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Resumen

TITULO: DISEÑO DE APERTURAS CODIFICADAS PARA REALIZAR CLASIFI-
CACIÓN NO SUPERVISADA EN IMÁGENES ESPECTRALES ADQUIRIDAS ME-
DIANTE LA TÉCNICA DE MUESTREO COMPRESIVO.(*)

AUTOR: CARLOS ALBERTO HINOJOSA MONTERO (**)

PALABRAS CLAVE: Imágenes espectrales, muestreo compresivo, diseño de pa-
trones de codificación, adquisición compresiva de imágenes espectrales, clasifi-
cación no supervisada, clustering, sparse subspace clustering.

Los sistemas de adquisición de imágenes espectrales basados en la técnica de
muestreo compresivo (CSI por su sigla en inglés), obtienen proyecciones codifi-
cadas de las firmas espectrales aplicando diferentes patrones de codificación. Una
vez acquiridas las medidas comprimidas, el paso a seguir conmunmente consiste
reconstruir la imagen espectral original. En la literatura de CSI, distintos trabajos
se han centrado en mejorar la calidad de la reconstrucción mediante el diseño ade-
cuado de los patrones de codificación. Sin embargo, la reconstrucción de la escena
subyacente no es estrictamente necesaria para realizar distintas tareas de proce-
samiento. Por ejemplo, suponiendo que los pı́xeles espectrales asociados a clases
diferentes conservan su desemejanza despues de ser comprimidos, los métodos
de clasificación no supervisada (clustering) pueden aplicarse directamente con el
objetivo de separar dichos pı́xeles en grupos diferentes o clusters, sin la necesidad
de reconstuir la imagen espectral. En este trabajo, se propone un método para re-
alizar clustering con medidas comprimidas obtenidas mediante CSI. En particular,
se propone el diseño de un conjunto óptimo de patrones de codificación de manera
que la desemejanza entre pı́xeles de diferentes clases se preserve después de la
proyección de la escena. Luego, para realizar la clasificación de los datos com-
primidos se propone un algoritmo de clustering basado en el modelo de Sparse
Subspace Clustering (SSC), el cual tiene en cuenta la correlación espacial exis-
tente entre firmas espectrales. Se realizaron diferentes simulaciones para validar el
método de clasificación propuesto. En general, se obtuvo una precisión global del
73.07%, 80.12% y del 83.81% utilizando las imágenes espectrales de “Indian Pines”,
“Salinas” y “Pavia University”, respectivamente, añadiendo 25 dB de relación señal
/ ruido a las mediciones comprimidas.

(*) Trabajo de Investigación.
(**) Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́a de Sistemas e Informática.

Director, Henry Arguello Fuentes.
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Abstract

TITLE: CODED APERTURE DESIGN FOR COMPRESSIVE SPECTRAL IMAGING
SUBSPACE CLUSTERING. (*)

AUTHOR:CARLOS ALBERTO HINOJOSA MONTERO (**)

KEYWORDS: Spectral imaging, compressive spectral imaging, coding pattern de-
sign, clustering, sparse subspace clustering.

Compressive spectral imaging (CSI) is a spectral imaging approach which acquires
compressed observations of the spectral signatures by applying different coding pat-
terns on each spectral signature and then performing an spectral-wise integration.
Once acquired the compressed measurements, the common subsequent procedure
is the spectral image recovery. In CSI literature, several works has focused on im-
proving the quality of reconstruction by properly designing a set of coding pattern.
However, the recovery step is not actually necessary in many signal processing ap-
plications. For instance, assuming that spectral pixels from different class material
preserve their dissimilarity after being compressed, the clustering methods can be
straight applied to separate them into a different group or cluster, without the need
of spectral image reconstruction. In this work, a subspace clustering approach for
CSI measurements is proposed. In particular, an optimal set of coding patterns is
proposed such that the dissimilarity between pixels from different classes is best
preserved after the scene projection. Then, the CSI measurements classification
is performed using a proposed clustering algorithm based on the sparse subspace
clustering (SSC) model, which takes into account the spatial property of spectral
images. Different simulations were made in order to validate the proposed CSI sub-
space clustering approach. In general, an overall accuracy of 73.07%, 80.12% and
83.81% were obtained using the Indian Pines, Salinas and Pavia University hyper-
spectral images respectively, when 25 dB of signal-to-noise ratio is added to the
compressed measurements.

(*) Research Work.
(**) School of Physical-Mechanical Engineering. Department of Systems Engineering and Infor-

matics. Advisor, Henry Arguello Fuentes.
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INTRODUCTION

Spectral imaging captures the spectral information of a scene by sensing a large
amount of spatial information at different electromagnetic radiation frequencies.
Spectral images are regarded as three dimensional datasets or data cubes with
two dimensions in the spatial domain (x, y) and one in the wavelength domain (λ).
In general, traditional sensing techniques, as illustrated in Fig. 1 (a), construct a
spatio-spectral data cube by scanning the scene, either spectrally or spatially in
proportion to the desired spatial or spectral resolution, which in turn, increases
acquisition times. On the other hand, snapshot spectral imaging, depicted in
Fig. A (b), captures the spatial and spectral information of a scene by mapping
all the voxels(*) of the spectral data cube into different regions of the focal plane
array (FPA(**)) [1, 2, 3]. In general, traditional techniques require to sense every
single voxel of the 3D scene, hence huge storage capacities and computational
resources are necessary in order to store and process such high dimensional
images.

Figure A: Spectral imaging techniques. (a) Traditional scanning-based techniques using
dispersion and spectral filtering. (b) Snapshot spectral imager.

 

Spectral
Filtering

Snapshot Spectral Imager
 

Pushbroom

Whiskbroom

Knowledge of the spectral content at various spatial locations from a scene can
be a valuable tool for the detection, identification, and classification of materials
and objects with complex compositions [4]. In particular, spectral image classi-

(*) The voxel ( volumetric pixel ) is the cubic unit composing a three dimensional (3D) object.
It constitutes the minimum processable unit of a 3D array, being the equivalent to a pixel in a 2D
object.

(**) A Focal Plane Array (FPA) is an imaging device consisting of an array (typically rectangular)
of light-sensing pixels at the focal plane of a lens.
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fication is an important task for many practical applications, such as precision
agriculture [5], monitoring and management of the environment [6], and security
and defense issues [7, 8]. As shown in Fig. B, every spatial location in a spec-
tral image is represented by a vector whose values correspond to the intensity at
different spectral bands. These vectors are also known as the spectral signature
of the pixels. Different materials usually reflect electromagnetic energy differently
at specific wavelengths [9], hence the information provided by the spectral sig-
natures enables to distinguish different physical materials and objects, leading to
the potential of a more accurate image classification.

Figure B: Spectral voxel and signature of a spectral image [1].

Clustering analysis is a common classification technique which group data points
with similar patterns into the same group or cluster, such that the inter-cluster
dissimilarity and the intra-cluster similarity are maximized. A recent clustering
approach is called subspace clustering which assumes that a given set of data
points is drawn from a union of unknown subspaces, with unknown and possibly
different dimensions, and aims at finding a low-dimensional subspace to fit each
group of data points [10]. Subspace clustering algorithms can be divided into four
main categories: iterative [11], algebraic [12, 13], statistical [14, 15] and spectral
clustering-based methods [16]. Particularly, spectral clustering finds the cluster
membership of the data points by using the spectrum of a symmetric nonneg-
ative affinity matrix whose entries measure the similarities between connected
points. Therefore, the most important step in spectral clustering-based meth-
ods is the similarity graph construction problem [16]. A widely used approach to
build the similarity graph consists on measuring the pairwise distance among the
data points. On the other hand, in recent years, a new algorithm named sparse
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subspace clustering (SSC) proposes to capture the global geometric relationship
among all data points by expressing each data point as a linear combination of all
other points and then, the set of solutions is restricted to be sparse by minimizing
the `1 norm of the representation coefficient matrix. Using the sparse represen-
tation matrix, a similarity graph is then built, from which the segmentation of the
data is obtained [17, 18].

Assuming that spectral signatures with similar spectral characteristics will lie in
the same low-dimensional subspace, the subspace clustering theory can be used
for modeling the spectral image classification problem [19]. In general, spectral
image clustering is a very challenging task due to the inherent data complexity
and computational cost, which grows in proportion to the dimensions of the spec-
tral data sets. When the ratio between spectral bands and the number of data
samples is greatly different, spectral images suffer from the well known curse
of dimensionality [20]. In addition, processing such high dimensional data also
requires huge computational resources and storage capacities. Therefore a pre-
processing step to reduce the dimension of the spectral imagery is often used in
order to perform different image processing techniques [21].

