-Connect
methodology (blue): a) VGG-16 on CIFAR-10; b) ResNet-20 on CIFAR-10; ResNet-18 on CIFAR-100 c)
top-1, and d) top-5.

following either normal or log-normal distribution) for parameters quantized at 8-bit, as

described in section 2.3.4 (e.g., a σlayer = 70% is equivalent to a σc = 79.3% for 2-bit

MLC and using a log-normal distribution).

As expected, A-Connect shows an improvement in the neural network median accuracy

and IQR compared to the baseline. With a 70% of stochasticity on the layers (σlayer),

the improvement of the median accuracy over the baseline oscillated around 15 to

68 percentage points (e.g., 78.6% with A-Connect at a σlayer = 70% using a normal

distribution compared to a baseline of 20.7% in ResNet-20). The performance boost

with A-Connect is even more notorious when looking at the deviation of the results,

where the IQR can be around 20X lower when using A-Connect (e.g., 0.6% with A-

Connect at a σlayer = 70% using a normal distribution compared to a baseline 14.3% in

AlexNet).
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For better visualization, Figure 8 shows the benefits of the A-Connect methodology in

terms of accuracy. We compare the ideal 32-bit floating-point (32fp), the 8-bit baseline,

the 8-bit multiplicative noise-injection during forward propagation (only) with a single

error matrix and with several error matrices, and the 8-bit A-Connect implementations

across multiple layers’ stochasticity levels. We can compare the effectiveness of multi-

plicative injection with only one error matrix during training (as in DVA/MNT method55

,56 ), as well as the major improvement in both accuracy and deviation when using

multiple error matrices, similar to the results obtained in Figure 7. In the majority of the

results, the fully A-Connect methodology (i.e., when including the error matrices during

backpropagation) shows the best performance in terms of accuracy and deviation. The

results show that the inclusion of multiple error matrices during forward and backward

propagation not only improves the median accuracy, but it has a major impact on the

deviation of the results.

2.4.2. Comparison with the DVA/MNT Method

In this subsection, we implemented the DVA/MNT method55,xvii56 for comparison with

the A-Connect methodology. The results presented in Table 4 corroborate the im-

provement of A-Connect over DVA/MNT. A-Connect is better than DVA/MNT in all the

experiments performed, except for ten cases (out of 74) where DVA/MNT is better by

≤1%, where nine of them are at 0% stochasticity, and one at 30% of stochasticity. The

accuracy improvement with A-Connect is more remarkable for higher stochastic vari-

ability (σlayer ≥50%). Furthermore, A-Connect presents less deviation in the accuracy

results, where the IQR is 2X to 8X less when using A-Connect.

Two main differences made A-Connect perform better than the DVA/MNT methodology:

first, DVA/MNT only considers the error injection during the forward propagation step,

as a difference to A-Connect, that also takes it into account during back-propagation

(see Algorithm 1). And second, DVA/MNT only uses a single error injection matrix per

xvii The baseline accuracy for AlexNet version in55 applied to the CIFAR-10 dataset is 86.8%. According
to the data provided by the authors, when using the DVA method in combination with dynamical fixed
point data representation, it is possible to achieve 80.7% average accuracy in the CIFAR-10 dataset
at σlayer =50% stochasticity.
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Table 4. Test accuracy rates on the MNIST, CIFAR-10, and CIFAR-100 datasets using popular DNNs:
LeNet-5, and AlexNet. Comparison between A-Connect and device-variation-aware (DVA), or
multiplicative noise training (MNT), method proposed in55 ,56. The median (M) and the interquartile
range (IQR) are presented for each experiment (M/IQR). The best performances are highlighted in
colors.

Dataset DNN Sim. Error
(σlayer)

DVA/MNT A-Connect DVA/MNT A-Connect DVA/MNT A-Connect
(Trained with σlayer@ 30%) (Trained with σlayer@ 50%) (Trained with σlayer@ 70%)

MNIST LeNet-5a

0% 98.9%/0.0% 98.9%/0.0% 98.6%/0.0% 98.8%/0.0% 98.5%/0.0% 98.4%/0.0%
30% 98.0%/1.6% 98.5%/0.2% 98.1%/0.5% 98.6%/0.1% 98.0%/0.4% 98.3%/0.2%
50% 94.3%/4.9% 97.7%/0.6% 96.3%/2.2% 98.2%/0.3% 96.8%/1.5% 98.0%/0.3%
70% 87.9%/10.8% 96.3%/1.5% 93.7%/4.8% 97.6%/0.6% 95.1%/3.3% 97.4%/0.5%

CIFAR-10

AlexNetb

0% 82.7%/0.0% 82.3%/0.0% 82.7%/0.0% 81.7%/0.0% 80.0%/0.0% 80.6%/0.0%
30% 80.3%/1.4% 81.4%/0.2% 81.3%/0.8% 81.0%/0.2% 78.3%/1.8% 80.1%/0.3%
50% 76.3%/3.8% 79.4%/0.6% 79.2%/1.7% 80.0%/0.4% 76.5%/3.3 79.8%/0.5%
70% 69.4%/5.9% 75.5%/1.4% 75.7%/3.0% 77.7%/0.8% 76.4%/3.8 80.0%/0.6%

VGG-16c

0% 92.2%/0.0% 92.7%/0.0% 92.2%/0.0% 92.6%/0.0% 90.9%/0.0% 92.6%/0.0%
30% 89.8%/0.8% 91.5%/0.4% 90.6%/0.7% 91.7%/0.5% 89.3%/0.9% 92.0%/0.4%
50% 83.3%/3.5% 88.9%/0.9% 86.8%/1.7% 89.9%/0.7% 86.4%/1.9 90.7%/0.6%
70% 74.6%/7.4% 83.3%/2.4% 80.7%/3.9% 86.4%/1.8% 84.0%/3.1 89.1%/0.7%

ResNet-20c

0% 91.2%/0.0% 90.1%/0.0% 90.7%/0.0% 89.3%/0.0% 86.3%/0.0% 85.6%/0.0%
30% 85.0%/2.2% 87.2%/0.6% 86.4%/1.6% 87.7%/0.4% 81.3%/3.2% 84.3%/0.9%
50% 69.4%/7.8% 80.0%/2.5% 75.8%/7.0% 84.7%/0.8% 72.2%/8.4 82.3%/1.6%
70% 46.5%/14.1% 64.4%/7.0% 58.2%/11.7% 78.7%/2.6% 65.7%/12.2 81.6%/1.2%

CIFAR-100

ResNet-18d

(Top-1)

0% 71.8%/0.0% 71.7%/0.0% 71.5%/0.0% 71.8%/0.0% 66.6%/0.0% 68.4%/0.0%
30% 68.2%/0.9% 69.0%/0.4% 68.9%/0.7% 69.9%/0.5% 64.0%/1.0% 66.7%/0.8%
50% 61.7%/2.1% 63.9%/1.2% 64.61.2%/1.7% 66.6%/0.7% 61.5%/1.7 65.3%/1.1%
70% 49.1%/3.7% 52.9%/3.2% 57.0%/2.4% 59.7%/2.0% 61.4%/1.9 64.7%/0.8%

ResNet-18d

(Top-5)

0% 90.7%/0.0% 90.4%/0.0% 90.3%/0.0% 90.9%/0.0% 87.7%/0.0% 90.8%/0.0%
30% 88.9%/0.4% 89.1%/0.3% 88.8%/0.4% 89.6%/0.2% 86.0%/0.6% 87.6%/0.4%
50% 84.9%/1.5% 86.0%/0.7% 86.1%/0.9% 87.5%/0.5% 84.1%/1.2 86.7%/0.7%
70% 75.6%/3.4% 78.1%/2.5% 80.6%/1.8% 82.7%/1.4% 83.9%/1.3 86.2%/0.6%

Training Times:
a DVA/MNT: 3s/epoch; A-Connect: 5s/epoch.
b DVA/MNT: 31s/epoch; A-Connect: 39s/epoch.
c DVA/MNT: 13s/epoch; A-Connect: 21s/epoch.
d DVA/MNT: 34.5s/epoch; A-Connect: 41.5s/epoch.

training mini-batch, while A-Connect uses more than one error matrix per batch (i.e.,

2 for LeNet-5, 8 for AlexNet, 2 for VGG-16, 8 for ResNet-20, and 4 for ResNet-18).

Figure 8 visually shows the improvement of A-Connect over these methods, where the

DVA/MNT method is represented by the light gray boxes.

2.4.3. Comparison with other ex situ Methods

In this subsection, we compare A-Connect to other ex situ training methodologies.

Table 5 shows the comparison between the A-Connect method and four different ad-

versarial attack training methods: adversarial regularization (AR60 ), adversarial reg-

ularization with multiplicative noise-injection during training (AR+FN60; FN stands for

‘forward-noise’), adversarial weight perturbation (AWP71 ), and adversarial model per-

turbation (AMP72 ). We used the data provided by the experiments in60 on the fashion
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Table 5. Test accuracy rates on the fashion MNIST dataset using the same CNN. The mean (M) and
the standard deviation (S) are presented for each experiment (M/S). The best results (M-wise) for each
simulated error (σlayer) are highlighted.

Sim. Error
(σlayer)

Baseline AR+FN*60 AR*60 AWP*71 AMP*72 A-Connect

(βrob = 0.1) (βrob = 0.25) (ϵpga = 0.0) (ϵ = 0.005) 30% 50% 70%

0% 91.85%/0.00% 91.88%/0.00% 92.11%/0.22% 92.35%/0.12% 91.34%/0.12% 91.88%/0.00% 91.93%/0.00% 91.06%/0.00%
30% 81.10%/4.26% 91.25%/0.22% 89.64%/0.65% 89.88%/0.95% 83.13%/0.22% 90.80%/0.43% 91.47%/0.22% 90.83%/0.27%
50% 55.26%/9.58% 89.36%/0.73% 85.96%/1.87% 82.59%/3.66% 60.60%/7.36% 88.037%/1.06% 90.30%/0.54% 90.37%/0.33%
70% 39.06%/7.77% 84.19%/2.63% 79.39%/4.40% 65.38%/8.27% 36.79%/7.42% 83.68%/2.39% 88.74%/0.92% 89.75%/0.53%

* Data taken from60.

MNIST dataset88,xviii using the same convolutional NN as described in their paper.xix

The A-Connect methodology is superior than the presented adversarial attack methods

on the fashion MNIST dataset, except for the case when there is not stochastic vari-

ability (AR and AWP were better than A-Connect by 0.44% and 0.18%, respectively).

The biggest difference in the accuracy performance is obtained at 70% of stochasticity,

where the A-Connect methodology is 5.56% above the AR+FN method, 10.36% above

the AR method, 24.37% above the AWP method, and 52.96% above the AMP method.

Although the results with A-Connect alone are better than the adversarial methods

shown, these methodologies are not mutually exclusive. In fact, AR+FN is an hybrid

between the AR and DVA/MNT method. It could be possible to obtain even better re-

sults if the DVA/MNT is replaced by A-Connect in a new AR+AConnect method. The

latter is out of the scope of this work.

Other statistical training approaches were reviewed as well, but their reported perfor-

mance results were inferior in comparison with the DVA/MNT and the AR+FN methods.

As an example, in58 results for one layer and two layers fully-connected neural net-

worksxx show 90% and 92% average accuracy with 3% and 1% standard deviation,

88 Han XIAO et al. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algo-
rithms. 2017.

xviii The work in60 also presented results in CIFAR-10 with ResNet-32, but only reported performance for
very low stochastic variability (≤10%), where the difference between the baseline performance and
their proposal is minimum (≤0.4%).

xix The CNN is composed of: 2 convolutional layers with kernel size of 4x4, stride of one, no padding,
and 64 filters each; the convolutional layers are followed by three fully-connected layers with 256, 64,
and 10 outputs, respectively. After each layer, we used a batch-normalization layer, followed by a
ReLU layer. After each convolutional layer (the batchnorm and ReLU) the CNN implements a max-
pool layer with pool size of 2x2 and stride of 2. The final layer is a softmax layer. Finally, we used 8
error matrices during A-Connect training.

xx Layers’ sizes are not stated.

54



Table 6. Comparison with in situ and hybrid methods using VGG-16 over the CIFAR-10 dataset at
σc = 0.889 using a log-normal distribution.

PM81 DVA+PM81 DigOff69 This Work

Method in situ hybrid hybrid ex situ
Accuracy 81.4% 87.94% 88.48% 88%a/ 0.93%b

a Obtained using noise model in section 2.3.4: b = 4, n = 4,
and N = 256.

b The median (M) and the interquartile range (IQR) are pre-
sented (M/IQR).

respectively, in the MNIST handwritten digits dataset at σc = 25% device stochasticity.

In the same paper, a comparison with the training approach in64 is also presented

for the same neural network architectures, same dataset, and same stochasticity level.

The results show 89% with a 3% standard deviation for the one layer NN, and 38%

average accuracy with 32% standard deviation for the two layers NN. Finally, and

as stated in section 2.2, the results in56 showed that the MNT method was superior

than the additive noise-injection approach57 ,59, both in the modeling of the PCM cells’

nature and in the accuracy performance in noisy environments.

2.4.4. Comparison with in situ and Hybrid Methods (log-normal distribution)

In this final set of experiments, we compared A-Connect with state-of-art in situ and hy-

brid (combination of ex situ and in situ approaches) methods to mitigate stochastic vari-

ability. Because these works focused their research in ReRAM devices, we used the

log-normal distribution in the A-Connect methodology (Werr∼ eθ with θ = N (0, σ2
layer),

see section 2.3.3). We implemented the VGG-16 model for the CIFAR dataset as

in section 2.4.1, but with the modifications implemented for the A-Connect trained at

σlayer = 0.7 for a log-normal distribution (see the notes in Table 2).

Table 6 shows the comparison of the A-Connect methodology with other methods to

mitigate stochastic variability, using either in situ approaches only, or in situ and ex situ

approaches. The work in81 showed the results for a priority mapping (PM) method,

where it is necessary to detect the variation of each ReRAM (in situ). They also showed

89 According to section 2.3.4, with an 8-bit parameter quantization using 4-levels (2-bits) MLCs, and
with cells’ stochastic variability following a log-normal distribution, a stochasticity of 80% at the cell
(σc) is equivalent to a stochasticity of 70% for the layer (σlayer).
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results using PM+DVA to improve the performance of their method. The authors used

an unary numeral representation with five 4-level (2-bits) MLCs (n = 5, b = 4, and N =

16). On the other hand, the work in69 presented a method in which the stochasticity

could be mitigated through digital offset compensation (in situ). The authors used 8-bits

to quantized the NN’s parameters with four 4-level MLCs (n = 4, b = 4, and N = 256).

We implemented the noise model presented in section 2.3.4,89 using the same nu-

meral representation that in69 for a fair comparison. The probability density function

of the NN’s parameters (pW(wl) in eq. (5)) was obtained from the pre-trained parame-

ters distribution.xxi The A-Connect methodology showed similar performance than the

methods using in situ and hybrid approaches (almost half percentage point lower than

the best performance in69 ). The deviation of the data is also very low (IQR of 0.93%)

even for such high stochasticity level (the deviation information is not available for other

works). These results further motivates the use of A-Connect, which may improve even

more when using it in combination with such in situ and hybrid approaches.

2.5. Conclusion

In this chapter, we have introduced a methodology to improve neural network resilience

against stochastic variability when deploying neural networks in imprecise analog ac-

celerators (i.e., synaptic cells). Furthermore, we developed a Keras/Tensorflow library,

with versions of fully-connected and convolutional layers using A-Connect. The library

can be coupled to standard machine learning platforms in a straightforward manner.

We have presented simulation results applying the A-Connect methodology to popu-

lar DNNs, such as LeNet-5 for MNIST dataset, AlexNet, VGG-16, and ResNet-20 for

the CIFAR-10 dataset, and ResNet-18 for the CIFAR-100 dataset. The experimental

evidence compiled in this work showed that the proposed methodology significantly

outperforms other ex situ, while achieving similar performance than in situ, and hybrid

approaches to mitigate stochastic variability in the literature.

xxi Using A-Connect with the unary representation in81 gives even better results.
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3. ANALOG MACHINE LEARNING ACCELERATOR

3.1. Introduction

Inference on-the-edge with machine learning (ML) algorithms arises as one of the most

effective solutions to handle big data for decision making. For this reason, the number

of interconnected devices and the energy requirements to deploy ML algorithms make

power consumption one of the main challenges for systems-on-edge (SoE) applica-

tions.

We previously discussed that analog computation in memory (CIM) acceleration has

shown to be a promising alternative to obtain ultra-low-power ML systems at a cir-

cuit level, with energy efficiencies up to 10X-100X better than their digital counter-

parts90,91,92. At a system level, multi-mode SoEs with always-on capabilities (e.g., ac-

tive mode, sleep mode) is a viable strategy to extend the lifetime of a battery-powered

system. The idea is to cut off power-hungry resources, leaving what is strictly neces-

sary to stay in a sleepy state.

Both circuit and system-level strategies can co-exist in what could be called an intelli-

gent SoE. In this type of device, the system can be awakened from its sleep through an

ML algorithm responding to an external stimulus (e.g., a voice command). In this case,

the ML accelerator should be fully functional in the always-on domain, which means

performing at ultra-low power levels. While working in the always-on regime implies

limited resources, like lower clock rates (<1MHz) and nanoampere biasing currents,

once the system awakes (i.e., active mode) the SoE should be able to perform at

higher speeds, hence higher currents.

There have been works using separate accelerators for different SoE modes (e.g., one

for always-on and one for active mode), implementing a custom design accelerator for

90 H. VALAVI et al. “A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-
Domain Compute”. In: IEEE JSSC 54.6 (June 2019), pp. 1789–1799.

91 Zhewei JIANG et al. “C3SRAM: An In-Memory-Computing SRAM Macro Based on Robust Capacitive
Coupling Computing Mechanism”. In: IEEE JSSC 55.7 (2020), pp. 1888–1897.

92 Daniel BANKMAN et al. “An Always-On 3.8 µ J/86% CIFAR-10 Mixed-Signal Binary CNN Processor
With All Memory on Chip in 28-nm CMOS”. in: IEEE JSSC 54.1 (2019), pp. 158–172.

57



the resources available for each mode?. Having two separate accelerators impose a

great area overhead on intelligent SoEs, which in principle should be as compact as

possible. To our knowledge, our work is the only study investigating multi-mode ML

accelerators performing efficiently at different current levels and clock rates. This work

makes the following contributions:

• An end-to-end analog datapath that avoids data conversion by staying in the

same physical domain, the current domain.

• An analog macro that incorporates not only MAC operations but commonly used

ML operations within the analog domain, such as ReLU and scaling (the latter

enables normalization operations), as well as memory capabilities for pipeline

execution.

• Since all analog operations in our macro are current-based, we implement a wide-

band current mirror that enables a wide range of operating frequencies while im-

proving the energy efficiency.

This chapter is divided as follows: section 3.2 shows an overview of the proposed ana-

log macro datapath at system level, as well as the detailed implementations of each

one of the block and modules that conform the ML macro at transistor level. Section

3.3 reviews the deterministic and stochastic sources of error, as well as the strategies

implemented to diminish them. It also shows the Monte Carlo simulation results of

each individual macro’s block and modules to understand the dominant factors of the

total stochastic and deterministic errors. Section 3.4 presents the results of the ana-

log macro’s layout, simulation results, and a performance comparison to state-of-art

macros at different technology nodes, as well as a performance estimation at a 28nm

technology. Finally, section 3.5 shows the conclusion of this chapter.

3.2. Computation-in-Memory Analog Macro

The common analog computation-in-memory (CIM) macro datapath has DACs to con-

vert the digital input activations into analog signals, an analog MAC or VMM (vector-

matrix multiplication) module, and ADCs to convert the MAC module’s output back to

the digital domain. Because our proposal is to avoid (as much as possible) analog-to-
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digital (AD) and digital-to-analog (DA) conversions for energy efficiency, it is important

to include commonly used ML operations, which are executed in-between MAC mod-

ules. We decided to include two operations in the analog domain (besides the MAC

operation): ReLU, and scaling.

