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Escuela de Ingenierı́as Eléctrica, Electrónica y de Telecomunicaciones
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RESUMEN

TÍTULO: DESAGREGACIÓN AUTOMÁTICA DE CONSUMO ELÉCTRICO RESIDEN-

CIAL MEDIANTE MÉTODOS NO INTRUSIVOS1.

AUTOR: YULIETH JIMÉNEZ MANJARRÉS2

PALABRAS CLAVE: CONSUMO ELÉCTRICO, RESIDENCIAL, DESAGREGACIÓN DE CARGA,

NO INTRUSIVO, FIRMA DE CARGA, INTELIGENCIA ARTIFICIAL, IDENTIFICACIÓN DE ELEC-

TRODOMÉSTICOS, TRANSFORMADA STOCKWELL, CLASIFICACIÓN DE UNA CLASE.

DESCRIPCIÓN:

La información detallada de los electrodomésticos individuales en el hogar, llamada desagre-
gación de carga, puede motivar el ahorro energético y apoyar planes de gestión de demanda. Esta
información se puede estimar mediante sistemas de Monitorización No intrusiva de Carga (NILM,
por sus siglas en inglés), realizan procesamiento de señales y modelado matemático a partir de
mediciones eléctricas en un solo punto. Bajo la premisa de que las señales de los electrodomésticos
tienen caracterı́sticas distintivas, denominadas firmas de carga, un enfoque es discriminar los elec-
trodomésticos mediante técnicas de inteligencia artificial. Aunque la investigación en esta área está
en crecimiento, aún se detectan algunas brechas en la literatura cientı́fica y esta tesis contribuye
al conocimiento en varios aspectos. Primero, se presenta un marco para implementar sistemas
NILM. Segundo, se propone un sistema basado en eventos que comprende las etapas de detección
de eventos, extracción más efectiva de caracterı́sticas transitorias basadas en el dominio del tiempo
y de la transformada S, clasificación a través de un enfoque no tradicional y estimación de poten-
cia mediante la dependencia de la tensión. Tercero, se evalúa la capacidad de discriminación de
las firmas de carga para determinar el impacto del punto de los factores de impacto mencionados.
Finalmente, se construyó una base de datos de medidas de aparatos residenciales bajo diferentes
escenarios de tensión de alimentación, impedancia y operación de los aparatos. Ası́, estos sistemas
NILM se vislumbran como aplicaciones de hogares inteligentes.

1Tesis de doctorado
2Facultad de Ingenierı́as Fı́sico-Mecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Telecomunica-

ciones. Director: Gilberto Carrillo, Doctor Ingeniero Industrial.
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ABSTRACT

TITLE: AUTOMATIC DISAGGREGATION OF RESIDENTIAL ELECTRICAL CONSUMP-

TION WITH NON-INTRUSIVE METHODS1.

AUTHOR: YULIETH JIMÉNEZ MANJARRÉS2

KEYWORDS: ELECTRICAL POWER CONSUMPTION, RESIDENCIAL, LOAD DISAGGREGA-

TION, NON-INTRUSSIVE, LOAD SIGNATURE, ARTIFICIAL INTELIGENCE, APPLIANCE IDEN-

TIFICATION, STOCKWELL TRANSFORM.

DESCRIPTION:

One path to enhance energy efficiency and design demand side management plans is providing
detailed information about the individual appliances in houses, namely, load disaggregation. Non-
intrusive Load Monitoring (NILM) Systems aim to obtain the disaggregated information from
measurements in a single point through signal processing and mathematical modeling. One ap-
proach assumes that appliances could be represented by characteristics computed from the elec-
trical signals, i.e. load signatures. Although research in this area is increasing, several gaps are
detected in the scientific literature: there is not a widely accepted set of load signatures, the com-
plexity of the traditional systems increases exponentially with the number of appliances, fully
labeled datasets of electrical signals are lacking, previous work has not been focused on the de-
velopment of integral algorithms, and the question about the impact of factors (voltage distortion,
network impedance, etc.) on NILM algorithms remains open. This thesis contributes to knowl-
edge in several ways. First, a framework for implementing NILM systems is presented. Second,
an event-based NILM system is proposed, which comprises the following stages: event detection,
feature extraction based on waveforms and the S transform, classification through a nontraditional
approach and power estimation by considering the voltage dependency. Third, the discrimination
capacity of the load signatures is assessed to determine the impact of point-on-wave of switching,
voltage distortion and network impedance. Finally, a fully dataset of residential appliances is pro-
vided under several scenarios of voltage, impedance and operation. These NILM algorithms are
envisioned as smart home applications for appliance management.

1Ph.D. Thesis
2Facultad de Ingenierı́as Fı́sico-Mecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Telecomunica-

ciones. Advisor: Gilberto Carrillo, Doctor Ingeniero Industrial.
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Introduction

One path to enhance energy efficiency and design demand side management plans is providing

detailed information not only about total load consumption but also about the individual appliances

in houses, namely, load disaggregation. This is the time for Nonintrusive Load Monitoring (NILM)

Systems. They aim to obtain the disaggregated information from measurements in a single point

through signal processing and mathematical modeling. One approach assumes that appliances

could be represented by characteristics computed from the electrical signals, i.e. load signatures.

Although research in this area is increasing, several contributions to knowledge are made through

this thesis. This chapter introduces the motivation, the problem statement, the scope and the

contributions of this thesis.

Motivation and justification

Electricity demand forecast is higher than the generation forecast since it may reach 33 300 TWh

by 2030 worldwide (Lee, Jung, Kim, Lee, & Kim, 2010). This is due to the increase in population

and electrical device production. Thus, the supply of the required energy is becoming challeng-

ing; this is especially meaningful during peak hours. For example, Colombian generation capacity

comes mainly from hydroelectric centrals. In 2016, the lack of rain due to El Niño phenomenon,

the scarcity and hight cost of natural gas, the financial situation of thermoelectric companies and

the system operational constraints created a risky situation where the electricity demand could not

be satisfied. Moreover, some incidents, like the failure of key power generators (Guatape and Ter-

moflores), cut off about 10 percent of electric resources.

Two alternatives are considered to face the rising electricity demand:

1. To increase generation by installing either conventional (carbon, fossil fuels, water, etc.)

or alternative (sun, wind, biogas, etc.) plants.
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(a) Electric power system generation from conventional sources involves important losses

of 61.5% through generation and 3.5% through transmission and distribution as shown

in Fig. 1, and it produces CO2 emissions that worsen climate changes.

(b) Renewable sources could be seen as sustainable options because they are produced by

nature faster than they are consumed, and they are suitable for distributed generation

due to their extended availability, customer proximity and transmission loss reduction.

2. To reduce the demand. International Energy Agency (2015) stated: “Energy efficiency

plays a critical role on limiting world energy demand growth to one-third by 2040, while

the global economy grows by 150%. ”According to Fig. 1, 13 units out of 35 units of

energy supplied to the load are wasted, which means that 37.15% of the energy available for

final use is dissipated through inefficient end use. This means that there is room to reduce

the demand by improving the use stage. Indeed, one key aspect of the Smart grid concept

is to involve the user to perform demand side management. Some measures that can be

considered are:

(a) During design: efficient building design and installation of efficient equipment.

(b) During construction: activity programming for efficient use of the available energy

resources.

(c) During post-construction: behavior guidelines such as energy conservation practices

and activity re-programming, energy wasting infrastructure repair, control systems

(e.g., HVAC) in response to environment, occupancy or process requirements, or in-

stallation of efficient equipment with low investment.

Returning to the Colombian case, the government decided to reduce the demand, in the sense

of cutting down the consumption to prevent a blackout. In March 7th, 2016, the President Juan

Manuel Santos announced the “Turning off pays off”campaign that intended to save between 5%
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Figure 1. Energy efficiency along the electric power systems with centralized generation from
fossil fuels according to (Greenpeace International and Global Wind Energy Council (GWEC),
2014). It is stated that 61.5% is lost through generation stage, 3.5% through transmission and
distribution stages and 13% through inefficient end use.

and 10% of electricity by reducing consumption. A decree, CREG resolution 029 of 2016, was

issued to temporarily change the way that electric bills were calculated: a consumption goal based

on previous months consumption was established, and a monetary reward or penalty was provided

depending on savings or increments of energy usage, respectively. A few days later, the President

discarded a future rationing thanks to the rain return and the cutting down of 1 179 GWh by the

Colombian people. This is an example of how the energy demand reduction avoided a worse situ-

ation.

Nevertheless, should savings be performed only during an energetic crisis or be rather a per-

manent policy? Should the users that already were prone to save energy be punished? What if

Colombian citizens knew their actual energy consumption habits? Might load programming pro-

duce more savings than load cutting? Despite the best communication efforts of the government

to promote useful tips about how to save electricity (e.g., to turn off lights in empty spaces and

to use the washing machine with full load), these tips do not come from the specific consumption

behavior of every customer. According to studies (S. Lin et al., 2016), (Faruqui, Sergici, & Sharif,

2010), (Altrabalsi, Stankovic, Liao, & Stankovic, 2015), an energy consumption reduction from
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5% to 15% or more is expected when customers have more detailed information than the monthly

bill, like feedback about the individual appliance consumption. In summary, if the load is known,

more effective decisions regarding turning appliances on or off could be taken.

Load disaggregation

This analysis allows moving to the general framework of this thesis: the load disaggregation. This

is defined as the knowledge of the individual appliance operation and consumption in a house

or building, compared to the aggregated consumption knowledge. Load disaggregation might be

obtained through surveys or by manual register of the user activity. However, automatized systems

may be used to obtain more accurate information and less laboriousness during the execution

stage 1. In this sense, one might think about several types of systems. First, there are intrusive

systems where the information of the appliances are captured separately. This would involve either

buying smart appliances or installing dedicated sensors to regular appliances and then installing

communication platforms to collect the data. Second, there are non-intrusive systems where the

sensors are installed at a single point (e.g. at mains), to acquire the aggregated operation of the

appliances and to decompose it through mathematical algorithms.

This thesis is focused on the non-intrusive systems for load disaggregation which are illustrated

in Fig. 2. There, an aggregated power consumption is the input (left side of Fig. 2) and after the

processing, it is obtained that appliances 2, 5 and 11 were operating over the time (right side of

Fig. 2).

Fig. 3 depicts four approaches from the least (upper stair) to the most intrusive (bottom stair):

the non-intrusive load monitoring (NILM) and three types of intrusive load monitoring (ILM).

What does non-intrusive mean? Nonintrusive means that the system is installed in the meter

with no entry to the house to install sensors for appliances or branch circuits, or it can mean that

1The user intervention is usually required even for automatic methods in the initial setting stages.
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Appliance 5
Power (W)

t(s)

Nonintrusive aggregated

measurements

Appliance 11

Appliance 2
Power (W)
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Figure 2. Illustration of an NILM (Nonintrusive load disaggregation) system.

NILM

I
Single sensor at principal panel

1 meter per zone (Submetering)

1 meter per plug

1 meter per applianceLM

Intrusiveness

Figure 3. This diagram represents the intrusiveness level of load monitoring systems. Non-
intrusive load monitoring (NILM) and three types of intrusive load monitoring (ILM) systems
are distinguished.

the customer installs the system by himself. One can think that the sensors are cheap because of

the mass production, but the installation cost of sensors is still high (Laughman et al., 2003). Some

advantages of non-intrusive approach are:

• Low costs (hardware, installation)

• Hardware cost independent of the number of appliances

• Not many sensors
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• Easy automation of lectures

What does automatic disaggregation mean? This means that during the running stage, no hu-

man intervention is needed by the system to provide the load disaggregation information.

Load disaggregation stakeholders are:

• Utilities: for designing and evaluating demand side management programs (Almeida &

Vine, 1994) such as time-of-use, real-time pricing and other incentive rates applied to in-

dividual loads (Drenker & Kader, 1999), for demand response, e.g., load shedding notifica-

tion (Bergman et al., 2011), for load forecasting to guarantee future energy capacity (Xu &

Milanović, 2016) and for consumer education about energy consumption.

• Policy makers: for providing more accurate load models than those coming from surveys,

which can be useful for better policy formulation, adequate regulation, load forecasting or

energy consumption education.

• Manufacturers: for enhancing the knowledge about how their products are typically operated

and for researching for new more efficient materials and technologies.

• Customer and energy service companies: bill disaggregation for detailed energy audit of the

customer consumption behavior to lead to energy savings or load diagnostics (Shaw, Leeb,

Norford, & Cox, 2008) to identify failure conditions in the appliances (Drenker & Kader,

1999), power quality offenders (Leeb, Shaw, & Kirtley, 1995), wasters (Paris, Donnal, Cox,

& Leeb, 2014) or aging loads (Chang, Lee, Lee, Chien, & Chen, 2016). Moreover, human

activity recognition and positioning could be visualized as applications (Yu, Li, Feng, &

Duan, 2016).

• Neighbors: indirect benefits for power quality and voltage regulation enhancement.

These non-intrusive load monitoring systems (NILMS) present multiple challenges since the

acquired signals are aggregated, and the aim is to provide the individual information per appliance
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as it will be described in the next section.

Problem statement

Load disaggregation problem could be stated as a combinatorial problem belonging to the knap-

sack problem family, that is similar to the problem of filling a knapsack with items to achieve a

given amount of kilograms. In the case of load disaggregation, items are appliance powers, then

the optimal subset of appliances operating at a given time has to be found. According to computa-

tional complexity theory, it is anNP-complete (Non-deterministic polynomial time) problem, i.e.

it cannot be solved in a polynomial time. In other words, knapsack problem is not quickly solved,

especially when the number of items is high.

Combinatorial problems belong to the discrete optimization field. They could be solved either

by exact methods such as enumeration of the solution space, dynamic programming or integer

programming (Suzuki, Inagaki, Suzuki, Nakamura, & Ito, 2008) or by heuristic methods such as

genetic algorithms. Exact methods are only recommended for problems with small number of

items for the quantity of time and storage capacity required while heuristics might overcome this

and provide faster results (Sabet, Farokhi, & Shokouhifar, 2012).

For load disaggregation, the sum of the optimal subset (individual powers) should correspond

to the total measured power in the household, P̂ (t). However, individual items have the following

particular characteristics:

1. Items within the solution space depend not only on the appliance itself but also on its oper-

ation state. Some appliances have more than one on position since they have several speeds

or possible states. Then, the power of the jth appliance is given by the state. If Kj is the

total number of states of jth appliance, then Kj = 1 for ON/OFF or permanent consumer

appliances, 2 < Kj <∞ for multiple state appliances, and Kj →∞ for variable consumer
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devices. This implies that the actual number of items is not the number of appliances but∑N
j=1Kj .

2. Items within the solution space are not constant along the time. Appliance operation varies

along the time according to the voltage variation due to several factors such as supply varia-

tion, voltage drop in the line impedance for connecting other loads and user activity. Then,

a time dependence is needed in the relationship.

3. Items might be different but have the same weight. Several appliances could have the same

power consumption.

4. Size of the set can also vary. The number of appliances, N , is not always the same since

customers buy new appliances, hosts arrive home, etc. Then, N would also be time varying

and even unknown.

Let x(t) = [x1(t), x2(t), . . . , xN(t)] indicate if the appliance is on or off (i.e. xj(t) = 0 if the

appliance is off, xj(t) = 1 if it is on), p(t) = [p1(t), p2(t), . . . , pN(t)] be the estimated power

of the appliances and P̂ (t) be the measured aggregated power. The problem to address could be

defined mathematically as follows:

{p?(t),x?(t)} = argmin
p(t),x(t)

|P̂ (t)− xT (t)p(t)|

s.t. xj(t) ∈{0, 1}, j = 1, . . . , N.

(1)

In summary, Eq. (1) has a lot of unknown variables: xj(t), pj(t), j = 1, . . . , N , and yields

infinite solutions.

Additionally, the problem is not additive because of the line impedance effect: if an appliance

is connected at t = τ , the total power right after, P̂ (τ+), is not equal to P̂ (τ−) + pj(τ
+), where

P̂ (τ−) is the consumption before the connection, and pj(τ+) is the consumption of the connected

load.
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Approaches other than knapsack problem are encouraged given these drawbacks. They will be

presented in the state of the art in Chapter 1.

Scope

This thesis intends:

1. To use one-sensor electrical metering. Houses could have separated circuits for types of

load. Neither measurements at circuit level, often called submetering (Marchiori, Hakkari-

nen, Han, & Earle, 2011), nor virtual metering (Kim, Schmid, Charbiwala, & Srivastava,

2009),(Marchiori et al., 2011), (Srivastava, 2012),(Kim et al., 2009) through side channel

sensors, e.g., acoustic and vibration sensors to measure the emissions of appliances in op-

eration, will be considered because this would be intrusive according to the explanation of

intrusiveness in Section . Electrical sensors installed in a centralized location will be taken

into account.

2. To work on single phase residential appliances. Studies at residential level are strategical

because:

• Residential consumption is representative of countries. For example, it reaches 40%

of the total electric energy consumed in Colombia (Unidad de Planeación Minero En-

ergética UPME, 2016). Thus, big saving opportunities exist, and the market for future

commercial products for houses is promising.

• In computerized grids, people will want to take advantage of all the available measure-

ments and information.

• Cheaper experiments might be implemented.

• Solving the problem for house level would provide experience and bases for solving

the problem in commercial and industrial locations. Laughman et al. (2003) indicated:

“Medium to large size commercial and industrial facilities require a more sophisticated
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approach, due in part to high rates of event generation, load balancing, and power factor

correction.”

Load monitoring at transmission or distribution levels would also provide valuable informa-

tion for utilities, but it would have additional challenges. Some previous works for commer-

cial sites can be found in (Shaw et al., 2008), (Drenker & Kader, 1999) and for industrial

sites in (Leeb et al., 1995).

3. To use previous knowledge of the appliances in the specific house. This thesis does not

intent to detect “all” the appliances in the market. Currently, efforts are made for some

researchers to build a world repository of appliance measurements.

4. To assume that appliances change the state, e.g. switch on or off, at different times and not

exactly in the same instant, as when multi-outlet adapters are used. Hart (1992) defined the

switch continuity principle as follows: “In a small time interval, we expect only a small

number of appliances to change state in a typical load ”. He also said “It has a consequence

that in any small enough time interval, we expect the number of appliances which change

state to be usually zero, sometimes one, and very rarely more than one”. This is widely

accepted as NILM foundation and experiments say that it is valid for small houses (Makonin,

2016).

5. To analyze harmonics, not supraharmonics (2kHz-150kHz emissions). Metering equipment

that allows measuring supraharmonics is not available in the laboratory. Load signatures are

limited to what can be monitored at the meter.

Contributions

The contributions of this thesis are:

1. A new understanding of the disaggregation framework for continuous sensing NILM sys-

tems in Chapter 2.
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2. Set of measurements from residential appliances whose labels of transients start/end, switch-

ing on, off, are provided in Chapter 3.

3. Proposal of a set of load signatures time - frequency, transient – steady state in Chapter 4.

4. “One-Class Classification” proposal in Chapter 4 to solve the scalability problem, i.e. the

drawback of the need to re-train NILM systems and the exponential growth of the complex-

ity when an appliance is added, and to identify new or unseen appliances identification.