Recently, Compressive Spectral Imaging (CSI) has emerged as a new spectral
imaging approach which acquires compressed 2D projections of the entire data
cube rather than direct measurements of all voxels. This enables to sense and si-
multaneously reduce the data dimensionality without any further processing step.
Additionally the cost of sensing, storing, transmitting and processing a spectral
image acquired using this approach is reduced. In order to acquire the com-
pressed measurements, CSI devices use an optical coding element such as a
coded aperture which modulates the scene, and a dispersive element to obtain
the spectral component of the spectral image. According to their optical config-
uration, CSI devices employ different sampling strategies which allow to exploit
statistical properties of spectral data, leading to different sensing performance
in terms of spectral reconstruction quality [22]. The spatial-spectral coded com-
pressive spectral imager (3D-CASSI) is a CSI sensing scheme which modulates
the spectral data cube in both spatial and spectral dimensions using a 3D coded
aperture (ensembles of 2D coded apertures) or a coding pattern array. Then,
the coded spectral data cube is integrated along the spectral dimension such that
each spatial position of the acquired measurements contains the compressed
information of a single coded spectral signature [22]. Although the 3D-CASSI al-
lows to modulate the spectral scene with any 3D coded aperture which entails a
higher performance, its physical implementation is not trivial. However, the color-
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coded aperture spectral camera imager (CCASSI) [23, 24, 25, 26] and the dual-
coded hyper-spectral imager (DCSI) [27] are two approximate implementations of
the ideal 3D-CASSI.

In recent work, the CSI theory has been used in conjunction with spectral image
classification. Specifically a supervised spectral image classifier that labels each
spectral pixel in one of the known classes using a set of compressed CASSI mea-
surements was proposed in [28]. However, this classifier uses the compressed
measurements to recover a sparse representation for each spectral signature by
solving an optimization problem which incurs in a high computational cost.

Since the structure of the acquired compressed projections directly depends on
the applied coding pattern, a set of coded apertures can be designed such that
the information, and hence the similarity between the spectral signatures, is ap-
proximately preserved after the sensing process. This research work, focuses
on the problem of unsupervised spectral image classification directly on the com-
pressed measurements without recovering the original spectral scene. Particu-
larly, 2D projections of the spectral image data are first acquired using the 3D-
CASSI sensing approach, which reduces the data dimensionality and hence the
storage cost. Then, a subspace clustering algorithm is proposed in order to per-
form the spectral image clustering. Moreover, since we are only interested in the
classification results, the spectral image reconstruction phase is not performed,
thus the cost of recovering all the data is avoided. In the following chapters, the
spectral image, subspace clustering and CSI theory are described. Then, a cod-
ing pattern design and a clustering algorithm based on SSC model are proposed.
Finally, simulations and results are included to analyze the performance of the
developed spectral image clustering approach.
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1. SPECTRAL IMAGING SUBSPACE CLUSTERING

In this chapter, the theoretical background related to the problem addressed in
this research is introduced. First, the spectral imaging concept, characteristics
and some traditional sensing approaches are presented. In the second part, the
subspace clustering theory and some algorithms are briefly introduced.

1.1. SPECTRAL IMAGING

The human visual system builds a representation of the surrounding environment
by detecting and interpreting the information from the visible range, roughly from
380 to 750 nm, of the electromagnetic spectrum. This limitation extends to tra-
ditional photo cameras which group all the spectral information within the visible
spectral range into three broad spectral ranges roughly corresponding to the three
primary colors, red, green and blue. Although such information allows to perceive
the shape, surface texture and mutual spatial relation in the depth of 3D space, it
is insufficient in applications where the spectral information of interest extends to
other ranges of the electromagnetic spectrum.

Spectral imaging combines spectroscopy and two-dimensional imaging method-
ologies. Whereas imaging provides the intensity at every pixel of a 2D image, and
a typical spectrometer measures a single spectrum, spectral imaging collects 2D
images at specific wavebands across the electromagnetic spectrum. This is a
three-dimensional (3D) data set and can be viewed as a cube of information, as
observed in Fig. 1.1.

Many different techniques for spectral imaging have been developed over the
years. For instance traditional spectral imaging methods, such as Whiskbroom[29],
Pushbroom[30] and tunable filter imagers[31], scan adjacent zones of the under-
lying spectral scene and merge the results to construct a spectral 3D data cube.
On the other hand, snapshot spectral imaging captures the spatial and spectral
information of a scene by mapping all the voxels of the spectral data cube into
different regions of a large focal plane array (FPA) [2, 3]. Furthermore, spectral
imaging using Fabry-Perot filters or colored mosaic FPA detectors captures small
subsets of spectral bands by assigning a particular spectral response to each
FPA pixel such that a specific range of wavelengths is captured [32, 33]. In gen-
eral, these traditional techniques require all voxels of the 3D scene to be sensed.
Then, as the spatial or spectral resolution increases, the number of voxels to be
sensed increases proportionally, leading to an increment in the cost of sensing,
storing and transmitting an spectral image acquired through these methods.

Every spatial location in a spectral image is represented by a vector whose val-
ues correspond to the intensity at different spectral bands. These vectors are
also known as the spectral signature of the pixels, see Fig. 1.1. All materials
have unique spectral characteristics because they absorb, reflect, and emit radi-
ation in a unique way. For instance, in the visible portion of the spectrum, a leaf
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Figure 1.1: Spectral Imaging concept.
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appears green because it absorbs in the blue and red regions of the spectrum
and reflects in the green region. These variations in absorption, reflection, and
emission are due to the material composition. Differences in spectral responses
due to absorption, transmission, and reflection cause materials to have a unique
spectral signature. Therefore, the information provided by the spectral signatures
can be a valuable tool for the detection, identification, and classification of ma-
terials and objects with complex compositions [4]. Particularly, the classification
of spectral images consists on labeling individual spectral signatures to one of
the classes based on its spectral characteristics. Spectral image classification
has found many applications in various fields such as military [34, 35], precision
agriculture [36], and mineralogy [37].

In general, there are two main approaches to the classification problem: super-
vised and unsupervised. Supervised techniques require the availability of a train-
ing set for learning the classifier. Among various supervised techniques, support
vector machines (SVMs) [38, 39] have shown a good performance for spectral
image classification [40, 41]. In particular, a few spectral signatures are used
as training samples to train a SVM classifier and then, the remaining spectral
signatures are classified. This process is depicted in Fig. 1.2. Variations of
the SVM-based algorithms have also been proposed to improve the classification
accuracy. These variations include semisupervised learning which exploits both
labeled and unlabeled samples [42], postprocessing of the individually labeled
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samples based on certain decision rules [43], and incorporating spatial informa-
tion directly in the SVM kernels [44]. More recent spectral imaging supervised
classification techniques can be found in [45, 46].

Figure 1.2: Supervised spectral image classification using SVM.

SVM
Training

SVM
Classification

Vegetation

Weights

Prediction

Initial
Classification

(Soil, Vegetation, Water)

Data
Training

Data
Test

Unsupervised methods, known also as clustering methods, perform classification
just by exploiting information conveyed by the data, without requiring any training
sample set. Supervised methods offer a higher classification accuracy compared
to the unsupervised ones, but in some applications, it is necessary to resort to
unsupervised techniques because training information is not available. When
trying to cluster high dimensional data such as spectral images, the given set of
data points, i.e., the spectral signatures, could be drawn from an arrangement
of an unknown number of subspaces that have unknown and possibly different
dimensions. Then, the goal is to simultaneously estimate these subspaces and
cluster the points into their corresponding subspaces [47].

1.2. SUBSPACE CLUSTERING THEORY

In recent years, the unprecedented technological advances have lead to an in-
crement in the availability and dimensionality of the data in all areas of science
and engineering. These include machine learning, signal and image processing,
computer vision, pattern recognition, bioinformatics, etc. For instance, a conven-
tional gray scale image consists of billions of pixels whereas a spectral image
consists of hundreds of grayscale images which provide information from differ-
ent wavelengths. This high dimensionality of the data leads to an increment in
memory resources, in order to store such information, and computational cost for
processing and data analysis. However, high dimensional data often lies in low
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dimensional structures instead of being uniformly distributed across the ambient
space. Therefore, different techniques for finding a low-dimensional representa-
tion of a high dimensional data set have been developed [10].

A traditional dimensionality reduction technique is the principal component analy-
sis (PCA). PCA assumes that a set of points {x1,x2, · · · ,xNe} = {xj}Nej=1 in a high
dimensional space RD is drawn from a single low dimensional affine subspace
A of dimension d � D. This technique is well established in the literature, and
has become one of the most useful tools for data modeling, compression, and
visualization [10].

In practice, however, the data points could be drawn from the union of ne ≥ 1
linear or affine subspaces {Ai}nei=1 of unknown dimensions di = dim(Ai), 0 < di <
D. The subspaces can be described as

Ai = {x ∈ RD : x = υi + Uiy}, i = 1, · · ·n, (1.1)

where υi ∈ RD is an arbitrary point in subspace Ai, that can be chosen as υi = 0
for linear subspaces; Ui ∈ RD×di is a basis for subspace Ai; and y ∈ Rd

i is a
low dimensional representation for point x. Then, the goal of subspace clustering
is to find the number of subspaces ne, their dimensions {di}nei=1, the subspace
bases {Ui}nei=1, the points {υi}nei=1, and cluster the data points into their corre-
sponding subspaces. Since data in a subspace is often distributed arbitrarily and
not around a centroid, standard centroid-based clustering methods [48] that take
advantage of the spatial proximity of the data in each cluster are not in general
applicable to subspace clustering.