Since typical ML applications involve complex and non-linear tasks, a non-linear func-

tion is applied over the output of the MAC operation. We included the ReLU activation

function (defined in eq. (6)) in our datapath because of its simplicity, as well as being

the most popular activation function in ML applications.

ya = ReLU(y) = max(0, y) (6)

We included another block in the datapath that can perform scaling operations. The

purpose of this block is to enable normalization methods, such as batch normalization

(BN)93. As an example, consider the MAC operation defined in eq. (7) (considering a

fully-connected layer), with a d-dimensional layer’s input x = (x(1) . . . x(d)):

y(k) = Wx(k) + b (7)

where W is the layer’s weights matrix, and b is the layer’s bias vector. It is possible to

obtain the output of the BN layer as:

ŷ(k) =
y(k) − µ

(k)
B√(

σ
(k)
B

)2
+ ϵ
−→ BN

(
y(k)

)
= γ(k) · ŷ(k) + β(k) (8)

where µ
(k)
B and σ

(k)
B are the batch mean and the batch standard deviation (obtained

during training) in the dimension k, respectively, and γ(k) and β(k) are the BN learned

parameters during training (ϵ is a small value to avoid division by zero). Because the

BN layer performs a linear operation, we can fold the BN parameters (as well as the

batch mean and standard deviation) back to the layer’s parameters. Re-writing eq. (8),

93 Sergey IOFFE et al. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift”. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-
15). Ed. by David BLEI et al. 2015.
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we obtain:

BN
(
y(k)

)
= α

(k)
s · (Wx(k) + b(k)f ) (9)

where α
(k)
s is the scaling factor (per dimension), and b(k)f is the folded-back bias:

α
(k)
s =

γ(k)√(
σ
(k)
B

)2
+ ϵ

and b(k)f = b− µ
(k)
B +

β(k)

α
(k)
s

(10)

Hence, by using a scaling factor α
(k)
s , we can effectively enable batch normalization

operations.

Figure 9.A shows the analog macro’s proposed datapath, including the ReLU and scal-

ing blocks. Supposing that the layer’s parameters (as well as the scaling factors) have

been loaded, the dataflow is as follows (using the notation on the multiplexers in Figure
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9):

a. The first thing to note is that the input of the mixed-signal datapath can be re-

trieved either from digital or analog memory (i.e., another macro’s output stored

in the analog memory in a previous cycle).

b. In a second instance, the MAC module can receive one of three different in-

puts: the digital converted inputs coming from the DACs; another macro’s out-

put stored in the analog memory in a previous cycle; the macro’s output (same

macro) stored in the analog memory in a previous cycle.

c. Then, the MAC’s output can either go to the single-ended analog ReLU operation,

or directly to a differential ADC.

d. The analog scaling block receives either the ReLU block’s output, or the value

stored in the analog memory in a previous cycle.

e. The scaling block’s output can either be saved in the analog memory, or it can be

converted by the ADC’s single-ended mode. The scaling operation is executed

after the ReLU activation function. The latter is equivalent to apply batch normal-

ization before ReLU (i.e., apply the ReLU function to eq. (9) and with α
(k)
s > 0):

ya = ReLU
(
BN

(
y(k)

))
= α

(k)
s · ReLU(Wx(k) + b(k)f ) (11)

f. After saving the scaling block’s outputs, the values can be used in the next cy-

cle either by another analog macro, or within the same macro (i.e., by the MAC

module, by the scaling block, or by the ADC single-ended).

g. The ADC can take three different inputs: MAC’s output (differential mode); the

scaling block output (single-ended mode); the value stored in the analog memory

in a previous cycle (single-ended mode).

h. After an AD conversion, the macro delivers the digital output to the top-level sys-

tem for further processing in the next cycle.

Figure 9.B shows an overview of the proposed accelerator macro’s hardware arrange-

ment. We use a CIM architecture (MAC and memory cell merged) to reduce power

consumption due to data movement. We employ 128 current DACs (Figure 9.B.1) to

convert the digital input activations (e.g., 128 pixels) into a current signal, and then
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mirror it into an array of cells. The latter allows performing several MAC operations

simultaneously over the same input current signal. The MAC cell is conformed by a

SRAM cell (binary weights), switches, and the V-to-I transistor (9T-SRAM cell shown

in Figure 9.B.2). If the value stored (weight) is a digital ‘+1’ or a digital ‘-1’, the mir-

rored current IM will flow to IMACp node or IMACn, respectively. By including biases at

each column, one can effectively have the output of a MAC operation in eq. (7) (with

x = IM).i

We also deploy 128 columns for an effective 128x128 binary weight matrix arrange-

ment. As shown in Figure 9.A macro’s datapath, after the MAC operation is com-

pleted, the output of each column can go to an analog ReLU+Scaling+Memory module

(ReScaM). Here the activation function ReLU, as well as an scaling factor αs, is applied

to the output current IMAC, enabling the operation in eq. (11). The output of the ReLU

and scaling operations is saved in a current memory to await for further instructions in

the next cycle. Finally, we also include one SAR-ADC per column with differential and

single-ended modes, to convert the columns output current to digital in any of the steps

specified previously in the macro’s datapath in Figure 9.A.

The following sections describe in more detail the modules used for the CIM analog

macro, namely: the input DACs, the ReScaM module, and the column’s SAR-ADC.

3.2.1. Input DACs and the Wideband Current Mirror (WBCM)

Figure 10.a shows the 4-bit current-steering DAC used to convert the layer’s digital

input activations (IA). We arranged 128 of the IA-DAC cells to drive the CIM macro’s

rows. We also used 4 rows of the MAC module to represent the layer’s bias current

(i.e., the b f value in eq. (11)). The bias cells in Figure 10.b set the currents for the

actual layer’s biases DAC, which is constructed with four 9T-SRAM cells (see figure

9.B.2). Similarly to how the VMM operation works, all the bias cells’ current multiplied

by a digital ‘+1’ will be accumulated in the IMACp branch, while the ones multiplied by a

digital ‘-1’ will be accumulated in the IMACn branch. The total column’s bias current can

be calculated as Ib f
[m] = Ib ·

3
∑

i=0
b fm [i]2

i, with m ∈ [0, 127] representing the column’s

i The currents IMACp and IMACn get subtracted in the column.
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number, and b fm [3 :0] is the binary representation of the column’s bias value (i.e., b fm [i]

can either be ‘+1’ or ‘-1’).

The arrangement of the current-steering DAC is not the conventional converter where

only one unit current (Iu) is multiplied through binary-scaled mirrors. As shown in

Figure 10.a, we used current mirrors with the same size in the IA DAC cell, but the

current through them is binary-scaled with respect to Iu to obtain IDAC. We decided to

use the latter implementation, rather than the conventional one, to reduce the mismatch

variability at the least significant levels of the DAC’s output,ii while achieving a similar

ii Normally the input data is normalized (e.g., by using a batch normalization layer), which adjusts the
mean value of the input data to zero. Furthermore, if the activation function used in the previous layer
is ReLU, almost half of the input data would be zero.
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cell size; instead of using four mirrors scaled to 1X, 2X, 4X, 8X,iii we use four mirrors

at the same scale of 4X. Figure 10.c shows the current biasing used for the DAC cell

rows’ drivers.

A crucial element to achieve an analog macro with high energy efficiency is the half

mirror in the DAC cells driving the corresponding macro’s row. Figure 11.a shows the

current-mode implementation for a single row of an accelerator array, used in several

ML accelerators’ macro to perform the multiply and accumulation (MAC) operation49

,94,95. The problem with the implementation in Figure 11.a is the restrictive load im-

posed by the multiple cells of the accelerator’s row, which limits the maximum operating

frequency and the minimum current level of the application. In this scenario, the DAC

current should be sufficient to drive the high-capacitive load. Furthermore, when the

input current is zero, and since there is no pull-down mechanism at this node, the only

way to discharge the high-capacitive node is through leakage current. For this reason,

the simple mirror implementation has an offset current which will be replicated several

times across the array49,iv affecting the energy efficiency of the application.

94 Mohammad BAVANDPOUR et al. “aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference
Accelerator”. In: IEEE JESSCDC 6.1 (2020), pp. 98–106.

95 Yi CHEN et al. “A 2.86-TOPS/W Current Mirror Cross-Bar-Based Machine-Learning and Physical
Unclonable Function Engine For Internet-of-Things Applications”. In: IEEE TCAS-I 66.6 (2019),
pp. 2240–2252.

iii The scaling is with respect to a unit transistor size of 890nm/180nm.
iv The work in49 uses an NMOS transistor controlled by a pulse signal, explicitly pulling down the

voltage of this node to reduce power consumption.
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We propose to isolate the DAC’s output node and the high-capacitive node with a buffer

(as shown in Figure 11.b) to improve the frequency response of the mirrors and to al-

low different current levels. We use a source-follower to drive the high-capacitive node

due to its compact implementation. The source-follower may be implemented using

the PMOS version, allowing lower voltages at the DAC’s output node (node 1 in Figure

11.b) to enhance the dynamic input range of the mirror96,97,98. Although this configura-

tion manages to have faster transient responses, the PMOS source-follower version is

not strong enough for pull-down purposes, reverberating in the energy efficiency as in

the simple mirror case. Hence, the NMOS source-follower is more convenient for this

application, allowing lower DAC currents.

To compare the performance of the WBCM against the simple mirrors within an ac-

celerator, a digital periodical pulse was set to control the 4-bits current steering DAC,

96 J. RAMIREZ-ANGULO. “Low Voltage Current Mirrors for Built-in Current Sensors”. In: IEEE ISCAS.
vol. 5. 1994, 529–532 vol.5.

97 S.S. RAJPUT et al. “A Current Mirror for Low Voltage, High Performance Analog Circuits”. In: AICPEF
36.3 (2003), pp. 221–233.

98 Ying-Chuan LIU et al. “A CMOS Current Mirror with Enhanced Input Dynamic Range”. In: ICICIC.
2008, pp. 571–571.
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making the DAC’s current (IDAC) vary between 0 LSB and 1 LSB. The latter simulates

the transient behavior of the layer’s input (IIA = IDAC) of a neural network by taking

into account that the two most common input values are the two lowest levels. The

voltage at the drain of each cell on the accelerator’s row (128 cells per row) was set to

a constant value. With this setup, one can estimate the behavior and the performance

of the accelerator down to a single MAC cell.v

As stated before, the WBCM’s buffer not only allows to have faster responses but to

pull down the high-capacitive node to lower gate voltages (see Figure 12.a), allowing

lower synaptic current levels (IM; see Figure 12.b). Figure 12.c shows the effect on

the frequency response of the proposed implementation (IM/IIA). Compared to the

simple mirror, the WBCM increases in ∼10X the bandwidth of the transfer function.

Furthermore, by modifying the bias current of the WBCM’s buffer, proportionally to the

unit current of the DAC, one can obtain a wide range and wideband accelerator. With

this approach, it is possible to maintain the energy efficiency across different current

levels and operation frequencies, as shown in Figure 12.d.vi The figure illustrates the

simulation results obtained for 180nm CMOS technology. The results show an incre-

ment of 20X on the energy efficiency per cell and 10X on the maximum operating

frequency (Figure 12.e), compared to the simple mirror.

3.2.2. Column ReLU, Scaling, and Analog Memory

This section presents the ReScaM (ReLU+Scaling+Memory) module, a multiple pur-

pose block that can sequentially execute three operations over the column output cur-

rent (obtained within the MAC module): the ReLU activation function, the scaling oper-

ation, and finally, current storage, working as an analog register to enable the macro’s

output for the next cycle.

Prior to the execution of any of the operations in the ReScaM module, it is necessary

to subtract the currents IMACp and IMACn to obtain the actual MAC output IMAC (the

output of the columns MAC operation is differential). We use a cascaded WBCM to

v This approach only takes into account the energy consumption of the MAC operation.
vi We calculated the energy per cell at the maximum operating frequency and using a single pulse

cycle. The supply voltage is 1.8V. The buffer’s energy is taken into account as well.
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mirror the IMACn current into the IMACp branch to successfully subtract the two currents

(subtraction cell in Figure 13, IMAC = IMACp − IMACnm
).

The ReLU function is applied to the IMAC current after the subtraction cell. The ReLU

function (eq. (6)) establishes that every negative input is clipped to zero at the output,

while positive values are bypassed to the output. The latter is achieved by making

the input current (Isin = IMAC) pass through a diode-connected transistor, or through

a current mirror, in which only the positive inputs are mirrored, while negative ones

are clipped to zero. The ReLU cell within the ReScaM module is implemented as a

cascaded WBCM mirror, as shown in Figure 13.

Scaling is applied to the Isin current after the ReLU function. By adjusting the number

of transistors in parallel at both ends of the WBCM mirror (the same one used for

the ReLU function), the mirror can be repurposed for scaling operations. One can

effectively multiply the current Isin by a scaling factor:

αs =
Isout

Isin

=
n + 1
d + 1

(12)

where n and d are the number of transistors in parallel (MN and MD) in the numerator’s

branch (mirror’s output) and in the denominator’s branch (mirror’s input), respectively

(see the numerator and denominator branches in Figure 13). We used 4-bit numbers

to represent n and d, which can be programmed by the user.vii

vii In particular, the numerator can be programmed per column. We used four additional rows in the
SRAM macro in Figure 9.B to enable storage of these numerator numbers.
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Finally, we add memory functionality on the ReScaM module, specifically within the

numerator’s branch (mirror’s output). During the scaling operation, the output current

(Isout = αs · Isin) is directed to the sinker block in Figure 13. This is also called the saving

state since the output current is being stored as the voltages at the intrinsic gate and

drain capacitors of the cascaded transistors on the numerator’s branch (mirror’s out-

put). During the loading state, the gates of the cascaded transistors are disconnected,

while Isout is steered to the output (Iout = Isout) for the next cycle operation. Two numer-

ator branches are deployed to enable continuous operation of the ReScaM module,

i.e., when one branch is in the saving state, the other branch is in the loading state,

and vice versa.

There are several non-idealities that affect the proper behavior of the ReScaM mod-

ule as an analog memory, being the charge injection and leakage charge the ones

with the major effects. We decided to use switches with dummy transistors to cancel

the charge injection effect, as shown in Figure 14.a. We also used non-overlapping

clocks (φ1 − φ2 in Figure 13) for both memory units (i.e., the load and save states

are non-overlapping). On the other hand, the leakage current was trickier since its

effect increases with higher temperatures. The major effect comes from the subthresh-

old conduction, which becomes the channel current leakage with drain-induced barrier

lowering (DIBL), that can be expressed as99 (for a PMOS transistor):

Ic = Ic0 · e(Vsg−|Vthp |)/nVT ·
(

1− e−Vsd/VT

)
·
(

eηVsd/nVT

)
(13)

where Ic0 = µCsthV2
TW/L, µ denotes the carrier mobility, Csth is the summation of the

depletion region capacitance and the interface trap capacitance (both per unit area of

the transistor gate), VT = kT/q, W and L denote the transistor width and length, η is

the DIBL coefficient, and n is the slope shape factor.

We used a low-leakage switch to reduce the effect of subthreshold current by setting

Vsd ≈ 0V voltage of the transistor when turned off100. The switch shown in Figure

99 F. FALLAH. “Standby and Active Leakage Current Control and Minimization in CMOS VLSI Circuits”.
In: IEICE Transactions on Electronics E88-C.4 (Apr. 2005), pp. 509–519.

100 Jiangtao XU et al. “Low-leakage analog switches for low-speed sample-and-hold circuits”. In: Micro-
electronics Journal 76 (June 2018), pp. 22–27.
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14.a (in blue) has two stacked PMOS transistors and a subthreshold buffer with its

input connected to the storage capacitor (Cpar, the intrinsic transistor’s gate capacitor).

When the main switch is turned on, the buffer’s output is not connected to the main

signal path, and the switch works normally. When the main switch is off, the output of

the source follower is connected to the internal node of the stacked transistors. We

managed to reduce the leakage current at higher temperatures around 25X to 50X, as

shown in Figure 14.b.

Figure 14.c shows the retention time of the memory unit against temperature for differ-

ent current levels.viii The retention time is the time during the loading state at which the

output current goes down to 90% of the saved current. The simulation results show

an improvement on the retention time of around 1.3X for temperatures below 60◦C,

and 3X to 50X above 80◦C, with the lowest retention time being 10µs at 125◦C. We

also performed Monte Carlo simulations (Figure 14.d) with process and mismatch vari-

ations at -40◦C, 27◦C, and 125◦C for an input current of 10nA.ix As expected, the worst

results are at 125◦C, having a median retention time of 37.1µs, with the lower quartile

at 28.1µs, and its lowest value at 4.1µs. The latter would allow operating frequen-

viii We used Isin = 10IIA (see Figures 9.B and 10.a).
ix This current level presents the highest retention time degradation due to leakage currents.
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cies higher than 250kHz when using the ReScaM module as a memory unit, which is

agreement with the result shown in Figure 12.d for IIA = 1nA.

3.3. CIM Analog Macro Non-idealities

The results from chapter 2 allow us to reduce power and area consumption since a

great amount of stochastic variability is permissible in exchange of a small detriment

in accuracy performance. In a similar fashion, deterministic error can be completely

removed by considering it during the NN training stage. Because of the latter, we opted

for simplified design choices in many of the CIM analog macro cells and modules,

focusing mainly in area reduction and energy efficiency. For example, Including an

extra cascode transistor in the synaptic cells would reduce absolute and relative mirror

ratio’s error, but it would increase the area of the analog macro around 15%. We took

this trade-off into consideration and use a co-design approach where errors derived

from minimalist hardware design are remedied at software level.

Translating the ideal VMM or MAC operation from eq. 7 to current-mode implementa-

tion (i.e., y = IMAC, W = wi,m, and x = IM), and considering the output current of a

single column, one can obtain (excluding column biases):

IMACm = IMACpm
− IMACnm

=
Nrow

∑
i=1

(
wpi,m IMi,m − |wni,m |IMi,m

)
(14)

with m ∈ [0, 127] representing the macro column’s number, Nrow the number macro’s

rows, and wpi,m = max(0, wi,m), wni,m = min(0, wi,m) as the positive and negative

layer’s weights, respectively. The synaptic cell current IMi,m can be represented as:

IMi,m = [(NDACi · Iu) · αDi ] · αwi,m (15)

where IDAC0i = NDACi · Iu is the ideal i-th row input activation DAC output, αDi is the

IA DAC gain factor (αDi = IDACi /IDAC0i), and αwi,m is the synaptic cell gain factor

(αwi,m = IMi,m /IDACi). Both αDi and αwi,m gain factors are caused due to non-idealities,

either deterministic or stochastic.

Figure 15.a.1 (top) and Figure 15.a.2 (top) show the simulated gain factors αDi and
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Figure 15. MC simulation results analog macro’s modules and cells. a) DAC module and synaptic cell:
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αwi,m , respectively, across different unit currents Iu.x Ideally, these should be unitary

gain factor, but due to deterministic errors, the absolute values deviate from the ideal

one. The main cause of this absolute error is channel length modulation. Since we

used cascode mirrors in the current steering DAC (see Figure 10), channel length

modulation is not as significant in αDACi (≤5%) as it is in αwi,m , where the error can go

up to 70% for high temperatures at the low current-mode (Iu = 1nA).

On the other hand, the absolute error is not as important as the relative error between

the mirrored currents flowing to the IMACpm
and IMACnm

branches.xi Because the volt-

age at node IMACpm
is different from that at node IMACnm

, the drain voltages of the

synaptic cell mirrors vary when steered from one branch to the other, creating the er-

ror. Figure 15.a.2 (top) shows both IMpi
/IIAi and IMni

/IIAi ratios (IIAi = IDACi), and

how they change with respect to the unit current Iu. Fortunately, the relative error is

not as significant as to be harmful to the accuracy performance of the DNNs trained

in this thesis (1− IMpi
/IMni

≤ 10%, according to simulations). Even without consid-

ering the relative error during the DNNs training stage, the network showed the same

performance as with the ideal case.

Leakage current is another important deterministic error for energy efficiency, as well

as an important factor for the NN accuracy performance. Leakage current translates

at software level to having a small real value when the layers’ input activation is zero.

Figure 15.a.1 (bottom) shows the leakage current at the output of a single synaptic

cell (combination of IA DAC and synaptic cell) relative to Iu. As shown in the figure,

the error is more notorious at high temperatures. On the other hand, its relative ef-

fect can be diminished by increasing Iu. The DNNs trained in this thesis showed the

same accuracy performance when zero input activations were replaced by real values

lower than 0.4X the least significant discrete value. According to simulations, only high

temperatures (>80◦C) and low current-mode operation would show a degradation in

accuracy performance due to leakage effect. Still, it is possible to remove it completely

x All simulations in Figure 15 show different current and frequency domains for multi-mode SoE oper-
ation. Different Iu, IDAC, ICM, or Isin state a different current-domain of the macro’s operation.

xi Absolute errors can be translated to linear factors within the MAC operation, which do not affect the
accuracy performance behavior of the NN.
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by considering during NN’s training.

