PROPUESTA METODOLÓGICA PARA EL DISEÑO DE CONEXIONES METÁLICAS PRECALIFICADAS EN COLOMBIA

CARLOS ANDRÉS DELGADO ROJAS

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS ESCUELA DE INGENIERÍA CIVIL MAESTRÍA EN INGENIERÍA ESTRUCTURAL BUCARAMANGA 2017

PROPUESTA METODOLÓGICA PARA EL DISEÑO DE CONEXIONES METÁLICAS PRECALIFICADAS EN COLOMBIA

CARLOS ANDRÉS DELGADO ROJAS

Trabajo de grado para optar el título de Magister en Ingeniería Estructural

> Directores: LUIS GARZA VÁSQUEZ Ingeniero Civil - MSC

RICARDO CRUZ HERNÁNDEZ Ingeniero Civil - Ph. D.

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE INGENIERÍAS FÍSICO-MECÁNICAS ESCUELA DE INGENIERÍA CIVIL MAESTRÍA EN INGENIERÍA ESTRUCTURAL BUCARAMANGA 2017

AGRADECIMIENTOS

Al profesor Ricardo Cruz Hernández por la colaboración y orientación que me brindó en todo el desarrollo de este proyecto.

Al profesor Luis Garza Vásquez por su dedicación, instrucción y apoyo para el desarrollo de este proyecto.

A la Universidad Industrial de Santander, a la Escuela de Ingeniería Civil y al grupo de profesores de maestría por el proceso de aprendizaje que me brindaron.

CONTENIDO

INTRODUCCIÓN	18
1. MARCO TEÓRICO	22
1.1 GENERALIDADES	22
1.2 NORMAS DE DISEÑO ESTRUCTURAS METÁLICAS	24
1.3 CLASIFICACIÓN DE CONEXIONES	25
1.4 CONEXIONES PRECALIFICADAS	26
1.4.1 Conexiones Precalificadas según FEMA 350.	27
1.4.2 Conexiones Precalificadas AISC 358-10.	29
1.4.3 Conexiones Precalificadas para Pórticos Resistentes a Momento Realiza	adas
en Colombia.	29
1.5 CRITERIOS BÁSICOS UTILIZADO EN EL DISEÑO DE CONEXIONES	31
1.5.1 Cálculo del Momento Plástico Probable en las Rótulas.	31
1.5.2 Ubicación de las Rótulas Plásticas.	32
1.5.3 Cálculo de la Fuerza Cortante Probable en las Rótulas Plásticas de la V	√iga.
	33
1.5.4 Determinación de la Demanda de Resistencia en cada Sección Crítica.	34
1.5.5 Cálculo del Momento Resistente nominal de la Columna Proyectado a los	ejes
de la Intersección Columna-Viga.	36
1.6 METODOLOGÍA DE DISEÑO DE EDIFICACIONES METÁLICAS	37
2 PROCEDIMIENTOS PARA EL DISEÑO DE CONEXIONES	41
2.1 PROCEDIMIENTO DE DISEÑO DE CONEXIÓN PRECALIFICADA TU	JBO-
VIGA REFORZADA	41
2.1.1 Diagrama de flujo de conexión precalificada tubo-viga reforzada	74

2.2 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFICADA	/IGA
I – COLUMNA COMPUESTA EMBEBIDA	88
2.2.1 Diagrama de flujo conexión precalificada viga I - columna compu	Jesta
embebida	113
2.3 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFIC	ADA
RÍGIDA VIGA I Y UNA COLUMNA TUBULAR RELLENA DE CONCRETO	124
2.3.1 Diagrama de flujo conexión metálica rígida viga l y una columna tubular re	llena
de concreto.	144
2.4 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFIC	ADA
SOLDADA A MOMENTO VIGA-COLUMNA	155
2.4.1 Diagrama de flujo conexión soldada a momento viga-columna	para
aplicaciones en edificios metálicos.	180
3 APLICACIÓN DE LA METODOLOGÍA DE DISEÑO DE CONEXIO	NFS
METÁLICAS	193
3.1. PARÁMETROS PARA EL ANÁLISIS Y DISEÑO DEL EDIFICIO	194
3.1.1 Descripción de los Materiales Empleados.	197
	100
3.2 ANALISIS ESTRUCTURAL MEDIANTE UN MODELO MATEMATICO	190
3.3 DISENU DE ELEMENTUS ESTRUCTURALES 2.4 DISEÑO DE CONEXIONES DICIDAS (VICA COLLIMINA)	201
3.4 DISENO DE CONEXIONES RIGIDAS (VIGA-COLOMINA)	214
3.4.1 Diseño de Conexión Tubo-viga Reforzada para el caso de Aplicación.	214
3.4.2 Diseno de Conexion Viga I – Columna Compuesta Embeblida para e	
Aplicación	237
3.4.3 Diseno de Conexion Metalica Rigida Viga i y una Columna i ubular Re	
de Concreto para el caso de Aplicación.	261
3.4.4 Diseno de Conexion Soldada a Momento Viga-Columna para el cas	o de
Aplicación.	279
4 CONCLUSIONES	305

BIBLIOGRAFÍA	308
ANEXOS	312

LISTA DE TABLAS

Tabla 1. Conexiones precalificadas AISC 358-10Conexiones precalificadas A	ISC
358-10	27
Tabla 2. Conexiones precalificadas AISC 358-10	29
Tabla 3. Conexiones precalificadas en Colombia	30
Tabla 4. Requerimientos para el diseño sísmico para Pórticos Resistentes	s a
Momento (PRM)	40
Tabla 5. Coeficiente C para excentricidad de grupo de soldaduras	73
Tabla 6. Limitaciones de los Parámetros en la Conexión Precalificada	89
Tabla 7. Parámetro Yp de líneas de fluencia para la placa extrema de la conex	kión
4E	95
Tabla 8. Parámetro Yc de líneas de fluencia para el ala de la columna no rigidiza	ada
para la conexión 4E y 4ES	102
Tabla 9. Parámetro Yc de líneas de fluencia para el ala de la columna rigidiza	ada
para la conexión 4E y 4ES	103
Tabla 10. Limitaciones de los Parámetros en la Conexión Precalificada	125
Tabla 11. Propiedades mecánicas del Acero (ASTM A-193) Grado B7	130
Tabla 12. Resistencias nominales a la tensión y al corte de pernos ASTM A-	193
Grado B7. Sistema internacional	131
Tabla 13. Parámetro Yp de líneas de fluencia para la placa extrema de la conex	‹ión
4E	132
Tabla 14. Coeficiente C para excentricidad de grupo de soldaduras	179
Tabla 15. Carga Muerta Sobreimpuesta (SD)	194
Tabla 16. Carga Viva (L)	194
Tabla 17. Definición de Parámetros Sísmicos	194
Tabla 18. Geometría Modelo 1 y 2	196

Tabla 19. Propiedades Mecánicas de los Materiales	197
Tabla 20. Secciones Seleccionadas en el Diseño Estructural Modelo 1	202
Tabla 21. Secciones Seleccionadas en el Diseño Estructural Modelo 2	202
Tabla 22. Propiedades geométricas de Vigas Secundarias Perfil W	203
Tabla 23. Propiedades geométricas de Vigas Principales Perfil W	203
Tabla 24. Propiedades geométricas de la Columna Perfil W	205
Tabla 25. Propiedades geométricas de la Columna Perfil W para sección compue	esta
embebida	207
Tabla 26. Propiedades geométricas de la Columna Perfil Cajón	208
Tabla 27. Características geométricas de la Columna Perfil Cajón Seco	ción
compuesta rellena	210
Tabla 28. Propiedades geométricas adicionales para el diseño sección compue	esta
rellena	210
Tabla 29. Propiedades de los Materiales	214
Tabla 30. Propiedades geométricas de la Columna Perfil Cajón	214
Tabla 31. Propiedades geométricas de Viga Perfil W	215
Tabla 32. Resumen de los estados límites para los cubreplacas.	222
Tabla 33. Propiedades de los Materiales	237
Tabla 34. Propiedades geométricas sección de la columna de concreto	237
Tabla 35. Propiedades geométricas de la Columna Perfil W para seco	ción
compuesta embebida	238
Tabla 36. Propiedades geométricas de Vigas Principales Perfil W	238
Tabla 37. Limitaciones y Parámetros geométricos escogidos conexión (4E)	240
Tabla 38. Propiedades de los Materiales	261
Tabla 39. Propiedades geométricas de la Columna Perfil Cajón Sección compue	esta
rellena	261
Tabla 40. Propiedades geométricas adicionales para el diseño sección compue	esta
rellena	262
Tabla 41. Propiedades geométricas de Vigas Principales Perfil W	262

Tabla 42.	Limitaciones y Parámetros geométricos escogidos conexión (4E)	264
Tabla 43.	Propiedades de los Materiales	279
Tabla 44.	Propiedades geométricas de la Columna Perfil W	280
Tabla 45.	Propiedades geométricas de Vigas Principales Perfil W	281

LISTA DE FIGURAS

Figura 1. Fractura de placa base de columna en una estructura de pórtic	0
arriostrado 2	2
Figura 2. Fractura de la soldadura de penetración completa en una conexión d	e
pórtico resistente a momento con platina de respaldo (steel backing) 2	3
Figura 3. Fallas en conexiones viga-columna. Sismo Northridge2	4
Figura 4. Diagramas momento-rotación típico de conexiones FR, PR y simples 2	6
Figura 5. Ubicación de las rótulas plásticas3.	2
Figura 6. Calculo de la Fuerza Cortante Probable en las Rótulas Plásticas 3	3
Figura 7. Cálculo de las demandas sobre cada sección critica3	5
Figura 8. Momento resistente de la columna proyectado a los ejes3	6
Figura 9. Diagrama de Flujo para el diseño de edificaciones metálicas 3	8
Figura 10. Detalle 3D conexión.4.	2
Figura 11. Localización Probable de la Rótula Plástica4.	2
Figura 12. Diagrama de cuerpo libre para el cálculo de la cortante en la rótul	а
plástica 4	3
Figura 13. Diagrama de cuerpo libre para el cálculo de la cortante y el momento e	n
la cara de la columna 4	5
Figura 14. Diagrama para el cálculo de bp4	6
Figura 15. Estado límite: resistencia de la soldadura de filete entre el cubreplac	а
inferior y la aleta de la viga 4	7
Figura 16. Estados límites: fluencia por tensión, rotura por tensión y desgarramient	0
en bloque en el cubreplaca inferior 4	8
Figura 17. Estado límite: rotura por tensión en el área neta 5	1
Figura 18. Estados límites: resistencia al corte por fluencia y rotura en la unión de	el
cubreplaca con la columna 5.	2

Figura 19. Estado límite: resistencia de la soldadura de filete entre el cubrer	olaca
inferior y la aleta de la viga	54
Figura 20. Estado límite: resistencia de la soldadura de filete entre el cubrer	olaca
superior y la aleta de la viga	56
Figura 21. Estados límites: fluencia por tensión, rotura por tensión y desgarram	iento
en bloque en la cubre placa superior	58
Figura 22. Diagrama de cuerpo libre en la zona de panel	61
Figura 23. Soldadura de filete en la doble placa	64
Figura 24. Soldadura abocinada en la doble placa	65
Figura 25. Estado límite: resistencia al corte por fluencia en el espesor de la	. 67
Figura 26. Dimensiones de la Placa de Cortante	69
Figura 27. Dimensiones de la Placa de Cortante	72
Figura 28. Geometría de la Viga	75
Figura 29. Geometría de la Columna	76
Figura 30. Diagrama de Cuerpo Libre	77
Figura 31. Bloque de Cortante Cubre Placa Inferior	78
Figura 32. Bloque de Cortante Cubre Placa Superior	79
Figura 33. Figura de la Zona de Panel	80
Figura 34. Fluencia y Rotura a Cortante en la Viga	81
Figura 35. Dimensiones de Placa de Corte (izq.); y Fluencia y Rotura a Cortant	te en
la Placa de Corte (der.)	82
Figura 36. Diagrama de flujo diseño conexión precalificada tubo-viga reforzado	o 83
Figura 38. Detalle 3D conexión.	88
Figura 38. Ubicación de la formación de rótulas plásticas	91
Figura 40. Distancia a la rótula plástica desde el eje de la columna	91
Figura 41. Diagrama de equilibrio para la conexión	93
Figura 42. Diagrama de equilibrio del ala de la viga	96
Figura 43. Soldadura del ala y el alma a la Placa de extremo	100
Figura 44. Geometría de las Placas rigidizadoras o de Continuidad	106

Figura 45. Diagrama de cuerpo libre en la zona de panel 10	7
Figura 46. Placas de refuerzo en la zona de panel con soldadura de penetració	n
completa o soldadura de filete 10	9
Figura 47. Diagrama de cuerpo libre en la cara de la Columna 11	0
Figura 48. Soldadura de filete en placa de enchape11	1
Figura 49. Geometría de la Viga11	4
Figura 50. Geometría de la Columna Compuesta11	5
Figura 51. Ruptura por Corte11	7
Figura 52. Esquema de datos placa extrema11	8
Figura 53. Diagrama de flujo diseño conexión precalificada viga I – column	a
compuesta embebida 11	9
Figura 54. Detalle 3D conexión.12	4
Figura 55. Ubicación de la formación de rótulas plásticas 12	7
Figura 56. Distancia a la rótula plástica desde el eje de la columna 12	7
Figura 57. Diagrama de equilibrio para la conexión 12	9
Figura 58. Diagrama de equilibrio del ala de la viga13	3
Figura 59. Soldadura del ala y el alma a la Placa de extremo 13	9
Figura 60. Diagrama de Cuerpo Libre Zona de Panel14	0
Figura 61. Soldadura de filete en la placa de enchape 14	2
Figura 62. Geometría de la Viga. (Repetida)14	5
Figura 63. Geometría de la Columna14	6
Figura 64. Ruptura por Corte14	8
Figura 65. Esquema de datos placa extrema14	9
Figura 66. Diagrama de flujo diseño conexión Precalificada Rígida Viga I y un	а
Columna Tubular Rellena De Concreto 15	0
Figura 67. Detalle 3D conexión.15	5
Figura 68. Localización Probable de la Rótula Plástica 15	6
Figura 69. Diagrama de cuerpo libre para el cálculo de la cortante en la rótul	а
plástica 15	7

Figura 70. Diagrama de cuerpo libre para el cálculo de la cortante y el moment	o en
la cara de la columna	158
Figura 71. Estado límite: resistencia de la soldadura de filete entre el cubrep	laca
inferior y la aleta de la viga	161
Figura 72. Estado límite: resistencia de la soldadura de filete entre el cubrep	olaca
superior y la aleta de la viga	163
Figura 73. Estado límite: resistencia de la soldadura de filete entre el cubrep	laca
superior y la aleta de la viga	163
Figura 74. Geometría de las Placas rigidizadoras o de Continuidad. (Repetida)	168
Figura 75. Diagrama de cuerpo libre en la zona de panel	169
Figura 76. Placas de refuerzo en la zona de panel con soldadura de penetra	ición
completa o soldadura de filete	171
Figura 77. Soldadura de filete en placa de enchape	172
Figura 78. Dimensiones de la Placa de Cortante	175
Figura 79. Dimensiones de la Placa de Cortante	178
Figura 80. Geometría de la Viga	181
Figura 81. Geometría de la Columna	182
Figura 82. Diagrama de Cuerpo Libre	183
Figura 83. Geometría cubreplaca	184
Figura 84. Diagrama de Cuerpo Libre en la zona de panel	185
Figura 85. Dimensiones de Placa de Corte	186
Figura 86. Fluencia y Rotura a Cortante en la Viga	186
Figura 87. Fluencia y Rotura a Cortante en la Placa de Corte	187
Figura 88. Diagrama de flujo diseño conexión Precalificada Rígida Viga I y	una
Columna Tubular Rellena De Concreto	188
Figura 89. Espectro de Diseño	195
Figura 90. Geometría de la Estructura planta Modelo 1	196
Figura 91. Geometría de la Estructura planta Modelo 2	197
Figura 92. Modelo 1 tridimensional con diafragma rígido	198

Figura 93 Modelo 2 tridimensional con diafragma rígido	199
Figura 94. Factores de Ajuste. Modelo 1	199
Figura 95. Factores de Ajuste. Modelo 2	199
Figura 96. Sistema de Pórtico Resistentes a Momentos Dirección X Modelo 1	211
Figura 97. Sistema de Pórtico Resistentes a Momentos Dirección Y Modelo 1	212
Figura 98. Sistema de Pórtico Resistentes a Momentos Dirección X Modelo 2	213
Figura 99. Sistema de Pórtico Resistentes a Momentos Dirección Y Modelo 2	213
Figura 100. Diagrama de Cuerpo Libre	216
Figura 101. Geometría de la Placa de Cortante	228
Figura 102. Dimensiones de la Placa de Cortante	233
Figura 103. Detalle de Conexión Precalificada Tubo-Viga Reforzada	235
Figura 104. Geometría placa de la conexión	240
Figura 105. Diagrama de Cortante y Momento de la combinación 1.2(D+SD)+	-0.5L
	242
Figura 106. Geometría de las Placas rigidizadoras o de Continuidad	251
Figura 107. Detalle Conexión Precalificada Viga I – Columna Compuesta Embe	ebida
	259
Figura 108. Geometría placa de la conexión	264
Figura 109. Diagrama de Cortante y Momento de la combinación 1.2(D+SD)+	-0.5L
	266
Figura 110. Detalle Conexión Precalificada Rígida Viga I Y Una Columna Tul	bular
Rellena De Concreto	278
Figura 111. Diagrama de Cuerpo Libre	281
Figura 112. Sección critica cubreplaca superior	287
Figura 113. Geometría de las Placas de Continuidad	290
Figura 114. Geometría de la Placa de Cortante	297
Figura 115. Dimensiones de la Placa de Cortante	302
Figura 116. Detalle Conexión Precalificada Soldada A Momento Viga-Colu	umna
	304

LISTA DE ANEXOS

Anexo A. Análisis dinámico elástico espectral.	312
Anexo B. Diseño por el método de análisis directo	320
Anexo C. Resultados del diseño de los elementos que conforman las conexio	ones a
diseñar.	327
Anexo D. Cálculo de la resistencia nominal a flexión mpcc de la columna comp	ouesta
(tipo perfil revestido).	342
Anexo E. Cálculo de la resistencia nominal a flexión MPcc de la columna comp	ouesta
(tipo perfil relleno).	371

RESUMEN

TÍTULO: PROPUESTA METODOLÓGICA PARA EL DISEÑO DE CONEXIONES METÁLICAS PRECALIFICADAS EN COLOMBIA*

AUTOR: Carlos Andrés Delgado Rojas**

PALABRAS CLAVE: Conexión, Precalificada, Resistencia

DESCRIPCIÓN:

Se presenta un trabajo de aplicación donde se realiza la recopilación de todas las investigaciones de precalificación de conexiones metálicas realizadas en Colombia, con el fin de sintetizar toda esta experiencia y realizar una metodología que facilite su procedimiento de diseño y programación. Se tomaron las que calificaron para pórticos resistentes a momento (PMR) con disipación de energía especial y moderada (DES – DMO) y adicionalmente las que presentaron mejor comportamiento ante cargas cíclicas, y por tener configuración de secciones de columnas tubulares y compuestas. Las conexiones utilizadas en este trabajo son: Columna Tubular-Viga Reforzada; Viga I – Columna Compuesta embebida; Viga I-Columna Tubular Rellena De Concreto y Viga I-Columna I Soldada resistente a Momento.

La metodología para el diseño de estas conexiones metálicas se realizó mediante un procedimiento donde se tiene en cuenta un paso a paso de todo su análisis y detallado para cada conexión, facilitando su estudio y programación con la ayuda de diagramas de flujo, basándose en los criterios de estados limites utilizados por el autor de cada conexión, los cuales fueron actualizándose con base a las recomendaciones del AISC 2010 y NSR-10. Adicionalmente se realizó un modelo de una estructura aporticada de acero, con el fin de aplicar esta metodología a manera de ejemplo para cada una de las conexiones contenidas en este documento. Finalmente, se obtiene una guía para el diseño de estas conexiones metálicas.

^{*} Trabajo de grado

^{**} Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería Civil. Directores: Luis Garza, Ricardo Cruz.

ABSTRACT

TITLE:	METHODOLOGICAL PROPOSAL FOR THE DESIGN OF PREQUALIFIED METAL CONNECTIONS IN COLOMBIA *
AUTHOR:	Carlos Andrés Delgado Rojas**
KEYWORDS:	Connection, Prequalification, Resistance

DESCRIPTION:

An application paper is presented where all the prequalification investigations of metallic connections made in Colombia are performed, in order to synthesize all this experience and to make a methodology that facilitates its design and programming procedure. The ones that qualified with Special and Intermediate moment frame (SMF – IMF) and those that presented better performance to cyclic loads, and to have configurations of sections of tubular and composite columns, were taken. The connections used in this work are: Tubular Column - Reinforced Beam; Beam I - embedded composite column; Beam I-Column Tubular Refill Concrete and Beam I-Column I Soldier Resistant to Moment.

The methodology for the design of these metal connections was made by a procedure where a step-by-step analysis and detailed analysis for each connection is taken into account, facilitating its study and programming with the help of flowchart, based on the criteria of limit states used by the author of each connection, which were updated based on the recommendations of the AISC 2010 and NSR-10. In addition, a model of a steel structure was made, in order to apply this methodology as an example for each of the connections contained in this document. Finally, a guide for the design of these metallic connections is obtained.

^{*} Project degree.

^{**} Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería Civil. Directores: Luis Garza, Ricardo Cruz.

INTRODUCCIÓN

Los movimientos sísmicos son considerados como una de las fuerzas naturales más devastadoras, llegando a destruir hasta las estructuras consideradas por el ser humano más seguras y ocasionando la pérdida de innumerables vidas a través de nuestra historia.

Colombia y su condición de alta actividad sísmica exigen realizar diseños en estructura metálica que garantice el adecuado comportamiento no solo de los elementos, sino también de las conexiones obteniendo estructuras seguras y confiables.

Las estructuras metálicas tienen unas ventajas estructurales en cuanto a su resistencia, uniformidad y ductilidad. Sin embargo, al momento de plantear estas estructuras se dificulta el diseño de sus conexiones. Con frecuencia se ha encontrado que una de las causas de daños estructurales parciales o incluso de colapso en estructuras de acero es debido a la falla de alguna conexión (FEMA 350, 2000).

La dificultad en el diseño de las conexiones se debe, en principio, a lo extenso en su análisis y detallado, agregando a esto el desconocimiento u omisión de los diferentes tipos de uniones que han sido calificadas, en Colombia y el mundo, y que por medio de ensayos han demostrado tener un buen comportamiento a cargas cíclicas. En Colombia se han realizado trabajos de calificación de conexiones metálicas, que han sido utilizadas en algunos proyectos de construcción.

En este trabajo se propone una metodología para el diseño de conexiones metálicas que han sido precalificadas en Colombia para pórticos resistentes a momentos, donde se tenga en cuenta paso a paso todo su análisis y detallado, facilitando su procedimiento en cuanto a su estudio y programación con el fin de servir de guía en el diseño.

Con este propósito, en este trabajo, se realiza una recopilación de las tesis de maestría donde se han realizado trabajos de precalificación de conexiones, utilizándolas como bases teóricas, las cuales son actualizadas con los criterios expuestos en el Reglamento Colombiano de Construcción Sismo Resistente NSR-10, con el fin de sintetizar toda esta experiencia y ejecutar un procedimiento que facilite el diseño de estas conexiones calificadas.

Este documento presenta inicialmente un marco teórico en el capítulo 1, en el capítulo 2 presenta la metodología para el diseño de conexiones precalificadas, en el capítulo 3 se presenta la aplicación de la metodología de diseño de las conexiones y por último en el capítulo 4 se presenta las conclusiones.

1. MARCO TEÓRICO

1.1 GENERALIDADES

El acero está definido como uno de los materiales más dúctiles. Las investigaciones de los últimos años han demostrado que para asegurar un excelente comportamiento dúctil en un sistema estructural es necesario proveer una adecuada ductilidad.

Según el (FEMA 350, 2000) después de ocurrido el sismo de *Northridge*, se observó que los edificios de acero diseñados como pórticos resistentes a momento presentaban una serie de fallas tipo frágil en las conexiones viga – columna, principalmente por fractura de soldaduras y fractura de placa (Véase Figura 1 e Figura 2).

Figura 1. Fractura de placa base de columna en una estructura de pórtico arriostrado

Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1

Figura 2. Fractura de la soldadura de penetración completa en una conexión de pórtico resistente a momento con platina de respaldo (*steel backing*)

Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1

Las causas que provocaron las fallas más frecuentes en el sismo de Northridge fueron:

- El uso de electrodos inadecuados
- Colocar elementos de respaldo (*steel backing*) que, si bien sirven durante el proceso de soldadura de cordones de penetración completa, generan problemas en la raíz de la soldadura (Ver Figura 2)
- La presencia de defectos en la raíz de la soldadura
- Calentamiento excesivo de las piezas a soldar
- Deformaciones de corte excesivas en la zona de panel
- Efectos de velocidad de deformación (strain rate)

• Efectos de interacción con losas de hormigón armado.

Figura 3. Fallas en conexiones viga-columna. Sismo Northridge

Fuente: FEDERAL EMERGENCY MANAGEMENT AGENCY. FEMA (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency. SAC Joint Venture, Washinton, E.U.

La Figura 3 (a) e Figura 3 (b) nos muestra la fractura en la unión viga columna. La Figura 3 (c) e Figura 3 (d) la fractura es en la columna.

1.2 NORMAS DE DISEÑO ESTRUCTURAS METÁLICAS

El diseño de las estructuras metálicas y sus conexiones precalificadas se realiza utilizando las siguientes normas de referencia:

Publicaciones del FEMA, se tienen las siguientes recomendaciones:

- FEMA-350. Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings
- FEMA-352. Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings,
- FEMA-353. Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications,
- FEMA-354. A Policy Guide to Steel Moment-frame Construction.

Entre estas publicaciones del AISC tenemos las siguientes:

- AISC 360-2010 (Specification for Structural Steel Buildings).
- AISC 341-10 (Seismic Provisions for Structural Steel Building).
- AISC 358-10 (Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications).

En nuestro país la Norma vigente para el diseño de estructuras metálicas es el *Reglamento Colombiano de Construcciones Sismo Resistentes NSR-10*, en el cual el capítulo F.2, adopta las especificaciones del AISC 360-10 y el capítulo F.3 adopta las provisiones sísmicas del AISC 341-10.

1.3 CLASIFICACIÓN DE CONEXIONES

Según el AISC 360-16 las conexiones se clasifican en:

- Conexiones totalmente restringidas (FR, Full Restrained), que son aquellas que transfieren momento con una rotación relativa despreciable entre los miembros conectados. Usualmente se considera que esta variable de rigidez flexional de la conexión sea igual o mayor que 20El/L de la viga.
- Conexiones parcialmente restringidas (PR, Partially Restrained) las cuales son capaces de transferir momento, sin que se pueda despreciar la rotación

entre los elementos conectados. Esta condición se presenta con conexiones cuya rigidez flexional está comprendida entre 20EI/L y 2EI/L de la viga.

 Conexiones simples, estas conexiones presentan una rigidez flexional menor a 2EI/L de la viga, de modo que su capacidad de transferir momento es despreciable. Estos conceptos se ilustran en la Figura 4 mediante diagramas momento-rotación.

Figura 4. Diagramas momento-rotación típico de conexiones FR, PR y simples

Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

1.4 CONEXIONES PRECALIFICADAS

"Las conexiones precalificadas son aquellas que han sido verificadas y validadas en forma experimental, ya sea como parte del proyecto que se desarrolla o bien en ensayos previos que se encuentran debidamente documentados"³. El proceso de

³ Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-818

precalificación implica el cumplimiento de los siguientes parámetros, dados por el AISC 341-16 en su Capitulo E, numeral 6b conexión viga-columna y en la NSR-10 en sus numerales F.3.5.2.6.2 y F.3.7.3.6.2, respectivamente, los cuales se presenta a continuación:

- La conexión debe ser capaz de acomodar un ángulo de deriva de piso de 0.02 radianes como mínimo para Pórticos Resistentes a Momento Con Capacidad de Disipación de Energía Moderada (PRM-DMO) y de 0.04 radianes como mínimo para Pórticos Resistentes a Momento Con Capacidad de Disipación de Energía Especial (PRM-DES)
- La resistencia medida a flexión de la conexión, determinada en la cara de la columna, debe ser por lo menos 0.8Mp de la viga conectada, para un ángulo de deriva de piso de 0.02 radianes para PRM-DMO y de 0.04 para PRM-DES.

1.4.1 Conexiones Precalificadas según FEMA 350. Según el FEMA 350, presenta 9 conexiones precalificadas soldadas y pernadas. Ver Tabla 1.

Tabla 1. Conexiones precalificadas AISC 358-10 Conexiones precalificadas AISC 358-10

CATEGORÍA	DESCRIPCIÓN DE LA CONEXIÓN	ABREVIATURA	SISTEMA PERMITIDO
SOLDADA Y TOTALMENTE RESTRINGIDA	Welded Unreinforced Flanges, Bolted Web Alas Soldadas No Reforzadas- Alma Apernada	WUF-B	OMF

CATEGORÍA	DESCRIPCIÓN DE LA CONEXIÓN	ABREVIATURA	SISTEMA PERMITIDO	
SOLDADA Y TOTALMENTE RESTRINGIDA	Welded Unreinforced Flanges, Bolted Web Alas Soldadas No Reforzadas- Alma Apernada	WUF-W	OMF, SMF	
	<i>Free Flange</i> Ala Libre	FF	OMF, SMF	
SOLDADA Y TOTALMENTE RESTRINGIDA	Welded Flange Plate Placa Soldada Al Ala	WFP	OMF, SMF	
	Reduced Beam Section Viga De Seccion Reducida	RBS	OMF, SMF	
APERNADA TOTALMENTE RESTRINGIDA	Bolted, Unstiffened End Plate Placa Extrema Apernada No- Atiesada	BUEP	OMF, SMF	
	<i>Bolted, Stiffened End Plate</i> Placa Extrema Apernada Atiesada	BSEP	OMF, SMF	
	<i>Bolted Flange Plates</i> Placas Apernadas A Las Alas	BFP	OMF, SMF	
	<i>Double Split Tee</i> Doble T Cortada	DST	OMF, SMF	
SMF: Special Moment Frames (DES)				
IMF: Intermediate Moment Frames (DMO)				
Fuente: FEDERAL EMERGENCY MANAGEMENT AGENCY. FEMA (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency. SAC Joint Venture, Washinton, E.U.				

Tabla 1. (Continuación)

1.4.2 Conexiones Precalificadas *AISC 358-10*. Según el AISC 358-10, presenta7 conexiones precalificadas soldadas y pernadas. Ver Tabla 2.

CONEXIONES PRECALIFICADAS				
CONEXIÓN	CAPÍTULO	SISTEMA		
Vigas de sección reducida (Reduced beam section,	5	SMF, IMF		
RBS)	5			
Placa de extremo no atiesada (Bolted unstiffened	6	SMF, IMF		
extended end plate BUEEP)	0			
Placa de extremo atiesada (Bolted stiffened	o atiesada (Bolted stiffened			
extended end plate BSEEP)	0	SIVIE, IIVIE		
Cubreplacas pernado (Bolted flange plate BFP)	7	SMF, IMF		
Aletas y alma soldada sin refuerzos(Welded	8	SMF, IMF		
unreinforced flange-welded web WUF-W)	0			
Ménsula Kaiser pernada (Kaiser bolted bracket	0			
KBB)	5	SIVIE, IIVIE		
Conexión ConXtech (ConXtech ConXL moment	10	SMF, IMF		
connection ConXL)				
SMF: Special Moment Frames (DES)				
IMF: Intermediate Moment Frames (DMO)				
Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections				
for Special and Intermediate Steel Moment Frames for Seismic Applications. or Steel Buildings.				
Ed 2010. Chicago. Illinois: AISC. 2010.				

Tabla 2. Conexiones precalificadas AISC 358-10

1.4.3 Conexiones Precalificadas para Pórticos Resistentes a Momento Realizadas en Colombia. A continuación, se presenta en la tabla algunas de las conexiones precalificadas en Colombia, en orden cronológico. Ver Tabla 3.

CONEXIONES PRECALIFICADAS EN COLOMBIA				
CONEXIÓN	SISTEMA	AÑO	AUTORES	
UNIONES A MOMENTO EN PERFILES DE LÁMINA DELGADA DOBLADOS EN FRÍO.	DMI, DMO	2004	A. Gallo, J. Narváez	
CONEXIÓN TUBO-VIGA REFORZADA.	DES	2004	J. Posada, C. Pabón	
CONEXIÓN A COLUMNA LAMINADA SOLDADA CON CUBREPACAS.	DES	2005	H. Acero	
CONEXIONES PARA PÓRTICOS DE LÁMINA DELGADA	DMI	2006	E. López	
CONEXIONES PARA PÓRTICOS DE LÁMINA DELGADA 2DA PARTE	DMI, DMO	2007	S. Villar	
CONEXIÓN RÍGIDA DE UNA VIGA I Y UNA COLUMNA TUBULAR RELLENA DE CONCRETO	DES	2008	M. Uribe	
CONEXIÓN A COLUMNA LAMINADA SOLDADA CON CUBREPACAS Y SECCIÓN REDUCIDA	DES	2011	C. Cerón	
CONEXIÓN A MOMENTO EMPLEANDO VIGAS DE ALMA EXPANDIDA	DMO	2011	E. Ramírez	
CONEXIÓN METÁLICA RÍGIDA VIGA I – COLUMNA COMPUESTA EMBEBIDA	DES	2012	C. Torres	
CONEXIONES DE PERFILES I DE ACERO - VIGA CONECTADA AL EJE DÉBIL DE LA COLUMNA	DES	2015	C. Andrade	
DES: Disipación Especial de Energía DMO: Disipación Moderada de Energía DMI: Disipación Mínima de Energía				

Tabla 3. Conexiones precalificadas en Colombia

1.5 CRITERIOS BÁSICOS UTILIZADO EN EL DISEÑO DE CONEXIONES

A continuación, se detallarán los principios y criterios básicos sobre el diseño de conexiones:

1.5.1 Cálculo del Momento Plástico Probable en las Rótulas. Para el diseño de conexiones totalmente restringidas, se calcula el momento plástico máximo probable Mpr teniendo en cuenta lo especificado en el numeral F.3.5.3 PÓRTICOS RESISTENTES A MOMENTO CON CAPACIDAD DE DISIPACIÓN DE ENERGÍA ESPECIAL (PMR-DES) de la NSR-10. Según el numeral F.3.5.3.4.1. El momento probable de la viga alternativamente se puede determinar consistente con el diseño de la conexión precalificada de acuerdo con ANSI/AISC 358. El momento probable para la viga está dado por la siguiente expresión:

$$M_{pr} = C_{pr} R_y Z_b F_y \tag{1-1}$$

C_{pr} = Factor que tiene en cuenta la resistencia máxima de la conexión. El valor se determina con la expresión (1- 2). Este valor no debe ser en general mayor a 1.20. No obstante, puede presentarse excepciones para alguna conexión en particular y por lo tanto debe adoptarse los valores que surgen del proceso de precalificación.

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2 \tag{1-2}$$

- R_y = Coeficiente que relaciona la tensión de fluencia esperada con la mínima tensión de fluencia especificada de la viga. Este valor se determina según Fy del material que compone el elemento, valores que se encuentran en la Tabla F.3.1.4-1 (NSR-10).
- Z_b = Modulo Platico de la sección, (mm³).

- F_{y} = Mínima Tensión de fluencia de la viga, (MPa).
- F_u = Tensión de ruptura del acero, (MPa).

La norma NSR-10, 2010 en el Titulo F capitulo F.3.5.3.4.1, emplea fórmula $1.1R_yF_{yb}Z_b$ para el cálculo del momento plástico esperado en las vigas. Se ha demostrado mediante investigaciones *FEMA-350*, 2000 que algunas de las conexiones rígidas, más comunes, presentan un momento máximo esperado superior al exigido por dicha normatividad. Por lo tanto, *FEMA-350* recomienda el uso del factor de amplificación C_{pr} con el propósito de asegurar la viabilidad de las hipótesis asumidas en el diseño sísmico.

1.5.2 Ubicación de las Rótulas Plásticas. Basados en ensayos y pruebas de calificación *ASIC-358, 2016*, la ubicación de las rótulas plásticas generadas en la longitud libre de la viga puede ser determinada y representada por el parámetro S_h , como se muestra en la Figura 5. El valor de S_h dependerá de cada conexión analizada en la especificación del *AISC-358, 2016* o de la conexión que sea precalificada mediante ensayos.

Figura 5. Ubicación de las rótulas plásticas

Fuente: FEDERAL EMERGENCY MANAGEMENT AGENCY. FEMA (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency. SAC Joint Venture, Washinton, E.U.

1.5.3 Cálculo de la Fuerza Cortante Probable en las Rótulas Plásticas de la Viga. La fuerza cortante probable en las rótulas plásticas de la viga deberá ser calculadas por métodos estáticos, considerando las cargas de gravedad mayoradas actuando sobre las vigas. Para ello la forma más sencilla consiste en analizar un diagrama de cuerpo libre del tramo de la viga entre rótulas. Para el obtener la fuerza cortante en las rótulas plásticas como se muestra en la Figura 6 donde proviene V_{p} , incluyendo las cargas gravitacionales, se expresa en la ecuación (1- 3).

Dónde:

 M_{pr} = Momento plástico máximo probable en la rótula plástica, (N-mm).

 L_h = Distancia entre rótulas plásticas, (mm). Ver Figura 6.

W = Cargas gravitacionales distribuidas en la viga resultante de 1.2D+0.5L

$$V_p = \frac{2M_{pr}}{L_h} + \frac{W_u L_h}{2}$$
(1-3)

Figura 6. Calculo de la Fuerza Cortante Probable en las Rótulas Plásticas

Diagrama de Cuerpo Libre entre rótulas plásticas

Fuente: FEDERAL EMERGENCY MANAGEMENT AGENCY. FEMA (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency. SAC Joint Venture, Washinton, E.U.

1.5.4 Determinación de la Demanda de Resistencia en cada Sección Crítica. Con el fin de realizar y completar el diseño de la conexión en cuanto al tamaño de

soldaduras de unión, pernos dimensiones de placas, platinas de continuidad, es necesario determinar las demandas de flexión y corte de la sección crítica de los elementos que conforma la conexión. Estas demandas se pueden calcular realizando un diagrama de cuerpo libre del tramo de viga entre la sección crítica (cara de la columna o eje de la columna) y la rótula plástica *FEMA-350, 2000*, tal como se muestra en la Figura 7.

De la Figura 7 (a) se obtiene el valor de la demanda crítica de la sección en la cara de la columna M_f:

$$M_f = M_{pr} + V_p S_h \tag{1-4}$$

Dónde:

 M_{pr} = Momento plástico máximo probable, (N-mm).

 S_h = Distancia entre la cara de la columna y la rótula plástica, (mm); calculado según tipo de conexión en estudio.

 V_p = Fuerza cortante al final de la viga, (N).

Figura 7. Cálculo de las demandas sobre cada sección critica

Fuente: FEDERAL EMERGENCY MANAGEMENT AGENCY. FEMA (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency. SAC Joint Venture, Washinton, E.U.