5. Analysis of the discrimination capacity of event-based NILM systems under different sce-

narios to assess the following impact factors: voltage distortion, network impedance and

dependency of switching transients on point-on-wave (angle of the starting point) in Chap-

ter 5.

Document organization

The structure of the remainder of this thesis is as follows.

Chapter 1 examines the scientific literature review about Nonintrusive Load Monitoring system

regarding the mathematical approaches to address load disaggregation problem and deeper detail

about the pattern recognition approach. Methods and tools used by previous works for every stage

of an NILM system based on pattern recognition are highlighted Finally, research gaps are re-

vealed.

Chapter 2 explains a framework that comprises the input and output information for NILM sys-

tems and a general continuous sensing scheme.

Chapter 3 presents the measurement methodology for building a dataset to test NILM systems.

Components of the measurement setup such as appliances and meters are described, and the sce-

narios and protocol definition are explained as well. The acquisition software is also shown.
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Chapter 4 describes the proposed strategy in this thesis to cope with load disaggregation: the

event detection method, the proposed load signatures and classification strategy. Also power esti-

mation is indicated.

Chapter 5 presents the results of the proposed strategy and the analysis of impact factors on the

discrimination capacity of characteristics or features computed from the electrical signals.

Finally, the conclusion and future work wrap up the document in Chapter 6.

1. Non-intrusive load monitoring systems

Research on NILM has gained interest in the last years. The seminal work is (Hart, 1992) with

hundreds of citations, and every year, review papers have been published as shown in the timeline

in Fig. 4. This chapter presents a review of the scientific literature focused on understanding

the paths that authors have followed to handle the load disaggregation problem via non-intrusive

methods, the contributions of those previous works and the research gaps.

Najmeddine et al.

Du et al.

Zeifman & Roth

Zoha et al.

Armel et al.

Liu & Chen

Burbano

Tabatabaei et al.

Yu et al.

Faustine et al.

Hosseini et al.

. . .

Hart

Figure 4. Timeline of review papers about non-intrusive load monitoring (NILM)

In this chapter, Section 1.1 discusses the mathematical approaches to solve the problem. Sec-
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ondly, Section 1.2 explains the strategies observed in every stage of an event-based NILM system

via pattern recognition. Finally, the identified research gaps are presented in the concluding re-

marks in Section 1.3.

1.1 Mathematical approaches to solve load disaggregation

Figure 5 presents a summary of the approaches found in the scientific literature to address load

disaggregation problems. The first approach is using combinatorial search to directly solve the

Model-based

Nonintrusive Load Monitoring

(NILM)

Event-based

Deterministic

Heuristics

Optimization

Pattern 

recognition

Latent variable

models

Blind source

 separation

 

Figure 5. Mathematical approaches to solve load disaggregation problem according to the litera-
ture review

optimization problem stated in Eq. (1) through heuristic or deterministic methods. For exam-

ple, Egarter, Sobe, and Elmenreich (2013) used evolutionary algorithms (heuristics) while Bhotto,

Makonin, and Bajic (2017) used integer programming (deterministic).

The second is the model-based approach. Waveforms are converted to probabilistic or statis-

tical models to make the appliance identification. In this category, latent variable models such as

Hidden Markov Models (HMM) (W. Kong, Dong, Hill, Luo, & Xu, 2016), (Wong, Drummond, &
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Sekercioglu, 2014), temporal motif mining (Shao, Tech, & Marwah, 2012) and blind source sep-

aration (Gonçalves, Ocneanu, Bergés, & Fan, 2011), (Figueiredo, Ribeiro, & de Almeida, 2014)

have been formulated.

The third is the event-based approach, where electrical signals are monitored, and transitions

between one stationary state to another, namely events, are detected. Events indicate that a switch-

ing on or off or a state change in the appliance took place. Thus, the signal is divided into shorter

sequences to extract load signatures, i.e. particular characteristics computed to distinguish between

appliances. Event based works deal with load disaggregation either as an optimization problem or

as a pattern recognition problem:

• Optimization problem: a database of the appliance is created and used to make comparisons

with the appliance under analysis to find the best match. The error between the cases in

the database and the current case is minimized to find the most similar or closest appliance.

Comparison can be performed either between raw waveforms through correlation analy-

sis or between characteristics computed from the waveforms through distance metrics like

Euclidean distance. Some works used deterministic techniques to solve the optimization

problem as integer programming (Suzuki et al., 2008), while others used heuristics like Ant

Colony Optimization (ACO) (Y. H. Lin & Tsai, 2014a).

• Pattern recognition problem: A learning technique is used to build models from the charac-

teristics extracted from the appliance signals and to classify the appliance under analysis. A

deeper review of pattern recognition methods for NILM is presented in Section 1.2.3.

1.2 Literature review of event-based approach via pattern recognition

Event based NILM systems through pattern recognition usually comprise four stages shown in Fig.

6: measurement, event detection, feature extraction and classification. Power estimation stage is

not commonly defined by authors.
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Measurement
Event 

Detection
Characterization Classification

Figure 6. Stages of an event-based NILM system via pattern recognition.

The meaning of every stage and a review of the methods that authors have presented to develop

them are introduced on the next subsections.

1.2.1 Event detection An event is defined as a change in electrical measurements from one

stationary state to another, due to an appliance state change. For instance, Fig. 7 shows an exam-

ple of two events in the operation of a CFL. The first event is a switching on at around 1 second,

and the second event is a switching off at around 2.55 seconds. This is observed clearer in the

current than in the voltage signal (unless the sampling frequency is high enough). Event detection

aims to figure out that an event is taking place and to identify the time instant when it occurs (Jin,

Tebekaemi, Berges, & Soibelman, 2011). In statistics, the abrupt change detection problem is

better known as change detection.
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Figure 7. Example of the current and voltage of a CFL that is turned ON and then turned OFF.
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Event detection algorithms for NILM could be grouped into four categories: comparative, sta-

tistical, frequency-based and machine learning based, as presented in Fig. 8.

Figure 8. Event detection methods according to the literature review.

• Comparative: These methods compare the instantaneous values with a fixed or adaptive

threshold or with the previous cycles.

– Energizing or de-energizing event detection: Y. H. Lin and Tsai (2014a) proposed to

detect the start of an event-based on the variation of a magnitude called “current inten-

sity”, i.e. the average of the difference of every point of the cycle to the mean value of

the cycle. If current intensity in one cycle is greater than the one in the previous cycle

according to a threshold, the change is recognized as an event. Similarly, the end of

the transient is identified by the variation of the differential waveform of the current

compared to a threshold. This method needs three parameters: for the starting event,

for the ending of the transient and for the number of cycles to examine the transient.

– Multilevel threshold detection method: A gradient waveform is computed from the fil-
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tered power signal. A lookup table is designed by assigning thresholds to on and off

switchings of every appliance and their output values. This lookup table is applied to

the gradient waveform, thus, matching responsible appliances (Quek, Woo, & Logen-

thiran, 2016).

The disadvantage of these methods is that dedicated thresholds for appliances are required as

input parameters, which is not suitable because when NILM system is running, appliances

are not known beforehand.

• Statistical: These methods divide the waveform into windows and perform statistical tests

to search events.

– Generalized likelihood ratio (GLR) test : a decision statistic is computed from the

log likelihood ratio and a voting window in order to infer the presence of an event

(Anderson, Bergés, Ocneanu, Benitez, & Moura, 2012).

– Chi squared goodness-of-fit (χ2 GOF): this method assumes that the spectrograms of

two consecutive windows of the instantaneous active power share a common distribu-

tion, and then, it develops a chi squared statistic test. An event is recognized if the null

hypothesis is rejected, this is, if a meaningful change in the distribution takes place (Jin

et al., 2011).

– CUmulative SUM (CUSUM): This method uses an adaptive threshold to control the

state change and a drift parameter to control the duration (Trung, Dekneuvel, Nicolle,

& Zammit, 2014.).

• Frequency based: These methods transform the signal to other domains to detect the tran-

sients, given that these exhibit changes in frequency too.

Cepstrum: Baets, Ruyssinck, Deschriijver, and Dhaene (2016) proposes to find the Fourier

spectrum of the power, to compute the Cepstrum coefficients of the spectrum and to apply

a filter to smooth them and finally to transform back to frequency domain. Therefore, low
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and high frequency information is associated to steady and transient state, respectively. The

author states that this is very useful for multiple appliance operation.

• Machine Learning based: These methods have high computational cost because a training

step is required to optimally tune several parameters. Training could be based either on

labelled data (supervised training) or on cost function (unsupervised learning) (Baets et al.,

2016). Some pattern recognition techniques used in previous works are:

– Kernel clustering (Volpi, Tuia, Camps-Valls, & Kanevski, 2012).

– Hidden Markov Modeling (Luong, Perduca, & Nuel, 2012).

– SVM (Grinblat, Uzal, & Granitto, 2013).

– Bayesian Methods (Gu, Choi, Gu, Simon, & Wu, 2013).

1.2.2 Characterization The assumptions for NILM are that the appliance operation affects

the current and voltage waveforms and that some distinctive characteristics or fingerprints from

these signals can be computed to infer which appliances are operating, namely load signatures.

Few authors have used raw signals instead of characteristics (Suzuki et al., 2008) and showed

lower accuracies than using characteristics (Zeifman & Roth, 2011). Fig. 9 depicts the types of

characteristics or load signatures used by authors in the literature. This stage is sometimes called

feature extraction because it is a widely used term in the pattern recognition area.

Steady and transients states are alternated in current or power waveforms of appliances. Steady

states are approximately periodical while transients exhibit non-stationary patterns that settle down

after some time. For example, Fig. 7 portrays an appliance switching on and off, where three

steady states and a transient state are visualized 1. According to the type of signal used to compute

the characteristics, they are classified into transient or steady state characteristics. The sampling

1Transients yielded by “off switchings”are usually less perceptible than “on switchings”
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Figure 9. Types of characteristics used as load signatures in the scientific literature.

frequency of the sensor should be higher for the transient than for the steady state analysis.

Non-conventional characteristics are representations of the power signals in terms of rectangles

and triangles and side data such as time of the day and appliance usage, that are not taken from

the electrical signals but might enhance appliance identification. Combination of several types of

characteristics are also encouraged to obtain better discriminative power, and this approach can be

included in the non-conventional category as well.

In addition, information from time and/or frequency can be used to compute the characteris-

tics. Time domain characteristics are extracted from the waveforms or intermediate representation

such as P-Q plane or V-I trajectories, while frequency information characteristics are computed

from the Fourier spectrum of the waveforms, like harmonic information. Signals, above all the

transients, have been represented in a time-frequency space, such as short time Fourier transform

(STFT) and wavelet transforms.

The most intuitive characteristics are active and reactive powers, but authors have explored

others along the years (Laughman et al., 2003), (Liang, Ng, Kendall, & Cheng, 2010), (Yu et al.,

2016) with the intention of identifying discriminative characteristics. In short:
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From power:

Transient: spectral envelopes (Leeb et al., 1995),

Steady: power profiles and P-Q plane (Hart, 1992).

Non-Conventional: power signal graphic decomposed by rectangles and triangles (Wang & Zheng,

2012).

From current:

Transient: waveform parameters (Laughman et al., 2003), (Ruzzelli, Nicolas, Schoofs, & O’Hare,

2010), time-frequency information (Duarte, Delmar, Goossen, Barner, & Gomez-Luna, 2012),

(Y. H. Lin & Tsai, 2014b), (Jimenez, Duarte, Petit, & Carrillo, 2014)

Steady: waveform parameters (Jimenez et al., 2014) and harmonics (Laughman et al., 2003)

From voltage:

Transient: noise (Patel, Robertson, Kientz, Reynolds, & Abowd, 2007) and RFI (Gulati, Singh,

Agarwal, & Bohara, 2016)

Steady: waveform parameters (Liang et al., 2010), electromagnetic interference (EMI) noise (Patel

et al., 2007), Cepstrum of EMI (Electromagnetic interference) noise of voltage signal (S. Kong,

Kim, Ko, & Joo, 2015) and EMF (Kulkarni, Harnett, & Welch, 2015).

From voltage and current:

Steady: Geometrical properties of V-I trajectories such as looping direction, area enclosed, non-

linearity of mean curve, number of self intersections, slope of middle segment and area of right

and left segments (Lam, Fung, & Lee, 2007) (Liang et al., 2010), (Hassan, Javed, & Arshad, 2014)

A summary of the steady state and transient characteristics used in the literature is found in

Fig. 10, where frequency and time-frequency characteristics are written in red italic format and

the others correspond to time domain characteristics. Steady characteristics are presented in part
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a) and transient ones, in part b). The diagonal of these matrices includes characteristics from one

single variable: power, current or voltage, whereas off diagonal characteristics are computed by

combining two of these three variables.

Figure 10. Summary of a) Steady state and b) Transient characteristics proposed in previous
works. Frequency and time-frequency characteristics are displayed in red italic and time domain
characteristics, in normal black.

1.2.3 Classification NILM can be modeled as a classification problem. In general, a clas-

sification problem is the task of building models to map the characteristic or feature vector of
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measured signals x (inputs) to predefined decision values or class label (outputs) y, thus:

x −→ y = f(x, α) (2)

where f is the target function or classification model, and α represents the set of parameters of the

classification machine or technique (e.g. kernel parameters and penalty factors for a support vector

machine). In supervised learning, there is a known set of instances or cases, usually called training

set, that together with their label (x, y) provide knowledge to build the models and predict the

labels for unknown cases (x, ?). Class labels are discrete; otherwise the task would be a regression

problem.

1.2.3 Categories of NILM systems due to the classification stage Several categories of

classification systems for NILM can be found as (see Fig. 11):

NILM systems based on machine learning techniques

Supervised

Unsupervised

Semisupervised

training labelling number of classifiers

Single 

classifier

Multiple

classifiers

target labelling

Multi-label

Single-label
Seen 

appliances

target space

Unseen 

appliances

according to

Figure 11. Summary of machine learning approaches for NILM found in the scientific literature

• According to the number of classifiers

– Single classifier: Only one trained classifier is used for appliance identification (Jimenez

et al., 2014).
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– Ensembles classifiers: several individually trained classifiers are combined to con-

form a classification strategy, usually through voting mechanisms (Liang et al., 2010),

(Kramer, Klingenberg, Sonnenschein, & Wilken, 2014), (Y. H. Lin & Tsai, 2015).

• According to the training data labeling

– Unsupervised: these algorithms do not require labeled training data (Y.-H. Lin, Tsai,

& Chen, 2011).

– Semi-supervised: these algorithms require only a small number of labeled training data

in a larger set of unlabeled ones (Tabatabaei, Dick, & Xu, 2016).

– Supervised: labeled instances of each appliance are acquired during a training or learn-

ing stage for these algorithms (Liang et al., 2010).

• According to the target labeling

– Single-label: only one label is assigned to each instance. This is the classical approach

where every class corresponds to a state of the appliances. This approach usually

requires to train with combinations (Marchiori et al., 2011), (Srinivasan, Ng, & Liew,

2006). Disadvantages of this approach are explained in (Zeifman & Roth, 2011).

– Multi-label: the input is not mapped to a single label output but to a vector of labels.

This approach takes into account the interdependence among labels (in our case, the

appliances) (Basu, Debusschere, Bacha, Maulik, & Bondyopadhyay, 2015). Works

reported in (Li, Sawyer, & Dick, 2015), (Basu et al., 2015), (Tabatabaei et al., 2016)

used multi-labeling classifiers.

• According to the target space

– Limit the output to one of the classes in the training data. Thus, an instance belonging

to an unseen appliance in the training is assigned to one of the classes of the training

data.
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– Identify unseen appliances as new.

1.2.3 Techniques Some of the techniques used in previous works are:

• Naive based classifier (Marchiori et al., 2011).

• Neural networks (Chang, Chen, Tsai, & Lee, 2012), (Srinivasan et al., 2006), (Xu & Mi-

lanović, 2015), Neural Networks + particle swarm optimization (PSO) (Chang, Lin, Chen,

& Lee, 2013), back-propagation artificial neural networks (BP-ANN) (Chang, Lian, Su, &

Lee, 2014), Hellinger Distance + PSO + BP-ANN (Chang et al., 2016).

• Mean shift clustering instead k-means clustering (Wang & Zheng, 2012).

• Linear discriminant (Wang & Zheng, 2012).

• Supervised Self Organizing Maps (SSOM) (He, Lin, Liu, Harley, & Habetler, 2013), hybrid

(SSOM + Bayesian) (Du, Restrepo, Yang, Harley, & Habetler, 2013), (Du, He, Harley, &

Habetler, 2016).

• Support vector machine (SVM) (Figueiredo, de Almeida, & Ribeiro, 2012), (Jimenez et al.,

2014).

• Fuzzy logic (Ducange, Marcelloni, & Antonelli, 2014).

• 3-nearest neighbors (Eibl & Engel, 2015), k-nearest neighbors (Koutitas & Tassiulas, 2016),

(Gulati et al., 2016).

• Decision tree (Kulkarni et al., 2015).

• Hybrid classification technique that integrates Fuzzy C-Means (FCM) clustering-piloting

PSO with Neuro-Fuzzy Classification (NFC) (Y. H. Lin & Tsai, 2014b).
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1.3 Concluding remarks

Although the research on NILM has increased in last years, several questions arise, and some

challenges remain. The following research gaps were identified:

• There is not a widely accepted set of load signatures. Authors coincide in the key role of

the load signature choice in event-based NILM systems (Hassan et al., 2014). For example,

Yu et al. (2016) stated: “Until now, a complete set of robust and widely accepted appliance

features has not been established. The available features do not provide unambiguous appli-

ance detection and classification.”

Load signatures should be:

1. Discriminative to yield a clear appliance identification.

2. As simple as possible to be computed and stored.

3. Able to provide information of a given appliance even when it is Operating at the same

time than others because the information of all appliance is fused together.

• To the author best knowledge, research has been more focused on load signature exploration

than on algorithm development. For example, Dong, Meira, Xu, and Freitas (2012) affirm

that “traditional NILM algorithms only focus on single state/edge of appliance and thus,

cannot identify appliances from entire process perspective.”

• Scalability problem: The complexity of the systems depends on the number of appliances in

the inventory, sometimes with an exponential relationship. Adding more appliances to the

house, which is common, implies:

– Need of a re-training because the knowledge database should be updated.

– More intensive training to build models and more complex algorithms.

– Possibly less accurate systems.



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 45

Srivastava (2012) declares “It is hard to discriminate signatures when there is a large mix of

devices and appliances ”.

• Need of more accurate systems: Authors express the performance of their algorithms in

terms of different metrics as observed in (Armel, Gupta, Shrimali, & Albert, 2013). As a

consequence, comparison between algorithms is not straightforward. In general, an NILM

system should be accurate, this is, the percentage of correctly classified appliances should

be high. Under this metric, accuracy of NILM systems still has room for improvement.

Strategies for enhancing the accuracy might include the definition of more discriminative

characteristics. Electrical signals might be mapped to other domains with transforms to

make them more observable. So far, scientific literature shows representations with Fourier

and Wavelet Transforms. Different transforms should be explored to obtain a better time

location, time-frequency resolution, noise sensitivity and/or less computational complexity.

