Estudio comparativo para la determinación de capacidad por punta ultima en pilotes

Henry Daniel García Peinado

Trabajo de Grado para Optar Titulo de Magister en Geotecnia

Director

Magister Vladimir Merchan Jaimes.

Magister en Geotecnia

Universidad Industrial de Santander

Facultad de Ingenierías Fisicomecánicas

Escuela de Ingeniería Civil

Maestría en Geotecnia

Bucaramanga

2021

Dedicatoria

Este sueño nace hace muchos años atrás cuando apenas era solo un niño de 10 años y me convertir en el compañero de oficina y de obras de mi maestro, mi padre el cual desde muy pequeño me llevaba a proyectos y de una manera gentil y practica me explicaba cómo funcionaba la mecánica de los suelos, encontraba cualquier excusa, lugar o vacaciones para mostrarme cómo podemos aportar grandes cosas a nuestra sociedad si entendemos cómo trabajan los suelos de nuestra región. Su sueño de que algún día ese niño de convirtiera en su sucesor de su trabajo ahora no solo se vuelve realidad, sino que se volvió un logro mas no solo para mí, sino para mi familia..., Padre, madre, hermanos y esposa les dedico este logro, siempre los llevo en mi mente y corazón.

Agradecimientos

Son muchas las personas que han contribuido al proceso y conclusión de este trabajo y en calidad de autores de este proyecto brindo los siguientes agradecimientos a:

En primer lugar, quiero agradecerle a Dios por darme las herramientas y conocimiento en cada etapa de este proceso.

A mi padre Henry Mauricio Garcia Beltrán, Ing. Civil, el cual no solo ha sido mi ejemplo de vida, sino que también ha sido mi maestro en la geotecnia e ingeniería civil en general, acompañándome como Codirector de Tesis.

D.Sc. Vladimir Merchán por ser una pieza fundamental en este logro, guiando como director de este proyecto, sin el no hubiera sido posible este trabajo.

M.sc Wilfredo del Toro Rodríguez, Ing. Civil, coordinador de la escuela de ingeniería civil, por compartir sus conocimientos, fundamentales para el desarrollo de este trabajo.

Nury Salcedo Díaz, profesional encargada en la escuela de ingeniería civil, por su gestión, colaboración y gestión de todas nuestras inquietudes en lo largo del proceso.

A todos los docentes que nos brindaron no solo de su conocimiento sino sus experiencias en el área de investigación y aplicación de la geotecnia, entre los cuales quiero resaltar a M.sc Jaime Suarez Diaz, M.sc Hebenly Celis, et al.

A mi esposa quien con su apoyo incondicional me dio las fuerzas para no desfallecer en este largo proceso, la cual hizo cantidades de sacrificios para hoy en día ver cumplir este logro en nuestras vidas...

Contenido

Introducción	13
1. Aspectos generales	15
1.0 Justificación	15
1.1 Objetivos del estudio 1.1.1 Objetivo general	16 16
1.1.2 Objetivos específicos	16
1.2 Metodología1.2.1 Etapa 1: Recolección e interpretación de la información primaria:	17 17
1.2.2 Etapa 2: Investigación y análisis de laboratorios:	17
1.2.3 Etapa 3: Determinación de los perfiles estratigráficos de diseño y parámetros Geomecánicos	:.17
1.2.4 Etapa 4: Aplicación de las diferentes metodologías de análisis analíticos y por correlaciones el cálculo de la estimación de la capacidad de carga del pilote:	para 18
1.2.5 Etapa 5: Análisis y comparación de resultados	18
1.3 Localización del proyecto de estudio	19
2. Marco conceptual	19
2.0 Cimentaciones	19
2.1 Clasificación de fundaciones 2.1.1 Fundaciones superficiales	20
2.1.2 Fundaciones profundas	21
2.2 Tipos de pilotes2.2.1 Pilotes de concreto	21 22
2.3 Tipos de construcción de pilotes in situ:2.3.1 Acero de refuerzo	22
2.3.2 Vaciado del concreto	23
2.4 Estimación de la longitud del pilote	24
2.5 Transferencia de carga2.5.1 Capacidad de carga por punta	25
2.5.2 Capacidad de carga por fricción	27

2.6 Método para estimar la capacidad de carga por punta2.6.1 Método de Meyerhof (1976)	
2.6.2 Método Coyle y Castello (1981)	
2.6.3 Método Vesic	
2.6.4 Método Jambu 1976	
2.6.5 Método Bustamante o LCPC	
3 Marco geológico	
3.1 Sedimentos recientes3.1.1 Formación la popa (Q1-Sm), cuaternario	40
3.2 Geología estructural.3.2.1 Fallas.	44
3.2.2 Sistema de fallas transversales	
3.2.3 Pliegues	
4 Exploración del subsuelo	46
4.1 Perforaciones realizadas con equipos de rotación para la recuper	ación de muestras46
4.2 Sondeos con piezocono (CPTu)	48
4.3 Equipos de perforación	51
4. 4 Trabajo de exploración geotécnico	
5 Caracterización geotécnica	72
5.1 Perfil estratigráfico y propiedades de los estratos encontrados	72
5.2 Nivel freático.	75
5.3 Determinación de parámetros geomecánicos en suelo granulare	s75
5.4 Perfil estratigráfico de diseño.	
6 Capacidad carga pilote pre-excavado	
6.1 Capacidad de carga por punta6.1.1. Método Meyerhof	
6.1.2. Método Coley y Castello	
6.1.3. Método Vesic	
6.1.4. Método Janbu	
6.1.5. Método Bustamante o LCPC	
6.1.6. Correlaciones SPT	
6.1.7 .Meyerhof (1977)	

6.1.8 Briaud y Col (1985)	87
6.1.9 Comparación de resultados y graficas de capacidades por punta	88
7 Conclusiones	01
7 Conclusiones	91
Referencias bibliográficas	94
Apéndices	95

Lista de figuras

Pág.

Figura No 1 Localización del proyecto a nivel Nacional. Fuente: Google Earth
Figura 3. Mecanismo de transferencia de carga de pilotes. Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 4. Pilotes de punta en suelo duro (Das, 2001). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 5. Variación de la resistencia unitaria de punta en una arena homogénea (Das, 2001). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 6. Variación de (Lb/D) cr con el ángulo de fricción del suelo (según Meyerhof, 1976). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 7. Variación de los valores máximos de N*c y N*q, con el ángulo de fricción del suelo φ (según Meyerhof, 1976). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.
Figura 8. Variación de $N * q$ con L/D (según Coley y Castello, 1981). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 9. Superficie de falla en la punta del pilote Jambu. Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 10. Factores de capacidad de apoyo de Jambu. Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones
Figura 11. Esquema explicativo para la determinación qc, ec según método Bustamante y Gianeselli (1982) Fuente: P.K. Robertson and K.L. Cabal (Robertson), Guide to Cone Penetration Testing for Geotechnical Engineering
Figura 12 Mapa geológico del municipio de Soledad (departamento del Atlántico). Fuente: INGEOMINAS, 1998
Figura 13. Leyenda geológica regional. Fuente: INGEOMINAS, 1998
Figura 14. Mapa tectónico del Departamento de Atlántico. Fuente INGEOMINAS, 2000)45
Figura No 15 Ejecución de perforación con equipos de rotación (TP50-D) para la recuperación de muestras de suelos. Fuente: GEOTECO S.A.S
Figura No 16 Ejecución de perforación con equipos de rotación (TP50-D) para la recuperación de muestras de suelos. Fuente: GEOTECO S.A.S
Figura 17 Resistencias en la punta, (qc), punta (fs), presión de poros, (U2) y esquema interno básico cono eléctrico
Figura No. 18 Cono estático eléctrico. Fuente: GEOTECO S.A.S

Figura No. 19. Representación gráfica en tiempo real de: Resistencias en la punta, (qc), punta (fs.), presión de poros, (U2). Fuente: GEOTECO S.A.S
Figura No 20 Ejecución de perforación (Ensayo CPTu-2, piezocono). Fuente: GEOTECO S.A.S
Figura No 21. Ejecución de perforación (CPTu-4, piezocono). Fuente: GEOTECO SAS51
Figura No. 22 Equipo de perforación TP50-D (Martillo automático de caída libre) y equipo de perforación Pagani TG 63-150KN. Fuente: GEOTECO S.A.S
Figura 23 Perfil Estratigráfico – Sondeo 1 (0.00-10.00mts). Fuente: GEOTECO S.A.S
Figura 24 Perfil Estratigráfico – Sondeo 1 (10.00-15.00mts). Fuente: GEOTECO S.A.S
Figura 25. Perfil Estratigráfico – Sondeo 2 (00.00-10.00mts). Fuente: GEOTECO S.A.S
Figura 26. Perfil Estratigráfico – Sondeo 2 (10.00-15.00mts). Fuente: GEOTECO S.A.S
Figura 27. Perfil Estratigráfico – Sondeo 3 (00.00-10.00mts). Fuente: GEOTECO S.A.S
Figura 28. Perfil Estratigráfico – Sondeo 3 (10.00-20.00mts). Fuente: GEOTECO S.A.S
Figura 29. Perfil Estratigráfico – Sondeo 3 (20.00-30.00mts). Fuente: GEOTECO S.A.S
Figura 30. Perfil Estratigráfico – Sondeo 3 (30.00-40.00mts). Fuente: GEOTECO S.A.S60
Figura 31. Perfil Estratigráfico – Sondeo 3 (40.00-50.00mts). Fuente: GEOTECO S.A.S61
Figura 32. Resultado ensayo CPTu 1 (00.00-16.50mts) (Resistencia del cono - Fricción lateral - Presión de poro). Fuente: GEOTECO S.A.S
Figura 33. Resultado ensayo CPTu 1 (00.00-16.50mts) (clasificación según Robertson 1986 y 1990-2010). Fuente: GEOTECO S.A.S
Figura 34 Resultado ensayo CPTu 1 (00.00-16.50mts) (Permeabilidad – SPT N60 – Modulo de Young). Fuente: GEOTECO S.A.S
Figura 35. Resultado ensayo CPTu 1 (00.00-16.50mts) (Densidad relativa – Ángulo de Fricción). Fuente: GEOTECO S.A.S
Figura 36. Resultado ensayo CPTu 1 (00.00-16.50mts) (Modulo volumétrico M – Modulo de corte Go – Resistencia al corte Su). Fuente: GEOTECO S.A.S
Figura 37. Resultado ensayo CPTu 2 (00.00-16.50mts) ((Resistencia del cono - ricción lateral - Presión de poro). Fuente: GEOTECO S.A.S
Figura 38. Resultado ensayo CPTu 2 (00.00-16.50mts) (clasificación según Robertson 1986 y 1990-2010). Fuente: GEOTECO S.A.S
Figura 39. Resultado ensayo CPTu 2 (00.00-16.50mts) (Permeabilidad – SPT N60 – Modulo de Young). Fuente: GEOTECO S.A.S
Figura 40 Resultado ensayo CPTu 2 (00.00-16.50mts) (Densidad relativa – Ángulo de Fricción). Fuente: GEOTECO S.A.S
Figura 41 Resultado ensayo CPTu 2 (00.00-16.50mts) (Modulo volumétrico M – Modulo de corte Go – Resistencia
Figura 42. Relación Densidad (Ton/m3) Vs SPT N75)76
Figura 43 Parámetros de 6, y C', determinados para el estrato de relleno de Arena limosa79

Figura 44 Parámetros de \$\phi' y C', determinados para el estrato de Arena limosa7	79
Figura 45 Parámetros de \$\$\phi\$' y C', determinados para el estrato de Ar ena limosa arcillosa8	30
Figura 46 Perfil estratigráfico definido para el estudio de análisis8	31
figura 47 Grafica de resultado Qp método de Meyerhof (1976)8	32
Figura 48 Grafica de resultado Qp método de Coley y Castello (1976)8	33
Figura 49 Grafica de resultado Qp método de Vesic (1977)8	34
Figura 50 Grafica de resultado Qp método de Janbu (1976)8	35
Figura 51 Grafica de resultado Qp método de Bustamante8	36
Figura 52 Grafica de resultado Qp Ecuación Meyerhof correlación ensayo SPT8	37
Briaud y Col (1985)	37
Figura 53 Grafica de resultado Qp Ecuación Briaud y Col correlación ensayo SPT	37
Figura 54 Grafica de resultado Qp para pilote D=0.60m.	38
Figura 55 Grafica de resultado Qp para pilote D=0.80m.	39
Figura 56 Grafica de resultado Qp para pilote D=1.00m	39
Figura 57 Grafica de resultado Qp para pilote D=1.00m9	90

Lista de tablas

Pág.

Tabla 1. Valores de índice de rigidez del suelo (Das, 2001)	33
Tabla 2. Ir en base a pruebas de penetración de cono Baldi (1981)	34
Tabla 3 Factores de capacidad de apoyo de Jambu	36
Tabla 4. Tabla para la determinación del coeficiente αp	38
Tabla 5: Tabla para la determinación del coeficiente de base αb	38
Tabla 6. Perforaciones realizadas en la zona de estudio. Fuente GEOTECO SAS	52
Tabla 7. Constantes adoptadas para calcular el módulo de deformabilidad del suelo	78
Tabla 8. Propiedades de resistencia al corte de los suelos (\u00f6', c')	80
Figura 52 Grafica de resultado Qp Ecuación Meyerhof correlación ensayo SPT	87
Figura 57 Grafica de resultado Qp para pilote D=1.00m.	90

Resumen

Título: Estudio comparativo para la determinación de capacidad ultima por punta en pilotes pre-excavados

Autor: Henry Daniel Garcia Peinado**

Palabras clave: Geotecnia, capacidad ultima, correlaciones CPT y SPT, ecuaciones empericas, pilotes.

Descripción:

En los últimos años en nuestro país se ha incrementado el uso de cimentaciones profundas, debido a la exigencia de las construcciones de proyectos de gran magnitud, entre ellos encontramos: puentes, muelles, edificios de gran altura y proyectos empresariales con gran demanda de cargas, que se le deberán aplicar al terreno. Debido a lo anterior y la expansión de la construcción a zonas donde el suelo superficial no aporta una capacidad necesaria para la cimentación superficial de estas estructuras, los ingenieros hemos optado por el diseño de cimentaciones profundas.

El sistema de construcción más común en cimentaciones profundas son los pilotes pre-excavados y fundidos in situ, estos tienen una gran variedad de métodos de diseños para el cálculo de la capacidad portante del pilote (Qu)[;] diseños mediante ecuaciones analíticas, modelos numéricos y correlaciones de ensayos como el SPT y CPT.

Para los análisis de este trabajo se utilizó información de campo del proyecto "Ampliación del edificio administrativo del aeropuerto Ernesto Cortissoz, Barranquilla - Colombia" los cuales muestran un perfil de varias capas de suelos (rellenos antrópicos, arenas limosas y arcillas).

Para el análisis comparativo se usaron las metodologías teóricas planteadas por Meyerhof (1976), Vesic (1977), Jambu (1976), Cole y Castello (1981) (para arenas) para el cálculo de la capacidad de carga por punta (Qp); para el cálculo de la capacidad por fricción (Qs) se usó el método landa (λ) propuesto por Vijayvergiya y Fotch (1972), el método Alfa (α) y método (β). Así mismo se compararon con las correlaciones para calcular Qu con base en los ensayos SPT y CPT.

^{*} Trabajo de grado

^{**} Facultad de Ingenierías Fisicomecánicas. Escuela de Ingeniería Civil. Director: Vladimir Merchan Jaimes Magister en Geotecnia.

Abstract

Title: Comparative Study for the determination of point-bearing capacity on drilled piles.

Author: Henry Daniel Garcia Peinado**

Keywords: Geotechnics, Bearing capacity, CPT and SPT correlations, empirical equations, piles-

Description:

In recent years in our country the use of deep foundations has increased, due to the requirement of the construction of large-scale projects, among them we find: bridges, piers, high-rise buildings and business projects with high demand for loads, that should be applied to the field. Due to the above and the expansion of the construction to areas where the surface soil does not provide a necessary capacity for the superficial foundations of these structures, the engineers have opted for the design of deep foundations.

The most common construction system in deep foundations are pre-excavated and cast-in-situ piles, these have a great variety of design methods for calculating the bearing capacity of the pile (Qu); designs using analytical equations, numerical models and test correlations such as SPT and CPT.

For the analysis of this work, field information from the project "Expansion of the administrative building of the Ernesto Cortissoz airport, Barranquilla - Colombia" was used, which shows a profile of several layers of soils (anthropic fillings, silty sands and clays).