De la Figura 7 (b) se obtiene el valor de la demanda crítica de la sección en el eje de la columna, es decir el valor de $M_c = M^*_{pb}$:

$$M_c = M_{pb}^* = (1.1R_y F_{yb} Z_b) + M_{uv}$$
(1-5)

$$M_{uv} = V_p * \left(S_h + \frac{d_c}{2}\right) \tag{1-6}$$

Dónde:

- M_{uv} = Momento adicional en el eje de la columna debido a la amplificación por el cortante desde la rótula plástica hasta el eje de la columna. (N-m).
- V_p = Cortante en las rótula plástica, (N).
- S_h = Distancia desde el eje de la columna a la rótula plástica, (mm), calculada

según el tipo de conexión en estudio.

En el *FEMA 350*, se denomina como M_c ; se realiza el cambio en la nomenclatura por M^*_{pb} para unificar y realizar el criterio de jerarquía de plastificación con la propuesta de lo indicado en el capítulo F.3.5.3.4.1 del Título F de la *NSR-10*.

1.5.5 Cálculo del Momento Resistente nominal de la Columna Proyectado a los ejes de la Intersección Columna-Viga. Se efectúa la proyección del momento resistente nominal de la columna Mpc, a los ejes de intersección viga-columna; como se muestra en la Figura 8.

Figura 8. Momento resistente de la columna proyectado a los ejes

$$M_{pc} = Z_c \left(F_{yc} - \frac{P_{uc}}{A_g} \right) \tag{1-7}$$

$$V_{c} = \frac{\sum \left[M_{pr} + V_{p} \left(S_{h} + \frac{d_{c}}{2} \right) \right]}{H}$$
(1-8)

$$M_{pc}^* = \sum \left[M_{pc} + V_c \left(\frac{d_b}{2} \right) \right] \tag{1-9}$$

Dónde:

 $\sum M_{pc}^{*}$ = Suma de las proyecciones al eje de la viga, de la resistencia nominal a flexión de las columnas, (N-mm).

 M_{pc} = Resistencia nominal a flexión de la columna, (N-mm).

 d_c = Peralte de la columna, medida desde los bordes de las aletas, (mm).

 d_b = Peralte de la viga, medida desde los bordes de las aletas, (mm).

1.6 METODOLOGÍA DE DISEÑO DE EDIFICACIONES METÁLICAS

Estos requisitos se aplican para el diseño de estructuras metálicas tipo Pórticos Resistentes a Momento con Capacidad de Disipación de Energía Moderada (PRM-DMO) y Pórticos Resistentes a Momento con Capacidad de Disipación de Energía Especial (PRM-DES).

A continuación en la Figura 9, se muestra la metodología de diseño de edificaciones metálicas en un diagrama de flujo.

Figura 9. Diagrama de Flujo para el diseño de edificaciones metálicas Referencias y Notas según la NSR-10.

Nota 1: en este paso se debe seleccionar previamente el tamaño de los miembros teniendo en cuenta los criterios de estabilidad según la NSR 10 en el titulo F numeral F.2.3.

Nota 2: En la Tabla 4 se muestra los requerimientos para el diseño sísmico de Pórticos Resistentes a Momentos (PRM).

REQUERIMIENTO	REFERENCIA	CAPACIDAD DE DISIPACIÓN DE ENERGÍA				
	NSR-10	ESPECIAL	MODERADO			
Limites Ancho – Espesor de	F3411) da	λdm			
perfiles de acero o compuestos	1.0.4.1.1	Nua				
Arrostramiento lateral para la	E 2 / 1 1	Si	Si			
estabilidad de la viga	F.J.4.1.1	Lb=0.87ryE/Fy	Lb=0.17ryE/Fy			
Zonas Protogidas	F.3.5.3.5.3	Extremo de la	Extremo de la			
Zullas Fillegidas	F.3.5.2.5.3	Viga	Viga			
Verificación Zona de Panel	F.3.5.3.6.5	Si	No			
	F.3.5.2.5.3	0	INU			
Relación de Momentos entre la		Si				
resistencia flexional de la columnas y vigas	F.3.5.3.4.1	$\frac{\sum M_{pc}}{M_{pb}} > 1$	No			

Tabla 4. Requerimientos para el diseño sísmico para Pórticos Resistentes a Momento (PRM)

2 PROCEDIMIENTOS PARA EL DISEÑO DE CONEXIONES

Las conexiones precalificadas en Colombia y que se presentan en este documento son las siguientes:

- Conexión Precalificada Tubo-Viga Reforzada.
- Conexión Precalificada Viga I Columna Compuesta embebida
- Conexión Precalificada Rígida Viga I Y Una Columna Tubular Rellena De Concreto.
- Conexión Precalificada Soldada A Momento Viga-Columna

2.1 PROCEDIMIENTO DE DISEÑO DE CONEXIÓN PRECALIFICADA TUBO-VIGA REFORZADA

Autores: Juan Posada y Camilo Pabón, Director: Ing. Luis Garza.

En esta investigación se realizó la precalificación de una conexión soldada en campo a momento viga-columna usado un perfil tubular armado TB300x300-8mm para la columna y viga electro soldada VP400 para la viga usando platabandas soldadas para los patines de la viga y platina de cortante para el alma de la viga, obteniendo una conexión precalificada para sistemas estructurales con capacidad especial de disipación de energía en el rango inelástico (DES).

Figura 10. Detalle 3D conexión.

PASO 1: Calcular M_{pr} de acuerdo al procedimiento de la sección 1.5.1, (N-mm).

PASO 2: Suponga una longitud de placa Ip.

Figura 11. Localización Probable de la Rótula Plástica

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Revisar que se cumpla el criterio viga débil-columna fuerte:

$$\frac{2Z_c(F_{yc} - P_{uc}/A_c)}{\sum\left\{\left[1 + \frac{2}{L_b - 2l_p}\left(l_p + \frac{d_c}{2}\right)\right]\frac{M_{pr}(H - d_b)}{H}\right\}} > 1.0$$
(2-1)

 L_b = Longitud total de la viga, medida entre columnas (mm).

 M_{pr} = Momento plástico esperado, (N-mm).

- d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).
- H = Longitud total de la columna, (mm).
- d_b = Altura del Perfil Viga, (mm).
- Z_c = Modulo plástico de la sección de la columna, (mm³).
- F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).
- P_{uc} = Carga axial en la columna para la combinación de carga 1.2D+0.5L (N)
- A_c = Área Perfil Columna (mm²)

PASO 3: Calcular V_p en la ubicación de la rótula plástica, I_p , de acuerdo al procedimiento de la sección **1.5.3**, (N).

Figura 12. Diagrama de cuerpo libre para el cálculo de la cortante en la rótula plástica

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004. Dónde:

 Longitud del segmento de la viga entre las dos rótulas plásticas, calculada entre la longitud total de la viga L_b menos dos veces la longitud desde la cara de la columna a la que se desarrolla la rótula plástica l_p, (mm).

$$L_h = L_b - 2l_p \tag{2-2}$$

PASO 4: Calcular M_f , de acuerdo al procedimiento de la sección **1.5.4** para ello se remplaza la variable "S_h" por "I_p", (N).

$$M_f = M_{pr} + V_p l_p \tag{2-3}$$

Figura 13. Diagrama de cuerpo libre para el cálculo de la cortante y el momento en la cara de la columna

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

PASO 5: Determinar el ancho b_p de las cubre placas con la ecuación (2- 4). Para ello se utiliza el criterio de la sección de *Whitmore* el cual es un estado limite que implica la fluencia o pandeo del material de la placa cerca de los extremos de los miembros unidos; este análisis se asume que la fuerza en el elemento esta uniformemente distribuido sobre el área efectiva, esta área efectiva se determina multiplicando el espesor de la placa por una longitud efectiva que es definida por la proyección de las líneas a 30° sobre cada lado de la línea de pernos o soldaduras que conectan la placa.

Figura 14. Diagrama para el cálculo de bp

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

$$b_p = 2W_l tan 30^o + b_{fb} (2-4)$$

 W_l = longitud de la soldadura de filete de la cubre placa inferior a la aleta de la viga, (mm).

$$W_l = l_p - 10 \, mm$$
 (2-5)

 b_{fb} = ancho del ala perfil viga, (mm).

PASO 6: Calculo del espesor t_p del cubreplaca inferior. Con el fin de facilitar el proceso de fabricación y ensamble se supone que el espesor del cubreplaca superior es igual al de la cubreplaca inferior. Para ello se tienen en cuenta los siguientes estados límites:

 Resistencia de diseño de soldadura del material base según F.2.10.2.4 (NSR-10). Figura 15. Estado límite: resistencia de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

$$\phi F_{BM} A_{BM} \ge \frac{M_{pr}}{d_b - t_{fb}} \tag{2-6}$$

Los valores de ϕ , F_{BM} y sus limitaciones se encuentran en la Tabla F.2.10.2-5, NSR10.

Luego:

$$\phi F_{BM} A_{BM} = \phi F_{yp} t_p 2W_l \ge \frac{M_{pr}}{d_b - t_{fb}}$$
(2-7)

 ϕ = Coeficiente de resistencia igual a 0.90.

 F_{BM} = Resistencia nominal por unidad de área del metal base, (MPa).

 A_{BM} = Área de la sección transversal del metal base, (mm²).

 t_p = Espesor del cubreplaca, (mm).

 F_{yp} = Tensión de Fluencia del Acero de las Placa, (MPa).

Despejando t_p , se obtiene:

$$t_p \ge \frac{M_{pr}}{\phi F_{yp} 2W_l (d_b - t_{fb})}$$
(2-8)

 Resistencia a tensión del cubreplaca inferior según F.2.10.4.1 (NSR-10). El valor t_p será el obtenido para los estados límites de fluencia por tensión y rotura por tensión.

Figura 16. Estados límites: fluencia por tensión, rotura por tensión y desgarramiento en bloque en el cubreplaca inferior

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Fluencia por tensión:

$$\phi R_n = \phi A_g F_{yp} \ge \frac{M_f}{d_b} \tag{2-9}$$

Luego:

$$\phi R_n = \phi b_p t_p F_{yp} \ge \frac{M_f}{d_b} \tag{2-10}$$

Despejando t_p de la ecuación (2-10) se obtiene:

$$t_p \ge \frac{M_f}{\phi b_p F_{yp} d_b} \tag{2-11}$$

Donde:

- ϕ = Coeficiente de resistencia igual a 0.90.
- b_p = Es el ancho del cubreplaca, (mm).
- $A_g = A_{rea}$ Bruta del cubreplaca = $b_p t_p$, (mm²).

Rotura por tensión.

$$\phi R_n = \phi F_{up} A_e \ge \frac{M_f}{d_b} \tag{2-12}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.75

- F_{up} = Tensión de Ruptura del Acero de las Placas, (MPa).
- $A_e = A_n U$
- $A_n = A_g$ = Área Neta de la platina, Como no hay perforaciones corresponde al Área bruta = $b_p t_p$, (mm²).
- U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso 4.

$$W_l \ge 2b_{fb} \dots U = 1.0$$

$$2b_{fb} > W_l \ge 1.5b_{fb} \dots U = 0.87$$

49

$$1.5b_{fb} > W_l \ge b_{fb} \dots U = 0.75$$

Luego:

$$\phi R_n = \phi b_p t_p U F_u \ge \frac{M_f}{d_h} \tag{2-13}$$

Despejando t_p de la ecuación (2-13) se obtiene:

$$t_p \ge \frac{M_f}{\phi U b_p F_{up} d_b} \tag{2-14}$$

• Resistencia del cubreplaca a desgarramiento en bloque de cortante según el F.2.10.4.3 (NSR-10), se determina como sigue.

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_{fb}} \tag{2-15}$$

$$\phi R_n = \phi \left[0.60 F_{up} A_{nv} + U_{bs} F_{up} A_{nt} \right] \le \phi \left[0.6 F_{yp} A_{gv} + U_{bs} F_{up} A_{nt} \right]$$
(2-16)

- ϕ = Coeficiente de resistencia igual a 0.75
- A_{gv} = Área bruta sometida a cortante, (mm²).
- A_{nt} = Área neta sometida a tensión, (mm²).
- A_{nv} = Área neta sometida a cortante, (mm²).
- $U_{bs} = 1.0$ ya que el esfuerzo de tensión es uniforme

Ya que la conexión es soldada, las áreas brutas y netas a cortante son iguales.

$$A_{gv} = A_{nv} = 2W_l t_p \tag{2-17}$$

$$A_{nt} = b_f t_p \tag{2-18}$$

La revisión se debe hacer para el mayor de los *t*_p obtenidos en los cálculos precedentes.

• Resistencia a la rotura por tensión en el área neta entre el cubreplaca y la cara de la columna.

Figura 17. Estado límite: rotura por tensión en el área neta

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

La resistencia de diseño para el estado límite de rotura es:

$$\phi R_n = \phi A_{nt} F_{up} \ge \frac{M_f}{d_b} \tag{2-19}$$

Donde:

 ϕ = Coeficiente de resistencia igual a 0.75 A_{nt} = Área neta sometida a tensión. Corresponde a t_p (b_p - d_c), (mm²). Luego:

$$\phi R_n = \phi t_p (b_p - b_c) F_{up} \ge \frac{M_f}{d_b}$$
(2-20)

Despejando t_p , se obtiene:

$$t_p \ge \frac{M_f}{\phi F_{up} d_b (b_p - b_c)} \tag{2-21}$$

 Resistencia del cubre placa a cortante según F.2.10.4.2 (NSR-10), en la unión del cubreplaca con la columna. El valor t_p será el obtenido para los estados límites de fluencia por cortante y rotura por cortante.

Figura 18. Estados límites: resistencia al corte por fluencia y rotura en la unión del cubreplaca con la columna

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yp} A_g \ge \frac{M_f}{d_b} \tag{2-22}$$

Luego:

$$R_n = \phi 0.60 F_{yp} A_g = \phi 0.6 F_{yp} 2 t_p d_c \ge \frac{M_f}{d_b}$$
(2-23)

Despejando t_p de la ecuación (2-23) se obtiene:

$$t_p \ge \frac{M_f}{\phi 0.6F_{yp}d_b 2d_c} \tag{2-24}$$

 ϕ = Coeficiente de resistencia igual a 0.90 A_g = Área Bruta. Corresponde a $2t_\rho d_c$, (mm²).

Rotura por cortante.

$$\phi R_n = \phi 0.6 F_{up} A_{nv} \ge \frac{M_f}{d_b} \tag{2-25}$$

Luego:

$$\phi R_n = \phi 0.6 F_{up} 2t_p d_c \ge \frac{M_f}{d_b} \tag{2-26}$$

Despejando t_p de la ecuación (2-26) se obtiene:

$$t_p \ge \frac{M_f}{\phi 0.6F_{up}d_b 2d_c} \tag{2-27}$$

 ϕ = Coeficiente de resistencia igual a 0.75

 A_g = Área neta sometida a corte. Debido a que la unión se hace con soldadura, el área neta a corte es igual al área bruta $2t_p d_c$, (mm²). **PASO 7:** Calculo del espesor t_w de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga, esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

Figura 19. Estado límite: resistencia de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

$$\phi R_n = \phi F_{nw} A_{we} \ge \frac{M_{pr}}{d_b - t_f}$$
(2-28)

El valor de ϕ , F_w y sus limitaciones se obtienen de la tabla F.2.10.2-5 (NSR-10).

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.75

 F_{nw} = Resistencia nominal por unidad de área para el metal de soldadura

corresponde a 0.6F_{EXX}. Tabla F.2.10.2-5 NSR-10, (MPa)

 A_{we} = Årea efectiva de la soldadura. Corresponde a 0.707t_w2W_I, (mm²)

 t_w = Tamaño de soldadura, (mm)

 W_l = Longitud de la soldadura cargada en dirección paralela en su eje, (mm)

Entonces:

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w 2W_l \ge \frac{M_{pr}}{d_b - t_f}$$
(2-29)

De la ecuación (2- 29) se obtiene el tamaño de soldadura de filete que se requiere para unir la placa inferior con la aleta de la viga. Este valor se debe comparar con los tamaños mínimos y máximo de soldaduras de filete que se especifica en el numeral F.2.10.2.2 de la (NSR-10), en función del espesor del material más grueso a unir.

$$t_w \ge \frac{M_{pr}}{\phi 0.60 F_{EXX} 0.7072 W_l (d_b - t_{fb})}$$
(2-30)

Si t_w es mayor que t_{fb} -2mm, entonces regresar al **Paso 2** y aumentar l_p .

PASO 8: Calculo de la longitud de soldadura de filete longitudinal W_i entre el cubreplaca superior y la aleta de la viga. Esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

Figura 20. Estado límite: resistencia de la soldadura de filete entre el cubreplaca superior y la aleta de la viga

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

La resistencia de diseño del grupo de soldadura cargado concéntricamente y consistentes en elementos con el mismo tamaño de soldadura orientada tanto longitudinal como transversalmente en relación con la dirección de aplicación de la carga como lo indica el F.2.10.2.4 literal "c" de la NSR-10:

$$R_n = max(R_{Wl} + R_{Wt}; 0.85R_{Wl} + 1.5R_{Wt})$$
(2-31)

Dónde:

- R_{Wl} = Resistencia nominal total de las soldaduras de filete cargadas longitudinalmente.
- R_{Wt} = Resistencia nominal total de las soldaduras de filete cargadas transversalmente.

La ecuación (2-31) permite definir la longitud de soldadura cargada en dirección paralela a su eje la cual se tomará como la mínima entre la ecuación (2-33) y (2-35).

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w (2W_l + W_t) \ge \frac{M_{pr}}{d_b - t_{fb}}$$
(2-32)

$$W_{l1} \ge \frac{M_{pr}}{2\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{W_t}{2}$$
(2-33)

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w [2(0.85W_l) + 1.5W_t] \ge \frac{M_{pr}}{d_b - t_{fb}}$$
(2-34)

$$W_{l2} \ge \frac{M_{pr}}{1.7\phi 0.60F_{EXX} 0.707t_w (d_b - t_{fb})} - \frac{1.5W_t}{1.7}$$
(2-35)

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.75.
- F_{nw} = Resistencia nominal por unidad de área para el metal de soldadura corresponde a 0.6F_{EXX}. Tabla F.2.10.2-5 NSR-10, (MPa).

 $A_{we} = Area efectiva de la soldadura, (mm²).$

 t_w = Tamaño de soldadura, determinado en el paso 7, (mm).

 W_l = Longitud de la soldadura cargada paralela a su eje, (mm).

 W_t = Longitud de la soldadura cargada perpendicular a su eje. Corresponde al ancho de la aleta, que a su vez es igual a la suma de $2W_{t1}$ y W_{t2} , mm.

$$W_{t1} = W_{t2} = \frac{b_{fb}}{3} \tag{2-36}$$

PASO 9: Calculo de la resistencia de diseño ϕR_n del cubreplaca superior, correspondiente al menor valor entre los valores obtenidos para los estados límites de fluencia por tensión y rotura por tensión según lo especifica el F.2.10.4.1 (NSR-10) o al desgarramiento en bloque según lo especifica el F.2.10.4.3 (NSR-10). Estos

estados límites sirven como condición de verificación que el espesor t_p de la cubre placa superior supuesto como el mismo espesor calculado anteriormente para el cubre placa inferior, sea el adecuado:

Figura 21. Estados límites: fluencia por tensión, rotura por tensión y desgarramiento en bloque en la cubre placa superior

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

• Fluencia por tensión:

$$\phi R_n = \phi A_g F_{yp} \ge \frac{M_f}{d_h} \tag{2-37}$$

Donde:

- ϕ = Coeficiente de resistencia igual a 0.90
- A_g = Área Bruta. Corresponde a $L_w t_p$, donde L_w es la longitud de la sección *Whitmore* en (mm), (mm²)

$$W_{t1} = b_f/3$$
, (mm)

 $W_{t2} = b_f/3$, (mm).

$$L_w = 2W_l \tan 30^o + W_{t2} \tag{2-38}$$

Luego:

$$\phi R_n = \phi L_w t_p F_{yp} \ge \frac{M_f}{d_b} \tag{2-39}$$

• Rotura por tensión:

$$\phi R_n = \phi A_e F_{up} \ge \frac{M_f}{d_b} \tag{2-40}$$

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.75.
- $A_e = A_n U.$
- $A_n = \text{ Årea Neta de la platina} = (L_w W_{t2}) t_{\rho}$, (mm²).
- U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso 4.

$$W_l \geq 2b_{fb}/3 \dots U = 1.0$$

$$2b_{fb}/3 > W_l \geq 1.5b_{fb}/3 \dots U = 0.87$$

$$1.5b_{fb}/3 > W_l \ge b_{fb}/3 \dots U = 0.75$$

Luego:

$$\phi R_n = \phi U(L_w - W_{t2})t_p F_{up} \ge \frac{M_f}{d_b}$$
(2-41)

• Desgarramiento en bloque:

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_p} \tag{2-42}$$

Luego:

$$\phi R_n = \phi \left[0.60 F_{up} A_{nv} + U_{bs} F_{up} A_{nt} \right] \le \phi \left[0.6 F_{yp} A_{gv} + U_{bs} F_{up} A_{nt} \right]$$
(2-43)

 ϕ = Coeficiente de resistencia igual a 0.75.

 A_{gv} = Área bruta sometida a cortante, (mm²).

 A_{nt} = Área neta sometida a tensión, (mm²).

 A_{nv} = Área neta sometida a cortante, (mm²).

 U_{bs} = 1.0 ya que el esfuerzo de tensión es uniforme.

Ya que la conexión es soldada, las áreas brutas y netas sometidas a cortante son iguales.

$$A_{gv} = A_{nv} = 2W_l t_p \tag{2-44}$$

$$A_{nt} = b_{fb} t_p \tag{2-45}$$

PASO 10: Se verifica el espesor por cortante en la zona de panel de la columna para el estado límite de fluencia por cortante según F.2.10.10.6 capitulo F de la NSR-10.

Entonces el cortante requerido en la zona de panel a partir del diagrama de cuerpo libre es:

$$R_u = \frac{\sum M_f}{d_b + t_p} - V_c$$
 (2-46)

Donde V_c es la fuerza de corte (*N*) en la columna ubicada por encima del nudo.

$$V_c = \frac{\sum M_f}{H} \tag{2-47}$$

Figura 22. Diagrama de cuerpo libre en la zona de panel

Se debe cumplir lo siguiente:

$$R_u \le \phi R_n \tag{2-48}$$

Donde R_n se calcula como se muestra a continuación, teniendo en cuenta que la columna es de sección cajón, con dos almas, se debe multiplicar por dos la resistencia de cada zona de panel.

• Para un Pu $\leq 0.75 P_y$

$$R_n = 2\left(0.6F_y d_c t_{pz} \left[1 + \frac{3b_c t_c^2}{d_b d_c t_{pz}}\right]\right)$$
(2-49)

• Para un Pu > 0.75Py

$$R_n = 2\left(0.6F_y d_c t_{pz} \left[1 + \frac{3b_c t_c^2}{d_b d_c t_{pz}}\right] \left[1.9 - \frac{1.2P_u}{P_y}\right]\right)$$
(2-50)

Dónde:

- A = A rea de la sección transversal de la columna, (mm²).
- ϕ = Coeficiente de resistencia igual a 0.90.
- t_c = Espesor de la columna, (mm).
- t_d = Espesor de la placa de enchape de la zona de panel, (mm).
- t_{pz} = Espesor total de la zona de panel Incluyendo las placas de enchape, si se requieren ($t_{pz} = t_c + t_d$). Si no se requieren $t_{pz} = t_c$, (mm).
- d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).
- b_c = Ancho de la columna en el sentido perpendicular de la conexión, (mm).
- d_b = Altura total de la viga, (mm).
- F_y = Resistencia especificada a la fluencia del acero en la zona de panel, (MPa).
- P_u = Resistencia requerida para la combinación 1.2D+0.5L, (N).
- $P_y = F_y A$, resistencia de la columna metálica a la fluencia bajo carga axial, (N).
- El espesor individual de la columna y de las placas de enchape debe cumplir con el siguiente requisito:

$$t_c \ge \frac{d_z + w_z}{90} = \frac{d_b + d_c}{90}$$
(2-51)

$$t_d \ge \frac{d_z + w_z}{90} = \frac{d_b + d_c}{90}$$

Dónde:

 t_c = Espesor de la columna, (mm).

 t_d = Espesor de la placa de enchape, (mm).

 d_z = Altura de la zona de panel. Corresponde a d_b , (mm).

 w_z = Ancho de la zona de panel. Corresponde a d_c, (mm).

• Conexión de las placas de enchape en la zona de panel: Las placas de enchape se conectarán a la cara de la columna mediante soldadura de filete a todo lo ancho de la placa de enchape y mediante soldadura abocinada entre las esquinas de la placa de enchape y las esquinas de la columna, en tal forma que desarrollen su resistencia de diseño al corte. Ver Figura 23 y Figura 24.

• **Soldadura de filete:** Se determina el tamaño mínimo de soldadura de filete según especifica la tabla F.2.10.2-4 (NSR-10); según el espesor de la parte más delgada a unir. Con este tamaño de soldadura de filete se verifica si satisface la resistencia de diseño de soldadura para resistir como mínimo la resistencia al corte desarrollado en la placa de enchape.

$$\phi_w 0.6F_{EXX} A_{efreq f} = \phi 0.60F_y A_g \tag{2-52}$$

$$A_{efreq f} = \frac{\phi F_y}{\phi_w F_{EXX}} A_g = 0.707 t_w d_c \tag{2-53}$$

Dónde:

 $A_{efreq f}$ = Área efectiva requerida de soldadura de filete, (mm²).

 A_g = Área bruta a cortante de la placa de enchape. Corresponde a $d_c t_d$,

(mm²).

 ϕ = Coeficiente de resistencia igual a 0.90.

 ϕ_W = Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

 t_w = Tamaño de soldadura de filete, (mm).

$$t_w = \frac{1.7F_y t_d}{F_{EXX}} \tag{2-54}$$

Figura 23. Soldadura de filete en la doble placa

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Hay que tener en cuenta el tamaño mínimo de la soldadura de filete, correspondiente al espesor más delgado a unir, t_p o t_d de acuerdo a la tabla F.2.10.2-4.

• **Soldadura abocinada:** Para el diseño de la soldadura abocinada se sigue el siguiente procedimiento. En el caso de vigas armadas con 4 placas, se seguiría el mismo procedimiento que para la soldadura de filete anterior, teniendo en cuenta las limitaciones de tamaño máximo de soldadura de filete al estar en el borde de la placa de enchape.

Figura 24. Soldadura abocinada en la doble placa

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

$$\phi_w 0.6F_{EXX} A_{efreq a} = \phi 0.60F_y A_g \tag{2-55}$$

$$A_{efreq a} = \frac{\phi F_{y}}{\phi_{w} F_{EXX}} A_{g}$$
(2- 56)

Dónde:

 $A_{efreq a} = Area efectiva requerida de soldadura abocinada, (mm²).$ $<math>A_g = Area bruta de la placa de enchape. Corresponde a d_bt_d, (mm²).$

El área efectiva disponible de soldadura abocinada corresponde a:

$$A_{efdisp} = t_{ef}d_b \tag{2-57}$$

Dónde:

*t*_{ef} = Espesor efectivo de la garganta de soldadura abocinada, con garganta convexa en media V, especificado en la Tabla F.2.10.2-2 (NSR-10).

En caso que el Área requerida de la soldadura abocinada sea mayor al área disponible, será necesario poner soldaduras de tapón adicionales, las cuales deben diseñarse para complementar la resistencia requerida.

Soldadura de Tapón:

$$\phi_w 0.6F_{EXX}A_{tapon} = \text{Resistencia faltante}$$
 (2-58)

Dónde:

$$A_{tapon} = \frac{Resistencia faltante}{\phi_w 0.6F_{EXX}}$$
(2-59)

Según el F.2.10.2.3.2 de la NSR-10 El diámetro de las soldaduras de tapón tiene las siguientes limitantes:

$$D_{min} = t_d + 8mm \tag{2-60}$$

$$D_{max} = D_{min} + 3mm \ o \ 2.25t_d \tag{2-61}$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

Dónde:

PASO 11: Verificar el espesor de la columna para el estado límite de resistencia para fluencia por cortante tal como lo especifica el F.2.10.4.2 numeral **(a)** NSR-10.

Figura 25. Estado límite: resistencia al corte por fluencia en el espesor de la columna

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

La resistencia de diseño es:

$$\phi R_n = \phi 0.60 F_{yc} A_{gv} \ge \frac{M_f}{d_b + t_p}$$
 (2-62)

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.90 A_{gv} = Área bruta. Correspondiente a 4t_cd_c, (mm²) F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).

Luego:

$$\phi R_n = \phi 0.60 F_{yc} 4 t_c d_c \ge \frac{M_f}{d_b + t_p}$$
(2-63)

En caso de no satisfacer el estado límite de resistencia al corte en el espesor de la columna es necesario incrementarlo, o poner una placa de enchape por este concepto, que aumentaría la resistencia de la columna sólo en la parte interior, es

decir, en la zona de panel. En la zona exterior la resistencia a cortante sería la misma que en el procedimiento anterior. Lo anterior podría subsanarse diseñando con las mismas expresiones mostradas, pero utilizando un espesor promedio $(t_c+t_{pz})/2$ en lugar de t_c .

Paso 12: Se diseña y detalla la placa de cortante la cual une a la cara de la columna mediante soldaduras de filete. Se une además al alma de la viga, por medio de un cordón de soldadura de filete a todo su alrededor. Para facilitar el montaje de la conexión y la aplicación de la soldadura se utilizan pernos que unen la placa de cortante y el alma de la viga.

La placa de cortante y las soldaduras se diseña para resistir el cortante plástico V_p en la cara de la columna y los pernos únicamente para cargas de montaje, que son mínimas.

• Dimensionamiento de la placa de cortante

Altura - Según la FEMA-350 para conexiones con placas soldadas a las aletas de la viga, la longitud de la placa de cortante viene dada por:

$$h_{st} = d_b - 2k - 50mm \tag{2-64}$$

Dónde:

k = Distancia desde la cara exterior de la aleta hasta el pie de la transición alma aleta, (mm).

Espesor - Igualmente para el espesor de la placa de cortante la FEMA-350 especifica:

$$t_{st} = t_{wb} \tag{2-65}$$

Longitud mínima al borde - La distancia mínima al borde del centro de una perforación estándar no debe ser inferior al valor especificado en la tabla F.2.10.3-4 o F.2.10.3-4M (NSR-10); comúnmente se recomienda una distancia de:

$$L_e \ge 1.5d \tag{2-66}$$

Ancho mínimo de la placa de cortante

$$L_{st} = 2L_e + 10mm \tag{2-67}$$

Figura 26. Dimensiones de la Placa de Cortante

• Estados limites en la viga

La resistencia de diseño en el alma de la viga será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yb} A_{gv} \ge V_p \tag{2-68}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.9

 A_{gv} = Área Bruta sometida a cortante. Corresponde d_bt_{wb}, (mm²)

 F_{yb} = Tensión de Fluencia del Acero de la Viga, (MPa).

Rotura por cortante:

$$\phi R_n = \phi 0.6 F_{up} A_{nv} \ge V_p \tag{2-69}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 075.

 A_{nv} = Área neta sometida a corte. Se obtiene descontándole el área neta del alma las dos perforaciones para los pernos, (mm²).

 F_{ub} = Tensión de Ruptura del Acero de la Viga, (MPa).

$$A_{nv} = [d_b - 2(d + 3.2mm)]t_{wb}$$
(2-70)

• Estados Límites en la placa de cortante

Resistencia a la fluencia por Flexión

$$\phi M_n = \phi F_{yp} Z_x \ge M_u = V_p e_x \tag{2-71}$$

Dónde:

$$Z_x = \frac{t_{st} h_{st}^2}{4}$$

 Z_x = Módulo plástico de la sección, (mm³). e_x = Ancho de la placa de cortante = L_{st}, (mm) 70

$$\phi = 0.90$$

La resistencia de diseño en la placa será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_y A_{gv} \ge V_p \tag{2-72}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.90.

 A_{gv} = Área Bruta sometida a cortante. Corresponde $h_{st}t_{st}$, (mm²).

Rotura por cortante:

$$\phi R_n = \phi 0.6F_u A_{n\nu} \ge V_p \tag{2-73}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 075.

 A_{nv} = Área neta sometida a corte. Se obtiene descontándole el área neta del alma las dos perforaciones para los pernos, (mm²).

$$A_{nv} = [h_{st} - 2(d + 3.2mm)]t_{st}$$
(2-74)

• Soldadura de Unión de la Platina a la Columna

Criterios pasa escoger el tamaño de la soldadura

Tamaño Mínimo: Según el espesor de la parte más delgada a unir el tamaño mínimo de la soldadura de filete se define en la Tabla F.2.10.2-4 del capítulo F de la NSR-10.

Cortante Excéntrica

Si la soldadura está sometida a cortante excéntrica, la resistencia de la soldadura se chequea con base en las tablas realizadas para este fin, en el manual de la AISC.

Figura 27. Dimensiones de la Placa de Cortante

$$a = \frac{e_x}{L}$$

k = 0, La fuerza no está en el plano de la Soldadura.

En la Tabla 3 (tabla 8-38 del manual AISC), con θ =0, y con los valores de a y k, se halla el coeficiente C.

La formulación en unidades de Kilonewton (KN) es:

$$\phi R_{nw} = C_1 C q w L \ge V_p \tag{2-75}$$

Donde,

- C_1 = Coeficiente del electrodo (1.0 para E70XX).
- q = Constante de transformación de unidades

$$q = \frac{4.44 * 16}{25.4^2} = 0.1091$$

- w = Tamaño de soldadura en (mm).
- L = Longitud de soldadura en (mm).

		k														
а	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78
0.10	2.78	2.78	2.78	2.78	2.78	2.77	2.75	2.74	2.73	2.71	2.70	2.67	2.64	2.61	2.59	2.78
0.15	2.75	2.75	2.74	2.73	2.71	2.70	2.69	2.67	2.66	2.64	2.63	2.60	2.58	2.55	2.53	2.50
0.20	2.64	2.63	2.63	2.62	2.60	2.59	2.58	2.57	2.56	2.55	2.54	2.52	2.50	2,48	2.46	2.44
0.25	2.48	2.48	2.48	2.47	2.47	2,46	2,46	2.45	2.45	2,44	2,44	2.43	2.41	2,40	2.39	2.38
0.30	2.32	2.32	2.32	2.32	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.32	2.32	2.31
0.40	2.00	2.00	2.01	2.03	2.05	2.07	2.08	2.10	2.11	2.12	2.14	2.15	2.16	2.17	2.18	2.18
0.50	1.72	1.72	1.74	1.77	1.80	1.83	1.86	1.89	1.91	1.93	1.95	1.99	2.01	2.03	2.05	2.06
0.60	1.50	1.50	1.52	1.55	1.59	1.63	1.67	1.71	1.74	1.77	1.79	1.84	1.87	1.90	1.92	1.94
0.70	1.32	1.32	1.34	1.38	1.42	1.47	1.51	1.55	1.59	1.62	1.65	1.71	1.75	1.79	1.81	1.84
1																
0.80	1.17	1.18	1.20	1.24	1.28	1.33	1.38	1.42	1.45	1.50	1.53	1.59	1.64	1.68	1.71	1.74
0.90	1.05	1.06	1.08	1.12	1.17	1.22	1.27	1.31	1.35	1.39	1.43	1.49	1.54	1.59	1.62	1.66
1.00	0.957	0.963	0.986	1.02	1.07	1.12	1.17	1.21	1.26	1.29	1.33	1.40	1.45	1.50	1.54	1.58
1.20	0.806	0.812	0.835	0.872	0.916	0.963	1.01	1.06	1.10	1.14	1.17	1.24	1.30	1.35	1.40	1.44
1.40	0.695	0.701	0.724	0.758	0.799	0.844	0.889	0.932	0.973	1.01	1.05	1.12	1.18	1.23	1.28	1.32
1.60	0.611	0.616	0.638	0.670	0.708	0.750	0.792	0.833	0.873	0.911	0.947	1.01	1.07	1.13	1.17	1.22
1.80	0.544	0.550	0.570	0.600	0.635	0.674	0.714	0.753	0.791	0.828	0.863	0.928	0.987	1.04	1.09	1.13
2.00	0.491	0.496	0.515	0.542	0.576	0.612	0.650	0.687	0.723	0.758	0.792	0.855	0.912	0.964	1.01	1.05
2.20	0.447	0.452	0.470	0.495	0.526	0.560	0.596	0.631	0.665	0.699	0.731	0.792	0.848	0.899	0.945	0.988
2.40	0.410	0.415	0.431	0.455	0.484	0.516	0.550	0.583	0.616	0.648	0.679	0.738	0.792	0.842	0.887	0.929
2.60	0.379	0.384	0.399	0.421	0.448	0.478	0.510	0.542	0.573	0.604	0.634	0.691	0.743	0.791	0.836	0.877
2.80	0.352	0.357	0.371	0.392	0.417	0.446	0.476	0.506	0.536	0.565	0.594	0.649	0.699	0.746	0.790	0.830
3.00	0.329	0.333	0.347	0.366	0.390	0.417	0.445	0.474	0.503	0.531	0.559	0.611	0.661	0.706	0.748	0.788

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Fuente: Tabla 3-38. AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

2.1.1 Diagrama de flujo de conexión precalificada tubo-viga reforzada

DATOS:

Datos de Viga (DV)

- b_{fb} = Ancho del Ala Perfil Viga, (mm).
- t_{fb} = Espesor del Ala Perfil Viga, (mm).
- t_{wb} = Espesor del Alma Perfil Viga, (mm).
- d_b = Altura del Perfil Viga, (mm).
- Z_{xb} = Modulo Plástico Perfil Viga (eje fuerte), (mm³).
- Z_{yb} = Modulo Plástico Perfil Viga (eje débil), (mm³).
- $A_b = \text{ Årea del Perfil Viga. (mm^2).}$
- I_{xb} = Momento de inercia Perfil Viga (eje fuerte), (mm⁴).
- I_{yb} = Momento de inercia Perfil Viga (eje débil), (mm⁴).
- *L* = Longitud de la Viga entre Ejes de Columnas. (mm).
- L_b = Longitud total de la viga, medida entre columnas, (mm).

Figura 28. Geometría de la Viga

Datos de Columna (DC)

- d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).
- b_c = Ancho Perfil Columna, (mm).
- t_c = Espero Perfil Columna, (mm).
- A_{gc} = Área Perfil Columna, (mm²).
- I_{xc} = Momento de inercia Perfil Columna (eje X), (mm⁴).
- I_{yc} = Momento de inercia Perfil Columna (eje Y), (mm⁴).
- Z_c = Modulo plástico de la sección de la columna, (mm³).
- H = Longitud total de la columna, (mm).

Figura 29. Geometría de la Columna

Datos de Materiales (DM):

Acero de la Viga (AV)

- F_{yb} = Tensión de Fluencia del Acero de la Viga, (MPa).
- F_{ub} = Tensión de Ruptura del Acero de la Viga, (MPa).
- R_{yb} = Relación entre la Resistencia a la Fluencia esperada F_{ye} y la resistencia mínima esperada a la fluencia del acero de la viga que va utilizar F_{y} .

Acero de la Columna (AC)

- F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).
- F_{uc} = Tensión de Ruptura del Acero de la Columna, (MPa).

Acero de la Placas (AP)

- F_{yp} = Tensión de Fluencia del Acero de las Placas, (MPa).
- F_{up} = Tensión de Ruptura del Acero de las Placas, (MPa).