• Studies on the impact of factors such as voltage distortion and variation, network impedance

and simultaneous appliance operation on load disaggregation algorithms are still lacking.

It is important to have this knowledge because these factors are present in real household

execution.

• Apart from the absence of standard metrics, the lack of availability of standard datasets to

evaluate the systems must be improved in this research field. Table 1 presents a comparison

of publicly available energy datasets (Faustine, Kaijage, Michael, & Mvungi, 2017). Public

databases are not fully labeled or their sampling frequencies are not high enough; moreover,

their circuits are not like the Colombian households. They might be helpful to use in the

comparison among different proposals.

• Privacy issues: Some authors have pointed out that together with the benefits, a potential

disadvantage appears with NILM systems related to the use of data for additional surveil-

lance purposes (Hart, 1989), (Eibl & Engel, 2015), perhaps the violation of civil liberties.

The information about appliances at home and their use is considered private by Ren, Song,
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Table 1
Summary of publically available energy dataset. Aggregate (aggr), Sub-metering (sub).

Dataset Location Duration No. Of houses Sensors/house Resolution
REDD USA 3-19 days 6 24 15kHz (aggr), 0.5Hz and 1Hz (sub)
BERDS USA 1 year 1 4 20
BLUED USA 8 days 1 Aggregated 12kHz (agg only)
Smart USA 3 months 3 21-26 circuits meters 1Hz
Tracebase Germany N/A 15 158 devices 1-10 sec (sub only)
AMPDS Canada 1 year 1 19 1 min
AMPds2 Canada 2 1 21 1 min
UK-DALE UK 499 days, 2.5 years (house 1) 5 5-54 devices 16 kHz (agg) and 1/6 Hz (sub)
IAWE India 73 days 10 33 devices 1 sec (aggr) and 1 sec or 6 sec (sub)
REFIT UK 2 years 20 11 8 sec
GREED Australia/Italy 1 year 9 9 1 Hz
ECO Switzerland 8 months 6 1 Hz
IHEPCDS France 4 years 1 3 1 min
OCTES Scotland, Iceland & Finland 413 months 33 Aggregated 7 sec
HES UK 1 month (255 houses) 251 13-51 2 min
ACS-F1 Switzerland 2, 1 hour sessions N/A 100, 10 types 10 sec

Note: adapted from (Faustine et al., 2017)

Yang, and Ren (2011) and Srivastava (2012). The question about how technology should be

controlled remains valid not only for this type of technology but also for social media, the

use of cameras, etc.

• Big data analytic problems: high volume of data storage, retrieval and processing for energy

applications might be challenging depending on the type of NILM system (Paris, Donnal, &

Leeb, 2014).

2. Framework for event based systems

This chapter contributes to a better understanding for the design of NILM systems through an

explanation about several aspects to consider for solving load disaggregation problem, specially

with the event-based approach. The aim is to provide to researchers a wide variety of design and

implementation matters to bear complete NILM systems in a comprehensive way. This explanation

or framework is presented from two perspectives. First, in Section 2.1 NILM systems are discussed

like a box model, i.e. the types of input and output information are mentioned. Second, some
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guidelines for implementing NILM systems with a continuous sensing scheme are presented in

Section 2.2.

2.1 On NILM information

If an NILM system is seen as a black box, several information sets could be used as inputs 1 to

generate a given output, as shown in Fig. 12.

Event

Detection
Appliance

Identification

Power 

Estimation

NILM system

output1 output2

output3+

input1

input3

input2

Figure 12. Possible NILM system inputs and outputs.

2.1.1 Input information The input information that can be used to derive the solutions can

be categorized like this:

Input 1: A library built from measurements in different locations (houses, laboratories), for ap-

pliances of different powers, brands, ages, topologies, etc. The user selects from the library those

appliances more similar to the ones in the house. Gathering this diverse information requires huge

effort by researchers worldwide to release open-access datasets with detailed enough information

(individual information, resolution, etc.) for the designed NILM algorithm . Moreover, there is

always a risk that the appliances at home are not well represented in the database.

Input 2: Previous knowledge about appliances in the household, i.e. either only an inventory

list or particular electrical signatures of the appliances. The system is designed or tuned for a
1Background sensor information might also help load disaggregation, but the definition of non-intrusive in Section

discards the use of sensors other than electrical ones.
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particular location and set of appliances. This specific information is obtained during a training

stage.

• Individual information: electrical signatures when every appliance is connected individually.

• Simultaneous information: electrical signatures when several appliances are connected si-

multaneously which is is a common situation in houses. Building this knowledge database

implies a big space of measurements. In this case, the question would be which combina-

tions to consider.

If no previous information about the specific appliances was available, the system would have to

“guess” the load by self-learning and to create the database during the operation, without a previ-

ous training stage. This is the least intrusive system but the hardest to design.

Input 3: A priori information. For example, this would include the customer habits, electric

system behavior, weather conditions, etc.

The system would use one of these inputs or any combination of them (see addition mark in

Fig. 12).

2.1.2 Output information The solution for load disaggregation can be thought as a table

that is updated through time. For example, if the NILM system is sensing the aggregated current

in Fig. 13 of a halogen lamp that connects at t1 and disconnects at t3 while a fan is operating

simultaneously, several levels of information can be provided.

Output 1: Electric Activity. This is to address the question “is there any appliance connection

or disconnection?”. This is the most simple information that could come from an event detection

stage that registers appliance state changes. This information could benefit inhabitant presence

detection applications. The output would be as presented in Table 2.

Output 2: Appliance operation. This is to answer “which appliances are connected/disconnected?”This

is the most common output information that authors in scientific literature about event-based sys-
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Figure 13. Aggregated current of a fan and a halogen lamp in simultaneous operation. The lamp
connects at t1, thus, causing a switching transient between t1 and t2, and disconnects at t2.

Table 2
Example of solution table for output level 1.

Time State
t1 An appliance was connected
t3 An appliance was disconnected

tems intend to provide, which is still complex because appliances can have multiple operation

modes. This operation information might be useful for some applications such as activity infer-

ence. The solution for the example in Fig. 13 between t1 and t3 is displayed in Table 3.

Table 3
Example of solution table for output level 2.

Appliance State
TV OFF

Halogen Lamp ON
Fan ON
Iron OFF

...
...

Output 3: Appliance power consumption. This is to solve the question “how much power

is every appliance consuming?”The individual power consumption is important for serving the

stakeholders’ interest described in Section and to motivate energy savings through user behavior

changes. For this case, the solution table has not only the state of every appliance (0 if it is off,
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1 if it is on) but also its power consumption, as it is shown in Table 4 for the example in Fig. 13

between t1 and t3.

Table 4
Example of solution table output level 3.

Appliance State Power (W)
TV OFF 0

Halogen Lamp ON 70
Fan ON 3
Iron OFF 0

...
...

...

2.2 Continuous sensing scheme

Several options of continuous sensing schemes can be adopted according to the way that the fol-

lowing inquiries are addressed. Aspects and possible ways to deal with them are the following.

• When shall sensing start to infer load disaggregation? The starting point for an NILM system

could be at different instants.

– To start when appliances are at a stationary operation from an undetermined time ago

like at any time between 0 and t1 or between t2 and t3 in Fig. 13. Probabilistic solutions

should be approached for this case.

– To start just when appliances switch from one state to another, e.g., in t1 or t3 in Fig.

13.

• When shall the solutions be computed or updated?

– To compute the solutions every time an event is detected in the transient edge, e.g.

between t1 and t2 in Fig. 13. The hypothesis for using momentary information is that

whenever an appliance changes its state, this can be observed in the electrical signals.
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– To compute the solutions under a periodic base. In this sense, changes are not followed,

and momentary steady state information is analyzed, e.g. between 0 and t1 or between

t2 and t3 in Fig. 13.

• Which load signatures shall be used? This aspect refers to the characteristics considered to

compute the solution, which were explained in Subsection 1.2.2:

– Transient characteristics

– Steady state characteristics

– Non-conventional characteristics

• Which type of data shall be used?

– Present moment data: characteristics and weather conditions.

– Past data: 1) previous solutions, e.g. to confirm the solution at t2 in Fig. 13 through

the solution between 0 to t1, 2) a priori information like user preferences, e.g. to

consider the probability of a given appliance operation according to the historical user

preferences, or 3) generic appliance database.

• How long should the window be?

– Typically 12 cycles are used in power quality analysis at 60 Hz.

– Others

In this sense, there are multiple possibilities for the resulting scheme. If all the options were

combined, the outcome would be as depicted in Fig. 14. This diagram is divided into the three

stages indicated in Fig. 12: event detection, appliance identification and power estimation. The

procedure in Fig. 14 begins with the initialization of a timer and the computing of a probabilistic

solution based on steady state signals to identify appliances, followed by a power estimation. This

step is repeated on a periodic basis (every T seconds). During the intervals between, an event

detection process is running, and if an event is detected, transient features from the switching



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 52

signals are computed, and a solution is inferred. The inputs for the inference process are not

only the transient features but also previous solutions (appliance operation and power), a priori

information (e.g. user habits) and a generic database from a variety of appliances. According to

this scheme, the NILM system would be continuously sensing and updating the solutions which

can be communicated to the customer, the utility or another stakeholder.

2.3 Concluding remarks

This chapter treated alternatives for NILM system input and output information. Also, a general

scheme for continuous sensing in NILM system based on several aspects such as starting point,

the way to compute and/or confirm the solutions, etc. was suggested as a guideline for researchers

to design and implement them.

Particularly, the input of the proposed system in this thesis is previous knowledge about appliances

in the household, and its output is power estimation information. Moreover, the continuous sensing

scheme for the proposed system is as follows:

• When shall load disaggregation start? When appliances switch from one state to another.

• When shall the solution be computed or updated? Every time an event is detected, just in

the transient edge.

• Which signatures shall be used? By using transient characteristics.

• Which type of data shall be used? Present moment data: characteristics.

• How long should the window be? Three cycles of the continuous signal may be used (one

cycle of the discrete signal).

For testing the algorithms, measurements of residential appliances were taken as explained in

next chapter.
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Figure 14. Continuous sensing scheme of an NILM system by considering all the options
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3. Measurement Methodology

Non-intrusive load monitoring needs measurements to train and test the algorithms. Several exper-

iments were designed for this thesis to build the database of electrical measurements of residential

appliances. The procedure for the measurements is shown in Fig. 15. First at all, the appliances

to be measured and the metering equipment should be selected and acquired. Then, the software

interface to acquire the measurements should be designed and set up. Next, for every appliance,

aspects such as operation states and characteristics should be figured out to define a measurement

protocol. Afterwards, the measurements should be taken and verified. Finally, these experimental

data are organized and processed offline.

1: Select metering equipment and N appliances
2: Define scenarios to measure (which variations to perform in voltage supply, line impedance

and load)
3: Program interface for data acquisition
4: for n = 1 to N do
5: Identify appliance operation states
6: Define measurement protocol
7: Take measurements
8: if Measurements are not satisfactory then
9: Go to step 7

10: end if
11: Process data offline
12: end for

Figure 15. Procedure for taking measurements in the laboratory.

More explanation of this procedure is provided on next sections. First, Section 3.1 discusses

the selection of appliances considered in this study and the metering equipment to acquire the

signals. Secondly, Section 3.2 presents the measurement setup to know the appliance operation,

establishes scenarios and sequences for the measurements and exhibits software interfaces for data

acquisition. The set of signals resulting from the measurement methodology is summarized in the

concluding remarks of this chapter.
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3.1 Appliance and metering equipment selection

A wide variety of appliances and meters are available in the market. Criteria and results of their

selection are displayed in next subsections.

3.1.1 Categorization of appliances Circuit components of appliances influence the behav-

ior of electrical signals due to appliance operation. Appliances can be sorted into two groups:

non-electronic and electronic.

• Non-electronic: according to the predominant quantity of their circuits, these electric de-

vices can be resistive (in phase), capacitive (leading phase) or inductive (lagging phase).

• Electronic: these appliances can be in turn classified according to the power factor correction

(PFC), i.e., the mechanism to diminish the current distortion and enhance the power factor

(Jimenez et al., 2015).

– No PFC: appliances that include a rectifier and a DC link capacitor and none compo-

nent to correct power factor. Examples: some CFL and chargers.

– Passive PFC: appliances with passive elements (capacitors or inductors) before or after

the rectification stage, as low frequency filters. Examples: some power supplies for

desktop PC and LED lamps.

– Active PFC: appliances with active components (DC-DC converters). Examples: some

power supplies for desktop PC.

3.1.2 Appliance selection Experiments are carried out with residential appliances that are

usually present in Colombian households, specially in stratum 11. Table 5 presents the appliances

selected according to the study of characterization of gas and electrical appliances, and Table 6

1Colombia classifies urban populations into different strata according to the social-economic characteristics (ge-
ographic location, public services, transportation, education level, household quality, appliance and comfort items)
to set public service tariffs, taxes and subsidies. Then areas are classified on a scale from 1 to 6, where stratum 1 is
supposed to correspond to the poorest urban areas and stratum 6 to the richest ones.
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shows a more recent study about the percentage of Colombian households with electrical devices.

Appliances with the highest percentage of ownership are included in this thesis. Some observations

are:

• Electric and mixed stoves were disregarded because the gas stove has a higher ownership

percentage (89.9 %).

• Cathodic ray TV was preferred to plasma - LED TV

• Video camera, video player and stereo were disregarded since the proportion is low and

descending.

• Several technologies of lighting were included such as CFL, LED, halogen and incandes-

cent2.

Table 5
Percentages of electric and gas appliances ownership in Bogota for strata 1 to 6 (2006).

Appliance / Stratum 1 2 3 4 5 6
Lights 100% 100% 100% 100% 100% 100%

TV 96.9% 99.4% 99.5% 99.1% 98.1% 100%
Iron (Clothes) 84.3% 96.3% 94.1% 92.3% 94.2% 100%

Blender 79.9% 95.7% 94.6% 93.2% 94.2% 100%
Refrigerator 74.2% 89.6% 95.4% 96.4% 96.2% 100%

Washing machine 39.6% 65.6% 80.4% 85.9% 94.2% 93.3%
Water heater 32% 63% 75% 91% 92% 87%

Microwave oven 9.4% 22.1% 32.4% 60.9% 80.8% 86.7%
Electric stove 6.3% 4.9% 7.5% 13.6% 11.5% 20%

Gas Stove 89.9% 90.2% 78.6% 72.7% 63.5% 66.7%
Mixed Stove 3.8% 4.9% 13.9% 13.6% 25% 13.3%

Note: Adapted from (UPME, 2006).

As a consequence, the selected appliances are the ones in Table 7 with their rated powers. Only

single phase appliances are considered in this study.

2Incandescent bulbs are end-of-life products, but they are still present in households
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Table 6
Percentages of Colombian households with electrical devices.

Appliance Power (W) National Bogota
Microwave oven 1080 20.3% 36.1%
Conventional TV 100 77.7% 76.5%
Plasma - LED TV 100 28.5% 44.9%

Video Player 19 44.7% 57.7%
Stereo 75 47.4% 58.8%

Video Camera 24 21.1% 36.4%
PC monitor 48 26.1% 39.7%

Desktop supply sources 475 26.1% 39.7%
Laptop chargers 93 23.3% 36.7%

Cellphone 15 94.7% 96.3%

Note: adapted from (Encuesta Nacional de Calidad de Vida 2013 (ECV), 2014).

Table 7
Equipment under test

Appliance Rated Power (W)
CFL 9
CFL 20

LED lamp 7
Incandescent bulb 75

Halogen Lamp 50
Halogen Lamp 70

Fan 48
Blender 600

Refrigerator 1.15kWh/24h
Sandwich Maker 750

Hair Dryer 1875
Iron 1200

Cellphone Charger 20
TV 90

Laptop 40
Desktop PC 250

Monitor 180

3.1.3 Metering equipment selection A National Instruments metering equipment was used

to acquire the measurements. It comprises three data acquisition cards connected to a chassis NI

9172 for simultaneous sampling, as depicted in Fig. 16 and detailed in Table 8. Voltages and
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currents are needed for NILM algorithms. Other quantities like power are derived from them.

Figure 16. Picture of data acquisition system for electrical measurements. They are three cards
inserted in a chassis with the advantage of simultaneous sampling.

Table 8
Metering equipment

Card Variable Range Channels
NI 9227 Current 0-5A 4
NI 9239 Voltage 0-10V 4
NI 9225 Voltage 0-300V 3

Nota: Adapted from (National Instruments, 2016), (National Instruments, 2014a) and (National
Instruments, 2014b).

Voltage Measurement: NI 9225 card was used to sense the overall voltage supply.

Current Measurement: The NI 9227 card can directly measure up to 5A currents. Another

option was needed for higher currents. Then, the NI 9239 card was connected to a transducer to

convert to the allowed variable, i.e., voltages up to 10V. Initially, four mechanisms were considered

to be connected to this card:

• Current Transformers: these transducers have quite narrow frequency ranges and limitation

for direct currents.

• Shunt resistor: it is a power resistance placed in series with the load. The current is propor-

tional to the voltage drop across the resistor, according to the Ohm’s Law. The quite small
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resistance value is specified by the manufacturer with the voltage drop at the maximum cur-

rent rating. However, the recommendation is to measure only 2/3 of the rated current.

Advantages: low cost and straightforward measurement because of the proportionality of

Ohm’s Law.

Disadvantages: power losses and lack of isolation because a resistor is added to the circuit.

• Hall effect sensor: it is an indirect transducer. The principle is the Faraday’s Law. Example:

ACS714

Advantages: galvanic isolation and no losses.

Disadvantages: DC offset, bandwith limitations (80kHz) and need of external power source.

• Current clamp Fluke: it is also based on Hall effect technology for use in measurement of

both DC and AC.

Advantages: non-intrusive and accurate measurements and easiness of use.

Disadvantages: high cost, bandwidth limitations (100kHz) and need of external power

source.

A current clamp was chosen as the transducer. The reference is Fluke i30s.

Appendix A presents the accuracies of the data acquisition equipment.

3.2 Measurement setup

Once the appliances and meters are selected, knowledge of the appliance operation is required to

define the measurement protocols. Additionally, measurement scenarios have to be established

according to the scope and further processing. These issues are described in this section, together

with the design of the software interface.

3.2.1 Identification of appliance states According to the amount of states, the following

categories of appliances can be numbered:
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1. Permanent consumer Devices: their power consumption is approximately constant all day

long.

2. On-off appliances (e.g. light bulbs and toasters).

3. Appliances with several speeds or functions (e.g. three-way lamp).

4. Finite state machine: a definite number of states may be observed for these appliances,

similar to a finite state machine (e.g., washing machine).

5. Variable consumer devices: the power cannot be easily characterized because there is not a

finite set of states. It depends on the burden of the equipment (e.g., dimmer lights, power

tools and sewing machines).

A summary of the category description and the appliances in the equipment under test (EUT) that

belong to them are presented in Table 9.