Different algorithms for subspace clustering which take into account the multi-
subspace structure of the data have been proposed in the past two decades.
These algorithms can be divided into four main categories: iterative, algebraic,
statistical and spectral clustering-based methods [18]. In particular, spectral clustering-
based methods construct a weighted graph G = (V,E,W), where V = {1, · · · , N}
is the set of nodes, E ⊂ V × V is the set of edges, and W ∈ RNe×Ne is a sym-
metric nonnegative affinity matrix whose (j, k)-th entry, Wjk, measures the affinity
between points xj and xk. Ideally, Wjk = 1 if points j and k are in the same group
and Wjk = 0 if points j and k are in different groups. In practice, a typical affinity
is given by

Wjk = exp
(
− 1

2σ
dist(xj,xk)2

)
, (1.2)

where dist(xj,xk) is some measure of the distance between points j and k and
σ > 0 is a parameter. Let D = diag(W1), where 1 ∈ RNe is an all-one vector,
be a diagonal matrix whose j-th diagonal entry gives the degree djj =

∑
kWjk

of node j, and let L = D −W ∈ RNe×Ne be the graph’s Laplacian matrix. Spec-
tral clustering obtains a clustering of the data by applying the K-means algorithm
to the columns of the matrix Y = [u1,u2, · · · ,une ]

T ∈ Rne×Ne, where {ui}nei=1 are
the eigenvectors of L associated with its ne smallest eigenvalues. However, the
distance-based affinity described in Eq. (1.2) is not appropriate for subspace
clustering since two points could be very close to each other but lie in different
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subspaces (e.g., near the intersection of two subspaces). Conversely, two points
could be far from each other but lie in the same subspace. In general, the geomet-
ric relationships among multiple points must be considered in order to construct
an effective affinity measure for subspace clustering [10, 18].

In fact, the construction of a good affinity matrix is one of the main challenges in
applying spectral clustering to subspace clustering problem. Based on the repre-
sentative method for designing an affinity matrix, the existing spectral clustering-
based algorithms can be categorized in local and global methods. Local methods
such as Local Subspace Affinity (LSA) [49], Locally Linear Manifold clustering
(LLMC)[50] and Spectral Local Best-fit Flats (SLBF)[51, 52] compute an affinity
between two points that depends only on the data points in a local neighborhood
of each of the two points. These methods have difficulties in dealing with points
near the intersection of two subspaces, because the neighborhood of a point can
contain points from different subspaces. In addition, they are sensitive to the right
choice of the neighborhood size to compute the local information at each point.
On the other hand, global methods such as Spectral Curvature Clustering (SCC)
[53] and algebraic subspace affinity[16] compute an affinity between two points
that depends on all the data points.

Recently, a new spectral clustering-based algorithm named Sparse Subspace
Clustering has been proposed [17, 18]. SSC is also based on the idea of writing
a data point as a linear or affine combination of neighboring data points. However,
while LSA, SLBF, and LLMC use the angular or Euclidean distance between two
points to choose the K-NNs, SSC uses the principle of sparsity to choose any
of the remaining data points (Ne − 1 � K) as a possible neighbor. Specifically,
denote the matrix containing all the noise-free data points as

X = [x1,x2, · · · ,xNe ] = [X1, · · · ,Xne ] Γ, (1.3)

where Xi ∈ RD×Nei is a rank-di matrix of the Nei > di points that lie in Ai, and
Γ ∈ RNe×Ne is an unknown permutation matrix.

The SSC algorithm takes advantage of the self-expressiveness property of the
data, i.e., each data point in a union of subspaces can be efficiently reconstructed
by a combination of other points in the dataset. Then with the X matrix itself being
used as the dictionary, the SSC algorithm constructs the sparse representation
model as follows

min
Z
‖Z‖1 s.t. X = XZ, diag(Z) = 0, (1.4)

where the `1-norm regularization in this formulation suggests that a sparse repre-
sentation of a data point finds points from the same subspace. Using the obtained
sparse coefficient matrix Z, the affinity matrix W is constructed, which defines the
weight on the edge between the data nodes as follows

W = |Z|+ |Z|T . (1.5)
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Finally, the clustering result is obtained by applying spectral clustering to the
Laplacian L matrix induced by the affinity matrix W.

Assuming that spectral signatures with similar spectral characteristics lie in the
same low-dimensional subspace, the subspace clustering theory can be used for
modeling the spectral image classification problem. Figure 1.3 depicts a spectral
image, whose spectral signatures belong to different subspaces, i.e it can be
viewed as a union of multiple subspaces.

Figure 1.3: Spectral image classification using the subspace clustering approach.
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In general, the exponential increment of data features (number of sensed spectral
bands) tends to deteriorate the accuracy of classification algorithms. This phe-
nomenon is called the “curse of dimensionality” and was introduced by Richard E.
Bellman to describe the problem caused by the exponential increase in volume
associated with adding extra dimensions to the Euclidean space [54]. There-
fore, the reduction of data dimensionality with no appreciable loss of information
is a crucial preprocessing step for learning and recognition tasks such as clas-
sification. Furthermore, the dimensionality reduction alleviates the need of high
computational and storage resources. In the next section, a spectral imaging
approach which senses and simultaneously reduces the data dimensionality is
presented. As the data is compressed (dimensionality-reduced), a reconstruction
process is typically used in order to recover a 3D approximation of the underly-
ing scene and to further perform different image processing techniques, such as
classification. The aim of this work is to avoid the reconstruction step and to per-
form subspace clustering directly on the dimensionality-reduced observations. In
the following sections, the spectral imaging approach and the proposed subspace
clustering method are described.

21



2. COMPRESSIVE SPECTRAL IMAGING

Most of the information acquired by traditional sampling methods of spectral im-
ages is discarded during the compression process before being stored. Due to
the high dimensionality of the spectral images, recent works have focused on ob-
taining a compressed signal or spectral image directly avoiding the compression
step.

Compressive spectral imaging (CSI) is a new approach which senses and re-
duces the data dimension in a single step. Specifically, CSI captures 2D coded
and dispersed projections of the 3D scene rather than direct measurements of
the voxels. Therefore, a far less number of samples are acquired compared to
traditional techniques, leading to an improved sensing speed [55].

CSI theory establishes that an estimation of the 3D data cube can be successfully
recovered from the compressed measurements. To make this possible, CSI relies
on two principles: sparsity, which characterizes the spectral scene of interest, and
incoherence, which shapes the sensing structure[56, 57].

A signal is K-sparse if at most K of its components are nonzero. However, many
natural and man-made signals are not sparse but compressible in the sense that
they can be well-approximated as a linear combination of just a few elements
from a known basis or dictionary Ψ. Formally, denote F as the spatio-spectral
input data cube, with M × N spatial dimensions, and L spectral bands. Then, a
spectral image can be expanded in an orthonormal basis Ψ = [ψ1,ψ2, · · · ,ψMNL]
as

f̄ =
MNL∑
i=1

θiψi, (2.1)

where f̄ ∈ RMNL is a vector representation of the source F, θ is the coefficient
sequence of f , such that θi =

〈
f̄ ,ψi

〉
. Then, the spectral image f̄ can be ex-

pressed as f̄ = Ψθ, where Ψ is an MNL ×MNL matrix with ψ1,ψ2, · · · ,ψMNL

as columns.

On the other hand, the CSI incoherence property measures how correlated are
the elements of H and Ψ where a low correlation is desired [58]. Specifically,
let H ∈ RMV×MNL, where MV is the number of compressed measurements to
acquire, and Ψ ∈ RMNL×MNL be two orthonormal bases. Following the compres-
sive sensing theory, the first basis is used to measure/sense the signal f̄ , and the
second basis is used to represent f̄ in a sparse domain. The mutual coherence
of the orthonormal basis H and Ψ is defined as the maximum absolute value of
the inner product between any two columns of the basis, given by

µ(H,Ψ) =
√
MN max

1≤i,j≤MN
|〈HHH i,Ψi〉|, (2.2)

where HHH i represents the i-th column of the sensing matrix H, whose structure is
determined by the sensing architecture. The coherence measures the maximum
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Figure 2.1: Example of a coded aperture. The black elements represent the zero values
which block the light whereas the white elements represent the one values
which allow the light to pass through.

Allows the light to 
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Blocks the Light 

correlation between any two elements of H and Ψ. In CSI a minimum coherence
among the orthonormal base is desired.

CSI-based systems can capture a spectral image with a single snapshot, without
the need to linearly scan all the adjacent zones, as observed in Fig. A b). In order
to acquire the 2D compressed projections, CSI devices usually employ optical
elements like focal plane arrays, optical coding elements, e.g coded apertures,
and dispersive elements, e.g prisms.

Coded Apertures or Coded-Aperture Masks are grids, gratings, or other patterns
of materials opaque to various wavelengths of light. A coded aperture can be
represented as a binary matrix, where the one-valued elements allow the electro-
magnetic radiation to pass through and the zero-valued elements block the light,
generating a coding pattern in the object of interest. Figure 2.1 shows an example
of a coded aperture whose elements were generated at random.

Another fundamental optical component of the CSI devices is the dispersive el-
ement, whose function is to decompose the light in its spectral components. A
commonly used optical dispersive prism in CSI systems is the double Amici prism
shown in Fig. 2.2. Such prism is composed by the union of three prisms with dif-
ferent refraction indices. The prisms at the ends have the same refractive index
while the prism at the center has a higher refractive index and, therefore, a greater
capacity for dispersion. This prism is specially designed to increase the angular
dispersion of the set of waves, and also has the property that, when refracted
again, the spectral component with central wavelength λc forms a straight line
with the trajectory of the incident ray.
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Figure 2.2: Double Amici prism.
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In the CSI mathematical model, the spectral image F with M ×N spatial dimen-
sions and L spectral bands is discretized as Fm,n,k, where m and n index the
spatial coordinates, and k determines the k-th spectral band. F can also be rep-
resented in vector form as f =

[
fT0 , · · · , fTL−1

]T , where each spectral band fk can
be expressed as fk =

[
F0,0,k,F1,0,k, · · · ,F(M−1),0,k, · · · ,F0,1,k,F1,1,k, · · · ,F(M−1),1,k,

· · · ,F(M−1),(N−1),k

]T .