Datos de Soldadura (DW)

 F_{EXX} = Número de clasificación del electrodo, correspondiente a la resistencia mínima especificada, (MPa).

Figura 30. Diagrama de Cuerpo Libre

Datos 1

 P_{uc} = Carga axial en la columna para la combinación de carga 1.2D+0.5L (N)

 I_{p} = Longitud del cubreplaca, (mm)

w = Carga para Combinación Gravitacional (1.2D+0.5L)

Datos 2

- *U*_{bs} = Coeficiente de Reducción usado en el cálculo de la Resistencia a la Rotura por Desgarramiento en Bloque
- U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso

$$W_l \ge 2b_{fb} \dots U = 1.0$$

$$2b_{fb} > W_l \ge 1.5b_{fb} \dots U = 0.87$$

 $1.5b_{fb} > W_l \ge b_{fb} \dots U = 0.75$

$$A_{gv} = A_{nv} = 2W_l t_{p4}, (mm^2)$$

$$A_{nt} = b_{fb} t_{p4}, (mm^4)$$

$$t_{p4} = \text{Espesor de la Cubre placa a calcular en el paso 6, (mm)}$$

Figura 31. Bloque de Cortante Cubre Placa Inferior

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Datos 3

 U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso

$$W_l \ge 2b_{fb}/3 \dots U = 1.0$$

$$2b_{fb} > W_l \ge 1.5b_{fb}/3 \dots U = 0.87$$

 $1.5b_{fb} > W_l \ge b_{fb}/3 \dots U = 0.75$

Datos 4

 $A_{gv} = A_{nv} = 2W_l t_p , (mm^2).$ $A_{nt} = W_{t2} t_p , (mm^4).$

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

Datos 5

 d_z = Altura de la Zona de panel. Correspondiente a d_b, (mm).

 W_z = Ancho de la Zona de Panel, Correspondiente a d_c, (mm).

 P_u = Resistencia requerida para la combinación 1.2D+0.5L, (N).

 $P_y = F_y A_{gc}$, resistencia de la columna metálica a la fluencia bajo carga axial, (N).

Figura 33. Figura de la Zona de Panel

Datos 6

 A_b = Área Pernos para unión montaje placa de Corte y viga, (mm²).

d = Diámetro Pernos unión montaje placa de Corte y viga, (mm).

$$A_{nv} = [d_b - 2(d + 3.2mm)]t_{wb}, (mm^2)$$

$$A_{gv} = d_b t_{wb}$$

Figura 34. Fluencia y Rotura a Cortante en la Viga

Datos 7

$$Z_x = \frac{t_{st}h_{st}^2}{4}, (mm^3)$$

$$e_x = L_{st}, (mm)$$

Datos 8

Le = Distancia Libre, en la dirección de la fuerza, entre el centro de la perforación considerada y el borde de la perforación adyacente o el borde del material, (mm).

$$L_{st} = 2L_e + 10mm$$

 t_{st} = Espesor de la Placa de Cortante, (mm).

k = Distancia desde la cara exterior de la aleta hasta el pie de la transición alma aleta, (mm).

$$h_{st} = d_b - 2k - 50$$

$$A_{gv} = h_{st} t_{st}, (mm^2)$$

 $A_n = [h_{st} - 2(d + 3.2mm)]t_{st}, (mm^2)$

Figura 35. Dimensiones de Placa de Corte (izq.); y Fluencia y Rotura a Cortante en la Placa de Corte (der.)

Figura 36. Diagrama de flujo diseño conexión precalificada tubo-viga reforzado

2.2 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFICADA VIGA I – COLUMNA COMPUESTA EMBEBIDA

Autor: Carlos Mauricio Torres Torres, Director: Ing. Ricardo Cruz Hernández. Codirector: Luis Garza.

En esta investigación se realizó una conexión metálica rígida de una viga en I W16x31 y una columna compuesta conformada por un perfil en I W8x31 embebido en concreto y confinado por barras de acero de refuerzo longitudinal y transversal, obteniendo una conexión precalificada para sistemas estructurales con capacidad especial de disipación de energía en el rango inelástico (DES).

En esencia, consiste en diseñar la conexión de acuerdo al procedimiento BUEP 4E de AISC 358, aplicado al perfil interior de la columna embebida.

Figura 37. Detalle 3D conexión.

DISEÑO DE PLACA DE EXTREMO Y PERNOS

PASO 1: Calcular M_{pr} , en la ubicación de las rótulas plásticas, S_h , de acuerdo al procedimiento de la sección **1.5.1**. (N-mm).

PASO 2: Seleccione los valores preliminares para la geometría de la conexión (g, P_{fi} , P_{fo} , P_b , h_i , etc. Ver Tabla 6.

En la Tabla 6, se muestran las limitaciones de cada uno de los parámetros geométricos de la conexión precalificada.

Limitaciones Paramétricas de Precalificación							
	Cuatro Pernos Sin Rigidizador (4E)						
Parámetro	Máximo		Mínimo				
	In	mm	In	mm			
t _{fb}	3/4	19	3/8	10			
b _{fb}	91/4	235	6	152			
db	55	1400	133/4	349			
tp	21/4	57	1/2	13			
b _p	103/4	273	7	178			
g	6	152	4	102			
P _{fi} , P _{fo}	41/2	114	11/2	38			
b _{fb} = Ancho del Ala Perfil Viga, in. (mm)							
b _p = Ancho de la placa extrema en la conexión, in. (mm)							
d _b = Altura Perfil Viga, in, (mm)							
g = Distancia Horizontal entre Pernos, in. (mm)							
P _{fi} = Distancia Vertical desde el interior del ala en Tensión de							
la viga y la fila de pernos más Cercano, in. (mm)							
P _{fo} = Distancia Vertical desde el exterior del ala en Tensión							
de la Viga y la fila de Pernos más cercana, in. (mm)							

Tabla 6.	Limitaciones	de los	Parámetros e	en la	Conexión	Precalificada
----------	--------------	--------	--------------	-------	----------	---------------

Tabla 6. (Continuación)

t _{fb} = Espesor del Ala Perfil Viga, in. (mm)						
t_p = Espesor de la Placa Extrema, in. (mm)						
Fuente: Manual AISC 358-10. AMERICAN INSTITUTE OF						
STEEL CONSTRUCTION. AISC. Prequalified Connections						
for Special and Intermediate Steel Moment Frames for						
Seismic Applications. or Steel Buildings. Ed 2010. Chicago.						
Illinois: AISC. 2010.						

Donde:

 b_p = Ancho del ala de la Viga más 25mm.

g = Distancia horizontal entre pernos, mínimo 3 veces el diámetro del perno, y con una separación mínima al borde de la placa de 1.5 veces el diámetro.

La distancia libre mínima entre los pernos y las placas es el diámetro del perno más 13mm para pernos hasta de 25mm de diámetro y el diámetro del perno más 19mm para pernos de mayor diámetro.

 $b_p = b_{fb} + 25mm$

$$h_1 = d_b - 1.5t_{fb} - P_{fi}$$

$$h_0 = d_b - \frac{t_{fb}}{2} + P_{fo}$$

PASO 3: Determinar la ubicación de las rótulas plásticas generadas en la longitud libre de la viga, la cual es representada por el parámetro **S**h distancia medida desde la cara de la columna de acero a la rótula plástica, tal como se muestra en la Figura 38 y Figura 39.

Figura 38. Ubicación de la formación de rótulas plásticas

 $S_h = min\left(\frac{d_b}{2} \ o \ 3b_{fb}\right) \tag{2-76}$

Figura 39. Distancia a la rótula plástica desde el eje de la columna

Donde:

 d_c = Altura perfil columna que conforma la conexión, (mm)

- d_b = Altura perfil viga que conforma la conexión. (mm)
- t_p = Espesor de la placa extrema, (mm).
- b_{fb} = Ancho del ala perfil viga, (mm).

PASO 4: Calcular V_p en la ubicación de la rótula plástica, S_h , de acuerdo al procedimiento de la sección **1.5.3**, (N).

PASO 5: Calcular M^{*}_{pb}, de acuerdo al procedimiento de la sección **1.5.4**, (N-mm)

PASO 6: Realizar el planteamiento de la jerarquía de la plastificación como se describe en el capítulo F.3 sección F.3.7.3.4 de la NSR-10.

$$\frac{\sum M_{pcc}^*}{\sum M_{pb}^*} \ge 1 \tag{2-77}$$

Dónde:

 $\sum \mathbf{M}^*_{pcc}$ Suma de las Proyecciones al eje de las vigas de acuerdo con el procedimiento de la sección **1.5.5**, de la resistencia nominal a flexión de las columnas (incluidas las ménsulas si estas se utilizan) arriba y debajo de la unión con una reducción debida a la fuerza axial en la columna. Para columnas compuestas la resistencia nominal a flexión, \mathbf{M}_{pcc} , debe satisfacer los requisitos de F.2.9 de la NSR-10 considerando la resistencia axial requerida \mathbf{P}_{uc} . (N-mm).

 $\sum \mathbf{M}^*_{pb}$ se calcula como se describe en el **Paso 5, (**N-mm).

PASO 7: Calcular **M**_f de acuerdo al procedimiento de la sección **1.5.4** (Ver Figura 40) donde se muestra el diagrama de cuerpo libre de acuerdo a la conexión en estudio. (N-mm).

Figura 40. Diagrama de equilibrio para la conexión

PASO 8: Determine el diámetro del perno requerido **d**_{breq}, utilizando la ecuación para conexiones de cuatro pernos (4E y 4ES).

$$d_{b \ req'd} = \sqrt{\frac{2M_f}{\pi \phi_n F_{nt}(h_o + h_1)}}$$
(2-78)

Dónde:

- F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la tabla *F*.2.10.3-2 NSR-10, (MPa).
- ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90.

- h_1 = Distancia desde la línea central del ala inferior de la viga a la línea central del primer perno, (mm); ver figura del Tabla 7.
- h_o = Distancia desde la línea central del ala inferior de la viga a la fila del perno exterior, (mm); ver figura del Tabla 7.

PASO 9: Seleccionar un diámetro del perno de prueba **d**_b, no menor al requerido en el paso 8.

PASO 10: Determinar el espesor de la placa extrema $t_{p,req'd}$, requerida.

$$t_{p,req'd} = \sqrt{\frac{1.11M_f}{\phi_d F_{yp} Y_p}}$$
(2-79)

Dónde:

- F_{yp} = Tensión de fluencia mínima del material de la placa extrema, (MPa).
- Y_p = Parámetro de lineamiento para el rendimiento del mecanismo final de la placa extrema, especificado en la Tabla 7, (mm).
- ϕ_d = Factor de resistencia para el estado limite dúctil igual a 1.0

Geometría de la Placa Extremo y Modelo de Fuerzas en Pernos Modelo de la Línea de Fluencia b_p g de $\bar{\mathsf{P}}_{\mathsf{fo}}$ 2Pt tf $\dot{\mathsf{P}}_{\mathsf{fi}}$ - 2P_t S h_0 ${\sf M}_{\sf np}$ h_0 h₁ h₁ [wb t_p 0 $Y_{p} = \frac{b_{p}}{2} \left[h_{1} \left(\frac{1}{p_{fi}} + \frac{1}{s} \right) + h_{0} \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_{1} \left(p_{fi} + s \right) \right]$ Placa Extremo $s = \frac{1}{2} \sqrt{b_p g}$ Nota: $si p_{fi} > s, usar p_{fi} = s$ Fuente AISC 358-2010. AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

Tabla 7. Parámetro Yp de líneas de fluencia para la placa extrema de la conexión 4E

PASO 11: Selección de un grosor de la placa de extremo, **t**_p no inferior al calculado.

PASO 12: Calcular F_{fu}, que es la fuerza del ala de la viga.

$$F_{fu} = \frac{M_f}{d_b - t_{fb}} \tag{2-80}$$

Figura 41. Diagrama de equilibrio del ala de la viga

Fuente: CARDOSO M. L, QUISHPE S. E. Diseño de conexiones precalificadas bajo AISC para pórticos resistentes a momento. Tesis de grado, Ingeniero Mecánico. Riobamba-Ecuador: Escuela Superior Politécnica de Chimborazo, Facultad de mecánica, 2014. 127 p.

Dónde:

 d_b = Altura perfil viga, (mm).

 t_{fb} = Espesor del ala perfil viga, (mm).

PASO 13: Verificar que la placa extrema no falle por fluencia o por corte:

$$\frac{F_{fu}}{2} \le \phi_d R_n = \phi_d(0.6) F_{yp} b_p t_p$$
(2-81)

Dónde:

 ϕ_d = Factor de resistencia para el estado limite dúctil igual a 1.0

 b_b = Ancho de la placa extrema (mm), esta debe ser asumida no mayor que el ancho del ala de la viga, más 25mm.

Si el resultado de la ecuación anterior no cumple, se debe aumentar el espesor de la placa extrema o aumentar el límite de fluencia del material de la placa extrema.

PASO 14: Comprobar la ruptura por corte de la conexión de cuatro pernos sin rigidizar (4E).

$$\frac{F_{fu}}{2} \le \phi_n R_n = \phi_n(0.6) F_{up} A_n \tag{2-82}$$

$$A_n = t_p \left(b_p - 2(d_b + 3mm) \right) mm^2$$
 (2-83)

Dónde:

- ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90
- F_{up} = Tensión de ruptura del Acero de la placa extrema, (MPa).
- $A_n = A$ rea neta de la placa extrema, (mm²).
- d_b = Diámetro del perno, (mm).

Si la ecuación anterior no cumple, se debe aumentar el espesor de la placa extrema hasta que cumpla.

Paso 15: Revisar la ruptura por cortante de los pernos en la zona de compresión del ala de la viga.

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{nv} A_b \tag{2-84}$$

$$A_b = \frac{\pi}{4} d_b^2$$
 (2-85)

Dónde:

 ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90

 n_b = Número de pernos en el ala comprimida.

: 4 pernos para las conexiones 4E y 4ES.

: 8 pernos para las conexiones 8ES.

 A_b = Årea bruta del perno, (mm²).

 F_{nv} = Esfuerzo nominal a corte del perno Tabla F.2.10.3-2 NSR-10, (MPa).

 V_u = fuerza a corte en el extremo de la viga (N), dada por el paso 4.

Si la ecuación anterior no cumple, incrementar el diámetro o el número de pernos.

PASO 16: Verificar el aplastamiento del perno y la falla por desgarre de la placa extrema y el ala de la columna; en el ala de la columna se aplica solo aplastamiento del perno.

$$V_{u} \le \phi_{n} R_{n} = \phi_{n}(n_{i}) r_{ni} + \phi_{n}(n_{o}) r_{no}$$
(2-86)

Dónde:

 ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90

 n_i = Número de los pernos interiores.

: 2 pernos para las conexiones 4E y 4ES

: 4 pernos para las conexiones 8ES

 $n_{\rm o}$ = Número de pernos exteriores

: 2 pernos para las conexiones 4E y 4ES

: 4 pernos para las conexiones 8ES

Para la resistencia al desgarre de la placa extrema:

i. Para los pernos interiores:

$$r_{ni} = 1.2L_{ci}t_pF_u < 2.4d_bt_pF_u, \text{ para cada perno interior.}$$
(2-87)

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm)$$
(2-88)

ii. Para los pernos exteriores:

$$r_{no} = 1.2L_{co}t_pF_u < 2.4d_bt_pF_u, \text{ para cada perno exterior}$$
(2-89)

$$L_{co} = d_e - 0.5(d_b + 3.2mm) \tag{2-90}$$

Dónde:

- *L*_{co} = Distancia en la dirección de la fuerza, entre el borde de un agujero y el borde del agujero adyacente, (mm).
- F_u = Resistencia mínima a la tracción de la placa extrema o de la columna, (MPa).
- d_b = diámetro del perno, (mm).
- t_p = espesor de la placa extrema o espesor del ala de la columna, mm.
- F_{yb} = límite de fluencia de la viga, (MPa).
- F_{yc} = límite de fluencia de la columna, (MPa).
- t_{cf} = espesor del ala de la columna, (mm).

Si la ecuación anterior no cumple, incrementar el espesor de la placa extremo.

Paso 17: Diseño de la soldadura de la viga a la placa extremo según la Sección 6.9.7 del ANSI/AISC358-10.

Figura 42. Soldadura del ala y el alma a la Placa de extremo

Fuente: PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Trabajo de grado, Magister en Ingeniería estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

1. No se usarán orificios de acceso para soldadura.

2. El ala de la viga se conectará con la placa extrema con soldadura de penetración completa sin respaldo. La ranura de la soldadura CJP se hará de tal manera que la raíz de la soldadura este en el lado del alma de la viga. La cara interna del ala será de (5/16") 8 mm de soldadura en ángulo recto. Estas soldaduras deben ser de demanda crítica.

3. Para unir el alma de la viga a la placa extremo se utilizarán, ya sea soldaduras de filete o soldaduras de ranura CJP. Cuando se usan las soldaduras de filete serán dimensionada para desarrollar la resistencia del alma de la viga en tensión desde la cara interior del ala a 6" (150 mm) hasta la fila de tornillos más alejado del ala de la viga.

4. La soldadura de penetración de la raíz no se requiere en el ala directamente por encima y por debajo del alma de la viga para una longitud igual a 1.5 k₁ (k₁: distancia desde el eje del alma hasta la punta de la transición curva del ala). Se permite soldadura de penetración parcial.

5. Cuando se usen rigidizadores (4ES, 8ES) se usarán soldadura de penetración completa.

Excepción: Cuando el espesor del rigidizador es de 3/8" (10mm) o menor, se permite usar soldaduras de filete.

DISEÑO DE LA SECCIÓN DE LA COLUMNA

PASO 1: Comprobar la resistencia a la fluencia del ala de la columna por flexión.

$$t_{cf} \ge \sqrt{\frac{1.11M_f}{\phi_d F_{yc} Y_c}} \tag{2-91}$$

Dónde:

 ϕ_d = Factor de resistencia para el estado limite dúctil igual a 1.0

 F_{yc} = Limite fluencia del material de la columna, (MPa).

 Y_c = parámetro de lineamiento para el rendimiento del mecanismo final de la placa extrema, especificado en la tabla 6, (mm).

 t_{cf} = espesor del ala de la columna, (mm).

Si el resultado de la ecuación anterior no cumple aumentar el tamaño de la columna o añadir placas de continuidad. Si se añaden las placas de continuidad, compruebe Ecuación (2-91) usando Y_c para el ala de la columna rigidizada de la Tabla 9.

Tabla 8. Parámetro Yc de líneas de fluencia para el ala de la columna no rigidizada para la conexión 4E y 4ES

Tabla 9. Parámetro Yc de líneas de fluencia para el ala de la columna rigidizada para la conexión 4E y 4ES

PASO 2: en el caso que se requieran placas de continuidad para evitar la fluencia debido a la flexión en el ala de la columna, se debe determinar la fuerza en el rigidizador.

La resistencia del diseño a flexión del ala de la columna es:

$$\phi_d M_{cf} = \phi_d F_{yc} Y_c t_{fc}^2 \tag{2-92}$$

Dónde:

 Y_c = Parámetro de lineamiento para el rendimiento del mecanismo final de la placa extrema, especificado en la Tabla 9, (mm). Por lo tanto, la fuerza de diseño equivalente del ala de la columna es:

$$\phi_d R_n = \frac{\phi_d M_{cf}}{\left(d_b - t_{fb}\right)} \tag{2-93}$$

Usando $\phi_d R_n$ como la fuerza requerida para el diseño de la placa de continuidad determinada en el paso 3.

PASO 3: Si se requiere placas de continuidad, la fuerza requerida es:

$$F_{su} = F_{fu} - (\phi_d R_n) \tag{2-94}$$

Dónde:

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$

 ϕR_n = Valor de la resistencia de diseño del Paso 2 (Resistencia a la flexión del ala de la columna).

En las guías de diseño Steel Desing Guide Series 13 del AISC, se indica un procedimiento para calcular las dimensiones de las platinas de continuidad para la unión viga columna:

• Área mínima del rigidizador. los rigidizadores transversales se deben dimensionar para proporcionar una sección transversal, a partir de las solicitaciones de carga, el área mínima requerida es:

$$A_{smin} = \frac{F_{su}}{\phi F_{yp}} \tag{2-95}$$

Donde:

$$\phi = 0.90$$

 A_{stmin} = Área mínima transversal del rigidizador, mm²

 F_{su} = Fuerza de diseño, calculada en el paso 3, N

 F_{yp} = Esfuerzo de fluencia de la platina de continuidad, MPa

Ancho mínimo del Rigidizador

$$b_{pcmin} = \frac{b_{fc}}{3} - \frac{t_{wc}}{2}$$
(2-96)

Donde:

 b_{fc} = Ancho del ala de la columna, mm t_{wc} = Espesor del alma de la columna, mm b_{pcmin} = Ancho mínimo del rigidizador, mm

• Espesor mínimo del rigidizador

$$t_{pcmin} = \frac{b_{pcmin}}{16} \tag{2-97}$$

• Soldadura de Placas de Continuidad: Las placas de continuidad deben soldarse a las aletas y alma de la columna utilizando soldaduras acanaladas de penetración completa.

En caso de no requerirse placas de continuidad por los conceptos anteriores, dado que la falla de los especímenes ensayados fue por flexión en las aletas de la columna, se considera importante colocar placas de continuidad, por los requisitos mínimos de F.2.10.10.8, que se resumen la siguiente figura.

Figura 43. Geometría de las Placas rigidizadoras o de Continuidad

Fuente: PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Trabajo de grado, Magister en Ingeniería estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

PASO 4: Compruebe la zona de panel de la columna de conformidad con las disposiciones sísmicas de la NSR-10, Titulo F.3.5.3.6.5.

El espesor requerido en la zona de panel se determina a partir de la suma de los momentos plásticos esperados en los puntos de rótula plástica proyectados a la cara de la columna. La resistencia de diseño a cortante debe ser $\phi_v V_n$, con $\phi_v=1.0$ y la resistencia nominal a cortante V_n se debe calcular para el estado límite de fluencia por cortante según F.2.10.10.6.

El cortante de diseño requerido se calcula a partir de los esfuerzos internos en la zona de panel mediante el diagrama de cuerpo libre de la Figura 44, este se obtiene considerando que el momento flector resulta de un par de fuerzas axiales iguales y opuestas actuando en las alas del perfil.

Figura 44. Diagrama de cuerpo libre en la zona de panel

Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1

Entonces el cortante requerido en la zona de panel a partir del diagrama de cuerpo libre es:

$$R_u = \frac{\Sigma M_f}{d_b - t_{fb}} - V_c \tag{2-98}$$

Donde V_c es la fuerza de corte (N) en la columna ubicada por encima del nudo.

$$V_c = \frac{\Sigma M_f}{H} \tag{2-99}$$

$$R_u \le \phi R_n \tag{2-100}$$

La resistencia de diseño de la zona de panel del alma para el estado límite de fluencia por cortante se determinará con base en:

$$\phi = 0.90$$

Y \mathbf{R}_n , la resistencia nominal, calculada como sigue:

$$R_n = 0.6F_y d_c t_{wc} \left[1 + \frac{3b_{fc} t_{fc}^2}{d_b d_c t_{wc}} \right]$$
(2-101)

• Para un $P_u \ge 0.75 P_{y:}$

$$R_n = 0.6F_y d_c t_{wc} \left[1 + \frac{3b_{fc} t_{fc}^2}{d_b d_c t_{wc}} \right] \left[1.9 - \frac{1.2P_u}{P_y} \right]$$
(2-102)

Dónde:

- A_c = Área de la sección transversal perfil columna, (mm²).
- b_{cf} = Ancho de ala perfil columna, (mm).

- d_b = Altura perfil viga, (mm).
- d_c = Altura perfil columna, (mm).
- F_y = Resistencia especificada a fluencia del acero en la zona de panel, (MPa).
- P_u = Resistencia requerida para la combinación de cargas 1.2D +0.5L, (N).
- $P_y = F_y A_c$, resistencia de la columna a la fluencia bajo carga axial, (N).
- t_{fc} = Espesor del ala perfil columna, (mm).
- t_{wc} = Espesor del alma perfil columna, (mm). En caso de requerirse placas de enchape se deben reemplazar t_{wc} en la ecuación por $t_{wc}+t_d$, (mm)
- t_d = Espesor de la placa de enchape de la zona de panel, (mm).

Para aumentar la resistencia a corte se puede añadir placas de refuerzo, con lo cual aumenta t_p y por tal la resistencia disponible. Ver Figura 45.

Figura 45. Placas de refuerzo en la zona de panel con soldadura de penetración completa o soldadura de filete

Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1.

Figura 46. Diagrama de cuerpo libre en la cara de la Columna

• Los espesores individuales, *t*, de las almas de la columna y placas de enchape, en caso de utilizarse, deben cumplir con el siguiente requisito:

$$t \ge \frac{d_z + w_z}{90}$$
 (2-103)

Dónde:

- t = Espesor de la columna o de la placa de enchape, (mm).
- d_z = Altura de la zona de panel entre placas de continuidad, (mm).
- w_z = Ancho de la zona de panel entre aletas de la columna, (mm).
• Las placas de enchape se conectarán al alma de la columna mediante soldadura de filete a todo lo ancho y largo de la placa de enchape, en tal forma que desarrollen su resistencia de diseño al corte (Ver Figura 47)

Soldadura de filete:

Se determina el tamaño mínimo de soldadura de filete según especifica la tabla F.2.10.2-4 (NSR-10); según el espesor de la parte más delgada a unir. Con este tamaño de soldadura de filete se verifica si satisface la resistencia de diseño de soldadura para resistir como mínimo la resistencia al corte desarrollado en la placa de enchape.

 $\phi_w 0.6F_{EXX} A_{efreq f} = \phi 0.60F_y A_g \tag{2-1}$

$$A_{efreq f} = \frac{\phi F_y}{\phi_w F_{EXX}} A_g = 0.707 t_w d_c \tag{2-2}$$

Dónde:

 $A_{efreq f}$ = área efetiva requerida de soldadura de filete, (mm²).

$$A_g$$
 = área bruta a cortante de la placa de enchape. Corresponde a $d_c t_d$,
(mm²).

 ϕ = Coeficiente de resistencia igual a 0.90.

 ϕ_{W} = Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

t_w = Tamaño de soldadura de filete, (mm).

$$t_w = \frac{1.7F_{yd}t_d}{F_{EXX}} \tag{2-3}$$

Hay que tener en cuenta el tamaño mínimo de la soldadura de filete, correspondiente al espesor más delgado a unir, t_{wc} o t_d de acuerdo a la tabla F.2.10.2-4. En el caso de los filetes horizontales, se debe cumplir con el tamaño máximo, $t_w < t_d$ -2mm para espesores de la placa de enchape mayores de 6mm, y $t_w = t_d$ para espesores menores o iguales a 6mm. Si esto no se cumple se deben colocar soldaduras de tapón para completar la resistencia requerida:

Soldadura de Tapón:

$$\phi_w 0.6F_{EXX} A_{tapon} = \text{Resistencia faltante}$$
(2-4)

Dónde:

$$A_{tapon} = \frac{Resistencia faltante}{\phi_w 0.6F_{EXX}}$$
(2-5)

Según el F.2.10.2.3.2 de la NSR-10 El diámetro de las soldaduras de tapón tiene las siguientes limitantes:

$$D_{min} = t_d + 8mm \tag{2-6}$$

$$D_{max} = D_{min} + 3mm \ o' \ 2.25t_d \tag{2-7}$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

Dónde:

A _{tapón}	=	Área efectiva de soldadura de tapón, (mm²).
D	=	Diámetro del agujero para soldadura de tapón, (mm).
<i>t</i> _d	=	Espesor de la placa de enchape de la zona de panel, (mm)
фw	=	Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

2.2.1 Diagrama de flujo conexión precalificada viga I – columna compuesta embebida

DATOS:

Datos de Viga (DV)

- b_{fb} = Ancho del Ala Perfil Viga Perfil Viga, (mm).
- t_{fb} = Espesor del Ala Perfil Viga, (mm).
- t_{wb} = Espesor del Ala Perfil Viga, (mm).
- d_b = Altura Perfil Viga, (mm).
- Z_{xb} = Módulo Plástico Perfil Viga (eje fuerte), (mm³).
- Z_{yb} = Módulo Plástico Perfil Viga (eje débil), (mm³).
- $A_b = \text{ Årea del Perfil Viga. (mm^2).}$

- I_{xb} = Momento de inercia Perfil Viga (eje fuerte), (mm⁴).
- I_{yb} = Momento de inercia Perfil Viga (eje débil), (mm⁴).
- L = Longitud de la Viga entre Ejes de Columnas. (mm).
- L_b = Longitud Libre de la Viga, entre Caras de las Columnas, (mm).
- w = Carga para Combinación Gravitacional (1.2D+0.5L).

Figura 48. Geometría de la Viga

Datos de Columna (DC)

- d_c = Altura Perfil Columna, (mm).
- b_{fc} = Ancho del Ala Perfil Columna, (mm).
- *t_{fc}* = Espesor del Ala Perfil Columna, (mm).
- *t_{wc}* = Espesor del Alma Perfil Columna, (mm).
- $A_c =$ Área Perfil Columna, (mm²).
- I_{xc} = Momento de inercia Perfil Columna (eje fuerte), (mm⁴).
- I_{yc} = Momento de inercia Perfil Columna (eje débil), (mm⁴).
- Z_{xc} = Modulo Plástico Perfil Columna (eje fuerte), (mm³).
- Z_{yc} = Modulo Plástico Perfil Columna (eje débil), (mm³).
- H = Distancia de Columna entre puntos de Inflexión, (mm).
- L_c = Longitud Libre de Columna entre Caras Internas de Vigas, (mm).

Datos de Pernos (DP)

 d_b = Diámetro del Perno, (mm).

 n_b = Número de pernos.

 $A_b = \text{ Årea bruta del perno, (mm^2).}$

Figura 49. Geometría de la Columna Compuesta

Datos de Materiales:

Acero de la Viga (AV)

 F_{yb} = Tensión de Fluencia del Acero de la Viga, (MPa).

 F_{ub} = Tensión de Ruptura del Acero de la Viga, (MPa).

 R_{yb} = Relación entre la Resistencia a la Fluencia esperada F_{ye} y la resistencia mínima esperada a la fluencia del acero de la viga que va utilizar $F_{y.}$

Acero de la Columna (AC)

 F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).

 F_{uc} = Tensión de Ruptura del Acero de la Columna, (MPa).

Acero de la Placas (AP)

 F_{yp} = Tensión de Fluencia del Acero de la Placas, (MPa).

 F_{up} = Tensión de Ruptura del Acero de la Placas, (MPa).

Datos de Soldadura (DW)

F_{EXX} = Número de clasificación del electrodo, correspondiente a la resistencia mínima especificada, (MPa).

Calidad de Pernos (CP)

 F_{nv} = Esfuerzo nominal a corte del perno Tabla F.2.10.3-2 NSR-10, (MPa).

 F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la tabla *F*.2.10.3-2 NSR-10, (MPa).

Datos 1

 b_p = Ancho de la placa extrema en la conexión, (mm).

g = Distancia Horizontal entre Pernos, (mm).

- *d_e* = Distancia Vertical Libre, de la perforación y el borde del material de la placa extrema, (mm).
- P_{fo} = Distancia Vertical desde el exterior del Ala en Tensión de la Viga y la fila de
 Pernos más cercana, (mm).

*P*_{fi} = Distancia Vertical desde el interior del ala en Tensión de ka Viga y la fila de
 Pernos más Cercana, (mm).

 t_p = Espesor de la Placa Extrema, (mm).

Datos 2

 h_1 = Distancia desde la línea central del ala Inferior de la viga a la línea central del primer perno, (mm).

- *h*_o = Distancia desde la línea central del ala inferior de la viga a la fila del perno exterior, (mm).
- F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la tabla *F*.2.10.3-2 NSR-10, (MPa).

Datos 3
$$A_n = t_p [b_p - 2(d_b + 3mm)], (mm^2)$$

Figura 50. Ruptura por Corte

Datos 4

 n_b = Numero de pernos en el Ala Comprimida.

$$F_{nv}$$
 = Esfuerzo nominal a Corte del Perno Tabla F.2.10.3-2 NSR-10, (MPa).
 $A_b = \frac{\pi}{4} d_b^2$, (mm²)

Datos 5

 n_i = Numero de los Pernos Interiores. 2 Pernos para las conexiones 4E.

 n_o = Numero de Pernos Exteriores. 2 Pernos para las conexiones 4E.

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm), (mm)$$

$$L_{co} = d_e - 0.5(d_b + 3.2mm)$$
, (mm)

Figura 51. Esquema de datos placa extrema

Datos 6

- C = Distancia entre las filas de pernos superior y la fila de pernos inferior de la columna sin rigidizar, (mm).
- P_{si} = Distancia desde la cara interior de la placa de continuidad a la más cercana fila de los pernos interiores, (mm).
- P_{so} = Distancia desde la cara exterior de la placa de continuidad a la más cercana fila de los pernos exteriores, (mm).
- t_{pc} = Espesor de la platina de continuidad, (mm).

Datos 7

 b_{pc} = Ancho del rigidizador, mm.

 k_1 = Distancia desde el eje del alma del perfil al pie de la soldadura del alma (valor de diseño) o soldadura de filete. (mm).

 K = Distancia desde la cara exterior del ala del perfil al pie de la soldadura del alma (valor de diseño) o Soldadura de filete. (mm).

Datos 8

 d_z = Altura de la zona de panel entre placas de continuidad, (mm).

- w_z = Ancho de la zona de panel entre aletas de la columna, (mm).
- P_u = Resistencia requerida para la combinación 1.2D+0.5L, (N).
- $P_y = F_y A_c$, resistencia de la columna metálica a la fluencia bajo carga axial, (N).

Figura 52. Diagrama de flujo diseño conexión precalificada viga I - columna compuesta embebida

2.3 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFICADA RÍGIDA VIGA I Y UNA COLUMNA TUBULAR RELLENA DE CONCRETO

Autor: Maritza Uribe, Director: Ing. Gabriel Valencia.

En esta investigación se realizó la precalificación de una conexión pernada a momento viga-columna usado perfiles tubulares armados rellenos de concreto de 300x300mm en espesores de 5mm y 6mm para las columnas y perfiles IPE360 las vigas, obteniendo una conexión precalificada para sistemas estructurales con capacidad especial de disipación de energía en el rango inelástico (DES).

Figura 53. Detalle 3D conexión.

DISEÑO DE PLACA DE EXTREMO Y PERNOS

PASO 1: Calcular M_{pr} , en la ubicación de las rótulas plásticas, S_h , de acuerdo al procedimiento de la sección **1.5.1**. (N-mm).

PASO 2: Seleccione los valores preliminares para la geometría de la conexión (g, P_{fi}, P_{fo}, P_b, h_i, etc. Véase Tabla 10.

En la Tabla 10, se muestran las limitaciones de cada uno de los parámetros geométricos de la conexión precalificada.

Limitaciones Paramétricas de Precalificación							
Cuatro Pernos Sin Rigidizador (4E)							
Parámetro	Máx	imo	Mínimo				
	In	mm	In	mm			
t _{fb}	3/4	19	3/8	10			
b _{fb}	91/4	235	6	152			
db	55	1400	133/4	349			
t _p	21/4	57	1/2	13			
bp	103/4	273	7	178			
g	6	152	4	102			
P _{fi} , P _{fo}	41/2	114	11/2	38			
b _{fb} = Ancho del Ala Perfil Viga, in. (mm)							
b _p = Ancho de la placa extrema en la conexión, in. (mm)							
d _b = Altura Perfil Viga, in, (mm)							
g = Distancia Horizontal entre Pernos, in. (mm)							
P _{fi} = Distancia Vertical desde el interior del ala en Tensión de la viga							
y la fila de pernos más Cercano, in. (mm)							

Tabla 10. Limitaciones de los Parámetros en la Conexión Precalificada

P_{fo} = Distancia Vertical desde el exterior del ala en Tensión de la Viga y la fila de Pernos más cercana, in. (mm) t_{fb} = Espesor del Ala Perfil Viga, in. (mm)

Tabla 10. (Continuación)

t_p = Espesor de la Placa Extrema, in. (mm)

Fuente Manual AISC 358-10. AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

Donde

 b_p = Ancho del ala perfil Viga más 25mm.

g = Distancia horizontal entre pernos, mínimo 3 veces el diámetro del perno, y
 con una separación mínima al borde de la placa de 1.5 veces el diámetro.

La distancia libre mínima entre los pernos y las placas es el diámetro del perno más 13mm para pernos hasta de 25mm de diámetro y el diámetro del perno más 19mm para pernos de mayor diámetro.

$$b_p = b_{fb} + 25mm$$
$$h_1 = d_b - 1.5t_{fb} - P_{fi}$$

$$h_0 = d_b - \frac{t_{fb}}{2} + P_{fo}$$

PASO 3: Determinar la ubicación de las rótulas plásticas generadas en la longitud libre de la viga, la cual es representada por el parámetro S_h distancia medida desde la cara de la columna tal como se muestra en la Figura 54 y Figura 55.

Figura 54. Ubicación de la formación de rótulas plásticas

Fuente: URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia. 2008.

Figura 55. Distancia a la rótula plástica desde el eje de la columna

Fuente: URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia. 2008.

$$S_h = \min\left(\frac{d_b}{2} \ o \ 3b_{bf}\right) \tag{2-104}$$

Donde

- d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).
- d_b = Peralte total de la viga que conforma la conexión, (mm).
- t_p = Espesor de la placa terminal, (mm).
- b_{bf} = Ancho del ala de la viga, (mm).

PASO 4: Calcular V_p en la ubicación de la rótula plástica, S_h , de acuerdo al procedimiento de la sección **1.5.3**, (N).

PASO 5: Calcular M^{*}_{pb}, de acuerdo al procedimiento de la sección **1.5.4**, (N-mm).

PASO 6: Realizar el planteamiento de la jerarquía de la plastificación como se describe en el capítulo F.3 sección F.3.7.3.4. de la NSR-10.

$$\frac{\sum M_{pcc}^{*}}{\sum M_{pb}^{*}} \ge 1$$
 (2- 105)

Dónde:

 $\sum \mathbf{M}^*_{pcc}$ = Suma de las Proyecciones al eje de las vigas de acuerdo con el procedimiento de la sección **1.5.5**, de la resistencia nominal a flexión de las columnas (incluidas las ménsulas si estas se utilizan) arriba y debajo de la unión con una reducción debida a la fuerza axial en la columna. Para columnas compuestas la resistencia nominal a flexión, **M**_{pcc}, debe satisfacer los requisitos de F.2.9 de la NSR-10 considerando la resistencia axial requerida **P**_{uc}. (N-mm).

 $\sum \mathbf{M}^*_{pb}$ se calcula como se describe en el **Paso 5, (**N-mm).

A partir del paso 7 se continúa con el diseño de la conexión tomando como referencia la conexión (*BOLTED UNSTIFFENED END –PLATE MOMENT CONNECTIONS FOUR-BOLT*), siguiendo los pasos propuestos en el capítulo 6 de las conexiones precalificadas AISC 358-10, para los elementos los cuales son: la Placa Extendida, los Pernos Pasantes y las Soldaduras.

PASO 7: Calcular M_f de acuerdo al procedimiento de la sección **1.5.4**. Ver Figura 56, donde se muestra el diagrama de cuerpo libre de acuerdo a la conexión en estudio. (N-mm).