Table 9
Appliance categories according to the amount of states

Category of appliance Amount of states Examples in this study
Permanent consumer device One single state N/A

ON -OFF appliance Two Sandwich maker, lamps, iron, monitor
Several speed devices Two or more finite number Fan, hair dryer

Finite machine 3 or more Refrigerator
Variable consumer devices Undetermined Desktop PC, laptop, TV

The identification of the possible states and transition between states is straightforward when

the equipment is on/off. Conversely, for TV, laptop, desktop PC and refrigerator a more complex

comprehension is required. For these elements, the possible factors that could yield a different

energy consumption (for example, volume, screen brightness, mode, Internet connection, etc.)

were determined, and the most influential ones on the power consumption were selected. Some

appliances have a switch included (conventional home switches were installed in the modules as

well).
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3.2.2 Definition of scenarios for measurement setup A diagram of the measurement setup

is displayed in Fig. 17, and a picture of how it looks in the laboratory is presented in Fig. 18. The

load is supplied by a power source or the grid. There is a line impedance between the power source

and the load.

Figure 17. General diagram of the measurement setup: voltage supply, equipment under test
(EUT) or load, data acquisition (DAQ) system, computer and wires. Dotted lines means data
communication.

Figure 18. Picture of the measurement setup: power source, load, data acquisition (DAQ) system,
computer and wires.

Several scenarios were considered to obtain the required data for knowing the problem and

designing and training the algorithms, as shown in Fig. 19, by variations in:

• Voltage supply: Ideal, distorted voltage supply (flat-top signal) or grid. A power source
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Figure 19. Route map of the measurements under different scenarios.

emulated the ideal (120V, 60Hz supply) and the flat-top signals. The flat-top signal was

selected because in studies in Germany, the presence of this type of distortion has been

found in residential low voltage grids due to the mass use of single-phase rectifiers (Blanco,

Stiegler, & Meyer, 2013), (Blanco, Meyer, et al., 2015). The values for the flat-top signal

for the experiments were adapted from the measured signal in the European grids because

this characterization has not been done in 120V, 60 Hz grids.

• Line impedance: wires of 2.4 m and 7 m were connected to the power source. These lengths

were taken from the Colombian Technical Standard NTC2050 (Norma Técnica Colombiana

2050: Código eléctrico colombiano, 1998): 2.4 m is the distance between power outlets,

and 7 m is one of the shortest circuits in a house. These are copper wires, 12AWG. The

impedances are depicted in Table 10.
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Table 10
Impedances in the measurement setup

Element R XL

Programmable AC source 0 0.002
Installation wiring 0.161348 0.0084654

2.4m wire 0, 031488 0, 0010704
7m wire 0, 09184 0, 003122

• Load: appliances operating individually or simultaneously with others.

3.2.2 Individual appliance operation The duration and amount of measurements had to be

decided. One possibility is to consider the working cycle of the appliances and to take an integer

number of cycles. For example, the refrigerator has on and off cycles that last several minutes;

then, 3 to 5 refrigerator cycles should be taken to verify the reproducibility. However, this possi-

bility would imply to take measurements for very long periods and, as a training set is needed, this

would be very tedious. Another possibility is to figure out which states are involved in the equip-

ment and capture the switching between several states (the probable ones) hundred times. This

was the most outstanding option because details about the working operation can still be measured

with less time since changes of states are forced.

There is no criterion to establish the minimum amount of measurements per equipment. Given

that there are not specific conditions (impedance, sampling frequency, point-on-wave), one mea-

surement cannot be considered as a representative sample. A widely accepted concept is the

peaking phenomenon that says that “error of a designed classifier decreases and then increases as

the number of features grows”(Sima & Dougherty, 2008). It is hard to establish an exact relation-

ship, but a good practice in machine learning is to take n = d > 10, where n is the number of

instances or cases, and d is the number of characteristics. Signal variability and reproducibility are

discussed further in this thesis.
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3.2.2 Simultaneous appliance operation This is the most realistic scenario in houses, es-

pecially when there are multiple occupants. Although in Colombia households could be designed

to connect appliances to dedicated sub-circuits, in this thesis, sub-circuit information is not con-

sidered as explained in Section .

The number of measurements is an even more challenging issue than the individual scenario

because of the number of combinations that appliances could yield. For a number ofN appliances,

the possible combinations are N !
k!(N−k)! , where k is the number of appliances taken at the same

time. For example, for 10 appliances, the number of subsets of minimum two appliances that

could appear are 1013 besides the individual operation. Other approaches should be considered,

for example:

1. Measure the following subsets: high, medium, low and mixed groups.

2. Use latin hypercube.

3. Measure at least the most “probable ”combinations.

For the sake of finding the most probable combinations, the knowledge of every minute use of

the appliances during the day should be available. Time-of-use is highly linked to the activities

that people perform every day. Contrary to other countries, there are not available studies about

how this time-of-use of appliances is in Colombia.

An informal survey was made to extract information about the perception about appliances

that are likely to be connected at the same time, or at least during a period. The next steps were

followed (adapted from (Collin, Tsagarakis, Member, & Kiprakis, 2014)):

1. List the activities per hours

2. Associate appliances to these activities

3. Ask to know the appliance use during weekdays, Saturdays and Sundays. Days were split

in blocks of three hours.
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4. Make Monte Carlo simulations.

Finally, the following datasets of measurements were built for simultaneous operation:

• Some combinations, steady state, under voltage variation.

• Combinations of two appliances (representative appliances of power or topology were se-

lected), transient and steady state, fixed voltage supply.

• Appliance per activity, intuitive sequences, transient and steady state, fixed voltage supply.

• The most common combinations, steady state, fixed voltage supply.

3.2.3 Design of measurement protocol It is necessary to define a protocol that includes

which states to measure and the duration and sequence of the measurement. For example, in the

case of the laptop and desktop computers, a routine was proposed by considering the most common

computer activities in Colombian households (to send and receive mails, to visit social networks,

to use Internet browsers for general information, to watch videos and to download and to listen to

music (Franco & MinTIC, n.d.)), and in the case of the TV, volume settings were made.

For individual scenarios, every signal is a window where the appliance takes a given state, and

then, it goes back to the previous one. For example, for an on/off appliance, it is turned on and

then, turned off.

3.2.4 Labview interface design and data storage Graphic language was preferred over

written language for signal acquisition. The designed interface comprises two tabs as shown in

Fig. 20 (left side):

1. User entries: information about the appliance (type, nameplate power, brand, etc.), number

of consecutive measurements, duration of the measurement and sampling frequency.

2. Monitoring: some visual indicators of the progress of the measurements are displayed, e.g.

percentage of the consecutive measurements made and elapsed seconds.
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Figure 20. Tabs of Labview interface: a) User entries b) Monitoring

Also, the interface plots currents and/or voltage signals in the right side once the measurement

is finished as it is shown in Fig. 21. This is to decide whether to keep or to discard the measurement

as a validation step of the measurement process. When each measurement is accepted saying yes

in a dialog box, it is recorded as a .mat file to be processed in Matlab.

Figure 21. Plots of current and/or voltages that were measured.
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3.3 Concluding remarks

In this chapter, a methodology for taking measurements has been presented. The result of this

measurement stage is a set of signals under different scenarios. It is useful not only for this thesis

but also for other research projects. Table 11 summarizes these measurements.

Table 11
Explanation of measurements made in both individual and simultaneous scenario

Scenario Type Description Type of signal

Individual
Individual
measurements

Long wires (ON/OFF): 10 repetitions for
2.4m and 10 repetitions for 7m.
In total 20 per appliance.

Transient +
Steady State

Voltage variation: 5 repetitions for 108 V, 5
repetitions for 110V, ..., 5 repetitions
for 126 V. In total 50 measurements, except
for hair dryer state 2 that has 24
and for iron that has 49.

Steady State

Others (ON/OFF) : 100 repetitions.
Transient +
Steady State

Simultaneous

Group +
Transients

One appliance switches when another one is
operating in stationary state. 10 repetitions
are taken for ”Appliance2” switching and
”Appliance1” fixed; 10 for ”Appliance1”
switching and ”Appliance2” fixed.
In total 20 repetition per group.

Steady State

Group +
Activities

ON/OFF: An established sequence per
activity.

Transient +
Steady State

Knapsacks
ON: 5 repetitions per knapsack, during
5 seconds. Steady State

4. Strategy for load disaggregation

According to the taxonomy of NILM systems explained in Section 1.1 and illustrated in Fig. 5, the

proposed method is event-based. Fig. 22 presents the sequence of the method. The first step is to
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detect the switchings due to the change in the operation of the appliances, i.e. the event detection.

Afterwards, two stages are considered in order to solve load disaggregation problem described in

Eq. (1). First, appliance identification estimates x?(t) by considering the features that represent

the appliances, namely load signatures. Secondly, power estimation infers p?(t).

Aggregated 

signal sensing
Event detection

Power 

estimation

Appliance

identification

Feature extraction

Classification

Figure 22. Stages of the proposed NILM system

At the same time, appliance identification comprises two stages: feature extraction and classi-

fication. Feature extraction computes load signatures from the electrical signals. These features

can be compared with a feature database to be detected via Euclidean distance or correlation al-

gorithms, or they can be learned and classified via machine learning techniques (see Section 1.1).

The latter approach (classification) is used in this thesis.

The novelty of the proposed strategy is spread in the stages as follows:

• The proposal of sets of features from both the waveforms and the Stockwell transform of

the current switching transients with higher discrimination capacity.

• The use of a classification approach that can detect unseen appliances in the database as

outliers and requires a less demanding re-training when a new appliance is incorporated in

the inventory list of the household.

• The proposal of power estimation models to be applied after the classification.

Details of event detection, feature extraction, classification and power estimation are presented in

the next sections.
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4.1 Event detection

The proposed method for event detection comprises the following steps:

1. Flagging the windows as transients: the procedure to deduce which windows of a stored

measurement depict a transient behavior is based on the difference between the rms values

of the current at consecutive windows. If this difference overcomes a given threshold β1, the

windows are labeled as ‘transient’, as shown in the algorithm in Fig. 23. Adjacent windows

labeled as transients which are separated for less than a given number of cycles are supposed

to be produced by the same switching transient.

2. Identifying the time-instant of the event onset: this process finds the start and the end points

of switching on transients and the end of the switching off transient. First, the transients are

classified into switching on or off as shown in the algorithm in Fig. 24. Then, the rms values

are compared to a threshold β2 to detect the exact point of the switchings as shown in the

algorithm in Fig. 25.
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1: Load current signal x and voltage signal y
2: windowLength = 1 cycle of the discrete signal
3: L = signallength
4: M = floor(L/windowLength)
5: Compute the rms value of every window rmsV alue = [rms1, rms2, . . . , rmsM ]
6: Compute deltaRms = [rms2 − rms1, rms3 − rms2, . . . , rmsM − rmsM−1]
7: Find transientWindows = windows such that abs(deltaRms) > β1
8: counterTransient = 1
9: for i = 1 to M do

10: if i /∈ transientWindows then
11: windowLabel(i) = 0
12: else
13: if i > 1 then
14: if i− previousTransient > 4 then
15: counterTransient = counterTransient+ 1
16: else
17: for j = previousTransient + 1 to i − 1 do windowLabel(j) =

counterTransient
18: end for
19: end if
20: windowLabel(i) = counterTransient
21: end if
22: end if
23: end for

Figure 23. Algorithm to identify the transients in a current signal

1: Compute the power of every window p = [p1, p2, . . . , pM ]
2: Compute deltaP = [p2 − p1, p3 − p2, . . . , pM − pM−1]
3: N = max(windowLabel)
4: for i = 1 to N do
5: firstWindow = first window that belongs to ith transient
6: if deltaP (firstWindow) ≥ 0 then
7: onLabel(i)=1; . Switching ON
8: else
9: onLabel(i)=0; . Switching OFF

10: end if
11: end for

Figure 24. Algorithm to identify if the transients correspond to switching on or off
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1: for i = 1 to N do
2: L̂ = length of the samples that correspond to the ith transient
3: SubwindowLength = 2samples
4: M̂ = floor(L/SubwindowLength)
5: Compute the rms value of every subwindow ˆrmsV alue = [rms1, rms2, . . . , rmsM̂ ]

6: Compute ˆdeltaRms = [rms2 − rms1, rms3 − rms2, . . . , rmsM − rmsM−1]
7: endingPoint(i) = last sample such that abs( ˆrmsV alue) >= β2
8: if onLabel(i) = 1 then . For switching ON
9: startingPoint(i) = first sample such that abs( ˆrmsV alue) >= β2

10: end if
11: end for

Figure 25. Algorithm to identify the instant time when ith transient takes place in a current signal

4.2 Feature extraction

The assumption is that these features can be computed to distinguish one appliance from another.

They are extracted from the electrical measurements (current and voltage) just after a switching

or some time after. Usually, steady state or transient information is analyzed. Literature review

in Chapter 1 showed the meaningful influence of the load signature selection over the results and

suggested that combining both types of features provides benefits for appliance identification. The

proposed features in this thesis are presented in this section.

4.2.1 Steady state features IEC (2017) defines steady state as “state of a physical system

in which the relevant characteristics remain constant with time. A state under periodic conditions

is often considered as a steady state.” Steady state signals comprise those cycles where the state of

the appliances remains constant unless a power quality disturbance takes place; thus, these signals

are periodical, not time varying. Features in this thesis are extracted from stationary voltage and

current signals, from time and frequency domains.

Time domain magnitudes defined in the IEEE Standard 1459 for the Measurement of Electric

Power Quantities are employed as features to describe the steady state signals. These features are

effective value of the current Irms, active power P , fundamental reactive power Q1, fundamental
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power factor PF1 and apparent power S. Another set of steady features comprises some geometri-

cal properties of steady state voltage-current plots such as enclosed areas and slopes, as it is shown

in the example in Fig. 26.
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Figure 26. Example of VI trajectory features of a CFL: area and slope of the line betweeen
maximum and minimum current.

In addition, it is expected that non-linear appliances have higher harmonic content than linear

ones, and this might be a criterion to differentiate them. The steady state signals might be analyzed

through the Fourier transform to obtain their harmonic information and to compute the following

features: total harmonic distortion THD, current distortion power DI , voltage distortion power

DV and some current harmonics. These are so-called frequency domain features.

4.2.2 Transient features IEC (2017) defines transient as “pertaining to or designating a

phenomenon or a quantity which varies between two consecutive steady states during a time in-

terval short compared with the timescale of interest.” A transient signal is the transition from one

steady state to another. Other works studied voltage switching transients, but quite high sampling

frequencies are needed to capture this information like electric noise when an appliance is con-

nected (Patel et al., 2007). Transient features in this thesis are extracted from current switching

transients.

The hypothesis is that current switching transients provide discriminative information to distin-

guish one appliance from others. It is supported by the fact that current switching transients can
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comprise information about:

• Construction and operation of the switch: ideal switches open or close such that the current

changes instantaneously from one value to another. However, real switches have metallic

contacts moved by other mechanisms; then, some phenomena such as bouncing, vibration,

rocking, sliding and deformation can take place. Additionally, arcing can also be present

because air between contacts becomes conductive (Duarte, 2013).

• Dynamic of the switched load: the impedance seen from the source changes when a load is

connected or disconnected, so the current also changes.

• Interactions with other loads: when other appliances are connected either to the same branch

circuit or to a different one, the poles of the system are influenced by these loads.

• Relative position of the load to the measuring point: the meter is supposed to be installed at

mains in order to capture information from the branch where an appliance connects either

individually (dedicated circuits) or together with others (multi-load circuits). The position

of the load branch circuit introduces a change in the impedance, and this may be modeled

by a small resistance.

Figure 27 shows a model where Zs is the source impedance, A is the Ampere meter and H(s)

is the transfer function given by other loads and the wirings in both the same and other branch

circuits.

Voltage

supply

Zs

H(s)

A

Load

Figure 27. Model of the system, the switching load and the other loads and wirings. H(s) is the
transfer function given by other loads and the wirings (in the same and other branch circuits).
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Connection switchings involve information from the connected load because the load poles de-

termine the response, i.e., the imaginary part yields ringing frequencies, and the real part relates to

the time constant. However, disconnection switchings do not have so much information about the

disconnected load: disconnected load influences the initial conditions, but the shape is influenced

by the source and the wiring. Disconnection switchings are due to the arcing phenomenon that

randomly occurs between the switch contacts. The intensity of the arcing depends on the voltage

source and the point-on-wave of switching.

Some features that describe the shape and magnitudes of the switching transients in time do-

main were computed, also illustrated in Fig. 28:

• Mean indicates how shifted is the signal from the zero reference.

• Crest Factor indicates how pointed is the signal with respect to the RMS value.

• Standard deviation accounts for the variability or dispersion including the mean, similarly

to the RMS value.

• Skewness and kurtosis are measures of the shape.

• Entropy measures the randomness of the switching transient.

• Duration is the number of samples (or seconds) that the transient state lasts.

• Point-on-wave is the starting point of the current switching transient on the voltage wave-

form.

Additionally, time-frequency features were computed from these current switching transients.

Why using frequency or time-frequency analysis?

• From the phenomenon point of view: Transient signals from appliance switchings are non-

stationary, which means that there is a variation over time of the statistics of the signals
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Figure 28. An example of transient features in time domain extracted from current waveform is
depicted in this figure. a) Current waveform where the transient is highlighed in grey. b) Absolute
value of the current switching transient. c) Point-on-wave of switching.

(Chaparro et al., 2013). Thus, varying frequency characteristics cannot be completely grasped

in time domain because time domain only describes the change of the amplitude of the sig-

nal over time. (Qian & Chen, 1999) stated, “Different signal representations can be used for

different applications. For example, signals obtained from most engineering applications

are usually functions of time. But when studying or designing the system, we often like to

study signals and systems in the frequency domain. This is because many important features

of the signal or system are more easily characterized in the frequency domain than in the

time domain.”
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• From the pattern recognition point of view: A way for generating features from the measured

signals is to compute linear transforms of the measurements (Theodoridis & Koutroumbas,

2003). There are several possibilities of linear transforms; for instance, Fourier is the most

popular one.

Fourier transform is a powerful tool to represent stationary signals as a function of frequency.

Conversely, non-stationary signals like current switchings need to be depicted as a function of

time and frequency simultaneously to know not only the frequencies of the event but also the time

location. Short time Fourier transform (STFT) would be a solution for this because it makes time

windowing, but this window limits the accuracy. For example, a long window would yield high

time resolution and low frequency resolution, which would not be desirable to analyze high fre-

quency signals and the opposite for a short window. Due to the time-varying nature of transient

appliance signals, another alternative to Fourier is explored in this thesis: Stockwell transform,

also called S transform. It represents signals in time-frequency domain, where more details and

discriminant information between the appliances can be explored.

