ESTUDIO DE VULNERABILIDAD Y REHABILITACION ESTRUCTURAL PARA EL EDIFICIO DE SECUNDARIA Y ADMINISTRACION DEL COLEGIO FUNDACION UIS

CARLOS ANDRES DELGADO ROJAS ROBINSON MANTILLA GARCIA

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERIAS FISICOMECANICAS ESCUELA DE INGENIERIA CIVIL ESPECIALIZACION EN ESTRUCTURAS BUCARAMANGA 2012

ESTUDIO DE VULNERABILIDAD Y REHABILITACION ESTRUCTURAL PARA EL EDIFICIO DE SECUNDARIA Y ADMINISTRACION DEL COLEGIO FUNDACION UIS

CARLOS ANDRES DELGADO ROJAS ROBINSON MANTILLA GARCIA

Trabajo de grado para optar al titulo de Especialista en Estructuras

DIRECTOR RICARDO CRUZ HERNANDEZ Ingeniero Civil, Ph.D en Estructuras

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERIAS FISICOMECANICAS ESCUELA DE INGENIERIA CIVIL ESPECIALIZACION EN ESTRUCTURAS BUCARAMANGA 2012

TABLA DE CONTENIDO

	Pág.
INTRODUCCION	23
OBJETIVOS	25
1. MARCO TEORICO	26
1.1 COMPORTAMIENTO DE LAS ESTRUCTURAS ANTE SISMOS	26
1.1.1 Consideraciones generales de los efectos sísmicos en las estructuras	26
1.2 VULNERABILIDAD SISMICA DE EDIFICACIONES	27
1.2.1 Definición	27
1.2.2 Componentes de la Vulnerabilidad Sísmica	27
1.3 METODOLOGIAS PARA EVALUAR LA VULNERABILIDAD SISMICA DE	
EIFICACIONES	29
1.3.1 Métodos Subjetivos	30
1.3.1.1 Métodos con base en códigos	30
1.3.1.2 Método NSR-10	31
1.3.2 Métodos Analíticos	33
1.3.2.1 Método Análisis Estático no Lineal.	34
1.4 DESEMPEÑO SÍSMICO DE EDIFICACIONES	40
1.4.1 Nivel de Desempeño	40
1.4.1.1 Propuesta ATC-40.	40
1.4.1.2 Propuesta VISION 2000.	41
1.4.2 Niveles de Amenaza Sísmica	42
1.4.2.1 Propuesta del ATC-40.	42
1.4.2.2 Propuesta VISION 2000.	42
1.4.3 Desempeño esperado de la edificación	42
1.4.3.1 Propuesta ATC-40.	42

1.4.3.2 Propuesta VISION 2000.	43
1.5 DEFINICION DE LOS PUNTOS DE PLASTIFICACION	43
1.6 REFORZAMIENTO O REHABILITACIÓN ESTRUCTURAL.	45
2. METODOLOGIA	48
2.1 METODOLOGÍA PARA LA EVALUACIÓN DE VULNERABILIDAD	48
2.2 METODOLOGÍA PARA EL REFORZAMIENTO	49
3. RESULTADOS	52
3.1 EVALUACION DE LA INTERVENCION EDIFICIO SECUNDARIA	
ADMINISTRACIÓN	52
3.1.1 etapa 1	52
3.1.1.1 Tipo de intervención de la estructura.	52
3.1.2 Etapa 2	52
3.1.2.1 Recopilación y análisis de la información existente.	52
3.1.2.2 Evaluación cualitativa del estudio de suelos.	53
3.1.2.3 Revisión de planos existentes.	55
3.1.3 Etapa 3	56
3.1.3.1 Estado del sistema estructural.	56
3.1.3.2 Estado de la estructura.	57
3.1.4 Etapa 4	60
3.1.4.1 Cálculo de las solicitaciones cargas.	60
3.1.5 Etapa 5	67
3.1.5.1 Análisis elástico de la estructura.	67
3.1.5.2 Procedimiento análisis elástico de la estructura	68
3.1.5.3 Modos de Vibración.	72
3.1.6 Etapa 6	73
3.1.6.1 Cálculo de la resistencia existente cada uno de los elementos.	73
3.1.7 Etapa 7	83
3.1.7.1 Calculo de la resistencia efectiva de los elementos.	83

3.1.8 Etapa 8	83
3.1.8.1 Calculo de los Índices de Sobreesfuerzo.	83
3.1.8.2 Verificación de los Nudos.	92
3.1.8.3 Revisión de la Adherencia y Anclaje.	93
3.1.8.4 Solicitaciones y Chequeo de la Cimentación.	93
3.1.8.5 Índices de Sobreesfuerzo de la Estructura	98
3.1.8.6 Vulnerabilidad por Resistencia.	99
3.1.9 Etapa 9.	99
3.1.9.1 Determinación de la Deriva máxima de cada piso.	99
3.1.10 Etapa 10	101
3.1.10.1 Cálculo del Índice de Flexibilidad	101
3.1.10.2 Índice de Flexibilidad del de la Estructura.	102
3.1.10.3 Vulnerabilidad por flexibilidad.	102
3.2 ANALISIS ESTATICO NO LINEAL "PUSHOVER"	103
3.2.1 Definición del Modelo para el Análisis "Pushover".	103
3.2.2 Definición de los Puntos de Plastificación	103
3.2.2.1 Definición de Vigas.	103
3.2.2.2 Definición de Columnas.	104
3.2.3 Definición de las Representaciones de Cargas.	106
3.2.4 Resultados del Análisis "Pushover"	108
3.2.4.1 Análisis Pushover Dirección X.	109
3.2.4.2 Clasificación de la Respuesta Sísmica "Pushover X".	115
3.2.4.3 Análisis Pushover Dirección Y.	118
3.2.4.4 Clasificación de la Respuesta Sísmica "Pushover Y".	124
3.3 REFORZAMIENTO ESTRUCTURAL	127
3.3.1 Modelamiento de la Estructura Reforzada	129
3.3.2 Calculo de la Deriva Máxima con reforzamiento	133
3.3.3 Índices de Flexibilidad Estructura Reforzada	134
3.3.4 Diseño de los Elementos de Acero (Diagonales Metálicas)	136

3.3.4.1 Diseño de Diagonales Pórtico eje 1 (S1-S2) Pisos 1, 2, 3, 4 Bloque	
Secundaria (Dirección X).	136
3.3.4.2 Diseño de Diagonales Pórtico eje 7 (A4-A5) Pisos 1, 2, 3 Bloque	
Administración (Dirección X).	150
3.3.4.3 Diseño de Diagonales Pórtico eje S3 (1'-55) Pisos 1, 2, 3, 4 Bloque	
Secundaria (Dirección Y).	151
3.3.4.4 Diseño de Diagonales Pórtico eje A5 (6-7) Pisos 1, 2, 3 Bloque	
Administración (Dirección Y).	152
3.3.5 Diseño de Soldadura de Filete Requerida para Conectar las Diagonales	
(Tubo Redondo) a la Cartela.	155
3.3.6 Reforzamiento de Vigas de Entrepiso con FRP	158
3.3.6.1 Reforzamiento de Viga V1-1 (S1-S2).	163
3.3.6.2 Índices de Sobreesfuerzo por flexión en Vigas de Entrepiso con	
Reforzamiento	168
3.3.7 Reforzamiento de Columnas	169
Figura 68. Esquema de refuerzo con encamisado de concreto reforzado y	
armadura anclada en la Losa (Dante, 2007)	170
3.3.7.1 Calculo del Refuerzo (o Encamisado) como Sección Compuesta.	171
3.3.7.2 Calculo de la Resistencia a Compresión de Diseño de la Sección	
Compuesta (Columna 1-S1)	172
3.3.7.3 Calculo del Diagrama de Interacción y Carga Axial Nominal, Momento	
nominal para las Condiciones Balanceadas de las Columnas Reforzadas.	173
3.3.7.4 Calculo Refuerzo Transversal para las Columnas Encamisadas.	205
3.3.8 Análisis estático no lineal "Pushover" con reforzamiento	214
3.3.8.1 Resultados del Análisis "Pushover"	214
4. CONCLUSIONES	230

5. RECOMENDACIONES	232
	202

ANEXOS

235

233

LISTA DE FIGURAS

	Pág.
Figura 1. Métodos para la evaluar la vulnerabilidad sísmica (Bustamante et. al,	
2007)	30
Figura 2. Transformación de la curva de capacidad a un espectro de capacidad	d.
(ATC-40, 1996)	37
Figura 3. Diagrama Momento-Curvatura y criterios de aceptación. (FEMA 356,	
2000)	44
Figura 4.Orden para la realización del Estudio de Vulnerabilidad CFUIS.	49
Figura 5. Orden para la realización del Reforzamiento Estructural CFUIS	51
Figura 6.Resultados Resumen estudio de Suelos	54
Figura 7. Vista general de la edificación.	57
Figura 8. Detalle nudos Columna-Viga	58
Figura 9. Viga descolgada entrepiso 2 - administración.	59
Figura 10. Espectro Elástico de Aceleración de Diseño	61
Figura 11. Evaluación de cargas de entrepiso	62
Figura 12. Evaluación de cargas Cubierta Secundaria	63
Figura 13. Evaluación de cargas Cubierta Administración	63
Figura 14. Evaluación de cargas Tanque Elevado.	64
Figura 15. Evaluación de cargas Escaleras Tipo 1 Administración Secundaria	65
Figura 16. Evaluación de cargas Escaleras Tipo 2 Administración Secundaria	66
Figura 17. Cargas Vivas Uniformemente Distribuidas.	67
Figura 18. Modelo 3D Edificio Administración – secundaria.	68
Figura 19. Índice de Sobreesfuerzo por flexión en vigas de entrepiso	84
Figura 20. Índice de Sobreesfuerzo por corte en vigas entrepiso	85
Figura 21. Tabla Índices por Flexo-compresión	88
Figura 22. Índice de Sobreesfuerzo por flexo-Compresión en Columnas	89

Figura 23. Índice de relación M _{col} /M _{vig} Sentido X	90
Figura 24. Índice de relación M _{col} /M _{vig} Sentido Y	90
Figura 25. Índice por Cortante Sentido X	91
Figura 26. Índice por Cortante Sentido Y	92
Figura 27. Índice Verificación de Nudos	93
Figura 28. Planta de Cimentación.	94
Figura 29. Zapata 4-S2	95
Figura 30. Índice por Flexibilidad	102
Figura 31. Momento Vs Curvatura Viga V1-1 (S1-S2) (60X40).	104
Figura 32. Diagrama de Iteración Columna 1-S1 Piso 1 Bloque Secundaria	
(30x60).	105
Figura 33. Momento Vs Curvatura Columna 1-S1 Piso 1 Bloque Secundaria	
(30x60).	106
Figura 34. Definición de Estado de Cargas Gravitacionales	107
Figura 35. Construcción Espectro Elástico 5% amortiguamiento	
(ATC-40, 1996).	109
Figura 36. Definición de los parámetros del estado de carga lateral Pushover	
Х.	110
Figura 37. Definición del punto de control nivel cubierta Pushover X.	110
Figura 38. Curva de Capacidad Pushover X	113
Figura 39. Inicio de Plastificación Paso 10	114
Figura 40. Evolución de Plantificación Paso 70	115
Figura 41. Espectro de Capacidad Vs Demanda en X.	116
Figura 42. Definición de los parámetros del estado de carga lateral Pushover	
Υ.	118
Figura 43. Definición del punto de control nivel cubierta Pushover Y	119
Figura 44. Curva de Capacidad Pushover Y	122
Figura 45. Inicio de Plastificación Paso 20	123
Figura 46. Evolución de Plantificación 81	124
Figura 47. Espectro de Capacidad Vs Demanda en Y.	125

Figura 48. Estructura Reforzada Vista 1	127
Figura 49. Estructura Reforzada Vista 2	128
Figura 50. Modo de Vibración 1 con Reforzamiento	130
Figura 51. Modo de Vibración 2 con Reforzamiento T=0.42 s	131
Figura 52. Modo de Vibración 3 con Reforzamiento T=0.39 s	132
Figura 53. Índices por Flexibilidad	135
Figura 54. Pórtico Eje 1 (S1-S2) Bloque Secundaria	137
Figura 55. Pórtico Eje 7 (A4-A5) Bloque Administración	150
Figura 56. Pórtico Eje S3 (1'-5) Bloque Secundaria	151
Figura 57. Pórtico Eje A5 (6-7) Bloque Administración	152
Figura 58. Detalle de unión entre los elementos de la estructura existente y los	5
elementos de refuerzo.	153
Figura 59. Planta Ubicación Columnas Reforzadas y Pórticos con Diagonales	154
Figura 60. Detalle de unión riostra con marco metálico	155
Figura 61. Calculo de Soldadura de Filete para Conectar Tubo a Cartela	156
Figura 62. Diseño Resistencia al Desgarramiento	157
Figura 63. Localización Vigas Reforzadas FRP Planta Segundo Piso	
Secundaria	159
Figura 64. Localización Vigas Reforzadas FRP Planta Tercer Piso Sec. Segun	do
Piso Admón.	160
Figura 65. Localización Vigas Reforzadas FRP Planta Cuarto Piso Sec. Terce	r
Piso Admón.	161
Figura 66. Detalle vigas Reforzadas FRP	162
Figura 67. Índice de Sobreesfuerzo por flexión en vigas de entrepiso	
Reforzamiento	169
Figura 68. Esquema de refuerzo con encamisado de concreto reforzado y	
armadura anclada en la Losa (Dante, 2007)	170
Figura 69. Diagrama de Interacción P Vs Mx Columna C-T1	176
Figura 70. Diagrama de Interacción P Vs My Columna C-T1	177
Figura 71. Diagrama de Interacción P Vs Mx Columna C-T2	178

Figura 72. Diagrama de Interacción P Vs My Columna C-T2	179
Figura 73. Diagrama de Interacción P Vs Mx Columna C-T3	180
Figura 74. Diagrama de Interacción P Vs My Columna C-T3	181
Figura 75. Diagrama de Interacción P Vs Mx Columna C-T4	182
Figura 76. Diagrama de Interacción P Vs My Columna C-T4	183
Figura 77. Diagrama de Interacción P Vs Mx Columna C-T5	184
Figura 78. Diagrama de Interacción P Vs My Columna C-T5	185
Figura 79. Diagrama de Interacción P Vs Mx Columna C-T6	186
Figura 80. Diagrama de Interacción P Vs My Columna C-T6	187
Figura 81. Diagrama de Interacción P Vs Mx Columna C-T7	188
Figura 82. Diagrama de Interacción P Vs My Columna C-T7	189
Figura 83. Diagrama de Interacción P Vs Mx Columna C-T8	190
Figura 84. Diagrama de Interacción P Vs My Columna C-T8	191
Figura 85. Diagrama de Interacción P Vs Mx Columna C-T9	192
Figura 86. Diagrama de Interacción P Vs My Columna C-T9	193
Figura 87. Diagrama de Interacción P Vs Mx Columna C-T10	194
Figura 88. Diagrama de Interacción P Vs Mx Columna C-T10	195
Figura 89. Diagrama de Interacción P Vs Mx Columna C-T11	196
Figura 90. Diagrama de Interacción P Vs My Columna C-T11	197
Figura 91. Diagrama de Interacción P Vs Mx Columna C-T12	198
Figura 92. Diagrama de Interacción P Vs My Columna C-T12	199
Figura 93. Diagrama de Interacción P Vs Mx Columna C-T13	200
Figura 94. Diagrama de Interacción P Vs My Columna C-T13	201
Figura 95. Detalles Columnas Reforzadas CT-1, CT-2, CT-3, CT-4.	202
Figura 96. Detalles Columnas Reforzadas CT-5, CT-6, CT-7, CT-8.	203
Figura 97. Detalles Columnas Reforzadas CT-9, CT-10, CT-11, CT-12, CT-13.	204
Figura 98. Detalles Refuerzo Transversal Columnas Tipo Reforzadas	213
Figura 99. Índice de Sobreesfuerzo por flexo-Compresión en Columnas	
Reforzamiento	214
Figura 100. Curva de Capacidad Pushover X Reforzamiento	218

Figura 101. Inicio de Plastificación Paso 28 Reforzamiento	219
Figura 102. Inicio de Plastificación Paso 93 Reforzamiento	219
Figura 103. Espectro de Capacidad Vs Demanda en X. Reforzamiento	220
Figura 104. Definición de parámetros para ATC-40.	221
Figura 105. Curva de Capacidad Pushover Y Reforzamiento	226
Figura 106. Inicio de Plastificación Paso 48 Reforzamiento	227
Figura 107. Inicio de Plastificación Paso 98 Reforzamiento	227
Figura 108. Espectro de Capacidad Vs Demanda en Y. Reforzamiento	228

LISTA DE TABLAS

	Pág.
Tabla 1. Combinación de Niveles de Comportamiento Estructural y no	
Estructural para formar Niveles de Desempeño de la Edificación (ATC-1996)	41
Tabla 2. Estados de daño y niveles de desempeño (SEAOC, 1995)	41
Tabla 3. Niveles de Amenaza Sísmica (ATC-40, 1996)	42
Tabla 4. Niveles de Amenaza Sísmica VISION 2000 (SEAOC, 1995)	42
Tabla 5. Objetivo de Desempeño Básico de Seguridad (ATC-40, 1996)	43
Tabla 6. Objetivo de Desempeño Básico de Seguridad (SEAOC, 1995)	43
Tabla 7. Lista de los planos suministrados físicamente	53
Tabla 8. Densidad de los materiales	62
Tabla 9. Lista de secciones tipos	69
Tabla 10. Propiedades del concreto	70
Tabla 11. Propiedades del Acero de refuerzo	70
Tabla 12. Calculo de la corrección del cortante basal Dinámico	72
Tabla 13. Porcentajes de participación de masa	72
Tabla 14. Calculo de la Deriva Sentido X	100
Tabla 15. Calculo de la Deriva Sentido Y	100
Tabla 16. Calculo de los Índices de Flexibilidad	101
Tabla 17. Datos Curva de capacidad Pushover X	111
Tabla 18. Resultado para el Nivel de Amenaza Sísmica.	116
Tabla 19. Datos Curva de capacidad Pushover Y	120
Tabla 20. Resultado para el Nivel de Amenaza Sísmica.	125
Tabla 21. Periodo y participación de Masa para cada modo con Reforzamiente	o 133
Tabla 22. Calculo de la Deriva Sentido X Reforzamiento	134
Tabla 23. Calculo de la Deriva Sentido Y Reforzamiento	134
Tabla 24. Índices de Flexibilidad - Reforzamiento	135

Tabla 25. Reforzamiento de Vigas de Entrepiso con (FRP)	158
Tabla 26. Columnas Reforzadas Concreto de Diseño Sec. Compuesta	172
Tabla 27. Columnas Reforzadas Resultados Condiciones Balaceadas	174
Tabla 28. Datos Curva de capacidad Pushover X Reforzamiento	215
Tabla 29. Resultado para el Nivel de Amenaza Sísmica reforzamiento.	221
Tabla 30. Datos Curva de capacidad Pushover Y Reforzamiento	223
Tabla 31. Resultado para el Nivel de Amenaza Sísmica reforzamiento.	228

LISTA DE ANEXOS (Ver CD Adjunto)

Pág.

ANEXO A. CALCULO DE IRREGULARIDAD EN PLANTA Y ALTURA ANEXO B. CALCULO DE LA MASA ROTACIONALES, TRANSLACIONALES Y CENTRO DE MASA ANEXO C. CALCULO DEL METODO DE FUERZA HORIZANTAL EQUIVALENTE ANEXO D. CALCULO MOMENTO RESISTENTE Y CORTANTE **RESISTENTE EN VIGAS DE ENTREPISO** ANEXO E. CALCULO DE LOS MOMENTOS Y CARGA AXIAL EN CONDICIONES BALANCEADAS PARA COLUMNAS ANEXO F. CORTANTE RESISTENTE EN COLUNMAS ANEXO G. SOLICITACIONES E INDICIONES POR FLEXION EN VIGAS DE **ENTREPISO** ANEXO H. SOLICITACIONES E INDICES POR CORTE EN VIGAS DE **ENTREPISO** ANEXO I. SOLICITACIONES E INDICES FLEXOCOMPRESION EN COLUMNAS ANEXO J. SOLICITACIONES E INDICIES POR CORTANTE EN COLIMNAS ANEXO K. RESUMEN INDICES POR FLEXOCOMPRESION EN COLUMNAS ANEXO L. REVISION DE LA REGIDES RELATIVA A FLEXION DE LAS COLUMNAS RESPECTO A LA DE LAS VIGAS QUE LLEGAN AL NUDO ANEXO M. RESUMEN DEL INDICE DE RELACION $McMd \ge 1.20$ ANEXO N. RESUMEN DE LOS INDICES POR CORTANTE EN COLUMNA ANEXO O. MEMORIA DE CALCULO DE LA VERIFICACION DE DISEÑO **DE NUDOS**

ANEXO P. RESUMEN INDICES VERIFICACION DE NUDOS

ANEXO Q. REVISION DE ADEHERENCIA Y ANCLAJE ANEXO R. SOLICITACIONES Y CHEQUEOS DE LA CIMENTACION ANEXO S. MEMORIAS Y CALCULO DISEÑO DE DIAGONALES METALICAS ANEXO T. SOLICITACIONES E INDICES POR FLEXION EN VIGAS DE ENTREPISO CON REFORZAMIENTO ANEXO U. RESUMEN INDICES POR FLEXOCOMPRESION EN COLUMNAS POR REFORZAMIENTO ANEXO V. SOLCITACIONES E INDICES FLEXOCOMPRESION EN COLUMNAS

RESUMEN

TITULO: ESTUDIO DE VULNERABILIDAD Y REHABILITACION ESTRUCTURAL PARA EL EDIFICIO DE SECUNDARIA Y ADMINISTRACION DEL COLEGIO FUNDACION UIS

AUTORES: CARLOS ANDRES DELGADO ROJAS ROBINSON MANTILLA GARCIA

PALABRAS CLAVES: Índices de Sobreesfuerzo y Flexibilidad, Pushover, Curva de Capacidad, Desempeño Sísmico.

DESCRIPCION: El reglamento de Diseño y Construcción Sismo Resistente en nuestro país ha evolucionado debido al avance en el conocimiento del comportamiento de las estructuras ante cargas sísmicas, entrando en vigencia la NSR-10; debido a la puesta en marcha de este reglamento se exige la realización del estudio de vulnerabilidad y rehabilitación de las edificaciones de los Grupos Uso III y IV estructuras consideradas como indispensables. Teniendo en cuenta lo anterior se realizó el estudio de Vulnerabilidad Sísmica y Rehabilitación Estructural al Edificio de Secundaria y Administración del Colegio Fundación UIS. Para ello se utilizó el método para evaluar la capacidad establecido por la norma NSR-10 capitulo A-10 determinando los índices de sobresfuerzo de cada elemento estructural y el índice de flexibilidad, con lo cual se determina la Vulnerabilidad por Resistencia y por Flexibilidad; parámetros que nos indican el nivel de daño de los elementos estructurales ante las nuevas solicitaciones de cargas. Alternativamente y como complemento del estudio se realizó un Análisis Estático No Lineal "Pushover" siguiendo los parámetros del ATC-40 y el Fema 356, utilizado conjuntamente con la demanda sísmica establecida por la Norma NSR-10, con el fin de obtener y evaluar el nivel de daño de cada elemento estructural expresado en la deformación de las rotulas; con el punto de comportamiento obtenido de la intersección de las curvas de capacidad y espectro de demanda y los límites para cada nivel de daño, podemos determinar el nivel de desempeño de la estructura siguiendo los niveles establecidos por el comité VISION 2000 (SEAOC, 1995).

Trabajo de Grado

^{**} Facultad de Ingeniería Físico - Mecánicas, Escuela de Ingeniería Civil, Especialización en Estructuras, Director: Ph. D CRUZ HERNANDEZ, Ricardo

SUMMARY

TITLE: STUDY OF VULNERABILITY AND STRUCTURAL REHABILITATION FOR THE SECONDARY BUILDING OF AND ADMINISTRATION OF THE SCHOOL FOUNDATION UIS¹.

AUTHORS: CARLOS DELGADO ANDRES ROJAS MANTILLA ROBINSON GARCIA

KEYWORDS: Overexertion and Flexibility Indices, Pushover, capacity curve, Seismic Performance.

DESCRIPTION: The regulation of Earthquake Resistant Design and Construction in our country has evolved due to advances in understanding the behavior of structures under seismic loads, entering into force the NSR-10, due to the implementation of this regulation is required realization of the vulnerability assessment and rehabilitation of buildings of Use Groups III and IV structures considered as indispensable. Given the above study was conducted and Rehabilitation Structural Seismic Vulnerability to Building and Managing High School College Foundation UIS. We used the method for evaluating the capacity required by the standard NSR-10 chapter A-10 by determining the rates of about sfuerzo of each structural element and the flexibility index, thereby determining the vulnerability for resistance and flexibility; parameters that indicate the level of damage of structural elements to the new demands of loads. Alternatively and in addition to the study, a nonlinear static analysis "Pushover" following the parameters of ATC-40 and FEMA 356, used in conjunction with the seismic demand established by the standard NSR-10, in order to obtain and evaluate the damage level of each structural element expressed in the deformation of the ball joints, with the point of behavior obtained from the intersection of the curves of capacity and demand spectrum and limits for each level of damage, we can determine the level of performance structure following the standards set by the committee Vision 2000 (SEAOC, 1995).

Work of Grade

^{**} Faculty of engineering physical - mechanical, school of Civil Engineering, Specialization in structures Director: Ph. CRUZ HERNANDEZ, Ricardo

INTRODUCCION

Los movimientos sísmicos son considerados como una de las fuerzas naturales más devastadoras, llegando a destruir hasta las estructuras consideradas por el ser humano más seguras y trayendo como consecuencia la pérdida de innumerables vidas a través de nuestra historia.

El territorio Colombiano es reconocido como una zona de alta actividad sísmica debido a la interacción de las placas tectónicas de Nazca, Caribe y la de cocos; por lo tanto es un deber diseñar y construir edificaciones Sismo-Resistentes que cumplan con los códigos, normas y leyes vigentes para cumplir este requisito. Sin embargo debido a la lentitud en las que, lastimosamente en nuestro país, dichas normas se actualizan y entran en vigencia, pasan varios años en las que se construyen gran cantidad de edificaciones las cuales, ante la entrada en vigencia de una nueva norma, pueden encontrarse desactualizadas.

Es por esto que ante la puesta en marcha del Reglamento Colombiano de Construcción Sismo resistente NSR-10, es necesario evaluar la vulnerabilidad sísmica de las estructuras construidas con anterioridad en especial las estructuras que son consideradas por normas como esenciales; entre estas tenemos las escuelas, colegios, universidades y otros centros de enseñanza los cuales se consideran importantes por el papel que pueden jugar en caso de un evento sísmico ya que pueden ser utilizadas como alojamiento para los damnificados del terremoto. Sin embargo también se consideran estructuras expuestas a un nivel importante de riesgo debido a las características de las cuales alcanzan altas densidades de ocupación por largos periodos de tiempo; entre sus ocupantes básicamente se destacan los estudiantes (generalmente niños y jóvenes), profesores, personal administrativo y otros empleados. Con el fin de garantizar

23

que sean sitios seguros para quienes los habitan se ha llegado el caso proponer soluciones de rehabilitación para sean capaces de resistir temblores pequeños sin daño, temblores moderados sin daño estructural, pero con algún daño en elementos no estructurales, y temblores fuertes sin colapso.

Este trabajo contiene cuatro capítulos, en el primer capítulo contiene un marco teórico con los conceptos de vulnerabilidad sísmica de edificaciones, análisis Pushover y reforzamiento de estructuras; un segundo capítulo presenta la metodología para la evaluación de vulnerabilidad y reforzamiento; un tercer capítulo que contiene los resultados del estudio de vulnerabilidad (índices de reforzamiento y Análisis Pushover) y reforzamiento de la estructura; un cuarto capítulo con las conclusiones; un quinto y último capítulo con las recomendaciones.

OBJETIVOS

OBJETIVO GENERAL

Evaluar la vulnerabilidad sísmica de una estructura tipo pórtico en concreto reforzado, de grupo de uso III, ubicada en el municipio de Floridablanca; y diseñar una solución de rehabilitación para actualizar la estructura según el Reglamento Colombiano de Construcción Sismo Resistente NSR - 10.

OBJETIVOS ESPECÍFICOS

- Determinar los índices de sobreesfuerzo individual de los elementos de la estructura y el índice de sobreesfuerzo general de la edificación con el fin de evaluar su vulnerabilidad por resistencia.
- Obtener el índice de flexibilidad general de la edificación con el fin de evaluar su vulnerabilidad por rigidez.
- Realizar un Análisis Estático No Lineal (Pushover) con el fin de determinar el estado actual.
- Plantear una solución de rehabilitación estructural y chequear su adecuado comportamiento mediante un análisis estático no lineal (Pushover).

1. MARCO TEORICO

1.1 COMPORTAMIENTO DE LAS ESTRUCTURAS ANTE SISMOS

1.1.1 Consideraciones generales de los efectos sísmicos en las estructuras

Las estructuras según su uso, tipo de materiales en que se encuentren construidas (concreto, acero, compuestas), sistemas estructurales (Pórticos resistentes a momentos, Muros, Duales) y forma de distribución tanto en planta como en altura; ante la acción de cargas tanto gravitacionales (cargas permanentes, sobre impuestas) como dinámicas (Sismo, viento), presentan variables para el control de la respuesta estructural tales como:

- Fuerzas de Inercia
- Periodo y Resonancia
- Amortiguamiento
- Ductilidad
- Rigidez y Resistencia

Las fuerzas de inercia que se generan sobre la estructura son en función de la masa, rigidez y amortiguamiento; pero conocer el punto de aplicación de la fuerza es primordial. Para cuantificar la amplificación de la fuerza se hace una simplificación de la distribución de las mismas, determinando la ubicación de las resultantes en cada piso a nivel de losa. Los puntos geométricos donde se aplicas estas fuerzas inerciales y que permiten ponderar la amplificación de las mismas son:

- Centro de masas
- Centro de Cortante
- Centro de Rigidez

Un ejemplo de la amplificación de las Fuerzas Inerciales es cuando se presenta un Momento Torsor originado por la situación dada al aplicar la fuerza cortante en el centro de cortante y el edificio moverse alrededor del centro de rigidez, lo que hace que la estructura además de sufrir movimientos traslacionales, gire alrededor del mencionado punto presentando movimientos rotacionales. La anterior condición no es ideal para los elementos verticales (columnas y muros de corte), por ser los elementos que mantienen unidos los distintos entrepisos y deben soportar entonces unas fuerzas muy grandes. Así mismo este momento torsor se puede descomponer en pares de fuerzas que se suman a las fuerzas de inercia, incrementándolas de esta manera.