In general, CSI projections can be written in matrix notation as

y = Hf = HΨθ, (2.3)

where y is the measurement set in vector form and, H is known as the system
sensing matrix whose entries are determined by the CSI optical setup [22, 55].
The spectral image f is said to have a sparse representation θ in a basis Ψ, as
depicted in Fig. 2.3.

Figure 2.3: CSI linear system representation. A measurement vector y is obtained by
sensing a spectral image f using the sensing matrix H. The spectral image
f has a sparse representation θ in a representation basis Ψ.

Source: Adapted image from the paper Compressive Sensing [59].

Although CSI allows to reconstruct a spectral image from a considerable smaller
number of samples than those required by the Shannon-Nyquist theorem, there
is a minimum number of necessary measurements that must be acquired to suc-
cessfully reconstruct a scene. Considering a spectral image of size MNL which
is K-sparse in a basis Ψ, the CSI theory states that u ≥ K log(MNL) measure-
ments are necessary in order to achieve a correct reconstruction. However, for
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spectrally rich scenes or very detailed spatial scenes, a single shot CSI mea-
surement may not provide a sufficient number of compressed measurements to
satisfy the above constraint. This leads to an excessively undetermined inverse
problem hence failing to obtain an adequate reconstruction. Increasing the num-
ber of measurement shots will multiply the number of measurements, thus rapidly
overcoming such limitations [60, 61, 62].

In CSI it is possible to acquire S � L measurement shots employing a different
coded aperture at each snapshot, such that different measurements of the spec-
tral data cube are acquired each time. Mathematically, the compressed measure-
ments acquired with the s-th snapshot can be expressed in vector notation as

ys = Hsf , (2.4)

where ys ∈ RMV is the vector form representation of the acquired measurements,
and Hs is the sensing matrix of the system for each snapshot s. Specifically, Hs

is a MV × MNL sparse matrix whose nonzero entries are determined by the
coded aperture. The measurement vectors ys acquired at each snapshot can

be succinctly expressed in vector form as y =
[
(y0)

T
, · · · ,

(
yS−1

)T]T . Therefore,
Eq. 2.4 can be rewritten in the standard form of an underdetermined system,

described in Eq. 2.3, where H =
[
(H0)

T
, · · · ,

(
HS−1

)T]T is the concatenation of
all sensing matrices Hs.

Once acquired the compressed measurements y, the subsequent procedure is
spectral image recovery. Given that the amount of the acquired compressed mea-
surements SMV (generally V ≤ N + L − 1), is far less than the number of 3D
data cube entries to be estimated MNL, the reconstruction problem to be solved
becomes ill posed. Therefore, it cannot be solved by directly inverting the system
in Eq. 2.3. In particular, CSI spectral image recovery consists on finding a K-
sparse representation of f ,θ in a given basis Ψ. The sparse representation can
be recovered by minimizing the `2 − `1 cost function given by ‖ȳ−Aθ‖2 + τ‖θ‖1,
where τ is a regularization constant [55, 56]. In other words, it looks for a sparse
approximation of the spectral data cube. Formally, the reconstruction optimization
problem can be written as

f̃ = Ψ

{
arg min
θ∈RMNL

‖ȳ −Aθ‖2 + τ‖θ‖1

}
, (2.5)

where A = HΨ.

CSI reconstruction algorithms can be classified in five computational approaches
[63]. The greedy algorithms obtain an sparse estimation of θ in an iterative man-
ner by identifying the components which provide the best reconstruction at each
iteration. Algorithms such as OMP (orthogonal matching pursuit) [64], StOMP
[65] and CoSaMP(Compressive Sampling Matching Pursuit) [66] implement this
approach. The second approach obtains a sparse representation of the spectral
image by solving the optimization problem described in Eq. 2.5. Algorithms within
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this approach are SpaRSA [67], TwIST [68] and GPSR [69]. The third category of
algorithms employ a Bayesian framework and assume a prior distribution for the
unknown coefficients that favors sparsity [70]. The fourth approach consists on
relaxing the `0 problem to a related nonconvex problem and attempts to identify
a stationary point [71]. Finally, in the last category are the brute force algorithms
which search through all possible support sets, possibly using cutting-plane meth-
ods to reduce the number of possibilities [72]. The complete analysis and review
of these algorithms can be found in [63].

The matrix A plays a crucial role in the mathematics of the inverse CSI problem.
Indeed, the Restricted Isometry Property (RIP) of A must be satisfied in order to
achieve a reliable estimation of the original spectral image. The RIP establishes
the conditions necessary for A such that the `2 norm of the underlying 3D spectral
image is approximately preserved under the transformation Aθ. Furthermore
the RIP determines the minimum number of compressed projections needed for
a correct reconstruction [55]. Formally, assuming that |θ| = K, the restricted
isometry property of the CSI matrix A of order K is defined as the smallest δs
such that

(1− δs)‖θ‖2
2 ≤ ‖Aθ‖2

2 ≤ (1 + δs)‖θ‖2
2, (2.6)

where the constant δs is given by

δs = max
T⊂[MNL],|T|≤K

‖AT
|T|A|T| − I‖2

2, (2.7)

the operator ‖ · ‖2
2 is the squared norm from `2 into `2, A|T| is a KV × |T| matrix

whose columns are equal to |T| columns of A indexed by the set T, and I is an
identity matrix [73].

Since the structure of the matrix A is directly determined by the coded aperture,
different works have proposed to improve the spectral image reconstruction qual-
ity by designing a set of coded apertures such that the RIP is better satisfied
[26, 74, 75]. For instance, in [26] the traditional block-unblock coded apertures
are replaced with a set of colored coded apertures. Then, an optimal design of
such coded apertures is developed based on the RIP.

2.1. SPATIAL-SPECTRAL CODED COMPRESSIVE SPECTRAL
IMAGER (3D-CASSI)

The spatial-spectral coded compressive spectral imager (3D-CASSI) is a CSI
sensing scheme which modulates the spectral data cube in spatial and spec-
tral dimensions using a 3D coded aperture (ensembles of 2D coded apertures)
or a coding pattern array, see Fig. 2.5. Then, the coded spectral data cube
is integrated along the spectral dimension such that each spatial position of the
acquired measurements contains the compressed information of a single coded
spectral signature [22]. As shown in Fig. 2.4, the 3D-CASSI first modulates the
scene using a 3D coded aperture C, whose entries are indexed as Cm,n,k and
then, the coded spectral scene is integrated along the spectral axis. The output
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Figure 2.4: CSI sensing approach used for compressed measurements acquisition at
snapshot s.
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Figure 2.5: Representation of the 3D coded aperture. This ensemble of block-unblock
2D coded apertures can be seen as a set of different coding patterns φE .
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of the sensing process, at a specific snapshot s, can be expressed as

Ŷ s
m,n =

L−1∑
k=0

Fm,n,kC
s
m,n,k, (2.8)

where Ŷs is the matrix containing the compressed information of all spectral sig-
natures at a specific spatial position (m,n) and snapshot s. In addition, note that
in the 3D-CASSI sensing approach V = N , i.e., the number of acquired com-
pressed measurements is MV = MN .

Note that each voxel of the spectral data cube is coded by one voxel of the 3D
coded aperture at the same position (m,n, k). More specifically, each spatial
location Cm,n contains a coding pattern φs ∈ RL, with φk ∈ {0, 1}, that modulates
a spectral pixel in that particular position (m,n), see Fig. 2.5.

A snapshot of the 3D-CASSI can be described in vector form using Eq. 2.4,
where ys is the vectorization of the matrix Ŷs and H is a MN × MNL matrix
whose structure is determined by the 3D coded aperture. Formally, the j-th row
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Figure 2.6: Sensing matrix H for N = 4,M = 4, L = 3 and S = 2.

entries of the sensing matrix Hs can be written as

(hj)
s
` =

{
(φE)b`/MNc if j = `− b`/MNcMN

0 otherwise,
(2.9)

for j = 0, · · · ,MN − 1, ` = 0, · · · ,MNL − 1 and s = 0, · · · , S, where φE ∈
{φ0, · · · ,φP−1} is selected at random among P coding patterns, such that a dif-
ferent one is assigned for each snapshot s at a specific row j. An example of the
Hs matrix is shown on Fig. 2.6 for N = 4,M = 4 and L = 3.

Considering that one spectral signature is coded by a different coding pattern
at each measurement shot, there are essentially three cases to analyze. The
first case is when the number of measurement shots is greater than the number
of coding patterns i.e., S > P . In this case, some pixels are oversampled thus
redundant information is acquired. The second case is when S < P . In such case,
the pixels are coded by a subset of coding patterns. Since a specific pattern φs
encodes a determined group of spectral bands, every subset must be designed
such that all the spectral bands are sensed in order to avoid losing or discarding
important information. Furthermore, clustering two spectral signatures becomes
harder if they were coded by different subsets of coding patterns with no elements
in common. Finally, in the case S = P , all spectral signatures are coded by the
same set of coding patterns and each φs can be designed such that no redundant
information is acquired. Through this research work, the case S = P is assumed
for simplicity.