This transform was proposed by R. Stockwell, Mansinha, and Lowe (1996) for seismic signal

applications; lately, it has been used in related areas such as analysis of power quality disturbances

and fault location (Dash, Panigrahi, & Panda, 2003), (Chilukuri & Dash, 2004), (Mishra, Bhende,

& Panigrahi, 2008). S transform provides a complex function that represents the phase and magni-

tude of the signal over a time-frequency plane. It could be seen as an intermediate version of Short

Time Fourier Transform (STFT) and wavelet transform. It might be related to these transforms,

thus:

• STFT: The localizing window for STFT has a fixed size and shape. For S transform, that

fixed window is replaced by a Gaussian window that is not only shifted but also stretched

or compressed. This property is achieved because S transform window involves a depen-

dency on the frequency. Moreover, it provides frequency-dependent resolution with a direct

relationship to the Fourier spectrum (R. Stockwell et al., 1996).
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• Wavelet: S transform is not strictly a CWT because the localizing window is not an admissi-

ble wavelet (its mean value is different from zero). “The differences between them lie in the

use of the frequency notion instead of the scale one, a constant delay term, and the different

normalization applied on the family of wavelets”(Ventosa, Simon, Schimmel, Danobeitia,

& Manuel, 2008).

The continuous and discrete definitions of S transform and the mathematical framework of the

relationship of S transform to Fourier and Wavelet transforms are explained in Appendix B.

Why to explore S transform? There are general and particular reasons. In general, Gaussian

windows are desired because of the following properties (R. G. Stockwell, 2007):

• Symmetry in time and frequency because the spectrum of a Gaussian is also a Gaussian.

• It uniquely minimizes the quadratic time-frequency moment about a time- frequency point

(Janssen, 1991). This means that it provides the best time-frequency resolution because of

the high concentration in both time and frequency. Gaussians are the only minimizers for

time-frequency uncertainty relation ∆tx∆fx >
1

4π
, where tx, fx is the center of gravity of

the signal x(t) (Kumar, Sumathi, & Kumar, 2015).

• Absent of sidelobes in a Gaussian function: a local maximum in the absolute value of the

S-transform is not an artifact.

For the particular application, current transient signals from appliances have sharp edges or

abrupt changes. Since Gaussian functions have short time duration, they are suitable to character-

ize this type of signals (Qian & Chen, 1999),(Kumar et al., 2015).

S transform provides a complex N × L matrix S which rows and columns correspond to dis-

crete frequencies and discrete times respectively. The discrete S transform implementation per

frequency takes advantage of the Fast Fourier Transform (FFT) algorithm and the convolution the-

orem. This is represented in the block diagram in Fig. 30. Let x[k] be the discrete sequence in
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time domain with length L and X(m) be its FFT. Some indices are used: let n be the frequency

domain in the S transform, m be the frequency domain in the Fourier transform, k be the time

domain of the original signal and l be the time domain in the S transform. X[m] is the FFT with

L points of the original signal x[k], Gn(m) is the DFT of the Gaussian window, and Sn(l) is the

nth row of an output complex matrix. The symbol ? denotes circular convolution operation and ×

product. The procedure in Fig. 29 is followed to compute the nth row of S denoted by Sn(l) that

describes a given frequency (Chilukuri & Dash, 2004).

1: function ST(x[k])
2: Compute X[m] = fft(x, L), the DFT of x[k], with N points,
3: for n = 1 to fix((L− 1)/2) do
4: Compute Gn(m) = fft(gn[k]), the DFT of the localizing Gaussian window gn[k].
5: Shift the signal spectrum to obtain: Xn(m) = X(m + n) = X(m) ~ δn(m), where
δn(m) = δ(m+ n)

6: Compute the product Bn(m) = Xn(m)Gn(m).
7: Compute the inverse DFT of Bn(m) to fulfill the nth row of S, Sn(l) = ifft(Bn(m)).
8: end for
9: end function

Figure 29. Algorithm to compute the S transform matrix, S

X[m]
Xn(m)=X[m+n] Bn[m]=Xn(m)Gn(m)

Sn(l)

Gn[m]=fft(gn(k)) n(m)= [m+n]

IFFT

Figure 30. S transform implementation for the nth row, by taking advantage of FFT and convolu-
tion theorem.

(Martins, Lopes, Lima, & Vinnikov, 2012) and (Y. H. Lin & Tsai, 2014a) adopted S transform

analysis for NILM. (Martins et al., 2012) compared the amplitude of the S transform to others in

a database, and the class with the lowest error is assigned. This does not look promising because

the error is computed as the squared of the element-wise difference of the matrices, and this error

might be high even for matrices belonging to the same appliance class because of the dependence
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on the starting point of the transient. (Y. H. Lin & Tsai, 2014a) computed the standard deviation

of the rows of the S transform corresponding to the signal harmonics to be involved in a combina-

torial optimization algorithm, but the rest of the information in S transform matrix is not exploited.

Conversely, this thesis aims to take advantage of the complete matrix and deals with a classifica-

tion problem.

The challenge for this new domain lies in the dimensionality because signals are represented

through a N × L complex matrix, S, instead of a vector. Regarding the classification problem,

every case or instance corresponds to a transient. Artificial intelligence techniques cope with a

case or instance as a vector, usually called feature vector. An initial proposal could be to reshape

S into a vector, thus, obtaining the suitable dimensions to be managed by the artificial intelligence

techniques. However, this vector would be quite long with N times L elements. For example,

the maximum frequency to be analyzed for a signal cycle (833 samples) is 416 points; then, an

S833×416 matrix would be computed. When this matrix is reshaped, it results in an S1×346528 vec-

tor, which is quite long. What if more than a cycle is analyzed? So a feature extraction process is

required to both reduce dimensionality and obtain a suitable separation.

Suppose that I dimension reduction methods are applied to the S transform matrices from the

signal database to obtain datasets 1, 2, . . . , I . Let f(xj) be the prediction of the classifier for an

instance xj which label is yi. The predictive accuracy of the classifier on the ith dataset would

be pi ± sei where pi =
∑Ki

j=1 aj(x), with aj(x) = 1 if f(xj) = yj; otherwise, aj(x) = 0;

sei =
√
pi(1− pi)/Ki is the standard error, and Ni is the number of instances or cases of the ith

classifier. If every S transform matrix is converted into a shorter vector, at the end, all the datasets

will have the same number of instances Ki, so sei would vary only as a function of pi from one

classifier to another. Thus, the dataset i? where the classifier yields the highest predictive accuracy

is searched as:
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i? = argmin
i

(1− pi)

s.t. i ∈{1, 2, . . . , I}
(3)

There does not exist a general methodology for dimensionality reduction. Two approaches were

adapted for the application in this thesis: aggregation and projection methods. These methods will

be explained on next.

Aggregation methods are derived based on the intuition that several statistics might describe

the frequency variation along the time. This is the approach taken in previous works as shown in

Table 12 for NILM, for power quality disturbance identification (a similar application to NILM

due to the use of electrical signals) and other applications. These methods have also been used for

feature extraction from wavelet packets in other pattern recognition applications.

Table 12
Aggregation methods for feature extraction in previous works.

Application Time-frequency representation Works

NILM S transform
(Jimenez et al., 2014),
(Y. H. Lin & Tsai, 2014a)

Power quality disturbance S transform
(Dash et al., 2003),
(Zhao & Yang, 2007),
Biswal and Dash (2013)

NILM CWT (Duarte et al., 2012)
Power quality disturbance Wavelet packet (Panigrahi & Pandi, 2009)

Others Wavelet packets (Evagorou et al., 2010)

Projection methods are widely employed in pattern recognition area and are proposed to find

transformed matrices that enhance the information representation or the separation between classes

(Liwei Wang, Xiao Wang, & Jufu Feng, 2006), (Murali, 2015). Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) are the techniques implemented for these meth-

ods.

Table 13 shows a comparison between both types of methods for feature extraction from the S
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transform considering if they are based on a optimality criterion, if the new matrix has a physical

meaning, if all the instances belonging to all the classes and its computational cost.

Table 13
Aggregation against projection methods.

Issue Aggregation Methods Projection Methods
Optimality criterion No Yes. For example, PCA maximizes

the variance, and LDA maximizes
the class separability

Computational cost Lower Higher
Length of the new feature vector Fixed Variable
Physical meaning of new features Known Unknown. The original matrix

is projected over new axes.
Information for all classes is required No Yes

• Approach 1: Aggregation methods

This aggregation process consists in computing statistics to represent the S transform matrix

of the signals into a vector, either per columns or per rows.

Aggregation per columns: non-stationary signals have a time-varying frequency. If columns

of S are aggregated, e.g. through max, mean, standard deviation or entropy computing, then,

this frequency distribution along the time could be observed as a time series. In order to ap-

proximate the original time series and reduce dimensionality, properties can be assessed

through statistical measures, such as: central tendency (mean, median, mode), variabil-

ity (variance, std, interquartile range, range), shape (skewness, kurtosis, second moment),

position (percentiles) and impurity (entropy) (Esmael, Arnaout, Fruhwirth, & Thonhauser,

2013). For this study, some of these statistical measures were computed for aggregated S

transform columns.

Aggregation per rows: every row of S represents a frequency component or voice, similar to

the Wavelet subbands (R. Stockwell et al., 1996). Then, features for every S transform fre-

quency voice can be computed to derive a frequency distribution. Therefore, this approach

aims to extract representative features by aggregating either the complete or a part of the S

matrix:
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1. The complete S transform matrix:

Figure 31 presents a strategy to obtain a vector from an S transform matrix, S. First, to

aggregate over the columns since every column of S describes the frequency profile for

a time location. For example, in Fig. 31a green elements portray the frequency profile

for a time ti, and then, four representatives are computed for every frequency profile

(column): max, mean, standard deviation (std) and entropy. They are concatenated in

four vectors. At the bottom of Fig. 31a, the representatives of the profile for ti are

depicted in green as well. Afterwards, every representative vector is aggregated again

with statistics (std, energy, entropy, skewness, kurtosis and mean), thus, resulting in

four shorter vectors which are finally concatenated to build a 1 × 20 vector for the

signal. Second, a similar process is used to aggregate over the rows as displayed in

Fig. 31b.

2. A part of the S transform matrix:

Figure 32 depicts the process to extract features by considering only some of the fre-

quencies, i.e. it is a particular case of the aggregation over the columns for the whole

matrix because this time only a subset of frequency voices is considered. Three types

of frequency selections are proposed:

– Harmonics: f = {60n}, n = 1, 2, ... (Y. H. Lin & Tsai, 2014a) This selection is

intuitive since power system signals exhibit contents in these frequencies, above

all due to non-linear loads.

– Dyadical: f = {2n}, n = 1, 2, ... (Biswal & Dash, 2013)

– Decimal: f = {10n}, n = 1, 2, ...

For every row representing a location in frequency fj ∈ f , some statistics (std, mean,

energy, entropy, skewness, kurtosis and maximum) are computed and stored in a 1× 6

vector of features vj . Afterwards, all the vectors v1, v2, ..., vN are concatenated into a

single vector that represents the signal.
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Figure 31. Feature Extraction based on aggregation of an S transform matrix for the complete
frequency range, where the following abbreviations were used: standard deviation (std), energy
(ene), entropy (ent), skewness (ske), kurtosis (kur) and average (avg).

The aggregation approach is simple to reduce dimensionality, but it does not take into

account the final purpose: discrimination between classes. Also, different signals could
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fjf

t

S transform matrix
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Figure 32. Feature extraction based on aggregation of a part of the S transform matrix for the
complete frequency range, where the following abbreviations where used: standard deviation (std),
energy (ene), entropy (ent), skewness (ske), kurtosis (kur), average (avg) and maximum (max).

yield similar representative feature vectors. So another approach is using the S trans-

form matrices of the whole set of signals to make the feature extraction.

• Approach 2: Projection methods

Let si ∈ RN be the S transform matrix. Find a mapping y = f(s) : RN → RM with

M < N such that the transformed feature vector yi ∈ RM preserves most of the information

or structure in RN . Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA) are widely known techniques to reduce dimensionality. They transform the known

data into a new reference space by maximizing a given objective function. On the one hand,

PCA maximizes the variance to achieve a signal representation with orthonormal axes in a

lower dimension space. On the other hand, LDA maximizes the Fisher Discriminant criteria

to improve the discrimination of the information in a lower dimension space.

Every S transform matrix is reshaped into a vector, and all those vectors are stacked into a

single big matrix X as shown in Fig. 33. Subsequently, the PCA or LDA process is applied

to X, and a new matrix Y is obtained where every row corresponds to one of the signals.
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Figure 33. Feature extraction based on PCA or LDA from the S transform matrices of the whole
set of signals.

4.3 Classification

This stage of the system assigns the instance or the example to a class in order to find x?(t) in Eq.

1. The supervised classification strategies proposed in previous works (see Section 1.2.3) have the

following problems:

• Excessive training, specially when more appliances are added to the inventory.

• Signals from combinations of appliances should be measured and processed to find example

for classes correspondent to those combinations.

• Class labels should be defined; hence, unseeen appliances or states cannot be identified

because prediction should be out of a predefined set.

Next, two strategies are presented in order to overtake these limitations: the transient extraction

from aggregated signals and the one-class classification method.
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4.3.1 Transient extraction This is the process to separate the transient event from the ag-

gregated current. In this thesis, a strategy is proposed to avoid to train with all the combinations

of appliances working at the same time.

In the previous chapter, a circuit was presented in Fig. 46 to illustrate the case of Load2 switching

when Load1 was already connected.

How to extract the transients?

Figure 34 provides an example of the switching of a CFL while a fan is operating. Part a) and

b) are the CFL and fan currents, respectively. Part c) is the aggregated signal, and it could be

interpreted as the sum of the three signals in Fig. 35.

Figure 34. Example of a CFL lamp switching with a fan already working. a) CFL current. b) Fan
Current. c) Aggregated current of CFL and fan.

In Fig. 35, x1(t) is a short duration signal that represents the transient while x2(t) and x3(t)

are periodical signals in a specific range. The idea is to project x3(t) to the starting point of the

transient t1 by taking advantage of the periodicity. The transient, xt(t), would be as in Eq. 4:
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Figure 35. Sections of an aggregated signal before, during and after a switching transient

xt(t) = xm(t)− x̂3(t) (4)

where xm(t) is the measured signal, and x̂3(t) is the periodic version of x3(t).

4.3.2 One-class classification for NILM The system might be designed taking into account

two prediction scenarios when appliances apart from the database, namely unseen appliances, are

connected at the house. First, the system would assign the appliance to one of the known appli-

ances. Second, the system would label this appliance as UNSEEN and it would assign it either to

the category to which they belong (resistive, electronic, etc.) or to the most similar appliance.

One-class classification is a type of problem where one class is well- characterized while few

information is available for the other class because it is challenging or expensive to take samples,

like data from failures or sporadic situations. This makes the problem harder than the traditional

two-class classification problem. The well-sampled class is usually called positive or target class,

and the other one is called negative or outlier class. Then, a boundary is built around the positive

class. The question is how tight and which shape this boundary should have in order to reduce the

acceptance of outliers.

A complete review of the taxonomy and techniques for one class classification is found in (Khan
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& Madden, 2014). Several categories of one-class classification are described as follows:

According to the availability of training data

• Learning with positive data only

• Learning with positive data and poor negative data or artificially generated outliers

• Learning with positive data and unlabeled data

According to the techniques used

• One class SVM

• Others: neural networks, decision trees, nearest neighbors, ensembles, etc.

One-class classification looks like a promising proposal to solve load disaggregation problem

because unseen appliances during the training might be recognized, even when few or none data

is available. Thus, unseen appliances might be interpreted as the failure or sporadic situation de-

scribed before. Additionally, when the problem is modeled like a one-classification problem, it is

possible to train independent classifiers for the appliances, hence, when new ones are included in

the appliance inventory, a re-training stage that involves all the appliances would not be needed.

In the case of load disaggregation problem, it is usually a multi-class classification problem

because the instances or cases should be classified into three or more classes, e.g. the number of

appliances. Then, two paths can be followed to turn the problem into a set of binary classification

problems. First, an one-against-all strategy decomposes the problem by creating N decoupled

one-class classifiers as shown in Fig. 36, where the classifier kth is trained with instances in class

k as the positive class and the instances in other classes as the negative class, instead of random

outliers. Secondly, all-against-all strategy copes with the problem by building N(N − 1) binary

classifiers, where classifier fij is trained with class i as positive and class j as negative.
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Instance to be
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One-class

classifier # 1

One-class

classifier # N

.

.

. Combination

of predictions

It's the 

kth appliance

One-class

classifier # 2

Figure 36. Approach No. 1 to solve the multi-class classification problem associated to load
disaggregation: One-vs.-All.

Second, one-class classification allows to create a one-class classifier based on all the training

set, i.e considering information from all the classes, as shown in Fig. 37. As a result, if the instance

is classified in the negative class, it is an outlier, i.e. it belongs to an unseen appliance, and if the

instance is classified into the positive class, then, the instance is transfered through a multi-class

classifier as was explained before.

Instance to be

recognized
Multi-class

classifier
One-class

classifier

Is it an 

outlier?

It's a new

appliance

Yes

No
It is the kth

appliance, 

k ∈ {1,2,...,N}

Figure 37. Approach No. 2 to solve the multi-class classification problem associated to load
disaggregation: an one-class classifier in series with a multi-class classifier.
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4.4 Power estimation

Power estimation stage aims to compute P ?
j (t) in Eq. 1. Several solutions could be computed.

Then, if xj(t) is known, P ?
j (t) might be fit from rated powers or experiments. Appliance power

consumption could depend on several factors:

• Operating state: speeds and heating levels.

• Load: motor consumption according to the load they take.

• Amplitude of the voltage supply: An increment (decrement) of the voltage yields an in-

crement (decrement) on the power. The voltage supplied from the grid can vary around

the nominal values. Some appliances are voltage dependent: the resistive loads (hair dryer,

sandwich maker, iron, bulb, etc.) and some inductive ballast loads (some fluorescent lamps).

Other appliances like computers have their own power supply unit to have a fixed output, so

their power consumption is voltage independent (within a range).

For that reason, the power estimation only based on the rated power can be inaccurate. For exam-

ple, voltage supply fluctuation can cause overlapping in the P-Q plots which can lessen the load

disaggregation performance (Hart, 1992), (Akbar & Khan, 2007). Hart (1992) proposed to deal

with normalized powers based on exponential power-voltage relationships, but that proposal still

yields inaccurate powers.

In this work, some models of power as a function of voltage are proposed to make a power estima-

tion correction. The explanation of these models are based on (Jimenez et al., 2015) and reached

from measurements by setting different voltage levels in the programmable source. According to

the regulation of the local utility, the nominal voltage level should be maximum 5% and minimum

10% for low voltage (< 1000V ). Voltage and currents were acquired when appliances operate

individually, and these data were processed to compute the active powers as shown in Fig. 38, to

further obtain some regression models. Besides, these models were assessed under simultaneous

operation of appliances.
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4.4.1 Trends in power under voltage variation The following trends are observed in the

power when the voltage supply is changed as displayed in Fig. 38:

1. Directly proportional increase: This trend is observed for the heating based appliances in

Fig. 38a, the motor based appliances in Fig. 38b and some of the lamps in Fig. 38c

(incandescent bulb and halogen lamps). The frigde presents this trend until 122V .

2. Approximately constant power behaviour: small power changes are observed (around 0.1

Watt per Volt) for some lamps in Fig. 38c (LED and CFL) and entertaining appliances in

Fig. 38d.
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(d) Entertaining appliances.