1.2 VULNERABILIDAD SISMICA DE EDIFICACIONES

1.2.1 Definición

Según IMPRES la vulnerabilidad sísmica es un término relacionado con un edificio o estructura propensa o susceptible de sufrir daño o colapso debido a un terremoto potencial.

Se determina que un edificio es sísmicamente vulnerable si no cumple con los reglamentos vigentes para construcciones sismo resistentes y con los criterios actuales de ingeniería sismo resistente, o si un análisis determina que el sistema estructural no es apto para resistir las acciones sísmicas y es susceptible de sufrir daño severo o aún de colapsar debido a un evento destructivo.

1.2.2 Componentes de la Vulnerabilidad Sísmica

Una posible clasificación de la vulnerabilidad ha sido presentado por Bustamante et. al., la cual se resume a continuación:

Vulnerabilidad puede ser física o funcional:

Vulnerabilidad Física: Es el grado de susceptibilidad o predisposición de los elementos estructurales y no estructurales a sufrir daño o pérdida, puede ser de tipo estructural o no estructural:

O Vulnerabilidad Estructural: La Vulnerabilidad Estructural está asociada a la susceptibilidad de los elementos estructurales a sufrir daño debido a un sismo, lo que se ha llamado daño sísmico estructural. El mismo comprende el deterioro físico de aquellos elementos o componentes que forman parte integrante del sistema resistente o estructura de la edificación y es el que tradicionalmente ha merecido la atención prioritaria de los investigadores

Vulnerabilidad No Estructural: La vulnerabilidad no estructural está asociada a la susceptibilidad de los elementos no estructurales de sufrir daño debido a un sismo, lo que se ha llamado daño sísmico no estructural. El mismo comprende el deterioro físico de aquellos elementos o componentes que no forman parte integrante del sistema resistente o estructura de la edificación y que pueden clasificarse en componentes arquitectónicos (puertas, ventanas, parapetos, etc.) y componentes electromecánicos (ductos, canalizaciones, equipos, etc.) que cumplen funciones importantes dentro de las instalaciones. Los elementos no estructurales pueden llegar a convertirse en elementos potencialmente peligrosos cuando no se encuentran ligados o amarrados adecuadamente al resto dela edificación, introduciendo cambios en la estructuración yen los mecanismo de transmisión de las cargas, que pueden propiciar su falla.

Vulnerabilidad Funcional: La vulnerabilidad funcional se define como la susceptibilidad de la edificación para seguir prestando el servicio para el que fue construida. Este término se aplica a edificaciones como hospitales, clínicas y centros de salud que deben permanecer no solo en pie sino funcionando, ya que

28

aunque desarrollen un buen desempeño estructural, se puede presentar un colapso funcional, que puede ser más grave que una falla en los elementos de la propia estructura

1.3 METODOLOGIAS PARA EVALUAR LA VULNERABILIDAD SISMICA DE EIFICACIONES

La vulnerabilidad estructural se refiere a la susceptibilidad que la estructura presenta frente a posibles daños en los elementos que lo mantienen en pie ante un sismo de gran magnitud. Se incluyen dentro de estos elementos los cimientos, muros, vigas, columnas y losas. Existen varias metodologías y técnicas propuesto por diferentes autores para la evaluación de la vulnerabilidad sísmica para diferentes tipos de estructuras, que se resumen en la figura 1.

Figura 1. Métodos para la evaluar la vulnerabilidad sísmica (Bustamante et.

1.3.1 Métodos Subjetivos

1.3.1.1 Métodos con base en códigos. Estos métodos utilizan los mismos criterios para el diseño de edificaciones nuevas siguiendo los procedimientos recomendados por los códigos de construcción. Para la evaluación de una edificación existente; el procedimiento consiste en evaluar la estructura como si fuera nueva teniendo en cuenta las cargas con el uso dado de la edificación y las

cargas sísmicas esperadas para el sitio donde se encuentra ubicada, comparándolas con la capacidad existente en la estructura. Para ello se utilizan métodos simplificados, como el de la fuerza horizontal equivalente o el análisis modal con espectros de respuesta. Se define a continuación el método que se utiliza para la evaluación de la estructura.

1.3.1.2 Método NSR-10(*A/S*, 1998).Según Norma de Diseño y Construcción Sismo-Resistente Colombiana NSR – 10 (Ley 400 de 1997, Decreto 33 de 1998), establece en el *"Titulo A –requisitos generales de diseño y construcción sismo resistente"*, del Capítulo A.10, los criterios y procedimientos que se deben seguir para evaluar la vulnerabilidad sísmica y adicionar, modificar o remodelar el sistema estructural de edificaciones existentes diseñadas y construidas con anterioridad a la vigencia de la presente versión del Reglamento Colombiano de Construcciones Sismo Resistentes. Este procedimiento tiene como finalidad comprobar si el comportamiento estructural de la edificación en su estado actual, sometida a solicitaciones sísmicas, satisface los requerimientos mínimos establecidos en la norma.

En la aplicación del presente método deben seguirse las siguientes etapas:

Información Preliminar

Etapa 1 — Debe verificarse que la intervención esté cubierta por el alcance dado en A.10.1.3.

Etapa 2 — Debe recopilarse y estudiarse la información existente acerca del diseño geotécnico y estructural así como del proceso de construcción de la edificación original y sus posteriores modificaciones y deben hacerse exploraciones en la edificación, todo esto de acuerdo con A.10.2.

Etapa 3 — El estado del sistema estructural debe calificarse con respecto a: (a) la calidad del diseño de la estructura original y su sistema de cimentación y de la construcción de la misma y (b) el estado de mantenimiento y conservación. Esta calificación debe hacerse de acuerdo con los requisitos de A.10.2.

Evaluación de la Estructura Existente

Etapa 4 — Deben determinarse unas solicitaciones equivalentes de acuerdo con los requisitos de A.10.4.2.

Etapa 5 — Debe llevarse a cabo un análisis elástico de la estructura y de su sistema de cimentación para las solicitaciones equivalentes definidas en la Etapa 4.

Etapa 6 — La resistencia existente de la estructura debe determinarse utilizando los requisitos de A.10.4.3.3.

Etapa 7 — Se debe obtener una resistencia efectiva de la estructura, a partir de la resistencia existente, afectándola por dos coeficientes de reducción de resistencia obtenidos de los resultados de la calificación llevada a cabo en la Etapa 3.

Etapa 8 — Debe determinarse un índice de sobreesfuerzo como el máximo cociente obtenido para cualquier elemento o sección de éste, entre las fuerzas internas solicitadas obtenidas del análisis estructural realizado en la Etapa 5 para las solicitaciones equivalentes definidas en la Etapa 4 y la resistencia efectiva obtenida en la Etapa 7.

Etapa 9 — Utilizando los desplazamientos horizontales obtenidos en el análisis de la Etapa 5 deben obtenerse las derivas de la estructura.

Etapa 10 — Debe determinarse un índice de flexibilidad por efectos horizontales como el máximo cociente entre las derivas obtenidas en la Etapa 9 y las derivas permitidas por el Reglamento en el Capítulo A.6. Igualmente debe determinarse un índice de flexibilidad por efectos verticales como el máximo cociente entre las deflexiones verticales medidas en la edificación y las deflexiones permitidas por el presente Reglamento.

Intervención del Sistema Estructural

Etapa 11 — La intervención estructural debe definirse de acuerdo con el tipo de modificación establecida en A.10.6 dentro de una de tres categorías: (a) Ampliaciones adosadas, (b) Ampliaciones en altura y (c) Actualización al Reglamento.

Etapa 12 — El conjunto debe analizarse nuevamente incluyendo la intervención propuesta, la cual debe diseñarse para las fuerzas y esfuerzos obtenidos de este nuevo análisis. El diseño geotécnico y estructural y la construcción deben llevarse a cabo de acuerdo con los requisitos que para cada tipo de modificación establece el presente Capítulo.

Finalmente, la vulnerabilidad se define como los inversos de los índices de sobre esfuerzos y flexibilidad. Los resultados obtenidos se comparan con lo que la norma exige para una edificación nueva.

1.3.2 Métodos Analíticos

Los métodos analíticos se utilizan para profundizar en los resultados obtenidos en los métodos subjetivos, cuando estos últimos no entreguen resultados determinantes sobre la seguridad de la estructura. Para realizar un análisis de vulnerabilidad utilizando métodos a analíticos se debe contar con una información fundamental como: Propiedades de los materiales usados en la edificación, estudio y clasificación del suelo de fundación, planos tanto arquitectónicos y estructurales donde determinen características de la estructura como: área de la edificación, sistema estructural, secciones de los elementos (columnas, vigas, muros y estructura de cubierta) etc.

1.3.2.1 Método Análisis Estático no Lineal. Es un método donde se realiza un análisis más detallado en el cual se tiene en cuenta el comportamiento de la estructura en el rango no lineal con el fin de predecir la respuesta global de la estructura e identificar la evolución de la degradación hasta alcanzar los mecanismos de colapso. Para realizar el procedimiento anterior se debe tener en cuenta el tipo de materiales, secciones de los elementos, área de refuerzos; con el fin de determinar una curva de capacidad generalmente representada como el corte basal (Vo) obtenidos para varios incrementos del estado de carga lateral, respecto al desplazamiento lateral del ultimo nivel de la edificación (Δ R); esta espectro de capacidad se superpone con el espectro de la demanda sísmica es posible identificar la intersección de las curvas, definiendo así el punto de comportamiento. Este punto representa la respuesta estructural correspondiente al modo fundamenta. Para realizar el procedimiento anterior se debe dincretizar cada uno de los elementos.

Entre los métodos no lineales simplificados más conocidos están: El método del espectro de capacidad desarrollado por Feeman et al (1975), el cual ha sido incorporado por el ATC 40; el método del cociente de desplazamiento utilizado en el FEMA 273 y 356; el método N2 desarrollado por Fajfer (2000) a partir del trabajo realizado por Saiidi y Sozen (1981) y el análisis Pushover modal propuesto por Chopra y Goel (2001).

34

De los resultados del análisis no lineal estático se tienen los que se enfatizan siguiendo los lineamientos del documento ATC 40 (1996) para determinar: la curva de capacidad, el espectro de capacidad y el punto de comportamiento.

1.3.2.1.1 Curva de Capacidad. El objetivo central del análisis no lineal estático "Pushover" es la generación de la Curva de Capacidad, que representa el desplazamiento lateral como una función de la fuerza aplicada a la estructura. Este proceso provee al diseñador valores que le dan una visión más clara del comportamiento de una estructura. (Delgadillo 2005)

Para usar el "Método del espectro de capacidad propuesto por la ATC-40 (1996) es necesario convertir la Curva de Capacidad, que está en términos del cortante basal y desplazamiento del techo, a un Espectro de Capacidad, que es una representación de la Curva de Capacidad en un formato de Espectro de Respuesta Aceleración-desplazamiento (ADRS) (S_a Versus S_d) Las ecuaciones requeridas para hacer la transformación son:

$$PF_1 = \frac{\sum_{i=1}^{N} w_i \phi_{i1}}{\sum_{i=1}^{N} w_i \phi_{i1}} g$$

$$\alpha_{1} = \frac{\sum_{i=1}^{N} w_{i} \phi_{i1}}{\sum_{i=1}^{N} w_{i} g} \sum_{i=1}^{N} w_{i} \phi_{i1}^{2} g$$

$$S_{ai} = \frac{V_i}{\alpha_1}$$

$$S_{di} = \frac{\Delta_{techo}}{PF_1\phi_{techo,1}}$$

Dónde:

PF₁=Factor de participación modal para el primer modo natural.

 α_1 =Coeficiente modal de masa para el primer modo natural.

W_i/g=masa asignada al nivel i.

 ϕ_{i1} = Amplitud del modo 1 en el nivel i.

N= Nivel N, el nivel que es el más alto en la parte principal de la estructura.

V= Cortante basal.

W= Peso muerto del edificio más probable carga viva.

 Δ_{techo} =Desplazamiento del techo (V y el asocio Δ_{techo} componen putos sobre la curva de capacidad)

S_a= Aceleración espectral.

 S_d =Desplazamiento espectral (S_a y el asocio S_d componen puntos sobre espectro de capacidad)

Desplazamiento espectral sd

1.3.2.1.2 Espectro de Capacidad. La demanda sísmica se obtiene utilizando el espectro de respuesta elástico que está en un dominio de *aceleración espectral vs. Periodo* a un dominio de *aceleración espectral vs. Desplazamiento espectral* (ADRS). Cada punto de la curva del espectro de respuesta está asociado con una única aceleración espectral, Sa, velocidad espectral, Sv, desplazamiento espectral, Sd y un periodo, T. Para convertir un espectro desde su forma estándar aceleración espectral vs periodo, es necesario determinar el valor de Sdi para cada punto de la curva, Sai, Ti. Esto puede ser hecho por la siguiente ecuación (Delgadillo, 2005):

De la conocida relación $S_v = wS_d = \frac{S_a}{w}$ y por otro lado $w = \frac{2\pi}{T}$

W= Frecuencia angular del sistema, luego:

$$S_{di} = \frac{T_i^2}{4\pi^2} S_{ai}g$$

Para Colombia el Espectro elástico de respuesta de aceleraciones definido en la Norma NSR-10 corresponde a un sismo catalogado como de Diseño; el cual se define como el sismo que tiene el 10% de probabilidad de ser excedido en 50 años. En términos probabilísticos el Sismo de Diseño tiene un periodo de retorno medio de aproximadamente 475 años.

1.3.2.1.3 Punto de Comportamiento. Este punto se determina superponiendo el espectro de Capacidad con el espectro de Demanda sísmica, definiendo a si el *Punto de Comportamiento*, donde se iguala la demanda y la capacidad. En otras palabras corresponde al desplazamiento estructural máximo esperado para una demanda de terremoto especificada.

Se presenta a continuación de una forma resumida por López et al, 2008 los métodos para determinar la demanda sísmica:

El ATC-40 presenta tres diferentes métodos denominados A, B y C para estimar la demanda sísmica; todos se basan en el mismo principio de la intercepción de los espectros de demanda y de capacidad pero se diferencian en su implementación. Se toma como referencia para el análisis de la estructura el procedimiento (A). El primer consiste en determinar la capacidad de la estructura considerando las propiedades inelásticas de las secciones de cada elemento del modelo, mediante un análisis estático no-lineal. La capacidad es representada por la relación entre la fuerza cortante basal y el desplazamiento lateral en el techo. La curva de capacidad es generalmente construida para representar la respuesta del primer modo basándose en la suposición de que éste sea el que predomina en la respuesta. La curva de demanda sísmica sobre la estructura se determina a partir del espectro de pseudo-aceleración del movimiento sísmico, escalado de acuerdo al amortiguamiento efectivo del sistema. Seguidamente se expone de manera abreviada los pasos en cada procedimiento:

(1) Se transforma la curva de capacidad a un espectro de capacidad y se dibuja en una misma gráfica con el espectro de respuesta, que denominaremos espectro de demanda, para un amortiguamiento de 5%, en un formato de aceleración (a) versus desplazamiento (d); (2) Se selecciona un punto de desempeño inicial, (api, dpi); (3) Se desarrolla una representación bilineal del espectro de capacidad de la estructura. Se define el punto de cedencia, (ay, dy), y se calcula el amortiguamiento efectivo (β_{eff}) como sigue, $\beta_{eff} = k\beta_0+5$, donde β_0 es el amortiguamiento histérico representado como un amortiguamiento viscoso equivalente. El factor k depende del comportamiento estructural del edificio, que a su vez depende de las características del sistema de resistencia sísmica y la duración del sismo. Por simplicidad se suponen tres categorías. EL comportamiento estructural tipo A representa un sistema dúctil y se la asigna un valor de k=1.0. El comportamiento estructural tipo B representa una reducción moderada de área encerrada dentro del lazo de histéresis y se la asigna un valor de k=2/3. El comportamiento estructural tipo C representa un pobre comportamiento histérico con una gran reducción del área encerrada por el lazo de histéresis y se la asigna un valor de k=1/3; (4) Se modifica el espectro de demanda para ajustarlo al amortiguamiento efectivo calculado; (5) Se determina si el espectro de demanda intercepta el espectro de capacidad en el punto (api, dpi) o si se encuentra dentro de una tolerancia aceptable. Si el espectro de demanda no intercepta al espectro de capacidad dentro de la tolerancia establecida, entonces se selecciona un nuevo punto api, dpi y se aplica nuevamente el procedimiento hasta converger. Si el espectro de demanda intercepta al espectro

39

de capacidad dentro de la tolerancia, entonces el punto (api, dpi) es el punto de desempeño (ap, dp) y el desplazamiento dp representa el desplazamiento máximo esperado para dicha demanda sísmica.

1.4 DESEMPEÑO SÍSMICO DE EDIFICACIONES

El desempeño sísmico, es el deseado nivel de comportamiento de un edificio para una o varias demandas sísmicas. El comportamiento sísmico es descrito por el máximo estado de daño permitido, (expresado en la deformación de la rótula), para un nivel de demanda sísmica.

El desempeño sísmico de las edificaciones se estableces sobre la base de tres conceptos fundamentales: el nivel de desempeño, el nivel de amenaza y el desempeño esperado de la edificación.

1.4.1 Nivel de Desempeño

Es una expresión de la máxima extensión del daño donde se considera tanto la condición de los elementos estructurales como de los elementos no estructurales y su contenido, relacionando con la función de la edificación. Los niveles de desempeño suelen expresarse en términos cualitativos de significación publica (impacto en ocupantes, usuarios, etc.) y en términos técnicos ingenieriles para el diseño o valuación de edificaciones existentes (extensión del deterioro, degradación de elementos estructurales o no estructurales, etc.) (SEAOC, 1995)

1.4.1.1 Propuesta ATC-40. A continuación se muestra en el Tabla1La propuesta del ATC-40 (1996) Donde se especifica separadamente el nivel de desempeño para la estructura y el nivel de desempeño para los componentes no estructurales de manera que su combinación conduce a la definición del nivel de desempeño de
la edificación. Cada nivel de desempeño se encuentra especificado en el documento del ATC-40 (1996).

	-		-			
	SP-1	SP-2	SP-3	SP-4	SP-5	SP-6
	Inmediata	Daño	Seguridad	Seguridad	Estabilidad	No
	ocupación	Controlado		Limitada	Estructural	Considerado
NP-A	1-A	2.4	ND		ND	
Operacional	Operacional	Z-A				INK
NP-B	1-B					
Inmediata	Inmediata	2-B	3-B	NR	NR	NR
Ocupación	Ocupación					
NP-C	1.0	20	3-C	4.0	F.C	6.0
Seguridad	1-0	2-0	Seguridad	4-0	5-0	0-0
NP-D	ND	2 D	2D	4 D	БD	6 D
Amenaza		2-0	30	4-D	5-0	0-0
NP-E No					5-E	
Considerado	NR	NR	3E	4-E	Estabilidad	No Aplicable
					Estructural	

 Tabla 1. Combinación de Niveles de Comportamiento Estructural y no

 Estructural para formar Niveles de Desempeño de la Edificación (ATC-1996)

1.4.1.2 Propuesta VISION 2000. A Continuación se muestra en la Tabla 2donde se definen los cuatro niveles propuestos por el Comité VISION 2000 (SEAOC, 1995)

Tabla 2. Estados de daño y niveles de desempeño (SEAOC, 1995)

Estado de Daño	Nivel de Desempeño	Características Especiales
Despreciable	Totalmente	Daño estructural y no estructural despreciable o nulo.
	Operacional	Las instalaciones continúan prestando sus servicios y funciones después del sismo.
Ligero	Operacional	Daños ligeros. Las instalaciones esenciales continúan en servicio y las no esenciales pueden sufrir interrupciones de Inmediata recuperación.
Moderado	Seguridad a Ia Vida	Daños moderados. La estructura sufre daños pero permanece estable. Seguridad de ocupantes. Algunos elementos no estructurales pueden dañarse
Severo	Pre-Colapso	Daño estructural severo, en la proximidad del colapso estructural. Falla de elementos no estructurales. Seguridad de ocupantes comprometida.
Completo	Colapso	Colapso estructural

1.4.2 Niveles de Amenaza Sísmica

1.4.2.1 Propuesta del ATC-40.En el Tabal 3 se definen tres niveles de amenaza correspondientes a movimientos sísmicos identificados según el documento del ATC-40 (1996):

Nivel de Sismo	T (años)	Probabilidad de Excedencia (p, t)
Sismo de Servicio (SS)	72	50% en 50 años
Sismo de Diseño (SD)	475	10% en 50 años
Sismo Máximo (SM)	975	5% en 50 años

Tabla 3. Niveles de Amenaza Sísmica (ATC-40, 1996)

1.4.2.2 Propuesta VISION 2000.Se muestra a continuación en la Tabla 4La propuesta del comité VISION 2000 (SEAOC, 1995) los cuatro niveles de movimiento sísmico que se designan con los siguientes calificadores.

Nivel de Sismo	T (años)	Probabilidad de Excedencia (p, t)
Frecuente	43	50% en 30 años
Ocasional	72	50% en 50 años
Raro	475	10% en 50 años
Muy Raro	975	5% en 50 años

Tabla 4. Niveles de Amenaza Sísmica VISION 2000 (SEAOC, 1995)

1.4.3 Desempeño esperado de la edificación

1.4.3.1 Propuesta ATC-40.Se muestra Tabla 5 a manera de ejemplo el objetivo de desempeño dual, definido como un comportamiento del edificio que alcanza el nivel de desempeño de Seguridad de Vida, 3-C, para un Nivel de Sismo de Diseño y el Nivel de desempeño Estabilidad Estructural, 5-E, para el Nivel de Sismo Máximo.

Nivel del movimiento	Nivel de Comportamiento del Edificio				
del terreno	operacional	Inmediata Ocupación	Seguridad Vital	Estabilidad Estructural	
Sismo de Servicio (SS)					
Sismo de Diseño (SD)			Х		
Sismo Máximo (SM)				Х	

Tabla 5. Objetivo de Desempeño Básico de Seguridad (ATC-40, 1996)

1.4.3.2 Propuesta VISION 2000.Según el uso que va tener una estructura, el comité VISION 2000 (SEAOC, 1995) ha presentado un nivel mínimo que indica la Tabla 6, para tres tipos de edificaciones Básica, Esencial y de Seguridad Critica.

Tabla 6. Objetivo de Desempeño Básico de Seguridad (SEAOC, 1995)

1 Instalaciones Básicas		Nivel de Desempeño Sísmico				
2 Instalacione Esenciales/R 3 Instalacione critica 0 Desempeñe	es iesgosas es de Seguridad o Inaceptable	Operacional	Inmediatament e Ocupacional	Segurida d de Vida	Prevenció n de Colapso	
	Frecuente (T=43 años)	1	0	0	0	
Nivel de	Ocasional (T=72 años)	2	1	0	0	
Sísmico	Raro (T=475 años)	3	2	1	0	
	Muy Raro (T=970 años)	-	3	2	1	

1.5 DEFINICION DE LOS PUNTOS DE PLASTIFICACION

El comportamiento no lineal ocurre en puntos discretos predefinidos (*hinges*), introducidos en cualquier localización sobre los elementos unidimensionales tipo *frame.* Diferentes consideraciones pueden ser especificadas sobre un mismo elemento. En particular, se ha considerado la posibilidad de formación de rótulas plásticas a flexión, en los extremos de vigas (M3 hinge) y a flexocompresión, en

los extremos de columnas (PM2- M3 hinge). En los elementos diagonales, se considera la posibilidad de plastificación para fuerza axial (P hinge).

Utilizando como base los detalles específicos del armado de los diferentes elementos estructurales obtenidos de los planos estructurales (cuantía y disposición de las armaduras), se determina, para cada extremo de los elemento del sistema resistente a sismos (vigas y columnas), el respectivo diagrama momento-curvatura, que sintetiza el comportamiento no lineal esperado en cada punto de plastificación (hinge), en términos relativos a los respectivos valores cedentes.

Tanto para vigas como para columnas, la definición de los puntos A, B, C, D y E del diagrama y los criterios de aceptación para la deformación o relaciones de deformación correspondientes a los niveles de desempeño de la estructura se establece conforme a las recomendaciones del FEMA 356 (2000). En la Figura 3Se muestra el diagrama Momento-Curvatura y los diferentes niveles de desempeño IO (Ocupación Inmediata), LS (Seguridad a la Vida) y PC (Prevención de Colapso) para los elementos estructurales.

Figura 3. Diagrama Momento-Curvatura y criterios de aceptación. (FEMA 356, 2000)

1.6 REFORZAMIENTO O REHABILITACIÓN ESTRUCTURAL.

Según las Guías para la Mitigación de Riesgos Naturales en las Instalaciones de la Salud, 1993; se deben tener en cuenta ciertos parámetros al momento de realizar un procedimiento de reforzamiento y algunos sistemas más usuales en la etapa de análisis, diseño e intervención de la edificación a reforzar:

La intervención de la estructura debe buscar la reducción de estos problemas, a través de mecanismos necesarios, los cuales pueden clasificarse en cuatro grupos:

- Aumento de la capacidad global de disipación de energía.
- Aumento de la resistencia.
- Disminución de la concentración de energía en planta y en altura.
- Rigidización.

El análisis y el diseño del modelo estructural de la estructura reforzada deben realizarse en consideración clara de aspectos como los siguientes:

- El impacto de la variación de rigidez sobre la respuesta espectral. En el espectro de aceleraciones la variación de la rigidez puede afectar significativamente la respuesta global de la estructura.
- La respuesta de los elementos viejos que no hayan sido intervenidos, pero cuya conexión con el diafragma los lleve a intervenir en la respuesta global de un piso.
- El impacto del aislamiento de muros de relleno sobre la rigidez de cada piso.
- Los elementos adicionales que deben ser construidos en el caso de creación de juntas de movimiento sísmico en los diafragmas.
- La interrelación entre los mecanismos de rigidización, aumento de resistencia y ductilidad.
- El cambio de esfuerzos en el suelo y la cimentación.

- La relación del sistema constructivo con el mantenimiento del uso del edificio.
- El costo de la intervención.
- Los aspectos arquitectónicos, funcionales y estéticos del reforzamiento.

Los sistemas usuales de reforzamiento de estructuras suelen recurrir a la inserción de los siguientes elementos adicionales

- Muros en el exterior del edificio. Esta solución se emplea generalmente cuando las limitaciones de espacio y de continuidad de uso del edificio hacen preferible el trabajo en la periferia. Para asegurar la trasmisión de esfuerzos por medio del diafragma a los muros se emplean vigas colectoras en los bordes de la losa. No es recomendable para edificios muy largos.
- Contrafuertes. A diferencia de los elementos anteriores, su colocación es perpendicular a la cara del edificio. Además de aportar rigidez, son útiles para tomar el momento de vuelco en edificios esbeltos. Debido a las limitaciones de espacio no siempre son factibles.
- Muros en el interior del edificio. Cuando las posibilidades de trabajo en el interior del edificio lo permitan, son una alternativa de necesaria consideración en edificios largos, en los cuales la flexibilidad del diafragma deba ser reducida. Se insertan generalmente por medio de perforaciones en los diafragmas, a través de las cuales pasan las barras de refuerzo.
- Muros de relleno de pórticos. Tanto en el interior como en el exterior de edificios, una solución práctica al problema de rigidez y resistencia es el relleno de vanos de pórticos con muros de concreto o de mampostería reforzada. Debido a la unión con la columna, los esfuerzos en éstas cambiarán sustancialmente. Si el refuerzo de la misma es suficiente para el nuevo estado, la unión con el muro podrá realizarse solamente por medio de pasadores soldados. En caso contrario, se debe construir un encamisado de la columna monolítico con el muro.
- Pórticos arriostrados. Otra solución frecuente consiste en incluir varios pórticos de acero con diagonales anclados fuertemente a los diafragmas, como

sustituto de los muros de rigidez. Igualmente, pueden construirse solamente las diagonales unidas a los pórticos existentes cuando éstos demuestran ser resistentes ante las fuerzas demandadas por ellos con el nuevo sistema, en especial, ante las fuerzas axiales en las columnas y de corte en los nudos.

- Encamisado de columnas y vigas. Empleado para sistemas de pórtico, este sistema se realiza generalmente sobre una gran parte de las columnas y vigas de un edificio, con el fin de aumentar tanto su rigidez, resistencia y ductilidad. Los sistemas de encamisado, en la mayoría de los casos, se diferencian básicamente en la manera como se une el recubrimiento nuevo a la columna existente.
- Construcción de un nuevo sistema aporticado. En ocasiones es posible llevar a cabo una restructuración total adosando la antigua estructura a nuevos pórticos perimetrales externos. Usualmente se combina con la incorporación de muros estructurales internos perpendiculares al sentido longitudinal de los pórticos.

2. METODOLOGIA

2.1 METODOLOGÍA PARA LA EVALUACIÓN DE VULNERABILIDAD

Para la evaluación de vulnerabilidad para estructuras existentes se escoge un método subjetivo con base en códigos, para este caso el contenido en la Norma NSR-10 Titulo A-10 "Evaluación e Intervención de Edificaciones construidas antes de la vigencia de la presente versión del Reglamento" y realizar un análisis No Lineal – Estático "Pushover" para determinar el estado actual de la estructura. A continuación en la Figura 4 se presenta la orden para realizar el estudio de vulnerabilidad. En el capítulo 3 se muestra el desarrollo.

Figura 4.Orden para la realización del Estudio de Vulnerabilidad CFUIS.

2.2 METODOLOGÍA PARA EL REFORZAMIENTO

Después de realizada la evaluación de vulnerabilidad sísmica tanto por resistencia como por flexibilidad y determinar por medio de un Análisis Estático No Lineal

"PUSHOVER" el estado de la edificación; se continua con la etapa de Reforzamiento Estructural, por lo cual dependiendo de los resultados de los análisis anteriores se procede a mejorar las condiciones estructurales en aquellos elementos que se encuentren con algún grado de susceptibilidad a sufrir daños debido a las nuevas condiciones de cargas tanto gravitacionales como sísmicas y también de mejorar todo el conjunto estructural aumentando su rigidez con el fin de evitar los desplazamiento excesivos que puedan causar daños a elementos no estructurales.

Para realizar el reforzamiento a la estructura se deben tener en cuenta que al momento de decidir el tipo de sistema de reforzamiento no afecte las condiciones tanto arquitectónicas (cambios en las fachadas, reducción de espacios, etc.) y estructurales por lo que los elementos viejos que no se refuercen se sometan a nuevos esfuerzos que superen su resistencia debido al nuevo elemento de reforzamiento. A continuación en la Figura 5 Se muestra el procedimiento para el diseño del reforzamiento. En el capítulo 3 se muestra el desarrollo.