Figure 15.a.1 (blue and right axes) and Figure 15.a.2 (bottom) show the stochastic

spatial variability (mismatch) of the DAC module and synaptic cell gain factors, respec-

tively. As expected, the stochasticity in the synaptic cells (≤53%) is greater than the

one in the IA DAC modules (≤22%) since the the synaptic cells use smaller devices

to enable a more compact CIM macro. In fact, the synaptic cells’ stochasticity are the

dominant error in the entire system.

Figure 15.a.3 shows the effect of the deterministic and spatial stochastic errors for

the DAC’s output only (top), and the DAC with the synaptic cell (bottom). The figure

presents the transfer function summary for 100 Monte Carlo simulations, highlighting

the mean transfer curve, the standard deviation limits, and the maximum and minimum

limits. The fan-like shape is characteristic of a multiplicative error (e.g., the mismatch in-

duced error). It can be seen that the error span decreases with higher Iu, which allows

the analog macro to obtain better accuracy performance by increasing the current-

mode of the system. Since the operating frequency is increased proportionally to the

current, the analog macro is capable to maintain a similar energy efficiency across

different current-modes, as we will show in section 3.4.

Finally, we show the output of the synaptic cell temporal stochastic variability in the form

of noise-to-signal ratio (N/S) in Figure 15.a.4. Compared to the spatial stochasticity, the

temporal one is almost negligible (≤3%).

Now, to obtain the actual IMACm output we used the subtraction cell in Figure 13. We

then obtain:

IMACm = IMACpm
− αrm · IMACnm

(16)

We managed to have a very low αrm deterministic error due to the use of a cascode

WBCM mirror, as shown in figure 15.b.1 (≤0.6%). As well, the spatial stochasticity

(≤12%) is lower than that of the synaptic cells since we used bigger transistors (16X),

considering that is only a single subtraction cell per column. Recalling that the output

of the subtraction cell goes directly to the input of the ReScaM module (Figure 13),
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IMACm experiences the ReLU operation, hence:

Isin = ReLU(IMACm) = max(Ileaks , IMACm) (17)

where Ileaks is the leakage current at the input od the ReScaM module (this value is

only used for power consumption calculations).

Figure 15.b.2 shows the output of the subtraction cell (ReScaM module input) where

the ReLU transfer function can be distinguished clearly. The figure presents a summary

of 100 Monte Carlo simulations across 4 different current-modes, evidencing the effect

of the αrm spatial stochastic variability. Notice that this effect does not manifest the

fan-like shape present in the IA DAC and synaptic cells. The latter is because IMACm is

the subtraction of two currents with multiplicative errors. Finally, Figure 15.b.3 shows

the noise-to-signal ratio of the subtraction cell. As expected, the temporal stochastic

variability is lower than the spatial one (10X lower).

The following module in the analog macro’s signal path corresponds to the ReScaM

module. When applying the scaling factor from eq. (12) with the circuit in Figure 13,

the actual scaling factor of the ReScaM module becomes:

αsm =
Isoutm

Isinm

=
1

d + 1
· [(1 + ϵs) · n + (1 + ϵos)] (18)

where n and d are the ideal numerator and denominator of the scaling factor, respec-

tively; ϵs and ϵos are the ReScaM gain and offset errors, respectively.xii

Figure 15.c.1 shows the deterministic (left) and stochastic (right) variabilities for ϵs (top)

and ϵos (bottom), for two denominators numbers (d): 7 (blue) and 15 (black). These

errors include both static and dynamic errors, as well as errors due to the memory

retention, as analyzed in section 3.2.2. The most dominant deterministic error corre-

sponds to the settling behavior of the module (dynamic error).xiii This error is more no-

ticeable when looking at the offset error in Figure 15.c.1, mainly at lower current-mode

xii In principle, ϵs and ϵos depend on n, d, and the input current level Isinm
. We decided to use the

maximum scalar error values instead of a complex function.
xiii In other words, the ReScaM module (and the analog macro in general) can have lower errors at lower

operating frequencies at the expense of energy efficiency.
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and high temperature, since the leakage current at the output is close to the actual

output current at the lowest scaling factor, and because the settling time is larger at

lower currents.

Similar to previous modules and cells, Figure 13.c.2 shows the fan-like shape present

in the scaling factor transfer function due to deterministic and spatial stochastic errors

at different current and frequency modes. And finally, Figure 13.c.3 shows the noise-

to-signal ratio, where it can be seen that the temporal stochasticity is <2%.

3.3.1. Calculation of the Analog Macro’s total Stochasticity

In this subsection we calculate the total stochastic variability caused by all the macro’s

modules non-idealities contributions. We use the result in the A-Connect methodology

chapter (section 2.3) to properly model the stochasticity of the system.

Using equations (14)-(18), the output of the analog macro’s signal path (ReScaM mod-

ule’s output) can be expressed as:

Isoutm =
Nrow

∑
i=1

(Isoutpi,m
− Isoutni,m

)

Isoutpi,m
= wpi,m · IDAC0i · αDi · αwpi,m

· αsm

Isoutni,m
= |wni,m | · IDAC0i · αDi · αwni,m

· αrm · αsm

(19)

where the αDi , αwi,m , αrm , αsm are the error sources of the analog macro’s modules.

When using the A-Connect methodology proposed in chapter 2, the error matrices

model the stochasticity of the layer’s weights and biases. The latter is equivalent to

refer the stochastic variability to Isoutp and Isoutn in eq. (19) as follows:

σ2
sp =

∣∣∣∣∣∂Isoutpi,m

∂αDi

∣∣∣∣∣
2

· σ2
αD

+

∣∣∣∣∣∂Isoutpi,m

∂αwi,m

∣∣∣∣∣
2

· σ2
αw +

∣∣∣∣∣∂Isoutpi,m

∂αsm

∣∣∣∣∣
2

· σ2
αs

σ2
sn =

∣∣∣∣∣∂Isoutni,m

∂αDi

∣∣∣∣∣
2

· σ2
αD

+

∣∣∣∣∣∂Isoutni,m

∂αwi,m

∣∣∣∣∣
2

· σ2
αw +

∣∣∣∣∣∂Isoutni,m

∂αrm

∣∣∣∣∣
2

· σ2
αr +

∣∣∣∣∣∂Isoutni,m

∂αsm

∣∣∣∣∣
2

· σ2
αs

(20)

where σsp and σsn are the total stochastic variability of Isoutp and Isoutn , respectively, and

σαD , σαw , σαr , σαs are the analog macro’s modules stochasticity. Solving eq. (20), and
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using the coefficient of variation (cv = σ/µ), we obtain:

c2
vsp = c2

vαD
+ c2

vαw
+ c2

vαs

c2
vsn = c2

vαD
+ c2

vαw
+ c2

vαr
+ c2

vαs

(21)

In terms of number of error factors, there is a mismatch between cvsp and cvsn , caused

by the presence of the mirror current ratio αr of the subtraction cell. Using the Isoutn in

eq. (19), as well as considering only the stochasticity of αr, and knowing that Isoutp =

IsCM + Isd /2 and Isoutn = IsCM − Isd /2, we can obtain:

∣∣∣∣∣∂Isoutn

∂αr

∣∣∣∣∣
2

· σ2
αr = I2

soutn
· c2

vαr
≤

c2
vαr

2
· (I2

soutp
+ I2

soutn
) (22)

With the inequality above, we can split the stochastic contribution of αr between Isoutp

and Isoutn in an equitable way. Then, eq. (21) becomes:

c2
vsp = c2

vsn = c2
vαD

+ c2
vαw

+
c2

vαr

2
+ c2

vαs
(23)

With eq. (23), we can find the layer’s coefficient of variation cvlayer used in the A-Connect

methodology (see algorithm in section 2.3). Figure 16 shows the relative contributions

of each of the error sources to the total macro’s stochasticity (or layer’s coefficient of

variation). As expected, the dominant source of stochasticity comes from the spatial

stochastic variability: synaptic cells (between 65% and 75% of the total amount), IA

DAC cells (10%-20%), ReScaM module (6%-16%), and subtraction cell (1.5%-5%). On

the other hand, the combination of the temporal stochasticity only contributes between

0.5% to 2% of the total macro’s stochasticity. Finally, the effect of the current levels

and operating frequencies (as well as temperatures) can be distinguished as well. The

latter not only allows the analog macro to work in a multi-mode SoE but to achieve

better accuracy performance at higher current-modes with the same energy efficiency.
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Figure 16. Relative stochasticity contribution from all macro’s modules and cells at three different
temperatures (-40◦C, 27◦C, 125◦C), and three different current-modes and operating frequencies.

3.4. Results

In this section, we will present the simulation results of the ML analog macro accelera-

tor, as well as a comparison with the state of the art.

Figure 17 shows the layout of the analog macro, using a TSMC 180nm CMOS technol-

ogy node. The entire analog macro occupies an area of 1.09mm x 0.85mm, with the

following distribution: 59% SRAM macro, 12% IA DAC cells, 12% OA SAR-ADCs, 10%

ReScaM modules, 2% subtraction cells, and 5% biasing. The analog macro is capable

of executing 16384 (128x128) MAC operations simultaneously.

To test the performance of the analog macro, we used the LeNet-5 architecture on

the MNIST dataset (see Figure 18.a), trained with binary weights (see chapter 2). We

only implemented the last FC layer on the analog macro since the simulation time

was prohibitively high for larger layers. The last FC layer consists of a vector-matrix

multiplication with 84 input activations and 10 output activations (classes). Only 100

images were passed through the network. We then obtained the input of the last FC

layer from Tensorflow and quantized these values to use them for the simulations. We
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Figure 17. Analog Macro’s layout: a) input activation DAC cell; b) synaptic 9T-SRAM cell; c) output
column’s subtraction cell; d) output activation ReScaM module; e) output column’s SAR ADC.

trained the LeNet-5 network using the A-Connect methodology (section 2.3) for a 50%

layer stochasticity (based on Figure 16) and binary weights (all layers were trained

under these conditions). Finally, we measured the 10 output currents IMACp and IMACn ,

subtracted their values (IMAC = IMACp − IMACn), and applied the softmax classification

layer to obtain the prediction of the neural network.

Figure 18.b (top) shows the 10 FC layer’s output currents (IMAC) at 27◦C, 300kHz, and

using 1nA unit current for the IA DACs. The figure shows at each time frame (clock

cycle) the expected prediction value (depicted in a circle), and how the corresponding

column/output current activates to the highest value among the ten currents (e.g., when

the input image is a 6, the 6th column current fires-up). We also present in Figure 18.b

(bottom) how the ReScaM module would work, although the last FC layer does not

make use of it. It is possible to see the ReLU activation working (i.e., negative current

values clamp to zero), as well as the memory function, where the saving and loading

states are clearly distinguished. Specifically, in the loading state, the saved output

current is retained to be used in the next cycle by another operation (see section 3.2).xiv

xiv The scaling factor in this simulation was set to one.
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Figure 18. Simulation of a fully-connected layer implemented on the analog macro. a) We used the last
FC layer of the LeNet-5 network architecture for the circuit simulation. b) Subtraction of the MAC
currents (top) and ReScaM module operation (bottom) using 1nA unit current at 300kHz.

Figure 19 shows the simulation results in terms of energy efficiency (left Y-axes) and

accuracy performance (right Y-axes in blue). We simulated across different supply volt-

ages (0.9V-1.8V; X-axes), three different temperatures (-40◦C, 27◦C, 125◦C), different

IA DAC unit currents (1nA, 10nA, 100nA), and and across several operating frequen-

cies (200kHz-30MHz), scaled according to the current level. The simulations in the

figure are not Monte Carlo simulations, hence, no stochasticity is present. Under these

circumstances, and considering that only 100 validation images were used for the sim-

ulations, any validation accuracy above 95% is considered a success.

Table 7 shows a comparison between state-of-art SRAM-based ML macros and the

summarized macro’s simulation results obtained in this work. We chose three different

current-frequency levels from the successful results presented in Figure 19 (i.e., accu-

racies above 95% at 27◦C). Because it is difficult to compare results across different
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Figure 19. Simulated energy efficiency and validation accuracy for the LeNet-5 last FC layer, on the
MNIST dataset. The simulations were performed using different supply voltages (0.9V-1.8V), different
IA DAC unit currents (1nA, 10nA, 100nA), at three temperatures (-40◦C, 27◦C, 125◦C), and across
several operating frequencies (200kHz-30MHz).

technologies, we used the benchmark proposed in101, where different works were com-

pared using energy efficiency, area efficiency, throughput, and the information content

before the ADC, with the first three metrics scaled to the bit-precision used to repre-

sent the input activations and weights (e.g., 1b-TOPS/W = TOPS/W∗IN-precision∗W-

precision).

101 Naresh R. SHANBHAG et al. “Comprehending In-memory Computing Trends via Proper Benchmark-
ing”. In: 2022 IEEE Custom Integrated Circuits Conference (CICC). 2022, pp. 01–07.

102 I. A. PAPISTAS et al. “A 22 nm, 1540 TOP/s/W, 12.1 TOP/s/mm2 in-Memory Analog Matrix-Vector-
Multiplier for DNN Acceleration”. In: 2021 IEEE Custom Integrated Circuits Conference (CICC).
2021, pp. 1–2.

103 Yu-Der CHIH et al. “16.4 An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision
Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications”. In: 2021 IEEE Inter-
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Table 7. Performance comparison between CIM SRAM-based ML macros.

Valavi1990 Seok2091 Papistas21102 Chih21103 Lee21104 This Work
Technology 65nm 65nm 22nm 22nm 28nm 180nm
Cell Type 8T1C 8T1C 18T 6T+D 10T1C 9T

Area (mm2) 12.6 0.081 1.95 0.202 0.51 1.09mm x 0.85mm
(0.9mm x 0.6mm)a

Mem. Capacity 295kB 2kB 256kB 8kB 36kB 2kB
Input Precision (BIN) 1b 1b 7b 4b 5b 4b
Weight Precision (BW) 1b 1b Ternary 4b 1b 1b
Output Precision (BOUT) 1b 1b 6b 16b 8b analog / 1b-4b
Op. Frequency 100MHz 50MHz 22.5MHz 100MHz 4.17MHz 200kHz 1.5MHz 15MHz
Supply Voltage 0.94V 1V 0.6V 0.72V 0.9V 1.2V 0.9V 1.2V
1b-TOPS/Wb 866 671.5 20747.2 1424 5796 800c 1076c 760c

1b-TOPS 18.876 1.638 64.35 52.8 6.14 0.013 0.098 0.98
1b-TOPS/mm2 1.498 20.2 33.28 261.4 12 0.014 0.105 1.1

a SRAM macro only (128x128 memory cells).
b 1b energy efficiency (1b-TOPS/W = TOPS/W∗BIN ∗ BW).
c With analog output precision.
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Figure 20. Comparison with other CIM SRAM-based macros (adapted from101 ): a) 1b-TOPS/W vs.
1b-TOPS/mm2 categorized by technology node; b) 1b-TOPS/W vs. 1b-TOPS; c) 1b-TOPS/W vs. Bl(col).

We also included our results in three figures adapted from101 (see Figure 20), where

we can visually compare our work with several macros published in relevant confer-

ences (e.g., ISSCC, VLSI, CICC) in the last two years (the works on Table 7 were in-

cluded as well). The figures show the behavior of the macros energy efficiency versus

the area efficiency (Figure 20.a), versus the macros’ throughput (Figure 20.b), and ver-

sus the information content before the ADC (Figure 20.c).xv Although we used 180nm

in our work, the results are compatible with state-of-art macros in 65nm (green cluster),

national Solid- State Circuits Conference (ISSCC). vol. 64. 2021, pp. 252–254.
104 Jinseok LEE et al. “Fully Row/Column-Parallel In-memory Computing SRAM Macro employing

Capacitor-based Mixed-signal Computation with 5-b Inputs”. In: 2021 Symposium on VLSI Circuits.
2021, pp. 1–2.

xv According to101, the information content before the ADC is Bl(col) = BIN + BW + log2(N), where N
is the number of dot-products per column.
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maintaining a relatively similar energy efficiency (760-1076 1b-TOPS/W) across a wide

band of operating frequency (200kHz-15MHz), which allows the macro to have a broad

range of area efficiency (0.014-1.1 1b-TOPS/mm2) as well as throughput (0.013-0.98

1b-TOPS). In particular, our work stands out from others when looking the clusters in

Figure 20.a. The clusters show that increasing either the energy or area efficiency

in the same node, would imply the decrement of the other metric (i.e., the energy ef-

ficiency is almost inversely proportional with respect to the area efficiency within the

same technology node, as shown by the negative slope in the oval clusters) while our

proposal maintain the energy efficiency even while increasing the area efficiency.

Furthermore, we also estimated our macro’s behavior in a 28nm technology by scaling

our results. We used a scaling factor λ2 (i.e., λ = 180/28) for the energy efficiency

and the throughput, strategy used in105. The area in 28nm is estimated by multiplying

the area in 180nm by 1/λ2, which gives a scaling factor for the area efficiency equal to

λ4. The ideal results using the scaling factors are presented in Figure 20 as red-empty

squares. Because these values are rough estimations, we calculated a more realistic

estimation by decreasing 50% the ideal energy-efficiency and throughput values, and

by ∼70% the area efficiency. Even with the more realistic values, the estimated accel-

erator performance shows results compatible with 22nm and 7nm technology nodes,

which are absolute state-of-art performance, which motivates further research in the

proposed direction.

3.5. Conclusion

In this chapter, we have proposed a wide frequency range and high energy efficiency

CIM SRAM-based ML macro for multi-mode systems-on-edge. The analog macro was

able to perform at high energy efficiency by following two principles: avoiding data con-

version by staying in the same physical domain (i.e., current), and the use of simplified

and low-area circuits by using co-design software strategies that mitigate stochastic

and deterministic errors (i.e., the A-Connect methodology presented in chapter 2). We

105 Jinshan YUE et al. “STICKER-IM: A 65 nm Computing-in-Memory NN Processor Using Block-Wise
Sparsity Optimization and Inter/Intra-Macro Data Reuse”. In: IEEE Journal of Solid-State Circuits
57.8 (2022), pp. 2560–2573.
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proposed an end-to-end analog datapath that incorporates not only MAC operations

but commonly used ML operations within the analog domain, such as ReLU and scal-

ing (the latter enabled normalization operations), as well as memory capabilities for

pipeline execution. The simulation results presented in a 180nm design showed that

the analog macro performed at a wide range of frequencies (200kHz-15MHz) over

ultra-low and broad range of current levels (i.e., 1nA to 100nA biasing), while maintain-

ing a relatively similar energy efficiency (760-1076 1b-TOPS/W). When compared to

other works, the proposed macro’s results were compatible with state-of-art macros in

65nm. Furthermore, we showed performance estimations for a 28nm design that put

the proposed analog macro above absolute state-of-art performance.

83



4. MULTI-LEVEL VOLTAGE MONITORS TO ENABLE MULTI-MODE

FINE-GRAINED POWER MANAGEMENT STRATEGIES IN SYSTEMS-ON-EDGE

4.1. Introduction

Multi-mode fine-grained power management system-on-chip (SoC) offer a promising

approach for achieving ultra-low power consumption in energy autonomous and bat-

tery supplied applications at the edge of Internet-of-Things (IoT). The SoC Power Man-

agement Unit (PMU) implements these techniques to obtain a more precise control

over power consumption at the subsystem and component level, enabling systems to

operate more efficiently.

Fine-grained power management enables the reduction of power consumption by en-

abling individual components within an SoC to enter low-power modes or be turned

off altogether when not in use. This can be accomplished through techniques such

as clock gating, power gating, and dynamic voltage and frequency scaling (DVFS)106.

These techniques allow for the voltage and frequency of individual components to be

adjusted based on the current demand for performance. When these techniques are

used in subsystems within the SoC, we can refer to a multi-mode fine-grained PM

system. In a multi-mode system, different components can be optimized for differ-

ent power modes. For example, a system may have a high-performance mode for

demanding applications (active mode), a low-power mode for battery-sensitive appli-

cations (sleep mode), and an ultra-low power mode for idle states (deep-sleep mode).