Figure 38. Power vs. Voltage for appliances of every category. Each dot represents one measure-
ment.

4.4.2 Regression models Three regression models of power data were computed for every

appliance: linear, quadratic and exponential. The first two types of functions appear to be consis-
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tent with the shapes observed in Fig. 38 while the third one is recommended by Hart (1992), but

here a constant term is summed. The functions, their parameters and the coefficients of determina-

tion, R2, are presented in Tables 14, 15 and 16. R2 indicates how the model predicts the dependent

variable, and it can be negative as in the exponential model in Table 16 when the function is non-

linear. The lowest values ofR2 appear in bold in these tables, thus, showing better fitting for linear

and quadratic forms.

Table 14
Coefficients of the linear polynomial a1V (t) + a0 and R2 of the appliance power model

Appliance a1 a0 R2

BlenderL 3.1925 -298.1604 0.9971
BlenderH 3.0798 -139.4219 0.9990
Inc75 0.9314 -38.2324 0.9998
CFL20 0.0656 10.3086 0.5825
CFL9 0.0753 -1.3299 0.9355

CellphCh 0.0043 3.8561 0.8194
Fan 0.7319 -35.3043 0.9947
Refri 0.3851 68.0197 0.2590

HairDryerL 6.6381 -386.2303 0.9996
HairDryerH 25.0655 -1400.7496 0.9997

Hal50 0.5859 -23.5190 0.9995
Hal70 0.9107 -36.8892 0.9997
Iron 21.3476 -1233.8088 0.9987
LED7 -0.0165 8.1982 0.9152
Laptop -0.0543 53.0224 0.9791

SandwMaker 13.4995 -760.4014 0.9955
DesktopPC 0.0491 59.3013 0.9656

TV -0.0763 49.8668 0.9997
Monitor -0.1103 44.2525 0.9249

4.4.3 Proposed nominal powers The load could be modeled as a constant impedance or a

constant current source in order to estimate the power, as follows:

• Constant Impedance: Z = VN
IN

, where VN and IN are the nominal voltage and current,

respectively. VN = 120V in Colombia.

Pnn1 =
V (t)2 · PF

Z
=

(
V (t)

120

)2

PN (5)
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Table 15
Coefficients of the quadratic function a2V 2(t)+a1V (t)+a0 and R2 of the appliance power model

Appliance a2 a1 a0 R2

BlenderL 0,0198 -1,4423 -27,7068 0,9981
BlenderH 0,0057 1,7398 -61,2263 0,9991
Inc75 0,0023 0,3819 -6,1656 1,0000
CFL20 0,0059 -1,3074 90,4281 0,7024
CFL9 -0,0021 0,5580 -29,5050 0,9535

CellphCh -0,0003 0,0720 -0,0924 0,9137
Fan 0,0101 -1,6269 102,3361 0,9995
Refri -0,0998 23,7383 -1295,0370 0,7059

HairDryerL 0,0271 0,2879 -15,6053 1,0000
HairDryerH 0,0826 5,7294 -272,0233 1,0000

Hal50 0,0021 0,1015 4,7548 0,9999
Hal70 0,0032 0,1669 6,5158 1,0000
Iron 0,1411 -11,5771 683,0859 0,9998
LED7 0,0009 -0,2367 21,0549 0,9919
Laptop 0,0015 -0,3956 72,9374 0,9972

SandwMaker 0,0547 0,6890 -12,6480 0,9959
DesktopPC 0,0017 -0,3537 82,8075 0,9961

TV 0,0002 -0,1280 52,8854 1,0000
Monitor 0,0054 -1,3739 118,0121 0,9812

Table 16
Coefficients of the exponential function a2V a1(t) + a0 and R2 of the appliance power model

Appliance a2 a1 a0 R2

BlenderL 0.0012 2.4607 -77.0378 0.9981
BlenderH 0.2695 1.4356 -30.3193 0.9991
Inc75 0.0353 1.5897 2.0990 1.0000
CFL20 0.0017 1.7496 10.9642 0.3892
CFL9 19.2516 0.1017 -23.7696 0.5558

CellphCh 9.9410 0.0740 -9.7796 -0.1016
Fan 0.0000 4.0715 29.9664 0.9973
Refri 13.9472 0.5679 -95.5236 -0.4136

HairDryerL 0.0356 1.9567 -7.3777 1.0000
HairDryerH 0.3593 1.7713 -126.3208 1.0000

Hal50 0.0064 1.8233 7.3674 0.9999
Hal70 0.0103 1.8153 10.8531 1.0000
Iron 0.0058 2.5307 269.3154 0.9998
LED7 0.0000 4.2370 5.8197 -2.4978
Laptop 0.0000 5.0224 45.1085 -3.5334

SandwMaker 0.0768 1.9456 5.5454 0.9959
DesktopPC 0.0000 4.3427 62.1409 -0.2712

TV 0.0000 4.9494 40.6283 -0.2998
Monitor 0.0000 4.4176 28.7616 -2.1547

where PF is the power factor and



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 94

• Constant current source, IN .

Pnn2 = V · IN · PF =
V (t)

120
PN (6)

4.5 Concluding remarks

In this chapter, an event detection method based on comparison and thresholding was pointed out.

Afterwards, the characteristics or features proposed to identify appliances were explained. Table

17 summarizes these characteristics.

Table 17
Summary of characteristics for appliance identification

Analysis Time Domain Frequency domain
Quasi-stationary/ Irms, P , Q1, S, V vs. I geometry, Harmonics, THD, D1

steady state maximum, crest factor, kurtosis, and Dv.
skewness and entropy.

Transient Crest factor, standard deviation, Features ST all, Features ST Harmonics,
mean, kurtosis, skewness, Features ST Dyadically,

entropy, duration and Features ST decimal, Features ST PCA
point-on-wave of switching. and Features ST LDA.

Thereafter the proposed classification approach by extracting transients from aggregated sig-

nals and redefining the problem as a one-class classification problem was presented. Finally,

some functions based on experiments and constant models to correct the estimated power were

described. The results of this proposed NILM methodology are discussed in next chapter.

5. Experimental performance

The previous chapter presented an explanation of the characteristics that are proposed to distin-

guish one appliance from others, usually called load signatures, that are computed from electrical

signals. The feature sets extracted from the current switching transients are presented in Table 18.
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Table 18
Feature sets extracted from current switching transients.

Feature set Domain Description
FvT Time Extraction of descriptors from the waveforms

FvST1

S transform

Aggregation over the columns of the complete S transform matrix
FvST2 Aggregation over the harmonic frequency profiles
FvST3 Aggregation over frequencies in a dyadical scale
FvST4 Aggregation over frequencies in a logarithmic scale
FvST5 Transformation of features through PCA
FvST6 Transformation of features through LDA
FvST7 Aggregation over the rows of the complete S transform matrix

The procedure of the proposed strategy for performing load disaggregation is shown in Fig. 39.

It is the adaptation of the general scheme for continuous sensing in Fig. 14, and it follows the next

particularities:

• Load disaggregation is inferred when appliances switch from one state to another.

• A solution comprises both the appliance identification and the power consumption similarly

to Table 4.

• Solutions are computed every time an event is detected by using transient characteristics.

• Previous information of the specific house appliance is needed for load disaggregation for

creating classifier and power models.

Figure 39 describes that once an event is detected, the transient state features are computed

from the current switching, and the appliance responsible of the switching is identified through the

classifier built previously. When the transient is extinguished, the power is estimated through the

proposed power models, thus updating the solution due to the state change of such appliance.

Section 5.1 displays the performance of the classification approaches for the proposed feature

sets. Section 5.2 presents the experimental performance of the proposed models in comparison

with nominal powers in the scientific literature. Section 5.3 shows the overall performance of
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Figure 39. Procedure for performing load disaggregation.

the NILM system and discusses its limitations, advantages and applications. Finally, Section 5.4

addresses the question about how the discrimination capacity of the characteristics is affected by

several factors.
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5.1 Classification results

Two approaches are compared experimentally for achieving the load identification problem as a

classification task: the traditional multi-class classification approach which assigns an instance to

one of the established classes and the one-class classification approach. Here, a class corresponds

to an appliance state. The results of these approaches are presented below.

5.1.1 Traditional multi-class classification Three classifiers were implemented to tackle

the multi-class classification problem: linear discriminant, diaglinear (naive Bayes) and support

vector machines (SVM). These three classifiers differ in the mathematical formulation and the

complexity. A cross-validation process is introduced to train and test the models.

A first experiment was conducted to classify by considering every feature set separately. Several

runs of the classifiers were performed, and the accuracy, i.e the percentage of correctly classified

cases (see Eq. (7)), is the metric chosen for assessing the performance of the classifiers 1. Here,

every class corresponds to data extracted from current switching transients of an appliance at a

given state. Results of the average accuracies are shown in Table 19, where the ones around 70%

or higher appear in bold format.

Accuracy =
Correct predictions

Total number of predictions
∗ 100% (7)

An ANOVA-Tukey statistical test was executed to check the significant differences between the

classifiers as presented in Appendix C. The conclusion of the tests is that significant differences

were found between all the classifiers, except for:

• Diaglinear classifiers for Feature sets FvST5 and FvST6: they do not have significant differ-

ences between them.

• SVM classifiers for Feature sets FvST5 and FvST6: they do not have significant differences

1The accuracy is suitable as a metric for this case because proportion of instances for each class is similar, i.e.,
data are balanced, and to the equal relevancy of all the classes
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Table 19
Average percentage accuracies for the reference case (sine scenario)

Feature set Linear DiagLinear SVM
FvT 43,59 35,39 87,89

FvST1 64,94 49,56 80,65
FvST2 71,55 46,89 71,44
FvST3 N/A 5,24 5,18
FvST4 N/A 5,24 5,18
FvST5 84,81 72,37 96,14
FvST6 74,01 54,32 90,06
FvST7 62,12 50,41 80,80

between them.

• Linear and SVM classifiers for Feature set FvST2: in this sense, SVM has an outstanding

performance for all the feature sets, except for FvST2 where the performance is similar for

the SVM and the linear classifier.

5.1.2 One-class classification A system that complies with the philosophy one vs. all was

implemented as demonstrated in Fig. 36 for reference case data. A one-class classifier is created

per class. Then, the output of every classifier is a probability, and the highest probability is selected

to say that the appliance corresponds to that class. Several types of classifiers were tried for every

feature set, and it was selected a “minimum spanning tree”classifier where the similarity metric

is computed as the distance to the edges (Tax, 2013). The resulting confusion matrices for the

feature sets are depicted in Fig. 40 in color scales. Dark red cells indicate big values and dark blue

cells, small values. A high concentration in the diagonal of the confusion matrix is expected for

accurate classification models. This behavior is observed above all for FvST5 and FvST6 whereas

a poorer classification is made with feature vectors coming from the rest of the feature sets.

Another classifier that provides outstanding performance is the “minimax probability machine”as

shown in Fig. 41. In this case, the feature vectors from FvT, FvST1 and FvST3 allowed a better

discrimination than the others.
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Figure 40. Confusion matrix from the novel multi-class classification approach based on one-class
classifiers by using minimum spanning trees.
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Figure 41. Confusion matrix from the novel multi-class classification approach based on one-class
classifiers by using minimax probability machine.

5.2 Power estimation results

In this section, the proposed power estimation models described in Section 4.4 are compared with

the nameplate (rated) power and the models in the literature. All these models are:

1. Nameplate power (Pnp): these values are provided by the manufacturers (see Table 7).

2. Nominal powers in the scientific literature (Pnh1,Pnh2): Hart (1992) proposed a normalized

power, Pnh1, that corresponds to the power if utility provided steady 120 V and load behaved

as a linear model. The expressions are presented in Eq. 8 and ??.

Pnh1 =

(
120

V (t)

)a1
PN , (8)
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where a1 is the coefficient shown in Table 16, and PN is the measured power at 120 V. Hart

also proposed to use a generic value of a1 = 2:

Pnh2 =

(
120

V (t)

)2

PN . (9)

3. Regression powers (Prg): power models that obey the quadratic function a2V 2(t)+a1V (t)+

a0 (see Table 15).

4. Proposed nominal powers (Pnn1,Pnn2): when the load is modeled as a constant impedance,

Z = VN
IN

, or as a constant current source, IN , the nominal power can be computed as in Eq.

(10) and (11), respectively.

Pnn1 =
V (t)2 · PF

Z
=

(
V (t)

120

)2

PN (10)

Pnn2 = V · IN · PF =
V (t)

120
PN (11)

Notice that the factor of PN for Pnn1 in Eq. (11) is the reciprocal of the factor of PN for

Pnh2 in (9).

The error, ε, between these estimations and the actual measurements is quantified for all the

appliances; thus, ε =
|Pactual − Pestimated|

Pactual
× 100%. The box plots in Fig. 42 display these errors

to make a graphical comparison. For every box plot, the central mark shows the median, the top

of the box displays the upper quartile and the bottom of the box indicates the lower quartile. The

whiskers extend to the highest and lowest observations (not outliers). For example, the plot for

the sandwich maker shows that by using simply the name plate power value, errors up to 20%

can be reached, and that the lower and upper quartile correspond to 4 and 16%, respectively while

the median is 8%. On the other hand, power models found in literature (Hart1 and Hart2 that

correspond to Pnh1 and Pnh2, respectively) produce errors that can reach or exceed 50%, and the
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most of the errors are between 8 and 31 %, with medians close to 15%. Conversely, the proposed

models yield better performance because their errors are below 10%. Actually, Regression and

ConstantZ models produce quite low error values; the boxes even look like lines.

In general, the power estimated from the regression models, Prg, and the proposed nominal

powers, Pnn1 and Pnn2, have the lowest errors. The values of these powers for the refrigerator

are the least close to the actual values. On the contrary, the nominal powers computed from

the nameplate, Pnp, and the literature proposals, Pnh1 and Pnh2, have the highest errors. Strong

differences are observed between the nameplate powers, Pnp, and the measured ones.

5.3 Validation of complete method

Validation stage aims to evaluate the overall performance of the NILM system, i.e. how well the

designed models generalize an independent data set. The idea is to obtain the performance of

the load disaggregation which comprises appliance identification and power estimation. A perfect

event detection was considered in this stage because the strong contributions of this thesis are in

further stages (feature extraction, classification and power estimation).

5.3.1 Validation strategy Appliance identification performance is evaluated as the result of

the classification of independent data sets.

• Traditional multi-class classification

The available database conformed by instances or cases from all the appliance is partitioned

into 5 folds, and 5 experiments are performed as shown in Fig. 43. This partition is stratified,

i.e. all the classes have examples in all the folds with equal or similar proportion. In every

experiment, one fold (the darkest one) is kept for future validation, and the other folds are

used to train and test through cross-validation to get the best model for every experiment.

At the end, all instances are used for validation, and the highest advantage is taken from



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 102

0

50

100

150

200

0

10

20

30

40

50

0

10

20

30

40

0

10

20

30

40

0

100

200

300

400

0

20

40

60

80

0

10

20

30

40

50

0

100

200

300

400

500

0

10

20

30

40

50

0

10

20

30

40

50

0

20

40

60

0

10

20

30

40

50

0

20

40

60

0

10

20

30

40

50

0

100

200

300

0

50

100

150

0

100

200

300

400

500

0

100

200

300

400

500

Blender High Bulb75 CFL20

CFL9 Cellphone Fan

Refrigerator HairDryer Low Halog50

Halog70 Iron LED7

Laptop SandwichMaker Desktop

TV MonitorLCD Total

Nameplate Hart_1 Hart_2 Regression Constant_Z Constant_I

A
b

s
(E

rr
o

r)
 (

%
)

Figure 42. Errors of the power estimation based on several models compared to the actual mea-
sured power.
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the database. A validation accuracy is computed as the average of the accuracies of all the

experiments.

Exp1 Exp2 Exp3 Exp4 Exp5

Val

Val

Val

Val

Val

Acc1 Acc2 Acc3 Acc4 Acc5

Figure 43. Validation methodology for traditional multi-class classification

Here, SVM is used as classifier, and the dataset FeatureST5 is used to represent the signals.

Results are displayed in Table 20 and 21 for the individual and simultaneous operation case,

respectively. Testing accuracy is the one yielded by the cross-validation process while the

validation accuracy comes from predicting instances that were not used previously neither to

select nor to build the model. Generally, validation accuracy was lower than testing accuracy,

as was expected, except for the 4th and the 5th fold of the individual operation case where

the model generalizes accurately the instances.

Table 20
Validation of appliance identification with SVM under individual operation

Fold Testing Validation
Accuracy (%) Accuracy (%)

1 95, 84 87, 04
2 95, 70 89, 45
3 95, 64 93, 92
4 95, 84 96, 56
5 95, 70 96, 30

Total 92,65

• One-class classification

Figure 44 displays the results when the classification is performed based on one-class clas-

sifiers, where confusion matrices are presented.
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Table 21
Validation of appliance identification with SVM under simultaneous operation

Fold Testing Validation
Accuracy (%) Accuracy(%)

1 91, 23 66, 91
2 89, 25 55, 00
3 90, 14 77, 14
4 89, 43 70, 00
5 90, 16 79, 14

Total 69,64
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Figure 44. Validation of appliance identification with one-class classifiers: a) Minimum spanning
trees and b)Minimax probability machine

Regarding the assessment of the power estimation performances, the percentage of explained

power of each appliance was used as metric by considering what authors and previous works

has contemplated (Zoha, Gluhak, Imran, & Rajasegarar, 2012), (Armel et al., 2013). This result is

presented for every appliance in Table 22.

5.3.2 General discussion on the advantages and limitations of the proposed system

Load disaggregation is a challenging task because of several factors such as the diversity and

amount of appliances present in a house that can operate not only individually but also simul-

taneously, which increases the complexity of the problem, thus, requiring high efforts in signal

processing. Under the event-based approach, the electrical signals of appliances are analyzed in

order to extract characteristics to represent the appliances, called load signatures. Then, the selec-
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Table 22
Percentage of explained power of each appliance when using the power models: regression, con-
stant impedance based and constant current based.

Model
Folder powerRegression powerConstantZ powerConstantI

1 101.9% 101.9% 102.0%
2 103.2% 102.3% 102.5%
3 100.7% 100.4% 101.2%
4 99.8% 99.7% 99.9%
5 477.1% 488.1% 487.9%
6 99.7% 99.7% 101.3%
7 101.4% 100.9% 107.3%
8 99.4% 99.2% 104.4%
9 98.8% 99.2% 102.7%

13 99.5% 99.5% 99.5%
17 98.8% 98.7% 98.7%
18 97.0% 97.0% 97.0%
19 105.3% 104.9% 104.8%
20 99.9% 99.9% 100.0%
21 99.3% 99.2% 99.4%
22 96.9% 97.1% 97.1%

tion of the most discriminant feature sets is another hard task. In the proposed system, a training

database of the individual appliances in the specific house is needed. Thus, the transients produced

by the connections of the appliances are examined to make appliance identification and then, to

assign the power consumption. It is assumed that only one appliance is switching at the same

time, i.e. two or more switchings should not overlap, and high frequency meters (order of kHz)

are preferred for this proposed strategy to characterize rapid changes with enough details. The

following limitations and advantages are identified for the proposed system:

• Limitations:

– The proposed methodology is sequential, i.e. an incorrect inference in an early stage

affects the total inference. For example, the power estimation accuracy depends on the

prediction from the classification.
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– Power estimation is less accurate for variable impedance appliances, like the refriger-

ator.