For the comparative analysis, the theoretical methodologies proposed by Meyerhof (1976), Vesic (1977), Jambu (1976), Cole and Catello (1981) (for sands) were used to calculate the load capacity per tip (Qp); For the calculation of friction capacity (Qs) the landa method (λ) proposed by Vijayvergiya and Fotch (1972), the Alpha method (α) and the method (β) were used. Likewise, they were compared with the correlations to calculate Qu based on the SPT and CPT tests.

^{*} Degree work

^{**} Faculty of Physicomechanical Engineering. School of Civil Engineering. Director: Vladimir Merchan Jaimes Master's Degree

Introducción

En la actualidad las cimentaciones profundas son cada vez más utilizadas debido a las condiciones de los suelos y las grandes magnitudes de cargas de las megas estructuras que hoy en día se están construyendo. A través de los años grandes autores han presentado diversos modelos para el cálculo de la capacidad de carga por punta de los pilotes, entre estos encontramos a Meyerhof, Vesic, Jambu, Cole y Castello; cada uno de ellos presentan sus consideraciones en el modelo de sus ecuaciones analíticas.

Los ensayos como el SPT (Estándar Penetration Test) y el CPT (Cone Penetration Test) son ensayos que se usan en casi todos los estudios geotécnicos, principalmente el SPT debido a su rapidez, sencillez y fácil obtención de la mayoría de los parámetros geomecánicos, este es un ensayo que se lleva utilizando desde los inicios de la geotecnia, debido a esto se han conseguido muchas correlaciones para casi todos los parámetros geomecánicos principalmente para suelos granulares, sin embargo hay autores que consideran que también pueden ser usado en suelo finos. Autores como Briaud y otros (1985), Shioi y Fukui (1952) presentan sus ecuaciones para la resistencia del pilote en la punta usando correlaciones de los parámetros del SPT.

También encontramos el uso de las correlaciones del ensayo CPT como lo presentan Bustamante y Gienselli (1982) o método LCPC, basado en 197 ensayos de pilotes, se basa en la resistencia en la punta y la ficción lateral del cono, determinado así la capacidad por punta y fricción del pilote.

Actualmente estos y otros métodos son usado para la estimar la capacidad de trabajo de los pilotes, en este proyecto se realizará un análisis comparativo de los siguientes métodos: Meyerhoft (1976), Coley y Castillo (1981), Vesic (1977), Jambu (1976) Bustamante y Gienselli (1982) o método LCPC, correlación del ensayo SPT por medio de los métodos Meyerhof (1977) y Briaud y Colaboradores (1985).

Para este estudio comparativo se tomó proyecto de referencia la ampliación del edificio

administrativo del aeropuerto Ernesto Cortissoz de la ciudad de Barranquilla – Colombia, en el cual se realizaron sondeos de recuperación de muestras inalteradas, ensayos SPT y ensayos CPT, estos suministrados por la empresa GEOTECO SAS. Los cuales muestran un perfil característico de la zona donde se encuentra en los primeros metros un relleno de origen antrópico, seguido por un relleno de arena limosa y por último un estrato de arcilla. Al final se establecerán las comparaciones de cada método con sus ventajas y desventajas para cada tipo de suelo, esto con el fin de establecer conclusiones de cada método a comparar.

1. Aspectos generales

1.0 Justificación

En el año de 1987 Francisco Hennibeque utilizo por primera vez los pilotes de hormigón armado y hasta el día de hoy se han planteado muchas ecuaciones y métodos para la estimación de la capacidad de carga de pilotes, es por eso por lo que cada vez se cuenta con más información para al respecto. Esto crea algo incertidumbre de que método usar para este análisis. En la ciudad de Barranquilla – Colombia en el Municipio de Atlántico se proyecta construcción de nuevas edificaciones de gran altura, también se proyectan la construcción de puentes y obras a la rivera del rio magdalena, lo anterior creando la necesidad de diseñar fundaciones profundas para la cimentación de las estructuras antes mencionadas, pero debido al gran número de autores y métodos de la estimación de la capacidad de carga de los pilotes, no se sabe cuál emplear, ni cual queda mejor para las condiciones de cierta estructura.

Es necesario plantear un análisis comparativo de los métodos más conocidos y las herramientas más utilizadas para analizar ciertas correlaciones que pueden guiarme en la estimación de la capacidad de carga de los pilotes a diseñar.

El escenario utilizado para plantear el análisis comparativo es "La ampliación del edificio administrativo del aeropuerto *Ernesto Cortissoz*" el cual consta de una estructura de 2 niveles con un sistema estructural corresponde a pórticos ortogonales en concreto reforzado con luces entre ejes de columnas del orden de 5.00 a 11.25mts, las cargas de cimentación que trasmitirá la estructura a la cimentación son del orden de 20 a 245 Ton (información suministrada por GEOTECO S.A.S.).

La exploración geotécnica, ensayos de laboratorio y demás datos necesarios para el estudio fueron realizados por la empresa GEOTECO S.A.S. para la elaboración del estudio en mención.

En base a esos datos de encuentra un perfil característico de la zona en el cual encontramos en los primeros metros a un relleno de arena limosa de origen antrópico el cual presenta una densidad suelta encontrado hasta la profundidad de 1.0mt, seguidamente se encuentra un estrato de arena limosa de grano medio a fino con algunos lentes de arcilla de color habano y densa, subyacido por un estrato de arcilla inorgánica de color gris con vetas amarillas, humedad media, consistencia muy firme, humedad media a alta, densa a muy densa, subyacido por un depósito granular de arenas limosas de color amarillo, humedad media a alta, densa a muy densa a muy densa y por ultimo un estrato de arcilla inorgánica de color gris con vetas amarillas, humedad media a alta, consistencia dura.

1.1 Objetivos del estudio

1.1.1 *Objetivo general*

Comparar métodos analíticos y correlaciones de SPT y CPT para la estimación de la capacidad de carga de pilotes.

1.1.2 *Objetivos específicos*

Estudiar la variabilidad de la estimación de la capacidad de carga por punta de pilotes según el método de análisis.

> Comparar los valores obtenidos de la estimación de la capacidad de carga del pilote.

Estimar la capacidad de carga por punta del pilote por medio de los siguientes métodos analíticos:

- Meyerhoft (1976).
- Coyle y Castillo (1981)
- Vesic (1977)
- Jambu (1976)
- Bustamante y Gianeselli (1982) (LCPC)
- Correlación SPT Meyerhof (1977)
- Correlación SPT Briaud y Colaboradores (1985)

1.2 Metodología

Para la ejecución del presente estudio geotécnico se plantearon varias etapas de análisis, las cuales se basan en la recopilación de datos, interpretación de estos, análisis de la estructura a cimentar, elaboración de los cálculos de las metodologías planteadas, obtención de resultado, comparación de resultados y conclusión de las comparaciones. Las diferentes etapas del estudio se resumen de la siguiente manera:

1.2.1 Etapa 1: Recolección e interpretación de la información primaria:

Se basa en recopilar la información disponible concerniente con exploración geotécnica, resultados de laboratorios, información de la estructura a cimentar, características físicas y geomorfológicas del terreno. Al tener la anterior información se procede a analizar el material recolectado y se procede a la interpretación de ellos, con la finalidad de las características geotécnicas del terreno y sus posibles limitaciones para emplear ciertos métodos. Además, se revisan las características de la estructura a cimentar como son cargas del proyecto y limitaciones de los apoyos por espacios.

1.2.2 Etapa 2: Investigación y análisis de laboratorios:

Tiene como objetivo la observación e interpretación de las muestras de los sondeos por rotación de muestras inalteradas, así mismo la interpretación de los resultados de los ensayos SPT y CPT realizados en la zona, adicionalmente se realizará un análisis de los resultados de los laboratorios obtenidos por la empresa GEOTECO S.A.S., teniendo así toda la información básica necesario para el inicio de este estudio.

1.2.3 Etapa 3: Determinación de los perfiles estratigráficos de diseño y parámetros Geomecánicos:

En esta etapa de plantean varios métodos para la determinación del perfil estratigrafía de diseño y la determinación de los parámetros geomecánicos, primero se tendrán una amplia clasificación de las estratigrafías debido a los datos obtenidos por CPT, el cual determina

propiedades, características y cambios de material cada 1.0 cm, por medio de correlaciones en base a la resistencia en la punta del cono y la resistencia lateral de este. Por otro lado, empleamos el método Gonzáles (1999) con las ecuaciones de Seed-Idris (Marcuson), Kishida y Bowles (1996).

1.2.4 Etapa 4: Aplicación de las diferentes metodologías de análisis analíticos y por correlaciones para el cálculo de la estimación de la capacidad de carga del pilote:

En base a los parámetros geotécnicos ya establecidos anterior mente para nuestro perfil estratigráfico de diseño, se podrán aplicar las diferentes metodologías para la estimación de la capacidad de carga del pilote. Analizaremos cuales métodos son viables de acuerdo con las limitantes de cada uno, y en base a las características del proyecto en estudio. Las metodologías para usar serán las siguientes:

- Meyerhoft (1976).
- Coyle y Castillo (1981)
- Vesic (1977)
- Jambu (1976)
- Bustamante y Gianeselli (1982) (LCPC)
- Correlación SPT Meyerhof (1977)
- Correlación SPT Briaud y Colaboradores (1985)

1.2.5 Etapa 5: Análisis y comparación de resultados

Obtenidos los resultados de las estimaciones de carga de cada método, se graficarán y analizarán los resultados obtenidos y las variaciones que existan entre ellos. Se darán recomendaciones de los resultados más significativos. Adicionalmente se establecerán parámetros para la selección del método a usar según las características de la estructura a cimentar.

1.3 Localización del proyecto de estudio

El Proyecto seleccionado para la aplicación de estudio comparativo para la determinación de capacidad de carga en pilotes pre-excavados es la "Ampliación del edifico administrativo del aeropuerto *Ernesto Cortissoz*" el cual se encuentra localizado en el Municipio de Soledad en la ciudad de Barranquilla. Ver figura 1.

Figura No 1 Localización del proyecto a nivel Nacional. Fuente: Google Earth.

2. Marco conceptual

2.0 Cimentaciones

Las cimentaciones son el conjunto de elementos estructurales de una edificación cuya

misión es trasmitir sus cargas o elementos de apoyo en el suelo, distribuyéndolas de forma que no superen su presión admisible ni produzcan cargas zonales. Debido a que la resistencia del suelo es, generalmente, menor que la de los pilares o muros que soporta, el área de contacto entre el suelo y la cimentación debe ser proporcionalmente más grande que los elementos soportados, excepto en suelos rocosos muy coherentes.

La cimentación es importante porque es el grupo de elementos que soportan a la superestructura. La estabilidad de una edificación depende en gran medida del tipo de terreno sobre el que se asienta.

Para diseñar los elementos de fundación, es necesario conocer el comportamiento más real de la interacción:

carga – estructura – cimiento – suelo.

Esta transferencia depende de una gran diversidad de parámetros, entre los cuales se pueden mencionar:

- La capacidad portante del suelo.
- La profundidad de la fundación.
- > Tipo y magnitud de la carga de la estructura.
- Propiedades elásticas del suelo.
- La rigidez y tamaño de fundación.
- Propiedades físicas del suelo.
- Asentamientos del suelo de fundación

Estos elementos son los necesarios para el diseño estructural correcto de las fundaciones de una estructura.

2.1 Clasificación de fundaciones

Las fundaciones pueden ser clasificadas en dos grupos: fundaciones superficiales y fundaciones profundas.

2.1.1 Fundaciones superficiales

Se entiende como fundación superficial aquella cuya profundidad de desplante o de cimentación no excede los 4 m, dentro de estas se encuentran las zapatas, y losas o plateas de fundación.

2.1.2 Fundaciones profundas

Las fundaciones profundas se utilizan, cuando el suelo superficial no es lo suficientemente resistente para soportar las cargas externas de la estructura, para esos casos se hace necesario utilizar elementos estructurales, los cuales nos ayudaran a transmitir estas cargas externas a estratos más profundos y resistentes.

La fundación por pilotes se utiliza cuando el terreno superficial no soporta la carga a trasmitir; cuando los niveles freáticos están muy cerca de la superficie y afecta negativamente los parámetros físicos del suelo de apoyo; cuando las cargas horizontales son muy grandes y no pueden ser recibidas por cimentaciones superficiales. La fundación por pilotes está constituida por un cabezal que se apoya sobre un grupo de pilotes.

Las fundaciones profundas se pueden clasificar en los siguientes tipos:

Pilote aislado: Aquel que está a una distancia lo suficientemente alejada de otros pilotes como para que no tenga interacción geotécnica con ellos.

Grupo de pilotes: Son aquellos que por su proximidad interaccionan entre sí o están unidos mediante elementos estructurales o lo suficientemente rígidos como para que trabajen conjuntamente.

Zonas pilotadas: Son aquellas en las que los pilotes están dispuestos con el fin de reducir asientos o mejorar la seguridad frente a hundimiento de las cimentaciones.

Micropilotes: Son aquellos compuestos por una armadura metálica formada por tubos barra o perfiles, estos en general son de pequeños diámetros aproximadamente no mayores a 25cm.

2.2 Tipos de pilotes

Los pilotes son elementos de transferencia de carga a estratos de suelo más competentes estos se clasifican dependiendo del tipo de carga que soportaran, de las condiciones de del subsuelo y de la ubicación del nivel freático. Los pilotes pueden dividirse en las categorías siguientes:

- Pilotes de acero
- Pilotes de concreto
- Pilotes de madera
- Pilotes compuestos

2.2.1 Pilotes de concreto

Los pilotes de concreto se pueden dividir en dos categorías básicas: prefabricados y fundidos in situ.

Los pilotes prefabricados se pueden preparar empleando un refuerzo ordinario y pueden tener una sección transversal cuadrada u octagonal. El refuerzo se proporciona con el fin de habilitar al pilote para resistir el momento flexionante desarrollado durante su levantamiento y transporte, la carga vertical y el momento flexionante causado por una carga lateral. Los pilotes se fabrican a la longitud deseada y se curan antes de transportarlos a los emplazamientos de trabajo.

Los pilotes fundidos in situ se construyen haciendo un barreno en el terreno, con máquinas diseñadas para esta actividad, luego se introduce el refuerzo diseñado y por último son fundido por medio de tubería Tremie.

2.3 Tipos de construcción de pilotes in situ:

En seco: Este tipo de pilotaje comprende diferentes fases como son la perforación del subsuelo con hélice o cazo, colocación de armadura de acero y vertido de concreto mediante tubo Tremie que se realiza de abajo hacia arriba.

• Con camisa recuperable o perdida: En terrenos fangosos, cercanos al nivel del mar

o cuencas de ríos. Este pilotaje comprende la introducción de camisas para sujeción de las paredes a perforar, perforación del terreno, colocación de armaduras y vertido de concreto.

• Con ayuda de lodos bentónicos: En presencia de un suelo friccionante (como son arenas, materiales gruesos y limos), suelen presentarse "caídos" (desmoronamiento en el interior de las paredes de la perforación), ya que poseen una estructura cohesiva muy frágil, y cualquier movimiento como el que produce la broca al perforar el terreno, hace que se rompa dicha cohesión. Emplear lodo bentónico durante la excavación es uno de los principales métodos para evitar este tipo de problemas. Consiste en vaciar el lodo en el interior de la perforación, el cual, va a ser desplazado de la perforación a medida que el concreto se va colocando, por diferencia de densidades.

• **Pantalla de pilotes secantes:** Este método permite hacer una excavación del terreno a gran profundidad, sin preocupación de que se puedan deteriorar cimentaciones de edificaciones contiguas y aceras de la calle, impidiendo el paso del agua de nivel freático a los sótanos. Esta pantalla trabaja también como cimentación de la estructura, obteniéndose así un doble aprovechamiento de este tipo de cimentación especial.

2.3.1 Acero de refuerzo

Las armaduras se conforman como si fuesen jaulas. Los aceros longitudinales están constituidos por barras colocadas uniformemente en el perímetro de la sección, y el refuerzo transversal lo constituye una armadura de acero en forma de espiral o cercos redondos con una sección y separación determinada. La cantidad de barras y el diámetro de estas, se calcula en función de la carga que deba soportar el pilote y según lo especificado en la NSR-10.