Figura 56. Diagrama de equilibrio para la conexión

Fuente: URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia. 2008.

PASO 8: Determine el diámetro del perno requerido d_{breq}, utilizando la ecuación para four-bolt connections (4E y 4ES).

$$d_{b \ req'd} = \sqrt{\frac{2M_f}{\pi \phi_n F_{nt}(h_o + h_1)}}$$
(2-106)

Dónde:

- $F_{nt} =$ Resistencia a la tensión nominal del perno de acuerdo a la especificación de la Tabla 12 de este documento, (MPa).
- Factor de resistencia para el estado limite no dúctil igual a 0.90. $\phi_n =$
- Distancia desde la línea central del ala inferior de la viga a la línea central $h_1 =$ del primer perno, (mm); ver figura de la Tabla 13.
- Distancia desde la línea central del ala inferior de la viga a la fila del perno $h_o =$ exterior, (mm); ver figura de la Tabla 13.

Tabla 11. Propiedades mecánicas del Acero (ASTM A-193) Grado B7

(Esta tabla aplica para los espárragos y tornillos fabricados con el código ASTM A 193/ A 193M)										
Grado	Diámetro mm (pulg.)	Tem min Reve	peratura ima de mido, *C (*F)	Resis Minir Tensi	stencia na a la ón MPa ksi)	Resis Minir Fluencia balance	stencia na a la 0.2 % de MPa (ksi)	% mínimo de Elongación en 4 D	% minimo de Reducción de área	Dureza Máxima
	Aceros Ferriticos									
B5	M100 (4") y	593	(1100)	690	(100)	550	(80)	16	50	
4 a 6 % cromo B6	mayores M100 (4") y	593	(1100)	760	(100)	585	(85)	15	50	
13 % cromo B6X	mayores M100 (4") y	593	(1100)	620	(90)	485	(70)	16	50	26 HRC
13 % cromo B7	M64 (2.5") y	593	(1100)	860	(125)	720	(105)	16	50	321 HB o 35 HRC
cromo molibdeno	arriba de M64 (2.5') y hasta	593	(1100)	795	(115)	655	(95)	16	50	302 HB o 33 HRC
	arriba de M100 (4") y hasta	593	(1100)	690	(100)	515	(75)	18	50	277 HB o 29 HRC
B7M ⁶ cromo molibdeno	M180 (7") M64 (2.5") y menores	620	(1150)	690	(100)	550	(80)	18	50	235 HB o 99 HRB
	M100 (4") y menores	620	(1150)	690	(100)	550	(80)	18	50	235 BHN o 99 R/B
	arriba de M100 (4") y hasta	620	(1150)	690	(100)	515	(75)	18	50	235 BHN o 99 R/B
B16 cromo molibdeno vanadio	M180 (7°) M64 (2.5") y menores	650	(1200)	860	(125)	725	(105)	18	50	321 HB o 35 HRC
Vandalo	arriba de M64 (2.5") y hasta	650	(1200)	760	(110)	655	(95)	17	45	302 HB o 33 HRC
	arriba de M100 (4") y hasta M180 (7")	650	(1200)	690	(100)	586	(85)	16	45	277 HB o 29 HRC

Tabla Requerimientos Mecánicos.

Fuente: Citado por URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia. 2008.

Nota: Como en la investigación para la *Calificación de una Conexión Rígida de una Viga I y una Columna Rellena de Concreto Bajo la Acción de Cargas Dinámicas (Uribe, 2008),* se emplearon espárragos pasantes de 460 mm de longitud, se propone trabajar con varillas roscadas de acero **ASTM A-193 Grado B,** *equivalentes a A1554 Gr 105,* para la fabricación de dichos espárragos, (Varillas Roscadas) se anexan la Tabla 11 y Tabla 12.

Tabla 12. Resistencias nominales a la tensión y al corte de pernos ASTM A-193 Grado B7. Sistema internacional

	Resistencia	a la tensión	Corte en conexiones tipo aplastamiento		
Descripción de los pernos	Coeficiente resistencia ϕ	Resistencia Nominal a tensión, F _{nt} MPa	Coeficiente resistencia ϕ	Resistencia Nominal al corte, F _{nv} , MPa	
Pernos ASTM A-193 Grado B7 cuando hay roscas en los planos de corte	0.75	860	0.75	455	
Pernos ASTM A-193 Grado B7 cuando NO hay roscas en los planos de corte	0.75	860	0.75	575	

Fuente: URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia. 2008.

PASO 9: seleccionar un diámetro del perno de prueba **d**_b, no menor al requerido en el paso 8.

PASO 10: Determinar el espesor de la placa extrema $t_{p,req'd}$, requerida.

$$t_{p,req'd} = \sqrt{\frac{1.11M_f}{\phi_d F_{yp} Y_p}}$$
(2- 107)

Dónde:

 F_{yp} = Tensión de Fluencia del Acero de la placa extrema, (MPa).

 Y_{ρ} = Parámetro de lineamiento para el rendimiento del mecanismo final de la placa extrema, especificado en la Tabla 13, (mm).

 ϕ_d = Factor de resistencia para el estado limite dúctil igual a 1.0

Tabla 13. Parámetro Yp de líneas de fluencia para la placa extrema de la conexión 4E

Fuente: AISC 358-2010. AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

PASO 11: Selección de un grosor de la placa terminal, t_p no inferior al calculado.

PASO 12: Calcular **F**_{fu}, que es la fuerza del ala de la viga.

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$
(2-108)

Figura 57. Diagrama de equilibrio del ala de la viga

Fuente: CARDOSO M. L, QUISHPE S. E. Diseño de conexiones precalificadas bajo AISC para pórticos resistentes a momento. Tesis de grado, Ingeniero Mecánico. Riobamba-Ecuador: Escuela Superior Politécnica de Chimborazo, Facultad de mecánica, 2014. 127 p.

Dónde:

 d_b = Altura perfil viga, (mm).

 t_{bf} = Espesor del ala perfil viga, (mm).

PASO 13: Verificar que la placa extrema no falle por fluencia o por corte:

$$\frac{F_{fu}}{2} \le \phi_d R_n = \phi_d(0.6) F_{yp} b_p t_p$$
(2-109)

Dónde:

 ϕ_d = Factor de resistencia para el estado limite dúctil igual a 1.0

 b_b = Es el espesor de la placa extrema (mm), esta debe ser asumida no mayor que el ancho del ala de la viga, más 25mm.

Si el resultado de la ecuación anterior no cumple, se debe aumentar el espesor de la placa extrema o aumentar el límite de fluencia del material de la placa extrema.

PASO 14: Comprobar la ruptura por corte de la conexión de cuatro pernos sin rigidizar (4E).

$$\frac{F_{fu}}{2} \le \phi_n R_n = \phi_n(0.6) F_{up} A_n \tag{2-110}$$

$$A_n = t_p \left(b_p - 2(d_b + 3mm) \right) mm^2$$
 (2-111)

Dónde:

 ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90

 F_{up} = Tensión de ruptura del acero de la placa extrema, (MPa).

 A_n = Área neta de la placa extrema, (mm²).

 d_b = Diámetro del perno, (mm).

Si la ecuación anterior no cumple, se debe aumentar el espesor de la placa extrema o aumentar la tensión de fluencia del material de la placa extrema.

Paso 15: Revisar la ruptura por cortante del perno en la zona de compresión del ala de la viga.

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{nv} A_b \tag{2-112}$$

$$A_b = \frac{\pi}{4} d_b^2$$
 (2-113)

Dónde:

 ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90

 n_b = Número de pernos en el ala comprimida.

: 4 pernos para las conexiones 4E y 4ES.

: 8 pernos para las conexiones 8ES.

$$A_b = \text{ Årea bruta del perno, (mm^2).}$$

 F_{nv} = Esfuerzo nominal a corte del perno, (MPa). Ver Tabla 12.

 V_u = fuerza a corte en el extremo de la viga, (N) dada por el paso 3.

PASO 16: Verificar el aplastamiento del perno y la falla por desgarre de la placa extrema y el ala de la columna; en el ala de la columna se aplica solo aplastamiento del perno.

$$V_{u} \le \phi_{n} R_{n} = \phi_{n}(n_{i})r_{ni} + \phi_{n}(n_{o})r_{no}$$
(2-114)

Dónde:

 ϕ_n = Factor de resistencia para el estado limite no dúctil igual a 0.90

 n_i = Número de los pernos interiores.

: 2 pernos para las conexiones 4E y 4ES

: 4 pernos para las conexiones 8ES

- n_o = Número de pernos exteriores
 - : 2 pernos para las conexiones 4E y 4ES
 - : 4 pernos para las conexiones 8ES

Para la resistencia al desgarre de la placa extrema:

i. Para los pernos interiores:

$$r_{ni} = 1.2L_{ci}t_pF_{up} < 2.4d_bt_pF_{up}, \text{ para cada perno interior.}$$
(2-115)

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm)$$
(2-116)

ii. Para los pernos exteriores:

$$r_{no} = 1.2L_{co}t_pF_{up} < 2.4d_bt_pF_{up}, \text{ para cada perno exterior}$$
(2-117)

$$L_{co} = d_e - 0.5(d_b + 3.2mm)$$
(2-118)

Dónde:

 L_c = Distancia en la dirección de la fuerza, entre el borde de un agujero y el borde del agujero adyacente, (mm).

 F_{up} = Tensión de ruptura del acero de la placa extrema o de la columna, (MPa).

 d_b = diámetro del perno, (mm).

 t_p = espesor de la placa extrema o espesor del ala de la columna, mm.

 F_{yb} = Tensión de fluencia del acero de la viga, (MPa).

 F_{yc} = Tensión de fluencia del acero de la columna, (MPa).

 t_{fc} = espesor del ala de la columna, (mm).

Si la ecuación anterior no cumple, incrementar el espesor de la placa extremo.

PASO 17: Verificación de la acción de esfuerzos combinados de tensión y corte en los pernos pasantes. Según la NSR-10 **F.2.10.3.7** la resistencia de diseño a tensión de un perno sometido a una combinación de esfuerzos de tensión y cortante será determinada de acuerdo a los estados límites de rotura por tensión y por cortante, con base en:

$$\phi = 0.75.$$

$$R_n = F'_{nt} A_b \tag{2-119}$$

Dónde:

F'nt = Resistencia nominal a tensión por unidad de área, modificada para incluir los efectos del esfuerzo cortante, (MPa).

$$F'_{nt} = 1.3F_{nt} - \frac{F_{nt}}{\phi F_{nv}} f_v \le F_{nt}$$
(2-120)

- F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la Tabla F.2.10.3-2 de la NSR-10 o ver en la Tabla 12 (MPa).
- F_{nv} = Esfuerzo nominal a corte del perno de la Tabla F.2.10.3-2 de la NSR-10 o ver en la Tabla 12, (MPa).
- f_v = Resistencia requerida a cortante por unidad de área, (MPa).

$$R_u = V_p = \frac{V_u}{n} \tag{2-121}$$

n = Número de pernos.

Por lo tanto, el esfuerzo cortante requerido f_v en el perno es igual a:

$$f_{\nu} = \frac{V_p}{A_b} \tag{2-122}$$

Entonces:

$$R_u \le \phi R_n \tag{2-123}$$

Paso 18: Diseño de la soldadura de la viga a la placa extremo según la Sección 6.9.7 del ANSI/AISC358-10.

6. No se usarán orificios de acceso para soldadura.

7. El ala de la viga se conectará con la placa extrema con soldadura de penetración completa sin respaldo. La ranura de la soldadura CJP se hará de tal manera que la raíz de la soldadura este en el lado del alma de la viga. La cara interna del ala será de (5/16") 8 mm de soldadura en ángulo recto. Estas soldaduras deben ser de demanda crítica.

8. Para unir el alma de la viga a la placa extremo se utilizarán, ya sea soldaduras de filete o soldaduras de ranura CJP. Cuando se usan las soldaduras de filete serán dimensionada para desarrollar la resistencia del alma de la viga en tensión desde la cara interior del ala a 6" (150 mm) hasta la fila de tornillos más alejado del ala de la viga.

9. La soldadura de penetración de la raíz no se requiere en el ala directamente por encima y por debajo del alma de la viga para una longitud igual a 1.5 k₁ (k₁: distancia desde el eje del alma hasta la punta de la transición curva del ala). Se permite soldadura de penetración parcial.

10. Cuando se usen rigidizadores (4ES, 8ES) se usarán soldadura de penetración completa.

Excepción: Cuando el espesor del rigidizador es de 3/8" (10mm) o menor, se permite usar soldaduras de filete.

Figura 58. Soldadura del ala y el alma a la Placa de extremo

Fuente: PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Trabajo de grado, Magister en Ingeniería estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

DISEÑO DE LA SECCIÓN DE LA COLUMNA

PASO 1: Se verifica el espesor por cortante en la zona de panel de la columna para el estado límite de fluencia por cortante según F.2.10.10.6 capitulo F de la NSR-10:

Entonces el cortante requerido en la zona de panel a partir del diagrama de cuerpo libre es:

$$R_u = \frac{\Sigma M_f}{d_b - t_{fb}} - V_c \tag{2-124}$$

Donde V_c es la fuerza de corte (N) en la columna ubicada por encima del nudo:

$$V_c = \frac{\Sigma M_f}{H} \tag{2-125}$$

Figura 59. Diagrama de Cuerpo Libre Zona de Panel

Se debe cumplir lo siguiente:

$$R_u \le \phi R_n \tag{2-126}$$

Donde R_n se calcula como se muestra a continuación, teniendo en cuenta que la columna es de sección cajón, con dos almas, se debe multiplicar por dos la resistencia de cada zona de panel.

• Para un Pu $\leq 0.75P_y$

$$R_{n} = 2\left(0.6F_{y}d_{c}t_{pz}\left[1 + \frac{3b_{c}t_{c}^{2}}{d_{b}d_{c}t_{pz}}\right]\right)$$
(2-127)

• Para un Pu > 0.75Py

$$R_n = 2\left(0.6F_y d_c t_{pz} \left[1 + \frac{3b_c t_c^2}{d_b d_c t_{pz}}\right] \left[1.9 - \frac{1.2P_u}{P_y}\right]\right)$$
(2-128)

Dónde:

A = Area de la sección transversal de la columna, (mm²).

 ϕ = Coeficiente de resistencia igual a 0.90.

 t_c = Espesor del perfil columna, (mm).

 t_d = Espesor de la placa de enchape de la zona de panel, (mm).

 t_{pz} = Espesor total de la zona de panel Incluye las placas de enchape. Si se requieren ($t_{pz} = t_c + t_d$). Si no se requieren $t_{pz} = t_c$, (mm).

 d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).

 b_c = Ancho de la columna en el sentido perpendicular de la conexión, (mm).

 d_b = Altura perfil viga, (mm).

 $F_y = R$ esistencia especificada a la fluencia del acero en la zona de panel, (MPa).

 P_u = Resistencia requerida para la combinación 1.2D+0.5L, (N).

 $P_y = F_y A$, resistencia de la columna metálica a la fluencia bajo carga axial, (N).

• El espesor individual de la columna y de las placas de enchape debe cumplir con el siguiente requisito:

$$t_c \ge \frac{d_z + w_z}{90} = \frac{d_b + d_c}{90} \tag{2-129}$$

Dónde:

 t_c = Espesor de la columna, (mm).

 t_d = Espesor de la placa de enchape, (mm).

 d_z = Altura de la zona de panel. Corresponde a d_b , (mm).

 w_z = Ancho de la zona de panel. Corresponde a d_c, (mm).

• Conexión de las placas de enchape en la zona de panel: Las placas de enchape se conectarán a la cara de la columna mediante soldadura de filete en los cuatro lados de la placa de enchape, en tal forma que desarrollen su resistencia de diseño al corte (Ver Figura 60).

Soldadura de filete:

Se determina el tamaño mínimo de soldadura de filete según especifica la tabla F.2.10.2-4 (NSR-10); según el espesor de la parte más delgada a unir. Con este tamaño de soldadura de filete se verifica si satisface la resistencia de diseño de soldadura para resistir como mínimo la resistencia al corte desarrollado en la placa de enchape.

Figura 60. Soldadura de filete en la placa de enchape

$$\phi_w 0.6F_{EXX} A_{efreq f} = \phi 0.60F_y A_g \tag{2-130}$$

$$A_{efreq\,f} = \frac{\phi F_y}{\phi_w F_{EXX}} A_g = 0.707 t_w d_c \tag{2-131}$$

Dónde:

 $A_{efreq f}$ = Área efectiva requerida de soldadura de filete, (mm²). A_g = Área bruta de la doble placa. Corresponde a $d_c t_d$, (mm²).

 ϕ = Coeficiente de resistencia igual a 0.90.

 ϕ_{W} = Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5, NSR-10)

 t_w = Tamaño de soldadura de filete, (mm).

$$t_w = \frac{1.7F_y t_d}{F_{EXX}}$$
(2-132)

Hay que tener en cuenta el tamaño máximo de la soldadura de filete el cual debe ser:

$$t_w = t_d \quad para \ t_d \le 6mm \tag{2-133}$$

$$t_w = t_d - 2mm \quad para \ t_d \ge 6mm \tag{2-134}$$

Dónde:

 $t_d = E$ spesor de la placa de enchape (mm).

En el caso de que el tamaño de filete sea mayor que los dos máximos en las ecuaciones (2- 135) o (2- 136), se deberá complementar con soldaduras de tapón. El filete calculado anteriormente se aplicaría en los cuatro lados de la placa de enchape.

Soldadura de Tapón:

$$\phi_w 0.6F_{EXX} A_{tapon} = \text{Resistencia faltante}$$
(2-135)

Dónde:

$$A_{tapon} = \frac{Resistencia \ faltante}{0.6\phi_w F_{EXX}} \tag{2-136}$$

Según el F.2.10.2.3.2 de la NSR-10 El diámetro de las soldaduras de tapón tiene las siguientes limitantes:

$$D_{min} = t_d + 8mm$$
 (2-137)

$$D_{max} = D_{min} + 3mm \ o' \ 2.25t_d \tag{2-138}$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

Dónde:

 A_{tapon} =Área efectiva de soldadura de tapón, (mm²). A_g =Área bruta de la doble placa. Corresponde a $d_b t_d$, (mm²).D=Diámetro del agujero para soldadura de tapón, (mm). t_d =Espesor de la placa de enchape de la zona de panel, (mm). ϕ_W =Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

2.3.1 Diagrama de flujo conexión metálica rígida viga I y una columna tubular rellena de concreto

DATOS:

Datos de Viga (DV)

 b_{fb} = Ancho del Ala Perfil Viga, (mm).

 t_{fb} = Espesor del Ala Perfil Viga, (mm).

 t_{wb} = Espesor del Ala Perfil Viga, (mm).

 d_b = Altura Perfil Viga, (mm).

- Z_{xb} = Modulo Plástico Perfil Viga (eje fuerte), (mm³).
- Z_{yb} = Modulo Plástico Perfil Viga (eje débil), (mm³).
- $A_b = \text{ Årea del Perfil Viga. (mm^2).}$
- I_{xb} = Momento de inercia Perfil Viga (eje fuerte), (mm⁴).
- I_{yb} = Momento de inercia Perfil Viga (eje débil), (mm⁴).
- *L* = Longitud de la Viga entre Ejes de Columnas. (mm).
- L_b = Longitud de Libre de la Viga, entre Caras de las Columnas, (mm).
- w = Carga para Combinación Gravitacional (1.2D+0.5L).

Figura 61. Geometría de la Viga. (Repetida)

Datos de Columna (PC)

- d_c = Ancho de la columna en el sentido paralelo de la conexión, (mm).
- b_c = Ancho de la columna en el sentido perpendicular de la conexión, (mm).
- *t*_c = Espesor del Perfil Columna, (mm).
- $h_1 = b_c 2t_c$, (mm).
- $h_2 = d_c 2t_c$, (mm).
- A_c = Área de la Sección de Concreto, (mm²).
- A_s = Área de Acero Perfil Columna, (mm²).

 Z_{xc} = Modulo Plástico Perfil Columna (eje fuerte), (mm³).

 Z_{yc} = Modulo Plástico Perfil Columna (eje débil), (mm³).

H = Distancia de Columna entre puntos de Inflexión, (mm).

Figura 62. Geometría de la Columna

Datos de Pernos (DP):

d_b = Diámetro del Perno, (mm).

n = número de pernos.

 A_b = área brura del perno, (mm²).

Datos de Materiales.

Acero de la Viga (AV):

- F_{yb} = Tensión de Fluencia del Acero de la Viga, (MPa).
- F_{ub} = Tensión de Ruptura del Acero de la Viga, (MPa).
- R_{yb} = Relación entre la Resistencia a la Fluencia esperada F_{ye} y la resistencia mínima esperada a la fluencia del acero de la viga que va utilizar F_y .
Acero de la Columna (AC):

 F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).

 F_{uc} = Tensión de Ruptura del Acero de la Columna, (MPa).

Acero de la Placas (AP):

 F_{yp} = Tensión de Fluencia del Acero de la Placas, (MPa).

 F_{up} = Tensión de Ruptura del Acero de la Placas, (MPa).

Datos de Soldadura (DW):

F_{EXX} = número de clasificación del electrodo, correspondiente a la resistencia mínima especificada, (MPa).

Calidad de Pernos (CP):

 F_{nv} = Esfuerzo nominal a corte del perno e la tabla F.2.10.3-2 de la NSR-10 o ver en la Tabla 12, (MPa).

 F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la Tabla F.2.10.3-2 de la NSR-10 o ver en la Tabla 12, (MPa).

Datos 1:

 b_p = Ancho de la placa extrema en la conexión, (mm).

g = Distancia Horizontal entre Pernos, (mm).

d_e = Distancia Vertical Libre, de la perforación y el borde del material de la placa extrema, (mm).

P_{fo} = Distancia Vertical desde el exterior del Ala en Tensión de la Viga y la fila de
 Pernos más cercana, (mm).

P_{fi} = Distancia Vertical desde el interior del ala en Tensión de la Viga y la fila de
 Pernos más Cercana, (mm).

 t_p = Espesor de la Placa Extrema, (mm).

Datos 2:

- h_1 = Distancia desde la línea central del ala Inferior de la viga a la línea central del primer perno, (mm).
- *h*_o = Distancia desde la línea central del ala inferior de la viga a la fila del perno exterior, (mm).
- F_{nt} = Resistencia a la tensión nominal del perno de acuerdo a la especificación de la Tabla 12, (MPa).

Datos 3:

$$A_n = t_p [b_p - 2(d_b + 3mm)], (mm^2)$$

Figura 63. Ruptura por Corte

Datos 4:

 n_b = Numero de pernos en el Ala Comprimida.

 F_{nv} = Esfuerzo nominal a Corte del Perno Tabla F.2.10.3-2 NSR-10, (MPa).

$$A_b = -\frac{\pi}{4}d_b^2, (\mathrm{mm}^2)$$

Datos 5:

- n_i = Numero de los Pernos Interiores. 2 Pernos para las conexiones 4E.
- n_o = Numero de Pernos Exteriores. 2 Pernos para las conexiones 4E.

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm), (mm)$$

$$L_{co} = d_e - 0.5(d_b + 3.2mm), (mm)$$

Figura 64. Esquema de datos placa extrema

Datos 6:

n = Número de Pernos.

Datos 7:

 d_z = Altura de la Zona de panel. Correspondiente a d_b, (mm).

 W_z = Ancho de la Zona de Panel, Correspondiente a d_c, (mm).

 P_u = Resistencia requerida para la combinación 1.2D+0.5L, (N).

 $P_y = F_y A_c$, resistencia de la columna metálica a la fluencia bajo carga axial, (N).

Figura 65. Diagrama de flujo diseño conexión Precalificada Rígida Viga I y una Columna Tubular Rellena De Concreto

2.4 PROCEDIMIENTO DE DISEÑO DE UNA CONEXIÓN PRECALIFICADA SOLDADA A MOMENTO VIGA-COLUMNA

Autor: Hernán Acero, Director: Ing. Patricia Guerrero. Codirector: Ing. Luis Garza.

En esta investigación se realizó la precalificación de una conexión soldada en campo a momento viga-columna usado un perfil HEA300 para la columna y un perfil IPE400 para la viga usando cubreplacas soldadas a los patines de la viga, atiesadores y platinas de continuidad, obteniendo una conexión precalificada para sistemas estructurales con capacidad especial de disipación de energía en el rango inelástico (DES).

Figura 66. Detalle 3D conexión.

PASO 1: Calcular M_{pr} , en la ubicación de las rótulas plásticas, I_p , de acuerdo al procedimiento de la sección **1.5.1**, (N-mm).

PASO 2: Suponga una longitud de placa *l*_p

Figura 67. Localización Probable de la Rótula Plástica

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. En: Ingeniería y Competitividad, vol. 8, núm. 2, 2006, pp. 64-79.

Revisar que se cumpla el criterio viga débil-columna fuerte:

$$\frac{2Z_c(F_{yc} - P_{uc}/A_c)}{\sum\left\{\left[1 + \frac{2}{L_b - 2l_p}\left(l_p + \frac{d_c}{2}\right)\right]\frac{M_{pr}(H - d_b)}{H}\right\}} > 1.0$$
(2-139)

 L_b = Longitud total de la viga, medida entre columnas (mm).

 M_{pr} = Momento plástico esperado, (N-mm).

- d_c = Altura perfil columna, (mm).
- H = Longitud total de la columna, (mm).
- d_b = Altura perfil viga, (mm).
- Z_c = Modulo plástico de la sección de la columna, (mm³).

 F_{yc} = Tensión de fluencia del acero de la columna, (MPa).

 P_{uc} = Carga axial en la columna para la combinación de carga 1.2D+0.5L (N)

 A_c = Área Perfil de la columna (mm²)

PASO 3: Calcular V_p en la ubicación de la rótula plástica, I_p , de acuerdo al procedimiento de la sección **1.5.3**, (N).

Figura 68. Diagrama de cuerpo libre para el cálculo de la cortante en la rótula plástica

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. En: Ingeniería y Competitividad, vol. 8, núm. 2, 2006, pp. 64-79.

Dónde:

 L_h = Longitud del segmento de la viga entre las dos rótulas plásticas, calculada entre la longitud total de la viga L_{btotal} menos dos veces la longitud desde la cara de la columna a la que se desarrolla la rótula plástica l_p, (mm).

$$L_h = L_b - 2l_p (2-140)$$

PASO 4: Calcular *M_f*, de acuerdo al procedimiento de la sección **1.5.4**. para ello se remplaza la variable " S_h " por " I_p ", (N).

$$M_f = M_{pr} + V_p l_p (2-141)$$

Figura 69. Diagrama de cuerpo libre para el cálculo de la cortante y el momento en la cara de la columna

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. Trabajo de grado. Santiago de Cali: Universidad del Valle. 2005

PASO 5: Se supone un espesor del cubreplaca t_p , superior e inferior y se calcula F_{pr} , la fuerza en el cubreplaca debido a M_f .

$$F_{pr} = \frac{M_f}{(d_b + t_p)}$$
(2-142)

Dónde:

 t_{ρ} = Espesor de cubreplacas, (mm).

 d_b = Peralte de la Viga, (mm).

PASO 6: Verificar que este espesor del cubreplaca sea el adecuado.

$$t_p \ge \frac{F_{pr}}{\phi_d F_{yp} b_p} \tag{2-143}$$

Dónde:

F _{yp}	=	Tensión de fluencia del acero del cubreplaca, (MPa).
bp	=	Ancho promedio del cubreplaca, (mm).
b _{p, mayor}	r =	<i>b_{fc}</i> , Lado Mayor, (mm).
b _{p, menor}	r =	<i>b</i> _{fb} + <i>40mm</i> , Lado Menor, (mm).
d	=	1.0. Factor de resistencia para el estado límite dúctil.

Lo anterior es una primera aproximación, que será posteriormente verificada.

PASO 7: Calculo del espesor t_w de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga, esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

$$\phi R_n = \phi F_{nw} A_{we} \ge \frac{M_{pr}}{d_b - t_f} \tag{2-144}$$

El valor de ϕ , F_w y sus limitaciones se obtienen de la tabla F.2.10.2-5 (NSR-10).

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.75
- F_{nw} = Resistencia nominal por unidad de área para el metal de soldadura corresponde a 0.6F_{EXX}. Tabla F.2.10.2-5 NSR-10, (MPa).
- A_{we} = Área efectiva de la soldadura. Corresponde a 0.707t_w2W_I, (mm²).
- t_w = Tamaño de soldadura, (mm).
- W_l = Longitud de la soldadura cargada en dirección paralela en su eje, (mm).

$$W_l = l_p - 10 \ mm \tag{2-145}$$

Entonces:

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w 2W_l \ge \frac{M_{pr}}{d_b - t_f}$$
(2-146)

De la ecuación (2-146) se obtiene el tamaño de soldadura de filete que se requiere para unir la placa inferior con la aleta de la viga. Este valor se debe comparar con los tamaños mínimos y máximo de soldaduras de filete que se especifica en el numeral F.2.10.2.2 de la (NSR-10), en función del espesor del material más grueso a unir.

$$t_w \ge \frac{M_{pr}}{\phi 0.60 F_{EXX} 0.7072 W_l (d_b - t_{fb})}$$
(2-147)

Si t_w es mayor que t_{fb} -2mm, entonces regresar al **Paso 2** y aumentar I_p .

Figura 70. Estado límite: resistencia de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. Trabajo de grado. Santiago de Cali: Universidad del Valle. 2005

PASO 8: Calculo de la longitud de soldadura de filete longitudinal *W*₁ entre el cubre placa superior y la aleta de la viga.

La resistencia de diseño del grupo de soldaduras cargado concéntricamente y consistentes en elementos con el mismo tamaño de soldadura orientada tanto longitudinal como transversalmente en relación con la dirección de aplicación de la carga como lo indica F.2.10.2.4 literal "C" de la NSR-10:

$$R_n = max(R_{Wl} + R_{Wt}; 0.85R_{Wl} + 1.5R_{Wt})$$
(2-148)

Dónde:

- R_{Wl} = Resistencia nominal total de las soldaduras de filete cargadas longitudinalmente.
- R_{Wt} = Resistencia nominal total de las soldaduras de filete cargadas

transversalmente.

La ecuación (2-148) permite definir la longitud de soldadura cargada en dirección paralela a su eje la cual se tomará como la mínima entre la ecuación (2-150) y (2-152).

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w (2W_l + W_t) \ge \frac{M_{pr}}{d_b - t_{fb}}$$
(2-149)

$$W_{l1} \ge \frac{M_{pr}}{2\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{W_t}{2}$$
(2-150)

$$\phi R_n = \phi F_{nw} A_{we} = \phi 0.60 F_{EXX} 0.707 t_w [2(0.85W_l) + 1.5W_l] \ge \frac{M_{pr}}{d_b - t_{fb}}$$
(2-151)

$$W_{l2} \ge \frac{M_{pr}}{1.7\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{1.5W_t}{1.7}$$
(2-152)

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.75
- F_{nw} = Resistencia nominal por unidad de área para el metal de soldadura corresponde a $0.6F_{EXX}$. Tabla F.2.10.2-5 NSR-10, (MPa).
- A_{we} = Área efectiva de la soldadura, (mm²).
- t_w = Tamaño de soldadura, determinado en el paso 7, (mm).
- W_l = Longitud de la soldadura cargada paralela a su eje, (mm).
- W_t = longitud de la soldadura cargada perpendicular a su eje. Corresponde al ancho de la aleta, que a su vez es igual a la suma de 2 W_{t1} y W_{t2} , mm, donde:

$$W_{t1} = W_{t2} = \frac{b_{fb}}{3} \tag{2-153}$$

Figura 71. Estado límite: resistencia de la soldadura de filete entre el cubreplaca superior y la aleta de la viga

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. Trabajo de grado. Santiago de Cali: Universidad del Valle. 2005

PASO 9: Verificar la resistencia de diseño a tensión del cubreplaca superior según F.2.10.4.1 (NSR-10), para ello se tiene en cuenta los siguientes estados límites de fluencia por tensión y rotura por tensión. Es de notar que por ser el cubreplaca superior más desfavorable para estos estados límite, bastará con revisar este último.

Figura 72. Estado límite: resistencia de la soldadura de filete entre el cubreplaca superior y la aleta de la viga

Fuente: ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. Trabajo de grado. Santiago de Cali: Universidad del Valle. 2005

Fluencia por tensión:

$$\phi R_n = \phi A_g F_{yp} \ge \frac{M_f}{d_b + t_p} \tag{2-154}$$

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.90.
- $A_g = Area Bruta.$ Corresponde a $b_p t_p$, (mm²), donde b_p es el ancho menor del cubreplaca en la sección crítica de la Figura 72 y la sección *Whitmore*:

$$L_w = 2w_l \tan 30^o + w_{t2}$$

Luego:

$$\phi R_n = \phi b_p t_p F_{yp} \ge \frac{M_f}{d_b + t_p} \tag{2-155}$$

Si no se verifica esta desigualdad, debe aumentarse t_p

• Rotura por tensión:

$$\phi R_n = \phi A_e F_{up} \ge \frac{M_f}{d_b + t_p} \tag{2-156}$$

Dónde:

- ϕ = Coeficiente de resistencia igual a 0.75
- $A_e = A_n U$
- A_n = Área Neta de la platina = $(b_p W_{t2})t_p$, (mm²). b_p es el ancho menor del cubreplaca en la sección crítica de la Figura 72, y la sección *Whitmore L_w* del paso anterior.
- U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso 4.

$$W_l \ge 2b_{fb}/3 \dots U = 1.0$$

 $2b_{fb}/3 > W_l \ge 1.5b_{fb}/3 \dots U = 0.87$
 $1.5b_{fb}/3 > W_l \ge b_{fb}/3 \dots U = 0.75$

Luego:

$$\phi R_n = \phi U (b_p - W_{t2}) t_p F_{up} \ge \frac{M_f}{d_b + t_p}$$
(2-157)

Si no se verifica esta desigualdad, debe aumentarse t_p

• Desgarramiento en bloque:

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_p} \tag{2-158}$$

Luego:

$$\phi R_n = \phi \left[0.60 F_{up} A_{nv} + U_{bs} F_{up} A_{nt} \right] \le \phi \left[0.6 F_{yp} A_{gv} + U_{bs} F_{up} A_{nt} \right]$$
(2-159)

 $\phi = Coeficiente de resistencia igual a 0.75$ $A_{gv} = Área bruta sometida a cortante, (mm²).$ $A_{nt} = Área neta sometida a tensión, (mm²).$ $A_{nv} = Área neta sometida a cortante, (mm²).$ $U_{bs} = 1.0 ya que el esfuerzo de tensión es uniforme.$

Ya que la conexión es soldada, las áreas brutas y netas sometidas a cortante son iguales.

$$A_{gv} = A_{nv} = 2W_l t_p (2-160)$$

$$A_{nt} = b_{fb}t_p \tag{2-161}$$

Si no se verifica esta desigualdad, debe aumentarse t_{ρ} .

PASO 10: Comprobar los requisitos de las placas de continuidad de acuerdo con las disposiciones de la Norma de Sismo Resistencia Colombiana NSR-10, en F.3.5.3.6.6, donde se define lo siguiente:

• **Requisitos de placa de continuidad –** Se deben suministrar placas de continuidad, ya que así fue calificada la conexión.

• Espesor de las placas de continuidad (t_{pc}) – cuando se requiere placas de continuidad, el espesor se determinará como sigue:

a) Para conexiones exteriores (por un lado, de la columna) el espesor de la placa de continuidad debe ser la mitad del espesor de la aleta de la viga como mínimo.

$$t_{pc} \ge \frac{t_p}{2} \tag{2-162}$$

b) Para conexiones interiores (por los dos lados de la columna) el espesor de la placa de continuidad debe ser igual al espesor más grueso de las aletas a ambos lados de la columna.

$$t_{pc} = t_p \tag{2-163}$$

• Ancho de las Placas de Continuidad (b_{pc})

De acuerdo a F.2.10.10-8:

$$b_{pc} > \frac{b_{fc}}{3} - \frac{t_{wc}}{2} \tag{2-164}$$

Como el ancho del rigidizador puede ser pequeño para el despunte que se debe realizar para evitar la zona k, se recomienda colocar el ancho de la placa de continuidad hasta el borde de la aleta de la columna, ver ecuación (2-165).

$$b_{pc} = \frac{b_{cf}}{2} - \frac{t_{wc}}{2} \tag{2-165}$$

En la NSR-10 en la sección F.3.4.2.4 se especifica que en el diseño de las placas de continuidad y atiesadores localizados en el alma de perfiles laminados se deben considerar las longitudes de contacto reducidas de las aletas y el alma del miembro basadas en las dimensiones del filete de esquina de la Sección F.3.9.2.4 donde especifica que las esquinas de placas de continuidad y los atiesadores colocados en el alma de perfiles laminados deben detallarse de acuerdo con AWS D.1.8 numeral 4.1.

En la AWS D.1.8 se especifica que el corte en la esquina no debe ser mayor al valor de "k+0.5", esta longitud corresponde al contacto de la placa de continuidad y la aleta de la columna expresada en la ecuación (2- 166) como:

$$L_{cf} = b_{pc} - \left[(k+13) - \frac{t_{wc}}{2} \right] (mm)$$
(2-166)

En AWS D.1.8 se especifica que el corte en la esquina por el lado del alma de la columna no debe ser mayor a " k_1 +1.5", esta longitud corresponde al contacto de la placa de continuidad y el alma de la columna expresada en la ecuación (2- 167) como:

$$L_{cw} = d_c - 2(k+38) \ (mm) \tag{2-167}$$

• Soldadura de Placas de Continuidad - Las placas de continuidad deben soldarse a las aletas y las almas de la columna utilizando soldadura acanalada de penetración completa.

Figura 73. Geometría de las Placas rigidizadoras o de Continuidad. (Repetida)

PASO 11: Se verifica la zona de panel de la columna de acuerdo con las disposiciones sísmicas de la NSR-10, Titulo F.3.5.3.6.5.

Resistencia a Cortante

El espesor requerido de la zona de panel debe determinarse a partir de la suma de los momentos en las caras de la columna, calculada proyectando los momentos esperados en los puntos de la rótula plástica hasta la cara de la columna. La resistencia de diseño a cortante debe ser $\phi_V V_n$, con $\phi_V=1.0$ y la resistencia nominal a cortante V_n se debe calcular para el estado límite de fluencia por cortante según F.2.10.10.6.

El cortante de diseño requerido se calcula a partir de los esfuerzos internos en la zona de panel mediante el diagrama de cuerpo libre de la Figura 74, este se obtiene considerando que el momento flector resulta de un par de fuerzas axiales iguales y opuestas actuando en las alas del perfil.