The system can dynamically switch between these modes to meet the current power

and performance requirements, reducing power consumption when it is not needed

and increasing performance when it is required.

One example of multi-mode fine-grained PM system is shown in Figure 21, considering

PMU should be always on in order to administrate power gating of all other domain.

Within the system’s power management, voltage monitoring is crucial for the proper

106 Vivek DE. “Fine-grain power management in manycore processor and System-on-Chip (SoC) de-
signs”. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2015,
pp. 159–164.
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Figure 21. a) Microarchitecture details of the SoC with clearly identified voltage domains. b) Timing
sequence of conventional power management strategy at power-up and brown-out event.

behavior of the entire SoC. For example, during the ramp-up of a local supply, memory

and registers might have floating states causing undesired initial behavior107. To avoid

this situation, a common solution is to hold the circuit into a reset state until the local

regulator reaches a level that guarantees correct operation. This task is performed by

a power-on reset (POR) circuit. During a brown-out event, the PMU can command the

memory, digital core, accelerators and peripherals into idle and sleep states to save

energy. Power supply is restored by re-enabling individual voltage regulators. The

supply voltages are usually constrained to the lowest operational level of the domain

without impacting the robustness of its blocks. Upon request, the blocks can be turned-

on, individually, through power gating.

Traditional voltage monitor (VM) circuits (i.e., POR and BOD) are designed with a fixed

threshold level detection, forcing to design and place different VMs for each domain107

,108,109. Implementation of a single set of VMs for each voltage domain increases

design area, cost (considering its re-design to adjust the threshold level), and power

consumption. In this chapter we propose multi-level voltage monitor circuits that can

be repurposed for sub-systems that use different voltage domains within the SoC. Our

voltage monitors allow more granular control over the behavior of the SoC in the event

107 H. B. LE et al. “A Long Reset-Time Power-On Reset Circuit With Brown-Out Detection Capability”.
In: IEEE Transactions on Circuits and Systems II: Express Briefs 58.11 (Nov. 2011), pp. 778–782.

108 S. K. WADHWA et al. “Zero Steady State Current Power-on-reset Circuit with Brown-out Detector”.
In: 19th International Conference on VLSI Design held jointly with 5th International Conference on
Embedded Systems Design (VLSID’06). Jan. 2006.

109 David M. GONZALES. Low Voltage CMOS Power-on Reset Circuit. US Patent 9143137. 2015.
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of power supply voltage fluctuations while maintaining ultra low-power consumption.

Furthermore, we present design considerations to enable the proper function of such

ultra low-power voltage monitors on wider temperature ranges than previous works.

This chapter is divided as follows: section 4.2 shows an overview on the proposed fine-

grained power management strategies that could help alleviate the limitations imposed

on conventional approaches. Section 4.3 presents the proposed multi-level voltage

monitors architectures that enable the proposed fine-grained PM strategies. Section

4.4 shows the results of simulations and measurements of fabricated voltage monitors

in a 180nm CMOS technology. It also shows SoC level measurements when using

a PM strategy implemented with the proposed VMs. Finally, section 4.5 presents a

summary of this chapter.

4.2. Fine-Grained Power Management Strategies

In order to circumvent the limitations of the conventional voltage monitoring power man-

agement strategy in Figure 22a, fine-grained power management approaches are pro-

posed in this work, all presented in Figure 22b-d. The first of these strategies adopts
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a locally-distributed PMU-VMs strategy as Figure 22b shows. The aim is to supply, in

an efficient way, every voltage domain sub-systems. Considering the turning-on event,

once the global POR ensures a safe start-up of the chip, the PMU provides activation

signals for local regulators. The local PORs will then guarantee risk-free turn-on condi-

tions in every domain independently. The advantage of such scheme is the possibility

to turn-on multiple domains simultaneously. As well, it is possible to track down brown-

out events within each domain separately with local BODs. The latter allows to take

individual actions on the domain where the event occurred, without interfering with the

operation of unaffected domains.

The obvious disadvantages of the global an multiple local VMs are: larger design area,

current consumption, and design cost. In110, we proposed a modular to tackle these

problems. The proposed POR consists of a voltage reference, a voltage detector, and

a pulse generator. Instead of placing the entire POR cell to check the target supply,

only the voltage detector can be used. At the same time, all the local PORs can reuse

the voltage reference block. As a result, low power, reduced area and design costs are

possible.

Another possible option for power, area, and cost optimization is to use a single set

of local VMs, as shown in Figure 22c. In that case, a mux is required to select the

target supply voltage. Requirements in a PMU with one set of VMs imply multiple

operation levels. Considering the PMU is in the always-on domain, every time a sub-

system is turned-on, the global POR is set to the appropriate voltage threshold. Then,

this POR checks the start-up of every domain at a time, in a sequential manner. The

disadvantage of such a scheme lies in the inability of power-up different domains at the

same time.

Further applications for a multi-level POR can be found if a harvesting system is con-

sidered. Zero battery charge implies harvesting system is working to supply a device.

In that condition, no additional power consumption is desired, making useful to power

off even the PMU. Generally, a near threshold voltage logic is implemented for low

110 Luis E. RUEDA G. et al. “An Ultra-Low Power Multi-Level Power-on Reset for Fine-Grained Power
Management Strategies”. In: 2019 IEEE 10th Latin American Symposium on Circuits Systems (LAS-
CAS). 2019, pp. 185–188.
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power operations, logic that can be turned on using the lowest voltage level of multi-

level POR. Low voltage logic can configure a new POR trigger level, preparing it for

switching on PMU when harvesting system achieve a higher supply level.

The main idea of this work is to introduce voltage monitors that can be used in ei-

ther of the PMU strategies discussed. The following section, describes the proposed

architectures.

4.3. Voltage Monitor Circuits

This section presents multi-level power-on-resets (POR) and brown-out detector (BOD)

architectures that enable different PM strategies as the ones presented in section 4.2.

The general architecture of our voltage monitors consists on four functional blocks: an

adjustable sub-threshold voltage reference, a voltage detector or comparator, a supply

tracker (e.g., voltage divider), and a pulse generator with a counter. In this section we

present the sub-threshold voltage reference, followed by the two PORs and the BOD

circuits. We present corner simulations for all of the mentioned circuits. The final part

of this section shows a discussion regarding the trade-off between power consumption

and the achievable temperature range of our circuits.

4.3.1. Sub-threshold voltage reference

The voltage reference is based on the low-power sub-threshold reference source pro-

posed in111. The circuit consists on a zero-VTH native NMOS device, followed by a

group of four stacked PMOS transistors connected as diodes (see Figure 23.a). By

connecting the gate of this transistor to a voltage lower than its source voltage, sub-

threshold condition is forced in the branch. Since both PMOS and NMOS have the

same Vgs voltage, and share the same current, due to their complementary nature,

it is possible to eliminate the temperature dependency of the reference voltage with

correct transistor sizing111. Higher VREF may be obtained by stacking more PMOS

diode-connected transistors, but it is limited in this design to four due to the leakage

111 I. LEE et al. “A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT
Systems”. In: IEEE Journal of Solid-State Circuits 52.5 (May 2017), pp. 1443–1449.

88



μ=1.481V
σ=18.6mV
Max-Min=118mV

μ=1.111V
σ=14.9mV
Max-Min=99mV

μ=740.6mV
σ=10.3mV
Max-Min=61.3mV

VREF1
VREF2
VREF3

Temp. Coeff:
μ=34.6ppm/°C
σ=23.5ppm/°C

Max-Min=128.4ppm/°C

VREF1

VREF2

VREF3

VDDA

PD

Zero VTH 
Transistor

@27°C

@27°C

a. b.

Figure 23. a) Sub-threshold Voltage Reference. b) Voltage reference with 1000 Montecarlo simulation
results with process and mismatch variations.

effect of nwell-psub reversed diode.i

When process variations result in a slow-slow corner, the leakage current of PMOS

transistors may be comparable to the branch’s sub-threshold current at low-temperature,

degrading the performance. We compensate the temperature coefficient by increasing

the current of the PMOS stack, or equivalently, switching-on more native transistors

through the TRIM signal in Figure 24. It is important to highlight that extra compen-

sation becomes harder when more PMOS transistors are stacked together because

static current drops dramatically.

4.3.2. Power-on-Reset

In this subsection, an extended discussion of the power-on-reset circuits introduced

in112,110 (POR1 and POR2, respectively) will be presented with their respective char-

acteristics and differences.

112 A. AMAYA et al. “A Multi-Level Power-on Reset for Fine-Grained Power Management”. In: 28th IEEE
PATMOS. July 2018, pp. 129–132.

i This effect is worst at higher temperatures, and with bigger transistors.
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Figure 24. a) Proposed POR circuit composed of a subthreshold voltage reference, a voltage detector
and a pulse generator. b) Important circuit signals during a global supply ramp-up (turn-on condition).

POR1112: The proposed POR is a modular circuit composed by three functional blocks

as shown in Figure 24. The first block is an adjustable voltage reference, which allows

the generation of multiple POR thresholds. The second block, the voltage detector,

monitors the supply voltage VDDB and generates a delayed signal that goes to the third

block. Finally, the pulse generator sets a logic one, once the capacitor voltage crosses

a certain threshold voltage. As an option, the POR signal can drive a counter. The

latter provides the possibility of controlling the reset delay time. This feature is useful

when circuits, such as oscillators, need a longer time to settle.

At the beginning of operation, when the supply voltage VDDB starts to ramp-up, transis-

tor M1 remains off and the capacitor is discharged. When VDDB = VREF, M1 is in weak

inversion, and the low current starts to charge capacitor C. Once M1 enters strong

inversion (VDDB = VREF + |Vthp|) the detector forces a greater current to charge the

capacitor. This charge time depends on the slope of the VDDB ramp, limited by the dif-

ference between the current supplied by M1 and the current sinked through the branch

formed by R2 and the diode connected transistor M3. In other words, for fast ramps,

the time constant of the voltage detector limits the response. Once the voltage at the

capacitor reaches the pulse generator input threshold (which for this POR is the high

threshold voltage of the schmitt trigger), the POR signal is triggered. Finally, the POR’s

output may be used to enable a counter. This configuration offers the ability to have
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different delayed reset signals (the signal PORc may have different bits), according to

a particular application requirements.

POR2110: The main difference of this POR with respect to POR1 lies in the voltage

detector (see Figure 24). When the threshold of the pulse generator is reached, the

signal POR turns off transistor M2, forcing C to charge completely up to VDDB. Turning-

off M2 means reducing the quiescent current of the block to the order of nano-amperes.

The other noticeable change is the input block of the pulse generator, which in POR1

is a schmitt trigger. The purpose of the schmitt trigger was establishing a different

threshold for a brown-out (BO) event. This is not longer needed, since the voltage

detector performs this function as well. In the presence of a BO event, the capacitor

voltage tries to follow VDDB.ii It is not until VDDB is close to VREF (which is below the

POR threshold) that the voltage at the capacitor starts to differ from VDDB, since M1

turns completely off. At this point the voltage capacitor is set to the voltage divider

formed by two high impedance branches (M1-R1, and M2-M3-R2). As the voltage

capacitor gets lower than VDDB, POR starts to rise-up, turning M2 on until the capacitor

is completely discharged, setting POR as a logic one.

Figures 25.a-b show the POR2 threshold voltages for different supply ramps (i.e., 1µs

to 1s rising times from 0V to 3.3V), and across process (i.e., slow, typical, and fast) and

temperature variations (i.e., -40◦C, 27◦C, 125◦C). In these two plots, three different

ranges are distinguishable within each color region,iii which correspond to the three

different VREF levels of the voltage reference block in Figure 24.

Figure 25.a shows the results for a global POR case, or chip turn-on condition. In

this case, the supplies of the reference voltage (VDDA) and the rest of the circuitry

(VDDB) are the same. The first thing to notice is that, for fast ramps (i.e, lower than

1ms), the threshold voltages for the three ranges are 3.3V, or close to that value. The

reader might be tempted to conclude that, once the supply reach this value the reset

is triggered. In fact, the voltage detector starts to charge the capacitor at the same

level as for slow cases (VDDA = VREF + |Vthp|), but the response is limited by the time

ii This condition is restricted by the time constant formed by R1 and C (which filters short duration BO
event).

iii All corner cases are within these regions.
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Figure 25. POR voltage thresholds ranges for different supply ramps (i.e., rising times) over process
and temperature variations (final supply voltage of 3.3V): a) global POR; b) local POR. POR transient
behavior for a rising time of 10ms considering a global POR (c) and a local POR (d).

constant of the voltage detector. The POR will require extra time before the capacitor

reaches a value to trigger a reset signal. The second thing to observe appears for

ramps slower than 100us; for ranges 2 and 3, the maximum and minimum stabilize to

constant values. Meanwhile, for range 1, the lower limit diminish with slower ramps.

The reason is because VREF is also in a turn-on condition and its value has not settled

at the trigger moment. This is even more critical for the lowest level VREF1, as Vsg1

(in Figure 24) will be sufficient to charge the capacitor at lower values of the supply

voltage. This design was aimed for a top level supply voltage of 3.3V, so range 2 and

3 are enough. Even more, they behave as expected with slow ramps, which is in fact,

the usual condition for the global POR.

Figure 25.b shows the results for the local POR, or local regulator power-up. In this

case, the supply of the reference voltage is the global one (VDDA already settled), and

the local supply (VDDB) are different. The behavior is very similar to global POR case.

The difference are in the limits values, which are much better behaved for all three
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Figure 26. a) Proposed BOD block diagram composed of a voltage divider, a comparator and a
subthreshold voltage reference. b) Important circuit signals during a BO event.

ranges. This was expected, since this case uses a steady reference, in contrast with

the global case.

Finally, Figures 25.c-d show the POR signal behavior over process and temperature

variations, with a 10ms supply rising time for both POR cases: global POR (VDDA = VDDB,

SoC turn-on condition) and local POR (VDDB ̸= VDDA), respectively.

4.3.3. Brown-Out Detector Circuit113

Similar to the POR circuits in previous sections, the proposed BOD architecture is a

modular circuit composed of a voltage divider, a voltage reference, and a comparator,

as shown in Figure 26.a. The voltage divider has seven stacked 3.3V PMOS transistors

connected as diodes, serving as a resistor divider to obtain five different threshold

voltage levels. Additionally, a PMOS transistor controlled by the PD signal is used for

power-down control. The voltage reference used in the BOD, is the same as the one

used in the POR. Finally, the comparator is a two stage OTA with a bias current of

10nA, provided by a nano ampere high temperature compensated current source114.

When a BO event occurs (see Figure 26.b), the supply voltage and voltage divider start

to ramp-down. Although the reference voltage remains constant for most cases, for

very pronounced supply decay it starts to ramp-down as well but a slower pace than the

113 Luis E. RUEDA G. et al. “A Compact Industrial-Grade Multi-Threshold Brown-Out Detector”. In: 2019
26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). 2019, pp. 923–
926.

114 J. SANTAMARIA et al. “A Family of Compact Trim-Free CMOS Nano-Ampere Current References”.
In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS). May 2019, pp. 1–4.
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Figure 27. BOD voltage thresholds ranges for different supply ramps over process and temperature
variations (from a supply voltage of 3.3V to 1V): a) global case; b) local case.

divider, allowing a future intersection. When the divider voltage is below the reference

threshold the comparator detects BO event and sends the reset or warning signal to

the PMU to take the corresponding action. When the action is taken, the supply voltage

ramps-up again to its nominal value, and the BOD signal is de-activated. The BOD has

two multiplexer to select the different reference and divider levels, which translates to

different BOD levels. The multiplexers can be used also as trimming devices to mitigate

the process and temperature effects.

Figures 27.a-b show the BOD threshold voltages for different supply ramps (1µs to 1s

falling times from 3.3V to 1V) and across process and temperature variations. Several

BOD threshold can be obtained depending on the divider-reference output pair chosen

(VREF-VDIV). In this work we will only present three ranges for clarity.iv Figure 27.a

shows the results for a global BOD (i.e., a BOD that monitors the AON supply), while

Figure 27.b shows the results for a local BOD (i.e., a BOD that monitors a domain

supply). Although the results for both cases are very similar, the biggest difference

is that the local BOD responds faster than the global one for shorter supply falling

times (∼10X faster falling times). Because VREF does not ramp-down in the local BOD

(only VDIV follows the supply), the BOD’s time response is mainly determined by the

dynamic characteristics of the OTA (i.e., sensitivity and slew-rate). On the other hand,

both VDIV and VREF might be ramping down in the global BOD, delaying the moment at

which they cross each other and the comparator detects a BO event. The latter effect

iv In our experiments we managed to obtain up to 5 different ranges.
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is even more critical at lower temperatures as we will show in the following section.

4.3.4. Trade-off Between Power Consumption and Temperature Range

Although the voltage monitors are one of the most important blocks in the power man-

agement unit, detecting when the supply voltage goes below or above certain voltage

ranges is an auxiliary function but one that is always on. Hence, the VMs should be

kept small and “quiet”: they should occupy as low area and consume as low power as

possible.

One of the major challenges in the design of the VMs proposed in this work is the trade-

off between the power consumption and the correct function of the circuits across a

wide temperature range (e.g., military range -40◦C to 125◦C), specially at low temper-

atures (≤0◦C). In particular, the reference and divider blocks could have more diode

connected PMOS to reduce their current consumption by increasing the equivalent

impedance seen by the supply. The number of stacked PMOS transistors is limited by

the leakage effect of the parasitic nwell-psub reversed diodes (see Figure 26) as shown

in111. With a reversed diode voltage larger than the thermal voltage (VD >> VT),v the

reversed diode current is:

IDIO = Is ·
(

1− e
−VD
VT

)
≈ Is = qA ·

(
Dn

NALn
+

Dp

NDLp

)
· n2

i (24)

where A is the diode’s cross-sectional area; Dn and Dp are the diffusion coefficients

of electrons and holes, respectively; ND and NA are the n-well donor and p+ acceptor

concentrations, respectively; Ln and Lp are the electron and hole diffusion lengths,

respectively; and n2
i is the intrinsic carrier concentration.

More and bigger transistors (i.e., greater A) in the stacked configuration increase the

cumulative leakage effect of the reversed-diodes. As well, since the diodes voltage gets

lower towards the bottom of the transistors stacking, the leakage current caused by the

parasitic diodes at the bottom have a greater impact than those at the top. As well,

because we are using multiplexers to select between different reference and divider

voltages, the transistors of the switches (i.e., Tgate NMOS+PMOS) also contribute with

v VD > 150mV at room temperature contributes to a 0.3% error.
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leakage; b) voltage reference slew-rate vs temperature for different transistors corners; c) voltage
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parasitic reversed diode leakage, as well as channel leakage. Although n2
i ∝ e−Eg/kT,

which results in increases in the reversed-diode currents at higher temperatures, the

channel subthreshold currents through the main branches are higher than that of the

parasitic reversed-diodes (depending on the number of stacked transistors). On the

other hand, at lower temperatures the main branch current and the leakage due to

reversed-diodes may be comparable, which affects considerably the behavior of the

circuits.

As an example, Figure 28.a shows three possible scenarios illustrating the low tem-

perature issue during a BO event in the ultra low-power BOD proposed in this work

(i.e., global case). Figure 28.a.1 is the typical case (NMOS and PMOS transistors

in typical corners at 27◦C) in which both VREF and VDIV cross each other and a BO

reset signal is triggered. Figure 28.a.2 shows a low temperature case (-40◦C) with

NMOS and PMOS in typical corners. In this scenario both VREF and VDIV slew rates

are affected by the reversed-diodes leakage and the trigger event occurs at a lower

threshold voltage than the one at ambient temperature. Finally, Figure 28.a.3 presents
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Figure 29. Power consumption of the two POR and the BOD presented in this work. The current
breakdown is shown for worst, best and typical cases.

a low temperature scenario but with both NMOS and PMOS transistors in slow corners

(SS). Simulations showed that this was the most critical corner, where both VDIV and

voltage reference VREF curves do not intercept, therefore preventing the possibility to

detect the BO event.