2.2. CSI AND VERY SPARSE RANDOM PROJECTION

A dimensionality reduction technique that is capable to reduce the data into a
lower-dimensional model, while preserving the reconstructive or discriminative
properties of the original data can be marked as ideal. However, in practice in-
formation is lost as the dimensionality is reduced. Therefore, a method which
efficiently reduces dimensionality, while preserving as much as possible informa-
tion from the original data is needed. One solution is to reduce the dimensionality
of data by projecting it onto a lower-dimensional subspace [76].

Principal component analysis (PCA) is a classic dimensionality reduction (DR)
method that finds the low-dimensional linear subspace that minimizes the mean-
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squared error between the original data and the data projected onto the sub-
space. A low-dimensional representation of the data is constructed in such a
way that it describes as much of the variance in the data as possible. This is
achieved by finding a linear basis of reduced dimensionality for the data (a set of
eigenvectors) in which the variance of the data is maximal [77].

PCA, however, is based on a linear subspace model that is generally not capa-
ble of capturing the geometric structure of real-world datasets [78]. In addition,
most of the computationally efficient approaches to compute the principal com-
ponents assume ready access to the stored full data samples. However, this
full data access is not always possible in modern data settings. For instance, in
the traditional spectral imaging approaches, the full data is obtained by gradually
scanning adjacent zones of the spectral scene hence the PCA analysis must be
strictly performed after the sensing process. Furthermore, considering a spec-
tral image with M ×N spatial dimension and L spectral bands, computing the Q
principal components takes O(MNL2 +L3 +MNQL) = O(MNL2) which is com-
putational expensive when the spatial resolution or the number of spectral bands
grow exponentially [79].

One promising strategy to reduce the data dimensionality in an efficient way,
which also allows for rigorous theoretical analysis, is to use Random Projections
(RP). In RP the data dimensionality reduction is computationally simple: the orig-
inal high-dimensional data is projected onto a low-dimensional subspace using a
random matrix, thereby saving memory and computation. For example, reducing
the dimension of a M ×N ×L spectral image using RP will take only O(MNLS),
which is a significant computation time reduction in comparison with PCA.

There exist theoretical results supporting that RP preserves volumes and affine
distances [80] or the data structure, hence it is possible to directly learn from
the low dimensional data [81]. In fact, based on the concept of affinity [82],
which characterizes the similarity between two subspaces, it has been theoret-
ically proved and numerically verified that several dominant subspace cluster-
ing algorithms could successfully perform clustering on the compressed data
[83, 84, 85, 86]. In addition, recent works have shown that RP improves the
algorithm performance when dealing with high dimensional data. Specifically,
compression reduces the dimension of ambient signal space, hence the compu-
tational cost of finding the similarity representation in subspace clustering can be
efficiently reduced [83, 87].

Generally, RP uses a random matrix with elements generated by a normal distri-
bution N(0, 1) due to its simplicity in terms of analysis. The problem of this type
of RP matrix is the computational complexity due to the dense nature of the pro-
jection matrix and hardware implementation difficulties [88]. However, different
authors have suggested the use of simpler distributions that generate sparse pro-
jections matrices [89, 90]. The introduction of sparsity has shown to significantly
reduce computational requirements and to allow an efficient hardware implemen-
tation [91].

Given a high dimensional data set, the random projection is essentially performed
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Figure 2.7: Rearrangement of the matrix Y such that the s-th row contains the com-
pressed measurements acquired with the s-th coding pattern φs. In this fig-
ure, colors represent a specific codification, e.g, red pixels denote the com-
pressed measurements acquired with the φ0 coding pattern.

. . .

by applying the same realization of a random projection matrix to each data point
in order to obtain the set of dimensionality reduced or compressed measure-
ments. In this sense, the CSI sensing mechanism can be rewritten in a RP
scheme. Particularly, the measurement vectors ys acquired with each snapshot,
can be arranged in a matrix Y =

[
y0,y1, · · · ,yS−1

]T where each column contains
different spectral signature codifications, acquired with distinct coding patterns.
Since the case S = P is assumed, it is possible to rearrange the entries of Y such
that each row contains a compressed spectral signature acquired with a specific
coding pattern φs. Formally, this rearrangement can be expressed as

Ysj ↔ Ys′j if Ys′j = φTs fj,

for s, s′ = 0, · · · , S − 1 (s′ 6= s) and j = 0, · · · ,MN − 1, where ↔ stands for the
swap operation and f j is the j-th spectral signature. The described acquisition
model and the rearrangement is depicted in Fig. 2.7. Alternatively, define the
matrix of S coding patterns as Φ =

[
φT0 ,φ

T
1 , · · ·φTS−1

]T , the problem of acquiring
and rearranging the measurements y can be succinctly expressed as

Y = ΦF, (2.10)

where F = [f0, f1, · · · , fL−1]T is a L ×MN matrix whose columns, denoted as fj,
are the spectral signatures of the data cube.

As described in the first part of this chapter, spectral image recovery in Eq. 2.5 is
achieved using nonlinear and relatively expensive optimization-based or iterative
algorithms. For instance, trying to recover a sparse representation of the under-
lying scene, the GPSR algorithm takes O(SM2N2L) operations at each iteration
[69].

Then, most of the CS literature has focused on improving the speed and accuracy
of such algorithms. However, signal recovery is not actually necessary in many
signal processing applications [92]. In particular, the aim of this work is to perform
all the spectral image clustering directly on the compressed measurements by
designing a set of coding patterns such that the similarity among the spectral
signatures is approximately preserved. In this work, all the data processing is
performed with the compressed measurements, thus the cost of recovering all
the data is avoided.
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3. COMPRESSIVE SPECTRAL IMAGING
SUBSPACE CLUSTERING

In CSI, the structure of the acquired compressed projections directly depends on
the coding pattern design. Indeed, due to the rapt attention of the community on
signal recovery, different recent works in CSI have focused on properly designing
the coding patterns in order to better reconstruct the underlying spectral scene
[26, 93]. These coding pattern designs use the restricted isometry property (RIP)
as the main optimization criteria. On the other hand, in this research work the
aim is to perform classification on the compressed measurements. Therefore the
design of the coding patterns must preserve the information and hence the simi-
larity among the spectral signatures. In this chapter, some coding pattern design
considerations are first presented. Then, the optimization problem, whose solu-
tion provides an optimal set of coding patterns for CSI measurement clustering,
and a solution algorithm are proposed. Finally, a subspace clustering algorithm
based on the SSC model is proposed and explained.

3.1. CODING PATTERN DESIGN CONSIDERATIONS

In order to design the coding pattern matrix Φ, the following three design criteria
are considered.

Preserving Similarities

The success of subspace clustering on the compressed measurements depends
fundamentally on how the coding matrix Φ affects the mutual similarities of the
spectral signatures. A usual measure of similarity among two vectors is the co-
sine of the angle between them. Then, assuming that the vectors has unit length,
the similarity between two compressed measurements yj = Φfj, yj′ = Φfj′ is
defined as

similarity(yj,yj′) = yTj yj′ = fTj ΦTΦfj′ j 6= j′, (3.1)

where yj ∈ RS and fj ∈ RL correspond to the j-th column of the matrices Y and
F, respectively. If the columns of Φ are normalized, it is possible to decompose
the matrix ΦTΦ as

ΦTΦ = I + ε, (3.2)

where
εj,j′ = φTj φ

′
j j 6= j′, (3.3)

and εj,j = 0. Observe that the matrix ε collects all the entries outside the diag-
onal of ΦTΦ. Therefore, if εj,j′ = 0 ∀j, j′, the matrix ΦTΦ would be equal to I
and the similarities of the spectral signatures would be preserved exactly in the
compressed measurements. However, given that the matrix Φ has more columns
than rows, all the entries of ε could be mostly small but not zero [94]. Considering
that a linear mapping such as that in Eq.2.10 can cause significant distortions
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in the compressed measurements if ΦTΦ is not close to I, the proposed coded
aperture design should minimize the entries of ε.

Sensing Neighboring Spectral Bands

The entries of the Φ matrix are usually chosen from a Bernoulli distribution
Φ ∼ Be(p). Formally, following such distribution, the entries of the s-th coding
pattern can be expressed as

(φs)k =

{
1, with probability p
0, with probability q,

(3.4)

for k = 0, 1, · · · , L−1, where q = 1−p. A projection matrix with this structure sim-
ply carries out a random sampling on the data vectors before performing element-
wise addition. Considering that surface-emitted spectral signatures are, in gen-
eral, relatively smooth functions of wavelengths [95], the intuition is to perform the
random sampling of neighboring spectral bands instead of randomly sampling all
the spectral data, which could add outliers to the measurements.

Let {λ0, λ1, · · · , λL−1} be a set of cutoff wavelengths, where λk ∈ {0, 1, · · · , L− 1}.
For each coding pattern φs, select two cutoff wavelengths (λk1 , λk2) at random
such that λk1 < λk2 and λk2 − λk1 + 1 = ∆, where ∆ is defined as the coding
pattern bandwidth. Then, the banded-structure random matrix can be expressed
as

(φs)k =

{
1, with prob. 1

2
⇐⇒ λk1 ≤ k ≤ λk2

0, otherwise.
(3.5)

Equation 3.5 can be alternatively written as

(φs)k = δ (bλk1/kc) δ (bk/λk2c) νk, (3.6)

where δ(·) is the Kronecker delta function and ν ∈ RL is a random vector whose
entries follow a Bernoulli distribution Be(p) with p = 1

2
.