Figura 5. Orden para la realización del Reforzamiento Estructural CFUIS

3. RESULTADOS

3.1 EVALUACION DE LA INTERVENCION EDIFICIO SECUNDARIA ADMINISTRACIÓN

3.1.1 etapa 1

3.1.1.1 Tipo de intervención de la estructura.El propósito de la evaluación sísmica es determinar el grado de vulnerabilidad de la estructura con el fin de realizar un reforzamiento para lograr un nivel de seguridad equivalente al de una estructura nueva de acuerdo con los criterios y requisitos establecidos por el vigente reglamento "NSR-10", de tal forma que una vez se intervenga la estructura quede con índices de sobreesfuerzo y flexibilidad menores que la unidad, esta intervención tiene el propósito de actualización al reglamento.

3.1.2 Etapa 2

3.1.2.1 Recopilación y análisis de la información existente. A continuación se muestra una relación de los documentos de diseño y construcción de la edificación original que se utilizaron para la evaluación:

	LISTA DE PLANOS SUMINISTRADOS				
PALNO No	TIPO DE PLANO	CONTENIDO			
1 DE 15	ESTRUCTURAL	CIMIENTOS ADMINISTRACION, SECUNDARIA PLACA SOTANOS			
2 DE 15	ESTRUCTURAL	PLANTA 2º Y 3º PISO SECUNDARIA, 2º ADMINISTRACION			
3 DE 15	ESTRUCTURAL	PLANTA 4º PISO SECUNDARIA, 3º PISO ADMINISTRACION			
4 DE 15	ESTRUCTURAL	PLANTA CUBIERTA ADMINISTRACION Y SECUNDARIA			
5 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
6 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
7 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
8 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
9 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
10 DE 15	ESTRUCTURAL	DESPIECE DE VIGAS			
11 DE 15	ESTRUCTURAL	DESPIESE DE VIGAS			
12 DE 15	ESTRCTURAL	DESPIECE VIGUETAS 16 Y 17, COLUMNAS			
13 DE 15	ESTRUCTURAL	DESPIECE DE COLUMNAS			
14 DE 15	ESTRUCTURAL	DESPIESE DE COLUMNAS			
15 DE 15	ESTRUCTURAL	DESPIECE VIGAS, ESCALERAS, TANQUE ELEVADO			
EM-1	ESTRUCTURAL	CUBIERTA METALICA (SECUNDARIA Y ADMINISTRACION)			

Tabla 7. Lista de los planos suministrados físicamente

3.1.2.2 Evaluación cualitativa del estudio de suelos.Se cuenta con un informe de estudio de suelos realizado en el año 1997. Se trata de un documento orientado al análisis de las características geotécnicas del lote, localización del nivel freático e información relacionada con la parte geológica, topográfica y características hidrológicas de todo el sitio que puedan ser pertinentes para determinar el tipo de cimentación.

De acuerdo a dichos estudios, se presenta en la Figura 6 un resumen procedente de dicho documento:

Parámetros - Estudio de Suelos			
10 Sondeos, equipo de perforación a percusión de 16 HP.	Penetración estanda	r c/50 cm (ASTM)	
Profundidad de la Cimentación			
Edificio	Profundid	ad (m)	
Bachillerato	1.5		
Adiministración	2.5		
Primaria	1.5		
Pre-escolar	3.0.2	7.2	
	0.0, _	.,_	
Sistema de cimentación recomendado			
Zapatas o pilas de concreto ciclópeo a la pro	ofundidad de sue	elo	
competente. Superficie de vigas de amarre a	armadas		
Presión admisible del terreno (Meyerhof)			
q _{admisible} (kg/cm	²): 2.4		
q _{admisible} (ton/m	²): 24		
Coeficiente de Balastro (IS: 8009 part 1 1976)	ks (ka/cm ³):	10	
A sentamiento máximo	δ (cm).	25	
Asentamiento diferencial máximo esperado	δ (cm):	2.5	
Á ngula da frigajón interna		1.0	
Coeficiente de presión activa	φ: ka:	42	
Coeficiente de presión activa	kn:	5	
Cobesión	$\frac{kg}{cm^2}$	0.5426	
Peso unitario del suelo	v (ton/m ³):	1.9	
Parámetros Sísmicos (Decreto 1400 de 1984 - (Normea AIS 100-94)	Complemento		
Perfil del Suelo	S2		
Coeficiente de Sitio	1.2		
Ad:	0.04		
Aa:	0.25		
Zona Riego Sísmico	Alta		
Fuerza sísmica horizontal	0.15 g		

Figura 6.Resultados Resumen estudio de Suelos

3.1.2.3 Revisión de planos existentes. Con los planos estructurales se pudo determinar el refuerzo tanto longitudinal como transversal de vigas, columnas, muros, escaleras y tanque; secciones de elementos, resistencias de materiales utilizados en el diseño estructural y algunas especificaciones allí registradas. Con la existencia de estos documentos no hay necesidad de realizar ensayos destructivos para determinar el refuerzo instalado lo cual abarata los costos de ensayos. Con la información contenida en los planos se pudo determinar cuantías de refuerzo, cálculo de las resistencias existentes, tipo de cimentación, niveles de desplante que permiten determinar parámetros para realizar la modelación de la estructura.

- El estudio de suelos nos permitió determinar los parámetros para la definición del tipo de suelo con el fin de determinar las condiciones sísmicas para el modelo y su capacidad portante para la evaluación de la cimentación existente.
- Como parte de la etapa dos se muestran una revisión de los planos y el paralelismo con lo construido, el cual como resultado de la primera visita de inspección se presenta lo siguiente:
- Se verifica que es una construcción en concreto reforzado con un sistema estructural tipo pórtico con muros en ladrillo a la vista y una cubierta en teja de barro con machimbré para el bloque de salones y teja de barro sobre una teja ondulada tipo eternit.
- Se evidencia que en la estructura existente no se le dio continuidad a la columna A2-6 como lo evidencia el plano de cubierta. (ver plano EM-1)
- En los planos de cubierta se verifica que hay proyectada una viga de concreto en diagonal que une las columnas A1-7 y A1-8, la cual no se construyó, realizando un cambio constructivo debido a la necesidad de dar un mejor

soporte a la estructura de cubierta, teniendo que continuar la viga (VA1-4 entre los ejes 7 y 8) y la viga (V8-4 entre los ejes A1 y A2) uniéndose estos elementos en la intersección entre A1-8. Para mejor compresión ver plano (EM-1)

 En la revisión de los planos de cubierta la cercha espacial (15m X 9m) ubicada entre los ejes 6-7 y A1-A3 se proyectó que se apoyarían en vigas cercha, las cuales se cambiaron por vigas en concreto que sirven de apoyo para la cercha espacial y como viga canal.

3.1.3 Etapa 3

3.1.3.1 Estado del sistema estructural. Calidad del Diseño y la Construcción de la Estructura Original: Después de realizadas las visitas de campo para corroborar la información existentes en planos arquitectónicos, estructurales y estudio de suelos (Documentos suministrados por la entidad), se determinó lo siguiente:

La edificación fue construida a mediados del año 1997, con las dimensiones de elementos estructurales definidos en los planos, los cuales fueron realizados por profesionales de la construcción debidamente matriculados; además todo el diseño está aprobado por la curaduría urbana de Floridablanca ratificando que la estructura fue diseñada siguiendo los parámetros de la Norma Vigente de la época. En la visita de campo realizada se pudo apreciar que la estructura presenta un buen dimensionamiento en sus elementos estructurales como vigas, columnas, muros escaleras, además no presenta distribuciones irregulares en masa y cambios en su rigidez. Según los planos estructurales el diseño de los elementos en concreto reforzado (columnas, vigas, muros cimentaciones y escaleras) se diseñaron cumpliendo con cuantías mínimas y máximas de refuerzo (longitudinal) y de confinamiento del concreto (refuerzo transversal) cumpliendo con los espaciamientos en estribos tanto para columnas como en vigas.

56

Aunque no se realizaron ensayos tanto destructivos como no destructivos a simple vista se nota que el material utilizado concreto presenta un buen aspecto en su textura y color, los elementos como vigas y columnas presentan secciones uniformes a lo largo de su longitud lo que da indicios que tuvieron un buen control durante la etapa de construcción.

Figura 7. Vista general de la edificación.

Según el análisis realizado la estructura puede calificarse tanto en la calidad del diseño y construcción como buena; por este concepto no debe reducirse la resistencia existente de la citada edificación.

3.1.3.2 Estado de la estructura. Según la inspección en campo realizada a la edificación para determinar su estado actual de conservación se determina lo siguiente:

Se inicia con la inspección ocular de las planta baja (sótano 1 y 2, planta primer piso secundaria y administración) con el fin de determinar que la losa y acabados de piso no presentaran fisuras ni dilataciones contra la estructura lo cual quiere decir que la edificación no presenta asentamientos. Aunque no se tomaron medidas de deflexiones se pudo constatar que las vigas no presentan fisuras en su luz central y los elementos no estructurales como muros no presentan daños, lo que quiere decir que la estructura tiene un buen comportamiento ante cargas gravitacionales.

En cuanto a la patología estructural en sus elementos no se detectaron problemas de corrosión de refuerzo, lixiviados en el concreto y fisuras en los nudos entre columnas - vigas. También se pudo apreciar que se realiza un buen mantenimiento a la estructura ya que sus acabados (pañetes y pinturas) se encuentran en buen estado.

Figura 8. Detalle nudos Columna-Viga

Figura 9. Viga descolgada entrepiso 2 - administración.

Según la inspección realizada a la estructura en cuanto al estado actual de conservación se estima igualmente que por este concepto, no debe reducirse la resistencia existente de la citada edificación.

Según el nivel de detallado de la estructura presente en los planos estructurales en cuanto al confinamiento del concreto, traslapos, cuantías de acero y refuerzos de continuidad en los diferentes elementos estructurales, permite asimilar la estructura a un sistemas con Capacidad Especial de Disipación de Energía (D.E.S).

La estructura debido a su relación de aspecto en planta presenta una irregularidad 1P irregularidad torsional y 2P Retrocesos en las esquinas el cual le corresponde un $\phi p=0.9$

3.1.4 Etapa 4

3.1.4.1 Cálculo de las solicitaciones cargas. Se presenta a continuación los parámetros comunes de las edificaciones:

3.1.4.1.1 Espectro de Diseño. La edificación se encuentra ubicada en el municipio de Florida Blanca - Santander que corresponde al área metropolitana de la ciudad de Bucaramanga para el cual le corresponde según el Reglamento NSR-10 los siguientes parámetros:

Aceleración pico efectiva en la roca: Aa= 0.25, Av= 0.25, zona de amenaza sísmica alta correspondiente al municipio de Florida Blanca – Santander. (A.2.3.3)

Coeficiente de importancia: I=1.25 correspondiente al grupo de uso III Edificaciones de atención a la comunidad (d) Guarderías, escuelas, colegios, universidades y otros centros de enseñanza. (A.2.5.1.2)

Perfil del suelo: Tipo D (A.2.4.4) corresponde a los siguientes coeficientes Fa=1.3, Fv= 1.9 de acuerdo con la investigación de suelos y geotecnia según informe de estudio de suelos realizado en la etapa de diseño del proyecto (año 1997) información existente.

Figura 10. Espectro Elástico de Aceleración de Diseño

3.1.4.1.2 Evaluación de Cargas. Para todos los módulos que componen el bloque de administración y secundaria se determinaron las cargas permanentes (peso propio, acabados de pisos y cielo rasos, instalaciones, particiones y elementos de fachada y cubierta) a partir de los planos estructurales y arquitectónicos. La verificación de lo antes mencionado se realizó en la etapa de inspección en campo.

A. Descripción de las materiales usados en la Edificación

La estructura tiene un Uso como colegio el cual consta de dos bloques, el primero administrativo de tres pisos y cubierta con un área construida de 1853 m2 y el segundo secundaria de cuatro pisos y cubierta con un área construida de 1371.85 m2. Presenta una estructura en pórticos de concreto reforzado, los muros de fachada y divisorios son en ladrillo a la vista, pisos en baldosín de granito; la cubierta para el bloque secundaria es en teja de barro con una estructura en madera y para la cubierta del bloque administración es en teja ondulada A.C y

sobre esta teja de barro. En la Tabla 8 Se describen la densidad de algunos materiales para la evaluación de las cargas.

MATERIALES	DENSIDAD
Concreto	2400 Kg/m ³
Acero	7800 Kg/m ³
Madera Seca	750 Kg/m ³
Densidad del Agua Dulce	1000 Kg/m ³

B. Carga Muerta Entrepiso y Cubierta

Figura 11. Evaluación de cargas de entrepiso

Figura 12. Evaluación de cargas Cubierta Secundaria

CUBIERTA SECUNDARIA:	e (mm)	Carga/mm e	
Teja arcilla, incluye mortero:			0.8 KN/m ²
Madera laminada	15	0.01	0.15 KN/m ²
Liatones de marera (0.051mx0.1016)			0.08 KN/m ²
Iluminacion:			0.05 KN/m ²
			1.08 KN/m ²
Peso/ml de correa secundaria 2PA-330-11:			0.19 KN/m

Figura 13. Evaluación de cargas Cubierta Administración

CUBIERTA ADMINISTRACION:	
Teja arcilla incluye el mortero	0.8 KN/m ²
Cubierta corrugadas de asbesto cemento	0.20 KN/m ²
Cielo raso en fibra de vidrio:	0.10 KN/m ²
lluminacion:	0.05 KN/m ²
Correa T-6	0.05 KN/m ²
Cercha metalica	0.25 KN/m ²
	1.45 KN/m ²

Figura 14. Evaluación de cargas Tanque Elevado.

Figura 15. Evaluación de cargas Escaleras Tipo 1 Administración Secundaria

Figura 16. Evaluación de cargas Escaleras Tipo 2 Administración Secundaria

Carga Vivas Entrepiso y Cubierta

CARGAS DE SERVICIO	CARGAS DE SERVICIO			
CARGA VIVAS MINIMAS UNIFORMEMENTE DISTRIBUIDA	S SEGÚI	N NSR-10 TITULO B:		
BLOQUE SECUNDARIA:				
Carga para aulas sotano 1:	2.0	KN/m ²		
Carga para aulas pisos 2, 3, 4 y banos:	2.0	KN/m ²		
Carga para corredores y escaleras:	5.0	KN/m ²		
BLOQUE ADMINISTRATIVO: Carga para losa sotano 2 corredores:	5.0	KN/m ²		
Carga para laboratorio de biologia y fisica, sala audiovisuales, dibujo y musica piso 2:	2.0	KN/m ²		
CUBIERTA:				
BLOQUE SECUNDARIA: Carga cubierta con pendiente mayor al 15%:	0.35	KN/m ²		
BLOQUE ADMINISTRATIVO: Carga cubierta con pendiente mayor al 15%: Carga para cubierta domos:	0.35 0.50	KN/m ² KN/m ²		

Figura 17. Cargas Vivas Uniformemente Distribuidas.

3.1.5 Etapa 5

3.1.5.1 Análisis elástico de la estructura. Después de determinar todas las solicitaciones equivalentes de acuerdo con los requisitos de A.10.4.2 (Edificaciones tipo III: Edificación nueva) se realizó un análisis elástico de la estructura utilizado el programa SAP 2000 v 14.1 con el cual se obtienen todas las fuerzas internas solicitadas con las que se realizara una comparación con las fuerzas resistentes efectivas calculas a partir de la información suministrada por los planos estructurales; el cociente entre estos dos parámetros nos dará como resultado los índices de sobreesfuerzo y flexibilidad de la estructura con los que se

determinara el grado de vulnerabilidad que presenta la edificación. En la Figura 18 se muestra la estructura en 3D.

Figura 18. Modelo 3D Edificio Administración – secundaria.

3.1.5.2 Procedimiento análisis elástico de la estructura

3.1.5.2.1Geometría:Según planos estructurales se definieron las siguientes secciones vigas y columnas que se le asignaron al modelo las cuales se muestran en la Tabla 9; Ver planos estructurales existentes 2-15, 3-15, 4-15.

TIPO DE ELEMENTO	SECCION (m)
VIGA	0.20X0.30
VIGA	0.30X0.30
VIGA	0.30X0.40
VIGA	0.35X0.40
VIGA	0.40X0.40
VIGA	0.60X0.40
VIGA	0.60X0.60
VIGA	0.60X0.75
COLUMNA	0.30X0.60
COLUMNA	0.30X0.80
COLUMNA	0.45X0.80
COLUMNA	0.60X0.60
COLUMNA ϕ	0.50

Tabla 9. Lista de secciones tipos

3.1.5.2.2 Restricciones en la base. El tipo de cimentación que presenta la estructura es superficial, consta de zapatas aisladas conectadas por vigas de amarre de cimentación, por lo que se asume un tipo de apoyo en la columna restringido a momentos ósea un apoyo tipo empotramiento. Ver planos estructurales existentes 1-15

3.1.5.2.3 Materiales. Para el diseño y construcción en Colombia es común el uso de materiales como el concreto y el acero. Se asumen las características de los materiales especificados en los planos existentes para el diseño y construcción del bloque Secundaria y Administración del CFUIS los cuales se describen a continuación:

PROPIEDADES DEL CONCRETO			
D _C	2400 Kg/m ³	Densidad	
fc	21 MPa	Resistencia a la compresión	
ε _c	0.003	Deformación unitaria del concreto en f'c	
ε _{cu}	0.004	Deformación unitaria ultima en capacidad ultima del concreto	
$E = 4700 \overline{f'_c}$	21538.10	C.8.5.1 (NSR-2010)	

Tabla 10. Propiedades del concreto

Tabla 11. Propiedades del Acero de refuerzo

PROPIEDADES DEL ACERO			
D _A	2400 Kg/m ³	Densidad	
Fy	420 MPa	Esfuerzo de fluencia	
		Deformación inicial en el	
εsu	0.009 acero al comienzo de		
		plastificación	
	0.004	Deformación ultima en el	
85Sh	0.004	acero	
F _{SU} 620 MPa		Capacidad ultima del	
		esfuerzo del acero	
E	200000	C.8.5.2 (NSR-2010)	

3.1.5.2.4 Coeficiente de capacidad de disipación de energía, R. Según la (NSR-2010) (A.10.4.2.4) de acuerdo con el sistema estructural a que corresponda la edificación y a los requisitos constructivos y de diseño que se haya seguido en la ejecución de la estructura original debe asignarse un valor del coeficiente de capacidad de disipación de energía. R= R0 $\phi a \phi p \phi r$ el cual se denomina R'. La asignación debe de hacerse de acuerdo con la información disponible sobre la estructura.

De acuerdo con la información suministrada en los planos se determina que la estructura en cuanto al confinamiento del concreto, traslapos, cuantías de acero y refuerzos de continuidad en los diferentes elementos estructurales, permite asimilar la estructura a un sistema con Capacidad Especial de Disipación de

Energía (D.E.S). Para este caso el sistema estructural corresponde a pórticos resistentes a momento.

$$R = R_0 \phi_a \phi_p \phi_r$$

$$R = 7.0 * 0.9 * 0.8 * 1 = 5.04$$

Para la obtención del grado de irregularidad en planta (ϕ_p) y altura (ϕ_a) se pueden ver en el Anexo A.

3.1.5.2.5 Combinaciones de Cargas Mayoradas. Las combinaciones de carga utilizadas para el cálculo según la (NSR-2010) son las siguientes:

Combinación 1	1.4 D
Combinación 2	1.2D + 1.6L
Combinación 3	1.2D + 1.0L + Ex
Combinación 4	1.2D + 1.0L + Ey
Combinación 5	0.9D + Ex
Combinación 6	0.9D + Ey

3.1.5.2.6 Método Análisis Dinámico. Para las solicitaciones sísmicas se utilizó el procedimiento presente en la norma NSR-2010 "MODELO TRIDIMENCIONAL CON DIAFRAGMA RIGIDO" en este modelo se consideran los entrepisos como diafragmas infinitamente rígidos en su propio plano; la masa de cada diafragma se considera concentrada en su centro de masa. Se utiliza este procedimiento debido a la irregularidad en planta que presenta la estructura. Los cálculos Masas y centros masa ver Anexo B.

Como este procedimiento es un Análisis Dinámico Espectral según la norma NSR-2010 en el "A.5.4.5 Ajuste de los Resultados el valor del cortante dinámico total en la base obtenido después de realizar la combinación modal, para cualquiera de las direcciones de análisis, no puede ser menos que el 80% para estructuras regulares, o que el 90% para estructuras irregulares, del cortante sísmico en la base calculado por el método de la fuerza horizontal equivalente". Ver Tabla 12 cálculo del incremento de las fuerzas sísmicas. Para el Cálculo método FHE ver Anexo C

CORT	Ix	I _Y			
DIRECCION ACTUA	V(KN) FHE	V(KN) A.M.E SAP 2000	%	INCREMI LAS FU SISMIC CADA DII	ENTO DE IERZAS CAS EN RECCION
SISMO X	26147.77	23722.701	90.7%	1.0	
SISMO Y	26147.77	18472.005	70.6%		1.27

Tabla 12. Calculo de la corrección del cortante basal Dinámico

3.1.5.3 Modos de Vibración. El análisis modal descompone la geometría de la deformación de la estructura en un numero N de modos de vibración. La superposición de estos modos describe el movimiento de la estructura; este análisis se realiza con el Programa SAP 2000 V 14.1.

En la tabla 5 se presentan los resultados arrojados por el programa

PC	PORCENTAJES DE PARTICIPACION DE LA MASA				
Modo	Periodo	UX	UY	SumUX	SumUY
1	0.852011	0.0107	0.0777	0.0107	0.0777
2	0.659393	0.90491	0.00096	0.91561	0.07866
3	0.327289	0.00001701	0.68827	0.91562	0.76693
4	0.243352	0.01594	0.00039	0.93157	0.76733
5	0.211573	0.00287	0.00044	0.93444	0.76777
6	0.19266	0.00009277	0.0987	0.93453	0.86647
7	0.173228	0.00218	0.00042	0.93671	0.86689
8	0.17121	0.00007482	0.00896	0.93678	0.87585

Tabla 13. Porcentajes de participación de masa

PC	PORCENTAJES DE PARTICIPACION DE LA MASA				
Modo	Periodo	UX	UY	SumUX	SumUY
9	0.167301	0.00163	0.00005254	0.93841	0.87591
10	0.161923	0.000002508	0.00005225	0.93841	0.87596
11	0.156648	0.03605	0.00047	0.97446	0.87643
12	0.151019	0.0001	0.02758	0.97456	0.904
13	0.145268	0.00023	0.00000713	0.97479	0.90401
14	0.141935	0.0002	0.00004464	0.97499	0.90406
15	0.132416	0.00021	0.00037	0.9752	0.90443

3.1.6 Etapa 6

3.1.6.1 Cálculo de la resistencia existente cada uno de los elementos. La resistencia existente de la estructura debe determinarse con base en la información disponible. En general la resistencia existente corresponde a los valores que se obtienen para cada material estructural al aplicar los modelos de resistencia que prescribe el Reglamento en los títulos correspondientes.

3.1.6.1.1 Resistencia existente en vigas de entrepiso

Resistencia por flexión

La resistencia por flexión se realiza en tres puntos de la viga los cuales corresponden cerca del apoyo y en el centro de la luz. Se muestra a continuación el procedimiento utilizado para el cálculo de una sección Viga V1-3 (S1-S2), las demás se remiten al Anexo D

INFORMACION VIGA V1-3 (S1-S2) APOYO "S1"		
Н	400	mm
d	340	mm
b	600	mm
As sum.	1420	mm ²
f'c	21	MPa

INFORMACION VIGA V1-3 (S1-S2) APOYO "S1"			
f _v 420 MPa			
φ 0.9			

$$a = \frac{A_s f_y}{0.85f'_c b} = \frac{1420 * 420}{0.85 * 21 * 600} = 55.69 mm$$

$$M_r = \phi A_s f_y \quad d - \frac{a}{2}$$

$$M_r = 0.9 * 1420 * 420 * 340 - \frac{55.69}{2} = 167552317.8 N - mm$$

$$M_r = 167.55 \ KN - m$$

Resistencia por cortante

Para las vigas se calcula el cortante resistente en los extremos de la viga en la cara de los apoyos. Se muestra a continuación el procedimiento utilizado para el cálculo de una sección Viga V1-3 (S1-S2), las demás se remiten al Anexo D. La viga tiene estribos cerrado #3c/9cm y estribos suplementarios #3c/9cm

INFORMACION VIGA V1-3 (S1-S2)		
	APOYO "S1"	
Н	400	mm
d	340	mm
b	600	mm
Av.	215	mm ²
f'c	21	MPa
f _v	420	MPa
φ	0.75	

$$V_r = \phi V_c + V_s$$

$$V_c = 0.1/\lambda \ f'_c b_w d$$

· · - ·

$$V_c = 0.17 * 1 * \overline{21} * 600 * 340 = 158923.72 N$$
$$V_s = \frac{A_v f_{yt} d}{s}$$

$$V_s = \frac{215 * 420 * 340}{90} = 341133.33 \, N$$

 $V_r = 0.75 * 158923.72 + 341133.33 = 375042.79 N = 375.04 KN$

3.1.6.1.2Resistencia existente Columnas

Resistencia existente por Flexo-Compresión

Se realizara el análisis para flexo-compresión en cada columna cerca en la cara del apoyo tanto en la parte superior como en la parte inferior del elemento. Se efectúa el cálculo de una sección de columna "1-S1" piso 1 parte superior. El análisis de las demás secciones serán remitidas al Anexo E

INFORMACION COLUMNA "1-S1" PISO 1 ANALISIS DE LA FLEXION SOBRE EL EJE X			
Н	300	mm	
d	250.5	mm	
b	600	mm	
N _{Barras}	8#6		
f'c	21	MPa	
f _y	420	MPa	
∲ Flexión	0.90		
∳Compresión	0.65		
α	0.75		

Calculo de carga axial y momento balanceado en "X"

Calculo de la carga axial a compresión mínima P_{min}

$$P_{min}=0.10f'_cA_g$$

$$P_{min} = 0.10 * 21 * 600 * 300 = 378000 N = 378 KN$$

Calculo de la carga axial a compresión máxima P_{max}

$$P_{max} = \alpha \phi \ 0.85 f'_c \ A_g - A_{stotal} \ + A_{stotal} f_y$$

 $P_{max} = 0.75 * 0.65 * 0.85 * 21 * 600 * 300 - 2280 + 2280 * 420$ = 2013327.22 N

$$P_{min} = 2013.32 \ KN$$

Calculo de C_b

$$C_b = \frac{600}{600 + f_y} d$$

$$C_b = \frac{600}{600 + 420} * 250.5 = 147.35 \, mm$$

Calculo de P_{bx}

$$P_{bx} = \phi \ 0.85f'_{c}ab + A'_{s1}f'_{s1} + A'_{s2}f'_{s2} - A_{s3}f_{s3} - A_{s4}f_{s4}$$

 $P_{bx} = 0.65 * 0.85 * 21 * 125.25 * 600 + 570 * 398.44 + 570 * 125.63 - 570 * 147.19$ - 570 * 420
$$P_{bx} = 855951.91 N = 855.95 KN$$
$$P_{nbx} = \frac{P_{bx}}{\phi} = \frac{855.95}{0.65} = 1316.84 KN$$

Calculo del momento M_{by} respecto al centro plástico.

$$M_{bx} = \phi \quad 0.85f'_{c}ab \quad \frac{h}{2} - \frac{a}{2} + A'_{s1}f'_{s1} \quad \frac{h}{2} - 49.5 + A'_{s2}f'_{s2} \quad \frac{h}{2} - 116.5 + A_{s3}f_{s3} \quad \frac{h}{2} - 116.5 + A_{s4}f_{s3} \quad \frac{h}{2} - 49.5$$

$$M_{bx} = 0.65 * 0.85 * 21 * 125.25 * 600 * \frac{300}{2} - \frac{125}{2} + 570 * 398.44 * \frac{300}{2} - 49.5$$
$$+ 570 * 125.63 * \frac{300}{3} - 116.5 + 570 * 147.19 * \frac{300}{2} - 116.5 + 570$$
$$* 420 * \frac{300}{2} - 49.5$$

$$M_{bx} = 110154680.71 \, N - mm = 110.15 \, KN - m$$

$$M_{nbx} = \frac{M_{bx}}{\phi} = \frac{110.15}{0.65} = 169.46 \ KN - m = 16946.15 \ KN - cm$$

Caculo carga axial y momento balanceado en "Y"

INFORMACION COLUMNA "1-S1"								
PISO 1	ANALISIS DE LA	FLEXION						
SOBRE EL EJE Y								
Н	H 600 mm							
d	550.5	mm						
b	b 300							
N _{Barras}	N _{Barras} 8#6							
f'c	21	MPa						
f _v	420	MPa						
∲ Flexión	0.90							
♦Compresión	0.65							
α	0.75							

Calculo de la carga axial a compresión mínima P_{min}

$$P_{min} = 0.10 f'_c A_g$$

 $P_{min} = 0.10 * 21 * 600 * 300 = 378000 N = 378 KN$

Calculo de la carga axial a compresión máxima P_{max}

 $P_{max} = \alpha \phi \ 0.85 f'_c \ A_g - A_{stotal} \ + A_{stotal} f_y$

 $P_{max} = 0.75 * 0.65 * 0.85 * 21 * 600 * 300 - 2280 + 2280 * 420$ = 2013327.22 N

$$P_{min} = 2013.32 \ KN$$

Calculo de C_b

$$C_b = \frac{600}{600 + f_y} d$$
$$C_b = \frac{600}{600 + 420} 550.5 = 323.82 mm$$

Calculo de P_{by}

$$P_{by} = 0.85 \phi f'_c \beta_1 C_b b$$

 $P_{by} = 0.85 * 0.65 * 21 * 0.85 * 323.82 * 300 = 958065.99 N = 958.07 KN$

$$P_{nby} = \frac{P_{by}}{\phi} = \frac{958.07}{0.65} = 1473.95 \ KN$$

Calculo del momento M_{by} respecto al centro plástico.

$$M_{by} = 0.85\phi f'_{c}\beta_{1}C_{b}b \ d - \frac{C_{b}\beta}{2} + \phi A'_{s}f'_{s} \ d - d' - 0.85\phi f'_{c}A'_{s} \ d - d'$$

$$\begin{split} M_{by} &= 0.85 * 0.65 * 21 * 0.85 * 323.82 * 300 * 550.5 - \frac{323.82 * 0.85}{2} + 0.65 * 1140 \\ &* 420 * 550.5 - 49.5 - 0.85 * 0.65 * 21 * 1140 * 550.5 - 49.5 \\ &= 544857503.04 N - mm \end{split}$$

$$M_{by} = 544.86 \ KN - m$$

Calculo de M_{by} respecto al centro plástico

$$e'_{x} = \frac{M_{by}}{P_{by}} = \frac{544.86}{958.07} = 0.56870 \ m = 568.70 \ mm$$

$$e = e'_x - \frac{d - d'}{2} = 568.70 - \frac{550.5 - 49.5}{2} = 318.20 mm$$
$$M_{by} = P_{by}e = 958.07 * 0.3182 = 314.43 KN - m$$

$$M_{by} = \frac{M_{by}}{\phi} = \frac{314.43}{0.65} = 483.73 \, KN - m = 48373.84 \, KN - cm$$

Calculo del Pomin y Pomax :

El valor de P_{omin} se aplica cuando controla de tracción ósea cuando $P_U < P_{nb}$

$$P_{omin} = -\phi A_{s \ total} f_y = 0.9 * 2280 * 420 = 8618.40N = 861.84 \ KN$$

El valor de Pomax se aplica cuando controla la compresión ósea cuando PU>Pnb

 $P_{omax} = 0.85 \phi f'_c A_g - A_{s total} + \phi A_{s total} f_y$

$$P_{omax} = 0.85 * 0.65 * 21 * 180000 - 2280 + 0.65 * 2280 * 420$$

$$P_{0max} = 2684436.3 N = 2684.43 KN$$

Resistencia a Cortante

Se calcula el cortante resistente en cada columna cerca cara del apoyo donde es el punto más desfavorable; a continuación se presenta el análisis para una columna "1-S1" piso 1 arriba, para las demás se remiten al Anexo F

Calculo de cortante en el sentido "X"

			_		Y		
INFORM PISO 1	ACION COLUM ANALISIS A CO SENTIDO X	NA "1-S1" RTANTE	1				
Н	600	mm					
d	550	mm	b				
b	300	mm					
E	#4						
Av	253	Mm ²	_ ↓				
f'c	21	MPa			h		
f _v	420	MPa		<	n	 \rightarrow	
φ	0.75						
S	100	mm]				

Х

Calculo del cortante resistente que aporta el concreto:

$$V_c = 0.17 \quad 1 + \frac{N_u}{14A_g} \quad \lambda \quad \overline{f'_c} b_w d$$

$$V_c = 0.17 * 1 + \frac{342610}{14 * 180000} * 1 * \overline{21} * 300 * 550 = 146017.24 N$$

Calculo del cortante resistente que aporta el acero

$$V_s = \frac{A_v f_y d}{s}$$

$$V_s = \frac{253 * 420 * 550}{100} = 584430 \, N$$

No se tiene en cuenta la resistencia a cortante del concreto:

$$V_r = 0.75 * 584430 = 438.32 KN$$

Calculo de cortante en el sentido "Y"

INFORMACION COLUMNA "1-S1" PISO 1 ANALISIS A CORTANTE SENTIDO Y							
Н	300	mm					
d	250	mm					
b	b 600						
E	#4						
Av	380	Mm ²					
f'c	21	MPa					
f _v	420	MPa					
φ	φ 0.75						
S	100	mm					

Calculo del cortante resistente que aporta el concreto:

$$V_c = 0.17 \quad 1 + \frac{N_u}{14A_g} \quad \lambda \quad \overline{f'_c} b_w d$$

$$V_c = 0.17 * 1 + \frac{342610}{14 * 180000} * 1 * \overline{21} * 600 * 250 = 132742.95 N$$

Calculo del cortante resistente que aporta el acero

$$V_s = \frac{A_v f_y d}{s}$$

$$V_s = \frac{380 * 420 * 250}{100} = 399000 \, N$$

No se tiene en cuenta la resistencia a cortante del concreto:

$$V_r = 0.75 * 399000 = 299.25 KN$$

3.1.7 Etapa 7

3.1.7.1 Calculo de la resistencia efectiva de los elementos. Según la Norma NSR-10 en el A.10.4.3.4 la resistencia efectiva de los elementos o de la estructura en general se calcula como el producto de la resistencia existente, multiplicada por los coeficientes de reducción de resistencia ϕ_c y ϕ_e que se muestran en la Tabla A.10.4-1, los cuales se asignan según la calificación de la calidad en el diseño y estado de la estructura.