2.3.2 Vaciado del concreto

Existen diversos métodos para realizar la colocación del concreto en pilotes. Como primera medida, la camisa, tubo o tubería, debe ser inspeccionada justo antes de vaciado el concreto, debe estar libre de material extraño y no contener más de diez centímetros de agua, a menos

que se utilice el método Tremie para introducir concreto. El concreto debe ser vertido en cada perforación o camisa en lo posible sin interrupción. Cuando el vaciado se suspende, todas las rebabas deben ser retiradas y la superficie del concreto debe ser lavada con una lechada fluida.

Puede emplearse además el método Tremie, el cual consiste en la colocación del concreto por flujo inverso. Es un método bastante empleado para verter concreto a través de agua, cuando la perforación queda inundada, o cuando se emplean lodos bentónicos. El concreto empleado en este método tiene características especiales, ya que se diseña con una consistencia fluida y alta cohesividad para que de este modo se disminuya la posibilidad de segregación. Además, se debe garantizar una mezcla homogénea a grandes profundidades, en elementos delgados y con una densidad importante de acero de refuerzo. El concreto se carga por tolva o es bombeado, en forma continua, dentro de una tubería llamada Tremie, deslizándose hacia el fondo y desplazando el líquido e impurezas hacia la superficie.

2.4 Estimación de la longitud del pilote

Según el mecanicismo de trabajo del pilote se podrá estimar la longitud de trabajo del pilote, esto pueden trabajar por resistencia friccional, resistencia en la base o punta del pilote. Ver figura 2.

Figura 2. Descripción de los pilotes que trabajan por la resistencia en la punta, resistencia friccional y ambas. Fuente: Das, Braja, Fundamentos de ingeniería de

cimentaciones.

Para pilotes de carga en punta:

Qu = Qp Ec. (3.0)

Para pilotes de carga por fricción:

 $Qu \approx Qs$ Ec. (3.1)

Para pilotes mixtos

Qu = Qp + Qs Ec. (3.2)

Donde:

Qp = carga en la punta del pilote

Qs = carga debido a la fricción superficial en los lados del pilote (resistencia al

corte entre el suelo y el pilote)

También se utilizan pilotes de compactación para proporcionar capacidad de carga en arenas. Este tipo de pilotes son generalmente cortos, sin embargo, se necesitan ciertas pruebas de campo para tener una longitud razonable.

2.5 Transferencia de carga

Si se realizan mediciones para obtener la carga Q(z) tomada por el fuste del pilote a cualquier profundidad z. La naturaleza de la variación de Q(z) será como lo muestra la curva de la figura 64b, la resistencia por fricción por área unitaria, f(z), a cualquier profundidad se determina como:

$$f_{(z)} = \frac{\Delta Q_{(z)}}{p * \Delta Z}$$
 Ec. (3.3)

Si la carga aplicada sobre el pilote se incrementa de manera gradual, partiendo desde cero en la superficie del terreno, una parte de la carga es resistida por fricción superficial (Q1) y otra parte por resistencia en la punta (Q2).

Si la carga aplicada continúa incrementándose, la resistencia por fricción se moviliza totalmente cuando el desplazamiento relativo entre el pilote y el suelo es de aproximadamente 5 a 10 mm, no estando en función de la longitud y tamaño del pilote. La resistencia de punta (Q2 = Qp) sin embargo no se desarrolla por completo hasta que el desplazamiento de esta sea

del 10 al 25% del ancho o diámetro del pilote.

Es decir que la capacidad por fricción se genera a partir de un movimiento mucho menor que la carga de punta, al momento de llegar al valor de la carga última Q1 = Qs y Q2 = Qp. Ec. (3.4). Ver figura 3.

Figura 3. Mecanismo de transferencia de carga de pilotes. Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.

2.5.1 Capacidad de carga por punta

De acuerdo con los registros de perforación del suelo establecen la presencia de un estrato rocoso o de un material de alta resistencia los pilotes se pueden prolongar hasta la superficie de este estrato. En este caso, la capacidad última de los pilotes depende completamente de la capacidad de soporte de carga del material subyacente; entonces son denominados pilotes de carga de punta. En la mayoría de estos casos, la longitud necesaria del pilote se puede establecer muy fácil.

Si en vez de un lecho de roca, se encuentra un estrato muy compacto y duro a una profundidad razonable, los pilotes se pueden prolongar algunos metros dentro del estrato duro.

Los pilotes con pedestales se pueden construir sobre el lecho del estrato duro y la carga última del pilote se puede expresar como

Qu = Qp + Qs Ec. (3.5)

Donde:

Qp = carga soportada en la punta del pilote

Qs = carga soportada por la fricción superficial desarrollada en los lados del pilote (causada por la resistencia cortante entre el suelo y el pilote)

Si Qs es muy pequeña,

 $Qs \approx Qp Ec. (3.6)$

En este caso, la longitud requerida del pilote se puede estimar con precisión si se dispone de registros apropiados de la exploración del subsuelo.

2.5.2 Capacidad de carga por fricción

Cuando no se encuentra un estrato de roca o de un material rocoso a una profundidad razonable en un emplazamiento, los pilotes de carga de punta resultan muy largos y antieconómicos. En este tipo de subsuelo, los pilotes se hincan a través del material más suave hasta las profundidades especificadas. La carga última de los pilotes se puede expresar por la ecuación. Sin embargo, si el valor de Qp es relativamente pequeño, entonces

$$Qu \approx Qs Ec. (3.7)$$

Estos pilotes se denominan pilotes de fricción, debido a que la mayoría de su resistencia se deriva de la fricción superficial. Sin embargo, el término pilote de fricción, aunque se utiliza con frecuencia en la bibliografía técnica, es un término inapropiado: en suelos arcillosos, la resistencia a la carga aplicada también se ocasiona por adhesión.

La longitud de los pilotes de fricción depende de la resistencia cortante del suelo, de la carga aplicada y del tamaño del pilote.

2.6 Método para estimar la capacidad de carga por punta

2.6.1 Método de Meyerhof (1976)

La capacidad de carga de punta Qp de un pilote en arena generalmente crece con la profundidad de empotramiento en el estrato de apoyo y alcanza un valor máximo para una relación de empotramiento de Lb/D = (Lb/D) cr, note que en un suelo homogéneo Lb es igual a la longitud real L de empotramiento del pilote figura 4 (derecha). Sin embargo, en la figura 5. izquierda se muestra que el pilote penetro en un estrato de apoyo Lb < L.

Figura 4. Pilotes de punta en suelo duro (Das, 2001). Fuente: Das, Braja,

Fundamentos de ingeniería de cimentaciones.

2001). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.

Cuando el pilote sobrepasa la distancia de la relación de empotramiento crítico, (Lb/D) cr

el valor de Qp permanece constante (qp = ql), es decir que L = Lb como se muestra en la figura 3.3 en caso de un suelo homogéneo. La variación de (Lb/D) cr con el ángulo de fricción del suelo se muestra en la figura 6. Con estos antecedentes se puede determinar que los factores de capacidad de carga crecen con Lb/D y alcanzan un valor máximo en Lb/D = 0.5(Lb/D) cr. (Meyerhof, 1976)

La figura 3.4 indica que (Lb/D) cr para $\varphi = 45^{\circ}$ es aproximadamente de 25 y que decrece al disminuir el ángulo de fricción φ . En la mayoría de los casos, la magnitud de Lb/D para pilotes es mayor que 0.5(Lb/D) cr, por lo que los valores máximos de N*c y N*q serán aplicables para el cálculo de Qp en todos los pilotes. La variación de esos valores máximos de N*c y N*q con el ángulo de fricción φ se muestra en la figura 7.

Figura 6. Variación de (Lb/D) cr con el ángulo de fricción del suelo (según Meyerhof, 1976). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.

Figura 7. Variación de los valores máximos de N*c y N*q, con el ángulo de fricción del suelo φ (según Meyerhof, 1976). Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.

Para altos valores de φ (mayores que unos 35°), N*q crece rápidamente dando lugar a elevadas resistencias en la base de los pilotes. Resultados publicados de pruebas de carga indican valores máximos alcanzados del orden de 100 kg/cm2, valor que puede adoptarse como criterio límite para el análisis. Son posibles valores pico de la resistencia en la base de hasta 200 kg/cm2 en suelos con partículas angulosas y duras, pero tales valores no son aconsejables para el diseño a menos que se verifiquen mediante pruebas de carga sobre pilotes instrumentados (Tomlinson, 1981).

Para pilotes en arena, c = 0

 $Qp = Ap(q'_v N *_q)$ Ec. (3.8)

Sin embargo, Qp no debe exceder el valor límite Ap q_l o sea

$$Qp = Ap(q'_n N *_q) \le Ap q_l \operatorname{Ec.} (3.9)$$

Siendo la resistencia límite de punta q_l igual a:

$$q_l = \frac{KN}{m^2} = 50 N *_q tan \varphi$$
 Ec. (3.10)

Donde φ es el ángulo de fricción del suelo en el estrato de apoyo.

La resistencia de punta última Qp en un suelo granular homogéneo (L = Lb) se puede obtener de los números de penetración estándar (Meyerhof, 1976)

$$Q_p = \frac{KN}{m^2} = 40N_{cor}L/D \le 400N_{cor}$$
 Ec. (3.11)

Donde es el número de penetración estándar corregido promedio cerca de la punta del pilote (aproximadamente 10D arriba y 4D abajo de la punta del pilote)

2.6.2 Método Coyle y Castello (1981)

El método de Coyle y Castello (1981) se basa en el análisis de 24 pruebas de carga a gran escala en campo de pilotes hincados en arena. Con los resultados del análisis se sugiere que en arena la resistencia a punta se calcularía con la siguiente ecuación:

$$Q_p = A_p q'_v N *_q$$
Ec. (3.12)

Donde q'v= esfuerzo vertical efectivo en la punta del pilote y $N *_q$ es el factor de capacidad de carga; en la figura 3.6 se muestra la variación de $N *_q$ con respecto a L/D y el ángulo de fricción del suelo φ . Ver figura 8.

Figura 8. Variación de $N *_q$ con L/D (según Coley y Castello, 1981). Fuente: Das,

Braja, Fundamentos de ingeniería de cimentaciones.

2.6.3 Método Vesic

Este método se basa en la teoría de expansión de cavidades y en parámetros de esfuerzo efectivo para estimar la capacidad de carga por punta de un pilote. (Vesic, 1977)

$$Q_p = A_p(cN *_c + \sigma'_oN *_{\sigma})$$
Ec. (3.13)

Donde σ'_o es el esfuerzo efectivo normal medio del terreno al nivel de la punta del pilote

$$\sigma'_o = \left(\frac{1+2K_o}{3}\right)q'_v \quad \text{Ec. (3.14)}$$

 k_o es el coeficiente de presión de tierra en reposo.

$$K_o = 1 - sen\varphi'$$
Ec. (3.15)

De acuerdo con la teoría de Vesic,

$$N *_{\sigma} = f(I_{rr})$$
Ec. (3.16)

Donde I_{rr} es el índice de rigidez reducida para el suelo.

$$I_{rr} = \frac{I_r}{1 + I_r \Delta}$$
Ec. (3.17)

Donde I_r es igual al índice de rigidez, E_s es el módulo de elasticidad del suelo, μ_s es la relación de Poisson del suelo y Δ es la deformación unitaria promedio en la zona plástica por debajo de la punta del pilote.

$$I_r = \frac{E_s}{2(1+\mu_s)(c+q'_v tan\varphi)} = \frac{E_s}{c+q'_v tan\varphi}$$
Ec. (3.18)

Para condiciones sin cambio de volumen (arena densa o arcilla saturada), $\Delta = 0$, por consecuencia:

$$I_r = I_{rr}$$
 Ec. (3.19)

Para $\varphi = 0$ (condición no drenada), se tiene

$$N *_{c} = \frac{4}{3} (\ln(I_{rr}) + 1) + \frac{\pi}{2} + 1$$

Ec. (3.20)

Los valores de se obtienen de pruebas de laboratorio para consolidación y triaxiales correspondientes a los niveles apropiados de esfuerzo. Sin embargo, para uso preliminar, se recomiendan los valores mostrados en la tabla 1.

Tipo de suelo	I _r
Arena	70 - 150
Limos y Arcillas (condición drenada)	50 - 100
Arcillas (condición no drenada)	100 - 200

Tabla 1. Valores de índice de rigidez del suelo (Das, 2001)

Baldi (1981), propone obtener en base a pruebas de penetración de cono como se muestra en la tabla 2:

I_r	TIPO
$\frac{170}{F_{r\%}}$	Para penetración mecánica de cono
$\frac{300}{F_{r\%}}$	Para penetración electrica de cono

Tabla 2. I_r en base a pruebas de penetración de cono Baldi (1981)

Donde $F_{r\%}$ es la razón de fricción en prueba de cono donde F_c es la resistencia a la fricción y qc es la resistencia de cono:

$$F_{r\%} = \frac{F_c}{q_c} * 100$$

Ec. (3.21)

2.6.4 Método Jambu 1976

Jambu (1976) propuso calcular Qp con la expresión

$$Q_p = A_p (cN *_c + q'_v N *_q)$$

Ec. (3.22)

En base a una superficie de falla como la que muestra a continuación:

Figura 9. Superficie de falla en la punta del pilote Jambu. Fuente: Das, Braja,

Fundamentos de ingeniería de cimentaciones.

Los factores de capacidad de carga y se calculan suponiendo una superficie de falla en el suelo en la punta del pilote similar a la mostrada en la figura 9. Las relaciones de capacidad de

carga son entonces:

$$N *_{q} = \left(tan\varphi + \sqrt{1 + tan^{2}\varphi}\right)^{2} (e^{2\eta tan\varphi})$$
$$N *_{c} = \left(N *_{q} - 1\right) cot\varphi$$
Ec. (3.23) & Ec. (3.24)

La figura 10 muestra la variación de $N *_c y N *_q \operatorname{con} \varphi y \eta'$. El ángulo η' se muestra en la figura y varía de 60° en arcillas blandas a cerca de 105° en suelos arenosos densos. Para uso práctico, se recomienda que η varíe de 60° a 90°.

Figura 10. Factores de capacidad de apoyo de Jambu. Fuente: Das, Braja, Fundamentos de ingeniería de cimentaciones.

También se tiene en la tabla 3. los factores de capacidad de carga de Janbu para η' igual a 60°, 75° y 90° con un ϕ que tiene un rango de 0 hasta 45°.

\$\$ \$\$	$\eta' =$	= 60°	$\eta' =$	= 75°	η' :	= 90°
	N*	N*q	N*c	N*q	N*	N_q^*
0	5.74	1.0	5.74	1.0	5.74	1.0
10	5.95	2.05	7.11	2.25	8.34	2.47
20	9.26	4.37	11.78	5.29	14.83	6.40
30	19.43	10.05	21.82	13.60	30.14	18.40
40	30.58	26.66	48.11	41.37	75.31	64.20
45	46.32	47.32	78.90	79.90	133.87	134.87

Tabla 3 Factores de capacidad de apoyo de Jambu.

Independientemente del procedimiento teórico usado para calcular, su magnitud plena no se obtiene sino hasta que el pilote ha penetrado por lo menos entre 10% y 25% de su ancho. Esta profundidad es crítica en el caso de la arena.

2.6.5 Método Bustamante o LCPC

El método fue desarrollado en Francia en el Laboratoire Central des Ponts et Chausees (LCPC), también conocido como "método de Bustamante", basado en el trabajo de Bustamante y Gianeselli (1982) sobre el análisis de 197 ensayos de carga de pilotes. El método LCPC obtiene la resistencia de pilotes aislados sometidos a compresión axial Qu mediante la suma de las resistencias individuales desarrolladas, tanto por punta Qb y como por fuste Qs, según lo planteado en la ecuación. El citado método determina la presión unitaria de soporte en la base qb y la resistencia al corte promedio en el fuste qs empleando para ello la resistencia de punta qc obtenida del ensayo CPT y que se indica en las ecuaciones.

$$qb = \propto_b q_{c,eq}$$
 Ec. (3.25)

Donde:

 α_b = Coeficiente de base o punta por pilote.

 $q_{c, eq}$ = Valor promediado de $q_{c, z}$

El promedio de resistencia equivalente en la punta del cono qc, eq, se obtiene tal como se
indica a continuación:

• Calcular el promedio de la resistencia qc, mean en la punta del pilote promediando el valor de qc sobre la zona entre 1,5d debajo de la punta del pilote hasta 1.5d arriba de la punta del pilote (d es diámetro del pilote).

• Eliminar los valores qc en la zona en la que sean más altos que 1.3 multiplicado por la resistencia media de la del cono y en las que sean más pequeños que 0.7 multiplicado por la resistencia media en la punta del cono qc, mean, como se muestran en la figura.