Notice that the sparsity of the projection matrix Φ and the selected bandwidth ∆
are directly related. Specifically, denote the sparsity of the matrix Φ as K = 1/κ,
where κ ≈ 2L

∆
. As described in [90], sparse random projections are robust for

κ ≈
√
L. However, as κ increases (decreasing ∆), variances for sparse random

projections will also increase and large errors could be expected. On the other
hand, decreasing κ (increasing ∆), the entries of ε will increase leading to signif-
icant distortions in the acquired compressed measurements. Then, the selection
of ∆ is a fundamental step. In the simulations section, an analysis in this re-
gard is presented. Specifically, the effect of variations of ∆ and the number of
measurement shots S.
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Information Acquisition

In order to better discriminate among the classes, new information from the un-
derlying spectral scene should be acquired in each measurement shot. There-
fore, the coding patterns should be linearly independent, i.e. the matrix Φ should
be full rank. Additionally, the number of measurements acquired from each spec-
tral band should be approximately the same, i.e. the matrix ΦΦT should approxi-
mate the identity matrix I. Specifically, decomposing the matrix ΦΦT as

ΦΦT = I + µ, (3.7)

where
µij = φφT i 6= j, (3.8)

and µii = 0. Therefore, the minimization of the µ entries is considered in the
coded aperture design described next.

3.2. CODING PATTERN OPTIMIZATION ALGORITHM

Taking into account the previous considerations, the proposed coding patterns
design can be succinctly expressed as the following optimization problem

arg min
{φ0,φ1,··· ,φS−1}

‖ε‖2
F + ‖µ‖2

F

subject to ε = ΦTΦ− I,

µ = ΦΦT − I, (3.9)
Rank(Φ) = S,

(φs)k = δ (bλk1/kc) δ (bk/λk2c) νk,

for s = 0, · · · , S − 1 and k = 0, · · · , L.

This optimization problem can be efficiently solved using the proposed Algorithm
1.

In Algorithm 1, steps 2 to 4 generate the first filter, which has a banded structure
with a predefined bandwidth ∆. Then, steps 6-9 are intended to minimize the
number of times in which a spectral band is sensed. Specifically, the algorithm
counts how many spectral bands have been sensed in a certain bandwidth and
then the banded section with less information is chosen (expressed in step 9)
complying with the criteria of subsection 3.1. Finally, the algorithm chooses the
position in which the inner products are approximately minimized. This is attained
by minimizing the elements outside the diagonal of ΦTΦ, i.e, by minimizing the
sum of the values in the neighborhood (step 12) expressed in steps from 15 to
18, see Fig. 3.1 a). As observed in Fig. 3.1 b), a random design of the Φ entries
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Algorithm 1 Coding Pattern Design
Input: number of bands L,number of shots S,bandwidth

∆ > 0,probability 0 < p < 1.
1: Φ← 0S,L
2: Select (λk1 , λk2) randomly, such that λk2 > λk1 with λk2 − λk1 + 1 = ∆
3: Select ν ∈ RLsuch that νk ∼ Be(p)
4: (Φ1)k ← δ(bλk1/kc)δ(bk/λk2c)νk
5: for s← 2 to S do
6: for i← 1 to (L−∆ + 1) do
7: ui ←

∑s
j=1

∑i+∆−1
k=i (Φj)k

8: end for
9: î← arg mini ui

10: ` = 1
11: for i← î to (̂i+ ∆− 1) do
12: b` ←

∑s
j=1

∑i
k=(i−1)(Φj)k

13: ` = `+ 1
14: end for
15: for j ← 1 to bp∆c do
16: ˆ̀← arg min` b`
17: (Φs)ˆ̀+î−1 ← 1
18: bˆ̀←∞
19: end for
20: end for
Output: Φ
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Figure 3.1: Examples of coding patterns. a) obtained by the proposed design b) random
coding pattern.

a)

b)

may lead to sense more information from a specific spectral band (green dashed
region) while leaving some spectral bands unsampled (red dashed region).

3.3. SPARSE SUBSPACE CLUSTERING WITH SPATIAL
REGULARIZER (S-SSC)

Assuming that compressed pixels of the same land-cover class lie in one inde-
pendent subspace, the spectral clustering methods can be used in order to sep-
arate them into the same group or cluster. In particular, SSC algorithm builds the
similarity matrix, which describes the membership of the data, finding a sparse
representation for each compressed pixel that ideally corresponds to selecting a
few points from the same subspace. The sparse representation model can be
described as follows

min
Z,R

‖Z‖1 +
λ

2
‖R‖2

F

s.t. Y = YZ + R, diag(Z) = 0, ZT1 = 1,

(3.10)

where Y =ΦF, 1 is a one-valued vector, Z ∈ RMN×MN refers to the representa-
tion coefficient matrix and the `1-norm regularization in this formulation suggests
that a sparse representation of a data point finds points from the same subspace.
The matrix R stands for the representation error, and the regularization parameter
λ indicates the sparsity trade-off. The constraint diag(Z) = 0 is used to eliminate
the trivial solution of writing a point as an affine combination of itself and the
constraint ZT1 = 1 ensures that it is a case of an affine subspaces [17, 18].

Taking into account that neighboring pixels in a spectral image usually consist of
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similar material that has a very high probability of belonging to the same class,
a smoothing filter can be applied to the representation coefficient matrix, in oder
to reduce the representation error, being able to extract more information from
the data [19]. Specifically, the smoothing filters will reduce the noise trying to
assign the same representation value to neighboring pixels. This information can
be effectively incorporated into the similarity matrix by rearranging the 2-D sparse
coefficient matrix Z ∈ RMN×MN into a 3-D cube Ž ∈ RM×N×MN , treating each
coefficient vector as a pixel in the 3-D cube. In this work, the median filter is
expressed as

Z̃l
i,j = Median(Ẑl

i,j), (3.11)

where Ẑl
i,j is a 3D window of size 3 × 3 × 3 (see Fig.3.2 b), and Median(·) is the

Median operator. The optimization problem of rearranging Z̃ ∈ RM×N×MN to the
new Z̄ ∈ RMN×MN is expressed as

min
Z,R,Z̄

‖Z‖1 +
λ

2
‖R‖2

F +
α

2
‖Z− Z̄‖2

F

s.t. Y = YZ + R, diag(Z) = 0, ZT1 = 1,

(3.12)

where Z̄ is the rearranged matrix after applying the median filter and α is a regu-
larization parameter denoting the weight of the spatial information in the subspace
clustering algorithm. After solving the optimization problem in Eq. 3.12, the seg-
mentation of the data points into different subspaces is inferred using the sparse
coefficients Z. Specifically, the clustering result is obtained by applying spectral
clustering to the Laplacian matrix induced by the similarity matrix W ∈ RMN×MN

which is defined as W = |Z|+ |Z|T [17, 18].
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Figure 3.2: Visual representation of the median filter step, a) Sparse Coefficient matrix
Z, then it is reshaping in b) and a medium filter is applied to obtain the new
values c) and finally it reshaped to its initial size.

The complete CSI subspace clustering algorithm is summarized in Algorithm
2.

Algorithm 2 Compressive Spectral Imaging Subspace Clustering
Input: A set of CSI {y}MN−1

j=0 measurements acquired with Y =ΦF. The coding
patterns Φ is acquired with the Algorithm. 1.

1: Solve the sparse optimization problem in Eq. 3.12 using the ADMM algorithm
described in the Appendix section.

2: Normalize the columns of Z as zj ← zj
‖zj‖∞

3: Form a similarity graph representing the data points. Set the weights on the
edges between the nodes by W = |Z|+ |Z|T .

4: Apply spectral clustering [16] to the similarity graph.
Output: Segmentation of the data: Y1, · · · ,Y`

37



4. SIMULATIONS AND RESULTS

The proposed compressed spectral image clustering approach was tested on
three real hyperspectral data sets, with different imaging environments, acquired
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflec-
tive Optics System Imaging Spectrometer (ROSIS). Specifically, the Indian Pines
data set, the Salinas data set and the Pavia University data set, were used
through the experiments.

• AVIRIS Data set: Indian Pines Image: This hyperspectral data set was
acquired by the AVIRIS sensor from the Northwestern Indian Pines test site
in June 1992 [19]. The size of this image is 145 × 145. A total of 20 water
absorption and noisy bands (104 − 108, 150 − 163, and 220) were removed
from the original 220 bands, leaving 200 spectral features for the experiment
[19]. Considering the computational efficiency, a subimage with the size of
70 × 70, which included four main land-cover classes: corn-no-till, grass,
soybeans-no-till, and soybeans-minimum-till, was used in the experiments.
The clustering was a challenging task due to the spectral signatures of the
land-cover classes in this area are very similar and some of the spectral
curves are mixed, as shown in Fig. 4.1(c). The false-color image and the
ground truth are provided in Fig. 4.1(a) and (b).