La calificación en cuanto a la calidad del diseño y construcción se definió en la Etapa 3 donde se analiza la estructura en función de la información suministrada. Según el análisis se califica la estructura en cuanto a la calidad del diseño, construcción y estado de la edificación como buena; por este concepto no debe reducirse la resistencia existente de la edificación.

$$\phi_c = 1$$

$$\phi_e = 1$$

3.1.8 Etapa 8

3.1.8.1 Calculo de los Índices de Sobreesfuerzo. El índice de sobreesfuerzo se expresa como el cociente entre las solicitaciones equivalentes, calculadas de acuerdo con A.10.4.2 y la resistencia efectiva. Estos índices tienen dos aceptaciones: Índices de Sobreesfuerzo de los elementos e Índice de Sobreesfuerzo de la estructura.

3.1.8.1.1 Solicitaciones en las vigas de entrepiso. Realizado el análisis estructural en la Etapa 5 se obtienen las fuerzas internas máximas de los elementos "vigas".

Solicitaciones por Flexión

Los resultados de las solicitaciones por flexión del análisis estructural se muestran en el Anexo G

Solicitaciones por Cortante

Los resultados de las solicitaciones por corte del análisis estructural se muestran en el Anexo H

3.1.8.1.2Índices de Sobreesfuerzo de las Vigas de Entrepiso. Los índices de sobreesfuerzo se obtienen para cada uno de los elementos de la estructura para cada uno de los efectos como flexión, cortante, carga axial, Etc. Este índice se consigue dividiendo la fuerza o esfuerzo de la solicitación obtenidas en el análisis estructural, entre la resistencia efectiva del elemento. Los índices de sobreesfuerzo por flexión en vigas se muestran en el Anexo G, por cortante en el Anexo H.

Índice por Flexión

Figura 19. Índice de Sobreesfuerzo por flexión en vigas de entrepiso

Índice por Cortante

Figura 20. Índice de Sobreesfuerzo por corte en vigas entrepiso

3.1.8.1.3 Solicitaciones en las Columnas. Realizado el análisis estructural en la Etapa 5 se obtienen las fuerzas internas máximas de los elementos "Columnas" por cada combinación de carga.

Solicitaciones por Flexo-Compresión

Los resultados de las solicitaciones por Flexo-Compresión en las columnas del análisis estructural se muestran en el Anexo I

Solicitaciones por Cortante

Los resultados de las solicitaciones por cortante del análisis estructural se muestran en el Anexo J. La norma NSR-2010 exige que para estructuras con demanda especial de ductilidad la fuerza cortante de diseño se calcule del equilibrio de la columna en su altura libre, suponiendo que en sus extremos actúan

momentos flectores del mismo sentido, numéricamente iguales a los momentos que representan una aproximación a la resistencia real a flexión de estas secciones, con un factor de sub-resistencia igual a 1.0, y $f_s = 1.25f_y$, obtenidos con la carga axial de diseño que conduzca al mayor momento flector resistente.

Los momentos probables calculados de la columna "1-S1" piso 1 dirección "X" y la longitud libre del elemento se muestra a continuación

$$M_{pr\,sup} = 510.37\,KN - m$$

$$M_{pr\,inf} = 508.30\,KN - m$$

 $L_n = 2.78 m$

$$V = \frac{M_{pr\,sup} + M_{pr\,inf}}{L_n}$$

$$V = \frac{510.37 + 508.30}{2.78} = 366.42 \, KN$$

3.1.8.1.4Índice de Sobre-esfuerzo en Columnas

Índice por Flexo-compresión

Cada columna se analiza para cada combinación de carga las cuales son seis tanto en la parte superior como inferior del elemento y se toma el mayor índice. Dicho cálculo fue basado en la formulación del método de la superficie de falla propuesta por Cheng – Tzu Thomas Hus. A continuación se mostrara el cálculo de la columna "1-S1" piso 1; los resultados de las demás columnas se muestra en el

Anexo I. En el Anexo k se muestra un resumen de los resultados de Índices por Flex-compresión en columnas.

				VALORE	S DE DISENO			VALORES PARA CONDICIONES BALANCEADAS														
				Ν	IVEL								I	VIVEL								
COLUMNA	PISO	CASO DE CARGA	MAX/MIN	P, (kN)	M _{n8} (KN-cm)	M _{nY} (KN-cm)	θ([¢])	P _{nbx} /P _{nx0} (KN)	M _{nbx} /M _{nx0} (KN- cm)	P _{nby} /P _{nyo} (KN)	M _{nby} /M _{nyo} (KN- cm)	P _{n max} (KN)	P _o (KN) Controla Compresion	P _o (KN) Controla Traccion	Δ	P _{nb} (KN)	P _{u min} (KN)		INDICE			
		SUPERIOR											SU	PERIOR								
		1		1088.45	5578.68	8311.50	56.13	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-98.12	1375.78	378	0.38				
		2		1181.18	6618.40	9596.15	55.41	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-96.85	1377.05	378	0.42				
		3	Max	895.64	10717.67	20723.18	62.65	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-109.52	1364.38	378	0.99				
		4	Max	986.50	13755.36	16194.97	49.66	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-86.80	1387.10	378	1.10				
					5	Max	483.51	7982.18	16582.51	64.30	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-112.39	1361.51	378	0.91	1 10
			6	Max	598.12	11412.01	12868.93	48.43	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-84.66	1389.24	378	1.03	1		
		3	Min	1280.55	1141.62	3384.89	71.36	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-124.74	1349.16	378	0.07	-			
		4	Min	1189.69	1896.07	1143.33	31.09	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-54.34	1419.55	378	0.14				
		5	Min	892.18	1201.73	6710.93	79.85	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-139.57	1334.32	378	0.26				
1-51	1	6	Min	801.32	4239.42	2182.71	27.24	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-47.62	1426.28	378	0.40				
				INF	ERIOR			INFERIOR														
		1		1119.29	2806.63	5248.84	61.87	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-108.14	1365.76	378	0.21				
		2		1207.61	3254.50	6378.20	62.97	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-110.07	1363.83	378	0.20				
		3	Max	922.07	5269.74	40469.66	82.58	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-144.35	1329.55	378	1.13				
		4	Max	1012.93	10585.33	22846.69	65.14	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-113.87	1360.03	378	0.97				
		5	Max	508.76	6179.13	41282.18	81.49	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-142.44	1331.46	378	1.38	169			
		6	Max	617.95	11717.26	25145.93	65.02	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-113.65	1360.25	378	1.28				
		3	Min	1306.99	11142.12	51816.65	77.86	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-136.11	1337.79	378	1.67				
		4	Min	1216.13	16457.72	34193.68	64.30	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-112.39	1361.50	378	1.62				
		5	Min	912.00	10010.20	49517.41	78.57	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-137.34	1336.55	378	1.69				
		6	Min	821.14	15325.79	31894.44	64.33	1316.58	16928.13	1473.90	47920.74	3097.43	4129.90	-957.60	-112.46	1361.44	378	1.64				

Figura 21. Tabla Índices por Flexo-compresión

El análisis del índice se efectúa para la combinación 1

$$Indice = \frac{P_n - P_{nb}}{P_o - P_{nb}} + \frac{M_{nx}}{M_{nbx}}^{1.5} + \frac{M_{ny}}{M_{nby}}^{1.5}$$

Se verifica si domina la compresión o la tracción: $P_n = 1088.45 \text{ KN}$ es menor que $P_{nb} = 1375.78 \text{ KN}$, por lo anterior domina la tracción, entonces $P_o = -957.60 \text{ KN}$

Con los datos anteriores se procede a calcular el índice, reemplazando en la ecuación se tiene

$$Indice = \frac{1088.45 - 1375.78}{-957.60 - 1375.78} + \frac{5778.68}{16928.13} + \frac{8311.50}{47920.74} = 0.38$$

Índice de relación entre M_{col}/M_{vig}.

Las memorias de cálculos y resultados se muestran en el Anexo L. En el Anexo M se muestra el resumen de los índices de relación $M_{col}/M_{vig} \ge 1.20$

Figura 23. Índice de relación M_{col}/M_{vig} Sentido X

Figura 24. Índice de relación M_{col}/M_{vig} Sentido Y

Índice por Cortante

Las memoria de cálculos y resultados se muestran en el Anexo J. En el Anexo N se muestra un resumen de los índices por cortante en columnas.

Figura 25. Índice por Cortante Sentido X

Figura 26. Índice por Cortante Sentido Y

3.1.8.2 Verificación de los Nudos. Se verificaron todos los nudos en cada piso y en los dos sentidos, de los cuales las memorias de cálculo se muestran en el Anexo O. En el Anexo P se muestra el resumen de los índices verificación de nudos.

Figura 27. Índice Verificación de Nudos

3.1.8.3 Revisión de la Adherencia y Anclaje. Se realizó un chequeo en cada nudo para verificar que la dimensión de la columna cumpla en cuanto a la adherencia del refuerzo longitudinal que pasa a través de un nudo interior como las condiciones de anclaje del refuerzo de las vigas terminadas con ganchos estándar. Estos requisitos se evaluaron para Estructuras con Demanda Especial de Ductilidad (DES). Los cálculos y resultados por nudos se muestran en el Anexo Q.

3.1.8.4 Solicitaciones y Chequeo de la Cimentación. Realizado el análisis estructural en la Etapa 5 se obtienen las reacciones en la base de la columna, para cargas de servicio; se chequea la cimentación con el programa CYPECAD 2012 K donde se realiza una comprobación de la zapata con su sección y refuerzo existente. Las comprobaciones son para Tensiones sobre el terreno, Flexión en las dos direcciones, cortante etc. A continuación se muestran los resultados para

la zapata "4-S2". Resultados de los demás elementos de cimentación se muestran en el Anexo R.

Figura 29. Zapata 4-S2

Datos de Cargas Servicio

Referencia pilar	Hipótesis	N (kN)	Mx (kN⋅m)	My (kN⋅m)	Qx (kN)	Qy (kN)	T (kN⋅m)
4-S2	Carga permanente	1269.18	-0.52	10.67	-6.43	-6.92	-0.25
	Sobrecarga de uso	442.71	3.74	2.14	1.07	-1.53	-0.11
	E (X)	28.46	86.78	9.40	21.95	6.45	2.40
	E (Y)	89.12	10.81	34.38	3.31	18.92	0.22

Referencia: 4-S2		
Dimensiones: 305 x 275 x 80		
Armados: Xi:#5c/14 Yi:#5c/14		
Comprobación	Valores	Estado
Tensiones sobre el terreno:		
Criterio de CYPE Ingenieros		
 Tensión media en situaciones persistentes: 	Máximo: 0.24 MPa Calculado: 0.223668 MPa	Cumple
 Tensión media en situaciones accidentales sísmicas: 	Máximo: 0.312 MPa Calculado: 0.234263 MPa	Cumple
 Tensión máxima en situaciones persistentes: 	Máximo: 0.29999 MPa Calculado: 0.225532 MPa	Cumple
 Tensión máxima en situaciones accidentales sísmicas: 	Máximo: 0.389947 MPa Calculado: 0.25663 MPa	Cumple
Vuelco de la zapata: Si él % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 1560.0 %	Cumple
- En dirección Y:	Reserva seguridad: 3162.2 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 549.12 kN·m	Cumple
- En dirección Y:	Momento: 612.00 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 359.34 kN	Cumple

Referencia: 4-S2		
Dimensiones: 305 x 275 x 80		
Armados: Xi:#5c/14 Yi:#5c/14		
Comprobación	Valores	Estado
- En dirección Y:	Cortante: 400.84 kN	Cumple
Compresión oblicua en la zapata:		
Criterio de CYPE Ingenieros	Máximo: 6180.3 kN/m ²	
- Situaciones persistentes:	Calculado: 1941.8 kN/m ²	Cumple
- Situaciones accidentales sísmicas:	Calculado: 1603 kN/m ²	Cumple
Canto mínimo:	Mínimo: 21 cm	
Capítulo 15.7 (norma ACI 318M-08)	Calculado: 80 cm	Cumple
Espacio para anclar arranques en cimentación: - 4-S3:	Mínimo: 48 cm Calculado: 72 cm	Cumple
Cuantía geométrica mínima:		
Capítulo 7.12.2.1 (norma ACI 318M-08)	Mínimo: 0.0018	
- Armado inferior dirección X:	Calculado: 0.0018	Cumple
- Armado inferior dirección Y:	Calculado: 0.0018	Cumple
Diámetro mínimo de las barras:		
- Parrilla inferior:	Mínimo: 10 mm	
Criterio de CYPE Ingenieros	Calculado: 15.88 mm	Cumple
Separación máxima entre barras:		
Criterio de CYPE Ingenieros	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 14 cm	Cumple
- Armado inferior dirección Y:	Calculado: 14 cm	Cumple
Separación mínima entre barras:		
Recomendación del libro "Cálculo de estructuras de cimentación", J. Calavera. ed. INTEMAC, 1991	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 14 cm	Cumple
- Armado inferior dirección Y:	Calculado: 14 cm	Cumple

Referencia: 4-S2						
Dimensiones: 305 x 275 x 80						
Armados: Xi:#5c/14 Yi:#5c/14	-	1				
Comprobación	Valores	Estado				
Longitud de anclaje:						
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. ed. INTEMAC,						
1991	Mínimo: 41 cm					
- Armado inf. dirección X hacia der:	Calculado: 77 cm	Cumple				
- Armado inf. dirección X hacia izq:	Calculado: 77 cm	Cumple				
- Armado inf. dirección Y hacia arriba:	Calculado: 77 cm	Cumple				
- Armado inf. dirección Y hacia abajo:	Calculado: 77 cm	Cumple				
Longitud mínima de las patillas:	Mínimo: 25 cm					
- Armado inf. dirección X hacia der:	Calculado: 25 cm	Cumple				
- Armado inf. dirección X hacia izq:	Calculado: 25 cm	Cumple				
- Armado inf. dirección Y hacia arriba:	Calculado: 25 cm	Cumple				
- Armado inf. dirección Y hacia abajo:	Calculado: 25 cm	Cumple				
Se cumplen todas las comprobaciones						

3.1.8.5 Índices de Sobreesfuerzo de la Estructura. Se define según la norma NSR-2010 en A.10.4.3.1 (b) evaluando los elementos con un mayor índice de sobreesfuerzo individual y tomando en consideración su importancia dentro de la resistencia general de la estructura como un conjunto. Para la evaluación se toma como referencia los resultados mostrados en las gráficas anteriores donde muestra el porcentaje de elementos que presentan índices por debajo de la unidad.

Evaluación de los elementos con mayor índice.

En vigas 1, el índice de sobreesfuerzo a flexión estuvo controlado por momento negativo la viga V3-1 entre los ejes S5-1 en el cruce del eje 3 con S5 en la Planta Segundo Piso (Secundaria): $(ISE)_F = 2.59$.

En vigas 2, el índice de sobreesfuerzo a flexión estuvo controlado por momento negativo la viga V3-2 entre los ejes A1-A2 en el cruce del eje 3 con A1 en la Planta Segundo Piso (Administración): $(ISE)_F = 2.28$.

A cortante, el índice de sobreesfuerzo estuvo controlado por la viga V6-2 entre los ejes A1-A2 en el cruce del eje 6 con A2 en la Planta Segundo Piso (Administración): (ISE) $_{V}$ =1.93.

En Columnas, el índice de sobre-esfuerzo a flexo-compresión estuvo controlado por la columna 7 A4, a nivel de primer piso Bloque Administración: $(ISE)_F = 2,80$. A cortante, el índice de sobreesfuerzo estuvo controlado por la columna 5 S4 a nivel Piso 2 (Secundaria): $(ISE)_V=2.36$.

La anterior evaluación se realizó teniendo en cuenta el porcentaje de elementos que presentan índices mayores a 1 y la ubicación dentro de la estructura. Por lo anterior se determina que el índice de Sobreesfuerzo de la estructura es de 1.50 tomado como el mayor índice dentro de los promedios presente en las columnas del primer piso (Secundaria-Administración)

3.1.8.6 Vulnerabilidad por Resistencia.Según la norma NSR-2010 en A.10.5.1 C el inverso del índice de sobreesfuerzo general expresa la vulnerabilidad de la edificación como una fracción de la resistencia que tendría una edificación nueva construida de acuerdo con los requisitos de la presente versión del Reglamento. La vulnerabilidad de la estructura por resistencia es de **1 / 1.5 = 0.67**.

3.1.9 Etapa 9.

3.1.9.1 Determinación de la Deriva máxima de cada piso.Para el cálculo de las derivas se realiza un modelo de desplazamientos donde se define dos casos de respuesta espectral, para cada dirección en planta X y Y. Como se realiza un

análisis modal espectral, los modos se deben realizar por medio de una combinación CQC (Combinación Cuadrática Completa) y la combinación dirección se realizara por medio de SRSS (Raíz Cuadrada de la Suma de los Cuadrados). En la tablas 14 y 15 se muestran los cálculos de la deriva por cada sentido X y Y.

	CALCULO DERIVA DIRECCION X									
NIVEL		PISO	CARGA	PUNTO	DISP-X (m)	DISP-Y (m)	DERIVA (m)	H (m)/PISO	DriftX	DriftX
TANOLIE	19.36	TANQUE	DERIVA X	1767	0.16286	0.03122	0.020	2.0	0.00770	0.78%
TANQUE	15.06	PISO 4 SECUNDARIA	DERIVA X	1604	0.13699	0.0153	0.030	3.5	0.00775	0.78%
	15.06	CUBIERTA SECUNDARIA	DERIVA X	1606	0.14308	0.06994	0.019	25	0.00723	0 7 2 94
CUBIERTA SECUNDARIA	12.16	PISO 4 SECUNDARIA	DERIVA X	999	0.12699	0.06175	0.018	2.5	0.00725	0.7270
- ADMINISTRACION	15.06	CUBIERTA ADMINISTRACION	DERIVA X	1589	0.16305	0.05884	0.016	25	0.00650	0.66%
	12.16	PISO 3 ADMINISTRACION	DERIVA X	978	0.14775	0.05272	0.010	2.5	0.00039	0.0070
	12.16	PISO 4 SECUNDARIA	DERIVA X	999	0.12699	0.06175	0.026	20	0.01297	1 20%
PISO 4 SECUNDARIA -	<mark>8.9</mark> 6	PISO 3 SECUNDARIA	DERIVA X	384	0.09363	0.0474	0.050	2.0	0.01297	1.50%
	12.16	PISO 3 ADMINISTRACION	DERIVA X	978	0.14775	0.05272	0.026	2.8	0.01285	1 20%
ADIVIINISTRACION	8.96	PISO 2 ADMINISTRACION	DERIVA X	363	0.11376	0.04086	0.050			1.29%
PISO 3 SECUNDARIA -	8.96	PISO 2 ADMINISTRACION	DERIVA X	363	0.11376	0.04086	0.121	5.46	0.022139	2.21%
PISO 2	8.96	PISO 3 SECUNDARIA	DERIVA X	384	0.09363	0.0474	0.052	2.49	0.020804	2 0.9%
ADMINISTRACION	6.08	PISO 2 SECUNDARIA	DERIVA X	41	0.04669	0.02598	0.032	2.40	0.020604	2.06%
PISO 2		0100.0		44			0.050	2.40	0.016000	1.000
ADMINISTRACION	6.08	PISO 2	DERIVAX	41	0.04669	0.02598	0.053	3.18	0.016802	1.68%
SOTANO 2	4.8	SOTANO 2	DERIVA X	299	0.04663	0.00645	0.047	4.25	0.011077	1.11%
SOTANO 1	3.2	SOTANO 1	DERIVA X	1	0.01477	0.0112	0.019	2.800	0.006619	0.66%
BASE	0.00	BASE	DERIVA X		0.00	0.00				

Tabla 14. Calculo de la Deriva Sentido X

Tabla 15. Calculo de la Deriva Sentido Y

	CALCULO DERIVA DIRECCION Y									
NIVEL		PISO	CARGA	PUNTO	DISP-X (m)	DISP-Y (m)	DERIVA (m)	H (m)/PISO	DriftX	DriftX
TANOLIE	19.36	TANQUE	DERIVA Y	1767	0.07187	0.0981	0.054	2.0	0.01297	1 20%
TANQUE	15.06	PISO 4 SECUNDARIA	DERIVA Y	1604	0.05978	0.0454	0.054	5.5	0.01567	1.59%
	15.06	CUBIERTA SECUNDARIA	DERIVA Y	1606	0.09064	0.1323	0.022	25	0.00000	0.90%
CUBIERTA SECUNDARIA -	12.16	PISO 4 SECUNDARIA	DERIVA Y	999	0.07989	0.1128	0.022	2.5	0.00665	0.0970
ADMINISTRACION	15.06	CUBIERTA ADMINISTRACION	DERIVA Y	1589	0.10947	0.1057	0.017	25	0.00689	0.60%
	12.16	PISO 3 ADMINISTRACION	DERIVA Y	978	0.098	0.0928	0.017	2.5	0.00009	0.05%
	12.16	PISO 4 SECUNDARIA	DERIVA Y	999	0.07989	0.1128	0.029	20	0.01345	1.35%
PISO 4 SECUNDARIA -	8.96	PISO 3 SECUNDARIA	DERIVA Y	384	0.05847	0.0818	0.056	2.0	0.01545	
PISO 3 ADMINISTRACION	12.16	PISO 3 ADMINISTRACION	DERIVA Y	978	0.098	0.0928	0.024	20	0.01107	1 20%
	8.96	PISO 2 ADMINISTRACION	DERIVA Y	363	0.07452	0.0689	0.034	2.0	0.01197	1.2070
	8.96	PISO 2 ADMINISTRACION	DERIVA Y	363	0.07452	0.0689	0.101	5.46	0.018587	1.86%
	8.96	PISO 3 SECUNDARIA	DERIVA Y	384	0.05847	0.0818	0.049	2.49	0.010414	1 0 / 04
PISU Z ADIVINISTRACION	6.08	PISO 2 SECUNDARIA	DERIVA Y	41	0.0292	0.0436	0.040	2.40	0.019414	1.9470
PISO 2 ADMINISTRACION	6.08	PISO 2	DERIVA Y	41	0.0292	0.0436	0.052	3.18	0.016506	1.65%
SOTANO 2	4.8	SOTANO 2	DERIVA Y	299	0.02739	0.013	0.030	4.25	0.007132	0.71%
SOTANO 1	3.2	SOTANO 1	DERIVA Y	1	0.00633	0.0158	0.017	2.800	0.006082	0.61%
BASE	0.00	BASE	DERIVA Y		0.00	0.00				

3.1.10 Etapa 10

3.1.10.1 Cálculo del Índice de FlexibilidadEl índice de flexibilidad indica la susceptibilidad de la estructura a tener deflexiones o derivas excesivas, con respecto a las permitidas por la Norma NSR-2010. Este índice tiene dos aceptaciones: Índice de flexibilidad del piso e Índice de flexibilidad de la estructura.

Índice de Flexibilidad del Piso

Según la norma NSR-2010 en A.10.4.3.5 (a) el índice de flexibilidad del piso se define como el cociente entre la deflexión o deriva obtenida del análisis de la estructura, y la permitida por el reglamento, para cada uno de los pisos de la edificación. Para el cálculo del índice de Flexibilidad se determinaron las derivas máximas de cada piso (deformación/altura del piso) y se compararon con el límite establecido por las Normas NSR-2010: Dmáxima = 1,0 %). En la Tabla 8 se muestran los índices de flexibilidad por piso.

	INDICES DE FLEXIBILIDAD POR PISO								
PISO	NIVEL	CARGA	DriftX	DriftX	Drift (Max)	INDICE (X)	INDICE (Y)		
	19.36	DERIVA X	0.78%		1%	0.78			
TANQUE	19.36	DERIVA Y		1.39%	1%		1.39		
CUBIERTA SECUNDARIA -	15.06	DERIVA X	0.72%		1%	0.72			
ADMINISTRACION	15.06	DERIVA Y		0.89%	1%		0.89		
PISO 4 SECUNDARIA -	12.16	DERIVA X	1.29%		1%	1.29			
PISO 3 ADMINISTRACION	12.16	DERIVA Y		1.35%	1%		1.35		
PISO 3 SECUNDARIA -	8.96	DERIVA X	2.21%		1%	2.21			
PISO 2 ADMINISTRACION	8.96	DERIVA Y		1.86%	1%		1.86		
	6.08	DERIVA X	1.68%		1%	1.68			
PISO 2 ADMINISTRACION	6.08	DERIVA Y		1.65%	1%		1.65		
	4.8	DERIVA X	1.11%		1%	1.11			
SOTANO 2	4.8	DERIVA Y		0.71%	1%		0.71		
	3.2	DERIVA X	0.66%		1%	0.66			
SOTANO 1	3.2	DERIVA Y		0.61%	1%		0.61		
BASE	0.00		0.00	0.00	1%				

Figura 30. Índice por Flexibilidad

3.1.10.2 Índice de Flexibilidad del de la Estructura. Según la norma NSR-2010 en A.10.4.4.5 (b) el Índice de flexibilidad de la estructura está definido como el mayor valor de los índices de flexibilidad de piso de toda la estructura. De acuerdo a la tabla 8 El índice de flexibilidad estuvo controlado por la deriva en el sentido X, relativa entre el nivel de Piso 3 Secundaria - Piso 2 Administración y el Piso 2 Administración. El valor obtenido fue: I F = 2.21.

3.1.10.3 Vulnerabilidad por flexibilidad. El inverso del índice de flexibilidad general expresa la vulnerabilidad sísmica de la edificación como una fracción de la rigidez que tendría una edificación nueva construida de acuerdo con los requisitos de la Norma NSR-2010. El inverso del índice de flexibilidad de la estructura es: 1 / 2.21=0.45.

3.2 ANALISIS ESTATICO NO LINEAL "PUSHOVER"

3.2.1 Definición del Modelo para el Análisis "Pushover".

Se realizara el análisis "Pushover" con la versión No Lineal del programa SAP 2000 versión 14.1 en concordancia con los lineamientos propuestos por el ATC 40 y el reporte del FEMA 356; se debe tener en cuenta que la estructura por su gran número de elementos, columnas y vigas se le asignara las rotulas plásticas automáticamente teniendo en cuenta que para las vigas se usan Table 6-7 (Concrete Beams-Flexure) Item i del FEMA 356 y para columnas Table 6-8 (Concrete Columns-Flexure) Item i del FEMA 356. Los gráficos de momento Vs curvatura realizados por el programa internamente tienen similitud con los elaborados manualmente.

Para las estructuras con pórticos resistentes a momentos las rotulas se forman tanto para vigas como para columnas cerca de los nudos donde se presentan las mayores solicitaciones de carga, por la gran flexibilidad del sistema.

3.2.2 Definición de los Puntos de Plastificación

3.2.2.1 Definición de Vigas. Las vigas son elementos donde predomina la flexión por lo tanto la rotulación se da en (M3). Para ello se define las características de los materiales, la sección y el área de acero asignada según los planos de despiece de vigas, instalada cerca a los nudos tanto en la parte superior como inferior Figura 31.