Figures 28.b-c show the slew-rates of the BOD voltage reference and divider taps

across different temperatures and for different corners. This figures show that for tem-

peratures lower than 0◦C the slew-rates are heavily affected, with the SS corner being

the most critical one. For example, for a SS corner and with a BOD configuration se-

lecting VREF2 and VDIV2, the slew-rates at -40◦C are 85% faster at the reference and

17% faster at the divider. Without careful design, the latter may result in the scenario

in Figure 28.a.3. With the trimming capability used in this work the low temperature

problem can be solved, whether it is in the reference block by modifying its biasing cur-

rent, or by choosing different voltage reference and divider outputs with the Sel VREF

and Sel VDIV signals. For example, in Figure 28.a.3 scenario, by activating the VREF1

output instead of VREF2, the interception between the reference signal and VDIV is now

possible, hence, letting the BO detection to take place.

Finally, Figure 29 shows the current consumption of the two POR and the BOD pre-

sented in this work, showing the best, typical, and worst corners. For the three circuits,

it is possible to see that the best case in terms of current consumption occurs at -40◦C
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with SS corner, while the worst occurs at 125◦C and fast-fast corner. In particular,

the variation of the BOD current consumption is greater than an order of magnitude

(i.e., 19nA at SSL, and 4.6µA at FFH). It is clear then that the best case energy-wise

coincide with the worst case when considering the BOD performance (with similar re-

sults for the PORs), which constitutes a trade-off between the power consumption and

temperature range for these types of circuits.

4.4. Experimental Results

This section presents the measurements of the proposed voltage monitors. We also

present system level measurements when using a power management strategy en-

abled by the proposed voltage monitors115.

4.4.1. Voltage Monitors Measurements

Figure 30 shows the measurement setup used in this work: the designed PCB to test

the microcontrollers (Figure 30.a), the photos of the two dies with microcontroller-based

RISC-V SoCs (Figure 30.b), and examples of the POR and BOD signals when starting-

up and during a brown-out event, respectively (Figures 30.c-d). The BOD occupies an

area of 150µm x 70µm, while the POR occupies an area of 120µm x 70µm using a

180nm standard logic technology without additional analog-flavor layers. The reported

area includes counters (i.e., one for each voltage monitor) for programmed time delay

and additional synthesized digital logic.

Figure 31 shows the measurement results of 9 chips from the two dies presented in

Figure 30.b. In order to test the functionality of the voltage monitor cells, power-up and

brown-out events in the supply voltage (VDDA) were used as test signal. The supply

voltage was ramped-up from 0V to 2.4V,vi and ramped-down from 2.4V to 0.8V. We

used a range of rising and falling times between 3µs up to 1s, equivalent to power-up

slew-rates between 2.4V/s to 0.8V/µs, and brown-out slew-rates between -0.53V/µs to

115 Ckristian DURAN et al. “An Energy-Efficient RISC-V RV32IMAC Microcontroller for Periodical-Driven
Sensing Applications”. In: 2020 IEEE Custom Integrated Circuits Conference (CICC). 2020, pp. 1–4.

vi Due to an implementation error, the maximum supply voltage allowed is 2.4V.
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VTH (POR) = 2.11V

VTH (BOD) = 1.64V

POR

VDD

BOD

VDD

Figure 30. Measurement setup: a) measurement setup and used PCB; b) Photos of the two dies with
microcontroller-based RISC-V SoCs in a 180nm CMOS technology; c) POR measured signal after
VDD ramp-up; and d) BOD measured signal at a brown-out event.

-1.6V/s. For the measurements we used two different set of performance indicators,

the threshold voltage and the time delay, as a difference from Figures 25 and 27 where

only the threshold voltages were shown. The time delay is useful for fast supply ramps

where the POR or BOD signal is triggered after the supply voltage has been settled.vii

Table 8. Comparison with prior work

116 117 107 This work

POR1112 POR2110

Technology 0.5um 0.5um 180nm 180nm
Supply Voltage (V) 1.2-3.3 1.8-5.5 1.8 3.3
Current (nA) 76 N.A. 1000 7000 19
Supply rise time (s) <10m <1m <1.0 10−6 - 1.0
Temperature (◦C) – -40 - 125 -20 - 100 -40 - 125
Area (µm2) 1900 27000 12000 5700a

Multi-Level Yes No No Yes

118 108 119 BOD113

Technology 0.25µm 65nm 180nm 180nm
Supply Voltage (V) 2.5 1.1 3.6 3.3
Current (nA) 120 – 1 200
SRVDDA (V/s) – -110k to -44 – -2.3M to -2.3
Temperature (◦C) – -25 - 105 0 - 80 -40 - 125
Area (mm2) – 0.007 0.89 0.006a

Multi Level No No No Yes
a Area excluding the counter.

116 S. U. AY. “A Nanowatt Cascadable Delay Element for Compact Power-on-reset (POR) Circuits”. In:
2009 52nd IEEE International Midwest Symposium on Circuits and Systems. Aug. 2009, pp. 62–65.

117 R. PRAKASH. “Zero Quiescent Current, Delay Adjustable, Power-on-reset Circuit”. In: 2014 IEEE

vii We define the time delay as the time between the moment the supply settles (i.e., end of power-up
for the POR, and end of falling event for BOD) and when the POR/BOD signal is triggered, as shown
in figure 31.
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Figure 31. Measurement results: a) POR threshold voltage; b) BOD threshold voltage; c) POR time
delay; and d) BOD time delay.

Table 8 shows a comparison with relevant reported works. In regards with the BOD,

our proposal has the highest power consumption among those presented (200nA), but

it is as well the one with the widest temperature range. For instance, the reported

measurements at119 (<1nA) do not include temperature results below 0◦C and higher

than 80◦C. On the other hand, the POR2 quiescent current is around 19nA for typical

case, which is the lowest among the works in the table.viii Also the proposed PORs

and BOD allow the selection multiple levels while having a low area consumption and

robust operation, in comparison to fixed number of levels in other works.

Dallas Circuits and Systems Conference (DCAS). Oct. 2014, pp. 1–4.
118 D.P. GUBBINS. Brown-out Detector. US Patent 6,894,544. May 2005.
119 Inhee LEE et al. “Battery Voltage Supervisors for Miniature IoT Systems”. In: IEEE Journal of Solid-

State Circuits (JSSC) (Nov. 2016).

viii It has a maximum current consumption of 1.2µA, and is caused by the voltage reference block, in a
fast corner.
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Figure 32. Power management unit main algorithm: a) Initialization algorithm; b) Sleep and deep-sleep
operation; c) Block diagram of sleep events.

Measured operation of full SoCs containing our voltage monitors demonstrates the

widest range of rising and falling times responses among the works presented in Table

8, as well as memory protection for brown-out events at low-temperature. These capa-

bilities of the proposed circuits extend its implementation in a broader range of power

management applications, as we will show in the following section.

4.4.2. PM Strategy using the Proposed VMs in a RISC-V Microcontroller115

Figure 32 describes the PMU algorithm. When powering up with a 3.3V, the POR

issues an event to perform a PMU initialization. The initialization turns LDO on and

triggers general resets and exceptions to the core to execute the main program (Figure

32.a). The main program can start the event-driven algorithm from the PMU (Figure

32.b). The main program enables blocks and triggers active mode if the battery level

rises above the BOD threshold. Although the PMU regularly drives the power oper-

ation, the main program may force operation modes and reserve blocks if necessary.

The PMU may trigger operation mode transitions according to the battery supervision

of an integrated BOD. The PMU logic has the potential to choose to keep running the

main program in sleep mode or to trigger a deep-sleep transition (Figure 32.c). This
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Figure 33. PMU brown-out notification handling scheme.

logic may also set the BOD threshold voltage and withdraw blocks to user-prioritized

blocks. In cases where all available blocks are withdrawn, the PMU decreases BOD

threshold down to values that require to switch to sleep or deep-sleep mode with se-

lected clock sources and user-prioritized blocks (Figure 33.a).

The proposed PMU logic inside the AON domain integrates programmable state ma-

chines to control sleep modes. The BOD notifies the PMU core algorithm to trigger

sleep mode sequences depending on the supply voltage level. Figure 33.b illustrates

these notifications where graphs 1-4 show different types of battery events. These

events compare the supply voltage behavior (blue) with a threshold level from the

BOD (red) set by the PMU algorithm. Event (1) happens when the battery-level dis-

charges and triggers a brown-out detection. The PMU lowers the BOD threshold in

the algorithm and waits for a voltage rise event (2) while performing energy harvesting.

Throughout these events, the MCU enters sleep mode. If it does not raise the supply

voltage above the lowered threshold during a timeout, the PMU algorithm commands

the MCU to enter deep-sleep mode. Once the desired voltage level is reached, the

BOD threshold is set to a higher value accordingly. In this state, the PMU waits for a

rise in the supply voltage above the maximum threshold (3). The PMU allows active

mode execution once a supply voltage rises to a safe supply value. In active mode, the

supply voltage is measured using the maximum BOD threshold in order to keep alert
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Figure 34. Active, sleep, and deep-sleep modes current consumption measurement.

for a voltage drop due to an additional loading (4).

Figure 34 indicates the measured current consumption at different modes at nominal

conditions. In deep-sleep mode, the BOD monitors the battery supply rail drawing

280nA from the 3.3V IO voltage. The RCO oscillator operating as a wake-up timer

at 32.768kHz draws 250nA. In sleep mode, the MCU draws a total 27.5µA from the

internal LDO 1.2V-core voltage and the 3.3V AON domain. Figure 34 also indicates a

current consumption of four different configured operation frequencies in active mode.

A sensor implementing the proposed MCU powered by an SR626 battery will last 5.6

years if every 24h an active and a sleep mode transition occurs during 1ms and 5ms

respectively.

4.5. Summary

In this chapter, we presented ultra low-power multi-level voltage monitors for multi-

mode fine-grained power management strategies. Simulation results over PT varia-

tions, as well as measurements at nominal temperature, showed a robust performance

within the industrial temperature range from -40◦C to 125◦C and a wide supply rise

and falling times, ranging from 1us to 1s.

In a first version of the POR (POR1), we managed to obtain a current consumption of

7µA. In the second version (POR2) the POR had a nominal current consumption of

19nA. Both PORs had up-to 3 different voltage threshold levels. In regards to the BOD,
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we presented an architecture with low-temperature slew compensation for low power

applications, multiple voltage threshold levels, and a current consumption of 200nA.

We also showed experimentally how these voltage monitors could be used in a real

power management strategy. By having multi-level voltage thresholds we enabled three

different power modes that used lower voltage supply: active, sleep, and deep-sleep.

According to measurements, the SoC had an 8mA current consumption at 16MHz in

active mode, 27.5µA at 32.768kHz in sleep mode, and 530nA at 32.768kHz in deep-

sleep mode.

In comparison to previous research that neglect to consider the low-temperature effects

when using large impedance branches, this work achieved a low current consumption

even by considering these temperature effects. Current consumption, programmability,

and reduced area, makes the proposed voltage monitors enablers of different fine-

grained power management schemes.
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5. SYSTEM-ON-CHIP POWER DELIVERY NETWORK: AN IN-DEPTH LOOK AT

VOLTAGE GLITCHING

5.1. Introduction

With billions of interconnected devices, security is one of the main challenges in to-

day’s applications (e.g., the internet of things). With more nodes connected, there are

more opportunities to breach whole systems’ security, leaving the system vulnerable

to attacks from different fronts. Because of this, it is critical to maintain high-security

levels at every single point in the system.

Although software-based attacks are the most known type of security infringement,

hardware attacks (or physical attacks) have become more relevant over the last 15

years because of their effectiveness. Hardware attacks aim to disrupt the correct be-

havior of a system through physical stress. This stress modifies the operating condi-

tions of the system and provokes a fault injection, which manifests itself as a malfunc-

tion at the software level (e.g., corruption of instructions or data).

There are several mechanisms to successfully inject a fault into a system120: clock

glitching, temperature tampering, voltage underfeeding, electromagnetic pulses, laser

pulses, and voltage glitching. Among these mechanisms, voltage glitching is of the

most interest for this work. A voltage glitch attack is an externally forced transient power

drop in the supply line that occurs at a specific instant, with a duration typically in the

tens of ns to the units of µs. This kind of attack does not require special equipment

and can be mounted under low cost and low expertise121. The permanent availability

of an external pin for a power supply makes it one of the preferred methods for security

tampering. Fig. 35 shows one of the most common setups for voltage glitching attacks.

Historically, voltage glitching attacks have required physical access to the system to be

effective. Investigating these types of fault injection techniques becomes more relevant

120 Bilgiday YUCE et al. “Fault attacks on secure embedded software: Threats, design, and evaluation”.
In: Journal of Hardware and Systems Security 2.2 (2018), pp. 111–130.

121 Colin O’FLYNN et al. “ChipWhisperer: An Open-Source Platform for Hardware Embedded Security
Research”. In: vol. 8622. Apr. 2014.
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when recent works have demonstrated the possibility to gain control over the DVFS

(Dynamic Voltage Frequency Scaling)i interface of a system-on-chip (SoC) through ma-

licious software122. The latter allows the attacker to perform glitch attacks by controlling

the clock and supply signals. The authors demonstrated temporal location attacks (i.e.,

control over the attack’s start time and duration), but it may be viable in the future to

enable spatial location attacks in SoCs with fine-grained power management units (i.e.,

SoCs with different voltage and clock domains).

Understanding the nature of voltage glitching fault injection is imperative to develop

countermeasures against them. Previous works have presented empirical evidence

identifying the cause of voltage glitching fault injection as timing constraint violations123,124.

122 Adrian TANG et al. “CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management”.
In: 26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 1057–1074.

123 A. DJELLID-OUAR et al. “Supply voltage glitches effects on CMOS circuits”. In: International Confer-
ence on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006. 2006,
pp. 257–261.

124 Loı̈c ZUSSA et al. “Power supply glitch induced faults on FPGA: An in-depth analysis of the injection

i DVFS is a popular power management technique, where the operating voltage and frequency of the
microprocessor is regulated based on its dynamic workload.
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These works have neglected the power delivery network (PDN) of the SoC in their anal-

yses. Because of the latter, the timing constraint violation approach (as it has been

presented in previous works) does not relate the characteristics of the voltage glitch

signal and its potential to inject a fault into the system.

Considering the above, this work makes the following contributions:

• We include the PDN in the timing constraint violation approach, explaining how

fault injection voltage glitching is successful. Two cases are identified for effective

voltage glitching fault injections when comparing the time response of the PDN

and the system’s operating frequency. This work shows the analyses for both

cases.

• Our analysis evince that when the PDN time response is slower than the system’s

clock period, voltage glitching has the same effect as underpowering. Simulation

results supporting our analysis are presented. In this case, we identify that the

obtained glitch duration-amplitude relation has the same behavior as experimen-

tal data in previous works.

• This work shows that when the PDN time response is faster than the system’s

clock period, the fault injection is only possible when the supply voltage rises

to the nominal value (at the end of the glitch). In this case, the fault injection

always occurs with a minimum glitch duration proportional to a clock’s period (or

half clock period, if the logic has positive and negative edge-driven circuitry). We

present simulation and measurement results to support our findings.

• Our work gives the foundations for a new system’s fault characterization ap-

proach, leaving aside the common glitch duration-amplitude relationship that only

considers squared pulse glitches. We anticipate our results to be the basis for

more sophisticated fault injection characterization including arbitrary glitch wave-

forms, like the ones generated by genetic algorithms125.

This chapter is organized as follows: section 5.2 summarizes some of the previous

papers related to this work. Section 5.3 presents a voltage glitching analysis, including

mechanism”. In: International On-Line Testing Symposium (IOLTS). 2013, pp. 110–115.
125 Claudio BOZZATO et al. “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2019.2 (Feb. 2019), pp. 199–224.
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the PDN and the analysis of voltage glitching on memory-based cells. Section 5.4

shows simulation results for a better understanding of the two cases for successful

voltage glitching fault injection. Section 5.5 shows measurement results supporting the

analysis developed in this work. Finally, section 5.6 presents the conclusions obtained.

5.2. Related Works

The main interest in most of the research involving voltage glitching attacks is in the

consequences of the fault injection. In other words, investigating the effects that a

voltage glitch attack can cause in a system, whether it is a specific cryptographic sys-

tem126,127,124, general-purpose processors125 ,128,129,130, a machine learning acceler-

ator131, or even in mixed-signal systems132.

On the other hand, few papers explain why fault injections through voltage glitch attacks

are successful. The authors in123 showed analytically, and through simulations, that

voltage glitch attacks cannot inject faults into D-flip-flops. Additionally, they presented

simulation evidence relating the voltage glitching fault injections with timing constraint

violations. The latter result was confirmed in124, where timing constraint violations

were found to be the main reason behind fault injections in both voltage and clock

glitching attacks. They provided experimental results showing that nearly the same

faults were injected in an FPGA implementing an advanced encryption standard (AES),

independently of the method used for the attacks. Based on these results, several

126 Alessandro BARENGHI et al. “Fault Injection Attacks on Cryptographic Devices: Theory, Practice,
and Countermeasures”. In: Proceedings of the IEEE 100.11 (2012), pp. 3056–3076.

127 Honorio MARTÍN et al. “Fault Attacks on STRNGs: Impact of Glitches, Temperature, and Underpow-
ering on Randomness”. In: IEEE Transactions on Information Forensics and Security 10.2 (2015),
pp. 266–277.

128 Jan Van DEN HERREWEGEN et al. “Fill your Boots: Enhanced Embedded Bootloader Exploits
via Fault Injection and Binary Analysis”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems (Dec. 2020), pp. 56–81.

129 Colin O’FLYNN. “Fault Injection using Crowbars on Embedded Systems”. In: IACR Cryptol. ePrint
Arch. 2016 (2016), p. 810.

130 Niek TIMMERS et al. “Controlling PC on ARM Using Fault Injection”. In: 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). 2016, pp. 25–35.

131 Wenye LIU et al. “Stealthy and Robust Glitch Injection Attack on Deep Learning Accelerator for Target
With Variational Viewpoint”. In: IEEE Transactions on Information Forensics and Security 16 (2021),
pp. 1928–1942.

132 Noemie BERINGUIER-BOHER et al. “Voltage Glitch Attacks on Mixed-Signal Systems”. In: 2014
17th Euromicro Conference on Digital System Design. 2014, pp. 379–386.
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Figure 36. Relationship between glitch duration and glitch amplitude. Data extracted from120.

works have proposed circuits and strategies for the mitigation or detection of voltage

glitching attacks133,134,135.

In addition, the work presented in this chapter is further motivated by the experimental

evidence in130 ,120 ,128, where different voltage glitch amplitudes and glitch durations

were applied to inject a fault into an MCU. In particular, the authors in130 and120 empir-

ically show the relation between the glitch attack duration and the glitch amplitude. Fig.

36 shows data extracted from120, where each dot represents a voltage glitch attack

with specific duration and amplitude.ii

There are four zones that can be distinguished from Fig. 36: the region where the

glitch did not affect MCU and continues within normal operation (light blue dots); the

133 Kamil GOMINA et al. “Power supply glitch attacks: Design and evaluation of detection circuits”.
In: 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). 2014,
pp. 136–141.

134 Arvind SINGH et al. “Mitigating Power Supply Glitch based Fault Attacks with Fast All-Digital Clock
Modulation Circuit”. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE).
2019, pp. 19–24.

135 Hyung-Min LEE et al. “A Nonvolatile Flip-Flop-Enabled Cryptographic Wireless Authentication Tag
With Per-Query Key Update and Power-Glitch Attack Countermeasures”. In: IEEE Journal of Solid-
State Circuits 52.1 (2017), pp. 272–283.

ii The authors in120 performed a sensitivity analysis, using test software on the attacked MCU that
runs loops and typical instructions that may be affected. The test software accelerates the detection
of hardware weaknesses, and supports finding optimal attack parameters (i.e., glitch duration and
amplitude).
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region where the glitch was too ”strong” and resulted in a reset of the MCU From the

figure; the border between the two mentioned regions (potential fault injection border);

and the region where successful attacks where possible. The potential fault injection

border delimits the zone where the glitch attacks may be effective (the successful fault

injection region is within this border). In this work, we show analytical expressions

for the potential fault injection border, explaining why the glitch duration follows an

inversely proportional behavior with respect to the glitch amplitude (see section 5.3.1).