Figura 74. Diagrama de cuerpo libre en la zona de panel

Entonces el cortante requerido en la zona de panel a partir del diagrama de cuerpo libre es:

$$R_u = \frac{\Sigma M_f}{d_b + t_p} - V_c \tag{2-168}$$

Donde V_c es la fuerza de corte (N) en la columna ubicada por encima del nudo.

$$V_c = \frac{\Sigma M_f}{H} \tag{2-169}$$

$$R_u \le \phi R_n \tag{2-170}$$

La resistencia de diseño de la zona de panel del alma para el estado límite de fluencia por cortante se determinará con base en:

$$\phi = 0.90$$

Y R_n, la resistencia nominal, calculada como sigue:

• Para un $P_u \leq 0.75P_y$

$$\phi_{v}R_{v} = \phi_{v}0.6F_{y}d_{c}t_{wc}\left[1 + \frac{3b_{fc}t_{fc}^{2}}{d_{b}d_{c}t_{wc}}\right]$$
(2-171)

• Para un $P_u \ge 0.75P_y$

$$\phi_{\nu}R_{\nu} = \phi_{\nu}0.6F_{\nu}d_{c}t_{wc} \left[1 + \frac{3b_{fc}t_{fc}^{2}}{d_{b}d_{c}t_{wc}}\right] \left[1.9 - \frac{1.2P_{u}}{P_{y}}\right]$$
(2-172)

Dónde:

- A =Área de la sección transversal de la columna, (mm²).
- b_{cf} = Ancho de la aleta de la columna, (mm).
- d_b = Peralte de la viga, (mm).
- d_c = Peralte de la columna, (mm).
- F_y = Resistencia especificada a la fluencia del acero en la zona de panel, (MPa).
- P_u = Resistencia requerida, (N).

 $P_y = F_y A$, resistencia de la columna a la fluencia bajo carga axial, (N).

- t_{fc} = Espesor de la aleta de la columna, (mm).
- t_{wc} = Espesor del alma de la columna, (mm). En caso de requerirse placas de enchape se deben reemplazar t_w en la ecuación por t_w+t_d, (mm).
- t_d = Espesor de la placa de enchape de la zona de panel, (mm).

Para aumentar la resistencia a corte se puede añadir placas de refuerzo, con lo cual aumenta t_p y por tal la resistencia disponible. Ver Figura 75.

Figura 75. Placas de refuerzo en la zona de panel con soldadura de penetración completa o soldadura de filete

Fuente: CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociación Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1

• Espesor de la Zona de Panel: Los espesores individuales, *t*, del alma de la columna y placas de enchape, en caso de utilizarse, deben cumplir con el siguiente requisito:

$$t \ge \frac{d_z + w_z}{90}$$
 (2- 173)

Dónde:

t = Espesor de la columna o de la doble placa, (mm).

 d_z = Altura de la zona de panel entre placas de continuidad, (mm).

 w_z = Ancho de la zona de panel entre aletas de la columna, (mm).

• Conexión de las placas de enchape en la zona de panel: Las placas de enchape se conectarán al alma de la columna mediante soldadura de filete a todo lo ancho y largo de la placa de enchape, en tal forma que desarrollen su resistencia de diseño al corte. Ver Figura 76.

Soldadura de filete:

Se determina el tamaño mínimo de soldadura de filete según especifica la tabla F.2.10.2-4 (NSR-10); según el espesor de la parte más delgada a unir. Con este tamaño de soldadura de filete se verifica si satisface la resistencia de diseño de soldadura para resistir como mínimo la resistencia al corte desarrollado en la placa de enchape.

Figura 76. Soldadura de filete en placa de enchape

Fuente: PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de Grado. Medellín: Universidad Nacional de Colombia, 2004.

$$\phi_w 0.6F_{EXX} A_{efreq\,f} = \phi 0.60F_y A_g \tag{2-174}$$

$$A_{efreq f} = \frac{\phi F_{y}}{\phi_{w} F_{EXX}} A_{g} = 0.707 t_{w} d_{c}$$
(2-175)

Dónde:

 $A_{efreq f}$ = Area efectiva requerida de soldadura de filete, (mm²).

 $A_g = A'_rea$ bruta a cortante de la placa de enchape. Corresponde a $d_c t_d$, (mm²).

 ϕ = Coeficiente de resistencia igual a 0.90.

 ϕ_W = Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

 t_w = Tamaño de soldadura de filete, (mm).

$$t_w = \frac{1.7F_{yd}t_d}{F_{EXX}}$$
(2- 176)

Hay que tener en cuenta el tamaño mínimo de la soldadura de filete, correspondiente al espesor más delgado a unir, t_{wc} o t_d de acuerdo a la tabla F.2.10.2-4. En el caso de los filetes horizontales, se debe cumplir con el tamaño máximo, $t_w < t_d$ - *2mm* para espesores de la placa de enchape mayores de 6mm, y $t_w = t_d$ para espesores menores o iguales a 6mm. Si esto no se cumple se deben colocar soldaduras de tapón para completar la resistencia requerida:

Soldadura de Tapón:

$$\phi_w 0.6F_{EXX} A_{tapon} = Resistencia faltante$$
 (2- 177)

Dónde:

$$A_{tapon} = \frac{Resistencia faltante}{\phi_w 0.6F_{EXX}}$$
(2- 178)

Según el F.2.10.2.3.2 de la NSR-10 El diámetro de las soldaduras de tapón tiene las siguientes limitantes:

$$D_{min} = t_d + 8mm$$
 (2-179)

$$D_{max} = D_{min} + 3mm \ o' \ 2.25t_d \tag{2-180}$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

Dónde:

A _{tapon}	=	Área efectiva de soldadura de tapón, (mm²).
D	=	Diámetro del agujero para soldadura de tapón, (mm).
<i>t</i> _d	=	Espesor de la placa de enchape de la zona de panel, (mm).
$\phi_{\scriptscriptstyle W}$	=	Coeficiente de resistencia igual a 0.75 (Tabla F.2.10.2-5)

Paso 12: Se diseña y detalla la placa de cortante la cual une a la cara de la columna mediante soldadura de filete. Se une además al alma de la viga, por medio de un cordón de soldadura de filete a todo su alrededor. Para facilitar el montaje de la conexión y la aplicación de la soldadura se utilizan pernos que unen la placa de cortante y el alma de la viga.

La placa de cortante y las soldaduras se diseñan para resistir el cortante plástico en la cara de la columna y los pernos únicamente se diseñan para cargas de montaje.

Altura - Según la FEMA-350 para conexiones con placas soldadas a las aletas de la viga, la longitud de la placa de cortante viene dada por:

$$h_{st} = d_b - 2k - 50mm \tag{2-181}$$

Dónde:

k = Distancia desde la cara exterior de la aleta hasta el pie de la transición alma aleta, (mm).

Espesor - Igualmente para el espesor de la placa de cortante la FEMA-350 especifica:

$$t_{st} = t_{wb} \tag{2-182}$$

Longitud mínima al borde - La distancia mínima al borde del centro de una perforación estándar no debe ser inferior al valor especificado en la tabla F.2.10.3-4 o F.2.10.3-4M (NSR-10); comúnmente se recomienda una distancia de:

$$L_e \ge 1.5d \tag{2-183}$$

Ancho mínimo de la placa de cortante

$$L_{st} = 2L_e + 10mm \tag{2-184}$$

Figura 77. Dimensiones de la Placa de Cortante

• Estados limites en la viga

La resistencia de diseño en el alma de la viga será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yb} A_{gv} \ge V_p \tag{2-185}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.9

 A_{gv} = Área Bruta sometida a cortante. Corresponde d_bt_{wb}, (mm²). *Rotura por cortante:*

$$\phi R_n = \phi 0.6 F_u A_{nv} \ge V_p \tag{2-186}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 075.

 A_{nv} = Área neta sometida a corte. Se obtiene descontándole el área neta del alma las dos perforaciones para los pernos, (mm²).

$$A_{nv} = [d_b - 2(d + 3.2mm)]t_{wb}$$
(2-187)

• Estados Límites en la placa de cortante

Resistencia a la fluencia por Flexión:

$$\phi M_n = \phi F_{yp} Z_x \ge M_u = V_p e_x \tag{2-188}$$

Dónde:

$$Z_x = \frac{t_{st}h_{st}^2}{4}$$

 Z_x = Modulo plástico de la sección, (mm³).

 e_x = Ancho de la placa de cortante = L_{st}, (mm)

 $\phi = 0.90$

La resistencia de diseño en la placa será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yp} A_{gv} \ge V_p \tag{2-189}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 0.90.

 A_{gv} = Årea Bruta sometida a cortante. Corresponde $h_{st}t_{st}$, (mm²).

Rotura por cortante:

$$\phi R_n = \phi 0.6 F_{up} A_{n\nu} \ge V_p \tag{2-190}$$

Dónde:

 ϕ = Coeficiente de resistencia igual a 075.

 A_{nv} = Área neta sometida a corte. Se obtiene descontándole el área neta del alma las dos perforaciones para los pernos, (mm²).

$$A_{nv} = [h_{st} - 2(d + 3.2mm)]t_{st}$$
(2-191)

Soldadura de Unión de la Platina a la Columna

Criterios pasa escoger el tamaño de la soldadura:

Tamaño Mínimo: Según el espesor de la parte más delgada a unir el tamaño mínimo de la soldadura de filete se define en la Tabla F.2.10.2-4 del capítulo F de la NSR-10.

Cortante Excéntrica

Si la soldadura está sometida a cortante excéntrica, la resistencia de la soldadura se chequea con base en las tablas realizadas para este fin, en el manual de la AISC. Figura 78. Dimensiones de la Placa de Cortante

L

k = 0, La fuerza no está en el plano de la Soldadura.

En la Tabla 14 (tabla 8-38 del manual AISC), con θ =0, y con los valores de a y k, se halla el coeficiente C.

La formulación en unidades de Kilonewton (KN) es:

$$\phi R_{nw} = C_1 C q w L \ge V_p \tag{2-192}$$

Donde,

- $C_1 =$ Coeficiente del electrodo (1.0 para E70XX).
- C =manual AISC)
- Constante de transformación de unidades q =

$$q = \frac{4.44 * 16}{25.4^2} = 0.1091$$

- W = Tamaño de soldadura en (mm).
- L Longitud de soldadura en (mm).

Tabla 14. Coeficiente C para excentricidad de grupo de soldaduras

	k															
а	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78
0.10	2.78	2.78	2.78	2.78	2.78	2.77	2.75	2.74	2.73	2.71	2.70	2.67	2.64	2.61	2.59	2.78
0.15	2.75	2.75	2.74	2.73	2.71	2.70	2.69	2.67	2.66	2.64	2.63	2.60	2.58	2.55	2.53	2.50
0.20	2.64	2.63	2.63	2.62	2.60	2.59	2.58	2.57	2.56	2.55	2.54	2.52	2.50	2,48	2.46	2.44
0.25	2.48	2.48	2.48	2.47	2.47	2.46	2.46	2.45	2.45	2,44	2.44	2.43	2.41	2,40	2.39	2.38
0.30	2.32	2.32	2.32	2.32	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.32	2.32	2.31
0.40	2.00	2.00	2.01	2.03	2.05	2.07	2.08	2.10	2.11	2.12	2.14	2.15	2.16	2.17	2.18	2.18
0.50	1.72	1.72	1.74	1.77	1.80	1.83	1.86	1.89	1.91	1.93	1.95	1.99	2.01	2.03	2.05	2.06
0.60	1.50	1.50	1.52	1.55	1.59	1.63	1.67	1.71	1.74	1.77	1.79	1.84	1.87	1.90	1.92	1.94
0.70	1.32	1.32	1.34	1.38	1.42	1.47	1.51	1.55	1.59	1.62	1.65	1.71	1.75	1.79	1.81	1.84
0.80	1.17	1.18	1.20	1.24	1.28	1.33	1.38	1.42	1.46	1.50	1.53	1.59	1.64	1.68	1.71	1.74
0.90	1.05	1.06	1.08	1.12	1.17	1.22	1.27	1.31	1.35	1.39	1.43	1.49	1.54	1.59	1.62	1.66
1.00	0.957	0.963	0.986	1.02	1.07	1.12	1.17	1.21	1.26	1.29	1.33	1.40	1.45	1.50	1.54	1.58
1.20	0.806	0.812	0.835	0.872	0.916	0.963	1.01	1.06	1.10	1.14	1.17	1.24	1.30	1.35	1.40	1.44
1.40	0.695	0.701	0.724	0.758	0.799	0.844	0.889	0.932	0.973	1.01	1.05	1.12	1.18	1.23	1.28	1.32
1.60	0.611	0.616	0.638	0.670	0.708	0.750	0.792	0.833	0.873	0.911	0.947	1.01	1.07	1.13	1.17	1.22
1.80	0.544	0.550	0.570	0.600	0.635	0.674	0.714	0.753	0.791	0.828	0.863	0.928	0.987	1.04	1.09	1.13
2.00	0.491	0.496	0.515	0.542	0.576	0.612	0.650	0.687	0.723	0.758	0.792	0.855	0.912	0.964	1.01	1.05
2.20	0.447	0.452	0.470	0.495	0.526	0.560	0.596	0.631	0.665	0.699	0.731	0.792	0.848	0.899	0.945	0.988
2.40	0.410	0.415	0.431	0.455	0.484	0.516	0.550	0.583	0.616	0.648	0.679	0.738	0.792	0.842	0.887	0.929
2.60	0.379	0.384	0.399	0.421	0.448	0.478	0.510	0.542	0.573	0.604	0.634	0.691	0.743	0.791	0.836	0.877
2.80	0.352	0.357	0.371	0.392	0.417	0.446	0.476	0.506	0.536	0.565	0.594	0.649	0.699	0.746	0.790	0.830
3.00	0.329	0.333	0.347	0.366	0.390	0.417	0,446	0.474	0.503	0.531	0.559	0.611	0.661	0.706	0.748	0.788

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Fuente Tabla 3-38. Manual AISC. AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

2.4.1 Diagrama de flujo conexión soldada a momento viga-columna para aplicaciones en edificios metálicos.

DATOS:

Datos de Viga (DV)

 b_{fb} = Ancho del Ala Perfil Viga Perfil Viga, (mm).

- t_{fb} = Espesor del Ala Perfil Viga, (mm).
- t_{wb} = Espesor del Ala Perfil Viga, (mm).
- d_b = Altura Perfil Viga, (mm).
- Z_{xb} = Modulo Plástico Perfil Viga (eje fuerte), (mm³).

 Z_{yb} = Modulo Plástico Perfil Viga (eje débil), (mm³).

 $A_b = \text{ Årea del Perfil Viga. (mm^2).}$

 I_{xb} = Momento de inercia Perfil Viga (eje fuerte), (mm⁴).

 I_{yb} = Momento de inercia Perfil Viga (eje débil), (mm⁴).

L = Longitud de la Viga entre Ejes de Columnas. (mm).

 L_b = Longitud de Libre de la Viga, entre Caras de las Columnas, (mm).

w = Carga para Combinación Gravitacional (1.2D+1.6L).

Figura 79. Geometría de la Viga

Datos de Columna (DC)

 d_c = Altura Perfil Columna, (mm).

b_{fc} = Ancho del Ala Perfil Columna, (mm).

t_{fc} = Espero del Ala Perfil Columna, (mm).

 t_{wc} = Espero del Alma Perfil Columna, (mm).

 $A_c =$ Área Perfil Columna, (mm²).

 I_{xc} = Momento de inercia Perfil Columna (eje fuerte), (mm⁴).

l_{yc} = Momento de inercia Perfil Columna (eje débil), (mm⁴).

 Z_{xc} = Modulo Plástico Perfil Columna (eje fuerte), (mm³).

 Z_{yc} = Modulo Plástico Perfil Columna (eje débil), (mm³).

H = Distancia de Columna entre puntos de Inflexión, (mm).

Figura 80. Geometría de la Columna

Datos de Materiales:

Acero de la Viga (AV)

- F_{yb} = Tensión de Fluencia del Acero de la Viga, (MPa).
- F_{ub} = Tensión de Ruptura del Acero de la Viga, (MPa).
- R_{yb} = Relación entre la Resistencia a la Fluencia esperada F_{ye} y la resistencia mínima esperada a la fluencia del acero de la viga que va utilizar F_y .

Acero de la Columna (AC)

- F_{yc} = Tensión de Fluencia del Acero de la Columna, (MPa).
- F_{uc} = Tensión de Ruptura del Acero de la Columna, (MPa).

Acero de la Placas (AP)

- F_{yp} = Tensión de Fluencia del Acero de la Placas, (MPa).
- F_{up} = Tensión de Ruptura del Acero de la Placas, (MPa).
Datos de Soldadura (W)

F_{EXX} = Número de clasificación del electrodo, correspondiente a la resistencia mínima especificada, (MPa).

Figura 81. Diagrama de Cuerpo Libre

Datos 1

b _p	=	Ancho promedio de la cubreplaca, (mm).
b _{p,} mayor	=	b _f , lado mayor de la cubreplaca, (mm).
b _{p,} menor	=	b _f +40mm, lado menor de la cubreplaca, (mm).

Datos 2

U = Factor de reducción por rezago de cortante, calculado como se muestra en la tabla F.2.4.3-1 de la NSR-10, para el caso 4.

$$W_l \ge 2b_{fb}/3 \dots U = 1.0$$

$$2b_{fb}/3 > W_l \ge 1.5b_{fb}/3 \dots U = 0.87$$

$$1.5b_{fb}/3 > W_l \ge b_{fb}/3 \dots U = 0.75$$

Datos 3

*U*_{bs} = Coeficiente de Reducción usado en el cálculo de la Resistencia a la Rotura por Desgarramiento en Bloque.

$$A_{gv} = A_{nv} = 2W_l t_p, (mm^2)$$
$$A_{nt} = b_{fb} t_p, (mm^2)$$

Figura 82. Geometría cubreplaca

Datos 4

- k_1 = Distancia desde el eje del alma del perfil al pie de la soldadura del alma (valor de diseño) o soldadura de filete. (mm).
- K = Distancia desde la cara exterior del ala del perfil al pie de la soldadura del alma (valor de diseño) o Soldadura de filete. (mm).

Datos 5

- d_z = Altura de la zona de panel entre placas de continuidad, (mm).
- w_z = Ancho de la zona de panel entre aletas de la columna, (mm).
- P_u = Resistencia requerida para la combinación de cargas 1.2D +0.5L, (N).
- $P_y = F_y A_c$, resistencia de la columna a la fluencia bajo carga axial, (N).

Figura 83. Diagrama de Cuerpo Libre en la zona de panel

Datos 6

Figura 84. Dimensiones de Placa de Corte

Figura 85. Fluencia y Rotura a Cortante en la Viga

Datos 7

$$Z_x = \frac{t_{st}h_{st}^2}{4}, (mm^3)$$
$$e_x = L_{st}, (mm)$$

Datos 8

- Le = Distancia Libre, en la dirección de la fuerza, entre el centro de la perforación considerada y el borde de la perforación adyacente o el borde del material, (mm).
- $L_{st} = 2L_e + 10mm$
- t_{st} = Espesor de la Placa de Cortante, (mm).
- k = Distancia desde la cara exterior de la aleta hasta el pie de la transición alma aleta, (mm).

$$h_{st} = d_b - 2k - 50$$

$$A_{gv} = h_{st}t_{st}, (mm^2)$$

$$A_n = [h_{st} - 2(d + 3.2mm)]t_{st}, (mm^2)$$

Figura 86. Fluencia y Rotura a Cortante en la Placa de Corte

Figura 87. Diagrama de flujo diseño conexión Precalificada Rígida Viga I y una Columna Tubular Rellena De Concreto

3 APLICACIÓN DE LA METODOLOGÍA DE DISEÑO DE CONEXIONES METÁLICAS

Se realizará el análisis y diseño de dos modelos de edificios en estructura metálica correspondientes al modelo 1 y 2, de los cuales se obtendrán las secciones transversales de los elementos (viga – columna) necesarios para la aplicación del diseño de las conexiones precalificadas en Colombia descritas en este documento.

La geometría del prototipo del edificio que se toma en este trabajo y sus cargas fue igualmente evaluado por Peralta⁴.

Estas edificaciones corresponden a una estructura de acero de cuatro niveles, con una altura de entrepiso de 3.75 metros y con una altura total de 15.0 metros. Las dimensiones en planta son: en la dirección (X) una longitud de 30.0 metros y en la dirección (Y) una longitud de 22.5 metros. Se toma una distribución estructural simétrica, la cual es regular tanto en planta como en altura.

Como análisis inicial se utilizó el método de análisis dinámico elástico espectral para el predimensionamiento de los elementos estructurales, dando cumplimiento del límite de deriva por rigidez, realizando previamente un ajuste obtenido entre la proporción del cortante dinámico y del cortante estático de la fuerza horizontal equivalente (FHE). En el **Anexo A** se encuentra el procedimiento y chequeo de derivas.

⁴ PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Trabajo de grado, Magister en Ingenieria estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

Para el cálculo de las resistencias requeridas y el diseño de los elementos estructurales vigas-columnas se empleó el método de Análisis Directo, utilizando el software de diseño ETABS. En el **Anexo B** se encuentra el procedimiento.

3.1 PARÁMETROS PARA EL ANÁLISIS Y DISEÑO DEL EDIFICIO

A continuación, se describen los parámetros para el análisis y diseño de la edificación de acero en estudio, ubicado en la ciudad de Bucaramanga y destinado para el uso de oficinas.

Tabla 15. Carga Muerta Sobreimpuesta (SD)

DESCRIPCION	VALOR	UND
TABLERO METÁLICO 2" – CAL.22, h _{concreto} =130mm	226.6	Kgf/m ²
ACABADOS DE PISO	160.0	Kgf/m ²
MUROS DIVISORIOS PARTICIONES LIVIANAS	200.0	Kgf/m ²
CARGA MUERTA SOBREIMPUESTA (SD)	586.6	Kgf/m ²

Tabla 16. Carga Viva (L)

DESCRIPCION	VALOR	UND
CARGA VIVA USO DE OFICINA (L)	200	Kgf/m ²

Tabla 17. Definición de Parámetros Sísmicos

DESCRIPCION	VALOR
LOCALIZACIÓN	BUCARAMANGA
ZONA DE AMENAZA SÍSMICA	ALTA
A _a	0.25

DESCRIPCION	VALOR
A _v	0.25
TIPO DE PERFIL DE SUELO	С
Fa	1.15
F _v	1.55
GRUPO DE USO	I
COEFICIENTE DE IMPORTANCIA	1.0
R₀ SRS EN X	7.0
R₀ SRS EN Y	7.0
φ _p	1.0
фа	1.0
фr	1.0
R	7.0
Ω₀	3.0

Tabla 17. (Continuación)

Figura 88. Espectro de Diseño

Espectro Elastico de Aceleraciones Amortiguamiento 5%

Tabla 18. Geometría Modelo 1 y 2

Nro. Pórticos		Nro Va	o. de inos	Longitud de Vanos		Nro. de	h Entrepiso	h Total
Х	Y	Х	Y	X (m)	Y (m)	pisos	(m)	(m)
5	4	4	3	7.5	7.5	4	3.75	15

En el Modelo 1 de pórticos resistentes a momento (PRM) para el sistema de resistencia sísmica (SRS), se utilizarán las conexiones precalificadas: Tubo-Viga Reforzada y conexión Viga I – Columna Compuesta Embebida.

En el Modelo 2 de pórticos resistentes a momento (PRM) para el sistema de resistencia sísmica (SRS), se utilizará las conexiones precalificadas: Viga I y una Columna Tubular Rellena de Concreto y conexión Soldada a Momento Viga-Columna.

Figura 89. Geometría de la Estructura planta Modelo 1

Figura 90. Geometría de la Estructura planta Modelo 2

3.1.1 Descripción de los Materiales Empleados. A continuación, en la Tabla 19 se describen las propiedades de los materiales a emplear para el análisis y diseño de la estructura:

Тіро	Norma	Mod.	Resistencia a Fluencia y a Rotura, Especificada y					
		Elast			Espe	erada		
	ASTM	E (MPa)	Fy∕f'c (MPa)	F _u (MPa)	Ry	Rt	F _{ye} (MPa)	F _{ue} (MPa)
Acero de Refuerzo	A 706 M	200000	420	540	1.1	1.1	462	594

	Norma	Mod.	Resistencia a Fluencia y a Rotura, Especificada y					
Tipo	Norma	Elast	st Esperada					
	ASTM	E (MPa)	F _y (MPa)	F _u (MPa)	Ry	Rt	F _{ye} (MPa)	F _{ue} (MPa)
Acero Estructural	A572	200000	352	455	1.1	1.1	387.2	500.5
PTE Rectangular	A500 Gr C	200000	345	425	1.4	1.3	483	552.5
PTE Redondo	A500 Gr C	200000	315	425	1.4	1.3	441	552.5
Tablero Metálico	A653 SS Gr 40	200000	272	380	-	-	-	-
Concreto	-	17872	21	-	-	-	-	-
Concreto	-	20637	28	-	-	-	-	-

Tabla 19 (Continuación)

3.2 ANÁLISIS ESTRUCTURAL MEDIANTE UN MODELO MATEMÁTICO

Se realizará un modelo matemático de la edificación utilizando el software de diseño ETABS, para obtener fuerzas internas debidas a cargas gravitacionales y sismo.

Figura 91. Modelo 1 tridimensional con diafragma rígido

Figura 92. . Modelo 2 tridimensional con diafragma rígido

Se realiza ajuste por fuerza horizontal equivalente, para el Modelo 1 y 2.

Figura 93. Factores de Ajuste. Modelo 1

V. Factores de Ajuste		
Factor de Ajuste Sismo en X	F _{ax}	1.22984759
Factor de Ajuste Sismo en y	F _{ay}	1.30025012

Figura 94. Factores de Ajuste. Modelo 2

V. Factores de Ajuste		
Factor de Ajuste Sismo en X	F _{ax}	1.26524178
Factor de Ajuste Sismo en y	F _{ay}	1.25429204

A continuación, se muestran las derivas máximas obtenidas por el análisis de primer y segundo orden con el fin de definir a cuáles combinaciones de carga se aplicarán las cargas ficticias cumpliendo lo establecido en la sección F.3.2.2.2 del numeral 4 de la NSR-10:

Resultados de Derivas Máximas para el Modelo 1:

 $\Delta_1 = 0.019998$ m, Deriva Máxima en X del Análisis de Primer Orden $\Delta_1 = 0.021674$ m, Deriva Máxima en Y del Análisis de Primer Orden $\Delta_2 = 0.023547$ m, Deriva Máxima en X del Análisis de Segundo Orden $\Delta_2 = 0.025081$ m, Deriva Máxima en Y del Análisis de Segundo Orden

Relación Deriva en X:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.023547}{0.019998} = 1.18 < 1.71$$

Relación Deriva en Y:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.025081}{0.021674} = 1.16 < 1.71$$

Como las relaciones entre las derivas máximas del análisis de segundo orden y las máximas derivas de primer orden en cada sentido son menores de 1.71, las cargas ficticias serán aplicadas solo a las combinaciones de cargas gravitacionales para el Modelo 1.

Resultados de Derivas Máximas para el Modelo 2:

 $\Delta_1 = 0.021903$ m, Deriva Máxima en X del Análisis de Primer Orden

 $\Delta_1 = 0.021579$ m, Deriva Máxima en Y del Análisis de Primer Orden $\Delta_2 = 0.025754$ m, Deriva Máxima en X del Análisis de Segundo Orden $\Delta_2 = 0.024663$ m, Deriva Máxima en Y del Análisis de Segundo Orden

Relación Deriva en X:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.025754}{0.021903} = 1.18 < 1.71$$

Relación Deriva en Y:

$$\frac{\Delta_2}{\Delta_1} = \frac{0.024663}{0.021579} = 1.14 < 1.71$$

Como las relaciones entre las derivas máximas del análisis de segundo orden y las máximas derivas de primer orden en cada sentido son menores de 1.71, las cargas ficticias serán aplicadas solo a las combinaciones de cargas gravitacionales para el Modelo 2.

Ver en el Anexo A el cuadro correspondiente al chequeo de derivas.

3.3 DISEÑO DE ELEMENTOS ESTRUCTURALES

Los perfiles estructurales utilizados en el diseño de la edificación, fueron seleccionados mediante un proceso de iteración donde se incluyen todos los factores y requisitos de diseño de acuerdo al Reglamento Colombiano de Construcción Sismo Resistente NSR-10.

La estructura resistente de la edificación y cada uno de sus elementos (vigascolumnas) tanto de alma llena como sección compuesta se modelaron y diseñaron con el software de cálculo y diseño estructural ETABS para soportar las solicitaciones estáticas y dinámicas.

Los elementos estructurales pertenecientes al sistema de resistencia sísmica (SRS) además de cumplir con los requerimientos por resistencia deben cumplir con las provisiones sísmicas establecidas por el AISC 341, 2010, las cuales se encuentran cargadas previamente en el programa y correspondientes al título F.3 de la norma NSR-10, algunas de estas provisiones son: Requerimiento de Sección Compacta, Arrostramiento Lateral de Vigas, Requerimientos de Columnas, Relación de Momentos Resistencias de Vigas y Columnas. En el **Anexo C** se encuentra los resultados del diseño de los elementos que conforman las conexiones a diseñar.

A continuación, se muestran las propiedades geométricas de las secciones seleccionadas según el diseño estructural del edificio en estudio para las vigas y columnas de los pórticos PRM-DES y PRMC-DES:

Tabla 20. Secciones Seleccionadas	s en el Diseño Estructural Modelo 1
-----------------------------------	-------------------------------------

PROTICO	ELEMENTO	TIPO DE SECCIÓN	PERFIL
	VIGA	METÁLICA	W 24X84
FRIVI-DES(A)	COLUMNA	METÁLICA	Cajón 400mmx400xmmx30mm
	VIGA	METÁLICA	W 24X84
PRIVIC-DES(1)	COLUMNA	COMPUESTA EMBEBIDA	W 14X176

PROTICO	ELEMENTO	TIPO DE SECCIÓN	PERFIL
	VIGA	METÁLICA	W 24X84
PRIVI-DES (X)	COLUMNA	METÁLICA	W 14X193
	VIGA	METÁLICA	W 24X84
PRIVIC-DES (1)	COLUMNA	COMPUESTA RELLENA	Cajón 450mmx400xmmx22mm

Tabla 22. Propiedades geométricas de Vigas Secundarias Perfil W

			DIMENS	SIONES	5			EJE X - X				EJES Y - Y			
DEDEU	ALTU	JRA	AL	A	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
W 12X30	330.00	6.60	166.00	8.00	8.00	290.60	56.90	99.34	635.00	132.00	708.00	8.55	103.00	38.80	158.00
W 24X76	608.00	11.20	228.00	17.30	13.00	573.00	145.00	876.00	2882.00	246.00	3292.00	34.25	300.00	48.70	469.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Tabla 23. Propiedades geométricas de Vigas Principales Perfil W

		DIMENSIONES						EJE X - X				EJES Y - Y			
DEDEU	ALTU	JRA	AL	A	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	\rm{mm}^4	mm ³	mm	mm ³
W 24X84	612.00	11.90	229.00	19.60	13.00	572.80	159.00	985.90	3222.00	249.00	3676.00	39.32	343.00	49.70	535.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Chequeo de la esbeltez:

La NSR-10 Titulo F.3.5.3.5.1 especifica que las columnas deben ser miembros de alta ductilidad λ_{da} , se debe cumplir con los requisitos de relación ancho-espesor definidos en la tabla F.3.4-1

Para alma:

$$\lambda_{da} = 2.45 \sqrt{E/F_y}$$

$$\lambda_{da} = 2.45\sqrt{200000/352} = 58.40$$

$$\frac{h}{t} = \frac{572.80}{11.90} = 48.13$$

$$\frac{h}{t} = 48.13 < \lambda_{da} = 58.40\;(OK)$$

Para aletas:

$$\lambda_{da} = 0.30 \sqrt{E/F_y}$$

$$\lambda_{da} = 0.30 * \sqrt{200000/352} = 7.15$$
$$\frac{h}{t} = \frac{229}{2 * 19.60} = 5.84$$
$$\frac{h}{t} = 5.84 < \lambda_{da} = 7.15 \ (OK)$$

Tabla 24. Propiedades geométricas de la Columna Perfil W

		DIMENSIONES						EJE X - X				EJES Y - Y			
DEDEU	ALTU	JRA	AL	А	DISTA	NCIAS		I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d	t _{wc}	b _{fc}	t _{fc}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	\rm{mm}^4	mm ³	mm	mm ³
W 14X193	393.00	22.60	399.00	36.60	15.00	319.00	366.00	997.10	5074.00	165.00	5813.00	387.80	1944.00	103.00	2957.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Chequeo de la esbeltez:

La NSR-10 Titulo F.3.5.3.5.1 especifica que las columnas deben ser miembros de alta ductilidad λ_{da} , se debe cumplir con los requisitos de relación ancho-espesor definidos en la tabla F.3.4-1

Para alma:

$$C_a = \frac{P_u}{\phi_c F_{yc} A_q}$$

$$C_a = \frac{1329060}{0.9 * 352 * 444 * 10^2} = 0.095$$

Se presenta el caso en que $C_a < 0.125$ entonces se debe cumplir:

$$\lambda_{da} = 2.45 \sqrt{E/F_y} \left(1 - 0.93C_a \right)$$

 $\lambda_{da} = 2.45 \sqrt{200000/352} \left(1 - 0.93 * 0.095\right) = 53.77$

$$\frac{h}{t} = \frac{319}{22.60} = 18.34$$

$$\frac{h}{t} = 18.34 < \lambda_{da} = 53.77 \ (OK)$$

Para aletas:

$$\lambda_{da} = 0.30 \sqrt{E/F_y}$$

$$\lambda_{da} = 0.30 * \sqrt{200000/352} = 7.15$$

$$\frac{h}{t} = \frac{399}{2 * 36.60} = 5.45$$

$$\frac{h}{t} = 5.45 < \lambda_{da} = 7.15 \ (OK)$$

206

Tabla 25. Propiedades geométricas de la Columna Perfil W para sección compuesta embebida

			DIMENS	SIONES	5			EJE X - X				EJES Y - Y			
DEDEU	ALTU	JRA	AL	А	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d	t _{wc}	b _{fc}	t _{fc}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm ⁴	mm ³	mm	mm ³
W 14X176	387.00	21.10	396.00	33.30	15.00	320.40	335.00	894.10	4620.00	163.00	5260.00	350.20	1760.00	102.00	2676.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Chequeo de la esbeltez:

La NSR-10 Titulo F.3.7.3.5.1 especifica que las columnas deben ser miembros de alta ductilidad λ_{da} , se debe cumplir con los requisitos de relación ancho-espesor definidos en la tabla F.3.4-1

Para alma:

$$C_a = \frac{P_u}{\phi_c F_{yc} A_g}$$

$$C_a = \frac{2959250}{0.9 * 352 * 335 * 10^2} = 0.26$$

Se presenta el caso en que $C_a > 0.125$ entonces se debe cumplir:

$$\lambda_{da} = 0.77 \sqrt{E/F_y} \left(2.93 - C_a \right)$$

$$\lambda_{da} = 0.77 * \sqrt{200000/352} * (2.93 - 0.26) = 49.00$$

$$\frac{h}{t} = \frac{320.40}{21.10} = 15.18$$

$$\frac{h}{t} = 15.18 < \lambda_{da} = 49.00 \ (OK)$$

Para aletas:

$$\lambda_{da} = 0.30 \sqrt{E/F_y}$$

$$\lambda_{da} = 0.30 * \sqrt{200000/352} = 7.15$$

$$\frac{h}{t} = \frac{396}{2 * 33.30} = 5.94$$

$$\frac{h}{t} = 5.94 < \lambda_{da} = 7.15 \ (OK)$$

Tabla 26. Propiedades geométricas de la Columna Perfil Cajón

	DIMENSIONES			EJE X - X				EJES Y - Y				
DEDEU	ALTURA	BASE	Espesor	AREA	I _x	S _x	r _x	Z _x	l _y	Sγ	r _y	Zy
PERFIL	d _c	b _c	t _c	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm ⁴	mm ³	mm	mm ³
Tubular	400.00	400.00	30.00	444.00	1019.72	5098.60	151.50	6174.00	1019.72	5098.60	151.50	6174.00

Chequeo de la esbeltez:

La NSR-10 Titulo F.3.5.3.5.1 especifica que las columnas deben ser miembros de alta ductilidad λ_{da} , se debe cumplir con los requisitos de relación ancho-espesor definidos en la tabla F.3.4-1

Para el alma:

$$C_a = \frac{P_u}{\phi_c F_{yc} A_g}$$

$$C_a = \frac{1329060}{0.9 * 352 * 444 * 10^2} = 0.095$$

Se presenta el caso en que Ca<0.125 entonces se debe cumplir:

$$\lambda_{da} = 2.45 \sqrt{E/F_y} \left(1 - 0.93C_a\right)$$

 $\lambda_{da} = 2.45 \sqrt{200000/352} \left(1 - 0.93 * 0.095\right) = 53.77$

$$\frac{h}{t} = \frac{340}{30} = 11.33$$

$$\frac{h}{t} = 11.33 < \lambda_{da} = 53.77 \ (OK)$$

Para paredes:

$$\lambda_{da} = 0.55 \sqrt{E/F_y}$$

$$\lambda_{da} = 0.55 \sqrt{200000/352} = 13.11$$

$$\frac{h}{t} = \frac{340}{30} = 11.33$$

$$\frac{h}{t} = 11.33 < \lambda_{da} = 13.11 \ (OK)$$

Tabla 27. Características geométricas de la Columna Perfil Cajón Sección compuesta rellena

	DIN	/IENSIO	NES			EJE >	(- X		EJES Y - Y				
DEDEU	ALTURA	BASE	Espesor	AKEA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy	
PERFIL	d _c	b _c	t _c	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³	
	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³	
Tubular	450.00	400.00	22.00	354.64	1052.11	4676.02	172.20	5579.59	873.51	4367.54	156.90	5136.29	

Tabla 28. Propiedades geométricas adicionales para el diseño sección compuesta rellena

	DIMENS	SIONES	AR	EA	EJE X - X	EJES Y - Y
DEDEU	ALTURA	BASE	A _c	Ag	I _{CX}	I _{CY}
PERFIL	h ₂	h ₁	X10 ²	X10 ²	X10 ⁶	X10 ⁶
	mm	mm	mm ²	mm ²	mm ⁴	mm ⁴
Concreto	406.00	356.00	1445.36	1800.00	1526.49	1985.39

Chequeo de la esbeltez:

La NSR-10 Titulo F.3.7.3.5.1 especifica que las columnas compuestas deben ser miembros de alta ductilidad λ_{da} , se debe cumplir con los requisitos de relación ancho-espesor definidos en la tabla F.3.4-1

Para paredes de miembros rectangulares:

 λ_{da}

$$\lambda_{da} = 1.40 \sqrt{E/F_y}$$
$$= 1.40 * \sqrt{200000/352} = 33.37$$
$$\frac{h}{t} = \frac{406}{22} = 18.45$$

г

$$\frac{h}{t} = 18.45 < \lambda_{da} = 33.37 \ (OK)$$

A continuación, se muestran los elementos que conforman las uniones a diseñar.

Figura 95. Sistema de Pórtico Resistentes a Momentos Dirección X Modelo 1

Del pórtico de la Figura 95 del modelo 1 se diseñará la conexión Viga-Columna (B29-C8), con la conexión precalificada Tubo-Viga Reforzada.

Figura 96. Sistema de Pórtico Resistentes a Momentos Dirección Y Modelo 1

Del pórtico de la Figura 96 del modelo 1 se diseñará la conexión Viga-Columna (B5-C7), con la conexión precalificada Viga I-Columna Compuesta embebida.

Figura 97. Sistema de Pórtico Resistentes a Momentos Dirección X Modelo 2

Del pórtico de la Figura 97 del modelo 2 se diseñará la conexión Viga-Columna (B29-C8), con la conexión precalificada Soldada a Momento Viga-Columna.

Figura 98. Sistema de Pórtico Resistentes a Momentos Dirección Y Modelo 2

Del pórtico de la Figura 98 del modelo 2 se diseñará la conexión Viga-Columna (B5-C6), con la conexión precalificada Viga I-Columna Compuesta rellena.