	Control 1 arameters			т Гуре
Point	Moment/SF	Rotation/SF		Moment - Rotation
E-	-0.2	-0.0426		
D-	-0.2	-0.0231		C Moment - Curvature
C-	-1.1	-0.0231		Hinge Length
B-	-1.	0.	• • •	Relative Length
A	0.	0.		
В	1.	0.		Hysteresis Type and Parameters
C	1.1	0.025		Husteresis Tupe
D	0.2	0.025		Isotropic
E	0.2	0.05		No Parameters Are Required For This
C Is Extr	apolated			
C Is Extr caling for I Use Yi Use Yi	apolated Moment and Rotation ield Moment Mom ield Rotation Rota Objects Dolu)	Positive ient SF 99.0376	Negative 217.4197 1.	
C Is Extr caling for I Use YI Use YI (Steel I cceptance	apolated Moment and Rotation ield Moment Mom ield Rotation Rota Objects Only) a Criteria (Plastic Rota	Positive lent SF 99.0376 ltion SF 1.	Negative 217.4197 1.	
C Is Extr caling for I Use Yi Use Yi (Steel I cceptance	apolated Moment and Rotation Ield Moment Mom Ield Rotation Rota Objects Only) a Criteria (Plastic Rota	Positive ent SF 99.0376 tion SF 1. ation/SF) Positive	Negative 217.4197 1. Negative]
C Is Extr caling for I Use Yi (Steel I cceptance	apolated Moment and Rotation Ield Moment Mom Ield Rotation Rota Objects Only) a Criteria (Plastic Rota ediate Occupancy	Positive lent SF 99.0376 ition SF 1. ation/SF) Positive [0.01	Negative 217.4197 1. Negative]
C Is Extr caling for I Use Yi (Steel I cceptance Imme	apolated Moment and Rotation ield Moment Mom reld Rotation Rota Dbjects Only) e Criteria (Plastic Rota ediate Occupancy Safety	Positive ent SF 99.0376 ition SF 1. ation/SF) Positive [0.01 0.02	Negative 217.4197 1. Negative -8.144E-03 -0.0163	
C is Extr caling for I Use Yi (Steel cceptance Imme Life :	apolated Moment and Rotation Ield Moment Mom Ield Rotation Rota Dhjects Only) e Criteria (Plastic Rota adiate Occupancy Safety	Positive ent SF 99.0376 tion SF 1. ation/SF) Positive 0.01 0.02 0.025	Negative 217.4197 1. Negative -8.144E-03 -0.0163 0.0221	OK [Cancel]

Figura 31. Momento Vs Curvatura Viga V1-1 (S1-S2) (60X40).

Asignación de Rotula platica de la sección viga V1-1 (S1-S2) (60X40)

3.2.2.2 Definición de Columnas. Las columnas son elementos estructurales sometidos a cargas flexo-compresión, por lo tanto se da la rotulación en (PMM). Para ello se define las características de los materiales, la sección y el área de acero se asignada según los planos de despiece de columnas, instalada en toda su longitud. A continuación se define la rotulas de las Columnas Figuras 32 y 33.

Rotula Plástica de la Columna (1-S1) Piso 1 Bloque Secundaria.

Figura 32. Diagrama de Iteración Columna 1-S1 Piso 1 Bloque Secundaria (30x60).

Figura 33. Momento Vs Curvatura Columna 1-S1 Piso 1 Bloque Secundaria

(30x60).

3.2.3 Definición de las Representaciones de Cargas.

El análisis estático no lineal "Pushover", es un análisis donde las cargas son aplicadas de manera incremental, siguiendo un esquema de carga predefinida, capaz de representar la secuencia de plastificaciones en los elementos hasta alcanzar los mecanismos de colapso de la estructura. Hay diferentes esquemas de aplicación de cargas que van desde aplicar una simple carga concentrada en el tope de la estructura hasta esquema de cargas laterales en cada piso, constantes, crecientes o proporcionales al producto de la masa del piso por la coordenada modal asociada a la forma de vibración seleccionada. En el análisis que se realizado, se aplicaron diferentes esquemas de carga, en dos fase; la primera, un estado de cargas gravitacionales, que toman en cuenta la totalidad de las cargas muertas permanentes sobre la estructura y una fracción representativa de las cargas vivas equivalente al 25% de la misma; con el objeto de simular el estado de solicitaciones preexistente impuesto por las acciones gravitacionales. Seguidamente un esquema de deformaciones controlado asociado al producto de la masa del piso por la coordenada modal a la forma de vibración de la estructura, con respecto a las acciones impuestas por el movimiento sísmico. En la Figura 34 Se muestra la definición del estado de cargas gravitacionales.

Load Case Data - Nonlinear Static									
Load Case Name Notes CGNL Set Def Name Modify/Show	Load Case Type Static Design								
Cero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case Important Note: Loads from this previous case are included in the current case	C Linear C Nonlinear C Nonlinear Staged Construction Geometric Nonlinearity Parameters								
All Modal Loads Applied Use Modes from Case MODAL Loads Applied Load Type Load Name Scale Factor Load Pattern CM 1. Load Pattern CM 0.25 Modify Delete	 None P-Delta P-Delta plus Large Displacements 								
Other Parameters Load Application Full Load Modify/Show Results Saved Final State Only Modify/Show Nonlinear Parameters Default Modify/Show	Cancel								

Figura 34. Definición de Estado de Cargas Gravitacionales

3.2.4 Resultados del Análisis "Pushover"

Diferentes tipos de resultados que pueden ser obtenidos a partir de un análisis "Pushover", entre los que se destacan fundamentalmente, la curva de capacidad, el espectro de capacidad, así como, la evolución de cada punto de plastificación.

El espectro para este análisis se definió según el sitio donde se encuentra la estructura construida, que corresponde para el Municipio de Floridablanca-Santander; todos los parámetros se encuentran definidos en la Etapa 4 del procedimiento de la evaluación de la intervención. Como en este caso, el espectro de demanda ha sido derivado a partir del espectro de respuesta elástico de aceleración, asociado a una forma espectral, para una fracción de amortiguamiento del 5%, definido por la norma NSR-10 para edificaciones sismo resistentes; para ajustar este espectro al que tiene el Programa SAP 2000 V14.1 por defecto se realiza a través de los coeficientes sísmicos CA y CV Figura 35, que definen la construcción de los espectros de respuesta elásticos (ATC-40, 1996), donde el coeficiente sísmico CA, representa la aceleración horizontal máxima del terreno y está relacionada con los niveles de amenaza de la región.

Figura 35. Construcción Espectro Elástico 5% amortiguamiento (ATC-40, 1996).

3.2.4.1 Análisis Pushover Dirección X. Después de definido el caso de carga No Lineal para el estado de carga gravitacional se procede a definir el estado de cargas laterales la cual es equivalente a las acciones impuestas por el movimiento sísmico. Se adoptó el caso de carga designado Accel "UX", la Figura 36 muestra los parámetros de entrada para el análisis.

Figura 36. Definición de los parámetros del estado de carga lateral Pushover X.

oad Care Data - Nonlinear Static	11 Hours
Load Case Name	Load Case Type Static
Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case Important Note: Loads from this previous case are included in the current case	C Linear Nonlinear Nonlinear Staged Construction
Modal Load Case All Modal Loads Applied Use Modes from Case Loads Applied	Geometric Nonlinearity Parameters
Load Type Load Name Scale Factor Accel UX -1. Accel UX -1.	
Other Parameters Load Application Displ Control Modify/Show Results Saved Multiple States Modify/Show Nonlinear Parameters User Defined Modify/Show	Cancel

Figura 37. Definición del punto de control nivel cubierta Pushover X.

_ l oa	d Application Control								
0	Full Load								
¢	Displacement Control								
Cor	trol Displacement								
0	C Use Conjugate Displacement								
•	 Use Monitored Displacement 								
Lo	ad to a Monitored Displacement Magnitude of 0.15								
Loa Mor	ad to a Monitored Displacement Magnitude of 0.15								
– Mor	ad to a Monitored Displacement Magnitude of 0.15 nitored Displacement DOF U1 • at Joint 1589								
Loa Mor	ad to a Monitored Displacement Magnitude of 0.15 nitored Displacement DOF U1 at Joint 1589 Generalized Displacement								

La Tabla 17, se muestran los resultados de la curva de capacidad asociados a la estructura en la dirección X (modelo – Figura 40), expresados en términos del desplazamiento lateral (mts), del nodo 1589, ubicado en el nivel de cubierta de la edificación en relación con el corte basal (KN). La Figura 38, muestra gráficamente la curva de capacidad, que mantiene su linealidad hasta alcanzar un desplazamiento en el tope de la edificación de 0.014524 m. A partir de este punto (Paso 10), se inicia una secuencia de plastificaciones en los diferentes elementos estructurales (vigas, columnas), cuya evolución se resume en la Tabla 17.

TABLE: Pushover Curve - PUSHOVER X											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0.000135	0	701	1	0	0	0	0	0	0	702
1	0.001365	315.959	701	1	0	0	0	0	0	0	702
2	0.002865	631.919	701	1	0	0	0	0	0	0	702
3	0.004365	947.878	701	1	0	0	0	0	0	0	702
4	0.005865	1263.837	701	1	0	0	0	0	0	0	702
5	0.007365	1579.797	701	1	0	0	0	0	0	0	702
6	0.008865	1895.756	701	1	0	0	0	0	0	0	702
7	0.010365	2211.715	701	1	0	0	0	0	0	0	702
8	0.011865	2527.675	701	1	0	0	0	0	0	0	702
9	0.012426	2645.751	700	2	0	0	0	0	0	0	702
10	0.014524	3082.071	697	5	0	0	0	0	0	0	702
11	0.01612	3410.195	694	8	0	0	0	0	0	0	702
12	0.01762	3717.213	694	8	0	0	0	0	0	0	702
13	0.020079	4189.948	690	12	0	0	0	0	0	0	702
14	0.021666	4463.771	687	15	0	0	0	0	0	0	702
15	0.023965	4831.287	680	22	0	0	0	0	0	0	702
16	0.026049	5114.259	676	26	0	0	0	0	0	0	702
17	0.028284	5377.08	664	38	0	0	0	0	0	0	702
18	0.029938	5545.887	657	45	0	0	0	0	0	0	702
19	0.031873	5720.909	651	51	0	0	0	0	0	0	702
20	0.033982	5889.997	642	60	0	0	0	0	0	0	702
21	0.035482	6003.355	640	62	0	0	0	0	0	0	702
22	0.037476	6137.207	638	64	0	0	0	0	0	0	702

Tabla 17. Datos Curva de capacidad Pushover X

TABLE: Pushover Curve - PUSHOVER X											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
23	0.038976	6241.376	636	66	0	0	0	0	0	0	702
24	0.040476	6337.604	635	67	0	0	0	0	0	0	702
25	0.042655	6477.531	631	71	0	0	0	0	0	0	702
26	0.044637	6588.533	628	74	0	0	0	0	0	0	702
27	0.046718	6689.038	619	83	0	0	0	0	0	0	702
28	0.048653	6765.142	616	82	4	0	0	0	0	0	702
29	0.050153	6824.112	615	82	5	0	0	0	0	0	702
30	0.051653	6880.488	613	83	6	0	0	0	0	0	702
31	0.054404	6978.928	606	85	11	0	0	0	0	0	702
32	0.056844	7060.209	601	84	17	0	0	0	0	0	702
33	0.059303	7138.719	598	83	21	0	0	0	0	0	702
34	0.060803	7185.695	595	83	24	0	0	0	0	0	702
35	0.06366	7276.139	594	81	27	0	0	0	0	0	702
36	0.066367	7359.413	588	86	28	0	0	0	0	0	702
37	0.067867	7404.345	588	83	31	0	0	0	0	0	702
38	0.069367	7449.277	587	81	34	0	0	0	0	0	702
39	0.070867	7494.752	584	82	36	0	0	0	0	0	702
40	0.073698	7578.411	579	84	39	0	0	0	0	0	702
41	0.075198	7614.892	577	85	40	0	0	0	0	0	702
42	0.076698	7657.955	576	84	42	0	0	0	0	0	702
43	0.078198	7693.847	575	82	45	0	0	0	0	0	702
44	0.079698	7729.604	573	81	48	0	0	0	0	0	702
45	0.081198	7769.438	572	82	48	0	0	0	0	0	702
46	0.082698	7806.373	570	83	49	0	0	0	0	0	702
47	0.084198	7842.447	569	80	53	0	0	0	0	0	702
48	0.085698	7879.235	569	78	55	0	0	0	0	0	702
49	0.087198	7917.121	569	77	56	0	0	0	0	0	702
50	0.088698	7958.681	569	75	58	0	0	0	0	0	702
51	0.090198	7999.229	568	76	58	0	0	0	0	0	702
52	0.091698	8037.929	566	77	59	0	0	0	0	0	702
53	0.093198	8072.317	563	80	59	0	0	0	0	0	702
54	0.094698	8113.308	562	78	62	0	0	0	0	0	702
55	0.096198	8154.958	561	79	62	0	0	0	0	0	702
56	0.099173	8228.327	560	79	63	0	0	0	0	0	702
57	0.10206	8299.012	558	81	63	0	0	0	0	0	702
58	0.10356	8332.004	558	81	63	0	0	0	0	0	702
59	0.10506	8365.542	557	82	63	0	0	0	0	0	702
60	0.10656	8398.673	557	82	63	0	0	0	0	0	702
-	TABLE: Pushove	er Curve - PUS	HOVER	Х							
------	----------------	----------------	-------	-------	--------	--------	-------	------	------	---------	-------
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
61	0.10806	8433.162	554	84	64	0	0	0	0	0	702
62	0.10956	8466.717	554	84	64	0	0	0	0	0	702
63	0.11106	8503.89	553	85	63	1	0	0	0	0	702
64	0.11256	8538.882	551	85	64	2	0	0	0	0	702
65	0.11406	8574.607	550	85	65	2	0	0	0	0	702
66	0.11556	8609.201	550	84	64	4	0	0	0	0	702
67	0.11713	8645.035	548	85	63	6	0	0	0	0	702
68	0.11863	8678.222	546	87	60	9	0	0	0	0	702
69	0.120955	8719.171	544	85	62	10	0	0	1	0	702
70	0.113309	10679.478	514	114	63	10	0	0	1	0	702

Figura 38. Curva de Capacidad Pushover X

Para cada uno de los incrementos de cargas del análisis Pushover, se visualizar la evolución de cada punto de plastificación y la secuencia de plastificaciones, en

una escala de colores, referidos a los puntos característicos de los diagramas de repuesta no lineal y los límites de deformación asociados a los diferentes niveles de desempeño establecidos. La Figura 39, muestra el momento en el cual la estructura inicia la incursión en el rango inelástico donde se presenta la primera plastificación (Paso 10) y la Figura 40, muestra la evolución y secuencia de plastificaciones alcanzadas para un desplazamiento de 0.113309 m (Paso 70), donde se evidencia un estado avanzado de daño en los elementos estructurales (Vigas y Columnas) que en la mayoría se empieza la cedencias a flexión y plastificación en los extremos de las columnas del primer piso Administración.

Figura 39. Inicio de Plastificación Paso 10

Figura 40. Evolución de Plantificación Paso 70

3.2.4.2 Clasificación de la Respuesta Sísmica "Pushover X". Para estimar la respuesta máxima de la edificación ante un movimiento sísmico y calificar su desempeño, es necesario comparar la capacidad del sistema con los niveles de demanda sísmica esperados. La superposición del espectro de capacidad con el espectro de demanda, permite estimar de una manera práctica, la respuesta máxima del sistema necesaria para calificar su desempeño sísmico.

Las Figura 41, muestran los resultados obtenidos luego de superponer, en un formato de representación ADRS, el espectro de capacidad, con los espectros de demanda, asociado al nivel de amenaza sísmica que corresponde a un Sismo de Diseño. Para este caso, se destaca el punto de desempeño, donde se iguala la capacidad con la demanda, a través de la intersección del espectro de capacidad con el espectro de demanda, ajustado para un factor de amortiguamiento global compatible con el nivel de deformación esperado, de acuerdo a lo descrito en el apartado 1.3.2del capítulo 1. La Tabla 18, se resume los resultados obtenidos de

amenaza sísmica, destacando, además de los valores espectrales de pseudoaceleración y pseudo-desplazamiento del punto de desempeño (Sa, Sd), los correspondientes valores del corte basal y desplazamiento máximo (V, D) y las propiedades dinámicas efectivas asociadas a dicho nivel de deformaciones (Teff, βeff).

Tabla 18. Resultado para el Nivel de Amenaza Sísmica.

Nivel de Amenaza	S _a (g)	S _d (m)	V (KN)	D (m)	Teff (seg.)	β eff
Sismo de Diseño (SD)	0.368	0.101	8629.524	0.116	1.052	0.311

Con la información suministrada en la Figura 41 se indica la secuencia de rotulación de la estructura hasta que el punto 1589 a nivel de cubierta alcanza una

deformación de 0.116 m en el Paso 63 donde se aprecia en la Tabla 17, que sobre un total de 702 puntos de plastificación pertenecientes a la estructura tenga la siguiente distribución según su desempeño: el 78.77% se mantienen en el rango elástico (A-B), 12.10% supera el punto de cedencia, manteniéndose por debajo del límite de desempeño asociado a inmediata ocupación (B-IO), 8.97% está entre los límites de inmediata ocupación y seguridad de la vida (IO-LS) y 0.14% superó el límite de estabilidad estructural y de prevención del colapso (>CP).

La revisión de los niveles de degradación globales de la edificación, definidos por la evolución de las plastificaciones de los diversos elementos estructurales ante el nivel de amenaza sísmica definida en la norma NSR-10, se permite concluir que para un nivel de demanda sísmica correspondiente a un Sismo de Diseño (SD) aproximadamente el 12.10% alcanzan la deformación cedente por debajo de los limites admisibles asociados al estado de inmediata ocupación, el 8.9% alcanza la deformación cedente los cuales se encuentran en los límites de inmediata ocupación y seguridad de la vida, donde la mayoría de estos elementos corresponden a las columnas del primer piso del bloque de secundaria. Menos del 1% supero el límite de estabilidad estructural y prevención del colapso. Cuando se tiene el sismo actuando en el sentido de eje "X" (Sismo X) la edificación se mantiene estable pero puede sufrir daños ligeros en elementos estructurales y danos severos en los elementos no estructurales.

El desempeño esperado de la edificación según los objetivos de diseño implícitos en la propuesta del Comité VISION 2000 (SEAOC, 1995), para edificaciones esenciales dados en la Tabla 6 La estructura por ser un colegio; sus elementos estructurales deberían estar por debajo de los límites admisibles asociados al estado de inmediata ocupación; por lo tanto se considera realizar un reforzamiento a la estructura con el fin de mejorar las condiciones estructurales de sus elementos. **3.2.4.3Análisis Pushover Dirección Y.** Después de definido el caso de carga No Lineal para el estado de carga gravitacional se procede a definir el estado de cargas laterales la cual es equivalente a las acciones impuestas por el movimiento sísmico. Se adoptó el caso de carga designado Accel "UY", la Figura 42 muestra los parámetros de entrada para el análisis.

Figura 42. Definición de los parámetros del estado de carga lateral Pushover

Load Case Name Notes	Load Case Type
PUSHOVER Y Set Def Name Modify/Show	Static 💌 Design
Initial Conditions	Analysis Type
Zero Initial Conditions - Start from Unstressed State	C Linear
○ Continue from State at End of Nonlinear Case	 Nonlinear
Important Note: Loads from this previous case are included in the current case	O Nonlinear Staged Construction
Modal Load Case	Geometric Nonlinearity Parameters
All Modal Loads Applied Use Modes from Case MODAL 💌	None
Loads Applied	C P-Delta
Load Type Load Name Scale Factor	C P-Delta plus Large Displacements
Accel VIY V-1.	
Accel UY -1. Add	
Modify	
Delete	
, , ,	
Other Parameters	7
Load Application Displ Control Modify/Show	<u> </u>
Results Saved Multiple States Modify/Show	Cancel
Here Defined	

Y.

Figura 43. Definición o	lel punto de control ni	vel cubierta Pushover Y
-------------------------	-------------------------	-------------------------

L	oad Application Control for Nonlinear Static Analysis	
	Load Application Control	
	C Full Load	
	 Displacement Control 	
	Control Displacement	
	C Use Conjugate Displacement	
	 Use Monitored Displacement 	
	Load to a Monitored Displacement Magnitude of 0.13	
	Monitored Displacement	
	ODF U2 ▼ at Joint 1591	
	C Generalized Displacement	
	Cancel	

La Tabla 19, se muestran los resultados de la curva de capacidad asociados a la estructura en la dirección Y (modelo – Figura 46), expresados en términos del desplazamiento lateral (mts), del nodo 1591, ubicado en el nivel de cubierta de la edificación en relación con el corte basal (KN). La Figura 44, muestra gráficamente la curva de capacidad, que mantiene su linealidad hasta alcanzar un desplazamiento en el tope de la edificación de 0.028048 mts. A partir de este punto (Paso 21), se inicia una secuencia de plastificaciones en los diferentes elementos estructurales (vigas, columnas), cuya evolución se resume en la Tabla 19.

TAB	E: Pushover Cu										
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	0.000277	0	699	1	0	0	0	0	0	0	700
1	0.001577	360.475	699	1	0	0	0	0	0	0	700
2	0.002877	720.949	699	1	0	0	0	0	0	0	700
3	0.004177	1081.424	699	1	0	0	0	0	0	0	700
4	0.005477	1441.898	699	1	0	0	0	0	0	0	700
5	0.006777	1802.373	699	1	0	0	0	0	0	0	700
6	0.008077	2162.848	699	1	0	0	0	0	0	0	700
7	0.009377	2523.322	699	1	0	0	0	0	0	0	700
8	0.010677	2883.797	699	1	0	0	0	0	0	0	700
9	0.011977	3244.271	698	2	0	0	0	0	0	0	700
10	0.013277	3604.32	698	2	0	0	0	0	0	0	700
11	0.014577	3964.368	698	2	0	0	0	0	0	0	700
12	0.015877	4324.416	698	2	0	0	0	0	0	0	700
13	0.017177	4684.465	698	2	0	0	0	0	0	0	700
14	0.018477	5044.513	698	2	0	0	0	0	0	0	700
15	0.019777	5404.561	698	2	0	0	0	0	0	0	700
16	0.021077	5764.61	698	2	0	0	0	0	0	0	700
17	0.022027	6027.583	697	3	0	0	0	0	0	0	700
18	0.023327	6386.252	697	3	0	0	0	0	0	0	700
19	0.024627	6744.921	697	3	0	0	0	0	0	0	700
20	0.026441	7244.53	694	6	0	0	0	0	0	0	700
21	0.028048	7683.477	691	9	0	0	0	0	0	0	700
22	0.030102	8238.349	688	12	0	0	0	0	0	0	700
23	0.031402	8509.413	685	15	0	0	0	0	0	0	700
24	0.032858	8788.276	681	19	0	0	0	0	0	0	700
25	0.035107	9068.605	675	25	0	0	0	0	0	0	700
26	0.03765	9333.468	669	31	0	0	0	0	0	0	700
27	0.039093	9470.235	665	35	0	0	0	0	0	0	700
28	0.040514	9597.658	661	39	0	0	0	0	0	0	700
29	0.042359	9754.372	659	41	0	0	0	0	0	0	700
30	0.043659	9890.925	659	41	0	0	0	0	0	0	700
31	0.045751	10083.62	655	45	0	0	0	0	0	0	700
32	0.047656	10239.148	649	51	0	0	0	0	0	0	700
33	0.049541	10388.761	645	55	0	0	0	0	0	0	700
34	0.051568	10542.414	637	63	0	0	0	0	0	0	700

Tabla 19. Datos Curva de capacidad Pushover Y

TAB	E: Pushover Cu	/ER Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
35	0.053453	10681.223	632	68	0	0	0	0	0	0	700
36	0.055777	10848.537	625	75	0	0	0	0	0	0	700
37	0.057077	10960.485	624	76	0	0	0	0	0	0	700
38	0.058917	11094.883	618	82	0	0	0	0	0	0	700
39	0.060217	11180.12	614	86	0	0	0	0	0	0	700
40	0.062617	11356.21	602	98	0	0	0	0	0	0	700
41	0.063995	11441.043	595	103	2	0	0	0	0	0	700
42	0.065976	11559.739	591	105	4	0	0	0	0	0	700
43	0.06827	11693.368	585	108	7	0	0	0	0	0	700
44	0.070161	11800.408	582	110	8	0	0	0	0	0	700
45	0.071461	11871.936	576	116	8	0	0	0	0	0	700
46	0.073967	12024.611	568	122	10	0	0	0	0	0	700
47	0.075267	12092.087	567	122	11	0	0	0	0	0	700
48	0.077708	12218.736	563	126	11	0	0	0	0	0	700
49	0.08024	12348.83	557	131	12	0	0	0	0	0	700
50	0.08154	12413.85	554	133	13	0	0	0	0	0	700
51	0.08284	12479.322	552	131	17	0	0	0	0	0	700
52	0.085093	12590.94	546	137	17	0	0	0	0	0	700
53	0.086393	12654.093	544	138	18	0	0	0	0	0	700
54	0.087693	12715.8	541	140	19	0	0	0	0	0	700
55	0.088993	12801.54	540	140	20	0	0	0	0	0	700
56	0.090293	12861.34	537	143	20	0	0	0	0	0	700
57	0.092728	12969.7	534	145	21	0	0	0	0	0	700
58	0.094028	13027.881	532	144	24	0	0	0	0	0	700
59	0.095328	13084.815	531	144	25	0	0	0	0	0	700
60	0.096628	13141.669	530	143	27	0	0	0	0	0	700
61	0.097928	13198.217	529	143	28	0	0	0	0	0	700
62	0.099228	13254.388	528	143	29	0	0	0	0	0	700
63	0.100528	13310.089	524	147	29	0	0	0	0	0	700
64	0.103071	13417.467	519	151	30	0	0	0	0	0	700
65	0.104371	13471.886	519	149	32	0	0	0	0	0	700
66	0.106955	13600.171	515	153	32	0	0	0	0	0	700
67	0.108255	13653.091	513	154	33	0	0	0	0	0	700
68	0.109555	13702.978	509	158	33	0	0	0	0	0	700
69	0.111844	13789.053	504	160	36	0	0	0	0	0	700
70	0.113144	13837.704	503	161	36	0	0	0	0	0	700
71	0.114444	13884.981	500	162	38	0	0	0	0	0	700
72	0.115744	13930.847	498	163	39	0	0	0	0	0	700

TAB	E: Pushover Cu	Irve - PUSHO	/ER Y								
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
73	0.117044	13976.646	497	163	40	0	0	0	0	0	700
74	0.119633	14067.661	494	160	46	0	0	0	0	0	700
75	0.122128	14154.63	490	156	54	0	0	0	0	0	700
76	0.124683	14259.288	484	158	56	2	0	0	0	0	700
77	0.125983	14304.533	482	158	58	2	0	0	0	0	700
78	0.127283	14347.587	481	157	60	2	0	0	0	0	700
79	0.128583	14391.077	481	157	60	2	0	0	0	0	700
80	0.129883	14434.693	479	159	58	4	0	0	0	0	700
81	0.130277	14451.642	479	157	60	4	0	0	0	0	700

Para cada uno de los incrementos de cargas del análisis Pushover, se visualizar la evolución de cada punto de plastificación y la secuencia de plastificaciones, en una escala de colores, referidos a los puntos característicos de los diagramas de repuesta no lineal y los límites de deformación asociados a los diferentes niveles

de desempeño establecidos. La Figura 45, muestra el momento en el cual la estructura inicia la incursión en el rango inelástico donde se presenta la primera plastificación (Paso 20) y la Figura 46, muestra la evolución y secuencia de plastificaciones alcanzadas para un desplazamiento de 0.113309 m (Paso 81), donde se evidencia un estado avanzado de daño en los elementos estructurales (Vigas y Columnas) que en la mayoría se empieza la cedencias a flexión y plastificación en los extremos de las columnas del primer piso Administración.

Figura 45. Inicio de Plastificación Paso 20

Figura 46. Evolución de Plantificación 81

3.2.4.4Clasificación de la Respuesta Sísmica "Pushover Y". Para estimar la respuesta máxima de la edificación ante un movimiento sísmico y calificar su desempeño, es necesario comparar la capacidad del sistema con los niveles de demanda sísmica esperados. La superposición del espectro de capacidad con el espectro de demanda, permite estimar de una manera práctica, la respuesta máxima del sistema necesaria para calificar su desempeño sísmico.

Las Figura 47, muestran los resultados obtenidos luego de superponer, en un formato de representación ADRS, el espectro de capacidad, con los espectros de demanda, asociado al nivel de amenaza sísmica que corresponde a un Sismo de Diseño. Para este caso, se destaca el punto de desempeño, donde se iguala la capacidad con la demanda, a través de la intersección del espectro de capacidad con el espectro de demanda, ajustado para un factor de amortiguamiento global compatible con el nivel de deformación esperado, de acuerdo a lo descrito en el apartado 1.3.2 del capítulo 1. La Tabla 20, se resume los resultados obtenidos de

amenaza sísmica, destacando, además de los valores espectrales de pseudoaceleración y pseudo-desplazamiento del punto de desempeño (Sa, Sd), los correspondientes valores del corte basal y desplazamiento máximo (V, D) y las propiedades dinámicas efectivas asociadas a dicho nivel de deformaciones (Teff, βeff).

Figura 47. Espectro de Capacidad Vs Demanda en Y.

Tabla 20. Resultado para el Nivel de Amenaza Sísmica.

Nivel de Amenaza	S _a (g)	S _d (m)	V (KN)	D (m)	Teff (seg.)	β eff
Sismo de Diseño (SD)	0.547	0.043	10700.209	0.054	0.565	0.213

Con la información suministrada en la Figura 47se indica la secuencia de rotulación de la estructura hasta que el punto 1591 a nivel de cubierta alcanza una

deformación de 0.054 m en el Paso 35 donde se aprecia en la Tabla 19, que sobre un total de 700 puntos de plastificación pertenecientes a la estructura tenga la siguiente distribución según su desempeño: el 90.28% se mantienen en el rango elástico (A-B), 9.71% supera el punto de cedencia, manteniéndose por debajo del límite de desempeño asociado a inmediata ocupación (B-IO), sin tener puntos entre los límites de inmediata ocupación y seguridad de la vida (IO-LS) y el límite de estabilidad estructural y de prevención del colapso (>CP).

La revisión de los niveles de degradación globales de la edificación, definidos por la evolución de las plastificaciones de los diversos elementos estructurales ante el nivel de amenaza sísmica definida en la norma NSR-10, se permite concluir que para un nivel de demanda sísmica correspondiente a un Sismo de Diseño (SD) aproximadamente el 9.71% alcanzan la deformación cedente por debajo de los limites admisibles asociados al estado de inmediata ocupación, si presentar puntos en los límites de inmediata ocupación y seguridad de la vida. No se tienen ningún punto que supere el límite de estabilidad estructural y prevención del colapso. Cuando se tiene el sismo actuando en el sentido eje "Y" (Sismo Y) la edificación se mantiene utilizable y disponible para su inmediata ocupación.