• Calcular el promedio de la resistencia de la punta del cono equivalente qc, eq, promediando la resistencia de la punta del cono entre los valores (qc) sobre la zona que no se eliminó (es decir: para los valores en el rango 0.7 a 1.3 multiplicados por la resistencia de la punta del cono qc, mean)

El coeficiente de reducción de la capacidad portante en la base del pilote identifica el tipo del pilote identifica el tipo del pilote. Su valor es determinado por uno de los métodos de cálculo disponibles o puede ser introducido manualmente por el usuario.

Figura 11. Esquema explicativo para la determinación qc, ec según método

Bustamante y Gianeselli (1982) Fuente: P.K. Robertson and K.L. Cabal (Robertson),

Guide to Cone Penetration Testing for Geotechnical Engineering.

PILOTES	αρ
Pilote clavados prefabricado dirigido o de acero	1
Pilote Fanki	1
Pilote clavado de madera	1
Vibración	1
Pilotes puestos en sitio con tornillos	0.9
Pilotes prefabricados de tornillos	0.8
Pilotes puestos en sitio con tornillos con grouting adicional	0.9
Pilotes prefabricados de tornillos con grouting adicional	0.8
Pilote de acero tubular	1
Flight Auger contínuo (CFA)	0.8
Pilote perforado o pilote recubierto por bentonita	0.5
Pilote perforado con cáscara de acero	0.5

Tabla 4. Tabla para la determinación del coeficiente αp.

LCPC	q_c MPa	α_b pre-excavado	α_b hincado
Arcilla	$q_c < 1$	0.04	0.50
	$1 < q_c < 5$	0.35	0.45
	$5 < q_c$	0.45	0.55
Arena	$q_c < 12$	0.40	0.50
	$13 < q_c$	0.30	0.40

Tabla 5: Tabla para la determinación del coeficiente de bas	e αb.
---	-------

3 Marco geológico

La mayor parte de territorio del municipio de Soledad (Atlántico) se encuentra geológicamente en el llamado Cinturón del Sinú, constituido en este sector de rocas de origen marino profundo, que se extienden en edad desde el Mioceno superior (aproximadamente hace

15 millones de años) hasta el Pleistoceno - Holoceno (hasta hace aprox. 1,6 millones de años). Cubriendo las rocas mencionadas se encuentran depósitos Cuaternarios recientes de origen fluvial y denudacional, asociados con coluviones de deslizamiento y flujos de detritos actuales.

Tal como se mencionó anteriormente, gran parte del área política-administrativa del municipio de Soledad (Atlántico) y a lo largo del margen del río Magdalena afloran en su mayoría depósitos sedimentarios recientes y hacia el Nor-Occidente sobre un área menor rocas sedimentarias, que comprenden edades del pleistoceno hasta el holoceno (depósitos Cuaternarios). En el mapa geológico de Colombia 2015 del geoportal del Servicio Geológico Colombiano, SGC, se puede observar la geología de Soledad con su respectiva nomenclatura estratigráfica.

En la Figura 12, se puede observar el mapa geológico de la región en la que se encuentra el área urbana y rural del municipio de Soledad (Atlántico), la cual muestra de manera detallada las diferentes formaciones y depósitos geológicos del territorio, que comprenden los suelos que son objetivo de la caracterización geotécnica de la ciudad.

Figura 12 Mapa geológico del municipio de Soledad (departamento del Atlántico). Fuente: INGEOMINAS, 1998

A continuación, se define la estratigrafía geológica que se encuentra en el territorio del municipio de Soledad, (Molina, A., et al., 1999).

3.1 Sedimentos recientes

Se incluyen con este nombre todas aquellas acumulaciones de sedimentos débilmente

consolidados, de origen marino, fluvial y eólico que constituyen la cobertura y suprayacen inconformemente las rocas sedimentarias estratificadas del Terciario y del Cuaternario Inferior. Se han diferenciado los siguientes grandes grupos de depósitos:

Depósitos Coluvio-aluviales, Q-al: Con esta denominación se incluyen los depósitos acumulados en los cauces de los actuales arroyos y los valles estrechamente relacionados con éstos. En términos muy generales, están compuestos por arenas, gravas, limos y arcillas, de color pardo grisáceo a pardo amarillento que embeben fragmentos de areniscas y calizas, principalmente.

Depósitos Eólicos, Q-e: Depósitos eólicos asociados a la línea de costa, aún en acumulación activa, se presentan en los alrededores de Salgar y en el sector comprendido entre Bocatocino y Galerazamba. Están constituidos por arenas de grano fino a medio.

Depósitos fluvio lacustres, Q2-1: Estos depósitos están restringidos a la parte más septentrional del área, en las márgenes del Río Magdalena, sus orillares y las ciénagas asociadas. Están constituidos por arenas de grano fino a medio, de color gris amarillento compuestas por cuarzo, chert y fragmentos líticos, subangulares a subredondeados.

Los sedimentos asociados a las ciénagas son más arcillosos, constituidos por arcillas limosas con materia orgánica, ocasionalmente arenosas, grises parduscos a marrón rojizo.

3.1.1 Formación la popa (Q1-Sm), cuaternario

Esta unidad aflora hacia la parte más nororiental del área de estudio en las Lomas de la Risota, Nisperal, Aguas Vivas y Pan de Azúcar en los alrededores de Puerto Colombia. Los acantilados de esta unidad en Pradomar conforman un escarpe vertical de casi 30 m de altura, compuesto hacia la base por areniscas de grano fino en matriz arcillosa de color gris amarillento, cubiertas por calizas coralinas en capas discontinuas delgadas y arcillolitas y limolitas arcillosas de color gris claro en muestra alterada.

Hacia el sector sur del Cerro El Castillo afloran areniscas de grano grueso a conglomeráticas

con cantos de cuarzo y pequeños fragmentos de conchas, que infrayacen calizas arrecifales, de color crema.

Al norte de Puerto Colombia afloran calizas terrígenas color gris amarillento a amarillo grisáceo, calizas arrecifales terrígenas con abundantes bioclastos de corales, algas y moluscos, en capas gruesas, y areniscas calcáreas de grano fino, friables, con abundante matriz calcárea, que localmente presenta fragmentos de moluscos pequeños.

La edad de esta unidad ha sido muy controvertida, pero finalmente Barrera (en preparación) postula, con base en posición estratigráfica y en la microfauna recolectada recientemente por INGEOMINAS, una edad Pleistoceno para esta unidad.

La leyenda estratigráfica de los suelos geológicos que conforman la región se puede observar con una nomenclatura diferente en el mapa geológico "Geología de las planchas 16-17 Galerazamba-Barranquilla" realizado por Barrera Rel Instituto de Investigaciones en Geociencias, Minería y Química (INGEOMINAS) del año 1998, los cuales corresponden a la misma descripción e investigaciones anteriores realizadas por este organismo. Los depósitos recientes y las rocas sedimentarias son similares en este documento de la siguiente manera:

- PgNgP: Q1-Sm
- Qpp: Q-al
- Qcal: Q-e
- Qe: Q2-1 / Qfl.

La leyenda geológica se puede observar en la Figura 13.

Figura 13. Leyenda geológica regional. Fuente: INGEOMINAS, 1998.

3.2 Geología estructural.

Tectónicamente, el territorio del Departamento del Atlántico está localizado en la zona de interacción de las placas Suramérica y Caribe, en la parte más norte del Cinturón de San Jacinto (Duque-Caro, 1980), cuyo núcleo es ocupado por la Formación San Cayetano, con evidencias de intenso tectonismo, reflejado en fallamiento inverso, plegamiento estrecho e inversión de estratos. La zona del costado occidental del departamento es el sector de mayor presencia de estructuras geológicas, en tanto que hacia el oriente donde se ubica Barranquilla, no se han cartografiado estructuras importantes. Las fallas y los pliegues cartografiados se describen a continuación:

3.2.1 Fallas

En general, las fallas y pliegues presentan dos direcciones preferenciales, unas con rumbo entre N10-300E y los lineamientos y fallas transversales N60-70W. Fallas NE. Fallas Banco, Laguna, Henequén, Juan de Acosta - María La Baja, El Playón, Usiacurí, Hibácharo, Fallamiento de Arroyo de Piedra, falla Villanueva - El Totumo y Manzanillo.

3.2.2 Sistema de fallas transversales

El sistema de fallas transversales es fallas con dirección NW y NE. Las que tienen rumbo NW afectan principalmente a las formaciones Hibácharo y La Popa.

Las fallas con dirección NE son las de Mirador y Paloalto que afectan principalmente las formaciones Hibácharo, Tubará y La Popa. La Falla Mirador tiene unos 12 km de longitud, coincide con un abrupto cañón al norte de la población de Tubará. Pone en contacto a las formaciones Hibácharo y La Popa. La Falla Paloalto tiene una longitud aproximada de 4 km, provoca intenso fracturamiento y diaclasamiento en las rocas de las formaciones Hibácharo y Tubará.

3.2.3 Pliegues

La mayor parte de los pliegues están localizados en la parte axial del Anticlinorio de Luruaco

y están controlados por las fallas. Los pliegues más importantes se mencionan a continuación.

Anticlinal de Sibarco, de Manzanillo y del Morro, Sinclinal de Tubará, Sinclinal de Sabanalarga, plegamiento de Luruaco y plegamiento de San Estanislao.

En la figura 14. se presenta el esquema estructural del Departamento del Atlántico, tomado de INGEOMINAS (2000).

Figura 14. Mapa tectónico del Departamento de Atlántico. Fuente

INGEOMINAS, 2000)

4 Exploración del subsuelo

Con el objeto de conocer las características físicas y obtener muestras de los diferentes estratos que conforman el perfil del subsuelo en el área del proyecto, se tomó la información de los estudios geotécnicos realizados por las empresas GEOTECO S.A.S. los cuales realizaron perforaciones con equipos de rotación y con equipos de CPTu (Piezocono), distribuidas sobre la zona proyectada para la construcción de las estructuras.

4.1 Perforaciones realizadas con equipos de rotación para la recuperación de muestras.

En cada perforación se extrajeron muestras (alteradas e inalteradas) en forma continua para su posterior investigación. Las perforaciones se realizaron con equipos de rotación utilizando triconos, baterías (HQ) y ensayos de S.P.T en forma alternada. Se realizó el ensayo de penetración Normal (Standard Penetration Test S.P.T.) para penetrar un muestreador de tubo partido con el fin de obtener muestras representativas del suelo y una medida de resistencia del suelo a la penetración del muestreador. El ensayo se realizó siguiendo la norma de ensayo ASTM D 1586.

Se recuperaron muestras con el muestreador de cuchara partida cada metro o cambio de estrato, controlando al máximo la no perdida de humedad natural por medio de bolsas plásticas de cierre hermético. Al igual que se recuperaron muestras con barrenas o baterías con diámetro HQ y en los suelos finos (arcillas y limos), estas se cubrían con papel plástico del tipo "PELEX".

Con las muestras recuperadas se realizaron ensayos clasificatorios (Gradaciones y Límites de Atterberg) y se determinaron otras propiedades índices del suelo. Adicionalmente, sobre las muestras de suelo extraídas con estas baterías (HQ) en forma inalterada, se realizaron ensayos que nos permitieron determinar parámetros de resistencia y deformabilidad (ensayos de compresión simple, corte directo y compresibilidad, consolidación).

A continuación, se muestran las figuras 15 y 16 algunas fotografías de las perforaciones con

Figura No 15 Ejecución de perforación con equipos de rotación (TP50-D) para la recuperación de muestras de suelos. Fuente: GEOTECO S.A.S.

Figura No 16 Ejecución de perforación con equipos de rotación (TP50-D) para la

recuperación de muestras de suelos. Fuente: GEOTECO S.A.S.

4.2 Sondeos con piezocono (CPTu).

Para la realización del ensayo CPTu se utiliza una máquina perforadora con capacidad de 15 Ton (Max. Pushing Capacity) y 16 Ton (Max. Extraction Capacity), la cual puede penetrar la punta del piezocono dentro del terreno a una velocidad controlada, determinando propiedades y caracterización de los suelos cada 1.0 cm, determinación de las presiones de poros del suelo (u2 y u0) y su variación con la profundidad siguiendo la normatividad ASTMD 5778 (Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils).

El ensayo de penetración estática (Cone Penetration Test) consiste en hincar verticalmente a presión un cono en el suelo a una velocidad constante de 2 cm/seg siguiendo la normatividad ASTM D 5778 (Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils). Durante la hinca del cono se miden por separado la resistencia a la penetración de la punta (q_c) y el rozamiento de un manguito ubicado por encima de la misma (f_s). El ensayo CPTu (piezocono) permite medir, además, la presión de poro en exceso que se genera durante la hinca. La reacción necesaria para la hinca está dada por el propio peso del vehículo o por anclajes del terreno. Ver Figura No. 17 La figura No. 18, muestra el cono eléctrico estático. Las lecturas de estos parámetros se realizan y se visualizan en tiempo real en el terreno a intervalos de 1 cm, con lo que se obtiene un detallado perfil del suelo en profundidad, midiendo resistencia en la punta (q_c), resistencia por fricción (f_s), presión de poros (U2). Ver figura No. 19.

Figura 17 Resistencias en la punta, (qc), punta (fs), presión de poros, (U2) y esquema interno básico cono eléctrico.

Figura No. 18 Cono estático eléctrico. Fuente: GEOTECO S.A.S.

Figura No. 19. Representación gráfica en tiempo real de: Resistencias en la punta, (qc), punta (fs.), presión de poros, (U2). Fuente: GEOTECO S.A.S.

A continuación, se muestran en las figuras 5.5 y 5.6 algunas fotografías de las perforaciones con equipos de CPTu (Piezocono):

Figura No 20 Ejecución de perforación (Ensayo CPTu-2, piezocono). Fuente: GEOTECO

Figura No 21. Ejecución de perforación (CPTu-4, piezocono). Fuente: GEOTECO SAS

4.3 Equipos de perforación

Los equipos utilizados por GEOTECO S.A.S. para la realización de las perforaciones fueron del tipo Rotopercusión referencia TP50-D marca Tecoinsa, año de fabricación 2.003 (este equipo cuenta con golpeador automático, de caída libre) con capacidad de 200mts de perforación, y maquina TG 63-150KN marca Pagani, año de fabricación 2015 con capacidad de 15 Ton (Max. Pushing Capacity) y 16 Ton (Max. Extraction Capacity). Ver figura 22.

Figura No. 22 Equipo de perforación TP50-D (Martillo automático de caída libre) y equipo de perforación Pagani TG 63-150KN. Fuente: GEOTECO S.A.S.

4. 4 Trabajo de exploración geotécnico

Se realizaron tres (3) sondeos con equipos de rotación y percusión los cuales tienen profundidades de 15 y 50mts; adicionalmente se realizaron 2 sondeos por medio del ensayo CPTu de 16.5mts la tabla 6 se muestra la información de los anteriores sondeos.

PERFORACIONES REALIZADAS POR GEOTECO SAS					
LOCALIZACIÓN	SONDEO	NORTE	ESTE	СОТА	PROF
	S1	1695844,844	923611,437	20,00	15,00
EDIFICIO	S2	1695822,876	923609,061	19,99	15,00
CENTRAL	S 3	1695824,756	923633,077	19,97	50,00
	CPTU1	1695815,898	923613,004	20,01	16,50
	CPTU2	1695839,950	923582,530	20,12	16,50

Tabla 6. Perforaciones realizadas en la zona de estudio. Fuente GEOTECO S

A continuación, se presentan los registros de perforación de los tres (3) sondeos de rotación y percusión y los dos (2) ensayos CPTu.

Figura 23 Perfil Estratigráfico – Sondeo 1 (0.00-10.00mts). Fuente: GEOTECO S.A.S.

Figura 24 Perfil Estratigráfico – Sondeo 1 (10.00-15.00mts). Fuente: GEOTECO S.A.S.

Figura 25. Perfil Estratigráfico - Sondeo 2 (00.00-10.00mts). Fuente: GEOTECO S.A.S.

Figura 26. Perfil Estratigráfico - Sondeo 2 (10.00-15.00mts). Fuente: GEOTECO S.A.S.

Figura 27. Perfil Estratigráfico – Sondeo 3 (00.00-10.00mts). Fuente: GEOTECO S.A.S.

Figura 28. Perfil Estratigráfico - Sondeo 3 (10.00-20.00mts). Fuente: GEOTECO S.A.S.