3.4 DISEÑO DE CONEXIONES RÍGIDAS (VIGA-COLUMNA)

Para la edificación de acero diseñado y caracterizado anteriormente, se diseñarán detalladamente las conexiones rígidas viga-columna para los pórticos que hacen parte del sistema de resistencia sísmica, de acuerdo a la precalificación realizadas en varias tesis de grado, usando esa base teórica y resumiéndolo en pasos para el diseño de la conexión, actualizado el contenido con los criterios expuestos en la NSR-10.

3.4.1 Diseño de Conexión Tubo-Viga Reforzada para el caso de Aplicación. A continuación, se detalla el procedimiento de cálculo y diseño para esta conexión, siguiendo los pasos de la sección 2.1.

Las propiedades de los Materiales son:

VIGA	COLUMNA	PLATINAS
ASTM A572 Gr50	ASTM A572 Gr50	ASTM A572 Gr50
F _{yb} =352 MPa	F _{yc} =352 MPa	F _{yp} =352 MPa
F _{ub} =455 MPa	F _{uc} =455 MPa	F _{up} =455 MPa
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1

Tabla 29. Propiedades de los Materiales

Las propiedades geométricas de los perfiles son:

Tabla 30. Propiedades geométricas	de la Columna	Perfil Cajón
-----------------------------------	---------------	--------------

PERFIL	DIMENSIONES					EJE >	(- X		EJES Y - Y				
	ALTURA	BASE	Espesor	AREA	I _x	S _x	r _x	Z _x	l _y	Sγ	r _y	Zy	
	d _c	b _c	t _c	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³	
	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³	
Tubular	400.00	400.00	30.00	444.00	1019.72	5098.60	151.50	6174.00	1019.72	5098.60	151.50	6174.00	

Tabla 31. Propiedades geométricas de Viga Perfil W

PERFIL	DIMENSIONES							EJE X - X				EJES Y - Y			
	ALTURA		ALA		DISTANCIAS		AREA	I _x	S _x	r _x	Z _x	I _y	Sy	r _y	Zy
	d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
W 24X84	612.00	11.90	229.00	19.60	13.00	572.80	159.00	985.90	3222.00	249.00	3676.00	39.32	343.00	49.70	535.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Datos de Diseño:

$$L = 7500 \text{ mm}$$

$$L_b = 7100 \text{ mm}$$

H = 3750 mm

Pernos = A325 Soldadura Electrodos = E70XX

PASO 1: Calcular Mpr

Figura 99. Diagrama de Cuerpo Libre

$$M_{pr} = C_{pr}R_y Z_{xb}F_y$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} = \frac{352 + 455}{2 * 352} = 1.15$$

$$M_{pr} = \frac{1.15 * 1.1 * 3676 * 10^3 * 352}{1 * 10^6} = 1631.59 \, KN. \, m$$

PASO 2: Suponga una longitud de placa Ip.

 l_p = 550mm.

Revisar que se cumpla el criterio viga débil-columna fuerte:

$$\frac{2Z_{c}(F_{yc} - P_{uc}/A_{c})}{\sum\left\{\left[1 + \frac{2}{L_{b} - 2l_{p}}\left(l_{p} + \frac{d_{c}}{2}\right)\right]\frac{M_{pr}(H - d_{b})}{H}\right\}} > 1.0$$

Como la conexión es interior, es decir continua como se muestra en el diagrama de cuerpo libre de la

Figura 99 y las vigas son iguales en los dos lados, el denominador se multiplica por 2.

$$\frac{2*6174*10^3*(352-1025930/444*10^2)}{2*\left\{\left[1+\frac{2}{7100-2*550}*\left(550+\frac{400}{2}\right)\right]\frac{1631.59*10^6*(3750-612)}{3750}\right\}} > 1.0$$

1.19 > 1.0 *OK. cumple*

PASO 3: Calcular V_p en la ubicación de la rótula plástica, *I_p*.

$$V_p = V_u = \frac{2M_{pr}}{L_h} + \frac{W_u L_h}{2}$$
$$L_h = L_b - 2l_p$$

 $L_h = 7100 - 2 * 550 = 6000 mm$

$$w_u = 1.2(D + SD) + 0.5L$$

 $w_u = 1.2(3.33 + 3.31) + 0.5(1.84) = 8.89KN/m$

$$V_p = \frac{2 * 1631.59}{6.0} + \frac{8.89 * 6.0}{2} = 570.53 \, KN$$

PASO 4: Calcular Mf.

$$M_f = M_{pr} + V_p l_p$$

$$M_f = 1631.59 + 570.53 * 0.55 = 1945.39 \, KN. \, m$$

PASO 5: Determinar el ancho b_p de las cubre placas. Para ello se utiliza el criterio de la sección de *Whitmore* el cual es un estado límite que implica la fluencia o pandeo del material de la placa cerca de los extremos de los miembros unidos

$$b_{p} = 2W_{l}tan30^{o} + b_{f}$$
$$W_{l} = l_{p} - 10 mm$$
$$W_{l} = 550 - 10 = 540 m$$
$$b_{p} = 2 * 540 * tan30^{o} + 229 = 852.54mm$$

Entonces se asume un valor de b_{ρ} = 850mm.

PASO 6: Calculo del espesor t_p del cubreplaca inferior. Con el fin de facilitar el proceso de fabricación y ensamble se supone que el espesor del cubreplaca superior es igual al de la cubreplaca inferior. Para ello se tienen en cuenta los siguientes estados límites:
• Resistencia de diseño de soldadura del material base según F.2.10.2.4 (NSR-10)

$$t_p \ge \frac{M_{pr}}{\phi F_{yp} 2W_l (d_b - t_f)}$$

$$t_p \ge \frac{1631.59 * 10^6}{0.9 * 352 * 2 * 540 * (612 - 19.60)} = 8.05 \ mm$$

• Resistencia a tensión del cubreplaca inferior según F.2.10.4.1 (NSR-10). El valor t_p será el obtenido para los estados límites de fluencia por tensión y rotura por tensión.

Fluencia por tensión:

$$t_p \ge \frac{M_f}{\phi b_p F_{yp} d_b}$$

$$t_p \ge \frac{1945.39 * 10^6}{0.9 * 850 * 352 * 612} = 11.80mm$$

Rotura por tensión:

$$t_p \ge \frac{M_f}{\phi b_p U F_{up} d_b}$$

$$W_l \ge 2b_{fb} \dots U = 1.0$$

540mm > 458mm \dots U = 1.0

$$t_p \ge \frac{1945.39 * 10^6}{0.75 * 850 * 1.0 * 455 * 612} = 10.96 \, mm$$

• Resistencia del cubreplaca a desgarramiento en bloque de cortante según el F.2.10.4.3 (NSR-10), se determina como sigue:

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_{fb}}$$

La revisión se hace con el mayor de los t_p obtenidos en los cálculos anteriores el cual es $t_p = 11.80$ mm

$$\phi R_n = \phi \left[0.60F_{up}A_{nv} + U_{bs}F_{up}A_{nt} \right] \le \phi \left[0.6F_{yp}A_{gv} + U_{bs}F_{up}A_{nt} \right]$$
$$A_{gv} = A_{nv} = 2W_l t_p$$

$$A_{gv} = A_{nv} = 2 * 540 * 11.80 = 12744 \ mm^2$$

 $A_{nt} = b_f t_p$

$$A_{nt} = 229 * 11.80 = 2702.2 \ mm^2$$

$$\phi R_n = 0.75 * [0.60 * 455 * 12744 + 1.0 * 455 * 2702.2]$$

$$\leq 0.75[0.6 * 352 * 12744 + 1.0 * 455 * 2702.2]$$

$$\phi R_n = 3531.46 \ KN > 2940.77 \ KN$$

Entonces se toma un valor de $\phi R_n = 2940.77$ KN.

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_{fb}}$$

$$\phi R_n = 2940.77 \ge \frac{1631.59 * 10^6}{612 - 19.60}$$

$$\phi R_n = 2940.77 \ KN \ge 2754.20 \ KN \ (OK)$$

• Resistencia a la rotura por tensión en el área neta entre el cubreplaca y la cara de la columna.

$$t_p \ge \frac{M_f}{\phi F_{up} d_b (b_p - b_c)}$$

$$t_p \ge \frac{1945.39 * 10^6}{0.75 * 455 * 612 * (850 - 400)} = 20.70mm$$

• Resistencia del cubre placa a cortante según F.2.10.4.2 (NSR-10), en la unión del cubreplaca con la columna. El valor t_p será el obtenido para los estados límites de fluencia por cortante y rotura por cortante.

Fluencia a cortante:

$$t_p \ge \frac{M_f}{\phi 0.6F_{yp}d_b 2d_c}$$

$$t_p \ge \frac{1945.39 * 10^6}{0.90 * 0.60 * 352 * 612 * 2 * 400} = 20.90mm$$

Rotura por cortante:

$$t_p \ge \frac{M_f}{\phi 0.6F_{up}d_b 2d_c}$$

$$t_p \ge \frac{1945.39 * 10^6}{0.75 * 0.60 * 455 * 612 * 2 * 400} = 19.41mm$$

A continuación, se definirá el espesor de la cubre placa inferior y superior a partir de los resultados obtenidos de la verificación de los estados limites definidos anteriormente. En el Tabla 32 se resumen los resultados:

Tabla 32. Resumen de los estados límites para los cubreplacas.

ESTADOS LIMITES	$t_p(mm) \ge$
Resistencia de diseño de soldadura del material base	8.05
Resistencia del cubre placa a tensión	11.80; 10.96
Resistencia de la cubre placa al desgarramiento en bloque	11.80
Resistencia a la rotura por tensión en el área neta entre la cubre placa y la cara de la columna	20.70
Resistencia al cortante en la unión del cubre placa con la columna	20.90; 19.41

Se asume un espesor de cubre placa correspondiente a los valores estándar del mercado el cual corresponde a un valor de $t_p = 25.4mm$ correspondiendo a un valor de 1" pulgada.

PASO 7: Calculo del espesor t_w de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga, esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

$$t_{w} \geq \frac{M_{pr}}{\phi 0.60 F_{EXX} 0.707 (2W_{l}) (d_{b} - t_{fb})}$$

$$t_w \ge \frac{1631.59 * 10^6}{0.75 * 0.60 * 480 * 0.707 * 2 * 540 * (612 - 19.60)} = 16.70mm$$

El espesor de la soldadura asumido es de t_w = 17.0mm, el cual es menor al valor del espesor de t_{fb} =19.60mm - 2mm =17.6mm.

PASO 8: Calculo de la longitud de soldadura de filete longitudinal W₁ entre el cubreplaca superior y la aleta de la viga. Esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

$$W_{l1} \ge \frac{M_{pr}}{2\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{W_t}{2}$$

$$W_{t1} = W_{t2} = \frac{229}{3} = 76.33mm$$
$$W_t = 2 * 76.33 + 76.33 = 229mm$$

 $W_{l1} \geq \frac{1631.59 * 10^6}{2 * 0.75 * 0.60 * 480 * 0.707 * 17 * (612 - 19.60)} - \frac{229}{2} = 415.95 mm$

$$W_{l2} \ge \frac{M_{pr}}{1.7\phi 0.60F_{EXX} 0.707t_w (d_b - t_{fb})} - \frac{1.5W_t}{1.7}$$

$$W_{l2} \ge \frac{1631.59 * 10^6}{1.7 * 0.75 * 0.60 * 480 * 0.707 * 17 * (612 - 19.6)} - \frac{1.5 * 229}{1.7} = 422mm$$

Se asume un valor aproximado al mínimo entre el W_{11} y W_{12} , correspondiente a $W_{11}=416$ mm.

PASO 9: Calculo de la resistencia de diseño ϕR_n del cubreplaca superior, correspondiente al menor valor entre los valores obtenidos para los estados límites de fluencia por tensión y rotura por tensión según lo especifica el F.2.10.4.1 (NSR-10) o al desgarramiento en bloque según lo especifica el F.2.10.4.3 (NSR-10). Estos

estados límites sirven como condición de verificación que el espesor t_p de la cubre placa superior supuesto como el mismo espesor calculado anteriormente para el cubre placa inferior, sea el adecuado:

• Fluencia por tensión:

$$\phi R_n = \phi L_w t_p F_{yp} \ge \frac{M_f}{d_b}$$

. .

$$L_w = 2W_l \tan 30^o + W_{t2}$$

$$L_w = 2 * 416 * \tan 30^o + 76.33 = 556.68mm$$

$$\phi R_n = 0.90 * 556.68 * 25.4 * 352 \ge \frac{1945.39 * 10^6}{612}$$

Rotura por tensión:

$$\phi R_n = \phi U(L_w - W_{t2}) t_p F_{up} \ge \frac{M_f}{d_h}$$

$$W_l \ge 2b_{fb}/3 \dots U = 1.0$$

$$416 \ge 2 * 229/3$$

$$416 \ge 152.66 \dots \dots U = 1.0$$

 $\phi R_n = 0.75 * 1.0 * (556.68 - 76.33) * 25.4 * 455 \ge \frac{1945.39 * 10^6}{612}$

• Desgarramiento en bloque:

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_p}$$

$$\phi R_n = \phi \left[0.60F_{up}A_{nv} + U_{bs}F_{up}A_{nt} \right] \le \phi \left[0.6F_{yp}A_{gv} + U_{bs}F_{up}A_{nt} \right]$$

$$A_{gv} = A_{nv} = 2W_l t_p$$

$$A_{gv} = A_{nv} = 2 * 416 * 25.4 = 21132.8mm$$

$$A_{nt} = b_{fb}t_p$$

$$A_{nt} = 229 * 25.4 = 5816.6mm$$

$$\begin{split} \phi R_n &= 0.75 * [0.60 * 455 * 21132.8 + 1.0 * 455 * 5816.6] \\ &\leq \phi [0.6 * 352 * 21132.8 + 1.0 * 455 * 5816.6] \end{split}$$

 $\phi R_n = 6311.85 KN > 5332.35 KN$

$\phi R_n = 5332.35KN$

$$\phi R_n = 5332.35KN \ge \frac{1631.59 * 10^6}{612 - 19.6}$$

5332.35KN > 2754.20KN (OK)

PASO 10: Se verifica el espesor por cortante en la zona de panel de la columna para el estado límite de fluencia por cortante según F.2.10.10.6 capitulo F de la NSR-10:

Como la Como la conexión es interior, es decir continua las vigas son iguales en los dos lados, el numerador se multiplica por 2.

$$R_u = \frac{\sum M_f}{d_b + t_p} - V_c$$

$$V_c = \frac{\sum M_f}{H}$$

$$V_c = \frac{2 * 1945.39}{3.75} = 1037.54 \, KN$$

$$R_u = \frac{2 * 1945.39}{(612 + 25.4) * 10^{-3}} - 1037.54 = 5066.60 \text{ KN}$$

 $P_u = 1025.93$ KN Si la comparamos con $P_y = F_y A$, resistencia de la columna a fluencia bajo carga axial:

$$P_y = 352 * 444 * 10^2 = 15628800 N$$

Entonces, al comparar $Pu \le 0.75P_y$

 $1025.93 \ KN \le 0.75(15628.80 \ KN)$

$$1025.93 \text{ KN} \le 11721.60 \text{ KN} (OK)$$

Este caso corresponde a:

Se cumple que $Pu \le 0.75P_y$ se calcula con la siguiente ecuación; teniendo en cuenta que la columna es de sección cajón, con dos almas, se debe multiplicar por dos la resistencia de cada zona de panel. Luego:

$$R_n = 2\left(0.6F_y d_c t_{pz} \left[1 + \frac{3b_c t_c^2}{d_b d_c t_{pz}}\right]\right)$$

$$\phi R_n = 2 * \left(0.90 * 0.6 * 352 * 400 * 30 * \left[1 + \frac{3 * 400 * 30^2}{612 * 400 * 30} \right] \right)$$

$$\phi R_n = 5232.79KN$$

Comparando los resultados:

$$R_u \leq \phi R_n$$

$$R_u = 5066.60 \text{ KN} < \phi R_n = 5232.79 \text{ KN} (OK) \text{ No requiere placa de enchape}.$$

• El espesor individual de la columna y de las placas de enchape debe cumplir con el siguiente requisito:

$$t_c \ge \frac{d_z + w_z}{90} = \frac{d_b + d_c}{90}$$
$$30 \ge = \frac{612 + 400}{90}$$

 $30mm > 11.24mm \ (OK)$

PASO 11: Verificar el espesor de la columna para el estado límite de resistencia para fluencia por cortante tal como lo especifica el F.2.10.4.2 numeral **(a)** NSR-10:

$$\phi R_n = \phi 0.60 F_{yc} 4t_c d_c \ge \frac{M_f}{d_b + t_p}$$
$$\phi R_n = 0.9 * 0.60 * 352 * 4 * 30 * 400 > \frac{1945.39 * 10^2}{612 + 25.4}$$

$$\phi R_n = 9123.84 \ KN > 3052.07 \ KN \ (OK)$$

Paso 12: Se diseña y detalla la placa de cortante la cual une a la cara de la columna mediante soldaduras de filete. Se une además al alma de la viga, por medio de un cordón de soldadura de filete a todo su alrededor. Para facilitar el montaje de la conexión y la aplicación de la soldadura se utilizan pernos que unen la placa de cortante y el alma de la viga.

Figura 100. Geometría de la Placa de Cortante

• Diseño de los Pernos

Para la carga de montaje se emplea dos pernos A325 de 1/2" de diámetro

Dimensionamiento de la placa de cortante

Altura - Según la FEMA-350 para conexiones con placas soldadas a las aletas de la viga, la longitud de la placa de cortante viene dada por:

 $h_{st} = d_b - 2k - 50mm$

$$k = \frac{d_b - h}{2} = \frac{612 - 546.8}{2} = 32.6mm$$

 $h_{st} = 612 - 2 * 32.6 - 50mm = 496.8mm \approx 500mm$

Espesor - Igualmente para el espesor de la placa de cortante la FEMA-350 especifica:

$$t_{st} = t_{wb}$$

$$t_{st} = t_{wb} = 11.90mm \cong 12.0mm$$
229

Longitud mínima al borde - La distancia mínima al borde del centro de una perforación estándar no debe ser inferior al valor especificado en la tabla F.2.10.3-4 o F.2.10.3-4M (NSR-10); comúnmente se recomienda una distancia de:

$$L_e \ge 1.5d$$

$$L_e \geq 1.5 * 12.7$$

 $L_e = 19.05mm \approx 30mm$

Espaciamiento entre ejes de perforaciones

$$s = L_{st} - 2L_e$$

$$s = 500 - 2 * 30 = 440mm$$

Ancho de la placa de cortante

 $L_{st} = 2L_e + 10mm$

$$L_{st} = 2 * 30 + 10 = 70mm$$

Estados limites en la viga

La resistencia de diseño en el alma de la viga será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yb} A_{gv} \ge V_p$$

$$A_{gv} = d_b t_{wb}$$

$$A_{gv} = 612 * 11.9 = 7282.8mm^2$$

$$\phi R_n = 0.9 * 0.60 * 352 * 7282.8 \ge 570.53KN$$

$$\phi R_n = 1384.31KN > 570.53KN (OK)$$

Rotura por cortante:

$$\phi R_n = \phi 0.6 F_{up} A_{nv} \ge V_p$$

$$A_{nv} = [d_b - 2(d + 3.2mm)]t_{wb}$$

 $A_{nv} = [612 - 2 * (12.7 + 3.2mm)] * 11.90 = 6904.38mm^2$

 $\phi R_n = 0.75 * 0.6 * 455 * 6904.38 \ge 570.53 KN$

$$\phi R_n = 1413.67KN > 570.53KN (OK)$$

• Estados Límites en la placa

Resistencia a la fluencia por Flexión

$$\phi M_n = \phi F_{yp} Z_x \ge M_u = V_p e_x$$

$$Z_x = \frac{t_{st}h_{st}^2}{4}$$

$$Z_x = \frac{12 * 500^2}{4} = 750000 mm^3$$
$$e_x = e = 70$$
$$\phi_b M_n = 0.90 * 352 * 750000 \ge M_u = 570.53KN$$

$$\phi_b M_n = 237600 KN. mm > M_u = 39937.1 KN. mm \ (OK)$$

* 70mm

La resistencia de diseño en la placa será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante: $\phi R_n = \phi 0.60 F_{yp} A_{gv} \ge V_p$ $A_{gv} = h_{st} t_{st}$ $A_{gv} = 500 * 12 = 6000 mm^2$ $\phi R_n = 0.9 * 0.60 * 352 * 6000 \ge 570.53 KN$ $\phi R_n = 1140.48 KN > 570.53 KN (OK)$

Rotura por cortante: $\phi R_n = \phi 0.6F_{up}A_{nv} \ge V_p$

$$A_{nv} = [h_{st} - 2(d + 3.2mm)]t_{st}$$

 $A_{nv} = [500 - 2 * (12.7 + 3.2mm)] * 12 = 5618.4mm^2$

 $\phi R_n = 0.75 * 0.6 * 455 * 5618.4 \ge 570.53KN$

$$\phi R_n = 1150.37KN > 570.53KN (OK)$$

• Soldadura de Unión de la Platina a la Columna

Criterios pasa escoger el tamaño de la soldadura

Tamaño Mínimo: Según el espesor de la parte más delgada a unir el tamaño mínimo de la soldadura de filete se define en la Tabla F.2.10.2-4 del capítulo F de la NSR-10.

Figura 101. Dimensiones de la Placa de Cortante

Cortante Excéntrica

Si la soldadura está sometida a cortante excéntrica, la resistencia de la soldadura se chequea con base en las tablas realizadas para este fin, en el manual de la AISC

$$a = \frac{e_x}{L}$$
$$a = \frac{70}{500} = 0.14$$

k = 0, La fuerza no está en el plano de la Soldadura.

En la tabla 8-38 del manual AISC, ver Tabla 11, con θ =0, y con los valores de a y k, se halla el coeficiente C.

$$\phi R_{nw} = C_1 C q w L \ge V_p$$

 $\phi R_{nw} = 1.0 * 2.76 * 0.1091 * 7 * 500 \ge 570.53KN$

$$\phi R_{nw} = 1053.91 KN > 570.53 KN \ (OK)$$

3.4.2 Diseño de Conexión Viga I – Columna Compuesta Embebida para el caso de Aplicación. A continuación, se detalla el procedimiento de cálculo y diseño para esta conexión, siguiendo los pasos de la sección 2.2.

Las propiedades de los Materiales son:

VIGA	COLUMNA	PLATINAS
ASTM A572 Gr50	ASTM A572 Gr50	ASTM A572 Gr50
F _{yb} =352 MPa	F _{yc} =352 MPa	F _{yp} =352 MPa
F _{ub} =455 MPa	F _{uc} =455 MPa	F _{up} =455 MPa
Ryb=1.1	R _{yc} =1.1	R _{yp} =1.1
Ryb=1.1	R _{yc} =1.1	R _{yp} =1.1

Las propiedades geométricas de los perfiles son:

Tabla 34. Propiedades geométricas sección de la columna de concreto

					ARI	EAS		EJE X	- X	EJES \	(-Y
(FCCION	DIIVI	ENSION	ES	A_g	A _{sr}	A_{srs}	A _c	I _c	l _{sr}	I _c	l _{sr}
SECCION	h ₂	h ₁	С	X10 ²	X10 ²	X10 ²	X10 ²	X10 ⁶	X10 ⁶	X10 ⁶	X10 ⁶
	mm	mm	mm	mm ²	mm ²	mm ²	mm ²	mm ⁴	mm^4	mm ⁴	mm ⁴
Columna	650.00	650.00	62.23	4225	50.67	10.13	3839.33	14595.41	280.11	14649.84	225.69

Tabla 35. Propiedades geométricas de la Columna Perfil W para sección compuesta embebida

			DIMENS	SIONES	5				EJE	X - X			EJES	Y - Y	
DEDEU	ALTU	JRA	AL	A	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d	t _{wc}	b _{fc}	t _{fc}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm ⁴	mm ³	mm	mm ³
W 14X176	387.00	21.10	396.00	33.30	15.00	320.40	335.00	894.10	4620.00	163.00	5260.00	350.20	1760.00	102.00	2676.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Tabla 36. Propiedades geométricas de Vigas Principales Perfil W

			DIMENS	SIONES	5				EJE	X - X			EJES	Y - Y	
DEDEU	ALTI	JRA	AL	А	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
PERFIL	d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
W 24X84	612.00	11.90	229.00	19.60	13.00	572.80	159.00	985.90	3222.00	249.00	3676.00	39.32	343.00	49.70	535.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Datos de Diseño:

Resistencia Concreto f'c	=	28 MPa
Módulo de Elasticidad E_c	=	24870.06 MPa
L	=	7500 mm
L _b	=	7113 mm
Н	=	3750 mm
Pernos	=	A490
Soldadura Electrodos	=	E70XX

PASO 1: Calcular Mpr

$$M_{pr} = C_{pr}R_{y}Z_{xb}F_{y}$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$

$$C_{pr} = \frac{352 + 455}{2 * 352} = 1.15 \le 1.2$$

$$M_{pr} = \frac{1.15 * 1.1 * 3676 * 10^3 * 352}{1 * 10^6} = 1631.59KN$$

PASO 2: Seleccione los valores preliminares para la geometría de la conexión (g, P_{fi}, P_{fo}, P_b, h_i, etc.).

En la Tabla 37, se muestran las limitaciones y los parámetros geométricos escogidos de la conexión precalificada correspondiente a la conexión, Cuatro Pernos sin Rigidizador (4E).

Limitac	iones Paramétri	cas de Precali	ficación					
	Cuatro Pe	ernos Sin Rigid	izador (4E)					
Parámetro	Máximo	Mínimo	Parámetro					
Falametro	Maximo	WITHING	Escogido					
	mm	mm	mm					
t _{fb}	19	10	19.6					
b _{fb}	235	152	229					
db	1400	349	612					
tp	57	13	38.10					
bp	273	178	260					
g	152	102	120					
P _{fi} , P _{fo}	114	38	60					

Tabla 37. Limitaciones y Parámetros geométricos escogidos conexión (4E)

Figura 103. Geometría placa de la conexión

Usando las dimensiones asignadas, se calcula a continuación:

$$h_1 = d_b - 1.5t_{fb} - P_{fi}$$
240

$$h_1 = 612 - 1.5 * 19.6 - 60 = 522.6mm$$
$$h_0 = d_b - \frac{t_{fb}}{2} + P_{fo}$$

$$h_0 = 612 - \frac{19.6}{2} + 60 = 662.2mm$$

PASO 3: Determinar la ubicación de las rótulas plásticas generadas en la longitud libre de la viga, la cual es representada por el parámetro S_h distancia medida desde la cara de la columna de acero a la rótula plástica.

$$S_h = min\left(\frac{d_b}{2} \ o \ 3b_{fb}\right)$$
$$S_h = \left(\frac{d_b}{2}\right) = \frac{612}{2} = 306mm$$
$$S_h = 3b_{fh} = 3 * 229 = 687mm$$

$$S_h = 3b_{fb} = 3 * 229 = 68/mm$$

Como se toma el menor, se tiene que $S_h = 306mm$

PASO 4: Calcular V_p en la ubicación de la rótula plástica, S_h , de acuerdo al procedimiento de la sección **1.5.3**, (N).

$$V_p = V_u = \frac{2M_{pr}}{L_h} + \frac{W_u L_h}{2}$$

También corresponde a: $V_p = \frac{2M_{pr}}{L_h} + V_g$

Donde:

 V_g = Fuerza de corte en la rótula plástica, debido a las cargas de gravedad mayoradas por la combinación 1.2(D+SD)+0.5L.

Figura 104. Diagrama de Cortante y Momento de la combinación 1.2(D+SD)+0.5L

Load Case/Load Combination	End Offse	et Location	
Load Cambination Model Case	LEnd	0.325	m
		7.475	
COMB:1.2(D+SD)+0.51	J-End	7.175	m
	Length	7.500	m
Component Display Location			
Major (V2 and M3) Major (V2 and M3) Max	/alues	0.5	m
	00171	1.47 kN/m	
234.74	234.74	LTT NIGHT	
	₹ <u>₹</u>		
177.83	177.83		
Shear V2			
	1	-177.57 kN	
Homent U2			
	1	-203 69 kN-m	
		200.00 80 10	
Deflection (Down +)			
I End Jt: 6	End Jt: 7	0.2 mm	
	Rela	tive to Story Minin	num
Absolute Relative to Frame Minimum Relative to Beam Ends	~		

$$V_{g} = 177.57KN$$

$$L_h = L - 2\left(\frac{d_c}{2}\right) - 2S_h$$

$$L_h = 7500 - 2 * \left(\frac{387}{2}\right) - 2 * 306 = 6501mm$$
242

$$V_p = V_u = \frac{2 * 1631.59}{6.501} + 177.57 = 679.52KN$$

PASO 5: Calcular M^*_{pb} , de acuerdo al procedimiento de la sección **1.5.4**, (N-mm)

$$M_{pb}^* = \left(1.1R_y F_{yb} Z_b\right) + M_v$$

$$M_{uv} = V_u * \left(S_h + \frac{d_c}{2}\right)$$

$$M_{uv} = 679.52 * \left(0.306 + \frac{0.387}{2}\right) = KN.m$$

$$M_{pb}^{*} = \frac{(1.1 * 1.1 * 352 * 3676 * 10^{3})}{1 * 10^{6}} + 339.42 = 1905.10KN.m$$

PASO 6: Realizar el planteamiento de la jerarquía de la plastificación como se describe en el capítulo F.3 sección F.3.7.3.4 de la NSR-10.

$$\frac{\sum M_{pcc}^*}{\sum M_{pb}^*} \ge 1$$

Resistencia nominal a flexión de la columna compuesta $M_{pcc} = 2751.16 KN.m.$ El procedimiento para el cálculo del M_{pcc} se encuentra en el Anexo D.

$$M_{pc}^{*} = \sum \left[M_{pcc} + V_{c} \left(\frac{d_{b}}{2} \right) \right]$$
$$V_{c} = \frac{\sum \left[M_{pr} + V_{p} \left(S_{h} + \frac{d_{c}}{2} \right) \right]}{H}$$

$$V_c = \frac{1631.59 + 679.52 * \left(0.306 + \frac{0.387}{2}\right)}{3.75} = 525.60KN$$

$$M_{pc}^{*} = 2 * \left[2751.16 + 525.60 * \left(\frac{0.612}{2}\right) \right] = 5823.99 KN.m$$

Entonces la relación de momentos seria:

$$\frac{\sum M_{pcc}^*}{\sum M_{pb}^*} = \frac{5823.99KN.m}{1905.10KN.m} = 3.06 \ge 1$$

Es decir, se cumple el requisito de columna fuerte viga débil.

PASO 7: Calcular *M_f* de acuerdo al procedimiento de la sección 1.5.4.

$$M_f = M_{pr} + V_u S_h$$

$$M_f = 1631.59 + 679.52 * 0.306 = 1839.53KN.m$$

PASO 8: Determine el diámetro del perno requerido d_{breq} , utilizando la ecuación para conexiones de cuatro pernos (4E y 4ES).

$$d_{b \ req'd} = \sqrt{\frac{2M_f}{\pi \phi_n F_{nt}(h_o + h_1)}}$$

La resistencia a tensión nominal para pernos A490 según tabla *F*.2.10.3-2 NSR-10, $F_{nt} = 780MPa$

$$d_{b \ req'd} = \sqrt{\frac{2 * 1839.53 * 10^6}{\pi * 0.9 * 780 * (662.20 + 522.6)}} = 37.52mm$$

PASO 9: seleccionar un diámetro del perno de prueba *d*_b, no menor al requerido en el paso 8.

Se puede usar pernos de 1-1/2", $d_b = 38.1 mm$

PASO 10: Determinar el espesor de la placa extrema t_{p,req'd}, requerida.

$$t_{p,req'd} = \sqrt{\frac{1.11M_f}{\phi_d F_{yp} Y_p}}$$

$$s = \frac{1}{2}\sqrt{b_p g} = \frac{1}{2}\sqrt{260 * 120} = 88.32mm$$

$$Y_p = \frac{b_p}{2} \left[h_1 \left(\frac{1}{p_{fi}} + \frac{1}{s} \right) + h_0 \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_1 \left(p_{fi} + s \right) \right]$$

$$Y_p = \frac{260}{2} * \left[522.6 * \left(\frac{1}{60} + \frac{1}{88.32} \right) + 662.2 * \left(\frac{1}{60} \right) - \frac{1}{2} \right] + \frac{2}{120} * \left[522.6 * (60 + 88.32) \right]$$

$$Y_p = 4563.97mm$$

$$t_{p,req'd} = \sqrt{\frac{1.11 * 1839.53 * 10^6}{1.0 * 352 * 4563.97}} = 35.65mm$$

PASO 11: Selección de un grosor de la placa terminal, t_p no inferior al calculado. Usar una placa de 1-1/2", $t_p = 38.10 mm > 35.65 mm$ **PASO 12:** Calcular F_{fu}, que es la fuerza del ala de la viga.

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$

$$F_{fu} = \frac{1839.53 * 10^3}{612 - 19.60} = 3105.21KN$$

PASO 13: Verificar que la placa extrema no falle por fluencia o por corte:

$$\frac{F_{fu}}{2} \le \phi_d R_n = \phi_d(0.6) F_{yp} b_p t_p$$

$$\phi_d R_n = 1.0 * (0.6) * 352 * 260 * 38.10 = 2092147.2N$$

Realizando el chequeo, quedaría:

PASO 14: Comprobar la ruptura por corte de la conexión de cuatro pernos sin rigidizar (4E).

$$\frac{F_{fu}}{2} \le \phi_n R_n = \phi_n(0.6) F_{up} A_n$$

$$A_n = t_p \left(b_p - 2(d_b + 3mm) \right) mm^2$$

$$A_n = 38.10 * (260 - 2 * (38.10 + 3)) = 6774.18mm^2$$

 $\phi_n R_n = 0.9 * (0.6) * 455 * 6774.18 = 1664416.03N$

Realizando el respectivo chequeo, se tiene:

Paso 15: Revisar la ruptura por cortante de los pernos en la zona de compresión del ala de la viga.

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{nv} A_b$$

 $A_b = \frac{\pi}{4} * 38.10^2 = 1140.09 mm^2$

 $\phi_n R_n = 0.9 * 4 * 457 * 1140.09 = 1875676.07N$

$$V_u = 725.24 \ KN$$

$$679.52KN < 1875.68KN$$
 (OK)

PASO 16: Verificar el aplastamiento del perno y la falla por desgarre de la placa extrema y el ala de la columna; en el ala de la columna se aplica solo aplastamiento del perno.

Calculo para la placa extremo:

$$V_u \le \phi_n R_n = \phi_n(n_i) r_{ni} + \phi_n(n_o) r_{no}$$

$$r_{ni} = 1.2L_{ci}t_pF_u < 2.4d_bt_pF_u$$
 Para cada perno interior.

 $r_{no} = 1.2L_{co}t_pF_u < 2.4d_bt_pF_u$ Para cada perno exterior

 $n_i = 2$, Numero de pernos interiores 247

 $n_o = 2$, Numero de pernos exteriores

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm)$$

$$L_{ci} = (60 + 60 + 19.6) - (38.10 + 3.2) = 98.3mm$$

 $r_{ni} = 1.2*98.3*38.1*455 < 2.4*38.1*38.1*455$

 $r_{ni} = 2044895.58N > 1585158.12N$

$$L_{co} = d_e - 0.5(d_b + 3.2mm)$$

 $d_e = 60mm$

 $L_{co} = 60 - 0.5 * (38.1 + 3.2) = 39.35mm$

 $r_{no} = 1.2L_{co}t_pF_u < 2.4d_bt_pF_u$

 $r_{no} = 1.2 * 39.35 * 38.1 * 455 < 2.4 * 38.1 * 38.1 * 455$

 $r_{no} = 818582.31N < 1585158.12N$

$$V_u \le \phi_n R_n = \phi_n(n_i) r_{ni} + \phi_n(n_o) r_{no}$$

 $\phi_n R_n = 0.9 * 2 * 1585158.12 + 0.9 * 2 * 818582.31$

$$\phi_n R_n = 4326.73KN$$

Realizando el chequeo: $679.52KN \le \phi_n R_n = 4326.73KN \ (OK)$

Calculo para el ala de la columna:

$$V_u \leq \phi_n R_n = \phi_n(n_i)r_{ni} + \phi_n(n_o)r_{no}$$

 $r_{ni} = 2.4d_b t_{fc}F_{uc}$ Para cada perno interior.
 $r_{no} = 2.4d_b t_{fc}F_{uc}$ Para cada perno exterior
 $n_i = 2$, Numero de pernos interiores

 $n_o = 2$, Numero de pernos exteriores

$$r_{ni} = 2.4 d_b t_{fc} F_{uc}$$

 $r_{ni} = 2.4 * 38.1 * 33.3 * 455 = 1385453.16N$

$$r_{no} = 2.4 d_b t_{fc} F_{uc}$$

 $r_{no} = 2.4 * 38.1 * 33.3 * 455 = 1385453.16N$

 $\phi_n R_n = 0.9 * 2 * 1385453.16 + 0.9 * 2 * 1385453.16$

$$\phi_n R_n = 4987.63 KN$$

Realizando el chequeo: $679.52KN \le \phi_n R_n = 4987.63KN \ (OK)$

Paso 17: Diseño de la soldadura de la viga a la placa extremo según la Sección 6.9.7 del ANSI/AISC358-10.

DISEÑO DE LA SECCIÓN DE LA COLUMNA

PASO 1: Comprobar la resistencia a la fluencia del ala de la columna por flexión.

$$s = \frac{1}{2}\sqrt{b_{cf}g} = \frac{1}{2}\sqrt{396 * 120} = 109.0mm$$

 $c = P_{fi} + t_{fb} + P_{fo} = 60 + 19.6 + 60 = 139.6mm$

$$Y_{C} = \frac{b_{cf}}{2} \left[h_{1} \left(\frac{1}{s} \right) + h_{0} \left(\frac{1}{s} \right) \right] + \frac{2}{g} \left[h_{1} \left(s + \frac{3c}{4} \right) + h_{0} \left(s + \frac{c}{4} \right) + \frac{c^{2}}{2} \right] + \frac{g}{2} \right]$$

$$Y_{C} = \frac{396}{2} * \left[522.6 * \left(\frac{1}{109} \right) + 662.2 * \left(\frac{1}{109} \right) \right] + \frac{2}{120} \\ * \left[522.6 * \left(109 + \frac{3 * 139.6}{4} \right) + 662.2 * \left(109 + \frac{139.6}{4} \right) + \frac{139.6^{2}}{2} \right] + \frac{120}{2}$$

$$Y_{\rm C} = 5824.11mm$$

$$t_{cf} \ge \sqrt{\frac{1.11M_f}{\phi_d F_{yc} Y_c}} \le t_{fc}$$

$$t_{cf} \ge \sqrt{\frac{1.11 * 1839.53 * 10^6}{0.9 * 352 * 5824.11}} = 33.27mm < 33.30mm$$

Como se observa se cumple la desigualdad, no se requiere colocar rigidizadores; por lo tanto, no se requieren desarrollar los pasos 2 y 3.

En caso de no requerirse placas de continuidad por los conceptos anteriores, dado que la falla de los especímenes ensayados fue por flexión en las aletas de la columna, se considera importante colocar placas de continuidad, por los requisitos mínimos de F.2.10.10.8, que se resumen la siguiente figura.