El desempeño esperado de la edificación según los objetivos de diseño implícitos en la propuesta del Comité VISION 2000 (SEAOC, 1995), para edificaciones esenciales dados en la Tabla 6la estructura por ser un colegio; sus elementos estructurales se encuentran por debajo de los límites admisibles asociados al estado de inmediata ocupación; por lo tanto se considera que la estructura cumple con los objetivos.

3.3 REFORZAMIENTO ESTRUCTURAL

Las acciones correctivas en el proceso de reforzamiento se orientan en aumento de la capacidad global de disipación de energía, para ello se debe rigidizar la estructura y aumentar la resistencia con el reforzando de sus elemento como vigas y columnas. Por el tipo de estructura que es Pórticos Resistentes a Momento y por su irregularidad tanto en planta como en altura se plantea como sistema de reforzamiento para aumentar su rigidez y ductilidad; incluir en algunos pórticos diagonales metálicas en forma de cruz de san Andrés, las cuales se modelan solo para resistir cargas axiales y el encamisado de columnas que presentaron índices de sobre esfuerzo mayores de 1.0.En la Figura 48 y 49 Se muestra el modelo de la estructura reforzada.

Figura 48. Estructura Reforzada Vista 1

Figura 49. Estructura Reforzada Vista 2

Con este sistema de reforzamiento se tiene como objeto lo siguiente:

- Reducción de las derivas y aumento de la resistencia con lo cual se evita daños en los elementos estructurales y no estructurales.
- Facilidad constructiva durante la etapa de intervención ya que los elementos metálicos (Diagonales) son de fácil y rápida instalación.
- Reducción en los costos del reforzamiento, el cual se ejecutaría en menos tiempo.

3.3.1 Modelamiento de la Estructura Reforzada

Para el modelamiento de la estructura reforzada se realizó un análisis dinámico modal espectral realizado con el Programa SAP 2000 V14.1, realizando un Modelo Tridimensional con Diafragma Rígido donde se calcula su masa en base a la densidad de los materiales que componen sus elementos tantos estructurales como no estructurales y se concentren en el centro de masas de cada piso. El procedimiento es con el fin de obtener el desplazamiento y fuerzas internas en cada elemento estructural para verificar que sus índices de sobreesfuerzos e índices de flexibilidad estén por debajo de la unidad garantizando el buen comportamiento de los elementos antiguos que no se reforzaron.

En las Figuras 50, 51 y 52, se muestra el estado de deformación para los principales modos de vibración; los cuales para el modo 1 y 3corresponde a los desplazamientos traslacionales "X" y "Y" y el modo 2 al desplazamiento rotacional. En la Tabla 21, se especifica todos los modos de vibración con sus respectivas participaciones de masa; estos resultados son arrojados por el programa.

Figura 50. Modo de Vibración 1 con Reforzamiento

Figura 51. Modo de Vibración 2 con Reforzamiento T=0.42 s

Figura 52. Modo de Vibración 3 con Reforzamiento T=0.39 s

StepNum	Periodo	UX	UY	SumUX	SumUY
Modos	Sec	Unitless	Unitless	Unitless	Unitless
1	0.426093	0.88386	0.00053	0.88386	0.00053
2	0.39512	0.00009032	0.10684	0.88395	0.10737
3	0.304528	0.00046	0.65748	0.88442	0.76485
4	0.21118	0.02167	0.00026	0.90609	0.76511
5	0.196405	0.00021	0.09695	0.9063	0.86206
6	0.168341	0.00019	0.00002292	0.90649	0.86209
7	0.15793	0.00035	0.00009676	0.90684	0.8621
8	0.152926	0.00009263	0.000001491	0.90694	0.8621
9	0.138135	0.00001418	0.000007604	0.90695	0.86211
10	0.135702	0.00047	0.00005758	0.90742	0.86216
11	0.13399	0.00007091	0.00051	0.90749	0.86267
12	0.125693	0.00117	0.01024	0.90866	0.87291
13	0.118372	0.00988	0.00229	0.91854	0.87521
14	0.112582	0.0569	0.000007388	0.97544	0.87521
15	0.104989	0.00015	0.02399	0.97559	0.8992
16	0.104147	0.00006937	0.00018	0.9756	0.89938
17	0.10389	1.107E-07	0.000001736	0.9756	0.89938
18	0.102211	0.000004783	6.167E-07	0.9756	0.89938
19	0.100121	0.00001256	0.00001405	0.97561	0.8994
20	0.095589	0.00009102	0.00106	0.9757	0.90046
21	0.094916	7.768E-07	0.0000201	0.9757	0.90048

Tabla 21. Periodo y participación de Masa para cada modo con

Reforzamiento

3.3.2 Calculo de la Deriva Máxima con reforzamiento

En las Tablas 22 y 23 se muestran las derivas máximas para la estructura reforzada.

		C/	ALCULO DER	IVA DIRE	CCION X					
NIVEL		PISO	CARGA	PUNTO	DISP-X (m)	DISP-Y (m)	DERIVA (m)	H (m)/PISO	DriftX	DriftX
TANOLE	19.36	TANQUE	DERIVA X	1767	0.069889	0.023555	0.026	2.0	0.00660	0 67%
TANQUE	15.06	PISO 4 SECUNDARIA	DERIVA X	1604	0.047488	0.010209	0.020	5.9	0.00009	0.07%
	15.06	CUBIERTA SECUNDARIA	DERIVA X	1606	0.049886	0.016095	0.008	25	0 00338	0 3/1%
CUBIERTA SECUNDARIA	12.16	PISO 4 SECUNDARIA	DERIVA X	999	0.042112	0.012811	0.008	2.5	0.00558	0.5470
ADMINISTRACION	15.06	CUBIERTA ADMINISTRACION	DERIVA X	1589	0.051997	0.010044	0.000	2 5	0 00222	0.27%
	12.16	PISO 3 ADMINISTRACION	DERIVA X	978	0.044198	0.007962	0.008	2.5	0.00323	0.32/0
	12.16	PISO 4 SECUNDARIA	DERIVA X	999	0.042112	0.012811	0.014	28	0.00485	0.40%
PISU 4 SECUNDARIA -	8.96	PISO 3 SECUNDARIA	DERIVA X	384	0.02919	0.008611	0.014	2.8	0.00485	0.4970
	12.16	PISO 3 ADMINISTRACION	DERIVA X	978	0.044198	0.007962	0.012	2.0	0.00477	0.499/
ADMINISTRACION	8.96	PISO 2 ADMINISTRACION	DERIVA X	363	0.031105	0.005264	0.015	2.8	0.00477	0.46%
PISO 3 SECUNDARIA -	8.96	PISO 2 ADMINISTRACION	DERIVA X	363	0.031105	0.005264	0.032	5.46	0.005778	0.58%
PISO 2	8.96	PISO 3 SECUNDARIA	DERIVA X	384	0.02919	0.008611	0.015	2.49	0.006212	0.63%
ADMINISTRACION	6.08	PISO 2 SECUNDARIA	DERIVA X	41	0.014264	0.004782	0.015	2.40	0.006213	0.02%
PISO 2 ADMINISTRACION	6.08	PISO 2	DERIVA X	41	0.014264	0.004782	0.015	3.18	0.004731	0.47%
SOTANO 2	4.8	SOTANO 2	DERIVA X	299	0.012003	0.001828	0.012	4.25	0.002857	0.29%
SOTANO 1	3.2	SOTANO 1	DERIVA X	1	0.004164	0.001959	0.005	2.800	0.001644	0.16%
BASE	0.00	BASE	DERIVA X		0.00	0.00				

Tabla 22. Calculo de la Deriva Sentido X Reforzamiento

Tabla 23. Calculo de la Deriva Sentido Y Reforzamiento

		CALC	CULO DERIVA	DIRECCI	ON Y					
NIVEL		PISO	CARGA	PUNTO	DISP-X (m)	DISP-Y (m)	DERIVA (m)	H (m)/PISO	DriftX	DriftX
TANOUE	19.36	TANQUE	DERIVA Y	1767	0.029169	0.065058	0.027	2.0	0.00061	0.06%
TANQUE	15.06	PISO 4 SECUNDARIA	DERIVA Y	1604	0.018259	0.02919	0.037	3.9	0.00961	0.96%
	15.06	CUBIERTA SECUNDARIA	DERIVA Y	1606	0.02664	0.047586	0.011	2.5	0.00436	0.44%
CUBIERTA SECUNDARIA -	12.16	PISO 4 SECUNDARIA	DERIVA Y	999	0.022478	0.037515	0.011	2.5	0.00450	0.44%
ADMINISTRACION	15.06	CUBIERTA ADMINISTRACION	DERIVA Y	1589	0.032341	0.029986	0.007	2 5	0 00200	0.20%
	12.16	PISO 3 ADMINISTRACION	DERIVA Y	978	0.027555	0.024578	0.007	2.5	0.00289	0.29%
	12.16	PISO 4 SECUNDARIA	DERIVA Y	999	0.022478	0.037515	0.015	2.8	0.00522	0 52%
PISO 4 SECUNDARIA - PISO	8.96	PISO 3 SECUNDARIA	DERIVA Y	384	0.015494	0.024347	0.015	2.0	0.00332	0.33%
3 ADMINISTRACION	12.16	PISO 3 ADMINISTRACION	DERIVA Y	978	0.027555	0.024578	0.012	20	0.00/16	0 120/
	8.96	PISO 2 ADMINISTRACION	DERIVA Y	363	0.019342	0.016338	0.012	2.0	0.00410	0.4276
	8.96	PISO 2 ADMINISTRACION	DERIVA Y	363	0.019342	0.016338	0.025	5.46	0.004637	0.46%
2 ADMINISTRACION	8.96	PISO 3 SECUNDARIA	DERIVA Y	384	0.015494	0.024347	0.014	2.49		0 570/
2 ADMINISTRACION	6.08	PISO 2 SECUNDARIA	DERIVA Y	41	0.007635	0.012732	0.014	2.48	0.005055	0.57%
PISO 2 ADMINISTRACION	6.08	PISO 2	DERIVA Y	41	0.007635	0.012732	0.015	3.18	0.004668	0.47%
SOTANO 2	4.8	SOTANO 2	DERIVA Y	299	0.006848	0.005284	0.009	4.25	0.002035	0.20%
SOTANO 1	3.2	SOTANO 1	DERIVA Y	1	0.001619	0.004322	0.005	2.800	0.001648	0.16%
BASE	0.00	BASE	DERIVA Y		0.00	0.00				

3.3.3 Índices de Flexibilidad Estructura Reforzada

En la Tabla 24 se muestran los índices de Flexibilidad de la Estructura Reforzada, la cual cumple con lo estipulado en la norma NSR-10.

INDICES DE FLEXIBILIDAD POR PISO							
PISO	NIVEL	CARGA	DriftX	DriftX	Drift (Max)	INDICE (X)	INDICE (Y)
TANOUE	19.36	DERIVA X	0.67%		1%	0.67	
TANQUL	19.36	DERIVA Y		0.96%	1%		0.96
CUBIERTA SECUNDARIA -	15.06	DERIVA X	0.34%		1%	0.34	
ADMINISTRACION	15.06	DERIVA Y		0.44%	1%		0.44
PISO 4 SECUNDARIA - PISO	12.16	DERIVA X	0.48%		1%	0.48	
3 ADMINISTRACION	12.16	DERIVA Y		0.53%	1%		0.53
PISO 3 SECUNDARIA - PISO	8.96	DERIVA X	0.58%		1%	0.58	
2 ADMINISTRACION	8.96	DERIVA Y		0.46%	1%		0.46
	6.08	DERIVA X	0.47%		1%	0.47	
PISO Z ADIVIINISTRACION	6.08	DERIVA Y		0.47%	1%		0.47
ς ότλνο σ	4.8	DERIVA X	0.29%		1%	0.29	
JOTANO Z	4.8	DERIVA Y		0.20%	1%		0.20
ΣΟΤΛΝΟ 1	3.2	DERIVA X	0.16%		1%	0.16	
JUTANU I	3.2	DERIVA Y		0.16%	1%		0.16
BASE	0.00		0.00	0.00	1%		

Tabla 24. Índices de Flexibilidad - Reforzamiento

En la Figura 53se muestra un gráfico que ilustra los índices de flexibilidad de la estructura reforzada los cuales cumplen con lo estipulado por la norma NSR-10.

Figura 53. Índices por Flexibilidad

3.3.4 Diseño de los Elementos de Acero (Diagonales Metálicas)

Estos elementos de acero (diagonales Metálicas) se diseñan para resistir solo cargas axiales tanto en tensión como en compresión por lo que sus uniones con los pórticos de concreto existentes no son resistentes a momento. Las cargas de diseño de cada elemento se toman del modeloelástico ya realizado y se diseñan individualmente siguiendo los parámetros establecidos en el Titulo F correspondiente al diseño de estructuras conformadas por elementos de acero o aluminio, soldados, atornillados, o remachados de la norma NSR-10.

La sección transversal de las diagonales metálicas serán circulares, utilizando para el diseño Tubería de acero estructural redonda tipo COLMENA la cual cumple con la norma ASTM-500 grado C; con un esfuerzo de fluencia F_y = 322 MPa . Para el diseño de estos elementos metálicos se utiliza el programa CYPECAD 2012 K NUEVO METAL 3D.

3.3.4.1 Diseño de Diagonales Pórtico eje 1 (S1-S2) Pisos 1, 2, 3, 4 Bloque Secundaria (Dirección X).En la Figura 54se representa la ubicación de las diagonales en el pórtico. A continuación se muestran las memorias de cálculo de las diagonales Piso 1.

Figura 54. Pórtico Eje 1 (S1-S2) Bloque Secundaria

Memorias de Calculo Diagonal 1919 Piso 1

Perfil: 10"-9.27								
Material: Acero (A-500 4	46ksi)							
	Nudos		Longit	Longitud		aracteríst	icas mec	ánicas
	Inicial	Final	(m)	uu	Área	$I_x^{(1)}$	l _y ⁽¹⁾	I _t ⁽²⁾
	meiai		()		(cm²)	(cm4)	(cm4)	(cm4)
	N1	N3	7.77	3	76.83	6693.42	6693.42	13386.84
	Notas	S:			I			L
Y	⁽¹⁾ Inercia respecto al eje indicado							
	⁽²⁾ Momento de inercia a torsión uniforme							
		Pandeo				Pandeo latera		lateral
×		Plan	o ZX	Ρ	lano Z	Y AI	a sup.	Ala inf.
	b	1.(00		1.00		1.00	1.00
	Lĸ	7.7	73		7.773	7	7.773	7.773
	Cb		-				1.000	
	Notac	ción:				I		
	b: Co	eficier	nte de p	ana	leo			
	L _К : Lo	ongitu	d de pai	nde	o (m)			
	C _b : Fa	actor	de modi	fica	ción pa	ara el mo	mento cr	ítico

Porro	COMPROBACIONES (ANSI/AISC 360-05 (LRFD))					Estado			
Dalla	Pt	l _c	Pc	M _x	My	Vx	Vy	$PM_xM_yV_xV_yT$	ESIAUU
N1/N3	x: 7.77 m h = 24.4	I £ 200.0	x: 0 m h = 47.0	x: 3.89 m h = 3.0	N.P. ⁽¹⁾	N.P. ⁽²⁾	x: 0 m h = 0.1	x: 3.89 m h = 49.2	CUMPLE h = 49.2
Notac Pt: Re Ic: Lim Pc: Re My: Re Vy: Re Vy: Re PMxM x: Dis h: Coe N.P.: I	ión: sistencia sistencia esistencia esistencia esistencia sistencia yV _x V _y T: Es tancia al c eficiente d No procec	a tracción esbeltez a compre a flexión a flexión a corte X a corte Y sfuerzos o rigen de e aproveo le	para cor esión eje X eje Y combinad la barra chamient	mpresión dos y torsi o (%)	ón				
Comp ⁽¹⁾ La (⁽²⁾ La (robacione comproba comproba	es que no ción no p ción no p	procede rocede, y rocede, y	n (N.P.): ⁄a que no ⁄a que no	hay mo hay es	omento fuerzo	flector. cortante	9.	

Resistencia a tracción (Capítulo D)

Se debe satisfacer:

$\eta_{\tau} = \frac{P_{r}}{P_{c}} \leq 1$	h _T :	0.244	√
El axil de tracción solicitante de cálculo pésimo P _r se produce en el nudo N3, para la combinación de hipótesis 0.9·G+E.			
Dónde:			
P _r : Resistencia a tracción requerida para las combinaciones de	D.	530 50	٢N
	Γŗ.	030.00	
Ρ _c : Resistencia de diseño a tracción	P _c :	2178.25	kN

La resistencia de diseño a tracción es el menor valor de los obtenidos según el estado límite de fluencia a tracción de la sección bruta y el de rotura a tracción de la sección neta			
Dónde:			
j t: Factor de resistencia a tracción, tomado			
como:	j₁:	0.90	
a) Para fluencia bajo tracción en la sección bruta:			
	P _n :	2420.27	kN
Dónde:			
A : Área bruta de la sección de			
la barra.	A :	76.83	CM ²
F _y : Límite elástico mínimo			
especificado	F _y :	315.0	MPa
Limitación de esbeltez para con	n presión (Capítulo E))	

La esbeltez máxima admisible en una barra sometida a compresión es*:

λ < 200	I:	83
Dónde: I: Coeficiente de esbeltez		
	1:	83

Dónde:			
L: Longitud de la barra	L:	7773	mm
K : Factor de longitud efectiva.	К:	1	_
r: Radio de giro dominante, tomado como el menor valor			
entre r _x y r _y	r :	9.33	cm
Dónde:	-		_
	r _x :	9.33	cm
	r _y :	9.33	cm
Dónde:			
I_x:			
Momento de inercia respecto al			
eje X	I _x :	6693.42	cm4
l _y : Momento de inercia respecto al			_
eje Y	l _y :	6693.42	cm4
A: Area total de la sección transversal de la			
barra.	A :	76.83	cm ²
Notas:	-		_
*: La esbeltez máxima admisible está basada en las Notas de Usuario de la sección E2.			

Resistencia a compresión (Capítulo E)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo E de ANSI/AISC 360-05 (LRFD).

Se debe satisfacer el siguiente criterio:

$\eta_{\top} = \frac{P_{_{r}}}{P_{_{c}}} \leq 1$	h _T :	0.470	_
El axil de compresión solicitante de cálculo pésimo P _r se produce en el nudo N1, para la combinación de hipótesis 1.2·G+CV-E. Dónde:			
P _r : Resistencia a compresión requerida para las	D ·	644.02	LNI
	Fr.	044.03	KIN
P _c : Resistencia de diseño a compresión	P _c :	1370.56	kN
La resistencia de diseño a compresión en secciones comprimidas es el menor valor de los obtenidos según los estados límite descritos en el Capítulo E. Dónde:			
j _p : Factor de resistencia a compresión, tomado como:	in :	0.90	
D : Posistoncia nominal a compresión	. H		
calculada según el Artículo E7-2-C:	P _n :	1522.85	kN

A :	76.83	cm ²
F _c r [:]	198.2	MPa
l Fy:	315.0	MPa
F _e :	284.6	MPa
F _e :	80000.0	MPa
_		
E:	200000.0	MPa
C w:	0.00	cm6
K z :	1.00	
L:	7773	mm
G ·	80000 D	MPa
	A : F _c r : F _y : F _e : F _e : E : C w : K _z : L : G :	A: 76.83 F_c 198.2 r: 198.2 Fy: 315.0 F_e : 284.6 F_e : 28000.0 E: 200000.0 C 0.00 Kz: 1.00 L: 7773 G: 80000.0

l: Momento de inercia a torsión			
uniforme	J:	13386.84	cm4
Ix: Momento de inercia respecto al			
eje X	I _x :	6693.42	cm4
l _y : Momento de inercia respecto al			
eje Y	l _y :	6693.42	cm4
F _e : Tensión crítica elástica de pandeo,			
tomada como la menor de:	F _e :	284.6	MPa
	Fe	0040	
	x:	284.6	МРа
	F _e	2816	MPo
Dánde:	у.	204.0	
E Médulo do alasticidad dal			
	F.	200000 0	MPa
K : Factor de longitud efectiva	– . K., :	1 00	
	K	1.00	
I · Longitud de la barra		7773	mm
r : Radio de giro dominante		9.33	cm
	rx:	9.33	cm
	,		
Dónde:			
I: Momento de	I _x :	6693.42	cm4
inercia	l _y :	6693.42	cm4
A : Área total de la sección transversal	Α.	70.00	om ²
de la barra.	A :	/6.83	CM ²

Q=Q _S Qa	Q :	1.00	
2) en secciones formadas únicamente por elementos ne rigidizados:	0		
Q _S =1	Q _s :	1.00	
c) para secciones circulares con carga axil:			
i) Cuando:			
	Q _a :	1.00	
Dónde:			
D: Diámetro exterior	D :	273.10	mm
t: Espesor de la pared	t:	9.27	mm
E: Módulo de elasticidad del acero	E:	200000.0	MPa
F _y : Límite elástico mínimo especificado de	·I		
acero de las barras	F _y :	315.0	MPa

Resistencia a flexión eje X (Capítulo F)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo F de ANSI/AISC 360-05 (LRFD).

Se debe satisfacer el siguiente criterio:

$\eta_{M} = \frac{M_{r}}{M_{c}} \leq 1$	h _M ∶	0.030 🗸
El momento flector solicitante de cálculo pésimo, M _r , se produce en un punto situado a una distancia de 3.887 m del nudo N1, para la combinación de acciones 1.4·G. Dónde: M _r : Resistencia a flexión requerida para las combinaciones de carga LRFD M _c : Resistencia de diseño a flexión La resistencia de diseño a flexión para secciones sometidas a momento flector es el menor valor de los obtenidos según los estados límite descritos en el Capítulo F: Dónde:	M _r : M _c :	<u>5.55</u> kN∙m 183.00 kN∙m
j_b : Factor de resistencia a flexión	j b :	0.90
M_n : La resistencia nominal a flexion calculada según Artículo 8, Sección 1	M _n :	203.34 kN⋅m
1. Fluencia		
	M _n :	203.34 kN⋅m
Dónde:		
F _y : Límite elástico mínimo especificado	F _y :	315.0 MPa
Z: Módulo resistente plástico	Z :	645.52 cm ³
2. Pandeo local del ala		
a) para secciones compactas, el estado límite de		

pandeo local del ala no se aplica

Resistencia a flexión eje Y (Capítulo F)

La comprobación no procede, ya que no hay momento flector.

Resistencia a corte X (Capítulo G)

La comprobación no procede, ya que no hay esfuerzo cortante.

Resistencia a corte Y (Capítulo G)

Todas las secciones deben cumplir con las especificaciones LRFD desarrolladas en Capítulo G de ANSI/AISC 360-05 (LRFD).

Se debe satisfacer el siguiente criterio:

$\eta_v \ = \frac{V_r}{V_c} \le 1$	h _V :	0.001	\checkmark
El esfuerzo cortante solicitante de cálculo pésimo V _r se produce en el nudo N1, para la combinación de hipótesis 1.4·G. Dónde:			
para las combinaciones de carga			
LRFD	V _r :	2.86	kN
V _c : Resistencia de diseño a cortante			
	V _c :	2820.34	kN
La resistencia de diseño a cortante viene dada por:			
Dónde:			
j _v : Factor de resistencia a cortante V _n : se define según lo detallado en el Capítulo G, de la siguiente forma:	j, :	0.90	_
en tubos redondos, la resistencia nominal a cortante se calcula de la siguiente forma (ANSI/AISC 360-05 (LRFD), Capítulo G - G-6).			
	V _n :	3133.72	kN

Dónde:

F _{cr} : Tensión crítica, tomada como el mayor de los siguientes valores:	F _{cr} :	875.0	MPa
	F _{cr} :	798.1	MPa
Dónde:			
E: Módulo de elasticidad del acero	E:	200000.0	MPa
L _v : La distancia entre los puntos de cortante máximo y cortante cero, tomada, de forma conservadora, como la			
longitud de la viga	L _v :	7773.44	mm
D: Diámetro exterior	D :	273.10	mm
t: Espesor de cálculo de la pared, tomada como 0.93 veces el espesor			
nominal	t :	8.62	mm
	F _{cr} :	875.0	MPa
Dónde:			
E: Módulo de			
elasticidad del acero	E:	200000.0	MPa
D: Diametro exterior	D :	273.10	mm
la pared, tomada como 0.93 veces el espesor			
nominal	t :	8.62	mm
A : Área bruta del tubo hueco, basada en el espesor de diseño			
de la pared	A :	71.63	Cm ²
Esfuerzos combinados y torsión (Capítulo H)

Se debe cumplir el siguiente criterio:

$\eta \leq 1$	h:	0.492
Los esfuerzos solicitantes de cálculo pésimos se producen en un punto situado a una distancia de 3.887 m del nudo N1, para la combinación de acciones 1.2-G+CV-E. Dónde:		
h: calculado según Artículo 1, Sección 1		
 Secciones con simetría doble y simple sometidas a flexión y compresión 		
a) Para		
	h:	0.49
Dónde:		
P _r : Resistencia a compresión requerida	P _r :	642.75 kN
P c: Resistencia de diseño a compresión, calculado según el Capítulo E	Pc:	1370.56 kN
M _{rx} : Resistencia a flexión requerida en	- 0 -	
el eje fuerte	M _{rx} :	<u>4.76</u> kN⋅m
M _{cx} : Resistencia de diseno a flexion en el eie fuerte, calculado según el		
Capítulo F	M _{cx} :	<i>183.00</i> kN⋅m
M_{ry}: Resistencia a flexión requerida en el eje débil	M _{ry} :	<i>0.00</i> kN⋅m
M _{cy} : Resistencia de diseño a flexión en el eie débil, calculado según el Capítulo		
F	M _{cy} :	<i>183.00</i> kN⋅m

3.3.4.2 Diseño de Diagonales Pórtico eje 7 (A4-A5) Pisos 1, 2, 3 Bloque Administración (Dirección X). En la Figura 55 se representa la ubicación de las diagonales en el pórtico. A continuación se muestran las memorias de cálculo de las diagonales Piso 1.

Figura 55. Pórtico Eje 7 (A4-A5) Bloque Administración

3.3.4.3 Diseño de Diagonales Pórtico eje S3 (1'-55) Pisos 1, 2, 3, 4 Bloque Secundaria (Dirección Y).En la Figura 56 se representa la ubicación de las diagonales en el pórtico. A continuación se muestran las memorias de cálculo de las diagonales Piso 1 siendo estas las más críticas.

3.3.4.4 Diseño de Diagonales Pórtico eje A5 (6-7) Pisos 1, 2, 3 Bloque Administración (Dirección Y).En la Figura 57 se representa la ubicación de las diagonales en el pórtico. A continuación se muestran las memorias de cálculo de las diagonales Piso 1 siendo estas las más críticas.

Figura 57. Pórtico Eje A5 (6-7) Bloque Administración

Figura 58. Detalle de unión entre los elementos de la estructura existente y los elementos de refuerzo.

Figura 59. Planta Ubicación Columnas Reforzadas y Pórticos con Diagonales

3.3.5 Diseño de Soldadura de Filete Requerida para Conectar las Diagonales (Tubo Redondo) a la Cartela.

Para el diseño de la soldadura se toma la unión más crítica de los pórticos donde se incluyeron las diagonales. La cartelas se diseñan en láminas hot rolled o laminadas en caliente con una calidad de acero A-572 GR 50; con una resistencia de limite elástico F_y = 345 MPa y una resistencia ultima F_u = 450 MPa.

Para el diseño de la soldadura se siguen los parámetros establecidos en el Titulo F correspondiente al diseño de estructuras conformadas por elementos de acero o aluminio, soldados, atornillados, o remachados de la NSR-10. En la Figura 61 y 62 se muestra el diseño de la unión.

Figura 60. Detalle de unión riostra con marco metálico

Figura 61. Calculo de Soldadura de Filete para Conectar Tubo a Cartela

Diseño de Soldadura de Filete Requerida para Conectar Diagonal a Cartela Diagonales localizadas eje 7 (A4-A5) Piso 1 F.3.6.2.6.3 — Resistencia requerida de las conexiones de la riostra 1.0 Datos de diseño a. La resistencia requerida a tencion debera ser la menor de Dato del SAP Combinaciones de Carga. P_u: 651.35KN Resistencia Requerida $P_u = R_v F_v A_g$ P_u: 3,463.0KN b. Resistencia Requerida a Compresión Debe ser 1.1 veses la resistencia esperada de la riostra en compresión $P_u = 1.1 R_y P_c$ P_c: 1,502.9KN P_u: 2,314.51KN 2.0 Datos Elemento Diagonal P_{u} 27.31cm D_{ext.}: D_{int.}: 25.45cm 9.27mm TIT e_{pared}: A: 7,682mm2 F_y: 322Mpa 111 F_u: 427Mpa 1.4 R_v: 1.3 R_t: 3.0 Datos Lamina "Cartela" 12.00mm e: F_v: 345Mpa 450Mpa F_u: 4.0 Diseño de Soldadura. Resistencia de un cordon de Soldadura de un 1mm de Longitud $\phi R_n = \phi A_w F_w = \phi (0.707 Dl) 0.60 F_{Exx}$ φ: 0.75 D: 9mm 1: 1mm F_{exx}: (E70XX) 480Mpa φR_n: 1,443Mpa Longitud Requerida para cada Cordon $l_{min} = \frac{P_u}{\phi R_n}$ No Cordones: 4 A cada lado de la lamina I: 401mm Longitud de Soldadura.

Figura 62. Diseño Resistencia al Desgarramiento

```
Diseño Resistencia al Desgarramiento en Bloque para Diagonal a Cartela
Diagonales localizadas eje 7 (A4-A5) Piso 1
F.3.6.2.6.3 — Resistencia requerida de las conexiones de la riostra
1.0 Datos de diseño
a. La resistencia requerida a tencion debera ser la menor de
Dato del SAP Combinaciones de Carga.
      P<sub>u</sub>:
                  651.35KN
Resistencia Requerida
       P_u = R_y F_y A_g
                 3,463.0KN
      P.,:
b. Resistencia Requerida a Compresión
Debe ser 1.1 veses la resistencia esperada de la riostra en compresión
      P_u = 1.1 R_v P_c
      P<sub>C</sub>:
                  1,502.9KN
                 2,314.51KN
      P..:
2.0 Datos Elemento Diagonal
                                                                                                                      Pu
     D<sub>ext.</sub>:
                   27.31cm
                   25.45cm
     D<sub>int.</sub>:
                                                        TITAT
                   9.27mm
    e<sub>pared</sub>:
                 7,682mm2
       A:
                   322Mpa
      F<sub>y</sub>:
                                                            T
      F<sub>u</sub>:
                   427Mpa
      R<sub>y</sub>:
                      1.4
                     1.3
      R_t:
3.0 Datos Lamina "Cartela"
       e:
                  12.00mm
      F<sub>v</sub>:
                   345Mpa
      F<sub>u</sub>:
                   450Mpa
4.0 Longitud Soldadura
a. Plano de Corte
       |=
                   401mm
b. Plano de Tension:
       |=
                     0mm
5.0 Resistencia al Desgarramiento en Bloque.
      \phi R_n = \phi [0.60 F_u A_{nv} + U_{bs} F_u A_{nt}]
      \phi R_n < \phi \left[ 0.60 F_y A_{gv} + U_{bs} F_u A_{nt} \right]
      U<sub>bs</sub>:
                      1.0
                     0.75
       φ:
      A<sub>gv</sub>:
                 19,246mm2
                    0mm2
      A<sub>gt</sub>:
      A<sub>nv</sub>:
                 19,246mm2
      A<sub>nt</sub>:
                    0mm2
     φR<sub>n</sub>=
                 3,897.27KN
                                                2987.91
                                      >
     \phi R_n =
                 2,987.91KN
                                      >
                                              2,314.51KN Cumple
```

3.3.6 Reforzamiento de Vigas de Entrepiso con FRP

Para vigas en concreto de entrepiso que requieren se reforzadas a flexión, se realizara con refuerzo externo FRP (Polímeros Reforzados con Fibra) siguiendo los lineamientos estipulados en el ACI 440.2R – 08.