Figura 29. Perfil Estratigráfico - Sondeo 3 (20.00-30.00mts). Fuente: GEOTECO S.A.S.

Figura 30. Perfil Estratigráfico - Sondeo 3 (30.00-40.00mts). Fuente: GEOTECO S.A.S.

Figura 31. Perfil Estratigráfico - Sondeo 3 (40.00-50.00mts). Fuente: GEOTECO S.A.S.

Figura 32. Resultado ensayo CPTu 1 (00.00-16.50mts) (Resistencia del cono - Fricción

lateral - Presión de poro). Fuente: GEOTECO S.A.S.

 $Figura~33.~Resultado\,ensayo\,CPTu\,1\,(00.00\text{-}16.50mts)\,(clasificación\,según\,Robertson$

1986 y 1990-2010). Fuente: GEOTECO S.A.S.

Figura 34 Resultado ensayo CPTu 1 (00.00-16.50mts) (Permeabilidad – SPT N60 – Modulo

de Young). Fuente: GEOTECO S.A.S.

Figura 35. Resultado ensayo CPTu 1 (00.00-16.50mts) (Densidad relativa – Ángulo de Fricción). Fuente: GEOTECO S.A.S.

Figura~36.~Resultado~ensayo~CPTu~1~(00.00-16.50mts)~(Modulo~volumétrico~M-Modulo~Nod

de corte Go - Resistencia al corte Su). Fuente: GEOTECO S.A.S.

Figura 37. Resultado ensayo CPTu 2 (00.00-16.50mts) ((Resistencia del cono - ricción

lateral - Presión de poro). Fuente: GEOTECO S.A.S.

Figura 38. Resultado ensayo CPTu 2 (00.00-16.50mts) (clasificación según Robertson 1986 y 1990-2010). Fuente: GEOTECO S.A.S.

Figura 39. Resultado ensayo CPTu 2 (00.00-16.50mts) (Permeabilidad - SPT N60 -

Modulo de Young). Fuente: GEOTECO S.A.S.

 $Figura~40~Resultado~ensayo~CPTu~2~(00.00-16.50mts)~(Densidad~relativa-\acute{A}ngulo~de$

Fricción). Fuente: GEOTECO S.A.S.

Figura 41 Resultado ensayo CPTu 2 (00.00-16.50mts) (Modulo volumétrico M - Modulo

de corte Go – Resistencia

5 Caracterización geotécnica

5.1 Perfil estratigráfico y propiedades de los estratos encontrados.

A continuación, se hace una descripción de los suelos encontrados a lo largo del lote investigado, a partir de la investigación de campo y laboratorio realizada. Adicionalmente, se entrega cuadro de valores mínimos y máximos de las propiedades más importantes:

Descripción	Características y/o propiedades	Min.	Pro.	Max.
RELLENO DE ARENA	% Pasa tamiz 200	8.90	12.30	16.0
LIMOSA con algo de raíces, fragmentos de	Humedad Natural (W%)	3.40	5.70	8.0
humedad media, se	Límite liquido (LL%)	NP	NP	NP
realizó el ensayo de penetración estándar	Índice plástico (Ip%)	NP	NP	NP
(S.P.T.) en campo para medir la resistencia a la penetración estándar, presentando valores del orden de 5 a 27 golpes/pie de penetración, este material presenta densidad suelta a media. SUCS: SW-SM; SP-SM y SM.	Peso unitario, γ (Ton/m3)	1.80	1.82	1.85
	Coeficientes de permeabilidad, Ks (m/seg) (*)	1x10 ⁻ 6	1x10 ⁻ 4	1x10 ⁻ 3
	Angulo de fricción Interno, φ' (grados). (**)		33.6	
	Densidad relativa, Dr (%) (*).	30	40	50
	Módulos cortantes, Go (MPa) (*)	20	50	70
Sondeos: S-1(0.0-3.50m); S-2(0.0-4.0m); S-3(0.0- 4.0m)	Clasificación SUCS	SW- SM	SM	SM

(*) Datos Obtenidos con ensayos de CPTu. (**) Datos Obtenidos por correlaciones.

Descripción	Características y/o propiedades	Min.	Pro.	Max.
ARENA LIMOSA de grano medio a fino, con algunos lentes de arcilla, de color amarillo y gris, humedad media a alta, se realizó el ensayo de penetración estándar (S.P.T.) en campo para	% Pasa tamiz 200	9.40	18.20	44.0
	Humedad Natural (W%)	2.70	9.80	17.0
	Límite liquido (LL%)	NP	NP	NP
	Índice plástico (Ip%)	NP	NP	NP
	Peso unitario, γ (Ton/m3)	1.85	1.88	2.0
medir la resistencia a la penetración estándar, presentando valores del	Coeficientes de permeabilidad, Ks (m/seg) (*)	1x10 ⁻ 6	1x10 ⁻ 4	1x10 ⁻ 2
--	--	------------------------	------------------------	---------------------
orden de 6 a >50 golpes/pie de penetración, este material presenta	Angulo de fricción Interno, φ' (grados). (**).		36.3	
densidad suelta a muy densa, aumentando esta	Módulos de Young's, Es (MPa) (**).	8.2	29	45
con la profundidad.	Módulos cortantes, Go (MPa) (*)	50 120 20		200
SUCS: SW-SM; SP-SM y SM.	Densidad relativa, Dr (%) (**).	35	55	66
Este depósito se encontró en los sondeos: S-1(9.0- 9.50m y 10.50-15.0m); S- 2(4.0-4.5m; 9.0-9.50m y 10.50-15.0m); S-3(8.50- 9.0m; 11.0-13.0m; 34.65- 38.0m y 41.50-44.50m)	Clasificación SUCS	SW- SM	SM	SM

(*) Datos Obtenidos con ensayos de CPTu. (**) Datos Obtenidos por correlaciones.

Descripción	Características y/o propiedades	Min.	Pro.	Max.
ARENA LIMO	% Pasa tamiz 200	25.70	36.0	46.40
ARCILLOSA de grano medio a fino, de color	Humedad Natural (W%)	10.30	13.10	15.90
amarillo con vetas grises,	Límite liquido (LL%)	20.10	22.0	23.90
realizó el ensayo de	Índice plástico (Ip%)	4.70	5.80	6.83
penetración estándar (S.P.T.) en campo para	Peso unitario, γ (Ton/m3)	1.87	1.90	2.02
medir la resistencia a la penetración estándar, presentando valores del orden de 14 a > 50 golpes/pie de penetración, este material presenta	Coeficientes de permeabilidad, Ks (m/seg) (*)	1x10 ⁻ 8	1x10 ⁻ 7	1x10 ⁻ 6
	Angulo de fricción Interno, φ' (grados). (**)		33.9	
densidad media a densa, aumentando esta con la	Cohesión drenada, C' (Kg/cm2).	0.08	0.10	
profundidad.	Módulos de Young's, Es (MPa) (**).	20	28	40
SUCS: SM-SC.	Módulos cortantes, Go (MPa) (*)	40	80	120
en los sondeos:	Densidad relativa, Dr (%) (**).	40	60	70

S-1(8.50-9.0m). S-2(4.50-7.50m). S-3(17.50-20.0m y 38.0- 41.50m);	Clasificación SUCS	SM- SC	SM- SC	SM- SC

(*) Datos Obtenidos con ensayos de CPTu. (**) Datos Obtenidos por correlaciones.

Descripción	Características y/o propiedades	Min.	Min.Pro.I 52.10 73.80 9 52.10 73.80 9 10.60 16.70 2 10.60 16.70 2 27.60 44.90 6 6.80 19.50 3 1.93 2.0 1.93 2.0 $1x10^{-}$ $1x10^{-}$ 9^{-} 28.1 0.2 0.5 1.2 1.6			
ARCILLA	% Pasa tamiz 200	52.10	73.80	95.50		
INORGANICA de color amarillo y/o habano con	Humedad Natural (W%)	10.60	16.70	22.80		
arena humedad media a	Límite liquido (LL%)	27.60	44.90	62.10		
alta, se realizó el ensayo	Índice plástico (Ip%)	6.80	19.50	32.10		
de penetración estándar (S.P.T.) en campo para medir la resistencia a la penetración estándar, presentando valores del orden de 13 a 42 golpes/pie de penetración, este material presenta	Peso unitario, γ (Ton/m3)	1.93	2.0	2.1		
	Coeficientes de permeabilidad, Ks (m/seg) (*)	1x10 ⁻ 9	1x10 ⁻ 8	1x10 ⁻ 7		
	Angulo de fricción Interno, φ' (grados).		28.1			
consistencia muy firme a dura.	Cohesión drenada, C' (Kg/cm2).	0.2	0.5			
SUCS: CL-ML; CL v	Cohesión no drenada, Cu (Kg/cm2).	1.2	1.6	2.0		
СН.	Módulos de Young's, Es (MPa) (**).	30	33	38		
Este depósito se encontró en los sondeos:	Módulos cortantes, Go (MPa) (*)	100	150	230		
S-1(3.50-8.50m y 9.50- 10.50); S-2(7.50-9.0m y 9.50- 10.50m); S-3(6.0-7.0m; 9.0-11.0m; 20.0-32.0m; 33.0- 34.65m).	Clasificación SUCS	CL- ML	CL	СН		

(*) Datos Obtenidos con ensayos de CPTu. (**) Datos Obtenidos por correlaciones.

5.2 Nivel freático.

Una vez terminada cada una de las perforaciones se procede a medir el nivel de la tabla de agua establecido que para este suelo no se encuentra nivel Freático a 15.00 metros de profundidad.

En conclusión, se considera que no hay presencia de nivel freáticos en la zona de estudios en la época de realización de trabajo por consiguiente se realizara el estudio en condiciones seca.

5.3 Determinación de parámetros geomecánicos en suelo granulares.

Por medio de la información obtenida de la investigación geotécnica realizada, se determinaron las propiedades geomecánicas (g, ϕ ', c' y Es) de los estratos del subsuelo encontrado, empleando el método de González (1999) con las ecuaciones de Seed-Idris (Marcuson), Kishida y Bowles (1996), y ensayos de laboratorio de suelos. A continuación, se explica detalladamente cada una de las fórmulas empleadas para la determinación de los parámetros (Ver cálculos y ensayos de laboratorios en anexos).

Peso unitario (g). Para sondeos CPTu se usa el valor de unitario deducido que presenta el programa del equipo CPT. Para sondeos SPT se usa la siguiente correlación con el valor N75 (golpes/pie), deducida de los dos sondeos CPT. (Figura 42)

 $\chi(Ton/m3) = 1.665 * N75^{0.0854}$

Figura 42. Relación Densidad (Ton/m3) Vs SPT N75).

Resistencia efectiva (\phi' y c'). Es la resistencia efectiva de los suelos obtenidos con el esfuerzo efectivo (σ ') y al ángulo de fricción equivalente (ϕ 'eq), por medio del método de González (1999), con las ecuaciones de seed-Idris (Marcuson) y Kishida.

Para calcular estas propiedades es necesario tener en cuenta la corrección del número de golpes por energía se calculó N72 (número de golpes obtenido del ensayo de SPT en campo, corregido por condiciones de campo), haciendo uso de las siguientes expresiones:

CALCULOS PARA LA DETERMINACION DE N72:

72 corregido por condiciones de campo	N*nh*nb*ns*nr/72	(S	(Según Skempton 1986, Seed colaboradores 1985)		
donde:					
*nh= Energía real o eficiencia de martillo: 45%.	. nr=	0≤ Long. ≤4m =	0,75		
nb= corección diámetro perforación =1,0		4< Long. ≤6m =	0,85		
ns= corrección muestreador = 1,0		6< Long. ≤10m =	0,95		
nr= longitud de la barra.		Long>10 m =	1,00		

*nh= Energia del 45%, cuerda y polea de equipo empleado

Para obtener (N172), a su vez este valor (N72) es afectado por la corrección por

confinamiento (Cn), teniendo en cuenta que Cn ≤ 2 , obtenida de la fórmula de Seed-Idris (Marcuson):

Ec. (6.0)

Donde,

Rs: Relación entre el esfuerzo efectivo vertical y la presión atmosférica (σ 'v.= σ '= γ *z).

Para luego determinar el ángulo de fricción equivalente ¢'eq, utilizando la fórmula de Kishida dada por:

$$\phi' = 15 + (20 \times N1_{72})^{0.3}$$

Ec. (6.1)

Una vez obtenidos estos valores, se calcula el valor del esfuerzo cortante (τ), por medio de la ecuación de resistencia al corte de un suelo, definida en términos de esfuerzo efectivo (σ ') y al ángulo de fricción equivalente (ϕ 'eq):

Ec. (6.2)

$$\tau = \sigma' * \tan \phi' eq$$

Posteriormente se agrupan los resultados de τ y σ ' para un mismo suelo (según el perfil de diseño establecido en cada estrato) y se realiza una regresión lineal para estimar c' y ϕ ' para cada estrato. Estas determinaciones se muestran más adelante.

Módulo de deformabilidad (Es). Se usan relaciones empíricas entre el módulo de deformación del material terreo Es y N55, penetración estándar normalizada a 55% de energía, modificada de Bowles (1996), y de igual forma se determinó con valores obtenidos de qc:

Ec. (6.3)

$$E_{S}(ton/m^{2}) = A * (N_{55} + B)$$

Las constantes A y B, adoptadas para los diferentes materiales teniendo en cuenta el comportamiento granular o cohesivo son:

Descripción	Α	В
Relleno de Arena limosa, densidad media.	30	15
Arena limo arcillosa de color amarillo, humedad media, densidad media a densa.	30	15
Arena limosa de color amarillo, humedad media, muy densa.	40	20

Tabla 7. Constantes adoptadas para calcular el módulo de deformabilidad del suelo.

Se determinaron los valores de módulo elástico del suelo a lo largo de toda la profundidad para cada sondeo, usando las correlaciones para el ensayo SPT. Se obtuvo un valor promedio de los valores Es, obtenidos con N55 a lo largo de cada profundidad. Posteriormente, se agruparon los valores de Es para cada estrato teniendo en cuenta el perfil de diseño geotécnico, obteniéndose un valor promedio y de diseño para cada capa. Estas determinaciones se muestran más adelante.

5.4 Perfil estratigráfico de diseño.

El perfil estratigráfico de diseño definido sobre la zona proyectada para la construcción de la estructura de edificio administrativo (Ver figura 42), está conformado por un relleno de Arenas limosa, humedad media, densidad suelta, encontrado hasta una profundidad promedio de 4.50mts, subyacido por un Arcillas inorgánicas de color gris con vetas amarillas, humedad media, consistencia muy firme, subyacido por un estrato de Arenas limosas y Arenas limo arcillosas de color amarillo con vetas grises, humedad media a alta, densidad media a muy densa, subyacido por un estrato de Arcilla inorgánica de color amarillo con vetas grises, humedad media a alta, consistencia dura.

Las figuras 43, 44 y 45, muestran las determinaciones del ángulo de fricción interna de los suelos granulares(^{\u0364}') y Cohesión efectiva (c'), producto de los cálculos realizados siguiendo el método de González (1999), para cada estrato siguiendo el perfil de diseño geotécnico.

limosa.

Figura 44 Parámetros de \oplus' y C', determinados para el estrato de Arena limosa.

arcillosa.

De acuerdo con estos resultados y los ensayos de laboratorios, los cuales se pueden observar en los anexos, los parámetros de resistencia al corte para cada uno de los estratos son los siguientes:

Descripción	Espesor de	Método de González (1999)			
_	estrato (m)	φ' (°)	c' (t / m ²)		
Relleno de Arena limosa, humedad media, densidad suelta	0.0 - 4.5	33	0.0		
Arena limosa de color amarillo, humedad media a alta densidad media a muy densa	4.5 - 8.5	36	0.0		
Arena limosa arcillosa de color amarillo humedad media a alta, densidad media a alta	13.5 – 15.0	31	0.0		

Tabla 8. Propiedades de resistencia al corte de los suelos (ϕ ', c')

Figura 46 Perfil estratigráfico definido para el estudio de análisis.

6 Capacidad carga pilote pre-excavado

6.1 Capacidad de carga por punta

Para el análisis de estudio se plantea el estudio de diferentes diámetros (4), pilotes de

0.6m, 0.8m, 1.0m y 1.2m; todos a una profundidad de 11mts de longitud.