• AVIRIS Data set: Salinas Image: The second hyperspectral data set was
acquired by the 224-band AVIRIS sensor over the Salinas Valley, CA, USA.
The size of the image is 512×217. As with the first data set, a total of 20 water
absorption bands (108−112, 154−167, and 224) were removed. A subimage
with the size of 83 × 86, containing six land-cover classes: Brocoli-green-
weeds, corn-senesced-green-week, lettuce-romaine-4wk, lettuce-romaine-
5wk, lettuce-romaine-6wk and lettuce-romaine-7wk. This image is also dif-
ficult for clustering because of the high similarity between the spectral sig-
natures of some land-cover classes, which can be seen in Fig. 4.2(c). The
false-color image and the ground truth are provided in Fig. 4.2(a) and (b),
respectively.

• ROSIS Urban Data: University of Pavia, Italy: This scene was acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS) sensor during
a flight campaign over Pavia, Northern Italy. The size of the image is 610×
340, with 103 bands used in the experiments. A typical area for the test data
with a size of 140 × 80, containing eight main land-cover classes: Bitumen,
asphalt, trees, bricks, bare soil, metal sheet, meadows and shadows, was
used. This data set contains more complex land-cover classes, and the
spectral signatures of some of the classes are very similar, which results
in the clustering being a more challenging task. The spectral curves of the
eight land-cover classes are shown in Fig. 4.3. The false-color image and
the ground truth are also provided.
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Figure 4.1: AVIRIS Indian Pines test image. (a) False-color image (RGB 40,30,20). (b)
Ground truth. (c) Spectral curves of the four land-cover classes.

Figure 4.2: AVIRIS Salinas test image. (a) Salinas false-color image (RGB 70,27,17).
(b) Ground truth. (c) Spectral curves of the six land-cover classes.

Figure 4.3: ROSIS University of Pavia test image. (a) False-color image (RGB
102,56,31). (b) Ground truth. (c) Spectral curves of the eight land-cover
classes.
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In the experiments, the number of clusters was set as a manual input for the sub-
space clustering algorithm. Furthermore, the parameters of the algorithm were
manually adjusted to a local optimum. Specifically, the regularization parameter λ
in Eq. 3.12, which acts as the tradeoff between the sparsity of the coefficient and
the magnitude of the noise, was set using the following formulation [18]

λ =
β

γ
(4.1)

γ = min
j

max
j 6=j′
|yTj′yj|, (4.2)

where β is the adjustment coefficient and γ is a parameter related to the data set,
which can be explicitly determined.

The regularization parameter α in Eq. 3.12 denotes the weight of the spatial
information in S-SSC. In order to analyze the sensitivity of α, experiments for
each data set were conducted. In these experiments, the coding patterns Φ were
generated using the Algorithm. 1 with ∆ = 20 and S = 25 measurement shots.
Further, a white Gaussian noise with a signal-to-noise ratio (SNR) of 25 dB was
added to the acquired compressed measurements, simulating the CSI acquisition
system noise.

The change in the overall accuracy of the proposed S-SSC algorithm correspond-
ing to different α values, with the other parameters fixed, is shown in Fig. 4.4. As
can be seen from Fig. 4.4, the precision changes significantly with different val-
ues of α, which suggest that the spatial information plays a very important role in
the clustering process. For simplicity this parameter was fixed for all experiments:
α = 3.9× 104 for the Indian Pines image, α = 12.6× 105 for the Salinas image and
α = 25.5× 105 for the University of Pavia image. Similarly, the parameter λ for all
the experiments is calculated using the Eq. 4.1 with β = 1000. Since the struc-
ture of the acquired compressed measurements is determined by the generated
coding pattern, the γ parameter is determined at the begining of each experiment
using the Eq. 4.2

Figure 4.4: Analysis of parameter α: Change in the overall accuracy with various values
of α. (a) Indian Pines image. (b) Salinas image. (c) University of Pavia
image.

In the next experiments, the random-designed coding patterns are generated
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from a Bernoulli distribution Φ ∼ Be(p) with p = ∆/L in order to use a similar
transmittance (the number of nonzero elements) to the designed coding patterns.
Since both random and designed coding patterns are randomly generated, the
presented results are the average of five experiments, each with a different cod-
ing pattern. All the simulations were performed using two computers: the first
with an Intel(R) Xeon(R) E5-2697 v3 of 2.60 GHz, 56 cores and 196 GB of RAM.
The second, with an Intel(R) Xeon(R) E5-1603 v3 of 2.80 GHz, 4 cores and 128
GB of RAM

4.1. SIMILARITY PRESERVATION

In this experiment, the performance of the proposed coding patterns design is
tested. Specifically, this experiment is intended to show how well the similarity
(cosine of the angle) between two spectral signatures is approximately preserved
when the designed coding patterns are used. For this experiment, 100 spectral
signatures are chosen at random and then are compressed using a random and
designed coding pattern matrix Φ, generated with parameters ∆ = 20 and S = 25.
Then all the spectral signatures and its compressed versions are normalized to
have unit length, i.e., ‖f‖2 = 1 and ‖y‖2 = 1. Using the definition of similarity,
presented in Eq. 3.1, the absolute error is calculated as

|sim(fjk ,fj′k)− sim(yjk ,yj′k) = |fTjkfj′k − y
T
jk
yj′k |, (4.3)

where j, j′ ∈ {0, 1, · · · ,MN}, index a spectral signature chosen at random among
MN possibilities, and k = 1, · · · , 100. Figure 4.5 shows the obtained results for
the three spectral images, (a)Indian Pines, (b) Salinas and (c) Pavia University.
The provided results are the average of ten experiments, each with a different
coding pattern.

As observed, the absolute error obtained with the designed coding patterns are
significantly smaller than the obtained with a random-designed matrix Φ. There-
fore, the proposed coding pattern design approximately preserve the similarities
among the spectral signatures after the scene projection.
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Figure 4.5: Absolute error between the spectral signatures similarities and the com-
pressed measurements similarities acquired with the random and designed
coding pattern design.
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4.2. NOISE ANALYSIS

It is important to note that the acquired measurements described by the Eq. 2.10
are noise free. However in real CSI architectures, the acquired compressed mea-
surements are contaminated with noise due to the physical limitation of the sen-
sor. Therefore, the Eq. 2.10 should be rewritten as

Y = ΦF + Ω, (4.4)

where Ω ∼ N(0, σ2) represents the noise of the system. In order to analyze
the impact of noise, different experiments varying the signal-to-noise ratio (SNR)
are performed. Figure 4.6 presents the classification accuracy results obtained
with the designed and the random coding patterns for the three hyperspectral
data sets. Additionally, the overall clustering accuracy achieved when used the
spectral image data cube (Full data) as input for the optimization problem in Eq.
3.12 is showed as reference. The designed patterns are generated with the fixed
parameters ∆ = 20 and S = 25.

The results show that the proposed coding pattern design outperforms the random-
generated patterns even when white Gaussian noise is added to the CSI mea-
surements. As obvious, when SNR decreases the clustering overall accuracy
is affected. However, the accuracy curve, obtained with the proposed coding
patterns, achieve a slow decrease rate in comparison with the random coding
patterns.
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Figure 4.6: Overall clustering accuracy as a function of the aggregated noise using the
two coding patterns design

4.3. ANALYSIS OF THE CODING PATTERN DESIGN
PARAMETERS

The parameters S and ∆ determines the structure of the proposed coding pattern
design. In order to analyze how the accuracy is affected by those parameters,
experiments for each pair (∆, S) were performed varying each parameter. In this
experiment, the noise added to the system was fixed to 25 dB of SNR. Figure 4.7
a) presents the obtained overall accuracy and Fig. 4.7 b) shows the variance of
the obtained accuracy.

Note that the number of shots S determines the ambient space of the projected
vectors. It can be shown that, when the ambient dimension after projection is suf-
ficiently large, the distance between two subspaces almost remains unchanged
after random projection [86]. This behavior is observed in the presented results
where increasing the measurement shots leads to better classification accura-
cies. As described in Section 3.1, when ∆ decreases, the variances for sparse
random projections will also increase and large errors could be expected. On
the other hand, increasing ∆, the entries of ε will increase leading to significant
distortions in the acquired compressed measurements.
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Figure 4.7: Analysis of the coded aperture design parameters. (a),(c) and (e) show the
overall accuracy varying the bandwidth ∆ and the measurement shots S for
the hyperspectral datasets Indian Pines, Salinas and Pavia University, re-
spectively. (b), (d) and (f) present the variance of the obtained accuracy.
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4.4. VISUAL MAPS AND QUANTITATIVE RESULTS

In order to validate the clustering performance of the proposed coding pattern
design, cluster maps and quantitative results are presented for the three hyper-
spectral scenes. In all the experiments, the coding patterns were generated with
the parameters ∆ = 20 and S = 25. Further, white Gaussian noise with 25 dB of
SNR was added to the acquired compressed measurements. The regularization
parameter α for subspace clustering optimization problem in Eq. 3.12 was set
for each datasets as described in the first part of this chapter. In addition, the
results obtained with the sparse subspace clustering algorithm (SSC), explained
in section 1.2 and with the optimization problem described in Eq. 3.10 , when the
complete spectral data cube is used as input (Full-data-SSC). The λ parameter
for the SSC and SSSC algorithms was set as described in the first part of this
chapter.