5.3. Voltage Glitching: including Power Delivery Network and its effects on Memory-

based cells

The analyses presented in124 ,123 left out significant aspects of the voltage glitching

nature within an SoC, as well as circuits non-idealities. In the case of the work in123,

the analysis performed over the SRAM cell only uses small-signal models and omitted

non-idealities such as leakage currents (i.e., reversed diodes) and devices mismatch

(i.e., offset voltage). On the other hand, the authors in124 centered their studies on

the effects of voltage glitching attacks at gate and transistor levels, omitting the power

delivery network of the SoC.

In this chapter, we include the PDN in the classical timing constraint violation approach,

obtaining the necessary insight into whether a voltage glitch signal can cause a fault

injection or not. We found that because a digital system does not operate continuously

but every clock period, two scenarios can be distinguished for effective voltage glitching

fault injections, when considering the PDN:

• Case I: the PDN time response is slower than the clock period. In this case,

the system can correctly execute several operations during the supply ramping

down until the latter reaches a minimum voltage where a fault occurs. We show

in section 5.4 that this effect is the same as the one caused by underpowering.

• Case II: the PDN time response is faster (or comparable) than the clock period.

In this case, the supply voltage reaches its lower value so fast that there is not

even a second clock rising edge for a fault to occur (the system does not execute

any operation). The supply voltage goes low, and the digital circuitry stops its op-
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Figure 37. PDN circuit model of a die136 for a glitch attack characterization. The electrical model of the
pad is included as well.

eration without entering a reset state. Depending on the duration of the glitch, the

memory-based cells (e.g., flip-flops, latches, SRAM, etc.) preserve the previous

state without bit flipping (see section 5.3.2). Hence, the only possibility for a fault

injection is during the ramp-up of the supply voltage.

In this section, we show the analysis of the PDN during the supply ramp-down due to

a voltage glitch.We also analyze the effect of voltage glitching on memory-based cells.

These two analyses are the basis for understanding the two possible fault injection

cases. Section 5.4 shows simulation examples for a complete understanding of both

cases.

5.3.1. Voltage Glitch Analysis Including Power Delivery Network Using the PDN

circuit model in Fig. 37136, a fault injection may occur when a minimum voltage Vmin

stored in the die capacitor (Cdie) is reached. Vmin is a constant value that sets the

minimum voltage for proper MCU performance at a specific operating frequency, as

established by the timing constraint violation approach124.

136 Emre KULALI et al. “Chip Power Model - A New Methodology for System Power Integrity Analysis
and Design”. In: 2007 IEEE Electrical Performance of Electronic Packaging. 2007, pp. 259–262.
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Assuming that the switch current can be neglected during a voltage glitch attack (the

discharge current is higher than Iswitch), the transfer function of the system presented

in Fig. 37 is given by:

H(s) =
1

LpCdies2 + ReqCdies + 1
=

w2
0

(s + s1)(s + s2)
(25)

The damping factor of the system (ζ =
Req
2

√
Cdie
Lp

) will determine its impulse response,

as shown in equation (26), with Req = rs + rp + rdie, s1,2 = α ∓ wd, α = ζw0, wd =

w0
√
|ζ2 − 1|, and w0 = 1√

LpCdie
.

h(t) =



w2
0

2wd
(e−s1t − e−s2t) · u(t) : ζ > 1

w2
0te−w0t · u(t) : ζ = 1

w2
0

wd
e−αtsin(wdt) · u(t) : ζ < 1

(26)

Given a squared pulse voltage glitch, as the one in Fig. 37, with amplitude VDD − V0

and duration ∆T, the minimum voltage Vmin is:

Vmin = vc(t0 + t1) = VDD + ∆V
[
m(t1)−m(t1 − ∆T)

]
(27)

where ∆V is the amplitude of the glitch (∆V = VDD −V0), and t0 is the moment at

which the glitch starts. m(t) depends on the damping factor, and t1 is the time where

Vmin occurs, both depicted in eqs. (28) and (29), respectively. We assume a ζ ≥ 1.74
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Figure 38. Potential fault injection borders. Normalized voltage glitch duration versus the normalized
voltage glitch amplitude, from eq. (27): (a) Special overdamped case (ζ ≥ 1.74). Glitch duration
normalized to the PDN’s time constant. The asymptotes (dashed vertical lines) are equal to
(VDD −Vmin)/VDD; (b) Critally damped and underdamped cases (ζ ≤ 1). Glitch duration normalized to
the PDN’s resonant frequency.

for the overdamped caseiii and approximate 1 ≤ ζ < 1.74 as critically damped.

m(t) =



e−t/τ0 · u(t) : ζ ≥ 1.74

e−w0t(1 + w0t
)

· u(t) : ζ = 1

e−αt[ α
wd

sin(wdt) + cos(wdt)
]

· u(t) : ζ < 1

(28)

t1 =



∆T : ζ ≥ 1.74

∆T
1−e−w0∆T : ζ = 1

1
wd

tan−1
[

sin(wd∆T)
cos(wd∆T)−e−α∆T

]
: ζ < 1

(29)

When replacing eqs. (28) and (29) in eq. (27), it is possible to obtain an expression for

iii Here the resistance and the capacitive reactance are more dominant than the inductive reactance.
Assume that the second pole of the system (as given in equation [25]) is at least one decade higher
than the first pole (s2 > 10s1). The latter sets a damping factor ζ ≥ 1.74, where the circuit in Fig. 37
approximates to a first-order RC system, with a time constant τ0 = ReqCdie.
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the potential fault injection borders (see curves in Fig. 38). As the name suggests, the

curves in Fig. 38 delimits the points where there is a potential risk for a fault injection

to occur. Fig. 38a shows the glitch duration normalized to the PDN’s time constant

(∆T/τ0) against the normalized glitch amplitude (∆V/VDD) for different Vmin/VDD, and

for ζ ≥ 1.74. Fig. 38b shows the glitch duration normalized to the PDN’s resonant

frequency (w0∆T) against the normalized glitch amplitude for the underdamped and

critically damped cases (ζ ≤ 1).

Regardless of the system’s damping factor in all the potential fault injection borders

in Fig. 38, the glitch duration has an inversely proportional-like behavior with respect

to the glitch amplitude, similar to Fig. 36. The expressions presented in this section

analytically explain the behavior between the glitch amplitude and the glitch duration

found through physical experiments in120 ,130.

From measurement results such as the one presented in Fig. 36, not only glitch char-

acteristics can be found (i.e., glitch duration and amplitude), but other useful system

information can be obtained through curve fitting of the potential fault injection border,

such as the PDN model and Vmin. In fact, in terms of a system’s fault characteriza-

tion, like the ones performed in120 ,137, using Vmin as the main parameter (instead of

the glitch duration and amplitude) permits consideration of any glitch waveform, not

only squared pulses but even glitches with arbitrary waveforms generated by genetic

algorithms or neural networks125.

5.3.2. Voltage Glitch attacks on Memory-based cells As stated before, the work

in123 performed an analysis over an SRAM cell omitting circuit non-idealities such as

leakage currents (i.e., reversed diodes) and devices mismatch (i.e., offset voltage),

concluding that it was not possible to cause fault injection in memory-based (latch)

cells.

Fig. 39a shows the non-idealities on the commonly used 6T (six-transistor) SRAM cell.

When an SRAM cell is under a voltage glitch attack, like the one presented in Fig. 39b

137 Thomas TROUCHKINE et al. “Fault Injection Characterization on modern CPUs - From the ISA to
the Micro-Architecture”. In: 13th IFIP International Conference on Information Security Theory and
Practice (WISTP). Dec. 2019, pp. 123–138.
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Figure 39. Non-idealities effects in SRAM cell. a) 6T SRAM cell with parasitic capacitors, reversed
diodes, and offset voltage. b) Transient behavior of internal SRAM node vq: (1) transistors turned-off;
(2) discharge of Cpar due to leakage currents; (3) case where vq greater than the offset voltage (vos1 );
(4) case where vq lower than the offset voltage (vos2 ).

(without considering the PDN), it may experience a complete shutdown depending on

the glitch duration. Hence, when the glitch is over (supply voltage VDD back to nominal

value), the SRAM may flip the stored bit.

The internal node vq (assuming that vq node was set to a logic one) follows VDD until the

transistors are turned off, and the positive feedback of the latch structure does not work

anymore. Due to leakage current (Ileak, mainly caused by the parasitic reversed diodes

of the transistors PN junctions), the voltage stored in the parasitic capacitors (Cpar)

starts to discharge until the end of the glitch. When VDDA ramps up and depending

on the offset level of the SRAM (vos, caused by the devices mismatch), the SRAM will

either retain the previously stored value (vq > vos) or flip the bit (vq < vos). This analysis

applies to any cell with a latch structure (e.g., SRAM, flip-flops).

Fig. 40 shows the Monte Carlo simulations to evaluate the percentage of flipped bits

for different glitch durations. The results are presented for a minimum size transistors

SRAM cell and a standard D-Flip-Flop (D-FF) cell. The simulations were performed

using a 130nm CMOS technology and for three different temperatures.

According to the Monte Carlo simulations, D-FF cells are less prone to voltage glitching

attacks than SRAM cells. The latter is because the transistors used in the D-FF are

larger, which results in higher parasitic capacitance (i.e., longer retention time).iv The

effect of the temperature on the simulation results is also evident, showing an order of

iv Bigger transistors mean higher leakage current as well, but the parasitic capacitance effect is domi-
nant.

115



T = 125ºC

T = -40ºC

T = 27ºC

Figure 40. Percentage of flipped bits against glitch duration in a conventional minimum size transistors
SRAM cell, and a standard cell D-Flip-Flop using a 130nm CMOS technology node. Montecarlo
simulation results of 1000 runs for each point in the graph.

magnitude lower retention time for 125◦C, and an order of magnitude higher retention

time for -40◦C, compared to ambient temperature (27◦C).

Flipping bits may put the system in an unknown state depending on how many memory-

based cells could be flipped (glitch duration). For this reason, and because it is impos-

sible to establish which cells are attacked,v flipping bits on memory-based cells is not

the best fault injection technique, though it certainly can give the maximum voltage

glitch duration before the attacked system enters a reset or unknown state.

5.4. Understanding the relation between the PDN time response and the operat-

ing frequency

We used the testbench in Fig. 41 for a complete understanding of the relation between

the PDN response under a voltage glitch attack and the system operating frequency,

using a CMOS 130nm technology. The testbench depicts an underdamped PDN circuit

(ζ < 1), a buffered clock, and two loops formed by combinational circuitry and rising-

edge D-FFs. Placing a buffer after the input clock signal emulates the behavior within

an SoC, where the clock is also affected by the supply voltage glitches. The latter is in

contrast to previous works123 ,124 where this effect was not considered.

v A fault injection caused by voltage glitching flipped bits is unique to a physical implementation of a
system. In other words, it may not be replicable to other physical versions of the same system.
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Figure 41. Simulation testbench. The loops are 90◦ out of phase between each other. A voltage glitch
attack can sync both signals.

The main difference between both loops is the number of combinational elements in

cascade (ten inverters and one NOR for ‘Loop 1’; four inverters and one NOR for ‘Loop

2’). The outputs of both loops (out1,2) are periodic signals with twice the period of

the system clock, but 90◦ out of phase to each other. We will consider that a fault is

injected if both signals get synced (momentarily or permanently) through supply voltage

glitching.

5.4.1. Underpowering: Timing Constraints vs DC Supply Voltage The first thing

to analyze is the behavior of the system’s minimum achievable clock period (maximum

operating frequency) as a function of the supply voltage. According to the results pre-

sented in124, the propagation delay of CMOS circuits is inversely proportional to the

supply voltage. Because of the latter, a fault injection can occur by decreasing the

supply voltage (underpowering), forcing a time constraint violation on the system.
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Underpowering 
effect

Figure 42. Underpowering: Minimum clock period of the circuit (Tmin = Tcombd + Tclk2q + Tsetup) over a
DC-sweep of the on-die supply voltage.

Fig. 42 shows the minimum clock period of the system over a DC-sweep simulation,

where the on-die supply voltage in Fig. 41 (Vc) was varied from 150mV to 1.2V. The

minimum clock period (Tmin) is calculated as the sum of the combinational circuitry

delay propagation (Tcombd), the delay between the output of the D-FF and the clock

rising-edge (Tclk2q), and the D-FF setup time.

In addition, the maximum contribution to the total timing constraint comes from the

combinational circuitry. As well, all of the three contributors to the minimum achievable

clock period are inversely proportional to the supply voltage. With this result in mind,

we will analyze in the following simulations how the result of a voltage glitch attack

can be related to the underpower effect on the same system, considering the system’s

PDN model. Specifically, two cases will be considered: when the PDN time response is

slower than the clock period and when the PDN time response is faster (or comparable)

than the clock period.

5.4.2. Case I: PDN Time Response Slower than Clock Period The clock’s fre-

quency ( fclk) used was 1GHz for the first simulation, which sets fclk = 10α (α is the

damping attenuation factor in eq. (26)). Because the time response of the PDN is
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Figure 43. Simulation result at an operating clock frequency of 500MHz.

much slower than the clock period, the system can correctly execute several opera-

tions during the Vc ramping down, until the latter reaches a minimum (Vmin = min{Vc})

where a fault occurs. Fig. 43 shows such a case, in which the 90◦ out of phase output

signals (out1,2) get synced after a voltage glitch attack.

We repeated the same simulation presented in Fig. 43 but at different clock frequencies

and using different glitch amplitudes, recording the minimum on-die voltage (Vmin) for

the minimum glitch duration that could induce a fault. Fig. 44 shows the results of the

simulations. The simulated Vmin follows the same behavior as fclk = 1/Tmin, obtained

as a function of the DC supply voltage in Fig. 42, almost independently of the glitch

amplitude.vi With the latter, we show that voltage glitching attacks cause the same

timing constraint violation effect on the system as underpowering, as long as the time

response of the PDN is slower than the operating clock period.

Finally, Fig. 45 shows the minimum glitch duration versus the corresponding glitch

amplitude that caused fault injections, which demarcates the potential fault injection

vi The deviation present in the results is because the Vc voltages at the clock rising edges differ from
one glitch amplitude to another.
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Figure 44. Simulation results of minimum on-die supply voltage (Vmin) after a glitch attack (X-axis) at
different operating clock frequencies (Y-axis). Different voltage glitch amplitudes tested.

Potential Fault 
Injection Border

Figure 45. Potential fault injection borders: Simulation results of the minimum glitch duration against
glitch amplitude.

borders, as presented in section 5.3.1. We show the results for three different operat-

ing frequencies (different Vmin) and compare the simulated results with the expected

outcomes when using eq. (27). The expected values are in agreement with the simu-

lations, corroborating the analysis presented in section 5.3.1.
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Figure 46. Simulation result at an operating clock frequency of 50MHz.

5.4.3. Case II: PDN Time Response Faster than Clock Period The results shown

in Fig. 44 follow the same tendency as fclk = 1/Tmin down to certain frequencies

(close to 100MHz) and with Vc around the transistors’ threshold voltage (|Vth{n,p} | ≈

420mV). At this point, the underpowering and voltage glitching effects are no longer

similar, as the expected Vc from the DC-sweep and the obtained Vmin value after a

glitch attack have a significant deviation (around 100mV at 100MHz in Fig. 44). The

latter is because the PDN time response starts to be comparable to the clock period

around an operating frequency of 100MHz, and the prediction from Fig. 44 and eq.

(27) does not hold any longer.

We carried away a second set of simulations to understand the behavior of a system

using a clock period comparable or slower than the PDN time response. Fig. 46 shows

the simulation results for a clock frequency fclk = 50MHz, or equivalently, fclk = α/2.

Since the time response of the PDN is faster than the clock period, the supply voltage

reaches its lower value so fast that there is not even a second clock rising edge for a

fault to occur (the system does not execute any operation). The supply voltage goes

low, and the digital circuitry stops its operation without entering a reset state. As shown
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in section 5.3.2, depending on the duration of the glitch, the memory-based cells (e.g.,

flip-flops, latches, SRAM, etc.) preserve the previous state without bit flipping. Hence,

the only possibility for a fault injection is during the ramp-up of the supply voltage.

During the supply voltage ramp-up, and before reaching the transistors’ threshold volt-

age, the output of the last inverter in the clock’s buffer chain (Fig. 41) starts to rise with

Vc. Some edge-driven circuitry may count this as a clock rising edge, and some may

fail. This is the case in Fig. 46 where the out2 D-FF recognizes the the clock’s edge,

while the out1 D-FF fails.

The latter is sufficient to sync both signals. Still, there is another effect within the

supply ramp-up that can cause a fault injection. Since the unintended clock rising edge

is very close to the next rising edge and because the supply voltage is still low,vii timing

constraint violations may occur, which is also the case in the simulation presented in

Fig. 46. Furthermore, if the start of the glitch is synchronized with the clock, the glitch

duration is always close to a multiple of the clock period (or half a clock period, if there

are digital circuitry driven by the clock negative edge) because it is in the vicinity of the

clock edges where the fault injection can occur. All of the experiments performed for

this second set of simulations showed the same mechanism for fault injection as the

one presented in Fig. 46.

As a summary, Fig. 47 shows the obtained minimum glitch duration that can cause a

fault injection versus the operating frequency (ranging from 10MHz to 1.5GHz). Two

regions are clearly distinguished within the figure, which corresponds to both cases

studied in this section. In the right region (case I), it is possible to see how the simulated

data follow the behavior of eqs. (27),(28) and (29).viii As stated before, this behavior is

only achievable if the PDN time response and the clock period are comparable, which

for the simulated circuit is around 100MHz. Below 100MHz, the system behaves as

in case II, and the glitch duration starts to be a multiple of the clock period (even half

clock period), as evidenced by the lines 1/ fclk, 2/ fclk, and 4/ fclk.

vii The effective clock period during the ramp-up is 5ns, equivalent to 200MHz. According to Fig. 44,
the maximum frequency at 420mV (Vth) is around 100MHz, hence the timing violation constraints.

viii We used the obtained data of the fclk vs. Vmin relation in Fig. 44 to calculate the operating frequency
from a Vmin caused by a glitch duration ∆T and glitch amplitude VDD.
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Eq.(3)
[𝚫V = VDD]

Case ICase II

Figure 47. Minimum glitch duration against operating frequency. The cases analyzed in this section are
presented to show their behavior.

5.5. Experimental Results

In this work, the microcontroller unit (MCU) under test/attack is a 32b RISC-V core138.

The MCU contains a 4KB SRAM, a 10b ADC, a 12b DAC, 8 GPIO, and two SPI in-

terfaces (master and slave). All the modules are connected using two different buses:

AXI4 and APB. The MCU supports a maximal clock frequency of 100 MHz, and the

supply core voltage is 1.2V. The core has a two-stage instruction pipeline (i.e., the

fetch and execute stages).

In the following set of experiments, we will refer to successful glitch attacks as those

that produce a fault injection, such as an undesired jump instruction within the MCU’s

program. These types of attacks may allow skipping security mechanisms, such as

user-password routines. We put the MCU in an infinite loop to emulate a situation

where a program awaits indefinitely (e.g., for a user entry). The only possible way to

exit the infinite-loop would be through a fault injection, which in our case occurs through

a voltage glitch attack.

138 C. DURAN et al. “A 32-bit RISC-V AXI4-lite bus-based microcontroller with 10-bit SAR ADC”. in: 2016
IEEE 7th Latin American Symposium on Circuits Systems (LASCAS). 2016, pp. 315–318.
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Figure 48. Experiment setup: a) Block diagram of the program written in the MCU’s memory; b) Block
diagram of the experiment routine; c) Example of the voltage signals during the experiment routine; d)
Voltage glitch attack circuit diagram; e) Physical implementation of the experimental setup.

5.5.1. Experimental Setup Fig. 48a shows the program written in the MCU’s mem-

ory. Initially, the GPIO0 goes ‘high’ while the others are ‘low’. Immediately, the program

goes into an infinite loop and sets the GPIO1 high. In normal conditions, GPIOs ‘0’ and

‘1’ would be the only ones to be in a high-state indefinitely. The program has other four

infinite loops to check the effect of a glitch attack, so if there is an undesired instruction

jump (or another type of fault injection, e.g., register corruption), the GPIOs ‘2’ to ‘5’

turn high as well.