6.1.1. Método Meyerhof

De acuerdo con la metodología antes planteada se presentan los resultados de los cálculos realizados por el método de Meyerhof (1976), La figura 47 muestra los resultados obtenidos.

figura 47 Grafica de resultado Qp método de Meyerhof (1976)

Este método muestra muy claramente la limitante de la capacidad por punta con la capacidad de empotramiento critica del pilote este se genera para cada estrato de suelo homogéneo, la capacidad del pilote va en aumento hasta alcanzar la capacidad limite, es decir que luego de esto no puede alcanzar una capacidad superior. Se puede observar que para Φ mayores de 35° Nq crece rápidamente dando a lugar a una mayor resistencia en la punta. El método de Meyerhoft es un método que en comparación a otros métodos en bastante conservador en las capacidades por punta de los pilotes.

6.1.2. Método Coley y Castello

En base a el método de Coley y Castello (1981) se presentan los resultados de los cálculos realizados para el proyecto de estudio. La figura 48 presente de manera más visual los resultados.

Figura 48 Grafica de resultado Qp método de Coley y Castello (1976)

Se puede observar que la capacidad de punta resultante para las 4 opciones de diámetros planteados presenta un incremento lineal acorde con la profundidad de empotramiento de los pilotes, se puede observar grandes magnitudes a mayores profundidades.

Es un método que al tener Nq en relación de L/D donde L= longitud y D= diámetro del pilote alcanza su mayor capacidad aproximadamente a una relación L/D=20 en base a la Fig 48, en base a esto un pilote de D=1.0 alcanzaría su mayor capacidad por punta a la profundidad de 20mts.

6.1.3. Método Vesic

De acuerdo con la metodología antes planteada se presentan los resultados de los cálculos realizados por el método de Vesic (1977), La Figura 49 muestra los resultados obtenidos.

Figura 49 Grafica de resultado Qp método de Vesic (1977)

El método de Vesic al basarse en la teoría de expansión de cavidades, tiene en cuenta el índice de rigidez del suelo, se analiza la deformación unitaria promedio en la zona plástica debajo de la punta del pilote, al tener en cuenta factores como la relación de Poisson, el módulo cortante del suelo y Es módulo de elasticidad de suelo, es un análisis más completo del comportamiento del suelo en la punta debido los esfuerzos generados por la carga de servicio. Es un método que por lo anteriormente mencionado necesita, unos datos adicionales a los otros métodos evaluados. Sin embargo, hay muchas correlaciones que se pueden usar a partir de N (número de golpes del ensayo SPT) para obtener estos parámetros, pero hay q tener en cuenta que son aproximaciones y tienen la certeza de los datos obtenidos en laboratorios.

6.1.4. Método Janbu

En base a el método de Janbu (1976) se presentan los resultados de los cálculos realizados

para el proyecto de estudio. La figura 50 presente de manera más visual los resultados.

Figura 50 Grafica de resultado Qp método de Janbu (1976)

El método de Janbu se basa en una superficie de falla en la base del pilote con un ángulo n', el cual varia de 60° a 105° dependiendo el material de apoyo, este muestra valores parecidos a los dos métodos anteriores, sin embargo este método tiene una condición importante el cual para que el pilote alcance la carga obtenida debe penetrar en el estrato de apoyo una profundidad del orden de 10 a 25% de su ancho, lo cual lo complica en suelo arenosos muy densos.

6.1.5. Método Bustamante o LCPC

De acuerdo con la metodología antes planteada se presentan los resultados de los cálculos realizados por el método de Bustamante, La figura 51 muestra los resultados obtenidos.

Figura 51 Grafica de resultado Qp método de Bustamante

La figura 51 muestra resultados de capacidad por punta bastante variables con la profundidad haciéndose más notable a medida que aumenta el diámetro del pilote. Esta condición se debe a la variabilidad de resistencias en las diversas capas que conforman el perfil geotécnico y que son registradas de manera detallada con el ensayo. Sin embargo, los resultados son muy parecidos a los otros métodos, en los rangos de profundidad de 2-5 mts y 11-13mts.

6.1.6. Correlaciones SPT

En base a las ecuaciones de correlación del ensayo SPT de los autores Meyerhof (1977) y Briaud y Col. (1985) se presentan los resultados de los cálculos realizados para el proyecto de estudio. Las figuras 52 y 53 presente de manera más visual los resultados.

6.1.7 .Meyerhof (1977)

6.1.8 Briaud y Col (1985)

Figura 53 Grafica de resultado Qp Ecuación Briaud y Col correlación ensayo SPT.

Las correlaciones del ensayo SPT, podrían usarse para un cálculo inicial, para tener una idea de las posibles magnitudes de las capacidades a obtener, sim embargo es un método que no

debería usarse como definitivo, ya que proviene del dato N (número de golpes del ensayo SPT), el cual puede conllevar a varios errores en la toma del dato. Otra obtención del parámetro N, es por medio del ensayo CPTu el cual por correlaciones de qs y fs podrían estimar el N60, el cual podría tener un poco menos de incertidumbre que el ensayo SPT.

Estos fueron tomados a partir de los 6.0mts teniendo en cuenta el N promedio necesario para ser calculo.

6.1.9 Comparación de resultados y graficas de capacidades por punta

A continuación, se presenta la Figuras 54, 55, 56 y 57 donde se combinan 7 graficas previas para sus análisis, conclusión y comparación de resultados, están son presentadas en base al diámetro del pilote.

Figura 54 Grafica de resultado Qp para pilote D=0.60m.

Figura 55 Grafica de resultado Qp para pilote D=0.80m.

Figura 56 Grafica de resultado Qp para pilote D=1.00m.

Figura 57 Grafica de resultado Qp para pilote D=1.00m.

Podemos observar que los resultados arrojados por los métodos Meyerhof, Coeyle y Castello, Vesic, Jambu y Briaud y Col son muy parecidos en las profundidades de 1-8mts, luego empiezan a observarse más diferencia entre ellos.

El método de correlación del ensayo SPT de Meyerhof en todos los diámetros propuestos mostro resultado muy por encima de la media, por consiguiente, es un método que no se recomienda para estimar la capacidad por punta en pilotes en arenas.

El método de LCPC presente una gran variación en las capacidades, como se explicó anteriormente esto debido a los cambios de resistencia y a la amplia toma de datos del ensayo CPTu, es un método que se debe conocer muy bien el perfil de diseño por medio de sondeos con extracción de testigos, para poder concluir un perfil estratigráfico con estratos bien definidos para así, poder concluir con la capacidad de resistencia por punta en dicho estrato.

Sin embargo, presenta similitud en los resultados con las otras teorías en las profundidades de 2-5mts y de 11- 13mts.

7 Conclusiones

• De acuerdo con la variabilidad de métodos y resultados, sería recomendable para el diseño de cimentación de pilotes, la utilización de más de un método adecuado de cálculo. Con esto, por lo menos se obtendrán formas de comparación y de forma general ver posibles errores introducidos en los parámetros de entrada.

• Se puede observar la sensibilidad de los resultados de acuerdo con la toma de datos de campo y parámetros de diseño como ϕ y N (número de golpes del ensayo SPT). Por lo tanto, se recomiendan ensayos de CPTu, que no solo es más viable en la calidad de los resultados, sino en la cantidad de datos, al tener respuesta cada 1cm.

• Se debe tener en cuenta las limitantes de cada método como la longitud de empotramiento critica al analizar los resultados de los métodos, entendiendo por esto la limitación del método.

• Métodos como el de Vesic tiene en cuenta el factor de rigidez del suelo el cual da resultados más razonables, debido a que su análisis se basa en la respuesta del suelo ante un esfuerzo y no solo de los parámetros mecánicos de este.

• Se debe aclarar que todos estos métodos y correlaciones son estimaciones de la capacidad por punta de un pilote, sin embargo, la única manera real de conocer la verdadera capacidad de un pilote es por medio las pruebas de carga realizadas en la obra después de los tiempos de fraguado del pilote. En general los métodos presentan el mismo comportamiento al largo de la profundidad para todos los diámetros propuestos, de esto podemos concluir que el aumento en diámetro solo aumentara la capacidad por punta del pilote sin importar el método a usar.

• La estimación de la capacidad de carga de un pilote por punta conlleva mucha incertidumbre, es por eso es necesario una excelente toma de datos y el juicio ingenieril en el cual la experiencia y conocimiento de la zona, puedan jugar un papel muy importante en la

selección de la capacidad por punta ultima de un pilote.

• Se puede observar en las figuras 7.8 y 7.9 se puede observar una simetría de resultados entre los métodos Coeyle y Castello y el método de Janbu, donde ligeramente hay un incremento del método de Coeyle a mayor profundidad.

• El método de Meyerhof que emplea el valor de N (número de golpes del ensayo SPT) muestra un aumento por encima de la media de los otros valores.

• El método de LCPC presente una gran variación en las capacidades, como se explicó anteriormente esto debido a los cambios de resistencia y a la amplia toma de datos del ensayo CPTu, es un método que se debe conocer muy bien el perfil de diseño por medio de sondeos con extracción de testigos, para poder concluir un perfil estratigráfico con estratos bien definidos para así, poder concluir con la capacidad de resistencia por punta en dicho estrato, sin embargo, presenta similitud en los resultados con las otras teorías en las profundidades de 2-5mts y de 11- 13mts.

• Los métodos de Jambu y Coely y Castello, presentan resultados muy parecidos en lo largo de la profundidad de los pilotes, aunque son más conservadores que el método de Vesic.

• Los parámetros de resistencia del suelo son directamente proporcionales a la obtención de los resultados de las capacidades de los pilotes, es por eso por lo que es necesario un método de obtención asertivo de estos.

• Los valores del ángulo de fricción asociados al CPTu son mayores que los datos obtenidos por correlaciones, por lo anterior se deberán usar los valores obtenido por el método de correlación del ensayo SPT usado en el estudio.

• Se observo que lo valores de los módulos elásticos en ambos métodos de obtención tienes valores semejantes de acuerdo con los perfiles del suelo encontrado.

• El valor de N60 corregido obtenido por el ensayo CPTu puede ser usado para para concluir una ecuación única para el perfil de diseño del proyecto de estudio, debido a la

correlación que estima el módulo elástico para cada valor de N60 corregido.

• Debido a la poca perturbación que genera la punta del cono en el suelo, al compararla con un ensayo de penetración estándar (SPT) los resultados de capacidad de carga por medio del método LCPC, se obtiene un mayor grado de credibilidad en los resultados.

• Debido a la gran cantidad de datos que se obtienen por medio de la resistencia en la punta de cono, se obtendría una mejor variabilidad de la densidad in situ del suelo, por ende la resistencia real de suelo obtenida con el método LCPC, entregaría una capacidad del pilote por punta más acorde con la realidad.

Referencias bibliográficas

B.H, Fellenius. (2011) Basic of foundation Design, http://www.fellenius.net

BOWLES, Joseph E. (1988) Foundation analysis and design. (4a Edition). Editorial McGraw-Hill

DAS, Braja M. (2012) Fundamentos de ingeniería de cimentaciones. (7ª Edición). Editorial Cengage Learning

INGEOMINAS. (2007) Atlas Geológico de Colombia. https://srvags.sgc.gov.co/

Lee, lan K. y otros. (1983) Geotechnical engineering. (1ª Edición). Editorial IOS Press

Peck, Ralph B. at. (1996) Ingeniería de cimentaciones. (1ª Edición). Editorial Limusa Willey

P. K. Robertson and K.L. Cabal (2014) Guide to penetration Testing for Geotechnical Engineering (4a Edition). Editorial Gregg Drilling & Testing, Inc

RODRÍGUEZ GRANADOS, Edgar Eduardo & SÁNCHEZ SALINAS, Miguel Ángel (2015) Análisis de capacidad portante y asentamientos de pilotes a partir de ecuaciones semiempíricos, modelos numéricos y ensayos CPTU. (Tesis de maestría) Universidad Pedagógica y Tecnológica de Colombia

WHITLOW, Row. (2000) Fundamentos de mecánica de suelos. (2a Edición). Editorial Compañía Editorial Continental

Apéndices

Apéndices A. Hoja de cálculos Excel.

Meyerhof (1976)

D=0.60mts	

Estrato	Prof (m)	¥ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	L/D	Nq	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	0,6	0,282744	33,6	1,7	32	1,00	16,5
Granular	2	1,82	3,64	0,6	0,282744	33,6	3,3	33	2,00	34,0
Granular	3	1,82	5,46	0,6	0,282744	33,6	5,0	35	3,00	54,0
Granular	4	1,82	7,28	0,6	0,282744	33,6	6,7	37	4,00	76,2
Granular	5	1,90	9,18	0,6	0,282744	33,9	8,3	40	5,00	103,8
Granular	6	1,90	11,08	0,6	0,282744	33,9	10,0	41	6,00	128,4
Granular	7	1,90	12,98	0,6	0,282744	33,9	11,7	42	7,00	154,1
Granular	8	1,90	14,88	0,6	0,282744	33,9	13,3	45	8,00	189,3
Granular	9	1,88	16,76	0,6	0,282744	36,3	15,0	48	9,00	227,5
Granular	10	1,90	18,66	0,6	0,282744	36,3	16,7	48	10,00	253,2
Granular	11	1,90	20,56	0,6	0,282744	36,3	18,3	48	11,00	279,0
Granular	12	1,90	22,46	0,6	0,282744	36,3	20,0	47	12,00	298,5
Granular	13	1,90	24,36	0,6	0,282744	36,3	21,7	47	13,00	323,7

D=0.80mts

Estrato	Prof (m)	y (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	Nq		Qp1 (Ton)	ql (Ton)	Qp (Ton)
Granular	1	1,82	1,82	0,8	0,502656	33,6	100	1,00	91,5	170,3	91,5
Granular	2	1,82	3,64	0,8	0,502656	33,6	100	2,00	183,0	170,3	170,3
Granular	3	1,82	5,46	0,8	0,502656	33,6	100	3,00	274,5	170,3	170,3
Granular	4	1,82	7,28	0,8	0,502656	33,6	100	4,00	365,9	170,3	170,3
Granular	5	1,90	9,18	0,8	0,502656	33,9	115	5,00	530,7	198,1	198,1
Granular	6	1,90	11,08	0,8	0,502656	33,9	115	6,00	640,5	198,1	198,1
Granular	7	1,90	12,98	0,8	0,502656	33,9	115	7,00	750,3	198,1	198,1
Granular	8	1,90	14,88	0,8	0,502656	33,9	115	8,00	860,1	198,1	198,1
Granular	9	1,88	16,76	0,8	0,502656	36,3	168	9,00	1415,3	316,4	316,4
Granular	10	1,90	18,66	0,8	0,502656	36,3	168	10,00	1575,8	316,4	316,4
Granular	11	1,90	20,56	0,8	0,502656	36,3	168	11,00	1736,2	316,4	316,4
Granular	12	1,90	22,46	0,8	0,502656	36,3	168	12,00	1896,7	316,4	316,4
Granular	13	1 90	24.36	0.8	0 502656	36.3	168	13.00	2057.1	316.4	316.4

D=1.00mts

Estrato	Prof (m)	ɣ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	Nq		Qp1 (Ton)	ql (Ton)	Qp (Ton)
Granular	1	1,82	1,82	1,0	0,7854	33,6	100	1,00	142,9	266,1	142,9
Granular	2	1,82	3,64	1,0	0,7854	33,6	100	2,00	285,9	266,1	266,1
Granular	3	1,82	5,46	1,0	0,7854	33,6	100	3,00	428,8	266,1	266,1
Granular	4	1,82	7,28	1,0	0,7854	33,6	100	4,00	571,8	266,1	266,1
Granular	5	1,90	9,18	1,0	0,7854	33,9	115	5,00	829,1	309,5	309,5
Granular	6	1,90	11,08	1,0	0,7854	33,9	115	6,00	1000,8	309,5	309,5
Granular	7	1,90	12,98	1,0	0,7854	33,9	115	7,00	1172,4	309,5	309,5
Granular	8	1,90	14,88	1,0	0,7854	33,9	115	8,00	1344,0	309,5	309,5
Granular	9	1,88	16,76	1,0	0,7854	36,3	168	9,00	2211,4	494,3	494,3
Granular	10	1,90	18,66	1,0	0,7854	36,3	168	10,00	2462,1	494,3	494,3
Granular	11	1,90	20,56	1,0	0,7854	36,3	168	11,00	2712,8	494,3	494,3
Granular	12	1,90	22,46	1,0	0,7854	36,3	168	12,00	2963,5	494,3	494,3
Granular	13	1,90	24,36	1,0	0,7854	36,3	168	13,00	3214,2	494,3	494,3