• Advantages:

– Contrary to other systems in the scientific literature, both high and low consumption

appliances can be identified.

– A connection to the cloud or big databases is not required, saving storage and trans-

mission costs. Training and inferences can be made autonomously because informa-

tion apart from the specific home appliance information is not employed; thus, privacy

issues are less concerning.

– Not all the scenarios of appliance operation (combinations) need to be trained in ad-

vance. Commonly previous works propose NILM systems where the training stage

is fed, not only with the individual appliance information but also with the appliance

combinations, where every combination is considered as a class. For the proposed

system, the knowledge base is built with the individual appliance operation.

– Appliances that are not included in the database could be identified as UNSEEN ap-

pliances, which is a novel functionality in NILM systems. This would provide the user

an alert about a new appliance in the inventory that should be named and characterized

to re-train the system.

– Contrary to the traditional systems, when a new appliance is added to the training

database, the training stage complexity of the proposed system does not grow expo-

nentially which is typical for the combinatorial problems.

– Suitable accuracies are obtained with the generated classification models: up to 92.65%

for individual operation and up to 69.64% for simultaneous operation (see validation

results in Section 6.3.).
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5.4 Effect of impact factors on characteristics

The effect of the following impact factors is here discussed: point-on-wave of switching, voltage

distortion, network impedance and connection of other appliances. Subsection 5.4.1 presents a

description of the impact factors, and Section 5.4.2 shows the methodology for the analysis.

5.4.1 Impact factor description Now the impact factors and their relationship with the

switching phenomena are explained.

• Point-on-wave of switching

Appliance switches can open or close at different points on the voltage cycle, e.g. close to 0

degrees or to 90 degrees. Hart called this transient variability, and it was one of the reasons

why they did not pursue transient load signatures (Hart, 1992). Zeifman and Roth (2011)

stated, “In (Norford & Leeb, 1996) the detection is then based on a distance metric, even

though the authors have mentioned the problem of poor repeatability of transient events.

”(Yang, Chang, & Lin, 2007), a more recent work than (Norford & Leeb, 1996), analyzed

the reproducibility of turn-on switching transients of industrial equipment. Here, this re-

producibility is analyzed for residential appliances instead, thus, figuring out how current

switching transients are affected by the instantaneous point-on-wave. The dependence on

the point-on-wave on the proposed sets of characteristics is also quantified, and it will be

examined if the knowledge of the point-on-wave helps load disaggregation. Each appliance

was randomly switched in the laboratory hundreds of times in order to ensure a good cov-

erage of the half wave by the switching moment between 0◦ and 180◦. Fig. 45 presents

examples of the variability of one of the characteristics: the maximum of the switching tran-

sient current for two appliances. It was observed that a given characteristic can be variable

for some appliances and uniform for other appliances.

• Voltage distortion

Generally, residential low voltage grids are prone to exhibit a flat-top supply voltage due
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Figure 45. Maximum of the switching transient currents as a function of the angle of the point-on-
wave of switching. Every circle represents a measurement. a) A sandwich maker b) A fridge.

to the mass use of single-phase rectifiers which inject harmonic currents (Blanco et al.,

2013), (Blanco, Meyer, et al., 2015). This voltage distortion affects the harmonic emission

of the appliances. For linear appliances, the voltage harmonics are mirrored in the currents

while for non-linear loads there can be cross-interferences which means a non-linear rela-

tion where one voltage harmonic influences multiple current harmonics, and even harmonic

cancellations can take place (Blanco, Yanchenko, Meyer, & Schegner, 2015). Therefore, the

extracted characteristics from the appliance switching currents are expected to vary from the

sine supply case.

• Network impedance

A finite network impedance and multiple wirings are present in real houses that can be mod-

eled as a source impedance located in series with an ideal voltage source. This impedance

is the sum of the impedances in the following stages: utility, service, feeder, transformer

and branch circuit (Russell, 2000), (Pavas, Blanco, & Parra, 2011). Subsequently, this

impedance causes a voltage drop that can generate some additional problems:

– Voltage line fluctuation because the load changes, and this voltage is proportional to
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the current.

– Voltage transients can be generated due to fast changes in current due to inrush or

start-up that will subtract to the voltage supply.

– Voltage distortion when non-linear appliances connect and inject current harmonics

that are reflected toward the supply due to this impedance.

Wires of 2.4m and 7m were connected between the loads and the voltage source to make

the measurements by emulating separations of residential outlets.

• Other appliances connected

When an appliance, represented in Fig. 46 as Load2, switches in the presence of other ap-

pliances, represented as Load1, that were already operating, the transient behavior is due to

the dynamics of the whole load (Load1//Load2).

Voltage

supply
Load 1 Load 2

t1

Figure 46. Circuit when another appliance is switching

The change of the transient caused by switching Load2 in the presence of distinct load is

investigated.

The next subsections present the methodology to assess the impact factor effects through sta-

tistical metrics and classification performance evaluation by using the features from the scenarios

different than the baseline.

5.4.2 Methodology for impact analysis Two approaches might be followed for this anal-

ysis in order to determine how the factors impact the appliance features: one at a time or all
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together. In this study, a one at time variation is performed to individually attribute the change to

the corresponding impact factor. The baseline and variation specifications are presented in Table

23 for the factors to be examined.

Table 23
Baseline and variation specifications to perform impact factor analysis.

Factor Baseline Variation
Point-on-wave of switching Switching starting at [0 180] degrees

Voltage distortion No distortion Flat-top distortion
Network impedance Lab impedance Lab impedance in series with wires

Appliance connection Individual Simultaneous

The reference case in this study comprises measurements under an ideal sine voltage supply

with no distortion and with the nominal 120V, 60 Hz value. In the laboratory, switching tran-

sients for appliances were acquired to conform the sample for the study in this thesis. Accord-

ing to the Central Limit Theorem in probability, when there is a random sample of size n from

a population which probability distribution has a mean µ and a standard deviation σ, and n is

large enough, the distribution of the sample approximates to a normal distribution regardless of

the actual distribution of the data. The general rule is that this is valid for n ≥ 30. Then, the

sample mean, x̄ =
∑n

i=1 xi, is a reasonable estimate of µ, and the sample standard deviation,

s =

√
1

n− 1

∑n
i=1(xi − x̄)2, is a suitable estimate of σ (Montgomery & Runger, 2003). For the

case of this thesis, around n = 100 measurements were taken from every appliance state, thus,

applying the statements of the Central Limit Theorem.

Two type of metrics namely coefficient of variation (CoV) and Fisher discriminant ratio (FDR)

are computed to quantify data variability and separability respectively according to the impact fac-

tor. They are explained in the Sub-subsections 5.4.2.1 and 5.4.2.2. Further, the features under the

scenarios of the impact factors are used to build classifier models, whose performance is presented

in Sub-subsection 5.4.2.3.
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5.4.2 Coefficient of variation Coefficient of variation (CoV) is calculated to quantify the

data variability due the changes in point-on-wave of switching, i.e. the starting point of the tran-

sient on the voltage wave. It represents the repeatability of measurements under the same condi-

tions with the same metering instruments (Nizami, Cohen-McFarlane, Green, & Goubran, 2017).

In addition, this statistic has been used in previous works for the NILM area, e.g. in (Yang et al.,

2007) “an experiment is used to explain that the statistical validity of the turn-on transient energy

has repeatability with the coefficient of variation” for industrial electrical loads, and small variabil-

ity was attributed to the variables which coefficient of variation was found less than 1%. On the

contrary, in this thesis that repeatability analysis is made for residential appliances. Coefficient of

variation of a given feature for the jth appliance is computed as the ratio of standard deviation to

the average of the data as shown in Eq. (12). An illustration of the computing of CoV is depicted

in Fig. 47 for the feature presented as example in Fig. 45 for two appliances, and this manifests

that CoV is not a per unit metric because the base is the mean of every feature per appliance. In

addition, CoV allows to compare the variability of several features expressed in different units

since it is unit-less.

CoVj =
sj
x̄j

(12)

CoV is computed for the characteristics extracted from the signals acquired under reference

case conditions. Fig. 48 to 55 present the CoV values as images where each CoV value is shown

as a pixel with a specific color. The color scale is on the side bar. Every image displays the results

for a set of features from the transient signals, and appliances were analyzed separately. Low

values of CoV indicate a low variability of the characteristic. In general, that is the case for the

most of the features because a prevalence of blue colors is observed, which are defined for the

lowest values of CoV.
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Figure 47. Computing of CoV of the feature “maximum current of the switching transients” for
two appliances.
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Figure 48. Coefficient of variation for feature set FvT
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1 2 3 4  5  6  7  8  9 10 12 13 14 17 18 19 20 21 22

Appliances

2

4

6

8

10

12

14

 
 F

e
a

tu
re

s

1

2

3

4

5

6

7

8

Figure 49. Coefficient of variation for feature set FvST1

CoV reports values of relative dispersion of a given feature for every appliance. Finally, to

examine statistical differences between coefficients of variations, a Levene’s test is performed

(Schultz, 1985). The null hypothesis for this test is that the features have the same relative vari-

ability. If p-values are less than 0.05, the hypothesis is rejected. When comparing every feature for
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Figure 50. Coefficient of variation for feature set FvST2
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Figure 51. Coefficient of variation for feature set FvST3
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Figure 52. Coefficient of variation for feature set FvST4

Feature set: FvST5
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Figure 53. Coefficient of variation for feature set FvST5
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Feature set: FvST6
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Figure 54. Coefficient of variation for feature set FvST6

Feature set: FvST7
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Figure 55. Coefficient of variation for feature set FvST7

the appliances, p-values respect to 0.05 are in Fig. 56, where white cells corresponds to p < 0.05.

Given that the white cells are prevalent, there are significant differences between the coefficients

of variation, except for the feature No. 1 from time domain in 56a), ie. point on-wave, and the

feature No. 6 from the ST feature set in 56b).
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Figure 56. Matrices with p-values from the Levene’s test to examine association. White cells:p <
0.05, black cells: p > 0.05. a) Time domain features. b) S transform domain features FvST1.
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5.4.2 Fisher Discriminant Ratio (FDR) Another analysis is still missing: the impact of

voltage distortion, network impedance and appliance simultaneous operation on feature discrim-

ination capacity. This capacity refers to how useful a given characteristic is to distinguish one

appliance from others.

For this purpose, the Fisher Discriminant Ratio (FDR) is employed. FDR is the quotient of the

between class scatters, SB, and the within-class scatters, SW , as expressed in Eq. 13. The advan-

tage of this metric is that it can be evaluated before a classification as a filtering method to rank the

features (Guyon & Elisseeff, 2003), contrarily to methods which need to evaluate the performance

of the classifier, namely wrapper method. In addition, since artificial techniques such as support

vector machines and neural networks are not based on probability distributions (Kotsiantis, 2007),

FDR is a suitable alternative over other metrics which look for a difference between probability

distribution.

FDR =
SB
SW

(13)

Let xi be the value of a specific characteristic for the ith instance or case, C be the number of

classes, Ck be the kth class, n be the total amount of instances, x̄k be the center of Ck and nk be

the number of instances that belong to Ck. The global center for the specific characteristic would

be x̄ =
1

n

∑C
k=1 nkx̄k, which is a weighted sum of the centers. Then, the scatters are:

SB =
n∑
i=1

(xi − x̄)(xi − x̄)T (14)

and

SW =
C∑
k=1

nkSk
n

, (15)

where

Sk =

nk∑
i=1|i∈Ck

(xi − x̄k)(xi − x̄k)T (16)
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is the within scatter of the class Ck. So, it is expected that a characteristic with a high dis-

crimination capacity is one which values are quite confined within a region if they correspond to a

specific appliance (low SW ) and far away from the values corresponding to other appliances (high

SB). Actually, for some classification techniques, e.g. SVM, a characteristic can be projected to

another dimension, and the discrimination capacity might improve.

FDR is a geometrical property and can be understood through the following example. Let the

circles in Fig. 57 be hypothetical instances that belong to two classes, and the axes represent two

features. The idea is to examine how the FDR for every feature varies in Scenarios 2 and 3, in

regards to Scenario 1. For Scenario 2, the dispersion inside each class is the same along both axes

as in Scenario 1, but the distance between the centers of both classes is lower; then, SB would

diminish, so the FDR of both features diminishes as well. For Scenario 3, the distances between

the centers of two classes are similar to the ones in Scenario 1. Nevertheless, instances are more

spread along both axes, causing SW and the FDR of both axes to decrease. In this sense, Scenario

1 is the most desirable for the sake of classification because it has the highest FDR which means a

higher class separability.

FDR is computed not only for the reference case but also for other scenarios to evaluate the

effect of the impact factors. Similarly to CoV, Fig. 58 to 65 present images which pixels represent

the FDR values. Every image displays the results for a set of features from the transient signals.

This time, the appliances were not analyzed separately because the FDR assesses the characteris-

tics for all the appliances (every class is an appliance). Independent color scales were introduced

for the scenarios to describe better the FDR but keeping the same convention: blue cells indicate

low values and red cells, high values. This time, there is less value uniformity than in the case of

CoV. The bigger the FDR, the more separated the classes and/or the more clustered the same class

data is.
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Figure 57. Example of hypothetical instances that belong to two classes. The axes represent two
features, and every circle illustrates an instance.
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Figure 58. Fisher discriminant Ratio for feature set FvT
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Figure 59. Fisher discriminant ratio for feature set FvST1
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Figure 60. Fisher discriminant ratio for feature set FvST2
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Figure 61. Fisher discriminant ratio for feature set FvST3
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Figure 62. Fisher discriminant ratio for feature set FvST4
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Figure 63. Fisher discriminant ratio for feature set FvST5

FDR is a feature selection strategy to rank the features according to the class separability

(Guyon & Elisseeff, 2003). Table 24 shows the selection of the features with more and less dis-
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Figure 64. Fisher discriminant ratio for feature set FvST6
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Figure 65. Fisher discriminant ratio for feature set FvST7

crimination capacity from every feature set. This corresponds to the extreme points of a feature

benchmark as if each feature was used alone for the classification. Some of the features are in

bold because they resulted to have either outstanding or unfavorable performance for more than

one scenario.

Table 24
Features with the highest or lowest FDR, per feature set.

Feature set Best Features Worst Features
Ref. Case Flat Imped. Other appl. Ref. Case Flat Imped. Other appl.

FVT 2 2 2 3 1 1 3 1
FvST1 5 6 9 7 12 12 1 14
FvST2 65 11 167 11 51 51 236 3
FvST3 53 41 53 41 10 11 1 4
FvST4 17 17 15 17 4 5 1 4
FvST5 1 1 1 12 9 6 300 6
FvST6 1 1 1 160 300 6 133 5
FvST7 8 8 9 8 18 18 1 12

In addition, Table 25 summarizes Fig. 58 to 65 by presenting the average values of CoV per
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feature set. The highest values per scenario appear in bold. Here, the last row includes the average

of all the feature sets for every scenario. According to these average values of FDR, it is derived

that:

• The impedance change and the presence of other appliances do change the discrimination

capacity of the characteristics extracted from the appliances switching transients.

• FvST5 is the feature set with the highest discrimination capacity for the reference, the flat-

top and the presence of other appliances scenarios, just as FVT is for the network impedance

scenario.

Table 25
Average values of the FDR, per feature set.

Feature set
FDR Avg values

Ref. Case Flat Imped. Other appl.
FVT 53,15 59,67 47,63 16,95

FvST1 56,63 42,97 30,78 15,48
FvST2 77,73 59,29 30,18 15,51
FvST3 52,30 43,31 7,87 2,46
FvST4 50,84 46,09 5,77 0,74
FvST5 583,96 678,20 1,62 2,53
FvST6 64,77 64,60 0,00 3.36e-7
FvST7 62.85 51,92 46,01 15,81

Avg 125,28 130,76 21,23 50,83

5.4.2 Analysis of impact factors through overall classification performance Similarly to

the experiment described for reference scenario (Section 5.1), the performance of the classification

was assessed for feature sets from the scenarios of the impact factors, thus, resulting in the average

accuracies in Table 26. Again, the average accuracies around 70% or higher are displayed in bold.

5.5 Concluding remarks

In this chapter, some classifiers were presented to identify appliances by solving a traditional

multi-class classification problem, where the SVM outperformed the linear classifiers. Later, the
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Table 26
Average accuracies for the scenarios of impact factors: distorted voltage supply, network
impedance and simultaneous operation.

Distorted Network Impedance Simultaneous operation
FeatureSet Linear DiaLinear SVM Linear DiaLinear SVM Linear DiaLinear SVM

FvT 44,12 35,93 87,46 39,93 35,42 69,90 67,17 59,86 85,75
FvST1 62,95 47,70 82,78 61,54 49,75 73,24 60,18 46,8 78,00
FvST2 73,23 43,26 74,87 45,15 47,32 64,21 75,25 64,51 79,55
FvST3 N/A 5,20 1,09 N/A 43,95 61,20 N/A 11,28 12,69
FvST4 N/A 5,20 1,09 N/A 26,59 59,53 N/A 11,28 12,69
FvST5 91,07 69,15 98,65 N/A 70,90 94,65 78,56 57,25 97,46
FvST6 78,05 49,60 90,84 N/A 23,07 50,50 62,76 45,68 84,49
FvST7 64,13 49,17 83,98 66,29 48,09 72,91 65,92 47,36 79,13

load identification was designed through a one-class classification approach to overcome the need

of dealing with new unseen appliances and the scalability of NILM systems to avoid retraining

and increasing the complexity when those appliances are present to be predicted. Furthermore, the

evaluation of power estimation models and a comparison with the approaches in the literature are

also discussed.

Few studies had addressed the impact of factors such as point-on-wave of switching, voltage

distortion, network impedance and the simultaneous operation of appliances on NILM algorithms.

In this chapter, the variability and discrimination power of each feature extracted from current

switching transient in time and time-frequency domain under several scenarios were explored

through two metrics: coefficient of variation and Fisher discriminant ratio. Moreover, the effec-

tiveness for classification in the scenarios of the impact factors was tested through the construction

of multi-class classification models. Accuracies of more than 90% were reached for all the sce-

narios with one or more feature sets.
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6. Conclusions and future work

This chapter summarizes the conclusions derived from this research. Contributions and research

outcomes are also discussed. In addition, several ideas for future work are proposed.

6.1 Conclusions

This thesis considered Non-intrusive Load Monitoring (NILM) systems since they do not need

neither dedicated sensors for appliances nor high efforts in communication platforms that may

increase the cost and time of installation and maintenance. Besides, the lower the number of

sensors is, the larger the reliability of the monitoring. Although research in this area is increasing,

several gaps are detected in the scientific literature about event-based NILM systems such as: there

is not a widely accepted set of load signatures, the inclusion of new appliances into the knowledge

database demands a strong re-training step, fully labeled datasets of electrical signals for NILM

are lacking, previous work has not been focused on the development of complete algorithms, and

the question about the impact of factors (voltage distortion, network impedance, etc.) on NILM

algorithms remains open. This thesis contributes to knowledge in several ways:

1. A new understanding of the disaggregation framework for continuous sensing NILM sys-

tems.