Figura 105. Geometría de las Placas rigidizadoras o de Continuidad

Fuente: PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Trabajo de grado, Magister en Ingenieria estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

Ancho mínimo del Rigidizador

$$b_{pc} = \frac{b_{fc}}{2} - \frac{t_{wc}}{2}$$

$$b_{pc} = \frac{396}{3} - \frac{21.1}{2} = 121.45mm$$

Este es el ancho mínimo permitido.

Si se desea colocar el ancho de la placa de continuidad hasta el borde de la aleta de la columna:

$$b_{pc} = \frac{b_{fc}}{2} - \frac{t_{wc}}{2}$$

$$b_{pc} = \frac{396}{2} - \frac{21.1}{2} = 187.45mm$$

Se puede tomar un valor intermedio, lo cual es más práctico para la construcción, es decir:

$$b = 150mm$$

La NSR-10 en la sección F.3.4.2.4, determina que para el diseño de las placas de continuidad y atiezadores localizados en el alma de los perfiles laminados se deben considerar las longitudes de contacto reducidas en las aletas y el alma del miembro basadas en las dimensiones del filete de esquina.

Las esquinas de las placas de continuidad y los atiezadores colocados en el alma de los perfiles laminados deben detallarse de acuerdo con AWS D1.8 numeral 4.1.

La AWS D.1.8 especifica que el corte en la esquina no debe ser mayor al valor de $k_1 + 1/2$ ". Es decir, la longitud de contacto de la placa de continuidad y la aleta de la columna es:

$$L_{cf} = b_{cp} - (k_1 + 13)$$

$$L_{cf} = 150 - (48.3 + 13) = 89mm$$

La AWS D.1.8 especifica que el corte en la esquina por el lado del alma de la columna no debe ser mayor al valor de k + 1.5". Es decir que la longitud de contacto de la placa de continuidad y el alma de la columna es:

$$L_{cw} = d_c - 2(k+38)$$

 $L_{cw} = 387 - 2 * (48.3 + 38) = 214.0 \approx 210mm$

• Espesor de las placas de Continuidad:

$$t_{pc} \ge \frac{t_{fb}}{2}$$

$$t_{pc} \ge \frac{19.6}{2} = 9.80mm$$

$$t_{pc} \ge \frac{b_{pc}}{16}$$

$$t_{pc} \ge \frac{150}{16} = 9.37mm$$

Entonces se puede usar una placa de $t_{pc} = 1/2"$ (12.7mm) ASTM A572 Gr.50

• Soldadura de Placas de Continuidad:

Ahora se calcula el tamaño de la soldadura de filete recordando que son dos cordones y que se usara electrodos E70XX

$$t_w = \frac{F_{yp} t_{pc}}{2 * 0.707 F_{EXX}}$$

$$t_w = \frac{352 * 12.7}{2 * 0.707 * 480} = 6.59mm \approx 7.00mm$$

El tamaño de la soldadura debe ser de 7.0mm

PASO 4: Compruebe la zona de panel de la columna de conformidad con las disposiciones sísmicas de la NSR-10, Titulo F.3.5.3.6.5.

Para el desarrollo de este paso ver la Figura 46. Como la conexión es exterior (por un lado, de la columna).

$$R_{u} = \frac{M_{f}}{d_{b} - t_{fb}} - V_{c}$$
$$V_{c} = \frac{M_{f}}{H}$$
$$V_{c} = \frac{1839.53}{3.75} = 490.54KN$$
$$1839.53$$

$$R_u = \frac{1639.53}{(612 - 19.6) * 10^{-3}} - 490.54KN$$

$$R_u = 2614.67KN$$

 P_u =2132.90KN, Si lo comparamos con P_y = F_yA , resistencia de la columna a fluencia bajo carga axial:
$$P_y = 352 * 355 * 10^2 = 11792000N$$

Entonces, al comparar $P_u \leq 0.75 P_y$

$$2132.90KN \le 0.75(11792KN)$$

$2915.59KN \le 8844KN \ (OK)$

$$R_n = 0.6F_y d_c t_{wc} \left[1 + \frac{3b_{fc} t_{fc}^2}{d_b d_c t_{wc}} \right]$$

$$\phi R_n = 0.9 * 0.6 * 352 * 387 * 21.1 * \left[1 + \frac{3 * 396 * 33.3^2}{612 * 387 * 21.1} \right]$$

$$\phi R_n = 1961.29KN$$

Comparando los resultados:

 $R_u > \phi R_n$

$$R_u = 2614.67KN > \phi R_n = 1961.29KN$$

Se Requieren placas de Enchape. Se realiza nuevamente la comparación anterior colocando una placa de enchape de $t_d = 12.70mm$

$$\phi R_n = \phi 0.6 F_y d_c t_{wc} \left[1 + \frac{3b_{cf} t_{fc}^2}{d_b d_c t_{wc}} \right]$$

Ahora, donde aparece t_{wc} se reemplaza por $t_{wc}+t_d$:

$$\phi R_n = 0.9 * 0.6 * 352 * 387 * 33.8 * \left[1 + \frac{3 * 396 * 33.3^2}{612 * 387 * 33.8} \right]$$

$$\phi R_n = 2895.52KN$$

Comparando nuevamente los resultados:

 R_u

$$R_u \leq \phi R_n$$
$$= 2614.67KN < \phi R_n = 2895.52KN \ (OK)$$

• Los espesores individuales, *t*, de las almas de la columna y placas de enchape, en caso de utilizarse, deben cumplir con el siguiente requisito:

Chequeo del alma de la columna:

$$t \ge \frac{d_z + w_z}{90}$$

$$d_z = d_b - 2t_p = 612 - 2 * 12.7 = 586.6mm$$

$$w_z = d_c - 2t_{fc} = 387 - 2 * 33.3 = 320.4mm$$

$$t \ge \frac{586.6 + 320.4}{90} = 10.08mm < t_{fc} = 33.3mm \ (OK)$$

Chequeo del alma de la Placa de Enchape:

$$t \ge \frac{586.6 + 320.4}{90} = 10.08mm < t_d = 12.7mm \ (OK)$$

Conexión de las placas de enchape en la zona de panel: Las placas de enchape se conectarán al alma de la columna mediante soldadura de filete a todo lo ancho y largo de la placa de enchape, en tal forma que desarrollen su resistencia de diseño al corte.

Soldadura de filete Horizontal:
$$t_w = \frac{1.7F_{yd}t_d}{F_{EXX}}$$

$$t_w = \frac{1.7 * 352 * 12.7}{480} = 15.83mm$$

Como el espesor de la de enchape tiene un espesor $t_d = 12.7mm$ mayor a 6mm entonces:

$$t_w < t_d - 2mm$$

$$15.83 < 12.7 - 2 = 10.7$$
 No cumple

Se debe colocar soldadura de tapón para complementar la resistencia requerida

$$A_{tapon} = \frac{Resistencia\ faltante}{\phi_w 0.6F_{EXX}}$$

$$A_{wed} = 0.707 * t_{wmax} * (d_c - 2K)$$

Donde:

 A_{wed} = Área de soldadura disponible t_{wmax} = Espesor de soldadura máxima.

$$A_{wed} = 0.707 * 10.7 * 387 - (2 * 48.3) = 2196.85 mm^2$$

$$A_{wer} = 0.707 * t_w * (d_c - 2K)$$
257

Donde:

Awer= Área de soldadura requerida

 t_w = Espesor de soldadura calculada.

 $A_{wre} = 0.707 * 15.83 * 387 - (2 * 48.3) = 3250.10mm^2$

$$\phi R_{nreq} = \phi_w 0.6 F_{EXX} A_{wer}$$

 $\phi R_{nreq} = 0.75 * 0.6 * 480 * 3250.10 = 702.02KN$

$$\phi R_{nreq} = \phi_w 0.6 F_{EXX} A_{wed}$$

 $\phi R_{ndisp} = 0.75 * 0.6 * 480 * 2196.85 = 474.52KN$

$$\phi R_{nfalt} = \phi R_{nreq} - \phi R_{ndisp}$$

$$\phi R_{nfalt} = 702.02 - 474.52 = 227.5KN$$

$$A_{tapon} = \frac{227500}{0.75 * 0.6 * 480} = 1053.24mm^2$$

$$D_{min} = t_d + 8mm$$

$$D_{min} = 12.7 + 8 = 20.7mm$$

$$D_{max} = D_{min} + 3mm \ o' \ 2.25t_d$$

 $D_{max} = 20.7 + 3mm = 23.7mm < 2.25 * 12.7 = 28.57mm$

Se toma un diámetro de soldadura de tapón D=25.4mm = 1", por lo tanto, el número de agujeros para soldadura de tapón es:

$$n = \frac{A_{tapon}}{A_D}$$

$$n = \frac{1053.24}{\frac{\pi}{4} * 25.4^2} = 2.07 \cong 2$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

$$d = 4 * 25.4 = 101.6mm \cong 100mm$$

Soldadura de filete Vertical:

$$t_w = \frac{1.7F_{yd}t_d}{F_{EXX}}$$

$$t_w = \frac{1.7 * 352 * 12.7}{480} = 15.83mm \cong 16m$$

Figura 106. Detalle Conexión Precalificada Viga I – Columna Compuesta Embebida

3.4.3 Diseño de Conexión Metálica Rígida Viga I y una Columna Tubular Rellena de Concreto para el caso de Aplicación. A continuación, se detalla el procedimiento de cálculo y diseño para esta conexión, siguiendo los pasos de la sección 2.3

Las propiedades de los Materiales son:

VIGA	COLUMNA	PLATINAS
ASTM A572 Gr50	ASTM A572 Gr50	ASTM A572 Gr50
F _{yb} =352 MPa	F _{yc} =352 MPa	F _{yp} =352 MPa
F _{ub} =455 MPa	F _{uc} =455 MPa	F _{up} =455 MPa
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1

Las propiedades geométricas de los perfiles son:

Tabla 39. Propiedades geométricas de la Columna Perfil Cajón Sección compuestarellena

	DIN	/IENSIOI	NES			EJE >	(- X		EJES Y - Y				
PERFIL	ALTURA	BASE	Espesor	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy	
	d _c	b _c	t _c	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³	
	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³	
Tubular	450.00	400.00	22.00	354.64	1052.11	4676.02	172.20	5579.59	873.51	4367.54	156.90	5136.29	

Tabla 40. Propiedades geométricas adicionales para el diseño sección compuesta rellena

PERFIL	DIMENS	IONES	AR	EA	EJE X - X	EJES Y - Y	
	ALTURA	BASE A _C		Ag	I _{CX}	I _{CY}	
	h ₂	h ₁ X10 ²		X10 ²	X10 ⁶	X10 ⁶	
	mm	mm	mm ²	mm ²	mm ⁴	mm^4	
Concreto	406.00	356.00	1445.36	1800.00	1526.49	1985.39	

Tabla 41. Propiedades geométricas de Vigas Principales Perfil W

			DIMENS	SIONES	;		4.054	EJE X - X				EJES Y - Y			
PERFIL	ALTURA		ALA DISTANCIAS		AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy		
	d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
W 24X84	612.00	11.90	229.00	19.60	13.00	572.80	159.00	985.90	3222.00	249.00	3676.00	39.32	343.00	49.70	535.00

STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html. Datos de Diseño:

Resistencia Concreto f' _c	=	28 MPa
Módulo de Elasticidad E_c	=	24870.06 MPa
L	=	7500 mm
L _b	=	7113 mm
Н	=	3750 mm
Pernos	=	ASTM A-193 Grado B
Soldadura Electrodos	=	E70XX

PASO 1: Calcular Mpr

$$M_{pr} = C_{pr}R_y Z_{xb}F_y$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$

$$C_{pr} = \frac{352 + 455}{2 * 352} = 1.15 \le 1.2$$

$$M_{pr} = \frac{1.15 * 1.1 * 3676 * 10^3 * 352}{1 * 10^6} = 1631.59KN$$

PASO 2: Seleccione los valores preliminares para la geometría de la conexión (g, P_{fi}, P_{fo}, P_b, h_i, etc.).

En la Tabla 42, se muestran las limitaciones y los parámetros geométricos escogidos de la conexión precalificada correspondiente a la conexión, Cuatro Pernos sin Rigidizador (4E).

Limitaciones Paramétricas de Precalificación												
	Cuatro Pernos Sin Rigidizador (4E)											
Parámetro	Máximo	Mínimo	Parámetro									
T didinetio	Maximo	Winning	Escogido									
	mm	mm	mm									
t _{fb}	19	10	19.6									
b _{fb}	235	152	229									
db	1400	349	612									
tp	57	13	38.10									
bp	273	178	260									
g	152	102	120									
P _{fi} , P _{fo}	114	38	60									

Tabla 42. Limitaciones y Parámetros geométricos escogidos conexión (4E)

Figura 107. Geometría placa de la conexión

Usando las dimensiones asignadas, se calcula a continuación:

$$h_1 = d_b - 1.5t_{fb} - P_{fi}$$

$$h_1 = 612 - 1.5 * 19.6 - 60 = 522.6mm$$

$$h_0 = d_b - \frac{t_{fb}}{2} + P_{fo}$$

$$h_0 = 612 - \frac{19.6}{2} + 60 = 662.2mm$$

PASO 3: Determinar la ubicación de las rótulas plásticas generadas en la longitud libre de la viga, la cual es representada por el parámetro S_h distancia medida desde la cara de la columna a la rótula plástica.

$$S_{h} = min\left(\frac{d_{b}}{2} \ o \ 3b_{bf}\right)$$
$$S_{h} = \left(\frac{d_{b}}{2}\right) = \frac{612}{2} = 306mm$$

$$S_h = 3b_{fb} = 3 * 229 = 687mm$$

Como se toma el menor, se tiene que $S_h = 306mm$

PASO 4: Calcular V_p en la ubicación de la rótula plástica, S_h , de acuerdo al procedimiento de la sección **1.5.3**, (N).

$$V_p = V_u = \frac{2M_{pr}}{L_h} + \frac{W_u L_h}{2}$$

También corresponde a: $V_p = V_u = \frac{2M_{pr}}{L_h} + V_g$

Donde:

 V_g = Fuerza de corte en la rótula plástica, debido a las cargas de gravedad mayoradas por la combinación 1.2(D+SD)+0.5L.

Figura 108. Diagrama de Cortante y Momento de la combinación 1.2(D+SD)+0.5L

$$V_{g} = 177.52KN$$

$$L_h = L - 2\left(\frac{d_c}{2}\right) - 2S_h$$

$$L_h = 7500 - 2 * \left(\frac{450}{2}\right) - 2 * 306 = 6438mm$$
266

$$V_p = V_u = \frac{2 * 1631.59}{6.438} + 177.52 = 684.38KN$$

PASO 5: Calcular M^{*}_{pb}, de acuerdo al procedimiento de la sección 1.5.4, (N-mm)

$$M_{pb}^{*} = \left(1.1R_{y}F_{yb}Z_{b}\right) + M_{v}$$
$$M_{uv} = V_{u} * \left(S_{h} + \frac{d_{c}}{2}\right)$$
$$M_{uv} = 684.38 * \left(0.306 + \frac{0.45}{2}\right) = 363.40KN.m$$
$$M_{pb}^{*} = \frac{\left(1.1 * 1.1 * 352 * 3676 * 10^{3}\right)}{1 * 10^{6}} + 363.40 = 1929.08KN.$$

PASO 6: Realizar el planteamiento de la jerarquía de la plastificación como se describe en el capítulo F.3 sección F.3.7.3.4. de la NSR-10.

т

$$\frac{\sum M_{pcc}^*}{\sum M_{pb}^*} \ge 1$$

Resistencia nominal a flexión de la columna compuesta $M_{pcc} = 2101.10$ KN.m. El procedimiento para el cálculo del M_{pcc} se encuentra en el Anexo E.

$$M_{pc}^{*} = \sum \left[M_{pcc} + V_{c} \left(\frac{d_{b}}{2} \right) \right]$$
$$V_{c} = \frac{\sum \left[M_{pr} + V_{p} \left(S_{h} + \frac{d_{c}}{2} \right) \right]}{H}$$
267

$$V_c = \frac{1631.59 + 684.38 * \left(0.306 + \frac{0.45}{2}\right)}{3.75} = 532.0KN$$

$$M_{pc}^* = 2 * \left[2101.10 + 532 * \left(\frac{0.612}{2}\right) \right] = 4527.78KN.m$$

Entonces la relación de momentos seria:

$$\frac{\sum M_{pcc}^*}{\sum M_{pb}^*} = \frac{4527.78KN.m}{1929.08KN.m} = 2.35 \ge 1 \ (OK)$$

Es decir, se cumple el requisito de columna fuerte viga débil.

PASO 7: Calcular M_f de acuerdo al procedimiento de la sección 1.5.4.

$$M_f = M_{pr} + V_u S_h$$

$$M_f = 1631.59 + 684.38 * 0.306 = 1841.01KN.m$$

PASO 8: Determine el diámetro del perno requerido d_{breq} , utilizando la ecuación para four-bolt connections (4E y 4ES).

$$d_{b \, req'd} = \sqrt{\frac{2M_f}{\pi \phi_n F_{nt}(h_o + h_1)}}$$

La resistencia a tensión nominal para pernos A-193 Grado B7 según la Tabla 12 de este documento, $F_{nt} = 860MPa$

$$d_{b \ req'd} = \sqrt{\frac{2 * 1841.01 * 10^6}{\pi * 0.9 * 860 * (662.2 + 522.6)}} = 35.75mm$$
268

PASO 9: seleccionar un diámetro del perno de prueba d_b , no menor al requerido en el paso 8.

Se puede usar pernos de 1-1/2", *d_b=38.1mm*

PASO 10: Determinar el espesor de la placa extrema *t*_{p,reg'd}, requerida.

$$t_{p,req'd} = \sqrt{\frac{1.11M_f}{\phi_d F_{yp} Y_p}}$$

$$s = \frac{1}{2}\sqrt{b_p g} = \frac{1}{2}\sqrt{260 * 120} = 88.32mm$$

$$Y_p = \frac{b_p}{2} \left[h_1 \left(\frac{1}{p_{fi}} + \frac{1}{s} \right) + h_0 \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_1 \left(p_{fi} + s \right) \right]$$

$$Y_p = \frac{260}{2} * \left[522.6 * \left(\frac{1}{60} + \frac{1}{88.32} \right) + 662.2 * \left(\frac{1}{60} \right) - \frac{1}{2} \right] + \frac{2}{120} * \left[522.6 * (60 + 88.32) \right]$$

 $Y_p = 4563.16mm$

$$t_{p,req'd} = \sqrt{\frac{1.11 * 1841.01 * 10^6}{1.0 * 352 * 4563.16}} = 35.67mm$$

PASO 11: Selección de un grosor de la placa terminal, t_p no inferior al calculado.

Usar una placa de 1-1/2", *t_p* = 38.10mm > 35.67mm

PASO 12: Calcular F_{fu} , que es la fuerza del ala de la viga.

$$F_{fu} = \frac{M_f}{d_b - t_{fb}}$$

$$F_{fu} = \frac{1841.01 * 10^3}{612 - 19.60} = 3107.71 KN$$

PASO 13: Verificar que la placa extrema no falle por fluencia o por corte:

$$\frac{F_{fu}}{2} \le \phi_d R_n = \phi_d(0.6) F_{yp} b_p t_p$$

$$\phi_d R_n = 1.0 * (0.6) * 352 * 260 * 38.10 = 2092147.2N$$

Realizando el chequeo, quedaría

$$1553.86KN < 2092.15KN$$
 (OK)

PASO 14: Comprobar la ruptura por corte de la conexión de cuatro pernos sin rigidizar (4E).

$$\frac{F_{fu}}{2} \le \phi_n R_n = \phi_n(0.6) F_{up} A_n$$
$$A_n = t_p \left(b_p - 2(d_b + 3mm) \right) mm^2$$
$$A_n = 38.10 * \left(260 - 2 * (38.10 + 3) \right) = 6774.18mm^2$$

$$\phi_n R_n = 0.9 * (0.6) * 455 * 6774.18 = 1664416.03N$$

Realizando el respectivo chequeo, se tiene:

Paso 15: Revisar la ruptura por cortante del perno en la zona de compresión del ala de la viga.

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{nv} A_b$$

$$A_b = \frac{\pi}{4}d_b^2$$

$$A_b = \frac{\pi}{4} * 38.10^2 = 1140.09mm^2$$

 $\phi_n R_n = 0.9 * 4 * 455 * 1140.09 = 1867467.42N$

$$V_u = 684.38 \, KN$$

PASO 16: Verificar el aplastamiento del perno y la falla por desgarre de la placa extrema y el ala de la columna; en el ala de la columna se aplica solo aplastamiento del perno.

Calculo para la placa extremo:

$$V_u \leq \phi_n R_n = \phi_n(n_i)r_{ni} + \phi_n(n_o)r_{no}$$

 $r_{ni} = 1.2L_{ci}t_pF_{up} < 2.4d_bt_pF_{up}$ Para cada perno interior.

 $r_{no} = 1.2L_{co}t_pF_{up} < 2.4d_bt_pF_{up}$ Para cada perno exterior

 $n_i = 2$, Numero de pernos interiores $n_o = 2$, Numero de pernos exteriores

$$L_{ci} = (P_{fo} + P_{fi} + t_{fb}) - (d_b + 3.2mm)$$

 $L_{ci} = (60 + 60 + 19.6) - (38.10 + 3.2) = 98.30mm$

 $r_{ni} = 1.2 * 98.3 * 38.1 * 455 < 2.4 * 38.1 * 38.1 * 455$

$$r_{ni} = 2044895.58N > 1585158.12N$$

$$L_{co} = d_e - 0.5(d_b + 3.2mm)$$

$$d_e = 60mm$$

 $L_{co} = 60 - 0.5 * (38.1 + 3.2) = 39.35mm$

$$r_{no} = 1.2L_{co}t_pF_u < 2.4d_bt_pF_u$$

 $r_{no} = 1.2 * 39.35 * 38.1 * 455 < 2.4 * 38.1 * 38.1 * 455$

 $r_{no} = 818582.31N < 1585158.12N$

 $\phi_n R_n = 0.9 * 2 * 1585158.12 + 0.9 * 2 * 818582.31$

$$\phi_n R_n = 4326.73KN$$

Realizando el chequeo:

$$684.38KN \le \phi_n R_n = 4326.73KN \ (OK)$$

Calculo para el ala de la columna:

$$V_u \le \phi_n R_n = \phi_n(n_i) r_{ni} + \phi_n(n_o) r_{no}$$

 $r_{ni} = 2.4 d_b t_{fc} F_{uc}$ Para cada perno interior.

 $r_{no} = 2.4 d_b t_{fc} F_{uc}$ Para cada perno exterior

 $n_i = 2$, Numero de pernos interiores

 $n_o = 2$, Numero de pernos exteriores

$$r_{ni} = 2.4 d_b t_{fc} F_{uc}$$

 $r_{ni} = 2.4 * 38.1 * 22 * 455 = 915314.4N$

 $r_{no} = 2.4 d_b t_{fc} F_{up}$

 $r_{no} = 2.4 * 38.1 * 22 * 455 = 915314.4N$

 $\phi_n R_n = 0.9 * 2 * 915314.4 + 0.9 * 2 * 915314.4$

$$\phi_n R_n = 3295.13KN$$

Realizando el chequeo:

$$684.38KN \le \phi_n R_n = 3295.13KN \ (OK)$$

PASO 17: Verificación de la acción de esfuerzos combinados de tensión y corte en los pernos pasantes. Según la NSR-10 **F.2.10.3.7** la resistencia de diseño a tensión de un perno sometido a una combinación de esfuerzos de tensión y cortante será determinada de acuerdo a los estados límites de rotura por tensión y por cortante, con base en:

$$R_n = F'_{nt}A_b$$

$$F'_{nt} = 1.3F_{nt} - \frac{F_{nt}}{\phi F_{nv}} f_v \le F_{nt}$$
$$R_u = V_p = \frac{V_u}{n}$$

$$R_u = V_p = \frac{684.38}{8} = 85547.5N$$

$$A_b = \frac{\pi}{4} * 38.10^2 = 1140.09mm^2$$

$$f_{v} = \frac{V_{p}}{A_{b}}$$

$$f_v = \frac{85547.5}{1140.09} = 75.04MPa$$

$$F'_{nt} = 1.3 * 860 - \frac{860}{0.75 * 455} * 75.04 \le 860$$

 $F'_{nt} = 928.89MPa > 860MPa$

 $F'_{nt} = 860 MPa$

$$R_n = 860.00 * 1140.09 = 980477.4N$$

 $\phi R_n = 0.75 * 980477.4 = 735358.05N$

Realizando el chequeo

 $R_u \leq \phi R_n$

$$85.55KN \le 735.35KN \ (OK)$$

Paso 18: Diseño de la soldadura de la viga a la placa extremo según la Sección 6.9.7 del ANSI/AISC358-10.

DISEÑO DE LA SECCIÓN DE LA COLUMNA

PASO 1: Se verifica el espesor por cortante en la zona de panel de la columna para el estado límite de fluencia por cortante según F.2.10.10.6 capitulo F de la NSR-10:

Como la conexión es exterior (por un lado, de la columna).

$$R_u = \frac{\Sigma M_f}{d_b - t_{fb}} - V_c$$

$$V_c = \frac{\Sigma M_f}{H}$$

$$V_c = \frac{1841.01}{3.75} = 490.94KN$$

$$R_u = \frac{1841.01}{(612 - 19.6) * 10^{-3}} - 490.94 = 2616.77KN$$

Donde R_n se calcula como se muestra a continuación, teniendo en cuenta que la columna es de sección cajón, con dos almas, se debe multiplicar por dos la resistencia de cada zona de panel.

 $P_u = 2024.62KN$, Si lo comparamos con $P_y = F_yA$, resistencia de la columna a fluencia bajo carga axial:

$$P_y = 352 * 354.64 * 10^2 = 12483328N$$

Entonces, al comparar $P_u \le 0.75P_y$

 $2024.62 \ kN \le 0.75(12483.33 \ kN)$

$$2024.62 \ kN \le 9362.50 \ kN \ (OK)$$

$$R_n = 2\left(0.6F_y d_c t_{pz} \left[1 + \frac{3b_c t_c^2}{d_b d_c t_{pz}}\right]\right)$$
$$\phi R_n = 2 * \left(0.9 * 0.6 * 352 * 450 * 22 * \left[1 + \frac{3 * 400 * 22^2}{612 * 450 * 22}\right]\right)$$

$$\phi R_n = 4124.36 \, kN$$

Comparando los resultados:

 $R_u \le \phi R_n$ 276

$$R_u = 2616.77 \ kN < \phi R_n = 4124.36 \ kN \ (OK)$$

No Requieren placas de Enchape.

• Los espesores individuales, *t*, de las almas de la columna y placas de enchape, en caso de utilizarse, deben cumplir con el siguiente requisito:

Chequeo del espesor de la columna:

$$t \ge \frac{d_z + w_z}{90}$$

$$d_z = d_b = 612 = 612mm$$

$$w_z = d_c = 450mm$$

$$t \ge \frac{612 + 450}{90} = 11.8mm < t_{fc} = 22mm \ (OK)$$

Figura 109. Detalle Conexión Precalificada Rígida Viga I Y Una Columna Tubular Rellena De Concreto

CORTE B-B

3.4.4 Diseño de Conexión Soldada a Momento Viga-Columna para el caso de Aplicación. A continuación, se detalla el procedimiento de cálculo y diseño para esta conexión, siguiendo los pasos de la sección 2.4.

Las propiedades de los Materiales son:

VIGA	COLUMNA	PLATINAS
ASTM A572 Gr50	ASTM A572 Gr50	ASTM A572 Gr50
F _{yb} =352 MPa	F _{yc} =352 MPa	F _{yp} =352 MPa
F _{ub} =455 MPa	F _{uc} =455 MPa	F _{up} =455 MPa
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1
R _{yb} =1.1	R _{yc} =1.1	R _{yp} =1.1

Tabla 43. Propiedades de los Materiales

Las propiedades geométricas de los perfiles son:

Tabla 44. Propiedades geométricas de la Columna Perfil W

PERFIL			DIMENS	SIONES	5		4.0.5.4	EJE X - X				EJES Y - Y			
	ALTURA		AL	ALA DISTANCI		NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
	d	t _{wc}	b _{fc}	t _{fc}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
W 14X193	393.00	22.60	399.00	36.60	15.00	319.00	366.00	997.10	5074.00	165.00	5813.00	387.80	1944.00	103.00	2957.00

STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

	PERFIL			DIMENS	SIONES	5		4.054		EJE 2	X - X		EJES Y - Y			
		ALTURA		ALA		DISTANCIAS		AREA	I _x	S _x	r _x	Z _x	l _y	Sy	r _y	Zy
		d _b	t _{wb}	b _{fb}	t _{fb}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
		mm	mm	mm	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
	W 24X84	612.00	11.90	229.00	19.60	13.00	572.80	159.00	985.90	3222.00	249.00	3676.00	39.32	343.00	49.70	535.00

Tabla 45. Propiedades geométricas de Vigas Principales Perfil W

STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Datos de Diseño:

L = 7500 mm $L_b = 7107 \text{ mm}$ H = 3750 mm Pernos = A325 Soldadura Electrodos = E70XX

PASO 1: Calcular Mpr

Figura 110. Diagrama de Cuerpo Libre

 $M_{pr} = C_{pr} R_y Z_{xb} F_y$

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} = \frac{352 + 455}{2 * 352} = 1.15$$

$$M_{pr} = \frac{1.15 * 1.1 * 3676 * 10^3 * 352}{1 * 10^6} = 1631.59 \, KN.$$

PASO 2: Suponga una longitud de placa *l*_p

 l_p = 550mm.

Revisar que se cumpla el criterio viga débil-columna fuerte:

$$\frac{2Z_{c}(F_{yc} - P_{uc}/A_{c})}{\sum\left\{\left[1 + \frac{2}{L_{b} - 2l_{p}}\left(l_{p} + \frac{d_{c}}{2}\right)\right]\frac{M_{pr}(H - d_{b})}{H}\right\}} > 1.0$$

Como la conexión es interior quiere decir continua como se muestra en el diagrama de cuerpo libre y las vigas son iguales en los dos lados, el denominador se multiplica por 2.

$$\frac{2*5813*10^3*(352-1024690/366*10^2)}{2*\left\{\left[1+\frac{2}{7107-2*550}*\left(550+\frac{393}{2}\right)\right]\frac{1631.59*10^6*(3750-612)}{3750}\right\}} > 1.0$$

1.10 > 1.0 *OK. cumple*

PASO 3: Calcular V_p en la ubicación de la rótula plástica, I_p.

$$V_p = \frac{2M_{pr}}{L_h} + \frac{W_u L_h}{2}$$
$$L_h = L_b - 2l_p$$
$$L_h = 7107 - 2 * 550 = 6007mm$$
$$w_u = 1.2(D + SD) + 0.5L$$
$$= 1.2 * (3.33 + 3.31) + 0.5 * (1.84) = 8.89KN/m$$

$$V_p = \frac{2 * 1631.59}{6.007} + \frac{8.89 * 6.007}{2} = 569.93KN$$

PASO 4: Calcular Mf.

 W_u

$$M_f = M_{pr} + V_u l_p$$

$$M_f = 1631.59 + 569.93 * 0.55 = 1945.05 \text{ KN.m}$$

PASO 5: Se supone un espesor del cubreplaca t_p , superior e inferior y se calcula F_{pr} , la fuerza en el cubreplaca debido a M_f .

$$F_{pr} = \frac{M_f}{\left(d_b + t_p\right)}$$

Entonces se supone un $t_p = 31.75mm$.

$$F_{pr} = \frac{1945.05}{(612 + 31.75) * 10^{-3}} = 3021.43KN$$
283

PASO 6: Verificar que este espesor del cubreplaca sea el adecuado.

$$t_p \ge \frac{F_{pr}}{\phi_d F_{yp} b_p}$$

$$b_{p mayor} = b_{fc}$$

$$b_{p mayor} = 399mm$$

$$b_{p menor} = b_{fb} + 40mm$$

$$b_{p \ menor} = 229 + 40 = 269mm$$

$$b_{p \ promedio} = \frac{b_{p \ mayor} + b_{b \ menor}}{2}$$

$$b_{p \ promedio} = \frac{399 + 269}{2} = 334mm$$

$$t_p \ge \frac{3006.25 * 10^3}{1.0 * 352 * 334} = 25.70mm$$

Comparando los resultados:

$$25.70mm < 31.75mm$$
 (OK)

PASO 7: Calculo del espesor t_w de la soldadura de filete entre el cubreplaca inferior y la aleta de la viga, esta unión se realiza con soldadura de filete empleando un electrodo E7018 cuya resistencia del metal de soldadura F_{EXX} es de 480Mpa. La

verificación de este estado límite se debe realizar para el metal de soldadura según F.2.10.2.4 (NSR-10):

$$t_w \ge \frac{M_{pr}}{\phi 0.60 F_{EXX} 0.7072 W_l (d_b - t_{fb})}$$

W_l del cubreplaca Inferior

$$W_l = l_p - 10mm$$

$$W_l = 550 - 10 = 540mm$$

$$t_w \ge \frac{1631.59 * 10^6}{0.75 * 0.60 * 480 * 0.707 * 2 * 540 * (612 - 19.60)} = 16.70mm$$

El espesor de la soldadura asumido es de $t_w = 17.0mm$, el cual es menor al valor del espesor de $t_{fb} = 19.60mm - 2mm = 17.6mm$.

PASO 8: Calculo de la longitud de soldadura de filete longitudinal W₁ entre el cubre placa superior y la aleta de la viga.

La resistencia de diseño del grupo de soldaduras cargado concéntricamente y consistentes en elementos con el mismo tamaño de soldadura orientada tanto longitudinal como transversalmente en relación con la dirección de aplicación de la carga como lo indica F.2.10.2.4 literal "c" de la NSR-10:

$$W_{l1} \ge \frac{M_{pr}}{2\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{W_t}{2}$$

$$W_{t1} = W_{t2} = \frac{b_{fb}}{3}$$

$$W_{t1} = W_{t2} = \frac{229}{3} = 76.33mm$$

$$W_t = 2 * 76.33 + 76.33 = 229mm$$

$$W_{l1} \ge \frac{1631.59 * 10^6}{2 * 0.75 * 0.60 * 480 * 0.707 * 17 * (612 - 19.60)} - \frac{229}{2} = 415.95mm$$

$$M_{t1} = \frac{15W_t}{2} = 1500$$

$$W_{l2} \ge \frac{M_{pr}}{1.7\phi 0.60F_{EXX} 0.707 t_w (d_b - t_{fb})} - \frac{1.5W_t}{1.7}$$

$$W_{l2} \ge \frac{1631.59 * 10^6}{1.7 * 0.75 * 0.60 * 480 * 0.707 * 17 * (612 - 19.6)} - \frac{1.5 * 229}{1.7} = 422mm$$

Se asume un valor aproximado al mínimo entre el W_{11} y W_{12} , correspondiente a $W_{1}=416$ mm.

PASO 9: Verificar la resistencia de diseño a tensión del cubreplaca superior según F.2.10.4.1 (NSR-10), para ello se tiene en cuenta los siguientes estados límites de fluencia por tensión y rotura por tensión. Es de notar que por ser el cubreplaca superior más desfavorable para estos estados límite, bastará con revisar este último.

Fluencia por tensión:

$$\phi R_n = \phi b_p t_p F_{yp} \ge \frac{M_f}{d_b + t_p}$$

$$L_w = 2w_l \tan 30^o + w_{t2}$$
286

$$L_w = 2 * 416 * \tan 30^o + 76.33 = 556.68mm$$

Como L_w sección *Whitmore* es mayor al ancho del cubreplaca $b_{p mayor}$, entonces se debe colocar el menor valor correspondiente a la sección crítica calculada mediante dibujo como se muestra en la Figura 111.

$$\phi R_n = 0.90 * 367.33 * 31.75 * 352 \ge \frac{1945.05 * 10^6}{612 + 31.75}$$

 $\phi R_n = 3694.75 KN \ge 3021.44 KN \ (OK)$

Rotura por tensión:

$$\phi R_n = \phi U (b_p - W_{t2}) t_p F_{up} \ge \frac{M_f}{d_b + t_p}$$

$$W_l \ge 2b_{fb}/3 \dots U = 1.0$$

$$416 \ge 2 * 229/3$$

$$416 \ge 152.66 \dots \dots U = 1.0$$

$$\phi R_n = 0.75 * 1.0 * (367.33 - 76.33) * 31.75 * 455 \ge \frac{1945.05 * 10^6}{(612 + 31.75)}$$

$$\phi R_n = 3152.89KN \ge 3021.44KN \ (OK)$$

Desgarramiento en bloque:

$$\phi R_n \ge \frac{M_{pr}}{d_b - t_p}$$

$$\phi R_n = \phi \left[0.60 F_{up} A_{nv} + U_{bs} F_{up} A_{nt} \right] \le \phi \left[0.6 F_{yp} A_{gv} + U_{bs} F_{up} A_{nt} \right]$$

$$A_{gv} = A_{nv} = 2W_l t_p$$

$$A_{gv} = A_{nv} = 2 * 416 * 31.75 = 26416mm^2$$

$$A_{nt} = b_{fb}t_p$$

$$A_{nt} = 229 * 31.75 = 7270.75 mm^2$$

$$\phi R_n = 0.75 * [0.60 * 455 * 26416 + 1.0 * 455 * 7270.75]$$

$$\leq 0.75 * [0.6 * 352 * 26416 + 1.0 * 455 * 7270.75]$$

$$\phi R_n = 7889.82KN > 6665.44KN$$

$$\phi R_n = 6665.44 \ge \frac{1631.59 * 10^6}{(612 - 31.75)}$$

$$6665.44KN \ge 2811.87KN \quad (OK)$$

PASO 10: Comprobar los requisitos de las placas de continuidad de acuerdo con las disposiciones de la Norma de Sismo Resistencia Colombiana NSR-10, en F.3.5.3.6.6, donde se define lo siguiente:

• **Requisitos de placa de continuidad –** Se deben suministrar placas de continuidad, ya que así fue calificada la conexión.

• Espesor de las placas de continuidad (t_{pc}) Como la conexión es interior (por los dos lados de la columna) el espesor de la placa de continuidad debe ser igual al espesor más grueso de las aletas a ambos lados de la columna.

$$t_{pc} = t_p$$

$$t_{pc} = 31.75mm$$

Entonces se puede usar una placa de t_{pc}=1-1/4" (31.75mm) ASTM A572 Gr.50

• Ancho de las Placas de Continuidad (*b_{pc}*)

$$b_{pc} = \frac{b_{fc}}{3} - \frac{t_{wc}}{2}$$

$$b_{pc} = \frac{399}{3} - \frac{22.6}{2} = 121.7mm$$

Como el ancho del rigidizador puede ser pequeño para el despunte que se debe realizar para evitar la zona k, se recomienda colocar el ancho de la placa de continuidad hasta el borde de la aleta de la columna.