Figure 4.8 presents the obtained visual clustering results on Indian Pines. The
corresponding quantitative evaluations are shown in Table 4.1. Similarly, Fig. 4.9
and Table 4.2 present the visual clustering results and quantitative evaluation on
the Salinas Valley, respectively. Finally, Fig. 4.10 and Table 4.3 presents the
visual clustering results and quantitative evaluation on the Pavia University re-
spectively. In the tables, the optimal value of each row is shown in bold and the
second-best results are underlined. From Tables 4.1, 4.2 and 4.3, it can be clearly
observed that the proposed clustering approach using the proposed coding pat-
terns provides comparable results outperforming the clustering applied directly on
the full spectral data cube. Furthermore, it is observed, from the visual clustering
maps, that the results obtained with the proposed coding patterns are very similar
to the results obtained with the Full-data. This behavior was expected since the
proposed coding patterns approximately preserves the similarities among spec-
tral pixels, as shown in section 4.1.
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Figure 4.8: Visual clustering results on AVIRIS Indian Pines image: (a) Ground truth. (b)
Full-data, (c) Full-data-SSC , (d) Proposed-design and (e) Random-design.

Unlabeled

Corn-no-till

Grass

Soybeans-minimum-till

Soybeans-no-till

Table 4.1: Quantitative evaluation of the different clustering results for the AVIRIS Indian
Pines Image.

Class Random-design Proposed-design Full-data-SSC Full-data

Corn-no-till 73.13 70.45 48.96 66.77
Grass 95.25 100 98.60 100
Soybeans-no-till 52.87 88.80 70.63 69.54
Soybeans-minimun-till 55.29 60.52 59.23 80.05

Overall Accuracy 63.83 73.07 62.62 76.16
Average Accuracy 69.14 79.94 69.35 79.09
Kappa 49.26 62.65 47.58 65.89
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Figure 4.9: Visual clustering results on AVIRIS Salinas Valley image: (a) Ground truth.
(b) Full-data, (c) Full-data-SSC , (d) Proposed-design and (e) Random-
design.

Brocoli-green-weeds

Corn-senesced-green-week

Lettuce-romaine-4wk

Lettuce-romaine-7wk

Lettuce-romaine-5wk

Lettuce-romaine-6wk

Unlabeled

Table 4.2: Quantitative evaluation of the different clustering results with the AVIRIS Sali-
nas Valley Image.

Class Random-design Proposed-design Full-data-SSC Full-data

Brocoli-green-weeds 97.70 0 99.23 0
Corn-senesced-green-week 40.51 58.30 56.66 59.94
lettuce-romaine-4wk 61.85 97.08 0 98.21
lettuce-romaine-5wk 100 95.41 99.48 100
lettuce-romaine-6wk 55.19 99.85 99.55 100
lettuce-romaine-7wk 98.62 97.12 99.50 96.87

Overall Accuracy 74.64 80.12 77.26 81.96
Average Accuracy 75.65 74.63 75.74 75.84
Kappa 68.72 75.56 71.35 77.75
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Figure 4.10: Visual clustering results on ROSIS Pavia University image. (a) Ground
truth. (b) Full-data, (c) Full-data-SSC , (d) Proposed-design and (e)
Random-design.

Unlabeled

Bitumen

Asphalt

Trees

Bricks

Bare soil

Metal sheet

Shadows

Meadows

Table 4.3: Quantitative evaluation of the different clustering results with the AVIRIS Pavia
University Image.

Class Random-design Proposed-design Full-data-SSC Full-data

Bitumen 18.60 88.37 0 90.70
Asphalt 71.37 67.25 33.84 80.26
Trees 90.38 88.46 100 90.38
Bricks 100 99.68 99.68 99.68
Bare Soil 46.78 61.40 36.26 66.67
Metal sheet 82.90 97.73 91.00 97.73
Meadows 91.16 100 55.02 100
Shadows 99.48 24.35 98.45 24.35

Overall Accuracy 78.72 83.81 71.45 86.58
Average Accuracy 75.09 78.41 64.28 81.22
Kappa 72.63 78.89 62.95 82.50
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5. CONCLUSIONS

A new spectral image subspace clustering method, which performs all the clus-
tering task directly on the compressed measurements, was developed in this re-
search work. The 3D-CASSI CSI acquisition model was used since it allows to
encode the spectral pixels individually before performing an spectral-wise inte-
gration. In the proposed method, a coding pattern set was first designed in order
to acquire the compressed measurements. After rearranging the acquired mea-
surements, a proposed subspace clustering algorithm based on the SSC model
was used to obtain the image segmentation.

The main contribution of this work is the coding pattern design. The proposed de-
sign aims at preserving the spectral signatures separability as much as possible
after the scene projection. On the other hand, the proposed subspace clustering
algorithm takes into account the spatial information of the spectral images in or-
der to correct the representation bias and obtain a more accurate representation
coefficient matrix.

The coding pattern design and the spectral image subspace clustering approach
was validated trough several experiments. Two hyperspectral remote sensing
scenes from the AVIRIS sensor and one from the ROSIS sensor were used in the
experiments. In general, the results show that performing the clustering directly
with the compressed measurements provides similar accuracy results in com-
parison with those provided by performing the clustering on the full 3D spectral
image, when a properly designed coding pattern was used. Particularly, a differ-
ence of at most 4% in terms of overall accuracy was observed when comparing
the clustering results obtained by SSSC with the full 3D data and SSSC with CSI
measurements acquired with the proposed coding pattern design.
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ADMM ALGORITHM TO SOLVE THE PROPOSED

SUBSPACE CLUSTERING OPTIMIZATION

PROBLEM

In this section, the solving process of the sparse optimization problem in Eq.
3.12 with the well-known ADMM algorithm is introduced. First, an auxiliary matrix
U ∈ RMN×MN with the same size as the sparse coefficient matrix Z to sepa-
rate the variables. In this way, we only need to solve the following optimization
problem

min
Z,U,Z̄

‖Z‖1 +
λ

2
‖Y −YU‖2

F +
α

2
‖Z̄−U‖2

F

s.t. UT1,U = Z−diag(Z)

(1)

Two penalty terms corresponding to UT1 = 1 and U = Z−diag(Z) are then added
to the penalty function of Eq. 1 to obtain the following new optimization prob-
lem:

min
Z,U,Z̄

‖Z‖1 +
λ

2
‖Y −YU‖2

F +
α

2
‖Z̄−U‖2

F

+
ρ

2
‖UT1− 1‖2

2 +
ρ

2
‖U− (Z−diag(Z))‖2

F

s.t. UT1,U = Z−diag(Z)

(2)

It can be easily proved that the solutions to Eq. 3.12 and Eq. 1 coincide with
that of Eq. 2. Next, we introduce a vector δ ∈ RMN and a matrix ∆ ∈ MN×MN
as Lagrange multipliers for the two equality constraints in Eq. 2 to obtain the
Lagrange function as

min
Z,U,Z̄

‖Z‖1 +
λ

2
‖Y −YU‖2

F +
α

2
‖Z̄−U‖2

F

+
ρ

2
‖UT1− 1‖2

2 +
ρ

2
‖U− (Z−diag(Z))‖2

F

+ δT (UT1− 1) + tr(∆T (U− Z + diag(Z)))

(3)

where tr(·) denotes the trace operator of a given matrix.

The aforementioned optimization problem can then be divided intro three sub-
problems:
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1. Updating U with the other four variables fixed;

2. Updating Z by fixing the other variables and then updating Z̄ with Z

3. Updating δ and ∆ using U and Z.

Specifically, the ADMM utilizes an iterative procedure as follows

1. For subproblem 1., U(k+1) is obtained by minimizing the L with respect to
U, while (Z(k), Z̄(k), δ(k),∆(k)) are fixed. We calculate the derivative of L
with respect to U and set it to zero to obtain the calculation formula of U as
follows:

(λYTY + αI + ρ11T + ρI)U(k+1) = λYTY + αZ̄(k) (4)

+ ρ(11T + Z(k))− 1δ(k)T −∆(k). (5)

2. For subproblem 2., Z(k+1) can be obtained by minimizing L with respect to
Z, while (U(k+1), Z̄(k), δ(k),∆(k)) are fixed

Z(k+1) = J− diag(J),J =∆ Γ 1
ρ

(
U(k+1) +

∆(k)

ρ

)
, (6)

where Γ1/ρ(·) is a shrinkage-thresholding operator, Γ1/ρ(v) = (|u|−(1/ρ))+sgn(v),
and the operator (·)+ returns its arguments if it is nonnegative and returns
zero otherwise. We then update Z̄(k+1) utilizing Z(k+1) with Eq. 3.2.

3. For subproblem 3., the Lagrange multipliers δ(k+1) and ∆(k+1) are obtained
through a gradient ascent update with the step size ρ = 300.

δ(k+1) = δ(k) + ρ
(
Z(k+1)1− 1

)
(7)

∆(k+1) = ∆(k) + ρ
(
U(k+1) − Z(k+1)

)
. (8)

These three steps are repeated until convergence is achieved or the number of
iterations exceeds the maximum iteration number. Specifically, the iteration is ter-
minated when we have ‖U(k)T1− 1‖∞ ≤ ε, ‖U(k)−Z(k)‖∞ ≤ ε, ‖U(k)−Uk−1‖∞ ≤ ε,
where ε denotes the error tolerance for the primal and dual residuals.
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