Fig. 48b illustrates the routine used to perform the experiments. First, the FPGA is

initialized, and the MCU is programmed. A “ready” signal goes out from the MCU,

and a glitch attack is executed on the MCU’s supply. Then, the routine checks which

GPIOs are ‘high’: if only the GPIOs ‘0’ and ‘1’ are ‘high’, the glitch duration is increased

by one clock signal period in each iteration (see Fig 48c); if any of the other GPIOs

between ‘2’ to ‘5’ are ‘high’, it means a fault injection occurred, and the glitch signal is

saved; otherwise, the MCU goes to reset, and the process restarts with the same glitch

duration.

We used the circuit diagram in Fig. 48d, which represents the actual experimental

setup in Fig. 48e, to execute the routine and the glitch attacks. The experiment routine

runs in a computer that controls all the components of the setup. The computer writes

the infinite-loops program to the RISC-V MCU’s memory (communicates through the
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MCU’s serial-parallel interface) and controls the FPGA and an external microcontroller

(ESP32). The function of the FPGA is to send a trigger signal to activate the glitch

attack. The FPGA also senses the GPIOs’ states (i.e., ‘high’ or ‘low’) through an edge

detector. The external microcontroller configures a digitally variable resistor within the

glitch generator circuit and a PLL to set the clock frequency of the RISC-V MCU.

The glitch generator circuit in Fig. 48d is composed of a resistor divider with a power

NMOS transistor triggered by the glitch signal coming from the FPGA. The output of the

glitch generator sets the MCU’s supply voltage vdd(t). Since the MCU’s test-board has

a voltage regulator and coupling capacitors, they were disconnected before injecting

the glitch attack. While the FPGA controls the duration of the glitch attack (proportional

to an MCU’s clock period), the digitally-variable resistor helps to obtain different glitch

amplitudes in the MCU supply voltage, following:

V0 =
VDD

1 + αr
, (30)

where αr is an integer number between 1 to 15. The αr binary number triggers the

switches to connect or disconnect several resistors in parallel. An additional switch

that connects directly to the ground allows a glitch amplitude down to 0V.

5.5.2. PDN Equivalent Impedance Measurement For the measurement of the

power delivery network equivalent impedance, we used the resistor connected in series

in Fig. 48d and measured the voltages at its nodes. Fig. 49 shows the measurement

of the magnitude and phase of the PDN impedance at different frequencies.

We used the circuit in Fig. 37 to fit a lumped model, which is also plotted in Fig.

49. Table 9 shows the PDN circuit elements. The calculated damping factor ζ of the

PDN is 0.63, which puts the MCU under attack in the underdamped case analyzed in

section 5.3.1. The resonance frequency (w0), the damping attenuation factor (α), and

the damped resonance frequency (wd) are also shown in Table 9.

5.5.3. Voltage Glitching Measurement Results We performed a set of experi-

ments where the MCU was attacked with different glitch amplitudes (using the circuit
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Figure 49. Measured PDN impedance and modeled impedance using the circuit in Fig. 37.

Table 9. PDN circuit equivalent elements (Fig. 37 and eq. (26))

Cdie Req Lpkg Rswitch

1.32nF 12Ω 120nH 132Ω

ζ w0 α wd

0.63 79.5Mrad/s 50Mrad/s 61.8Mrad/s

in Fig. 48 and equation [30]) while working at different operating frequencies. Only the

voltage glitch signal of successful attacks was measured for around 4500 experiments.

Fig. 50 shows examples of the applied glitches.ix

Fig. 51 shows the measured glitch signal duration against the MCU’s operating fre-

quency. According to the results presented in section 5.5.2, the system should behave

as in case II for operating frequencies lower (or equal) than 50MHz (α = 50Mrad/s),

where the PDN time response is faster than the clock period (see section 5.4).

Because the MCU has negative and positive edge-driven flip-flops, the minimum glitch

ix Something to notice from these glitches is the ringing present in the waveforms. The latter is due to
the resonant frequency formed by the PCB and off-chip components.
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Figure 50. Examples of glitches at the supply voltage during a fault attack at different amplitudes.

duration in Fig. 51 (blue stars) followed a multiple of 0.5/ fclk. The minimum glitch du-

ration starts to deviate from the 0.5/ fclk value (gets higher, almost settling to a value)

when the operating frequency is closer to 50MHz, which is the limit frequency to transi-

tion from case II to case I (PDN time response slower than clock period). Unfortunately,

the system in Fig. 48e does not support higher frequencies than 50MHz, and case I

was not experimentally tested in this work. Nevertheless, remember that in section

5.3.1 we showed how the evidence in120 ,130 endorses the analysis presented for

case I.

The results in Fig. 51 corroborate the analysis presented in sections 5.3.2 and 5.4,x

as well as the simulation results shown in Fig. 47, where the minimum glitch duration

was close to the clock period, or a multiple of it (the simulated system only had positive

edge-driven D-FF).

x The section 5.4 analysis can be used to predict what is the minimum possible glitch duration for
voltage glitching fault injection, not to establish the most expected duration for a glitch attack. The
latter is evidenced by the median values in Fig. 51 (black markers), which differ almost by one (or
one and a half) clock period from the minimum duration.
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Figure 51. Measured glitch signal duration for successful fault injection. The glitches are grouped by
glitch amplitude. There are around 80-100 samples in each frequency and glitch amplitude. Black
markers highlight the median at each amplitude, while the blue stars highlight the minimum glitch
duration.

5.6. Conclusion

In this chapter, we included the power delivery network of an SoC in the classical timing

constraint violation approach, which has been historically neglected in the literature.

The inclusion of the PDN in the analysis allowed us to establish a relation between

the potential of a voltage glitch to inject a fault into a system and the glitch waveform

parameters (e.g., duration, amplitude).

We found two scenarios for effective voltage glitching fault injections, depending on the

relation between the PDN time response and the system’s operating frequency. In the

first scenario (case I, PDN time response slower than the clock period), we showed an-

alytically, and through simulations, that voltage glitching attacks cause the same timing

constraint violation effect on the system as underpowering. Furthermore, the analyt-

ical relationship between the glitch amplitude and the glitch duration (potential fault

injection border) obtained in this chapter matches with experimental results behavior
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presented in previous works in the literature. By using measurement results and our

analysis, an attacker can find useful information about the system through curve fitting

of the potential fault injection border. From the victim’s point of view and in terms of

a system’s fault characterization, our analysis may allow a system characterization for

any glitch waveform, even glitches generated by genetic algorithms or neural networks.

On the other hand, when the PDN time response was faster than the clock period

(case II), the supply voltage reached its lower value before executing a single other

operation, suggesting that the fault injection is only possible during the supply ramp-

up. During the temporary system shutdown due to voltage glitching, we analyzed how

memory-based cells (e.g., SRAM and D-FF) retain the previous state if the glitch does

not last for a long time. Based on this analysis, we performed a set of simulations

where the system under attack was in case II. Additionally, we executed several fault

injection (namely, instruction jumps) experiments in an in-house RISC-V MCU, also in

case II. The data obtained out of 4500 experiments across multiple glitch voltages and

operating frequencies, and the simulation results, showed a pattern in the minimum

possible glitch duration, with the latter being a multiple of the clock period (or half of

the period for systems with negative and positive edge-driven flip-flops).
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6. CONTRIBUTIONS AND CONCLUSIONS

Several conclusions raise from the work done in this dissertation. They are compiled

and explained in this chapter.

6.1. Contributions Summary

The summary of the key contributions of this dissertation is described as:

• A-Connect: a novel methodology to improve neural network resilience against

stochastic variability when deploying neural networks in imprecise analog accel-

erators.

• The development of a public Keras/Tensorflow library, with versions of fully-connected

and convolutional layers using A-Connect.

• The proposal of a wide frequency range and high energy efficiency CIM SRAM-

based ML macro for multi-mode systems-on-edge.

• The proposal of an end-to-end analog datapath that incorporates not only MAC

operations but commonly used ML operations within the analog domain (e.g.,

ReLU, normalization, memory).

• The proposal of ultra low-power multi-level voltage monitors for multi-mode fine-

grained power management strategies.

• The presentation of experiments showcasing how the proposed voltage monitors

could be used in a real power management strategy.

• The inclusion of the power delivery network of an SoC in the classical timing

constraint violation approach.

• The analytical relation between the potential of a voltage glitch to inject a fault

into a system and the glitch waveform parameters (e.g., duration, amplitude).

6.2. Conclusions

As described in the Introduction (chapter 1), the project goal was:

To devise solutions in unconventional domains (analog-mixed signal) to some of
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the conventional problems regarding IoT challenges, as well as to envision the

rise of new challenges in secure and efficient systems-on-edge.

Since we divided the main goal into three objectives, I decided to present the conclu-

sions of my work by encasing them into one of the three thesis’ objectives, as follows:

To explore the feasibility of applying in mixed-signal accelerators traditional computer

architecture and machine learning techniques.

In regards to improving the energy efficiency of systems-on-edge with decision-making

capabilities, we explored machine-learning accelerator architectures in the analog-

mixed signal domain. Trying to propose an analog-based ML macro accelerator was

a great challenge since analog computation is susceptible to hardware stochastic vari-

ability, incurring in limited signal-to-noise and aggravating for compact and low power

applications. Hence, before any hardware proposal, we decided to explore a co-design

software strategy.

We introduced A-Connect, an ex situ statistical methodology to improve analog neural

network resilience against stochastic variability, enabling energy-efficient and compact

imprecise accelerators. This methodology enables, for instance, emergent memory

technologies as ReRAM and PCM for accurate computation-in-memory applications.

Furthermore, we developed a Keras/Tensorflow library, with versions of fully-connected

and convolutional layers using A-Connect. The library can be coupled to standard ma-

chine learning platforms in a straightforward manner. We presented simulation results

applying the A-Connect methodology to popular DNNs, such as LeNet-5 for MNIST

dataset, AlexNet, VGG-16, and ResNet-20 for the CIFAR-10 dataset, and ResNet-18

for the CIFAR-100 dataset. The experimental evidence compiled in this work showed

that the proposed methodology significantly outperforms other ex situ, while achieving

similar performance than in situ, and hybrid approaches to mitigate stochastic variabil-

ity in the literature. The A-Connect methodology showed an improvement over base-

line models of around 15 to 68 percentage points for the median accuracy at a 70% of

stochastic variability. The deviation of the results with A-Connect is around 20X lower

than the baseline at this level of stochasticity.
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Once we tackled the problem of hardware stochastic variability in analog-based neural

network accelerators with the A-Connect methodology, we continue with our hardware

implementation proposal. We proposed a wide frequency range and high energy ef-

ficiency CIM SRAM-based ML macro for multi-mode systems-on-edge. The analog

macro was able to perform at high energy efficiency by following two principles: avoid-

ing data conversion by staying in the same physical domain (i.e., current), and the use

of simplified and low-area circuits by using co-design software strategies that mitigate

stochastic and deterministic errors (i.e., the A-Connect methodology). We proposed

an end-to-end analog datapath that incorporates not only MAC operations but com-

monly used ML operations within the analog domain, such as ReLU and scaling (the

latter enabled normalization operations), as well as memory capabilities for pipeline ex-

ecution. The simulation results presented in a 180nm design showed that the analog

macro performed at a wide range of frequencies (200kHz-15MHz) over ultra-low and

broad range of current levels (i.e., 1nA to 100nA biasing), while maintaining a relatively

similar energy efficiency (760-1076 1b-TOPS/W). When compared to other works, the

proposed macro’s results were compatible with state-of-art macros in 65nm. Further-

more, we showed performance estimations for a 28nm design that put the proposed

analog macro above absolute state-of-art performance. To our knowledge, our work is

the only study investigating multi-mode ML accelerators performing efficiently at differ-

ent current levels and clock rates.

To devise mixed-signal power management strategies for energy-efficient systems-on-

edge.

Coming back to improving the energy efficiency of systems-on-edge, multi-mode fine-

grained power management system-on-chip (SoC) offer a promising approach for achiev-

ing ultra-low power consumption in energy autonomous and battery supplied applica-

tions at the edge of Internet-of-Things (IoT). The SoC Power Management Unit (PMU)

implements these techniques to obtain a more precise control over power consumption

at the subsystem and component level, enabling systems to operate more efficiently.

In this work, we presented ultra low-power multi-level voltage monitors for multi-mode
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fine-grained power management strategies. Simulation results over PT variations, as

well as measurements at nominal temperature, showed a robust performance within

the industrial temperature range from -40◦C to 125◦C and a wide supply rise and falling

times, ranging from 1us to 1s. In a first version of the POR (POR1), we managed to ob-

tain a current consumption of 7µA. In the second version (POR2) the POR had a nom-

inal current consumption of 19nA. Both PORs had up-to 3 different voltage threshold

levels. In regards to the BOD, we presented an architecture with low-temperature slew

compensation for low power applications, multiple voltage threshold levels, and a cur-

rent consumption of 200nA. We also showed experimentally how these voltage moni-

tors could be used in a real power management strategy. By having multi-level voltage

thresholds we enabled three different power modes that used lower voltage supply:

active, sleep, and deep-sleep. According to measurements, the SoC had an 8mA cur-

rent consumption at 16MHz in active mode, 27.5µA at 32.768kHz in sleep mode, and

530nA at 32.768kHz in deep-sleep mode. In comparison to previous research that ne-

glect to consider the low-temperature effects when using large impedance branches,

this work achieved a low current consumption even by considering these temperature

effects. Current consumption, programmability, and reduced area, makes the proposed

voltage monitors enablers of different fine-grained power management schemes.

To study the impact of power supply glitching as a way to infringe systems-on-edge

security.

In terms of security, we decided to focus our efforts on the study of unconventional

hardware security infringement in SoC since previous research in our group OnChip

studied more conventional software-based attacks. We decided to go this path be-

cause the amount of interconnected devices in today’s IoT applications is so over-

whelming that any front should be protected, even those that appear to be unusual.

Following this line of thought, we investigated power supply glitching, one of the most

researched fault injection mechanisms in SoC at a hardware level. The easiness of

execution and permanent availability of an external pin for the power supply, make

glitching injection one of the preferred methods for security tampering. Although, pre-
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vious works have provided experimental evidence demonstrating that voltage glitching

fault injections cause time constraint violations, there is still a lack of understanding of

the voltage glitching nature. The latter has prevented obtaining a direct link between

the glitch characteristics and the likelihood of the glitch injecting a fault into a system.

In our work we managed to include the power delivery network of an SoC in the clas-

sical timing constraint violation approach. The inclusion of the PDN in the analysis

allowed us to establish a relation between the potential of a voltage glitch to inject a

fault into a system and the glitch waveform parameters (e.g., duration, amplitude).

We found two scenarios for effective voltage glitching fault injections, depending on the

relation between the PDN time response and the system’s operating frequency. In the

first scenario (case I, PDN time response slower than the clock period), we showed

analytically, and through simulations, that voltage glitching attacks cause the same

timing constraint violation effect on the system as underpowering. Furthermore, the

analytical relationship between the glitch amplitude and the glitch duration (potential

fault injection border) obtained in this paper matches with experimental results behavior

presented in previous works in the literature. By using measurement results and our

analysis, an attacker can find useful information about the system through curve fitting

of the potential fault injection border. From the victim’s point of view and in terms of

a system’s fault characterization, our analysis may allow a system characterization for

any glitch waveform, even glitches generated by genetic algorithms or neural networks.

On the other hand, when the PDN time response was faster than the clock period

(case II), the supply voltage reached its lower value before executing a single other

operation, suggesting that the fault injection is only possible during the supply ramp-

up. During the temporary system shutdown due to voltage glitching, we analyzed how

memory-based cells (e.g., SRAM and D-FF) retain the previous state if the glitch does

not last for a long time. Based on this analysis, we performed a set of simulations

where the system under attack was in case II. Additionally, we executed several fault

injection (namely, instruction jumps) experiments in an in-house RISC-V MCU, also in

case II. The data obtained out of 4500 experiments across multiple glitch voltages and

operating frequencies, and the simulation results, showed a pattern in the minimum
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possible glitch duration, with the latter being a multiple of the clock period (or half of

the period for systems with negative and positive edge-driven flip-flops).

6.3. Suggestions for Future Research

This subsection presents some suggestions for future research on the topics we dealt

with in this thesis.

• Although we managed to design and simulate the ML macro, we did not fabri-

cate it. One of the major reasons (besides external impediments, such as the

pandemic and its consequences) was the complexity required for the commu-

nication between the macro/accelerator and the external world, or even a third

party. In fact, ML macro/accelerator communication has been one the most stud-

ied subjects in analog-based CIM accelerators since it constitutes one of the most

challenging data bottlenecks.

During the execution of the project, we explored two possibilities that were not

implemented. The first one was inspired by previous work on the OnChip’s group

where we accomplished AES acceleration through RISC-V custom instructions.

In fact, the analog datapath proposed in this work was conceived from the be-

ginning for such purposes, where each of its instructions would be added to a

custom RISC-V MCU. Direct memory access (DMA) would have been a must for

this implementation, just as it was for the AES acceleration case. The second

was a ”straightforward” standalone approach. The idea was to use a FIFO-based

strategy where buffer memory was used for proper communication with the exte-

rior. Either way, it was definitely not a simple task for testing purposes since we

are talking about a single macro. Even implementing a single layer of a neural

network in one macro would require several memory read/write procedures that

would have obliged us to use data conversion in each cycle, which would not

allow us to test the full potential of the proposed macro. We think that our pro-

posal is better implemented in an accelerator configuration (i.e., multiple macros

interconnected), but the latter itself is a great communication challenge.

• We also didn’t manage to test the proposed voltage monitors in the different fine-

135



VS
S

VD
D

VSS

VDD

VSS

VDD

VS
S

VD
DMCU 

pipeline
Logic
Fault 
Injection

Brown-out
detector

VSSb

VDDb
VSSa

VDDa

c.

b.

a.
d.

e.

500mV/div
100ns/div

500mV/div
100ns/div

VDDa
VDDb

VDD

VTHBOD

A0

Power 
grid

VBODmin ~ VDD - A0/𝜏b
Logic

FI

BOD

Za,𝜏a
VSS

VDD

PAD

Power grid 
2D lumped 

model

rp
Cp

Lp rg
Cg

ra1
Ca1

rb2
Cb2

Zb,𝜏b

VFImin ~ VDD - A0/𝜏a

VSSa

VDDa

Figure 52. Propagation of voltage glitches through SoC power delivery network: a) SoC showing the
PDN grid and the location of the MCU pipeline (light bluw shadow), the location of the BOD (red dot),
and where the logic fault injection (FI) occurs (blue dot); b) 3D transmission line model of the supply
(VDD) and ground planes (VSS); c) 1D version of the supply and ground lines for the BOD and the logic
FI; d) Arbitrary voltage glitch waveform applied to the SoC’s power supply; e) Voltage supply signals at
BOD’s (red line) and logic FI’s (blue line) locations.

grained power management schemes discussed in chapter 4. Mainly, the global

voltage monitor with multiple local voltage monitors for the different power do-

mains is the most attractive approach to test, not only for energy-efficiency pur-

poses but for security ones.

One of the main reasons for the low success rate of fault injections in commercial

MCUs is the voltage monitors within these systems, namely brown-out detectors

(BODs).139

Still, there have been studies where it was possible to bypass the voltage moni-

tors. By using genetic algorithms, the authors in125 were capable of generating

arbitrary glitches waveforms, finding the adequate glitch’s parameters, customiz-

ing the glitches to the attacked MCU. Unfortunately, the authors did not provide

an explanation on how they were capable of injecting the faults while bypassing

the BOD.

The purpose of Fig. 52 is to describe through an example how a BOD can be

139 Voltage regulators are also responsible for the low success rate, up to certain extent. For example,
there are not so many works with a high power supply rejection (PSR) at the frequencies relevant for
a voltage glitch signal (Farid Uddin AHMED et al. “A Brief Overview of On-Chip Voltage Regulation
in High-Performance and High-Density Integrated Circuits”. In: IEEE Access 9 [2021], pp. 813–826).
Furthermore, the PSR only reflects the capability of the regulator to reject small signals, while voltage
glitches are large signals.
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bypassed during a glitch attack, even with the assumption that the BOD is fast

enough to respond to the glitch. Fig. 52a shows the hypothetical case of an SoC,

its pads, and its power delivery network (power grid). In this hypothetical SoC, we

assume the location of the BOD (red circle), the location of the microcontroller’s

logic (light blue shape), and the location where the logic fault occurs (blue circle).

Since the BOD and some parts of the MCU are not physically close, the supply

and ground transmission lines may differ enough for fault injection. The circles in

Fig. 52a are only a mere representation of possible locations for the BOD and

the logic fault. The BOD might be as well at any other position, but then, another

part of the logic might be erratic as well.