2. Proposal of a set of load signatures time - frequency, transient – steady state.

3. Analysis of the discrimination capacity of event-based NILM systems under different sce-

narios to assess the following impact factors: voltage distortion, network impedance and

dependency of switching transients on point-on-wave (angle of the starting point).

4. “One-Class Classification” proposal to solve the scalability problem, i.e. the drawback of

the need to re-train NILM systems and the exponential growth of the complexity when an

appliance is added and to identify new or unseen appliances identification.
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5. Dataset of electrical measurements from residential appliances which labels of transients

start/end, switching on/off, are provided.

The proposed NILM system exploits a training database of the individual appliances in the spe-

cific house. Thus, the transients produced by the connections of the appliances are examined to

make appliance identification and then, to assign the power consumption. It is assumed that only

one appliance is switching at the same time, i.e. two or more switchings should not overlap, and

high frequency meters (order of kHz) are preferred. This system comprises the following stages:

event detection, feature extraction, classification and power estimation.

The proposed sets of features were computed from the waveforms and the S transform of the

current switching transients. The question about the reproducibility of the transients and the fea-

tures is verified through an analysis of the dependency of the current switching transients on the

point-on-wave, which is the starting point at the voltage wave. The proposed S transform based

features exhibit higher discrimination capacity than the proposed in the literature review, e.g. the

one by (Y. H. Lin & Tsai, 2014a) which included only the mean and standard deviation of har-

monic frequency profiles.

The load disaggregation is carried out as a classification task. The use of one-class classifiers is

introduced in this work. Its potential lies in the fact that appliances unseen in the database could

be detected as outliers. Moreover, a simpler re-training is needed when the user requires to in-

clude new appliances to the database of appliances in that specific household. In the traditional

multi-class classification approach, the feature set that allows the best classification performance

for all the scenarios (reference case, distorted, network impedance and simultaneous appliance

operation) is the projected S transform matrix of current switching transients through PCA. The

results discourage the use of the feature sets coming from only a part of the S transform matrix.

Moreover, the selection of the classifier plays a key role in the accuracy yielded by the classifier

model for both the traditional multi-class approach and the novel one-class approach.
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Contrary to the traditional systems in the literature, the power estimation was addressed, and

some models were proposed: one from nominal values and other based on experiments, with sat-

isfactory results when compared to the actual measured power.

The discrimination capacity of the features was evaluated under different scenarios to know the

effect of several impact factors: voltage distortion, network impedance and simultaneous appli-

ance operation, by computing Fisher Discriminant Ratio (FDR). Although similar discrimination

capacity was observed for the reference case and the voltage distortion scenarios, and this capac-

ity gets detrimental under the other scenarios (network impedance and simultaneous operation),

those features are still useful for identifying the appliances in all the scenarios. FDR quantifies

the relevancy of every feature individually, with no dependency on a given classifier. Also, the

discrimination power of feature sets (several features combined) was assessed through several

classifiers. The feature sets computed from the projected S transform through PCA were the out-

standing sets for appliance identification.

In conclusion, this thesis allows an understanding about the NILM system design from an

integral perspective. The results supported the hypothesis about the possibility of appliance iden-

tification from the appliance transient electrical signals. Several advantages are observed in the

proposed system. Contrary to other systems in the scientific literature, both high and low con-

sumption appliances can be identified. The system works autonomously, saving storage and trans-

mission costs, and connection to the cloud or big databases can be set in future approaches to

perform or improve training and inference. Moreover, not all the combinations of appliances must

be stored, but information about individual appliance operation. Also, a novel functionality is in-

corporated to identify if the signal corresponds to an appliance that does not belong to the training

database. Furthermore, the training complexity is designed to grow linearly with the number of

appliances, instead of exponentially. Finally, the validation stage yielded suitable accuracies for



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 125

both appliance operations: individual and simultaneous

Climate change and the future of energy are motivating changes in power grids from the tra-

ditional top-down structure to a distributed one, namely smart grids, with the incorporation of

information and communication technologies. The dynamics of the load has gained attention:

preferences of the users, balance between the supply and the demand control are crucial topics to

enable the grid of the future (Utility of the future: An MIT Energy initiative response to an indus-

try in transition., 2016). The pertinence of NILM systems lies in the importance of advanced load

monitoring functions in the smart grid paradigm. In this sense, information provided by NILM

systems allows the following applications:

• Comprehension of the house electricity consumption by users because more details than

monthly bills are provided to, for example, identify the appliances responsible of the highest

energy consumption. In addition, real time information about the appliance switching can be

offered. According to studies, this detailed knowledge stimulates changes in the electricity

consumption decisions to produce savings.

• Formulation and evaluation of demand side management programs. It requires to under-

stand how the demand changes to, for example, identify deferrable loads and inactive en-

ergy consumption periods, thus, enabling to detect potential consumers to take advantage

of the incentives and even to calculate the elasticity (customer reaction to economic offers)

per appliance or assessing the energy savings by measuring before and after the program

implementation. Therefore, the load information can come from NILM systems instead of

from surveys.

• Remote or manual load control by inferring appliance operation or power consumption with-

out installing additional sensors like in response to interruptibility incentives.

• Load prediction in long or short term by knowing the load composition over time. Then,

power systems can be designed for more realistic load scenarios.



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 126

• Diagnosis to identify malfunction conditions can be performed by detecting meaningful

deviations from the normal load signatures.

• Activity recognition and location of household inhabitants without deploying multiple sen-

sors along the house or attached to the people since the use of some appliances can be asso-

ciated to inhabitant activities. For example, this application is relevant for ambient assisted

living and home care or elderly monitoring.

As a consequence of savings in the demand, higher savings are obtained in primary resources

and electricity production cost, which causes reduction in CO2 gases, conservation of primary

resources and deferment in investments. Thus, NILM is envisioned as an application for smart

homes and together with the penetration of the Internet of Things they can bring significant inter-

action possibilities between the inhabitants and other power grid stakeholders.

6.2 Research outcomes

• Appliance identification algorithms

• Datasets of electrical signals from residential appliances

• Publications

Journals

1. Jimenez, Y.; Duarte, C.; Petit, J.; Meyer, J.; Schegner, P.; Carrillo, G., “Characteri-

zation of current switching transients for appliance identification”Renewable Energies

and Power Quality No. 13, March 2015 La Coruña (Spain), ISSN: 2172-038X, March

2015

http://www.icrepq.com/icrepq’15/276-15-jimenez.pdf

2. Jimenez, Y.; Duarte, C.; Petit, J; Carrillo, G.; Meyer, J; Schegner, P. “Steady state

signatures in the time domain for nonintrusive appliance Identification”, Ingenieria e

http://www.icrepq.com/icrepq'15/276-15-jimenez.pdf
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Investigacion ISSN: 0120-5609 ed: Universidad Nacional de Colombia v.35 fasc.2

p.58 - 64, 2015.

http://www.revistas.unal.edu.co/index.php/ingeinv/article/

view/53619

Conferences

3. Jimenez, Y.; Duarte, C.; Petit, J.; Carrillo, G., ”Feature extraction for nonintrusive load

monitoring based on S-Transform” Power Systems Conference (PSC), 2014 Clemson

University, pp.1,5, 11-14 March 2014

http://ieeexplore.ieee.org/document/6758024/

4. Jimenez, Y.; Duarte, C.; Petit, J.; Meyer, J.; Schegner, P.; Carrillo, G., ”Characteri-

zation of current switching transients for appliance identification” International Con-

ference on Renewable Energies and Power Quality (ICREPQ’14), 2015 La Coruña

(Spain), 25-27 March 2015

5. Jimenez, Y.; Duarte, C.; Petit, J.; Meyer, J.; Schegner, P.; Carrillo, G., Steady State

Signatures in the Time Domain for Nonintrusive Load Monitoring. SICEL Conference

2015, Valparaiso (Chile), November 17th -20th 2015.

6. Jimenez, Y.; Cortes, J.D.; Duarte, C.; Petit, J.; Carrillo, G., Nonintrusive load mon-

itoring for awareness of residential electricity consumption. RIGMEI 2016 Cuartas

Jornadas Iberoamericanas de Generación Distribuida y Microrredes Inteligentes. Bu-

caramanga (Colombia), June 14th-16th 2016.

7. Jimenez, Y.; Cortes, J.D.; Duarte, C.; Petit, J.; Carrillo, G., ”Nonintrusive Power Esti-

mation of Residential Appliances under Voltage Variation”. International Conference

on Harmonics and Quality of Power ICHQP 2016. Belo Horizonte (Brazil), October

16-19, 2016,

http://ieeexplore.ieee.org/document/7783402/
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Side publications

8. Cortes, J.D.; Jimenez, Y.; , Duarte, C.; ”Reasoner Design based on HYPO for Clas-

sification of Lighting Loads”, IEEE STSIVA 2016 - XXI Symposium on Signal Pro-

cessing, Images and Artificial Vision 2016. Bucaramanga (Colombia), August 31 -

September 2 2016,

http://ieeexplore.ieee.org/document/7743336/

9. Cala, H. ; Jimenez, Y.; Torres, R.; Duarte, C., ”Efecto de una distorsión de onda

achatada sobre un sistema de identificación de cargas basado en caracterı́sticas ex-

traı́das a través de la transformada de Fourier fraccionaria.”, SICEL Conference 2017,

Bucaramanga (Colombia), November 1-3, 2017

• Support Programs Name: Support for infrastructure for the doctoral formation for the the-

sis proposal Automatic Disaggregation of Residential Electrical Consumption with Non-

Intrusive Methods

Organization: Universidad Industrial de Santander. Research Vice-rectory.

Year: 2014

Description: This program provided founding for the current and voltage metering equip-

ment.

• Undergrad and master thesis, and human resource training

– Undergrad

∗ Monitorización No Intrusiva de Carga: recolección de datos y clasificación en

el tiempo. Jeisson David Bello Peña, Carlos Erixón Bello Peña, Yulieth Jimenez,

Gabriel Ordoñez. 2014

∗ Monitorizacion no intrusiva de cargas eléctricas mediante la transformada S.

Henry Mauricio Cala, Yulieth Jiménez, César Duarte. 2014

∗ Análisis de firmas de cargas estacionarias para monitorización no intrusiva de

http://ieeexplore.ieee.org/document/7743336/
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cargas eléctricas. Nelson Daniel Castro Ospino, Edwin Darı́o Pinzón Dı́az, Yuli-

eth Jiménez, César Duarte. 2015.

∗ Prototipo de monitor no intrusivo de energı́a residencial. Sergio Ávila, Andrés,

Carlos Angulo, Yulieth Jimenez, Cesar Duarte (in progress).

∗ Automatización de mediciones eléctricas en el laboratorio del grupo GISEL en

Guatiguará. Edwin Páez, Johan Nicolás Riaño, Henry Cala, Yulieth Jiménez (in

progress).

– Master

∗ Clasificación de eventos para monitorización no intrusiva de cargas eléctricas

utilizando razonamiento basado en casos. José David Cortés, César Duarte (in

progress).

∗ Identificación de cargas eléctricas residenciales utilizando caracterı́sticas basadas

en la transformada fraccionaria de Fourier. Henry Mauricio Cala, Rafael Torres,

César Duarte (in progress).

• Research stays

1. Summer Research Program (2012). University of Delaware. Newark DE, United

States.

2. Research Internship (2014-2015). Technische Universitaet Dresden. Dresden, Ger-

many.

6.3 Future work

• Further work is required to: to combine feature sets and make a reasonable feature selection

for attempting to enhance the accuracy of the classification task, to assess voltage variation

and sampling frequency as impact factors on the discrimination capacity of the proposed



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 130

features and to build a probabilistic approach to derive NILM solutions from steady state

features.

• Electrical measurements in a real household were acquired. These data will be processed as

future work, where the effect of a non-controllable environment, e.g. grid voltage supply,

can be observed. In addition, the computing of the impedances in this scenario is a more

challenging task.

• The flat-top signal employed in this thesis is an adaptation of the German flat-top signal.

Small experiments in the GISEL research group have shown this flat-top trend in houses.

Measurement campaigns are encouraged in real Colombian houses in order to determine the

model of the flat-top signal for Latin America.

• It is extremely recommended to widen the dataset of measurements by including more sce-

narios and appliances to have a deeper understanding of appliances, e.g. Led lamps.

• Other feature extraction methods (Wavelet, Fractional Fourier Transform) and classification

techniques (neural networks, case based reasoning) have been tested in the GISEL research

group for load disaggregation problem. A future task is to compare them with the proposals

in this thesis.

• Deep learning and big data tools can be explored in a future. Their advantages have been

evidenced in other fields that also address classification and pattern recognition problems.

• A next stage of the research is to develop a portable prototype to be tested in real environ-

ments with costs and functionalities as much competitive as possible.

• A future research could combine the NILM algorithms with power quality disturbances in

order to guarantee the accuracy even when these disturbances take place in the power system.

• A recommended future work is to associate NILM information with applications on load

forecasting, demand side management and high impedance fault detection, among others.
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• Research in alternative scenarios:

– Commercial and industrial premises is scarce. In general, complexity of loads, diffi-

culty to build the database and electrical noise are some factors to consider in those

sites. Naturally, each type of industry or commercial site has proper restrictions. The

findings already obtained for residential premises could also be useful as a starting

point for this.

– Penetration of renewable resources such as wind, solar, biomass and geothermal is

encouraged worldwide. This distributed generation might lead to operational prob-

lems. Little work about NILM has been done in environments where these generation

resources are connected.

– NILM application in DC grids would be of interest because of the absence of zero

crossings.
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APPENDIX A

Data acquisition equipment accuracies

The accuracies of the data acquisition cards are registered in Tables 27, 28 and 29 while the current

clamp accuracy is±1% of reading± 2 mA. Uncalibrated accuracy refers to the accuracy achieved

when acquiring in raw or unscaled modes where the calibration constants stored in the module are

not applied to the data.

Table 27
Accuracies of NI 9225. ∗Range equals 425 V.

Measurement Percent of reading Percent of range∗

Conditions (Gain Error) (Offset Error)
Calibrated max (−40 to 70◦C) ±0.23% ±0.05%
Calibrated typ (25◦C, ±5◦C) ±0.05% ±0.008%

Cailbrated max (25◦C, ±15◦C) ±0.084% ±0.016%
Uncalibrated max (−40 to 70◦C) ±1.6% ±0.66%
Uncalibrated typ (25◦C, ±5◦C) ±0.4% ±0.09%

Note: adapted from (National Instruments, 2014a).

Table 28
Accuracies of NI 9227 at safe operating range of 5Arms.

Measurement Percent of reading Percent of range
Conditions (Gain Error) (Offset Error)

Calibrated max (−40 to 70◦C) ±0.37% ±0.18%
Calibrated typ (23◦C, ±5◦C) ±0.1% ±0.05%

Uncalibrated max (−40 to 70◦C) ±5% ±2.4%
Uncalibrated typ (23◦C, ±5◦C) ±2.5% ±1.0%

Note: adapted from (National Instruments, 2014b).

On the other hand, the three cards have a flatness (fs=50kS/s) ±100 mdB maximum.
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Table 29
Accuracies of NI 9239. ∗Range equals 10.52 V.

Measurement Percent of reading Percent of range∗

Conditions (Gain Error) (Offset Error)
Calibrated max (−40 to 70◦C) ±0.13% ±0.06%
Calibrated typ (25◦C, ±5◦C) ±0.03% ±0.008%

Uncalibrated max (−40 to 70◦C) ±1.4% ±0.70%
Uncalibrated typ (23◦C, ±5◦C) ±0.3% ±0.11%

Note: adapted from (National Instruments, 2016).

APPENDIX B

S transform definitions

B.1 Continuous S transform

The S transform, S(τ, f), of a signal x(t) is defined as (R. Stockwell et al., 1996):

S(τ, f) =

∫ ∞
−∞

x(t)gf (t− τ)e−j2πftdt, (17)

where gf (t) = |f |√
2π
e−

t2f2

2 is a Gaussian window function.

The expression in Eq. (17) might be written as a convolution:

S(τ, f) = p(τ, f) ? gf (τ), (18)

where p(τ, f) = x(τ)e−j2πfτ and ? denotes the convolution operation.

The S transform can also be written as a Continuous Wavelet Transform (CWT) multiplied by

a phase factor:
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S(τ, f) = ej2πfτW (τ, f) = ej2πfτ
∫ ∞
−∞

x(t)w(t− τ, f)dt, (19)

with the mother wavelet described by:

w(t, f) =
|f |√
2π
e−

t2f2

2 e−j2πft, (20)

where f is a scaling factor that controls the width of ω(t, f) and consequently, the frequency

resolution.

S transform provides a complex function that represents the phase and magnitude of the signal

over a time-frequency plane. It provides frequency- dependent resolution with a direct relationship

to the Fourier spectrum (R. Stockwell et al., 1996):

X(f) =

∫ ∞
−∞

S(τ, f)dτ (21)

In this vein, the S transform is a special case of Short-Time Fourier Transform (STFT) (see

(17)), whereas it is not strictly a CWT because w(t, f) is not an admissible wavelet (its mean

value is different from zero). In fact, S transform sometimes has better performance than STFT

and/or wavelet transform. For example, the modulating sinusoids of STFT are fixed with respect

to the time axis while ST is based on a localizing Gaussian window that dilates and translates.

This is quite advantageous for the NILM systems where the signals are non-stationary, and a fixed

window width is not suitable to decompose them.

B.2 Discrete S transform

The discrete S transform of x(kT ), k = 0, 1, . . . , N − 1, a sampled signal at a time sampling

interval T is given by (R. Stockwell et al., 1996)



LOAD DISAGGREGATION WITH NON-INTRUSIVE METHODS 152

X
[ n

NT

]
=

1

N

N−1∑
k=0

x[kT ]e
−j2πnk

N (22)

where n = 0, 1, . . . , N − 1.

The discrete S Transform, S
[
lT,

n

NT

]
, of x(kT ) is:

S
[
lT,

n

NT

]
=



N−1∑
m=0

X[m+n
NT

]e
−2π2m2

n2 ej2πlm if n 6= 0

1
N

N−1∑
m=0

x( m
NT

) if n = 0

(23)

The discrete inverse of the S transform is

x(kT ) =
N−1∑
n=0

{
1

N

N−1∑
j=0

S
[
lT,

n

NT

]}
e
j2πnk
N . (24)

APPENDIX C

ANOVA-Tukey test

An ANOVA test is performed followed by a Tukey test for every classifier to verify the significant

difference between the feature sets. Fig. 66, 67 and 66 show the results of these tests.
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Figure 66. Results of Anova-Tukey tests for linear classifier
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Figure 67. Results of Anova-Tukey tests for diaglinear classifier
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Figure 68. Results of Anova-Tukey tests for SVM classifier
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