D=1.20mts

Estrato	Prof (m)	ɣ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	¢	Nq		Qp1 (Ton)	ql (Ton)	Qp (Ton)
Granular	1	1,82	1,82	1,2	1,130976	33,6	100	1,00	205,8	383,2	205,8
Granular	2	1,82	3,64	1,2	1,130976	33,6	100	2,00	411,7	383,2	383,2
Granular	3	1,82	5,46	1,2	1,130976	33,6	100	3,00	617,5	383,2	383,2
Granular	4	1,82	7,28	1,2	1,130976	33,6	100	4,00	823,4	383,2	383,2
Granular	5	1,90	9,18	1,2	1,130976	33,9	115	5,00	1194,0	445,7	445,7
Granular	6	1,90	11,08	1,2	1,130976	33,9	115	6,00	1441,1	445,7	445,7
Granular	7	1,90	12,98	1,2	1,130976	33,9	115	7,00	1688,2	445,7	445,7
Granular	8	1,90	14,88	1,2	1,130976	33,9	115	8,00	1935,3	445,7	445,7
Granular	9	1,88	16,76	1,2	1,130976	36,3	168	9,00	3184,5	711,8	711,8
Granular	10	1,90	18,66	1,2	1,130976	36,3	168	10,00	3545,5	711,8	711,8
Granular	11	1,90	20,56	1,2	1,130976	36,3	168	11,00	3906,5	711,8	711,8
Granular	12	1,90	22,46	1,2	1,130976	36,3	168	12,00	4267,5	711,8	711,8
Granular	13	1,90	24,36	1,2	1,130976	36,3	168	13,00	4628,5	711,8	711,8

Coley	Castell	o (1981)
D - 0 e	50mts	

D=0.60m	ts									
Estrato	Prof (m)	γ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	L/D	Nq	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	0,6	0,282744	33,6	1,7	32	1,00	16,5
Granular	2	1,82	3,64	0,6	0,282744	33,6	3,3	33	2,00	34,0
Granular	3	1,82	5,46	0,6	0,282744	33,6	5,0	35	3,00	54,0
Granular	4	1,82	7,28	0,6	0,282744	33,6	6,7	37	4,00	76,2
Granular	5	1,90	9,18	0,6	0,282744	33,9	8,3	40	5,00	103,8
Granular	6	1,90	11,08	0,6	0,282744	33,9	10,0	41	6,00	128,4
Granular	7	1,90	12,98	0,6	0,282744	33,9	11,7	42	7,00	154,1
Granular	8	1,90	14,88	0,6	0,282744	33,9	13,3	45	8,00	189,3
Granular	9	1,88	16,76	0,6	0,282744	36,3	15,0	48	9,00	227,5
Granular	10	1,90	18,66	0,6	0,282744	36,3	16,7	48	10,00	253,2
Granular	11	1,90	20,56	0,6	0,282744	36,3	18,3	48	11,00	279,0
Granular	12	1,90	22,46	0,6	0,282744	36,3	20,0	47	12,00	298,5
Granular	13	1,90	24,36	0,6	0,282744	36,3	21,7	47	13,00	323,7
D=0.80m	ts									
Estrato	Prof (m)	v (Ton/m3)	a' (Ton/m2)	D (m)	Ap (m2)	φ	L/D	Na	Prof (m)	Qp (Ton)
Granular	1	1.82	1.82	0.8	0,502656	33.6	1.3	32	1.00	29,3
Granular	2	1.82	3.64	0.8	0.502656	33.6	2.5	33	2.00	60.4
Granular	3	1.82	5.46	0.8	0.502656	33.6	3.8	34	3.00	93.3
Granular	4	1.82	7.28	0.8	0.502656	33.6	5.0	35	4.00	128.1
Granular	5	1.90	9.18	0.8	0.502656	33.9	6.3	37	5.00	170.7
Granular	6	1.90	11.08	0.8	0.502656	33.9	7.5	39	6.00	217.2
Granular	7	1.90	12.98	0.8	0,502656	33.9	8,8	40	7.00	261.0
Granular	8	1,90	14,88	0,8	0,502656	33,9	10,0	41	8,00	306,7
Granular	9	1,88	16,76	0,8	0,502656	36,3	11,3	42	9,00	353,8
Granular	10	1,90	18,66	0,8	0,502656	36,3	12,5	44	10,00	412,7
Granular	11	1,90	20,56	0,8	0,502656	36,3	13,8	45	11,00	465,1
Granular	12	1,90	22,46	0,8	0,502656	36,3	15,0	48	12,00	541,9
Granular	13	1,90	24,36	0,8	0,502656	36,3	16,3	48	13,00	587,7
D=1.00m	ts									
D=1.00m Estrato	ts Prof (m)	y (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	¢	L/D	Ng	Prof (m)	Qp (Ton)
D=1.00m Estrato Granular	ts Prof (m) 1	γ (Ton/m3) 1.82	q' (Ton/m2) 1.82	D (m) 1.0	Ap (m2)	φ 33,6	L/D	Nq 32	Prof (m)	Qp (Ton) 45,7
D=1.00m Estrato Granular Granular	ts Prof (m) 1 2	γ (Ton/m3) 1,82 1,82	q' (Ton/m2) 1,82 3,64	D (m) 1,0 1,0	Ap (m2) 0,7854 0,7854	φ 33,6 33,6	L/D 1,0 2,0	Nq 32 33	Prof (m) 1,00 2,00	Qp (Ton) 45,7 94,3
D=1.00m Estrato Granular Granular Granular	ts Prof (m) 1 2 3	γ (Ton/m3) 1,82 1,82 1,82	q' (Ton/m2) 1,82 3,64 5,46	D (m) 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854	φ 33,6 33,6 33,6	L/D 1,0 2,0 3,0	Nq 32 33 34	Prof (m) 1,00 2,00 3,00	Qp (Ton) 45,7 94,3 145,8
D=1.00mi Estrato Granular Granular Granular Granular	ts Prof (m) 1 2 3 4	γ (Ton/m3) 1,82 1,82 1,82 1,82	q' (Ton/m2) 1,82 3,64 5,46 7,28	D (m) 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854	ф 33,6 33,6 33,6 33,6 33,6	L/D 1,0 2,0 3,0 4,0	Nq 32 33 34 34	Prof (m) 1,00 2,00 3,00 4,00	Qp (Ton) 45,7 94,3 145,8 194,4
D=1.00mt Estrato Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18	D (m) 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854		L/D 1,0 2,0 3,0 4,0 5,0	Nq 32 33 34 34 34 35	Prof (m) 1,00 2,00 3,00 4,00 5,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3
D=1.00mt Estrato Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08	D (m) 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	ф 33,6 33,6 33,6 33,6 33,6 33,9 33,9	L/D 1,0 2,0 3,0 4,0 5,0 6,0	Nq 32 33 34 34 35 35 36	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3
D=1.00mt Estrato Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	ф 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 33,9	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0	Nq 32 33 34 34 35 36 38	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0	Nq 32 33 34 34 35 36 36 38 40	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,88	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9 36,3	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0	Nq 32 33 34 34 35 36 38 40 40	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 313,3 387,4 467,5 526,5
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,88 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 33,9 36,3 36,3 36,3	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0	Nq 32 33 34 34 35 36 38 40 40 40 41	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 313,3 387,4 467,5 526,5 600,9
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11	y (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,88 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	A 33,6 33,6 33,6 33,9 33,9 33,9 33,9 33,9	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0	Nq 32 33 34 34 35 36 38 40 40 40 41 42	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12	y (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	• 33,6 33,6 33,6 33,9 33,9 33,9 33,9 33,9 36,3	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0	Nq 32 33 34 34 35 36 38 40 40 40 40 41 42 43	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 3 4 5 6 7 8 9 10 11 12 13	<pre>y (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90</pre>	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 36,3 	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8
D=1.00mt Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 3 4 4 5 6 7 8 9 10 11 12 13 ts	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	 33,6 33,6 33,6 33,9 33,9 33,9 36,3 	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8
D=1.00m Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Estrato	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 ts Prof (m)	γ (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36 a' (Ton/m2)	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9 33,9 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m)	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton)
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 ts Prof (m) 1	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,82	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36 q' (Ton/m2) 1,82	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44 3 44 31	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 ts Prof (m) 1 2	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,82	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44 42 31 32	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular	ts Prof (m) 1 2 3 3 4 4 5 6 6 7 8 9 10 11 12 13 ts Prof (m) 1 2 3 3	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,82	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5</td> <td>Nq 32 33 34 34 34 35 36 38 40 40 40 41 42 43 44 Nq 31 32 33</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5	Nq 32 33 34 34 34 35 36 38 40 40 40 41 42 43 44 Nq 31 32 33	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 ts Prof (m) 1 2 3 4	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,82	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 28,66 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3</td> <td>Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44 Nq 31 32 33 34</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 44 Nq 31 32 33 34	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 6 7 8 9 9 9 10 11 12 13 ts Prof (m) 11 2 3 4 5 5 13 14 15 10 10 10 10 10 10 10 10 10 10	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2</td> <td>Nq 32 33 34 34 34 36 38 40 40 40 41 42 43 44 Nq 31 32 33 34 34</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9 353,0</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2	Nq 32 33 34 34 34 36 38 40 40 40 41 42 43 44 Nq 31 32 33 34 34	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9 353,0
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 9 9 10 11 12 13 ts Prof (m) 1 2 3 4 5 6 6 7 7 8 9 9 9 9 9 9 10 11 12 13 14 15 15 16 16 16 16 16 16 16 16 16 16	γ (Ton/m3) 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 γ (Ton/m3) γ (Ton/m3) 1,82 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 33,6 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0</td> <td>Nq 32 33 34 34 34 34 36 38 40 40 40 41 42 43 44 5 Nq 31 32 33 34 34 35</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0	Nq 32 33 34 34 34 34 36 38 40 40 40 41 42 43 44 5 Nq 31 32 33 34 34 35	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 9 10 11 12 13 ts Prof (m) 1 2 3 4 5 6 7 7 7 8 9 9 9 9 9 9 9 10 11 12 13 14 15 15 16 16 17 17 18 19 19 10 10 11 12 13 15 16 16 17 10 10 11 12 13 15 16 16 17 16 16 17 17 17 17 17 17 17 17 17 17	Υ (Ton/m3) 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 Υ (Ton/m3) 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,90 Υ (Ton/m3) Υ (Ton/m3)	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 20,56 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,9 33,9 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8</td> <td>Nq 32 33 34 34 34 34 35 36 38 40 40 41 42 43 44 5 31 32 33 34 34 35 36</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6 528,5</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8	Nq 32 33 34 34 34 34 35 36 38 40 40 41 42 43 44 5 31 32 33 34 34 35 36	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6 528,5
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 9 10 11 12 13 ts Prof (m) 1 2 3 4 5 6 7 8 7 8 1 1 2 3 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	¥ (Ton/m3) 1,82 1,82 1,82 1,90 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,90 	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 22,46 24,36 22,46 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,6 33,9 33,9 33,9 33,9 33,9 33,9 33,9 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7</td> <td>Nq 32 33 34 34 34 34 35 36 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 0,9 678,2 758,5 841,8 3 3 3,7 4 3,8 41,8 3 3 3,8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,3 3 3 7,4 4 6,7,5 5 2 6,5 5 2 6,5 5 2 6,5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7	Nq 32 33 34 34 34 34 35 36 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 0,9 678,2 758,5 841,8 3 3 3,7 4 3,8 41,8 3 3 3,8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,7 2 0,3 8 4 1,3 1,3 3 3 7,4 4 6,7,5 5 2 6,5 5 2 6,5 5 2 6,5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 9 10 11 12 13 ts Prof (m) 1 2 3 4 5 6 7 8 9 9 9 9 10 11 12 13 15 15 16 16 17 18 19 10 10 11 12 13 15 16 16 17 18 18 19 10 10 10 10 10 10 10 10 10 10	¥ (Ton/m3) 1,82 1,82 1,82 1,90 1,82 1,90 1,88 	 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 22,46 22,46 24,36 44,88 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 33,6 33,9 33,9 33,9 33,9 33,9 33,9 33,9 36,3 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5</td> <td>Nq 32 33 34 34 34 34 35 36 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37 39</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 0,9 678,2 758,5 841,8 3 0,9 63,8 131,7 63,8 131,7 203,8 279,9 353,0 438,6 528,5 622,7</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5	Nq 32 33 34 34 34 34 35 36 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37 39	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 0,9 678,2 758,5 841,8 3 0,9 63,8 131,7 63,8 131,7 203,8 279,9 353,0 438,6 528,5 622,7
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 ts Prof (m) 1 1 2 3 4 5 6 7 8 9 9 10 11 12 13 15 15 16 16 17 18 19 10 10 11 12 13 15 16 16 17 18 19 10 10 10 11 10 10 10 11 10 10	Y (Ton/m3) 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,90 1,90 1,90 1,90 1,90 1,90	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 22,46 22,46 24,36 (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	♦ 33,6 33,6 33,6 33,6 33,9 33,9 33,9 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 33,6 33,9 33,9 33,9 33,9 33,9 33,9 33,9 33,9 33,9 33,9 36,3 36,3 36,3 </td <td>L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5 8,3</td> <td>Nq 32 33 34 34 34 34 36 38 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37 39 40</td> <td>Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 4,00 5,00 6,00 7,00 8,00 9,00 1,000</td> <td>Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6 528,5 622,7 739,3 844,2</td>	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5 8,3	Nq 32 33 34 34 34 34 36 38 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37 39 40	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,00 4,00 5,00 6,00 7,00 8,00 9,00 1,000	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 Qp (Ton) 63,8 131,7 203,8 279,9 353,0 438,6 528,5 622,7 739,3 844,2
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 13 ts Prof (m) 1 2 3 4 5 6 7 8 9 9 10 11 2 3 4 5 6 7 8 9 9 10 11 12 13 15 7 8 9 9 10 11 12 13 15 8 9 9 10 11 12 13 15 8 9 9 10 11 12 13 15 15 15 15 15 15 15 15 15 15	¥ (Ton/m3) 1,82 1,82 1,82 1,90 	q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 22,46 24,36 24,36 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 20,56	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	ф 33,6 33,6 33,9 33,9 33,9 33,9 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 33,6 3,	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5 8,3 9,2	Nq 32 33 34 34 34 34 36 38 40 40 40 41 42 43 44 5 31 32 33 34 34 35 36 37 39 40	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 1,00 10,00 10,00 11,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 1,00	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 275,8 3841,8 279,9 353,0 438,6 528,5 622,7 353,0 438,6
D=1.00mi Estrato Granular Granular Granular Granular Granular Granular Granular Granular Granular Granular D=1.20mi Estrato Granular	ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 3 ts Prof (m) 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 9 10 11 12 13 15 15 16 16 17 10 11 12 13 15 16 16 17 10 11 12 13 15 16 16 17 10 11 12 13 15 16 16 17 16 16 17 17 18 18 19 10 10 11 12 13 15 16 16 17 17 18 18 19 10 11 12 13 15 16 16 17 17 18 18 19 10 10 11 12 13 15 16 16 17 17 18 19 10 10 11 12 13 15 16 16 17 17 18 18 19 19 10 10 11 12 13 15 16 16 17 17 10 11 12 13 15 16 16 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19	¥ (Ton/m3) 1,82 1,82 1,82 1,90 	 q' (Ton/m2) 1,82 3,64 5,46 7,28 9,18 11,08 12,98 14,88 16,76 22,46 24,36 24,36 44,88 5,46 7,28 9,18 11,08 12,98 14,88 16,76 18,66 2,98 14,88 16,76 18,66 20,56 22,46 	D (m) 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	Ap (m2) 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 0,7854 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976 1,130976	ф 33,6 33,6 33,9 33,9 33,9 33,9 33,9 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 36,3 33,6 3,	L/D 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 L/D 0,8 1,7 2,5 3,3 4,2 5,0 5,8 6,7 7,5 8,3 9,2 10,0	Nq 32 33 34 34 35 36 38 40 40 40 41 42 43 43 44 31 32 33 33 34 44 35 36 36 37 39 40 40 41	Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 1,00 10,00 11,00 12,00 13,00 Prof (m) 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 1,000	Qp (Ton) 45,7 94,3 145,8 194,4 252,3 313,3 387,4 467,5 526,5 600,9 678,2 758,5 841,8 0 Qp (Ton) 63,8 131,7 203,8 131,7 203,8 279,9 353,0 438,6 528,5 622,7 353,0 438,6

Vesic (1977)