En la Tabla 25 Se indican las diferentes vigas reforzadas con (FRP) y su especificación para cada una de ellas; a continuación se muestra el procedimiento de cálculo tipo.

REFORZAMIENTO DE VIGAS DE ENTREPISO CON FRP											
		Mu	As	DIMENSION		Mr	EACTOR	M _r + REF.			
VIGA	EJE	KN-m	cm ²	BASE	ALTURA	KN-m	FACTOR	KN-m	ESPECIFICACIÓN DEL REFORZAMIENTO		
V1-1 (S1-S2)	S1	204.70	15.48	60	40	181.19	1.13	260.68	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
V1-1 (S2-S3)	S3	263.43	20.84	70	40	235.65	1.12	324.88	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
V6-1 (S5-A1)	S5	150.71	8.52	40	40	101.43	1.49	157.19	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
V6-1 (S5-A1)	A1	122.53	8.52	40	40	101.43	1.21	157.19	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
V3-2 (A1-A2)	A1	270.85	11.36	60	60	222.32	1.22	369.58	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
V4-3 (S4-S5)	S5	195.93	11.36	60	40	136.43	1.44	222.06	2 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		
VA2A-3 (3-6)	6	156.88	8.52	40	40	101.43	1.55	168.89	3 Capas de Sika Wrap Hex 103 C (Fibra) y Sikadur Hex 300 (Epoxico)		

 Tabla 25. Reforzamiento de Vigas de Entrepiso con (FRP)

Figura 63. Localización Vigas Reforzadas FRP Planta Segundo Piso Secundaria

Figura 64. Localización Vigas Reforzadas FRP Planta Tercer Piso Sec. Segundo Piso Admón.

Figura 65. Localización Vigas Reforzadas FRP Planta Cuarto Piso Sec. Tercer Piso Admón.

Figura 66. Detalle vigas Reforzadas FRP

3.3.6.1 Reforzamiento de Viga V1-1 (S1-S2).El diseño del reforzamiento de la viga V1-1 (S1-S2) se realiza paso a paso mostrando el procedimiento a continuación:

Calculo del Momento Resistente

Calculo del Momento Ultimo de Diseño

Relación entre el Momento Ultimo y el Momento Resistente

$$F = \frac{M_U}{M_r} = \frac{204.70}{181.19} = 1.13 \le 2.0 \text{ OK Cumple}$$

Por inspección, el nivel de reforzamiento es razonable en el sentido de que cumple con el criterio de reforzamiento límite especificado; el momento de resistencia existente sin FRP, ϕ Mn=181.19 KN-m, es mayor que el momento límite sin reforzamiento, (1.1MDL + 0.75MLL) nuevo =104.27 KN-m

Propiedades de los Materiales FRP suministrados por el Fabricante

PROPIEDADES DE LA LAMINA CURADA										
SikaWrap Hex 103C	in	mm-Mpa								
Grosor por capa t _f		1.0								
Resistencia Ultima a Tension f_{fu}^{*}		960								
Deformacion de Rotura ϵ^{*}_{fu}		0.0133								
Modulo de Elasticidad de FRP, E _f		73100								
Ancho por capa b _f		600								
Numero de Capas para										
reforzamiento		2								

Calculo de las propiedades de diseño del material del sistema FRP; Como es una viga interna se utiliza un material CFRP Factor de reducción ambiental:

$$C_E = 0.95$$

$$f_{fu} = 0.95 * 960 = 912 \qquad f_{fu} = C_E f_{fu}^*$$

$$\varepsilon_{fu} = 0.95 * 0.0133 = 0.01264 \qquad \varepsilon_{fu} = C_E \varepsilon_{fu}^*$$

Calculo de las propiedades Preliminares

Propiedades preliminares									
E _c (N/mm ²) (Concreto)	21538								
A _s (mm ²) (acero existentes)	1548								
A _f (mm ²) (Material FRP)	1200								

 $E_c = 4700 \quad \overline{f'_c} = 4700 \quad \overline{21} = 21538 \, N/mm^2$

$$A_f = nt_f w_f = 2 * 1.0 * 600 = 1200 \ mm^2$$

Determinación del Estado de Deformación Existente en la Cara.

Inercias y Deformaciones Existentes								
ε _{bi} 0.000749								
I _g (mm ⁴) (Antes de la Fisuracion)	320000000							
I _{cr} (mm ⁴) (Después de la Fisuracion)	1376000000							
M _D (Momento por carga de servicio)	77.59 KN-m							

$$\varepsilon_{bi} = \frac{M_{DL} \ d_f - kd}{I_f E_c} = \frac{77590 \ 400 - 0.343 * 331.5}{1376000000 * 21.54} = 0.000749$$

$$I_{cr} = 0.43I_g = 0.43\frac{1}{12}600 * 400^3 = 1376000000 \ mm^4$$

Determinación de la deformación de diseño del sistema FRP

$$\varepsilon_{fd} = 0.41 \quad \overline{\frac{f'_c}{nE_f t_f}} \le 0.90 \varepsilon_{fu} = 0.41 \quad \overline{\frac{21538}{2*73100*1.0}} = 0.00491 \le 0.9*0.0126$$

= 0.01137

Deformación de diseño es menor que la deformación rotura; el desprendimiento controla el diseño del FRP

Estimación de c, profundidad del eje neutro se realiza tras varias iteraciones.

C=115.15 mm

Determinación del nivel efectivo de deformación en el refuerzo FRP

$$\varepsilon_{fe} = 0.003 \quad \frac{d_f - C}{C} \quad -\varepsilon_{bi} \le \varepsilon_{fd}$$

$$\varepsilon_{fe} = 0.003 \quad \frac{400 - 115.15}{115.15} \quad -0.000749 = 0.006671 \le 0.00491$$

$$\varepsilon_{fe} = \varepsilon_{fe} = 0.00491$$

Como la segunda expresión gobierna sobre la primera el modo de falla es el desprendimiento del FRP

$$\varepsilon_c = \varepsilon_c + \varepsilon_{bi} \quad \frac{C}{d_f - C} = 0.00491 + 0.000749 \quad \frac{115.12}{400 - 115.15} = 0.00229$$

Cálculo de la deformación en el acero de refuerzo existente

$$\varepsilon_s = \varepsilon_{fd} + \varepsilon_{bi} \quad \frac{d-C}{d_f - C} = 0.00491 + 0.000749 \quad \frac{331.5 - 115.15}{400 - 115.15} = 0.00430$$

Cálculo del nivel de esfuerzo en el acero de refuerzo y en el FRP

$$f_s = E_s \varepsilon_s \le f_y = 200 * 0.00430 = 0.86 KN/mm^2 \le 0.42 KN/mm^2$$

$$f_{fe} = E_f \varepsilon_{fe} = 73.100 * 0.00491 = 0.36 \, KN/mm^2$$

Cálculo de las fuerzas internas resultantes y verificación del equilibrio

$$\varepsilon'_c = \frac{1.7f'_c}{E_c} = \frac{1.7 * 21}{21538} = 0.0017$$

$$\beta_1 = \frac{4\varepsilon'_c - \varepsilon_c}{6\varepsilon'_c - 2\varepsilon_c} = \frac{4 * 0.0017 - 0.00229}{6 * 0.0017 - 2 * 0.00229} = 0.808$$

$$\alpha_1 = \frac{3\varepsilon'_c \varepsilon_c - \varepsilon_c^2}{3\beta_1 \varepsilon'_c^2} = \frac{3*0.0017 - 0.00229^2}{3*0.808*0.0017^2} = 0.921$$

$$C = \frac{A_s f_s + A_f f_{fe}}{\alpha_1 f'_c \beta_1 b} = \frac{1548 * 420 + 1200 * 360}{0.921 * 21 * 0.808 * 600} = 115.14 \text{ mm}$$

Cálculo de los componentes de resistencia a flexión

$$\Psi_{f} = 0.85$$

Contribución del acero a la flexión:

$$M_{ns} = A_s f_s \quad d - \frac{\beta_1 C}{2} = 1548 * 420 * 331.5 - \frac{0.808 * 115.14}{2} = 185.25 \ KN - m_s f_s$$

Contribución del FRP a la flexión:

$$M_{nf} = A_f f_{fe} \quad d_f - \frac{\beta_1 C}{2} = 1200 * 359.20 * 400 - \frac{0.808 * 115.14}{2} = 122.82 \ KN - m_{fe} = 12$$

Cálculo de la resistencia a flexión de diseño de la sección

$$\phi M_n = \phi \ M_{ns} + \Psi M_{nf} = 0.90 * \ 185.25 + 0.85 * 122.82 = 260.88 \ KN - m$$
$$\geq 204.70 \ KN - m \ OK$$

Verificación de los esfuerzos de servicio en el acero de refuerzo y en el FRP

$$K = \sqrt{\left(\rho_s \frac{E_s}{E_c} + \rho_f \frac{E_f}{E_c}\right)^2 + 2\left(\rho_s \frac{E_s}{E_c} + \rho_f \frac{E_f}{E_c} \left(\frac{d_f}{d}\right)\right)} - \left(\rho_s \frac{E_s}{E_c} + \rho_s \frac{E_f}{E_c}\right)$$

Κ

$$\frac{K}{2} = \frac{1}{0.00778 \frac{200000}{21538} + 0.005 \frac{73100}{21538}^2 + 2} + 2 \frac{200000}{21538} + 0.005 \frac{73100}{21538} \frac{400}{331.5} - 0.00778 \frac{200000}{21538} + 0.005 \frac{73100}{21538} = 0.343$$
$$Kd = 113.75 mm$$

Calculo del nivel de esfuerzo en el Acero.

$$f_{ss} = \frac{\left\langle M_s + \varepsilon_{bi} A_f E_f \left(d_f - \frac{kd}{3} \right) \right\rangle (d - kd) E_s}{A_s E_s \left(d - \frac{kd}{3} \right) (d - kd) + A_f E_f \left(d_f - \frac{kd}{3} \right) (d - kd)}$$

f_{ss}

$$= \frac{102820 * 1000 + 0.000749 * 1200 * 73100 \ 400 - \frac{113.75}{3} \ 331.5 - 113.75 \ 200000}{1548 * 200000 \ 331.5 - \frac{113.75}{3} \ 331.5 - 113.75 \ + 1200 * 73100 \ 400 - \frac{113.75}{3} \ 400 - 113.75}$$

$$f_{ss} = 292 \frac{N}{mm^2} \le 0.9 * \frac{420N}{mm^2} = 378 N/mm^2$$

Verificación del límite de rotura por fluencia plástica en servicio del FRP

$$f_{f,s} = f_{ss} \left(\frac{E_f}{E_s} \right) \left(\frac{d_f - Kd}{d - Kd} \right) - \varepsilon_{bi} E_f \le 0.55 f_{fu}$$

$$f_{fs} = 292 \quad \frac{73100}{200000} \quad \frac{400 - 113.75}{331.5 - 113.75} \quad -0.000749 * 73100$$

$$f_{fs} = 85.60 \frac{N}{mm^2} \le 0.55 * 912 \ N/mm^2 \ OK$$

3.3.6.2 Índices de Sobreesfuerzo por flexión en Vigas de Entrepiso con Reforzamiento

En el Anexo T se muestra los resultados.

Figura 67. Índice de Sobreesfuerzo por flexión en vigas de entrepiso

Reforzamiento

3.3.7 Reforzamiento de Columnas

Para el Reforzamiento de Columnas se utiliza una técnica llamada como recrecido o encamisado; que consiste en disponer armadura tanto longitudinal como transversal, en torno a la columna antigua, en cuya superficie se ha efectuado una preparación previa para posteriormente realizar el hormigonado mediante vertido en un encofrado o bien añadiendo hormigón lanzado.

Figura 68. Esquema de refuerzo con encamisado de concreto reforzado y armadura anclada en la Losa (Dante, 2007)

Para el reforzamiento de las columnas del proyecto se evaluaran como **Sección Compuesta** Esto implica que se deben proveer todos los medios necesarios para generar un trabajo en conjunto del elemento reforzado como una sección compuesta, constituida por la columna y por el refuerzo (Encamisado).

Según Dante, 2007., Para el cálculo de la capacidad resistente de la sección se supone que las tensiones normales actúan en toda la sección transversal de la columna reforzada formada por la columna antigua (o núcleo) y el refuerzo (o encamisado).

En el cálculo de las secciones se suelen hacer las siguientes hipótesis:

 Compatibilidad de deformaciones. Se supone que existe un único plano de deformación para la totalidad de la sección.

- Se desprecia el efecto del confinamiento. Se considera que los esfuerzos se reparten de acuerdo a la rigidez a tensiones normales y no se tiene en cuenta la influencia de las armaduras transversales en la resistencia a esfuerzos normales.
- Adherencia perfecta entre los componentes. No se considera el deslizamiento relativo en la interfaz entre la sección antigua y el encamisado de refuerzo. En una sección reforzada de hormigón armado los elementos componentes son cuatro: el hormigón del pilar antiguo, la armadura longitudinal antigua, el hormigón del refuerzo y la armadura longitudinal nueva.

3.3.7.1 Calculo del Refuerzo (o Encamisado) como Sección Compuesta. Para el reforzamiento de columna con concreto lanzado, la resistencia a compresión de la sección compuesta se diseña según criterio: Investigación Universidad Hanchen/Alemania. Como reforzamiento para las columnas se encamisara con 10 cm de concreto con una resistencia a la compresión f^r_c= 28 MPa y se le instala refuerzo adicional tanto longitudinal como transversal.

En las Tabla 26 Se muestra la resistencia del concreto para el diseño como sección compuesta.

	SEC. AN	TIGUA	SEC. N	IUEVA	f' _{cv}	f' _{cN}	f' _{c DISEÑO}
COLUIVINA	b (cm)	h (cm)	b (cm)	h (cm)	Мра	Мра	Мра
1-S1	30	60	50	80	21	28	18.06
4-S1	30	60	50	80	21	28	17.42
1-S2	30	60	50	80	21	28	17.40
1'-S3	30	60	50	80	21	28	17.61
5-S3	30	60	50	80	21	28	16.40
3-A2	30	80	50	100	21	28	18.61
6-A2	45	80	65	100	21	28	18.62
7-A2	45	80	65	100	21	28	18.38
8-A2	45	80	65	100	21	28	18.73
3-A3	30	80	50	100	21	28	18.08
8-A3	30	80	50	100	21	28	17.30
9-A3	30	80	50	100	21	28	18.86
6-A4	45	80	65	100	21	28	18.26
7-A4	45	80	65	100	21	28	18.60
6-A5	30	60	50	80	21	28	18.39
7-A5	30	60	50	80	21	28	18.84

Tabla 26. Columnas Reforzadas Concreto de Diseño Sec. Compuesta

3.3.7.2 Calculo de la Resistencia a Compresión de Diseño de la Sección Compuesta (Columna 1-S1)

Datos de Diseño

CM= 598.57 KN CV= 105.17 KN

Calculo del concreto de Diseño

$$E_{CV} = 4700 \ \overline{f'_c} = 4700 \ \overline{21} = 21538.11 \ N/mm^2$$

 $E_{CN} = 65\% E_{CV} = 0.65 * 21538.11 = 13999.77 \ N/mm^2$

$$A_V = \frac{30 * 60}{50 * 80} = 0.45$$

$$A_N = \frac{50 * 80 - 30 * 60}{50 * 80} = 0.55$$

$$\sigma_o = \frac{CM + CV}{A_c} = \frac{598570 + 105170}{300 * 600} = 3.91 \, N/mm^2$$

$$f_c = f_{CV}A_V + f_{CN} - \sigma_o \quad 1 - A_V \quad \frac{E_N}{E_V} \le f'_{c,min}$$

$$f_c = 21 * 0.45 + 28 - 3.91 \quad 1 - 0.45 \quad \frac{13999.77}{21538.11} = 18.06 MPa$$

3.3.7.3Calculo del Diagrama de Interacción y Carga Axial Nominal, Momento nominal para las Condiciones Balanceadas de las Columnas Reforzadas. Para el cálculo del Diagrama de Interacción y la carga axial, momento para las condiciones balanceadas se utiliza el programa SPCOLUM v. 4.8; a continuación en la Tabla 27se describen los resultados, para lo cual se agruparon las columnas en tipos correspondientes a su sección y cuantía de refuerzo.

0		SEC. ANTIGUA (NUCLEO)			SEC. REFORZADA			DISENO				NOMINALES			
	SEC. A							φM_{nbx}	ϕP_{nby}	ϕM_{nby}	P _{nbx}	M _{nbx}	P _{nby}	M _{nby}	
111 0	b (cm)	h (cm)	ρ (%)	b (cm)	h (cm)	ρ(%)	KN	KN-m	KN	KN-m	KN	KN-m	KN	KN-m	
C-T1	30	60	1.27	50	80	1.28	1777.3	377.82	1932.1	682.09	2734.31	581.26	2972.46	1049.37	
C-T2	30	60	2.82	50	80	1.99	1904.6	424.67	2090.9	752.07	2930.15	653.34	3216.77	1157.03	
C-T3	30	60	3.38	50	80	2.24	1775.3	417.78	1977.4	735.16	2731.23	642.74	3042.15	1131.02	
C-T4	30	60	2.53	50	80	1.85	1639.4	387.04	1827.1	672.87	2522.15	595.45	2810.92	1035.18	
C-T5	30	80	1.19	50	100	1.25	2230.5	478.58	2494.9	1047.7	3431.54	736.28	3838.31	1611.85	
C-T6	30	80	2.96	50	100	2.11	2274.7	530.57	2632.6	1172.82	3499.54	816.26	4050.15	1804.34	
C-T7	30	80	3.38	50	100	2.31	2275.6	542.12	2662.1	1196.02	3500.92	834.03	4095.54	1840.03	
C-T8	30	80	4.64	50	100	2.92	2303.5	580.28	2757	1274.57	3543.85	892.74	4241.54	1960.88	
C-T9	45	80	1.11	65	100	1.22	3131.4	831.81	3310.1	1378.92	4817.54	1279.71	5092.46	2121.42	
C-T10	45	80	4.79	65	100	3.38	3398.9	1170.96	3753.8	1808.48	5229.08	1801.48	5775.08	2782.28	
C-T11	45	80	1.97	65	100	1.71	3215.3	941.54	3433.7	1452.76	4946.62	1448.52	5282.62	2235.02	
C-T12	45	80	4.22	65	100	3.38	3352.5	1115.47	3678.1	1956.03	5157.69	1716.11	5658.62	3009.28	
C-T13	45	80	5.35	65	100	3.59	3394	1178.19	3755	1956.03	5221.54	1812.60	5776.92	3009.28	

 Tabla 27. Columnas Reforzadas Resultados Condiciones Balaceadas

Columna Tipo C-T1 correspondientes a: Columna 1-S1 (Piso 1, 2); Columna 4-S1 (Sótano 1, Piso 1, 2, 4); Columna 1-S2 (Piso 1, 2, 3, 4); Columna 1'-S3 (Piso 1, 2, 3, 4); Columna 5-S3 (Piso 3, 4); Columna 6-A5 (Piso 1, 2, 3); Columna 7-A5 (Piso 1, 2, 3). Figuras 69 y 70

Columna Tipo C-T2 correspondiente a: Columna 1-S1 (Piso 3, 4). Figuras 71 y 72.

Columna Tipo C-T3 correspondiente a: Columna 4-S1 (Piso 3). Figuras 73 y 74.

Columna C-T4 correspondiente a: Columna 5-S3 (Piso 1,2). Figuras 75 y 76.

Columna C-T5 correspondiente a: Columna 3-A2 (Piso 1); Columna 3-A3 (Piso 1); Columna 8-A3 (Piso 1); Columna 9-A3 (Piso 1, 2, 3). Figuras 77 y 78

Columna C-T6 correspondiente a: Columna 3-A2 (Piso 2, 3); Columna 8-A3 (Piso 2, 3). Figuras 79 y 80

Columna C-T7 correspondiente a: Columna 3-A3 (Piso 2). Figuras 81 y 82.

Columna C-T8 correspondiente a: Columna 3-A3 (Piso 3). Figuras 83 y 84.

Columna C-T9 correspondiente a: Columna 6-A2 (Piso 1); Columna 7-A2 (Sótano 2, Piso 1); Columna 8-A2 (Sótano 2, Piso 1); Columna 6-A4 (Piso 1); Columna 7-A4 (Piso 1). Figuras 85 y 86.

Columna C-T10 correspondiente a: Columna 6-A2 (Piso 2,3); Columna 7-A2 (Piso 2,3). Figuras 87 y 88.

Columna C-T11 correspondiente a: Columna 8-A2 (Piso 2, 3). Figuras 89 y 90.

Columna C-T12 correspondiente a: Columna 6-A4 (Piso 2); Columna 7-A4 (Piso 2). Figuras 91 y 92.

Columna C-T13 correspondiente a: Columna 6-A4 (Piso 3); Columna 7-A4 (Piso 3). Figuras 93 y 94.

Figura 69. Diagrama de Interacción P Vs Mx Columna C-T1

Figura 70. Diagrama de Interacción P Vs My Columna C-T1

Figura 71. Diagrama de Interacción P Vs Mx Columna C-T2

Figura 72. Diagrama de Interacción P Vs My Columna C-T2

Figura 73. Diagrama de Interacción P Vs Mx Columna C-T3

Figura 74. Diagrama de Interacción P Vs My Columna C-T3

Figura 75. Diagrama de Interacción P Vs Mx Columna C-T4

Figura 76. Diagrama de Interacción P Vs My Columna C-T4

Figura 77. Diagrama de Interacción P Vs Mx Columna C-T5

Figura 78. Diagrama de Interacción P Vs My Columna C-T5

Figura 79. Diagrama de Interacción P Vs Mx Columna C-T6

Figura 80. Diagrama de Interacción P Vs My Columna C-T6

Figura 81. Diagrama de Interacción P Vs Mx Columna C-T7

Figura 82. Diagrama de Interacción P Vs My Columna C-T7

Figura 83. Diagrama de Interacción P Vs Mx Columna C-T8

Figura 84. Diagrama de Interacción P Vs My Columna C-T8

Figura 85. Diagrama de Interacción P Vs Mx Columna C-T9

Figura 86. Diagrama de Interacción P Vs My Columna C-T9

Figura 87. Diagrama de Interacción P Vs Mx Columna C-T10

Figura 88. Diagrama de Interacción P Vs Mx Columna C-T10

Figura 89. Diagrama de Interacción P Vs Mx Columna C-T11

Figura 90. Diagrama de Interacción P Vs My Columna C-T11

Figura 91. Diagrama de Interacción P Vs Mx Columna C-T12

Figura 92. Diagrama de Interacción P Vs My Columna C-T12

Figura 93. Diagrama de Interacción P Vs Mx Columna C-T13

Figura 94. Diagrama de Interacción P Vs My Columna C-T13

Figura 95. Detalles Columnas Reforzadas CT-1, CT-2, CT-3, CT-4.

Figura 96. Detalles Columnas Reforzadas CT-5, CT-6, CT-7, CT-8.

Figura 97. Detalles Columnas Reforzadas CT-9, CT-10, CT-11, CT-12, CT-13.

3.3.7.4 Calculo Refuerzo Transversal para las Columnas Encamisadas. Se instalara como refuerzo transversal estribos de confinamiento y suplementarios cumpliendo con los requisitos mínimos establecidos en la norma NSR-10 para columnas rectangulares en pórticos dúctiles de hormigón. Para ello se tienes tres tipos de secciones las cuales son:

Columnas Reforzadas Sección 50 cm X 80 cm correspondiente a: Columna 1-S1; Columna 4-S1; Columna 1-S2; Columna 1'-S3; Columna 5-S3; Columna 6-A5; Columna 7-A5.

Columnas Reforzadas Sección 50 cm X 100 cm correspondiente a: Columna 3-A2; Columna 3-A3; Columna 8-A3; Columna 9-A3.

Columnas Reforzadas Sección 65 cm X 100 cm correspondiente a: Columna 6-A2; Columna 7-A2; Columna 8-A2; Columna 6-A4; Columna 7-A4.

3.3.7.4.1 Calculo Refuerzo Transversal Columnas Reforzadas Sección 50cm X 80cm

Longitud de la zona confinamiento no puede ser menor de los siguientes valores.

$$L_o = Mayor \ Valor \ b \ y \ h = 800mm$$
$$L_o = \frac{L}{6} = \frac{3180}{6} = 530 \ mm$$
$$L_o = 450 \ mm$$

Máxima separación permitida para estribos en la zona de confinamiento.

$$S_{1} = \frac{Min \ b, h}{4} = \frac{500}{4} = 125 \ mm$$
$$S_{1} = 6d_{b} = 6 * 19.05 = 114.3 \ mm$$

$$S_1 = 100 + \frac{350 - h_x}{3} = 100 + \frac{350 - 240}{3} = 137mm$$

Máxima separación permitida para estribos en la zona no confinada.

$$S_2 = 6d_b = 6 * 19.05 = 114.3 mm$$

 $S_2 = 150 mm$

El área total de la sección transversal del refuerzo de estribos no debe ser menor que la requerida por las siguientes ecuaciones

Estribos Paralelos al eje Y

$$S = 80 mm$$

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} \quad -1 = 0.30 \frac{80 * 719 * 18}{420} \quad \frac{400000}{301315} \quad -1 = 243 \ mm^2$$

$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{80 * 719 * 18}{420} = 222.6 \ mm^2$$

Se colocan estribos de 3/8" en 4 ramas que corresponde a un área de 285 mm² con una separación de 80 mm

Estribos Paralelos al eje X

S = 80 mm

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} \quad -1 = 0.30 \frac{80 * 419 * 18}{420} \quad \frac{400000}{301315} \quad -1 = 141.6 \ mm^2$$

$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{80 * 419 * 18}{420} = 129.7 \ mm^2$$

Se colocan estribos de 3/8" en 3 ramas que corresponde a un área de 213.8 mm² con una separación de 80 mm

3.3.7.4.2 Calculo Refuerzo Transversal Columnas Reforzadas Sección 50cm X 100cm

Longitud de la zona confinamiento no puede ser menor de los siguientes valores.

$$L_o = Mayor \ Valor \ b \ y \ h = 1000 \ mm$$
$$L_o = \frac{L}{6} = \frac{5460}{6} = 910 \ mm$$
$$L_o = 450 \ mm$$

Máxima separación permitida para estribos en la zona de confinamiento.

$$S_1 = \frac{Min \ b, h}{4} = \frac{500}{4} = 125 \ mm$$

$$S_1 = 6d_b = 6 * 19.05 = 114.3 mm$$
$$S_1 = 100 + \frac{350 - h_x}{3} = 100 + \frac{350 - 240}{3} = 137mm$$

Máxima separación permitida para estribos en la zona no confinada.

$$S_2 = 6d_b = 6 * 19.05 = 114.3 mm$$

 $S_2 = 150 mm$

El área total de la sección transversal del refuerzo de estribos no debe ser menor que la requerida por las siguientes ecuaciones

Estribos Paralelos al eje Y

S = 85 mm

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} \quad -1 = 0.30 \frac{85 * 919 * 18}{420} \quad \frac{500000}{385125} \quad -1 = 300.6 \ mm^2$$

$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{80 * 919 * 18}{420} = 302.3 \ mm^2$$

Se colocan estribos de 3/8" en 5 ramas que corresponde a un área de 356.3 mm² con una separación de 85 mm

Estribos Paralelos al eje X

$$S = 85 mm$$

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} - 1 = 0.30 \frac{85 * 419 * 18}{420} \quad \frac{500000}{385125} - 1 = 137.1 \ mm^2$$
$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{85 * 419 * 18}{420} = 137.8 \ mm^2$$

Se colocan estribos de 3/8" en 3 ramas que corresponde a un área de 213.8 mm² con una separación de 85 mm

3.3.7.4.3 Calculo Refuerzo Transversal Columnas Reforzadas Sección 65cm X 100cm

Longitud de la zona confinamiento no puede ser menor de los siguientes valores.

$$L_o = Mayor \ Valor \ b \ y \ h = 1000 \ mm$$
$$L_o = \frac{L}{6} = \frac{5460}{6} = 910 \ mm$$
$$L_o = 450 \ mm$$

Máxima separación permitida para estribos en la zona de confinamiento.

$$S_1 = \frac{Min \ b, h}{4} = \frac{650}{4} = 162.5 \ mm$$
$$S_1 = 6d_b = 6 * 19.05 = 114.3 \ mm$$

$$S_1 = 100 + \frac{350 - h_x}{3} = 100 + \frac{350 - 240}{3} = 137mm$$

Máxima separación permitida para estribos en la zona no confinada.

$$S_2 = 6d_b = 6 * 19.05 = 114.3 mm$$

 $S_2 = 150 mm$

El área total de la sección transversal del refuerzo de estribos no debe ser menor que la requerida por las siguientes ecuaciones

Estribos Paralelos al eje Y

 $S = 85 \, mm$

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} \quad -1 = 0.30 \frac{85 * 919 * 18}{420} \quad \frac{650000}{522982} \quad -1 = 244.8 \ mm^2$$

$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{80 * 919 * 18}{420} = 302.3 \ mm^2$$

Se colocan estribos de 3/8" en 5 ramas que corresponde a un área de 356.3 mm² con una separación de 85 mm

Estribos Paralelos al eje X

$$S = 85 \, mm$$

$$A_{sh} = 0.30 \frac{Sb_c f'_c}{f_{yt}} \quad \frac{A_g}{A_{ch}} - 1 = 0.30 \frac{85 * 589 * 18}{420} \quad \frac{650000}{522982} - 1 = 151.5 \ mm^2$$

$$A_{sh} = 0.09 \frac{Sb_c f'_c}{f_{yt}} = 0.09 \frac{85 * 589 * 18}{420} = 187.2 \ mm^2$$

Se colocan estribos de 3/8" en 4 ramas que corresponde a un área de 285 mm² con una separación de 85 mm

Figura 98. Detalles Refuerzo Transversal Columnas Tipo Reforzadas

3.3.7.4.4 Índices por Flexo-compresión en Columnas con Reforzamiento

En el Anexo V se muestran las memorias de cálculos. En el Anexo U se muestra un resumen de los índices por Flexo-compresión en columnas reforzamiento.