Understanding how the glitch propagates through different paths within the SoC

is not an easy task. Considering the duration of a conventional glitch attack, and

the power integrity of the supply (VDD) and ground planes (VSS), one could use

the 3D transmission line model for VDD and VSS presented in Fig. 52b. Just

obtaining the actual model of the power grid is a complex task if one considers

that all the intersections are not symmetric (i.e., the resistors and capacitors are

not the same at every power grid intersection). Furthermore, the multi-metal

structure of silicon dies makes the modeling of such transmission lines even more

complicated.

Still, a simpler model can give us the means necessary to understand what may

happen when a glitch propagates through the chip. Fig. 52c shows the simplified

2D version of the supply and ground lines for two different paths within the SoC:

one for the BOD and the other for the logic where the fault occurs. The sections

shared by both paths are the supply and ground pads (modeled with a lumped

RLC network) and part of the power grid, which corresponds to the top-metal

layers interconnections (modeled with a lumped RC network).

By applying an arbitrary glitch waveform to the VDD and VSS nodes, like the one

in Fig. 52d, the responses depicted in Fig. 52e could be obtained. The red and

blue curves are possible outcomes of the glitch propagated through the power

lines down to the BOD and the location of the logic fault, respectively. VTHBOD
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sets the minimum voltage where the logic works correctly and the BOD sends a

reset signal. Hence, Fig. 52e represents the case where the logic sees a voltage

drop that leads to a fault injection, but the BOD does not detect any drop.

Finding the proper glitch waveform that can propagate without detection through

3D multi-nodal power lines is a complicated problem. This type of problem is

suited for genetic algorithms or neural networks, which can find the adequate

glitch for a specific MCU in an offline fashion,140 and then attack the actual system

so that the case presented in Fig. 52e can occur.

There would probably be more than one glitch waveform that could induce a fault

injection due to the number of variables involved in such a problem (even in the

presence of voltage monitors). For example, it can depend on where the fault

(e.g. instruction jump, data corruption) is injected within the MCU. Taking actions

against innumerable glitch waveforms is a near impossible task. Instead, it may

be possible to predict if a glitch has the potential to inject a fault depending on its

integral or its double-time integral.

With the latter in mind, rather than looking at the shape of the glitch in Fig. 52d,

one could look at the area (A0) under the glitch, or at the double-time integral

(A1, equation [??]) of the glitch, depending on the system’s damping factor (ζ).

According to equation (27), or (??), and using the model in Fig. 52c with the time

constants τa and τb, or the resonant frequencies wa and wb, it is possible to relate

the minimum voltages at the end of the glitch seen by the BOD (VBODmin) and the

logic where the fault injection occurs (VFImin):

VBODmin ≈ VDD − κa,b · (VDD −VFImin) (31)

where κa,b = τa/τb for ζ ≥ 1.74, and κa,b = w2
b/w2

a for ζ < 1.74.

Equation (31) highlights the relation between the position of the BOD within the

SoC and its capacity to detect a fault injection at any location of the chip. A

140 The attackers can perform tests on an external MCU of the same model. The attack must have
a certain level of repeatability for this offline approach to work, as pointed in (Claudio BOZZATO
et al. “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks”. In: IACR Transactions on
Cryptographic Hardware and Embedded Systems 2019.2 [Feb. 2019], pp. 199–224).

138



straightforward approach to tackle glitch attacks with arbitrary waveforms would

involve a distributed network of BODs positioned at different locations within the

SoC. The number of BODs and their locations would be determined according to

the power grid topology. This topology is obtained considering internal compo-

nents, such as decoupling capacitors and key blocks’ positions and load profiles.

This methodology could be merged into the power integrity signoff of an SoC in

a sort of security integrity analysis against glitch attacks.141

In the end, there is not a definitive solution to avoid MCU fault injections through

glitch attacks. A security integrity analysis to set a network of BODs, would hypo-

thetically reduce the success rate of glitch attacks (even those generated through

neural networks or genetic algorithms), but eventually, an attacker may compro-

mise the security. Instead of just shielding against attacks, a better alternative

might be to understand the vulnerabilities of the system regarding fault injection,

and in the process, learn how to counteract them.

The authors in137 show a full characterization of faults injected through electro-

magnetic pulses on modern CPUs. With this characterization, they could identify

the types of faults injected (e.g., instruction jump, data corruption), as well as the

location of these faults (e.g., pipeline, registers, and memory).

6.4. Publications and Patents
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L. E. Rueda G., R. Vergel, E. Silva, E. Roa, ”A-Connect: an ex-situ Training Method-
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with IEEE Publishing Operations, 2023, doi: 10.1109/TCSI.2023.3273188.

R. Torres, E. Roa and L. E. Rueda G., ”On the Design of a Reliable Current Reference

for Systems-on-Chip,” in Wiley International Journal of Circuit Theory and Applications,

vol. 49, no. 7, pp. 2032–2046, April 2021, doi: 10.1002/cta.2955.

141 The amount, the position, and the values of the decoupling capacitors may help not only the power
integrity but also the security integrity of the SoC.
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MARTÍN, Honorio et al. “Fault Attacks on STRNGs: Impact of Glitches, Temperature,

and Underpowering on Randomness”. In: IEEE Transactions on Information Foren-

sics and Security 10.2 (2015), pp. 266–277 (cit. on p. 108).

MENG, Ziqi et al. “Digital Offset for RRAM-based Neuromorphic Computing: A Novel

Solution to Conquer Cycle-to-cycle Variation”. In: DATE. 2021 (cit. on pp. 33, 41,

55–56).

MIYASHITA, D. et al. “Time-Domain Neural Network: A 48.5 TSOp/s/W Neuromorphic

Chip Optimized for Deep Learning and CMOS Technology”. In: IEEE A-SSCC. Nov.

2016 (cit. on p. 28).

MOHANTY, A. et al. “Random Sparse Adaptation for Accurate Inference with Inaccu-

rate Multi-Level RRAM Arrays”. In: IEEE IEDM. 2017 (cit. on p. 32).

MURRAY, A.F. et al. “Enhanced MLP performance and fault tolerance resulting from

synaptic weight noise during training”. In: IEEE Transactions on Neural Networks

5.5 (1994), pp. 792–802 (cit. on pp. 32, 34, 38–39).

NAVA WHITEFORD. A COMPLETELY OPEN MICROCONTROLLER. Oct. 2016 (cit.

on p. 18).

NEFTCI, Emre O. et al. “Stochastic Synapses Enable Efficient Brain-Inspired Learning

Machines”. In: Frontiers in Neuroscience 10 (June 2016) (cit. on p. 36).

O’FLYNN, Colin. “Fault Injection using Crowbars on Embedded Systems”. In: IACR

Cryptol. ePrint Arch. 2016 (2016), p. 810 (cit. on p. 108).

O’FLYNN, Colin et al. “ChipWhisperer: An Open-Source Platform for Hardware Em-

bedded Security Research”. In: vol. 8622. Apr. 2014 (cit. on pp. 105–106).

OPITZ, D. et al. “Popular Ensemble Methods: An Empirical Study”. In: Journal of Artifi-

cial Intelligence Research (Aug. 1999) (cit. on p. 31).

PAN, J. et al. “An Internet of Things Framework for Smart Energy in Buildings: Designs,

Prototype, and Experiments”. In: IEEE Internet of Things Journal 2.6 (Dec. 2015),

pp. 527–537 (cit. on p. 15).

149



PAPISTAS, I. A. et al. “A 22 nm, 1540 TOP/s/W, 12.1 TOP/s/mm2 in-Memory Analog

Matrix-Vector-Multiplier for DNN Acceleration”. In: 2021 IEEE Custom Integrated

Circuits Conference (CICC). 2021, pp. 1–2 (cit. on p. 81).

PRAKASH, R. “Zero Quiescent Current, Delay Adjustable, Power-on-reset Circuit”. In:

2014 IEEE Dallas Circuits and Systems Conference (DCAS). Oct. 2014, pp. 1–4

(cit. on p. 99).

PYLE, S. D. et al. “Leveraging Stochasticity for In Situ Learning in Binarized Deep

Neural Networks”. In: Computer 52.5 (2019), pp. 30–39 (cit. on p. 33).

QUERLIOZ, D. et al. “Bioinspired Programming of Memory Devices for Implementing

an Inference Engine”. In: Proceedings of the IEEE (2015) (cit. on p. 36).

RAJPUT, S.S. et al. “A Current Mirror for Low Voltage, High Performance Analog Cir-

cuits”. In: AICPEF 36.3 (2003), pp. 221–233 (cit. on p. 65).

RAMIREZ-ANGULO, J. “Low Voltage Current Mirrors for Built-in Current Sensors”. In:

IEEE ISCAS. Vol. 5. 1994, 529–532 vol.5 (cit. on p. 65).

RICHTER, O. et al. “Device Mismatch in a Neuromorphic System Implements Random

Features for Regression”. In: IEEE BioCAS. 2015 (cit. on p. 32).

RISC-V FOUNDATION. Members at a Glance. 2020 (cit. on p. 18).

RONCHI, N. et al. “A Comprehensive Variability Study of Doped HfO2 FeFET for Mem-

ory Applications”. In: 2022 IEEE International Memory Workshop (IMW). 2022,

pp. 1–4 (cit. on p. 30).

RUEDA G., Luis E. et al. “A Compact Industrial-Grade Multi-Threshold Brown-Out De-

tector”. In: 2019 26th IEEE International Conference on Electronics, Circuits and

Systems (ICECS). 2019, pp. 923–926 (cit. on pp. 93, 99).

RUEDA G, Luis E. et al. A-Connect for TensorFlow. [Online] Available: https://github.com/onchipuis/A-

Connect. 2021 (cit. on pp. 31, 46).

RUEDA G., Luis E. et al. “An Ultra-Low Power Multi-Level Power-on Reset for Fine-

Grained Power Management Strategies”. In: 2019 IEEE 10th Latin American Sym-

posium on Circuits Systems (LASCAS). 2019, pp. 185–188 (cit. on pp. 87, 89, 91,

99).

150



SANTAMARIA, J. et al. “A Family of Compact Trim-Free CMOS Nano-Ampere Cur-

rent References”. In: 2019 IEEE International Symposium on Circuits and Systems

(ISCAS). May 2019, pp. 1–4 (cit. on p. 93).

SCHAPIRE, Robert E. “The Strength of Weak Learnability”. In: Mach. Learn. 5.2 (July

1990), 197–227 (cit. on p. 31).

SHANBHAG, Naresh R. et al. “Comprehending In-memory Computing Trends via Proper

Benchmarking”. In: 2022 IEEE Custom Integrated Circuits Conference (CICC). 2022,

pp. 01–07 (cit. on pp. 80–81).

SHE, X. et al. “Improving Robustness of ReRAM-based Spiking Neural Network Accel-

erator with Stochastic Spike-timing-dependent-plasticity”. In: IJCNN. 2019 (cit. on

p. 36).

SI, X. et al. “A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-

Based AI Edge Processors”. In: IEEE JSSC (Jan. 2020) (cit. on p. 27).

SIMONYAN, Karen et al. Very Deep Convolutional Networks for Large-Scale Image

Recognition. Ed. by Yoshua BENGIO et al. 2015 (cit. on p. 46).

SINGH, Arvind et al. “Mitigating Power Supply Glitch based Fault Attacks with Fast

All-Digital Clock Modulation Circuit”. In: 2019 Design, Automation Test in Europe

Conference Exhibition (DATE). 2019, pp. 19–24 (cit. on p. 109).

SRIVASTAVA, Nitish et al. “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”. In: JMLR (Jan. 2014) (cit. on pp. 35, 40).

SRIVASTAVA, P. et al. “PROMISE: An End-to-End Design of a Programmable Mixed-

Signal Accelerator for Machine-Learning Algorithms”. In: ACM/IEEE 45th Annual

ISCA. June 2018, pp. 43–56 (cit. on p. 27).

STANKOVIC, J. A. “Research Directions for the Internet of Things”. In: IEEE Internet of

Things Journal 1.1 (Feb. 2014), pp. 3–9 (cit. on p. 16).

T, P. Sensor monitoring device. US Patent 3,842,208. Oct. 1974 (cit. on p. 15).

TANG, Adrian et al. “CLKSCREW: Exposing the Perils of Security-Oblivious Energy

Management”. In: 26th USENIX Security Symposium (USENIX Security 17). Van-

couver, BC: USENIX Association, Aug. 2017, pp. 1057–1074 (cit. on p. 106).

151



The Internet of Thinks: An Overview. Accessed: 2016-10-17. Oct. 2015 (cit. on pp. 15–

16).

TIMMERS, Niek et al. “Controlling PC on ARM Using Fault Injection”. In: 2016 Work-

shop on Fault Diagnosis and Tolerance in Cryptography (FDTC). 2016, pp. 25–35

(cit. on pp. 108–109, 114, 127).

TRIPATHI, A. et al. “Analog Neuromorphic System Based on Multi Input Floating Gate

MOS Neuron Model”. In: IEEE ISCAS. May 2019 (cit. on p. 32).

TROUCHKINE, Thomas et al. “Fault Injection Characterization on modern CPUs -

From the ISA to the Micro-Architecture”. In: 13th IFIP International Conference on

Information Security Theory and Practice (WISTP). Dec. 2019, pp. 123–138 (cit. on

pp. 114, 139).

TSAI, Hsinyu et al. “Recent Progress in Analog Memory-Based Accelerators for Deep

Learning”. In: Journal of Physics D: Applied Physics (June 2018) (cit. on pp. 27,

29).

VALAVI, H. et al. “A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing

Charge-Domain Compute”. In: IEEE JSSC (2019) (cit. on p. 28).

— “A 64-Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain

Compute”. In: IEEE JSSC 54.6 (June 2019), pp. 1789–1799 (cit. on pp. 57, 81).

WADHWA, S. K. et al. “Zero Steady State Current Power-on-reset Circuit with Brown-

out Detector”. In: 19th International Conference on VLSI Design held jointly with

5th International Conference on Embedded Systems Design (VLSID’06). Jan. 2006

(cit. on pp. 85, 99).

WAN, Li et al. “Regularization of Neural Networks Using Dropconnect”. In: ICML. 2013

(cit. on pp. 36, 40).

WANG, Z. et al. “Error Adaptive Classifier Boosting (EACB): Leveraging Data-Driven

Training Towards Hardware Resilience for Signal Inference”. In: IEEE TCAS-I (2015)

(cit. on p. 31).

WATERMAN, Andrew et al. The RISC-V Instruction Set Manual, Volume I: User-Level

ISA, Version 2.1. Tech. rep. UCB/EECS-2016-118. EECS Department, University

of California, Berkeley, May 2016 (cit. on p. 18).

152



WU, Dongxian et al. “Adversarial Weight Perturbation Helps Robust Generalization”.

In: NeurIPS. 2020 (cit. on pp. 35, 53–54).

XIA, Qiangfei et al. “Memristive Crossbar Arrays for Brain-Inspired Computing”. In: Na-

ture Materials 18.4 (Mar. 2019), pp. 309–323 (cit. on p. 29).

XIAO, Han et al. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine

Learning Algorithms. 2017 (cit. on p. 54).

XU, Jiangtao et al. “Low-leakage analog switches for low-speed sample-and-hold cir-

cuits”. In: Microelectronics Journal 76 (June 2018), pp. 22–27 (cit. on p. 68).

XUE, C. et al. “Embedded 1-Mb ReRAM-Based Computing-in- Memory Macro With

Multibit Input and Weight for CNN-Based AI Edge Processors”. In: IEEE JSSC 55.1

(Jan. 2020), pp. 203–215 (cit. on p. 27).

YIN, S. et al. “Monolithically Integrated RRAM- and CMOS-Based In-Memory Com-

puting Optimizations for Efficient Deep Learning”. In: IEEE Micro 39.6 (Nov. 2019),

pp. 54–63 (cit. on p. 27).

YUCE, Bilgiday et al. “Fault attacks on secure embedded software: Threats, design,

and evaluation”. In: Journal of Hardware and Systems Security 2.2 (2018), pp. 111–

130 (cit. on pp. 105, 109, 114, 127).

YUE, Jinshan et al. “STICKER-IM: A 65 nm Computing-in-Memory NN Processor Us-

ing Block-Wise Sparsity Optimization and Inter/Intra-Macro Data Reuse”. In: IEEE

Journal of Solid-State Circuits 57.8 (2022), pp. 2560–2573 (cit. on p. 82).

ZANELLA, A. et al. “Internet of Things for Smart Cities”. In: IEEE Internet of Things

Journal 1.1 (Feb. 2014), pp. 22–32 (cit. on p. 15).

ZHANG, J. et al. “In-Memory Computation of a Machine-Learning Classifier in a Stan-

dard 6T SRAM Array”. In: IEEE JSSC (Apr. 2017) (cit. on pp. 31, 64).

ZHENG, N. et al. “Learning in Memristor Crossbar-Based Spiking Neural Networks

Through Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity”. In:

IEEE Transactions on Nanotechnology (2018) (cit. on p. 36).

ZHENG, Yaowei et al. “Regularizing Neural Networks via Adversarial Model Perturba-

tion”. In: CVPR. 2021 (cit. on pp. 35, 53–54).

153



ZHU, Y. et al. “Statistical Training for Neuromorphic Computing using Memristor-based

Crossbars Considering Process Variations and Noise”. In: DATE. 2020 (cit. on pp. 32,

34–35, 54).

ZUSSA, Loı̈c et al. “Power supply glitch induced faults on FPGA: An in-depth analysis

of the injection mechanism”. In: International On-Line Testing Symposium (IOLTS).

2013, pp. 110–115 (cit. on pp. 106, 108, 110–111, 116–117).

154


	PROJECT OVERVIEW
	Introduction
	A RISC-V based SoC platform for systems-on-edge
	Dissertation Goals and Outline
	Project Goal
	Dissertation Outline


	A-CONNECT: ENABLING IMPRECISE ANALOG COMPUTATION
	Introduction
	Related Work
	The A-Connect Methodology
	A-Connect to Mitigate Stochastic Variability
	Intuition Behind the A-Connect Methodology
	A-Connect using a log-Normal Distribution
	Stochasticity Model - Coefficient of Variation Calculation

	Experimental Results
	A-Connect in Deep Neural Networks
	 Comparison with the DVA/MNT Method
	Comparison with other ex situ Methods
	Comparison with in situ and Hybrid Methods (log-normal distribution)

	Conclusion

	ANALOG MACHINE LEARNING ACCELERATOR
	Introduction
	Computation-in-Memory Analog Macro
	Input DACs and the Wideband Current Mirror (WBCM)
	Column ReLU, Scaling, and Analog Memory

	CIM Analog Macro Non-idealities
	Calculation of the Analog Macro's total Stochasticity

	Results
	Conclusion

	MULTI-LEVEL VOLTAGE MONITORS TO ENABLE MULTI-MODE FINE-GRAINED POWER MANAGEMENT STRATEGIES IN SYSTEMS-ON-EDGE
	Introduction
	Fine-Grained Power Management Strategies
	Voltage Monitor Circuits
	Sub-threshold voltage reference
	Power-on-Reset
	Brown-Out Detector Circuit
	Trade-off Between Power Consumption and Temperature Range

	Experimental Results
	Voltage Monitors Measurements
	PM Strategy using the Proposed VMs in a RISC-V Microcontroller

	Summary

	SYSTEM-ON-CHIP POWER DELIVERY NETWORK: AN IN-DEPTH LOOK AT VOLTAGE GLITCHING
	Introduction
	Related Works
	Voltage Glitching: including Power Delivery Network and its effects on Memory-based cells
	Voltage Glitch Analysis Including Power Delivery Network
	Voltage Glitch attacks on Memory-based cells

	Understanding the relation between the PDN time response and the operating frequency
	Underpowering: Timing Constraints vs DC Supply Voltage
	Case I: PDN Time Response Slower than Clock Period
	Case II: PDN Time Response Faster than Clock Period

	Experimental Results
	Experimental Setup
	PDN Equivalent Impedance Measurement
	Voltage Glitching Measurement Results

	Conclusion

	CONTRIBUTIONS AND CONCLUSIONS
	Contributions Summary
	Conclusions
	Suggestions for Future Research
	Publications and Patents

	BIBLIOGRAPHY