D=0.60mts

Estrato	Prof (m)	ɣ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	σο	Es (Ton/m2)	μ	Δ	lr	Irr	Nσ	Prof (m)	Qp (Ton)
Granular Granular	1	1,82	1,82	0,6	0,282744	33,6	1,1485515	9 1900	0,229	0,0005187	639,25145	480,0700003	152	1,00	49,4
Granular	3	1,82	5,46	0,6	0,282744	33,6	3,4456547	5 1900	0,229	0,0015561	213,08383	160,0233334	86	3,00	83,8
Granular	4	1,82	7,28	0,6	0,282744	33,6	4,5942063	5 1900	0,229	0,0020748	159,8128725	120,0175001	79	4,00	102,6
Granular	5	1,90	9,18	0,6	0,282744	33,9	5,7665999	3 2800	0,2335	0,00254745	183,9903098	125,2737412	83	5,00	135,3
Granular	7	1,50	11,08	0,6	0,282744	33,9	8,1536456	5 2800	0,2335	0,00360195	132,4350245	88,59884011	70	7,00	149,0
Granular	8	1,90	14,88	0,6	0,282744	33,9	9,3471685	2 2800	0,2335	0,0041292	113,5101508	77,28581617	67	8,00	177,1
Granular	9	1,88	16,76	0,6	0,282744	36,3	10,145239	4 2900	0,2695	0,0036453	92,77400489	69,32802417	83	9,00	238,1
Granular Granular	10	1,90	18,66	0,6	0,282744	36,3	11,295356	1 2900 7 2900	0,2695	0,00405855	83,3275628	62,2689006 56 51447885	80 67	10,00	255,5
Granular	12	1,90	22,46	0,6	0,282744	36,3	13,595589	3 2900	0,2695	0,00488505	69,22939991	51,73364582	65	12,00	249,9
Granular	13	1,90	24,36	0,6	0,282744	36,3	14,74570	5 2900	0,2695	0,0052983	63,82973407	47,69859134	62	13,00	258,5
D=0.80mts															
Estrato	Prof (m)	γ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	σο	Es (Ton/m2)	μ	Δ	Ir	Irr	Nσ	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	0,8	0,502656	33,6	1,1485515	9 1900	0,229	0,0005187	639,25149	480,0700003	152	1,00	87,8
Granular	2	1,82	3,64	0,8	0,502656	33,6	2,2971031	7 1900	0,229	0,0010374	319,625745	240,0350002	111	2,00	128,2
Granular	4	1,82	7,28	0,8	0,502656	33,6	4,5942063	5 1900	0,229	0,0020748	159,8128725	120,0175001	79	4,00	143,0
Granular	5	i 1,90	9,18	0,8	0,502656	33,9	5,7665999	3 2800	0,2335	0,00254745	183,9903098	125,2737412	83	5,00	240,6
Granular	6	i 1,90	11,08	0,8	0,502656	33,9	6,960122	3 2800	0,2335	0,0030747	152,4396249	103,791782	76	6,00	265,9
Granular Granular	8	1,90	12,98	0,8	0,502656	33,9	9,3471685	2 2800	0,2335	0,00360195	130,1256582	77,28581617	67	7,00	314.8
Granular	9	1,88	16,76	0,8	0,502656	36,3	10,145239	4 2900	0,2695	0,0036453	92,77400489	69,32802417	83	9,00	423,3
Granular	10	1,90	18,66	0,8	0,502656	36,3	11,295356	1 2900	0,2695	0,00405855	83,3275628	62,2689006	80	10,00	454,2
Granular	11	1,90	20,56	0,8	0,502656	36,3	12,445472	7 2900	0,2695	0,0044718	75,62705846	56,51447885	67	11,00	419,1
Granular	12	1,90	22,40	0,8	0,502656	36,3	14,74570	5 2900	0,2033	0,0052983	63,82973407	47,69859134	62	12,00	4444,2
D - 1.0	Omts		· · · ·						· · · · ·				I		
D-1.0		v (Top/m3)	n' (Ton/m2)	D(m)	Ap (m2)	•		Es (Ton/m2)	1	^	le .	Irr	No	Prof (m)	On (Ton)
Granular	Ther (m)	1,82	1,82	1,0	0,7854	¥ 33,6	1,1485515	9 1900	0,229	0,0005187	639,25149	480,0700003	152	1,00	137,1
Granular		2 1,82	3,64	1,0	0,7854	33,6	2,2971031	7 1900	0,229	0,0010374	319,625745	240,0350002	111	2,00	200,3
Granular	3	3 1,82	5,46	1,0	0,7854	33,6	3,4456547	6 1900	0,229	0,0015561	213,08383	160,0233334	86	3,00	232,7
Granular		1,82	7,28	1,0	0,7854	33,0	4,5942063	3 2800	0,229	0,0020748	159,812872	120,0175001	/9	4,00	285,1
Granular		5 1,90	11,08	1,0	0,7854	33,9	6,960122	8 2800	0,2335	0,0030747	152,4396249	103,791782	76	6,00	415,5
Granular	;	7 1,90	12,98	1,0	0,7854	33,9	8,1536456	6 2800	0,2335	0,00360195	130,1256582	88,59884011	72	7,00	461,1
Granular	8	3 1,90	14,88	1,0	0,7854	33,9	9,3471685	2 2800	0,2335	0,0041292	113,5101508	60 22802417	67	8,00	491,9
Granular	10	1,80	18,66	1,0	0,7854	36,3	11,295356	1 2900	0,2095	0,0030435	83,3275628	62,2689006	80	10.00	709,7
Granular	1:	1,90	20,56	1,0	0,7854	36,3	12,445472	7 2900	0,2695	0,0044718	75,62705846	56,51447885	67	11,00	654,9
Granular	12	2 1,90	22,46	1,0	0,7854	36,3	13,595589	3 2900	0,2695	0,00488505	69,22939991	51,73364582	65	12,00	694,1
Granular		3 1,90	24,36	1,0	0,7854	36,3	14,74570	6 2900	0,2695	0,0052983	63,8297340	47,69859134	62	13,00	718,0
D=1.20	Omts														
Estrato	Prof (m)	γ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	σο	Es (Ton/m2)	μ	Δ	lr	Irr	Nσ	Prof (m)	Qp (Ton)
Granular Granular	1	1,82	1,82	1,2	1,130976	33,6	2 2971031	9 1900 7 1900	0,229	0,0005187	639,25149	480,0700003	152	1,00	288.4
Granular	3	1,82	5,46	1,2	1,130976	33,6	3,4456547	5 1900	0,229	0,0015561	213,08383	160,0233334	86	3,00	335,1
Granular	4	1,82	7,28	1,2	1,130976	33,6	4,5942063	5 1900	0,229	0,0020748	159,8128725	120,0175001	79	4,00	410,5
Granular	5	1,90	9,18	1,2	1,130976	33,9	5,7665999	3 2800	0,2335	0,00254745	183,9903098	125,2737412	83	5,00	541,3
Granular	7	1,50	12,98	1,2	1,130976	33.9	8.1536456	5 2800	0,2335	0.00360195	132,435024	88.59884011	70	7.00	664.0
Granular	8	1,90	14,88	1,2	1,130976	33,9	9,3471685	2 2800	0,2335	0,0041292	113,5101508	77,28581617	67	8,00	708,3
Granular	9	1,88	16,76	1,2	1,130976	36,3	10,145239	4 2900	0,2695	0,0036453	92,77400489	69,32802417	83	9,00	952,3
Granular	10	1,90	18,66	1,2	1,130976	36,3	11,295356	2900	0,2695	0,00405855	83,3275628	62,2689006	80	10,00	942.1
Granular	11	1,90	20,30	1,2	1,130976	36,3	13,595589	3 2900	0,2695	0,00488505	69,22939991	51,73364582	65	12,00	9999,5
Granular	13	1,90	24,36	1,2	1,130976	36,3	14,74570	5 2900	0,2695	0,0052983	63,82973407	47,69859134	62	13,00	1034,0
Jambu	(1976)	5)													
	(1) / C	<i>.</i>)													
D=0.00	omis														
Estrato	Pr	of (m)	γ (Ton/r	n3)q'(T	[on/m2]	D (m) 🛛	.p (m2)	φ	n	'	Nq	Prof (I	m) Q	p (Ton)
Granular	·	1	1	,82	1,82		0,6	0,282744	33,	,6	90	28		1,00	14,4
Granular		2	1	.82	3.64		0.6	0.282744	33	.6	90	28		2.00	28.8
Granular	.	2	1	92	5.46		0.6	0 292744	22	6	90	20		2 00	/2 2
Granula		3	1	.02	7,40		0,0	0.202744		6	00	20		4.00	40,2
Granular		4	1	,82	7,28		0,6	0,282744	33,	,6	90	28		4,00	57,6
Granular					the second se		06	0 282744	33	9	90	30		0.00	77.9
a 1	·	5	1	,90	9,18		0,0	0,202744		12				5,00	
Granular	· .	5	1	,90 ,90	9,18 11,08		0,6	0,282744	33,	,9	90	30		5,00 6,00	94,0
Granular Granular	·	5 6 7	1	,90 ,90 ,90	9,18 11,08 12.98		0,6	0,282744 0,282744 0,282744	33,	,9 ,9	90 90	30 30		5,00 6,00 7,00	94,0 110.1
Granular Granular Granular	·	5 6 7	1 1 1 1	,90 ,90 ,90	9,18 11,08 12,98 14.88		0,6	0,282744 0,282744 0,282744	33,	,9 ,9 ,9	90 90	30 30 30		5,00 6,00 7,00	94,0 110,1
Granular Granular Granular	·	5 6 7 8	1 1 1 1	,90 ,90 ,90 ,90	9,18 11,08 12,98 14,88		0,6 0,6 0,6 0,6	0,282744 0,282744 0,282744 0,282744	33, 33, 33, 33,	,9 ,9 ,9 ,9	90 90 90	30 30 30		5,00 6,00 7,00 8,00	94,0 110,1 126,2
Granular Granular Granular Granular		5 6 7 8 9	1 1 1 1 1	,90 ,90 ,90 ,90 ,88	9,18 11,08 12,98 14,88 16,76		0,6 0,6 0,6 0,6	0,282744 0,282744 0,282744 0,282744 0,282744	33, 33, 33, 33, 36,	,9 ,9 ,9 ,3	90 90 90 90	30 30 30 30 38	-	5,00 6,00 7,00 8,00 9,00	94,0 110,1 126,2 180,1
Granular Granular Granular Granular Granular		5 6 7 8 9 10	1 1 1 1 1 1	,90 ,90 ,90 ,90 ,88 ,90	9,18 11,08 12,98 14,88 16,76 18,66		0,6 0,6 0,6 0,6 0,6	0,282744 0,282744 0,282744 0,282744 0,282744 0,282744	33, 33, 33, 33, 36, 36,	,9 ,9 ,9 ,3 ,3	90 90 90 90 90 90	30 30 30 38 38 38	1	5,00 6,00 7,00 8,00 9,00 0,00	94,0 110,1 126,2 180,1 200,5
Granular Granular Granular Granular Granular Granular		5 6 7 8 9 10 11	1 1 1 1 1 1 1 1 1	,90 ,90 ,90 ,90 ,88 ,90 ,90	9,18 11,08 12,98 14,88 16,76 18,66 20,56		0,6 0,6 0,6 0,6 0,6 0,6	0,282744 0,282744 0,282744 0,282744 0,282744 0,282744	33, 33, 33, 33, 36, 36, 36, 36,	,9 ,9 ,9 ,3 ,3 ,3	90 90 90 90 90 90	30 30 30 38 38 38 38	10 11	5,00 6,00 7,00 8,00 9,00 0,00 1,00	94,0 110,1 126,2 180,1 200,5 220,9
Granular Granular Granular Granular Granular Granular Granular		5 6 7 8 9 10 11 12	1 1 1 1 1 1 1 1 1 1	,90 ,90 ,90 ,90 ,88 ,90 ,90 ,90	9,18 11,08 12,98 14,88 16,76 18,66 20,56 22,46		0,6 0,6 0,6 0,6 0,6 0,6 0,6	0,282744 0,282744 0,282744 0,282744 0,282744 0,282744 0,282744	33, 33, 33, 33, 36, 36, 36, 36, 36, 36,	,9 ,9 ,3 ,3 ,3 ,3 ,3	90 90 90 90 90 90 90	30 30 30 38 38 38 38 38 38	10 11 11	5,00 6,00 7,00 8,00 9,00 0,00 1,00 2,00	94,0 110,1 126,2 180,1 200,5 220,9 241,3

Granular D=0.80mts

Estrato	Prof (m)	γ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	n'	Nq	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	0,8	0,502656	33,6	105	28	1,00	25,6
Granular	2	1,82	3,64	0,8	0,502656	33,6	105	28	2,00	51,2
Granular	3	1,82	5,46	0,8	0,502656	33,6	105	28	3,00	76,8
Granular	4	1,82	7,28	0,8	0,502656	33,6	105	28	4,00	102,5
Granular	5	1,90	9,18	0,8	0,502656	33,9	105	30	5,00	138,4
Granular	6	1,90	11,08	0,8	0,502656	33,9	105	30	6,00	167,1
Granular	7	1,90	12,98	0,8	0,502656	33,9	105	30	7,00	195,7
Granular	8	1,90	14,88	0,8	0,502656	33,9	105	30	8,00	224,4
Granular	9	1,88	16,76	0,8	0,502656	36,3	105	38	9,00	320,1
Granular	10	1,90	18,66	0,8	0,502656	36,3	105	38	10,00	356,4
Granular	11	1,90	20,56	0,8	0,502656	36,3	105	38	11,00	392,7
Granular	12	1,90	22,46	0,8	0,502656	36,3	105	38	12,00	429,0
Granular	13	1,90	24,36	0,8	0,502656	36,3	105	38	13,00	465,3
D=1.00m	ts									
Estrato	Prof (m)	ɣ (Ton∕m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	n'	Nσ	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	1,0	0,7854	33,6	105	28	1,00	40,0
Granular	2	1,82	3,64	1,0	0,7854	33,6	105	28	2,00	80,0
Granular	3	1,82	5,46	1,0	0,7854	33,6	105	28	3,00	120,1
Granular	4	1,82	7,28	1,0	0,7854	33,6	105	28	4,00	160,1
Granular	5	1,90	9,18	1,0	0,7854	33,9	105	30	5,00	216,3
Granular	6	1,90	11,08	1,0	0,7854	33,9	105	30	6,00	261,1
Granular	7	1,90	12,98	1,0	0,7854	33,9	105	30	7,00	305,8
Granular	8	1,90	14,88	1,0	0,7854	33,9	105	30	8,00	350,6
Granular	9	1,88	16,76	1,0	0,7854	36,3	105	38	9,00	500,2
Granular	10	1,90	18,66	1,0	0,7854	36,3	105	38	10,00	556,9
Granular	11	1,90	20,56	1,0	0,7854	36,3	105	38	11,00	613,6
Granular	12	1,90	22,46	1,0	0,7854	36,3	105	38	12,00	670,3
Granular	13	1,90	24,36	1,0	0,7854	36,3	105	38	13,00	727,0
D=1.20m	ts									
Estrato	Prof (m)	γ (Ton/m3)	q' (Ton/m2)	D (m)	Ap (m2)	ф	n'	Nσ	Prof (m)	Qp (Ton)
Granular	1	1,82	1,82	1,2	1,130976	33,6	105	28	1,00	57,6
Granular	2	1,82	3,64	1,2	1,130976	33,6	105	28	2,00	115,3
Granular	3	1,82	5,46	1,2	1,130976	33,6	105	28	3,00	172,9
Granular	4	1,82	7,28	1,2	1,130976	33,6	105	28	4,00	230,5
Granular	5	1,90	9,18	1,2	1,130976	33,9	105	30	5,00	311,5
Granular	6	1,90	11,08	1,2	1,130976	33,9	105	30	6,00	375,9
Granular	7	1,90	12,98	1,2	1,130976	33,9	105	30	7,00	440,4
Granular	8	1,90	14,88	1,2	1,130976	33,9	105	30	8,00	504,9
Granular	9	1,88	16,76	1,2	1,130976	36,3	105	38	9,00	720,3
Granular	10	1,90	18,66	1,2	1,130976	36,3	105	38	10,00	802,0
Granular	11	1,90	20,56	1,2	1,130976	36,3	105	38	11,00	883,6
Granular	12	1,90	22,46	1,2	1,130976	36,3	105	38	12,00	965,3
Granular	13	1,90	24,36	1,2	1,130976	36,3	105	38	13,00	1046,9