Figura 99. Índice de Sobreesfuerzo por flexo-Compresión en Columnas

Reforzamiento

3.3.8 Análisis estático no lineal "Pushover" con reforzamiento

3.3.8.1 Resultados del Análisis "Pushover"

3.3.8.1.1 Análisis Pushover Dirección X Reforzamiento. La Tabla 28, se muestran los resultados de la curva de capacidad asociados a la estructura en la dirección X (modelo – Figura 102), expresados en términos del desplazamiento lateral (m), del nodo 1589, ubicado en el nivel de cubierta de la edificación en relación con el corte basal (KN). La Figura 100, muestra gráficamente la curva de capacidad, que mantiene su linealidad hasta alcanzar un desplazamiento en el tope de la edificación de 0.013749 mts. A partir de este punto (Paso 28), se inicia

una secuencia de plastificaciones en los diferentes elementos estructurales (vigas, columnas), cuya evolución se resume en la Tabla 28.

TABLE: Pushover Curve - PUSHOVER X											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	-0.000228	0	691	1	0	0	0	0	0	0	692
1	0.000272	239.364	691	1	0	0	0	0	0	0	692
2	0.000772	478.728	691	1	0	0	0	0	0	0	692
3	0.001272	718.093	691	1	0	0	0	0	0	0	692
4	0.001772	957.457	691	1	0	0	0	0	0	0	692
5	0.002272	1196.821	691	1	0	0	0	0	0	0	692
6	0.002772	1436.185	691	1	0	0	0	0	0	0	692
7	0.003272	1675.55	691	1	0	0	0	0	0	0	692
8	0.003772	1914.914	691	1	0	0	0	0	0	0	692
9	0.004272	2154.278	691	1	0	0	0	0	0	0	692
10	0.004772	2393.642	691	1	0	0	0	0	0	0	692
11	0.005272	2633.006	691	1	0	0	0	0	0	0	692
12	0.005772	2872.371	691	1	0	0	0	0	0	0	692
13	0.006272	3111.735	691	1	0	0	0	0	0	0	692
14	0.006772	3351.099	691	1	0	0	0	0	0	0	692
15	0.007272	3590.463	691	1	0	0	0	0	0	0	692
16	0.007772	3829.827	691	1	0	0	0	0	0	0	692
17	0.008272	4069.192	691	1	0	0	0	0	0	0	692
18	0.008772	4308.556	691	1	0	0	0	0	0	0	692
19	0.009272	4547.92	691	1	0	0	0	0	0	0	692
20	0.009772	4787.284	691	1	0	0	0	0	0	0	692
21	0.010272	5026.649	691	1	0	0	0	0	0	0	692
22	0.010772	5266.013	691	1	0	0	0	0	0	0	692
23	0.011272	5505.377	691	1	0	0	0	0	0	0	692
24	0.011772	5744.741	691	1	0	0	0	0	0	0	692
25	0.012272	5984.105	691	1	0	0	0	0	0	0	692
26	0.012772	6223.47	690	2	0	0	0	0	0	0	692
27	0.013272	6441.398	690	2	0	0	0	0	0	0	692
28	0.013749	6649.553	689	3	0	0	0	0	0	0	692
29	0.014249	6864.744	689	3	0	0	0	0	0	0	692
30	0.014749	7079.935	689	3	0	0	0	0	0	0	692

 Tabla 28. Datos Curva de capacidad Pushover X Reforzamiento

TABLE: Pushover Curve - PUSHOVER X											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
31	0.015411	7364.302	687	5	0	0	0	0	0	0	692
32	0.015911	7578.069	687	5	0	0	0	0	0	0	692
33	0.016411	7791.836	686	6	0	0	0	0	0	0	692
34	0.016911	8004.898	686	6	0	0	0	0	0	0	692
35	0.017411	8217.96	685	7	0	0	0	0	0	0	692
36	0.018044	8478.762	682	10	0	0	0	0	0	0	692
37	0.018544	8675.966	681	11	0	0	0	0	0	0	692
38	0.019044	8872.771	679	13	0	0	0	0	0	0	692
39	0.019544	9066.619	678	14	0	0	0	0	0	0	692
40	0.020386	9385.735	676	16	0	0	0	0	0	0	692
41	0.020886	9566.071	675	17	0	0	0	0	0	0	692
42	0.021386	9739.523	675	17	0	0	0	0	0	0	692
43	0.022194	10011.643	673	19	0	0	0	0	0	0	692
44	0.022694	10176.805	673	19	0	0	0	0	0	0	692
45	0.023646	10488.008	670	22	0	0	0	0	0	0	692
46	0.024146	10649.818	670	22	0	0	0	0	0	0	692
47	0.024932	10901.878	666	26	0	0	0	0	0	0	692
48	0.025432	11059.897	666	26	0	0	0	0	0	0	692
49	0.025932	11217.915	665	27	0	0	0	0	0	0	692
50	0.026432	11375.817	663	29	0	0	0	0	0	0	692
51	0.026932	11532.758	661	31	0	0	0	0	0	0	692
52	0.027909	11831.776	659	33	0	0	0	0	0	0	692
53	0.028822	12105.058	655	37	0	0	0	0	0	0	692
54	0.029322	12247.127	655	37	0	0	0	0	0	0	692
55	0.029822	12389.194	654	38	0	0	0	0	0	0	692
56	0.030322	12530.933	653	39	0	0	0	0	0	0	692
57	0.030822	12672.12	651	41	0	0	0	0	0	0	692
58	0.031322	12811.652	649	43	0	0	0	0	0	0	692
59	0.031822	12949.304	648	44	0	0	0	0	0	0	692
60	0.032322	13086.351	647	45	0	0	0	0	0	0	692
61	0.032822	13222.6	647	45	0	0	0	0	0	0	692
62	0.033322	13358.847	647	45	0	0	0	0	0	0	692
63	0.034079	13564.696	642	50	0	0	0	0	0	0	692
64	0.034579	13698.432	641	51	0	0	0	0	0	0	692
65	0.035079	13831.666	640	52	0	0	0	0	0	0	692
66	0.035579	13964.363	639	53	0	0	0	0	0	0	692
67	0.036079	14096.274	638	54	0	0	0	0	0	0	692
68	0.036579	14228.019	637	55	0	0	0	0	0	0	692

TABLE: Pushover Curve - PUSHOVER X											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
69	0.037079	14358.446	636	56	0	0	0	0	0	0	692
70	0.037579	14487.402	635	57	0	0	0	0	0	0	692
71	0.038079	14615.185	634	58	0	0	0	0	0	0	692
72	0.038579	14742.172	632	60	0	0	0	0	0	0	692
73	0.039442	14951.128	627	65	0	0	0	0	0	0	692
74	0.039942	15069.765	627	65	0	0	0	0	0	0	692
75	0.040442	15188.107	626	66	0	0	0	0	0	0	692
76	0.040942	15305.477	625	67	0	0	0	0	0	0	692
77	0.041442	15420.011	623	69	0	0	0	0	0	0	692
78	0.041942	15533.677	621	71	0	0	0	0	0	0	692
79	0.042442	15646.463	619	73	0	0	0	0	0	0	692
80	0.042942	15758.539	617	75	0	0	0	0	0	0	692
81	0.043442	15869.284	616	76	0	0	0	0	0	0	692
82	0.043942	15979.715	615	77	0	0	0	0	0	0	692
83	0.044442	16089.363	613	79	0	0	0	0	0	0	692
84	0.044942	16196.66	609	83	0	0	0	0	0	0	692
85	0.045442	16303.279	608	84	0	0	0	0	0	0	692
86	0.045942	16409.438	608	84	0	0	0	0	0	0	692
87	0.046442	16515.862	607	85	0	0	0	0	0	0	692
88	0.04695	16618.507	606	86	0	0	0	0	0	0	692
89	0.04745	16719.856	606	85	1	0	0	0	0	0	692
90	0.048404	16908.87	603	88	1	0	0	0	0	0	692
91	0.048904	17007.57	600	91	1	0	0	0	0	0	692
92	0.049546	17130.239	599	92	1	0	0	0	0	0	692
93	0.049772	17172.696	599	92	1	0	0	0	0	0	692

Figura 100. Curva de Capacidad Pushover X Reforzamiento

Para cada uno de los incrementos de cargas del análisis Pushover, se visualizar la evolución de cada punto de plastificación y la secuencia de plastificaciones, en una escala de colores, referidos a los puntos característicos de los diagramas de repuesta no lineal y los límites de deformación asociados a los diferentes niveles de desempeño establecidos. La Figura 101, muestra el momento en el cual la estructura inicia la incursión en el rango inelástico donde se presenta la primera plastificaciones alcanzadas para un desplazamiento de 0.049772 m (Paso 93), donde se evidencia un estado en el rango elástico en los elementos estructurales (Vigas y Columnas) de las cuales se empieza la cedencias a flexión y plastificación en los extremos de las columnas del primer piso Administración.

Figura 101. Inicio de Plastificación Paso 28 Reforzamiento

Figura 102. Inicio de Plastificación Paso 93 Reforzamiento

Las Figura 103, muestran los resultados obtenidos luego de superponer, en un formato de representación ADRS, el espectro de capacidad, con los espectros de demanda, asociado al nivel de amenaza sísmica que corresponde a un Sismo de Diseño. Para este caso, se destaca el punto de desempeño, donde se iguala la capacidad con la demanda, a través de la intersección del espectro de capacidad con el espectro de demanda, ajustado para un factor de amortiguamiento global compatible con el nivel de deformación esperado

Figura 103. Espectro de Capacidad Vs Demanda en X. Reforzamiento
Pushover Parameters Name Name A40P01	Units KN, m, C
Plot Axes	Axis Labels and Range
⊙ Sa·Sd ⊂ Sa·T ⊂ Sd·T	Set Axis Data
Demand Spectrum Definition	
C Function	SF
	Cv 0.71
Damping Parameters Definition	
Inherent + Additional Damping	0.05
Structural Behavior Type • A OB OC OUs	er Modify/Show
Items Visible On Plot	
Show Capacity Curve	Color
🔽 Show Family of Demand Spectra	Color
Damping Ratios 0.05 0.1 0.1	0.2
✓ Show Single Demand Spectrum (ADRS) (Variable Damping)	Color
✓ Show Constant Period Lines at	Color
0.5 1. 1.5	2.
Reset Default C	plors
Update Plot	

Figura 104. Definición de parámetros para ATC-40.

Tabla 29. Resultado para el Nivel de Amenaza Sísmica reforzamiento.

Nivel de Amenaza	S _a (g)	S _d (m)	V (KN)	D (m)	Teff (seg.)	β eff
Sismo de Diseño (SD)	0.656	0.034	16116.571	0.045	0.457	0.153

Con la información suministrada en la Figura 103 se indica la secuencia de rotulación de la estructura hasta que el punto 1589 a nivel de cubierta alcanza una deformación de 0.045442 m en el Paso 85 donde se aprecia en la Tabla 28, que sobre un total de 692 puntos de plastificación pertenecientes a la estructura tenga la siguiente distribución según su desempeño: el 87.86% se mantienen en el rango elástico (A-B), 12.13% supera el punto de cedencia, manteniéndose por debajo del límite de desempeño asociado a inmediata ocupación (B-IO).

La revisión de los niveles de degradación globales de la edificación, definidos por la evolución de las plastificaciones de los diversos elementos estructurales ante el nivel de amenaza sísmica definida en la norma NSR-10, se permite concluir que para un nivel de demanda sísmica correspondiente a un Sismo de Diseño (SD) aproximadamente el 12.13% alcanzan la deformación cedente por debajo de los limites admisibles asociados al estado de inmediata ocupación, ninguno alcanza la deformación cedente los cuales se encuentran en los límites de inmediata ocupación y seguridad de la vida, donde la mayoría de estos elementos corresponden a las columnas del primer piso del bloque de Administración. Cuando se tiene el sismo actuando en el sentido de eje "X" (Sismo X) la edificación se mantiene utilizable y disponible para su inmediata ocupación.

El desempeño esperado de la edificación según los objetivos de diseño implícitos en la propuesta del Comité VISION 2000 (SEAOC, 1995), para edificaciones esenciales dados en la Tabla 6 La estructura por ser un colegio; sus elementos estructurales deberían estar por debajo de los límites admisibles asociados al estado de inmediata ocupación.

3.3.8.1.2 Análisis Pushover Dirección Y Reforzamiento. La Tabla 30, se muestran los resultados de la curva de capacidad asociados a la estructura en la dirección Y (modelo – Figura 107), expresados en términos del desplazamiento lateral (mts), del nodo 1591, ubicado en el nivel de cubierta de la edificación en relación con el corte basal (KN). La Figura 105, muestra gráficamente la curva de capacidad, que mantiene su linealidad hasta alcanzar un desplazamiento en el tope de la edificación de 0.0196 mts. A partir de este punto (Paso 48), se inicia una secuencia de plastificaciones en los diferentes elementos estructurales (vigas, columnas), cuya evolución se resume en la Tabla 30.

T	ABLE: Pushove PUSHOVER	r Curve - Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	m	KN									
0	0.0004	0	693	1	0	0	0	0	0	0	694
1	0.0008	244.452	693	1	0	0	0	0	0	0	694
2	0.0012	488.905	693	1	0	0	0	0	0	0	694
3	0.0016	733.357	693	1	0	0	0	0	0	0	694
4	0.002	977.81	693	1	0	0	0	0	0	0	694
5	0.0024	1222.262	693	1	0	0	0	0	0	0	694
6	0.0028	1466.715	693	1	0	0	0	0	0	0	694
7	0.0032	1711.167	693	1	0	0	0	0	0	0	694
8	0.0036	1955.62	693	1	0	0	0	0	0	0	694
9	0.004	2200.072	693	1	0	0	0	0	0	0	694
10	0.0044	2444.525	693	1	0	0	0	0	0	0	694
11	0.0048	2688.977	693	1	0	0	0	0	0	0	694
12	0.0052	2933.429	693	1	0	0	0	0	0	0	694
13	0.0056	3177.882	693	1	0	0	0	0	0	0	694
14	0.006	3422.334	693	1	0	0	0	0	0	0	694
15	0.0064	3666.787	693	1	0	0	0	0	0	0	694
16	0.0068	3911.239	693	1	0	0	0	0	0	0	694
17	0.0072	4155.692	693	1	0	0	0	0	0	0	694
18	0.0076	4400.144	693	1	0	0	0	0	0	0	694
19	0.008	4644.597	693	1	0	0	0	0	0	0	694
20	0.0084	4889.049	693	1	0	0	0	0	0	0	694
21	0.0088	5133.502	692	2	0	0	0	0	0	0	694
22	0.0092	5377.847	692	2	0	0	0	0	0	0	694
23	0.0096	5622.193	692	2	0	0	0	0	0	0	694
24	0.01	5866.539	692	2	0	0	0	0	0	0	694
25	0.0104	6110.885	692	2	0	0	0	0	0	0	694
26	0.0108	6355.231	692	2	0	0	0	0	0	0	694
27	0.0112	6599.576	692	2	0	0	0	0	0	0	694
28	0.0116	6843.922	692	2	0	0	0	0	0	0	694
29	0.012	7088.268	692	2	0	0	0	0	0	0	694
30	0.0124	7332.614	692	2	0	0	0	0	0	0	694
31	0.0128	7576.96	692	2	0	0	0	0	0	0	694
32	0.0132	7821.305	692	2	0	0	0	0	0	0	694
33	0.0136	8065.651	692	2	0	0	0	0	0	0	694

Tabla 30. Datos Curva de capacidad Pushover Y Reforzamiento

Т	ABLE: Pushover PUSHOVER	r Curve - Y									
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
34	0.014	8309.997	692	2	0	0	0	0	0	0	694
35	0.0144	8554.343	692	2	0	0	0	0	0	0	694
36	0.0148	8798.689	692	2	0	0	0	0	0	0	694
37	0.0152	9043.034	692	2	0	0	0	0	0	0	694
38	0.0156	9287.38	692	2	0	0	0	0	0	0	694
39	0.016	9531.726	692	2	0	0	0	0	0	0	694
40	0.0164	9776.072	692	2	0	0	0	0	0	0	694
41	0.0168	10020.418	692	2	0	0	0	0	0	0	694
42	0.0172	10264.763	692	2	0	0	0	0	0	0	694
43	0.0176	10509.109	692	2	0	0	0	0	0	0	694
44	0.018	10753.455	692	2	0	0	0	0	0	0	694
45	0.0184	10997.801	692	2	0	0	0	0	0	0	694
46	0.0188	11242.147	692	2	0	0	0	0	0	0	694
47	0.0192	11486.492	691	3	0	0	0	0	0	0	694
48	0.0196	11728.789	690	4	0	0	0	0	0	0	694
49	0.02	11968.08	689	5	0	0	0	0	0	0	694
50	0.020272	12131.069	688	6	0	0	0	0	0	0	694
51	0.020672	12369.749	688	6	0	0	0	0	0	0	694
52	0.021072	12608.43	688	6	0	0	0	0	0	0	694
53	0.021472	12847.111	686	8	0	0	0	0	0	0	694
54	0.021872	13085.14	685	9	0	0	0	0	0	0	694
55	0.022272	13322.181	684	10	0	0	0	0	0	0	694
56	0.022672	13557.889	684	10	0	0	0	0	0	0	694
57	0.023072	13793.153	684	10	0	0	0	0	0	0	694
58	0.02383	14236.599	682	12	0	0	0	0	0	0	694
59	0.02423	14470.351	682	12	0	0	0	0	0	0	694
60	0.02463	14704.1	681	13	0	0	0	0	0	0	694
61	0.02503	14937.686	681	13	0	0	0	0	0	0	694
62	0.02543	15171.27	681	13	0	0	0	0	0	0	694
63	0.02583	15404.852	681	13	0	0	0	0	0	0	694
64	0.02623	15638.434	681	13	0	0	0	0	0	0	694
65	0.02663	15872.015	681	13	0	0	0	0	0	0	694
66	0.02703	16105.595	680	14	0	0	0	0	0	0	694
67	0.02743	16338.362	680	14	0	0	0	0	0	0	694
68	0.02783	16571.127	679	15	0	0	0	0	0	0	694
69	0.028569	16996.986	672	22	0	0	0	0	0	0	694
70	0.028969	17224.284	672	22	0	0	0	0	0	0	694

TABLE: Pushover Curve - PUSHOVER Y											
Step	Displacement	BaseForce	AtoB	BtolO	IOtoLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
71	0.029369	17451.293	672	22	0	0	0	0	0	0	694
72	0.029769	17678.096	672	22	0	0	0	0	0	0	694
73	0.030169	17904.923	671	23	0	0	0	0	0	0	694
74	0.030569	18131.679	670	24	0	0	0	0	0	0	694
75	0.030969	18357.754	667	27	0	0	0	0	0	0	694
76	0.031369	18581.02	665	29	0	0	0	0	0	0	694
77	0.031769	18802.204	665	29	0	0	0	0	0	0	694
78	0.032169	19023.514	664	30	0	0	0	0	0	0	694
79	0.032569	19243.543	661	33	0	0	0	0	0	0	694
80	0.032969	19463.04	661	33	0	0	0	0	0	0	694
81	0.033369	19667.972	661	33	0	0	0	0	0	0	694
82	0.033769	19885.854	661	33	0	0	0	0	0	0	694
83	0.034169	20105.434	660	34	0	0	0	0	0	0	694
84	0.034569	20311.987	660	34	0	0	0	0	0	0	694
85	0.034969	20531.029	656	38	0	0	0	0	0	0	694
86	0.035369	20752.409	652	42	0	0	0	0	0	0	694
87	0.035769	20966.015	652	42	0	0	0	0	0	0	694
88	0.036169	21168.615	651	43	0	0	0	0	0	0	694
89	0.036569	21380.564	650	44	0	0	0	0	0	0	694
90	0.036969	21596.117	650	44	0	0	0	0	0	0	694
91	0.037369	21805.327	650	44	0	0	0	0	0	0	694
92	0.037769	22018.362	649	45	0	0	0	0	0	0	694
93	0.038169	22216.605	648	46	0	0	0	0	0	0	694
94	0.038569	22409.08	645	49	0	0	0	0	0	0	694
95	0.038969	22607.495	645	49	0	0	0	0	0	0	694
96	0.039369	22807.254	645	49	0	0	0	0	0	0	694
97	0.039769	22986.366	642	51	0	0	0	0	1	0	694
98	0.037453	21197.186	645	49	0	0	0	0	0	0	694

Figura 105. Curva de Capacidad Pushover Y Reforzamiento

Para cada uno de los incrementos de cargas del análisis Pushover, se visualizar la evolución de cada punto de plastificación y la secuencia de plastificaciones, en una escala de colores, referidos a los puntos característicos de los diagramas de repuesta no lineal y los límites de deformación asociados a los diferentes niveles de desempeño establecidos. La Figura 106, muestra el momento en el cual la estructura inicia la incursión en el rango inelástico donde se presenta la primera plastificaciones alcanzadas para un desplazamiento de 0.113309 m (Paso 98), donde se evidencia un estado en el rango elástico en los elementos estructurales (Vigas y Columnas) de las cuales se empieza la cedencias a flexión y plastificación en los extremos de las columnas del primer piso Administración.

Figura 106. Inicio de Plastificación Paso 48 Reforzamiento

Figura 107. Inicio de Plastificación Paso 98 Reforzamiento

Las Figura 108, muestran los resultados obtenidos luego de superponer, en un formato de representación ADRS, el espectro de capacidad, con los espectros de demanda, asociado al nivel de amenaza sísmica que corresponde a un Sismo de Diseño. Para este caso, se destaca el punto de desempeño, donde se iguala la capacidad con la demanda, a través de la intersección del espectro de capacidad con el espectro de demanda, ajustado para un factor de amortiguamiento global compatible con el nivel de deformación esperado.

Figura 108. Espectro de Capacidad Vs Demanda en Y. Reforzamiento

Tabla 31. Resultado para el Nivel de Amenaza Sísmica reforzamiento.

Nivel de Amenaza	S _a (g)	S _d (m)	V (KN)	D (m)	Teff (seg.)	β eff
Sismo de Diseño (SD)	0.936	0.028	21981.773	0.038	0.347	0.065

Con la información suministrada en la Figura 108 se indica la secuencia de rotulación de la estructura hasta que el punto 1589 a nivel de cubierta alcanza una deformación de 0.038169 m en el Paso 93 donde se aprecia en la Tabla 30, que sobre un total de 694 puntos de plastificación pertenecientes a la estructura tenga la siguiente distribución según su desempeño: el 93.37% se mantienen en el rango elástico (A-B), 6.62% supera el punto de cedencia, manteniéndose por debajo del límite de desempeño asociado a inmediata ocupación (B-IO).

La revisión de los niveles de degradación globales de la edificación, definidos por la evolución de las plastificaciones de los diversos elementos estructurales ante el nivel de amenaza sísmica definida en la norma NSR-10, se permite concluir que para un nivel de demanda sísmica correspondiente a un Sismo de Diseño (SD) aproximadamente el 6.62% alcanzan la deformación cedente por debajo de los limites admisibles asociados al estado de inmediata ocupación, ninguno alcanza la deformación cedente los cuales se encuentran en los límites de inmediata ocupación y seguridad de la vida, donde la mayoría de estos elementos corresponden a las columnas del primer piso del bloque de Administración. Cuando se tiene el sismo actuando en el sentido de eje "Y" (Sismo Y) la edificación se mantiene utilizable y disponible para su inmediata ocupación.

El desempeño esperado de la edificación según los objetivos de diseño implícitos en la propuesta del Comité VISION 2000 (SEAOC, 1995), para edificaciones esenciales dados en la Tabla 6 La estructura por ser un colegio; sus elementos estructurales deberían estar por debajo de los límites admisibles asociados al estado de inmediata ocupación.

4. CONCLUSIONES

- La integración de los métodos analíticos y métodos que evalúan la capacidad basados en códigos, nos permite el desarrollo de estudios de vulnerabilidad sísmicas a un nivel de evaluación detallado, dando un diagnostico lo más confiable posible del desempeño sísmico de las edificaciones lo cual implica la aplicación de importantes recursos y tiempo.
- Los índices de sobreesfuerzos para cada elemento nos permite establecer de manera rápida cuales de estos presentan deficiencias para las diferentes solicitaciones, en cuanto a la estructura a pesar que fue diseñada con un código anterior al NSR-98 presenta en su generalidad de elementos índices menores de la unidad aunque hay un porcentaje considerable con índices que sobrepasan la unidad sobre todo en columnas; estos datos nos llevan a determinar un índice de sobreesfuerzo general con el que se define la vulnerabilidad de la estructura por resistencia, referencia que no es representativa ya que los datos presentan una dispersión en su puntuación muy alta.
- La edificación al presentar irregularidades tanto en planta como en altura, su ubicación en una zona sísmica alta y su sistema de resistencia sísmica de pórticos resistentes a momentos que presentan luces muy grandes entre ellos, conllevan a que la estructura sea muy flexible presentado grandes desplazamientos que superan los límites establecidos por la norma NSR-10, por lo que el resultado de su Vulnerabilidad por Flexibilidad se encuentra por debajo de la unidad, por lo que se requiere reforzar la estructura para aumentar su rigidez y así poder reducir su desplazamiento.

- Con el Análisis Estático No Lineal "Pushover" nos permite obtener la curva de capacidad de la estructura y determinar la secuencia de la aparición de las rotulas que llevan al colapso a la misma, y utilizando el método del espectro de capacidad-demanda nos permite estimar la respuesta estructural máxima del sistema y calificar el desempeño sísmico de la edificación.
- Los resultados del desempeño esperado para una demanda sísmica establecida por la Norma NSR-10, permite concluir que la estructura en su estado actual presenta una secuencia de rotulación máximo de seguridad de la vida, por lo que la edificación se puede mantener estable pero puede sufrir daños tanto en elementos estructurales en forma moderada y en elementos no estructurales en una forma severa.
- Debido a la irregularidad de la estructura tanto en planta y en altura no es posible el reforzamiento con muros ya que al tratar de dar una distribución simétrica para evitar que estos elementos rígidos tengan concentraciones de esfuerzos de corte y torsión se requiriere la instalación de un gran número de muros lo que ocasionaría grandes costos en la etapa de rehabilitación.
- Como alternativa de reforzamiento con el fin de aumentar su rigidez y disminuir la flexibilidad se adicionaron en algunos pórticos sin que ocasionaran modos torsionales, diagonales metálicas combinado con el encamisado de las columnas que presentaron insuficiencia en la capacidad para resistir cargas a flexo-compresión; las anteriores alternativas de reforzamiento tiene como ventajas la facilidad constructiva durante la etapa de intervención haciendo que los costos de rehabilitación sean los más bajos posibles.

5. RECOMENDACIONES

- Es necesario la revisión de la vulnerabilidad sísmica de los elementos no estructurales con una evaluación que complete de manera más específica la vulnerabilidad de estos elementos.
- Los métodos utilizados en este trabajo tiene sus ventajas y desventajas y no es conveniente menospreciar o sobre estimar sus probabilidades; por el contrario es conveniente integrarlos dentro de una estrategia racional de evaluación donde se combinen los métodos analíticos y los métodos que evalúan la capacidad basados en códigos lo cual permita incrementar la confiabilidad de un estudio de vulnerabilidad sísmica.
- Durante la etapa de intervención de la estructura se debe revisar la viga VA2-0 (40x40) entre los ejes 7 8 de la planta cubierta sótano 2, la cual para su sección y carga que soporta, el refuerzo que se muestra en los planos de despiece no corresponde; comparada con otras vigas que son menos importantes. En caso de no tener el refuerzo suficiente se debe reforzar.
- Como no se realizó apiques para revisar el estado y verificación de la cimentación, al realizar los cálculos para su comprobación de su resistencia con la información contenida en los planos, las zapatas 2'-S1, 2'-S2, 8-A1, 7-A2', 8-A2', 9-A2', 6-A5, 7-A5, 9-A5 Figura 28; presentan problemas en su geometría por lo no está en equilibrio y deben variarse sus dimensiones. Por lo anterior se debe confirmar por medio de apiques el estado, nivel de desplante y dimensiones reales para realizar con exactitud el reforzamiento más adecuado para mejorar su capacidad.

232

BIBLIOGRAFIA

- ACI 400.2r-08. American Concrete Structure. Guide for the Design and Construction of Externally Bonded FRP System for Strengthening Concrete Structure. First Printing. Farmington Hills, MI. July2008.
- 2. **ATC 40,** "Seismic Evaluation and Retrofit of Concrete Buildings", by Applied Technology Council California. 1996.
- AWAD, Roberto Rochel. Análisis y Diseño Sísmico de Edificios. 3 edición.
 Fondo Editorial Universidad Eafit. Medellín Colombia 2006.
- BUSTAMANTE R., Castro C., Márquez J. Estudio de Vulnerabilidad Sísmica en las Instituciones Educativas de la Zona Rural Norte del Municipio de Sincelejo [Tesis de Especialización]. Sincelejo: Universidad de Sucre. Facultad de Ingeniería; 2007.
- DANTE A. Refuerzo de Pilares con Encamisado de Hormigón Solicitados a Axil Centrado [Trabajo de Investigación Tutelado]. Madrid: Universidad Politécnica de Madrid. Departamento de Mecánica de Medios Continuos y Teoría de Estructuras; 2007
- DELGADILLO J. Análisis No Lineal Estático de Estructuras y la Norma E-30 [Tesis de Posgrado]. Perú-Lima: Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil; 2005.
- 7. **FEMA 356,** "Prestandard and Commentary for the Seismic Rehabilitation of Buildings", by American Society of Civil Engineers, Washington, D.C. 2000.

- INPRES, Instituto Nacional de Prevención Sísmica, Secretaria de Obras Públicas, Argentina. <u>http://www.inpres.gov.ar</u> [Consulta 10 Mayo 2012].
- LÓPEZ O., Ruiz G. Evaluación de los Métodos de Análisis Estático No Lineal para Determinar la Demanda Sísmica en Estructuras Aporticada de Concreto Armado 2008. IMME; volumen 46 No 3: 3-4.
- NSR 2010. Reglamento colombiano de Construcción Sismo Resistente. Asociación Colombiana de Ingeniería Sísmica. Colombia de 2010.
- Organización Panamericana de la Salud, Mitigación de Desastres en las Instalaciones de Salud – Volumen 4: Aspectos de Ingeniería. Organización Mundial de la Salud, 1993.
- SEAOC (1995), "Performance Based Seismic Engineering of Buildings", tomo I y II, preparado por la Asociación de Ingenieros estructurales de California, comité Visión 2000

ANEXOS

Ver CD Adjunto