Figura 112. Geometría de las Placas de Continuidad

$$b_{pc} = \frac{b_{fc}}{2} - \frac{t_{wc}}{2}$$
$$b_{pc} = \frac{396}{2} - \frac{22.6}{2} = 186.7mm$$

bfc

k+1.5"

Se puede tomar un valor intermedio, lo cual es más práctico para la construcción, es decir:

$$b_{pc} = 150mm$$

La NSR-10 en la sección F.3.4.2.4, determina que para el diseño de las placas de continuidad y atiezadores localizados en el alma de los perfiles laminados se deben considerar las longitudes de contacto reducidas en las aletas y el alma del miembro basadas en las dimensiones del filete de esquina.
En la AWS D.1.8 se especifica que el corte en la esquina no debe ser mayor al valor de "k+0.5", esta longitud corresponde al contacto de la placa de continuidad y la aleta de la columna

$$L_{cf} = b_{pc} - \left[(k+13) - \frac{t_{wc}}{2} \right] (mm)$$

$$L_{cf} = 150 - \left[(51.6 + 12.7) - \frac{22.6}{2} \right] = 97mm$$

En AWS D.1.8 se especifica que el corte en la esquina por el lado del alma de la columna no debe ser mayor a k_1 +1.5", esta longitud corresponde al contacto de la placa de continuidad y el alma de la columna es:

$$L_{cw} = d_c - 2(k + 38.1)$$

$$L_{cw} = 393 - 2 * (51.6 + 38.1) = 213.6mm \approx 210mm$$

• Soldadura de Placas de Continuidad - Las placas de continuidad deben soldarse a las aletas y las almas de la columna utilizando soldadura acanalada de penetración completa.

PASO 11: Se verifica la zona de panel de la columna de acuerdo con las disposiciones sísmicas de la NSR-10, Titulo F.3.5.3.6.5.

Como la conexión es interior es decir continua y las vigas son iguales en los dos lados, el numerador se multiplica por 2.

$$R_u = \frac{\sum M_f}{d_b + t_p} - V_c$$

$$V_c = \frac{\sum M_f}{H}$$

$$V_c = \frac{2 * 1945.05}{3.75} = 1037.36 \, KN$$

$$R_u = \frac{2 * 1945.05}{(612 + 31.75) * 10^{-3}} - 1037.36 = 5005.51 \, KN$$

En el diseño se considera el efecto de la deformación plástica de la zona de panel sobre la estabilidad del marco.

 $P_u = 1024.69$ KN Si la comparamos con $P_y = F_y A$, resistencia de la columna a fluencia bajo carga axial:

$$P_y = 352 * 366 * 10^2 = 12883200N$$

Entonces, al comparar $P_u \le 0.75P_y$

 $1024.69KN \le 0.75(12883.2KN)$

 $1024.69KN \le 9662.4KN \ (OK)$

$$\phi_{\nu}R_{\nu} = \phi_{\nu}0.6F_{y}d_{c}t_{wc}\left[1 + \frac{3b_{fc}t_{fc}^{2}}{d_{b}d_{c}t_{wc}}\right]$$

$$\phi_{\nu}R_{\nu} = 0.9 * 0.6 * 352 * 393 * 22.6 * \left[1 + \frac{3 * 399 * 36.6^2}{612 * 393 * 22.6}\right]$$

 $\phi_v R_v = 2186.27 KN$

Comparando los resultados: $R_u > \phi_v R_v$

$$R_u = 5005.51KN > \phi_v R_v = 2186.27KN$$

Se Requieren placas de Enchape. Se realiza nuevamente la comparación anterior colocando una placa de enchape de $t_{\alpha}=38.10mm$.

Ahora, donde aparece t_{wc} se reemplaza por $t_{wc}+t_d$:

$$\phi_v R_v = 0.9 * 0.6 * 352 * 393 * 60.7 * \left[1 + \frac{3 * 399 * 36.6^2}{612 * 393 * 60.7} \right]$$

$$\phi_v R_v = 5032.39KN$$

Comparando nuevamente los resultados:

$$R_u \le \phi_v R_v$$

$$R_u = 5005.51 KN < \phi_v R_v = 5032.39 KN$$

 Los espesores individuales, *t*, de las almas de la columna y placas de enchape, en caso de utilizarse, deben cumplir con el siguiente requisito:
 Chequeo del alma de la columna:

$$t \ge \frac{d_z + w_z}{90}$$

$$d_z = d_b = 612mm$$

$$w_z = d_c - 2t_{fc} = 393 - 2 * 36.6 = 319.8mm$$

$$t \ge \frac{612 + 319.8}{90} = 10.35mm < t_{fc} = 36.6mm \ (OK)$$

Chequeo del alma de la Placa de Enchape:

$$t \ge \frac{612 + 319.8}{90} = 10.35mm < t_d = 38.10mm \ (OK)$$

Conexión de las placas de enchape en la zona de panel: Las placas de enchape se conectarán al alma de la columna mediante soldadura de filete a todo lo ancho y largo de la placa de enchape, en tal forma que desarrollen su resistencia de diseño al corte.

Soldadura de filete Horizontal:

$$t_w = \frac{1.7F_{yd}t_d}{F_{EXX}}$$

$$t_w = \frac{1.7 * 352 * 38.10}{480} = 47.50mm$$

Como el espesor de la de enchape tiene un espesor $t_a=38.10mm$ mayor a 6mm entonces:

$$t_w < t_d - 2mm$$

$$47.50 > 38.10 - 2 = 36.10$$
 No cumple

Se debe colocar soldadura de tapón para complementar la resistencia requerida

Soldadura de Tapón:

$$A_{tapon} = \frac{Resistencia faltante}{\phi_w 0.6F_{EXX}}$$
294

$$A_{wed} = 0.707 * t_{wmax} * (d_c - 2K)$$

Donde:

 A_{wed} = Área de soldadura disponible t_{wmax} = Espesor de soldadura máxima.

 $A_{wed} = 0.707 * 36.1 * (393 - 2 * 51.6) = 7396.48mm^2$

 $A_{wer} = 0.707 * t_w * (d_c - 2K)$

Donde:

 A_{wer} = Área de soldadura requerida t_w = Espesor de soldadura calculada.

 $A_{wre} = 0.707 * 47.5 * (393 - 2 * 51.6) = 9732.21 mm^2$

$$\phi R_{nreq} = \phi_w 0.6 F_{EXX} A_{wer}$$

 $\phi R_{nreg} = 0.75 * 0.6 * 480 * 9732.21 = 2102.16KN$

$$\phi R_{nreq} = \phi_w 0.6 F_{EXX} A_{wed}$$

 $\phi R_{ndisp} = 0.75 * 0.6 * 480 * 7396.48 = 1597.64KN$

$$\phi R_{nfalt} = \phi R_{nreq} - \phi R_{ndisp}$$

 $\phi R_{nfalt} = 2102.16 - 1597.64 = 504.52KN$

$$A_{tapon} = \frac{504520}{0.75 * 0.6 * 480} = 2335.74mm^2$$

$$D_{min} = t_d + 8mm$$

$$D_{min} = 38.10 + 8 = 46.1mm$$

$$D_{max} = D_{min} + 3mm \ o' \ 2.25t_d$$

$$D_{max} = 46.10 + 3mm = 49.1mm \ < \ 2.25 * 38.10 = 85.73mm$$

Se toma un diámetro de soldadura de tapón D=50.8mm = 2", por lo tanto, el número de agujeros para soldadura de tapón es:

$$n = \frac{A_{tapon}}{A_D}$$

$$n = \frac{2335.74}{\frac{\pi}{4} * 50.8^2} = 1.15 \cong 2$$

La distancia mínima entre centros de soldaduras de tapón será de cuatro veces el diámetro del agujero.

$$d = 4 * 50.8 = 203.2mm \cong 200mm$$

Soldadura de filete Vertical: $t_w = \frac{1.7F_{yd}t_d}{F_{EXX}}$

$$t_w = \frac{1.7 * 352 * 38.10}{480} = 47.50mm \cong 48mm$$

Paso 12: Se diseña y detalla la placa de cortante la cual une a la cara de la columna mediante soldadura de filete. Se une además al alma de la viga, por medio de un cordón de soldadura de filete a todo su alrededor. Para facilitar el montaje de la

conexión y la aplicación de la soldadura se utilizan pernos que unen la placa de cortante y el alma de la viga.

La placa de cortante y las soldaduras se diseñan para resistir el cortante plástico en la cara de la columna y los pernos únicamente se diseñan para cargas de montaje.

En la Figura 113 se muestra la geometría de la placa de corte.

Figura 113. Geometría de la Placa de Cortante

• Diseño de los Pernos

Para la carga de montaje se emplea dos pernos A325 de 1/2" de diámetro.

• Dimensionamiento de la placa de cortante

Altura - Según la FEMA-350 las conexiones con placas soldadas a las aletas de la viga, la longitud de la placa de cortante está dada por:

 $h_{st} = d_b - 2k - 50mm$

$$k = \frac{d_b - h}{2} = \frac{612 - 546.8}{2} = 32.6mm$$

$$h_{st} = 612 - 2 * 32.60 - 50 = 496.8mm \approx 500mm$$

Espesor - Igualmente para el espesor de la placa de cortante la FEMA-350 especifica:

 $t_{st} = t_{wb}$

$$t_{st} = t_{wb} = 11.90mm \cong 12.0mm$$

Longitud mínima al borde - La distancia mínima al borde del centro de una perforación estándar no debe ser inferior al valor especificado en la tabla F.2.10.3-4 o F.2.10.3-4M (NSR-10); comúnmente se recomienda una distancia de:

$$L_e \ge 1.5d$$

$$L_e \ge 1.5 * 12.7$$

$$L_e = 19.05mm \approx 30mm$$

Ancho de la placa de cortante

$$L_{st} = 2L_e + 10mm$$

$$L_{st} = 2 * 30 + 10 = 70mm$$

Espaciamiento entre ejes de perforaciones

$$s = L_{st} - 2L_e$$

$$s = 500 - 2 * 30 = 440mm$$

Estados limites en la viga

La resistencia de diseño en el alma de la viga será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yb} A_{gv} \ge V_p$$
$$A_{gv} = d_b t_{wb}$$

$$A_{gv} = 612 * 11.9 = 7282.8mm^2$$

$$\phi R_n = 0.9 * 0.60 * 352 * 7282.8 \ge 569.93 KN$$

$$\phi R_n = 1384.31KN > 569.93KN \ (OK)$$

Rotura por cortante:

$$\phi R_n = \phi 0.6 F_{up} A_{nv} \ge V_p$$

$$A_{nv} = [d_b - 2(d + 3.2mm)]t_{wb}$$

 $A_{nv} = [612 - 2 * (12.7 + 3.2mm)] * 11.90 = 6904.38mm^2$

$$\phi R_n = 0.75 * 0.6 * 455 * 6904.38 \ge 569.93 KN$$

$$\phi R_n = 1413.67KN > 569.93KN (OK)$$

• Estados Límites en la placa

Resistencia a la fluencia por Flexión

$$\phi M_n = \phi F_{yp} Z_x \ge M_u = V_p e_x$$

$$Z_x = \frac{t_{st} h_{st}^2}{4}$$

$$Z_x = \frac{12 * 500^2}{4} = 750000 mm^3$$

$$e_x = e = 70$$

 $\phi_b M_n = 0.90 * 352 * 750000 \ge M_u = 569.93 KN * 70 mm$

 $\phi_b M_n = 237600KN.mm > M_u = 39895.1KN.mm (OK)$ 300 La resistencia de diseño en la placa será obtenida para los estados límites de fluencia por cortante y rotura por cortante según F.2.10.4.2 (NSR-10).

Fluencia a cortante:

$$\phi R_n = \phi 0.60 F_{yp} A_{gv} \ge V_p$$

$$A_{gv} = h_{st}t_{st}$$

$$A_{gv} = 500 * 12 = 6000 mm^2$$

$$\phi R_n = 0.9 * 0.60 * 352 * 6000 \ge 569.93KN$$

 $\phi R_n = 1140.48KN > 569.93KN (OK)$

Rotura por cortante:

$$\phi R_n = \phi 0.6 F_{up} A_{nv} \ge V_p$$

$$A_{nv} = [h_{st} - 2(d + 3.2mm)]t_{st}$$

 $A_{nv} = [500 - 2 * (12.7 + 3.2mm)] * 12 = 5618.4mm^2$

 $\phi R_n = 0.75 * 0.6 * 455 * 5618.4 \ge 569.93KN$

 $\phi R_n = 1150.37KN > 569.93KN (OK)$

• Soldadura de Unión de la Platina a la Columna

Criterios pasa escoger el tamaño de la soldadura

Tamaño Mínimo: Según el espesor de la parte más delgada a unir el tamaño mínimo de la soldadura de filete se define en la Tabla F.2.10.2-4 del capítulo F de la NSR-10.

Se toma como espesor de soldadura w = 7mm.

Figura 114. Dimensiones de la Placa de Cortante

Cortante Excéntrica

Si la soldadura está sometida a cortante excéntrica, la resistencia de la soldadura se chequea con base en las tablas realizadas para este fin, en el manual de la AISC

$$a = \frac{e_x}{L}$$
$$a = \frac{70}{500} = 0.14$$

k = 0, La fuerza no está en el plano de la Soldadura.

En la tabla 8-38 del manual AISC (Tabla 3.) con θ =0, y con los valores de a y k, se halla el coeficiente C.

C=2.76

$$\phi R_{nw} = C_1 CqwL \ge V_p$$

 $\phi R_{nw} = 1.0 * 2.76 * 0.1091 * 7 * 500 \ge 570.53KN$

 $\phi R_{nw} = 1053.91 KN > 570.53 KN (OK)$

Figura 115. Detalle Conexión Precalificada Soldada A Momento Viga-Columna

4 CONCLUSIONES

Las conexiones precalificadas que se encuentra en este trabajo, contiene la metodología donde se exponen los procedimientos y requisitos para su diseño, teniendo en cuenta todos los criterios contenidos en las tesis de investigación donde se realizaron ensayos de calificación cumpliendo con la normativa vigente para cada época de su ejecución; las cuales satisfacen los requisitos del numeral F.3.7.3.6.2 Conexiones Viga-Columna, cumpliendo con la resistencia a flexión, determinada en la cara de la columna de 0.8M_p, para un Angulo de deriva de piso de 0.04 radianes.

• El proceso de diseño para cada tipo de conexión, se condensa en un diagrama de flujo, por lo que facilita el análisis y entendimiento de todos los estados límites que apliquen para su diseño; teniendo en cuenta que cada uno de los parámetros de diseño van directamente ligados a un correcto análisis de cargas y modelamiento de la estructura según la experiencia del ingeniero proyectista, al momento de escoger el tipo de conexión según la restricción en las uniones.

Debido que estas conexiones fueron en su mayoría calificadas antes de la vigencia del Reglamento Colombiano de Construcciones Sismo Resistentes NSR-10, en el desarrollo de su metodología y procedimiento se tuvo que actualizar cada uno de sus estados limites corrigiendo su formulación y agregando algunos criterios nuevos establecidos en la norma vigente; conservando la estructura conceptual tenida en cuenta al momento de la calificación de la conexión, por lo que garantiza que siguiendo la metodología y pasos de diseño propuestos en este trabajo, la conexión diseñada tendría un comportamiento dúctil, teniendo en cuenta que se espera que estas conexiones presenten una forma de disipación, en la cual se desarrolle una fluencia balanceada entre la fluencia por flexión o desarrollo de las rótulas plásticas en las ubicaciones estimadas en la viga, fluencia por corte de la zona de panel y la tracción y compresión en las placas de la conexión;

comportamiento que se presentó en los ensayos realizados en el laboratorio para cada conexión y por lo cual calificaron como conexiones rígidas, según las normas para la calificación de conexiones.

Es muy importante tener en cuenta que estas conexiones fueron precalificadas en nuestro país siguiendo la normativa internacional para calificación de conexiones, las cuales permiten el diseño de uniones como vigas I con columnas compuestas tanto de perfil revestido como de perfil relleno y unión de viga I a columna perfil tubular, que en nuestro medio estas secciones son muy utilizadas en la construcción de edificaciones de acero, por ser secciones que aportan gran resistencia y rigidez al momento de presentarse eventos sísmicos y ventajas como la protección al fuego y su economía al momento de la construcción por la facilidad del montaje de las vigas metálicas; por tal razón en este trabajo se presentan todas las herramientas y criterios teniendo en cuenta paso a paso todo su análisis y detallado, facilitando su procedimiento en cuanto a su estudio y programación con el fin de servir de guía al momento del diseño.

Como complemento en la metodología de diseño de conexiones, se incluye una metodología para el diseño de edificaciones metálicas, con la cual se explica mediante etapas, el proceso de diseño para determinar las resistencias requeridas y el dimensionamiento de sus elementos; teniendo en cuenta y como parte de la actualización del Reglamento Colombiano de Construcciones Sismo Resistentes NSR-10, donde se incorpora el Método de Análisis Directo, en el que se establece y asegura la estabilidad para la estructura como un todo y para cada uno de sus elementos, teniendo en cuenta los efectos que deben ser considerados en un análisis de estabilidad de una estructura que incluye entre otros aspectos la reducción de rigidez debido a inestabilidad y la incertidumbre en rigidez y resistencia; lo anterior se realiza con la ayuda del software para el diseño de estructuras ETABS 2015, donde incorpora de una manera automática este tipo de

análisis ahorrando tiempo a la hora de dimensionar y diseñar los elementos, teniendo en cuenta que hay que ostentar una base teórica que permita con mucha responsabilidad definir los parámetros en el programa de diseño. Esto con el fin de ver todo el desarrollo desde el análisis estructural, dimensionamientos y diseño de elementos hasta la selección y el diseño de la conexión apropiada.

• El uso de los criterios de diseño presente en este documento deberá ser verificados y revisados por el que lo consulta y es quien finalmente debe asumir la responsabilidad integral del uso que se le dé a los resultados obtenidos.

• Debido a que el número de ensayos es muy limitado, no se pueden validar para conexiones con dimensiones diferentes a las ensayadas. Cualquier extrapolación debe ser hecha con buen criterio del ingeniero estructural y premisas conservadoras.

BIBLIOGRAFÍA

ACERO P. H. Precalificación de una conexión soldada a momento viga – columna para aplicaciones en edificios metálicos. Trabajo de grado. Santiago de Cali: Universidad del Valle. 2005.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

AMERICAN WELDING SOCIETY. AWS. Structural welding Code Steel ANSI/AWS D1.1: Miami. Florida. EEUU: AWS 2044

ANDRADE GARCIA, Carolina. Calificación de conexiones de perfiles I de acero – viga conectada al eje débil de la columna. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia sede Bogotá, 2015.

ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, AIS; NSR-10. Reglamento colombiano de Construcción Sismo Resistente; Bogotá, 2010.

BRUNEAU, M., UANG, C. M. y WHITTAKER, A. *Ductile Design of Steel Structures*, McGraw-Hill. 1998

CARDONA C. D. y ECHEVERRI M. A. M. Ensayo cíclico de conexiones sísmicas resistentes a momento para estructuras de acero. Tesis de grado. Medellín: Universidad Nacional de Colombia sede Medellín. Colombia. 2004

CARDOSO M. L, QUISHPE S. E. Diseño de conexiones precalificadas bajo AISC para pórticos resistentes a momento. Tesis de grado, Ingeniero Mecánico.

Riobamba-Ecuador: Escuela Superior Politécnica de Chimborazo, Facultad de mecánica, 2014. 127 p.

CARTER, C. J. Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications, Steel Design Gide Series AISC. 1999

CRISAFULLI F. J. Diseño sismorresistente de construcciones de acero. 4ta ed. Santiago de Chile: Asociacion Latinoamericana del Acero, ALACERO, 2014. 173 p. ISBN 978-956-8181-16-1.

ESTRADA H. A. F. y RODRÍGUEZ R. S. Y. Modelación de una conexión vigacolumna en pórticos de acero resistentes a momentos con análisis no lineal, para aplicaciones sísmicas. Tesis de grado. Medellín: Universidad Nacional de Colombia sede Medellín facultad de minas. Colombia. 2006.

FEDERAL EMERGENCY MANAGEMENT AGENCY, FEMA. Recommended Seismic Design Criteria for new Steel Moment-Frame Buildings. FEMA 350. Federal Emergency Management Agency, SAC Joint Venture, Washington, EU, 2000.

------. Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. FEMA 353. Federal Emergency Management Agency. SAC Joint Venture, Washington, EU, 2000.

------. State of the Art Report on Connection Performance. Program to Reduce the Earthquake Hazards of Steel Moment-Frame Structures. FEMA 355D. Federal Emergency Management Agency. SAC Joint Venture, Washington, EU, 2000.

GÓMEZ A. R. D. y DAVID Z. M. J. Calificación de un sistema de conexión sísmica para pórticos resistentes a momentos en acero estructural. Tesis de grado. Universidad nacional de Colombia sede Medellín. Colombia. 2006

GUERRERO L. E. Precalificación de conexiones para pórticos de lámina delgada. Tesis de grado. Universidad Nacional de Colombia sede Bogotá. Colombia. 2006.

LUNA TEZNA, Rafhael. Modelación para la precalificación de conexión a momento usando perfiles armados. Tesis de grado. Cali: Universidad del Valle, 2014.

PABÓN GONZÁLEZ, C., POSADA GIRALDO, J. C. Precalificación de Conexión Tubo-Viga Reforzada. Tesis de grado. Medellín: Universidad Nacional de Colombia, 2004.

PERALTA H. M. Diseño de Conexiones de Estructuras de Acero Actualizado al Reglamento de Construcción Sismo Resistente NSR-10. Tesis de grado, Magister en Ingeniería estructural. Bucaramanga: Universidad Industrial de Santander, 2015. 433 p.

STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

TORRES TORRES, C M. Calificación De Una Conexión Metálica Rígida Viga I -Columna Compuesta. Tesis de grado. Bucaramanga: Universidad Industrial de Santander, 2012

TORRES T., C M. CRUZ H, R.C. Estado del arte en calificación de conexiones rígidas metálicas viga columna. En: Revista Colombiana de Tecnologias de Avanzada, vol. 2, núm. 20, 2012, pp. 17-27. ISSN: 1692-7257.

URIBE VALLEJO, M. Calificación de una conexión rígida de una viga I y una columna tubular rellena de concreto bajo la acción de cargas dinámicas. Tesis de grado. Bogotá D.C.: Universidad Nacional de Colombia sede Bogotá, Colombia. 2008

VILLAR SALINAS, S. Calificación de conexiones para pórticos de lámina delgada 2ª parte. Tesis de Bogotá D.C.: Universidad Nacional de Colombia sede Bogotá, Colombia. 2007.

ZETINA M. J. R. Manual de diseño en acero. 2004

ANEXOS

Anexo A. Análisis dinámico elástico espectral.

Aplicación de las Fuerzas Sísmicas:

Figura A-1. Dirección de aplicación de Carga de Sismo en (Etabs)

					General		
Load Case Name		Ex Deriva		Design	Load Case Name	Ey Deriva	Design.
Load Case Type		Response Spectr	um 🔻	Notes	Load Case Type	Response Spectrum	 Notes
Exclude Objects in this	Group	Not Applicable			Exclude Objects in this Group	Not Applicable	
Mass Source		Previous (MsSrc1	1)		Mass Source	Previous (MsSrc1)	
ads Applied					Loads Applied		
Load Type	Load Name	Function	Scale Factor		Load Type Load Name	Function Sca	le Factor
Acceleration	U1	BUCARAG1SCR1	9.81	Add	Acceleration U2	BUCARAG1SCR1 9.81	Add
				Delete			Delete
				Advanced			Advance Advance
her Parameters					Other Parameters		
Modal Load Case		Modal	•]	Modal Load Case	Modal	•
Modal Combination Me	thod	CQC	-]	Modal Combination Method	CQC	•
📃 Include Rigid	Response	Rigid Frequency, f1			Include Rigid Response	Rigid Frequency, f1	
		Rigid Frequency, f2				Rigid Frequency, f2	
		Periodic + Rigid Type				Periodic + Rigid Type	
	ation, td				Earthquake Duration, td		
Earthquake Dur		ence	-	1	Directional Combination Type	SRSS	•
Earthquake Dur	n Type	Shoo				cale Factor	
Earthquake Dur Directional Combination Absolute Direction	n Type onal Combination Scal	e Factor			Absolute Directional Combination S		
Earthquake Dur Directional Combination Absolute Direction Modal Damping	n Type onal Combination Scale Constant at 0.05	e Factor	Modify/Show]	Modal Damping Constant at 0.0	05 Ma	dify/Show
Earthquake Dur Directional Combination Absolute Directii Modal Damping Diaphragm Eccentricity	n Type onal Combination Scal Constant at 0.05 (0 for All Diaphraon	e Factor	Modify/Show]	Absolute Directional Combination S Modal Damping Constant at 0.0 Diaphragm Eccentricity 0 for All Diaphr)5 Ma	dify/Show

Masa Sísmica:

Mass Source Name	MsSrc1		Load Pat	ttern	Multiplier	
Mass Source			DS DS	▼ 1		Add
V Element Self Mass						Modify
Additional Mass						Delete
Specified Load Patterns						
Adjust Diaphragm Lateral Mass to	Move Mass Centroid by:		Mass Options			
This Ratio of Diaphragm Width in	X Direction		Include Later	ral Mass		
This Ratio of Diaphragm Width in	Y Direction		Include Verti	ical Mass		
			Lump Latera	I Mass at Story Le	vels	

Figura A-2. Definición automática de la Masa sísmica

TABLE: Centers of Mass and Rigidity											
Story	Diaphragm	Mass X	Mass Y	XCM	YCM	Cumulative X	Cumulative Y	XCCM	YCCM	XCR	YCR
		kg	kg	m	m	kg	kg	m	m	m	m
N+15.00	D1	466247.19	466247.19	15	11.25	466247.19	466247.19	15	11.25	15	11.3
N+11.25	D1	495237.58	495237.58	15	11.25	961484.77	961484.77	15	11.25	15	11.3
N+7.50	D1	495237.58	495237.58	15	11.25	1456722.35	1456722.35	15	11.25	15	11.3
N+3.75	D1	495237.58	495237.58	15	11.25	1951959.94	1951959.94	15	11.25	15	11.3
	TOTAL	1951959.9	1951959.9								

Tabla A- 1. Masa	Sísmica	por Piso	para	el Modelo 1	l
------------------	---------	----------	------	-------------	---

Tabla A-2. Masa Sísmica por Piso para el Modelo 2

TABLE: Centers of Mass and Rigidity											
Story	Diaphragm	Mass X	Mass Y	XCM	YCM	Cumulative X	Cumulative Y	XCCM	YCCM	XCR	YCR
		kg	kg	m	m	kg	kg	m	m	m	m
N+15.00	D1	456278.24	456278.24	15	11.25	456278.24	456278.24	15	11.25	15	11.3
N+11.25	D1	474669.7	474669.7	15	11.25	930947.94	930947.94	15	11.25	15	11.3
N+7.50	D1	474669.7	474669.7	15	11.25	1405617.63	1405617.63	15	11.25	15	11.3
N+3.75	D1	474669.7	474669.7	15	11.25	1880287.33	1880287.33	15	11.25	15	11.3
	TOTAL	1880287.3	1880287.3								

Periodos y Participación de Masa por Modos:

TABLE: Mod	TABLE: Modal Participating Mass Ratios						
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY
		sec					
Modal	1	0.858	0	0.7866	0	0	0.7866
Modal	2	0.818	0.7994	0	0	0.7994	0.7866
Modal	3	0.624	0	0	0	0.7994	0.7866
Modal	4	0.23	0.131	0	0	0.9304	0.7866
Modal	5	0.229	0	0.1414	0	0.9304	0.928
Modal	6	0.179	0	0	0	0.9304	0.928
Modal	7	0.105	0.0526	0	0	0.983	0.928
Modal	8	0.1	0	0.0549	0	0.983	0.9829
Modal	9	0.085	0	0	0	0.983	0.9829
Modal	10	0.062	0.017	0	0	1	0.9829
Modal	11	0.059	0	0.0171	0	1	1
Modal	12	0.052	0	0	0	1	1

Tabla A-3. Modos, periodos y Participación de masa para el Modelo 1

TABLE: Mod	TABLE: Modal Participating Mass Ratios						
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY
		sec					
Modal	1	0.855	0.7843	0.0286	0	0.7843	0.0286
Modal	2	0.849	0.0286	0.7871	0	0.8129	0.8157
Modal	3	0.602	0	0	0	0.8129	0.8157
Modal	4	0.249	0.1221	0.0004	0	0.935	0.8161
Modal	5	0.247	0.0004	0.1211	0	0.9354	0.9373
Modal	6	0.181	0	0	0	0.9354	0.9373
Modal	7	0.12	0.0489	0.00001315	0	0.9843	0.9373
Modal	8	0.12	0.00001312	0.0477	0	0.9843	0.985
Modal	9	0.093	0	0	0	0.9843	0.985
Modal	10	0.074	0	0.015	0	0.9843	1
Modal	11	0.074	0.0157	0	0	1	1
Modal	12	0.06	0	0	0	1	1

Tabla A- 4. Modos, periodos y Participación de masa para el Modelo 2

Cortante Basal:

	<u>Cortante Basal</u>						
I. Periodos Ajustado							
Х							
T=Ta en X [S]	0.63	$T_a = C_t \cdot h^a$ Periodo Fundamental Aprox. A.4.2.2 NSR-10					
T _{calculado} en X [s]	0.818	Periodo Calculado del Analisis Modal					
T=Ta en Y [S]	0.63	$T_a = C_t \cdot h^{\alpha}$ Periodo Fundamental Aprox.					
T _{calculado} en Y [s]	0.858	Periodo Calculado del Analisis Modal					
Cu	1.29	$C_u = 1.75 - 1.2A_v F_v \qquad A.4.2-2 \text{ NSR-1}$	0				
Tmax en X	0.81	$T_{max} = C_u T_a $ A.4.2-3 NSR-1	0				
Tmax en Y	0.81	$T_{max} = C_u T_a $ A.4.2-3 NSR-1	0				
T _{ajustado} =Ta en X[S]	0.81	$T_{ajustado} = min(T_{max}; T_{calculado})$ A.5.4.5 NSR-10	0				
T _{ajustado} =Ta en Y[S]	0.81	$T_{ajustado} = min(T_{max}; T_{calculado})$ A.5.4.5 NSR-10	0				

	<u>Cortante Basal</u>							
I. Periodos Ajustado								
T=Ta en X [S]	0.63	$T_a = C_t \cdot h^a$ Periodo Fundamental Aprox.	A.4.2.2 NSR-10					
T _{calculado} en X [s]	0.855	Periodo Calculado del Analisis Modal						
T=Ta en Y [S]	0.63	$T_a = C_t \cdot h^a$ Periodo Fundamental Aprox.						
T _{calculado} en Y [s]	0.849	Periodo Calculado del Analisis Modal						
Cu	1.29	$C_u = 1.75 - 1.2A_v F_v$	A.4.2-2 NSR-10					
Tmax en X	0.81	$T_{max} = C_u T_a$	A.4.2-3 NSR-10					
Tmax en Y	0.81	$T_{max} = C_u T_a$	A.4.2-3 NSR-10					
T _{ajustado} =Ta en X [S]	0.81	$T_{ajustado} = min(T_{max};T_{calculado})$	A.5.4.5 NSR-10					
T _{ajustado} =Ta en Y [S]	0.81	$T_{ajustado} = min(T_{max}; T_{calculado})$	A.5.4.5 NSR-10					

Figura A-4. Calculo de Periodos por método F.H.E. Modelo 2

Fuente: Autor

Figura A- 5. Aceleración de Diseño Ajustada. Modelo 1 y 2

II. Aceleracion Horiz	ontal de Dis	eño Ajustada				
Sa _{ajustadoX}	0.7188	Aceleracion H	Horizontal de	Diseño		Figura A.2.6-1 NSR-10
Sa _{ajustadoY}	0.7188	Aceleracion H	Horizontal de	Diseño		
		S _{a ajustado} =	$\begin{cases} 2.5A_aF_aI\\ \frac{1.2A_vF_vI}{T_{ajustado}}\\ \frac{1.2A_vF_vT_I}{T_{ajustado}} \end{cases}$	si si J ₂ si	0 < T _c <	$T_{ajustado} \le T_{c}$ $T_{ajustado} \le T_{L}$ $T_{ajustado} > T_{L}$

III. Cortante Basal E	statica Calci	ulada			
Masa [kg]	1951959.9				
W [kN]	19148.7	Peso Total de la Edificacion			
Vse en X [kN]	13763.15	Cortante Basal Estatica en X			
Vse en X [kN]	1966.16	Cortante Basal Estaticaen X/R			
Vse en Y [kN]	13763.15	Cortante Basal Estatica en Y			
Vse en Y [kN]	1966.16	Cortante Basal Estatica en Y/R			
		$V_s = S_a W \rightarrow W = g.M$			

Figura A- 6. Calculo del cortante Basal Estática. Modelo 1

Figura A-7. Calculo del cortante Basal Estática. Modelo 2

III. Cortante Basal E	statica Calci	ulada			
Masa [kg]	1880287.3				
W [kN]	18445.6	Peso Total de la Edificacion			
Vse en X [kN]	13257.79	Cortante Bas	al Estatica en	Х	
Vse en X [kN]	1893.97	Cortante Bas	al Estaticaen	X/R	
Vse en Y [kN]	13257.79	Cortante Bas	al Estatica en	Y	
Vse en Y [kN]	1893.97	Cortante Bas	al Estatica en	Y/R	
		$V_s = S_a W$ -	$\rightarrow W = g.M$		

Figura A-8. Valor de ajuste y Cortante Dinámico. Modelo 1

IV. Ajuste de la Corta	nte Basal C	alculada		
		Porcentaje de Ajuste		
Tipo de Estructura	Regular	0.80		
Vsd en X [kN]	8952.75	Cortante Bas	al Dinamica e	en X
Vsd en Y [kN]	8468.00	Cortante Bas	al Dinamica e	en Y

IV. Ajuste de la Corta	nte Basal Co	alculada		
		Porcentaje de Ajuste		
Tipo de Estructura	Regular	0.80		
Vsd en X [kN]	8382.77	Cortante Bas	al Dinamica e	en X
Vsd en Y [kN]	8455.95	Cortante Bas	al Dinamica e	en Y

Figura A-9. Valor de ajuste y Cortante Dinámico. Modelo 2

Tabla A- 5. Tabla de Derivas Sismo X Modelo 1

TABLE: Joi	nt Drifts SIS	мох						
Story	Label	Unique Name	Load Case/Combo	Displacement X	Displacement Y	Drift X	Drift Y	Deriva X
				mm	mm			
N+15.00	1	281	Ex Deriva Max	152.7	3.421E-10	0.008998	0	Cumple
N+11.25	1	346	Ex Deriva Max	119.6	2.623E-10	0.011784	0	Cumple
N+7.50	1	411	Ex Deriva Max	75.8	1.612E-10	0.012674	0	Cumple
N+3.75	1	1	Ex Deriva Max	28.3	5.809E-11	0.007555	0	Cumple
N+15.00	4	284	Ex Deriva Max	152.7	3.421E-10	0.008998	0	Cumple
N+11.25	4	349	Ex Deriva Max	119.6	2.623E-10	0.011784	0	Cumple
N+7.50	4	414	Ex Deriva Max	75.8	1.612E-10	0.012674	0	Cumple
N+3.75	4	7	Ex Deriva Max	28.3	5.809E-11	0.007555	0	Cumple
N+15.00	17	297	Ex Deriva Max	152.7	3.482E-10	0.008998	0	Cumple
N+11.25	17	362	Ex Deriva Max	119.6	2.671E-10	0.011784	0	Cumple
N+7.50	17	427	Ex Deriva Max	75.8	1.642E-10	0.012674	0	Cumple
N+3.75	17	33	Ex Deriva Max	28.3	5.92E-11	0.007555	0	Cumple
N+15.00	20	300	Ex Deriva Max	152.7	3.482E-10	0.008998	0	Cumple
N+11.25	20	365	Ex Deriva Max	119.6	2.671E-10	0.011784	0	Cumple
N+7.50	20	430	Ex Deriva Max	75.8	1.642E-10	0.012674	0	Cumple
N+3.75	20	39	Ex Deriva Max	28.3	5.92E-11	0.007555	0	Cumple

TABLE: Joint	Drifts SISMC	Υ						
Story	Label	Unique Name	Load Case/Combo	Displacement X	Displacement Y	Drift X	Drift Y	Deriva X
				mm	mm			
N+15.00	1	281	Ey Deriva Max	3.449E-10	170.7	0	0.010791	Cumple
N+11.25	1	346	Ey Deriva Max	2.706E-10	130.9	0	0.013481	Cumple
N+7.50	1	411	Ey Deriva Max	1.712E-10	80.7	0	0.013735	Cumple
N+3.75	1	1	Ey Deriva Max	6.374E-11	29.2	0	0.007799	Cumple
N+15.00	4	284	Ey Deriva Max	3.704E-10	170.7	0	0.010791	Cumple
N+11.25	4	349	Ey Deriva Max	2.895E-10	130.9	0	0.013481	Cumple
N+7.50	4	414	Ey Deriva Max	1.825E-10	80.7	0	0.013735	Cumple
N+3.75	4	7	Ey Deriva Max	6.767E-11	29.2	0	0.007799	Cumple
N+15.00	17	297	Ey Deriva Max	3.449E-10	170.7	0	0.010791	Cumple
N+11.25	17	362	Ey Deriva Max	2.706E-10	130.9	0	0.013481	Cumple
N+7.50	17	427	Ey Deriva Max	1.712E-10	80.7	0	0.013735	Cumple
N+3.75	17	33	Ey Deriva Max	6.374E-11	29.2	0	0.007799	Cumple
N+15.00	20	300	Ey Deriva Max	3.704E-10	170.7	0	0.010791	Cumple
N+11.25	20	365	Ey Deriva Max	2.895E-10	130.9	0	0.013481	Cumple
N+7.50	20	430	Ey Deriva Max	1.825E-10	80.7	0	0.013735	Cumple
N+3.75	20	39	Ey Deriva Max	6.767E-11	29.2	0	0.007799	Cumple

Tabla A- 6. Tabla de Derivas Sismo Y Modelo 1

Tabla A-7. Tabla de Derivas Sismo X Modelo
--

TABLE: Joi	nt Drifts SIS	мох						
Story	Label	Unique Name	Load Case/Combo	Displacement X	Displacement Y	Drift X	Drift Y	Deriva X
				mm	mm			
N+15.00	1	281	Ex Deriva Max	162	2.8	0.008806	0.000147	Cumple
N+11.25	1	346	Ex Deriva Max	129.9	2.2	0.012247	0.00021	Cumple
N+7.50	1	411	Ex Deriva Max	84.4	1.4	0.013813	0.000237	Cumple
N+3.75	1	1	Ex Deriva Max	32.7	0.6	0.008724	0.00015	Cumple
N+15.00	4	284	Ex Deriva Max	162	2.8	0.008806	0.000147	Cumple
N+11.25	4	349	Ex Deriva Max	129.9	2.2	0.012247	0.00021	Cumple
N+7.50	4	414	Ex Deriva Max	84.4	1.4	0.013813	0.000237	Cumple
N+3.75	4	7	Ex Deriva Max	32.7	0.6	0.008724	0.00015	Cumple
N+15.00	17	297	Ex Deriva Max	162	2.8	0.008806	0.000147	Cumple
N+11.25	17	362	Ex Deriva Max	129.9	2.2	0.012247	0.00021	Cumple
N+7.50	17	427	Ex Deriva Max	84.4	1.4	0.013813	0.000237	Cumple
N+3.75	17	33	Ex Deriva Max	32.7	0.6	0.008724	0.00015	Cumple
N+15.00	20	300	Ex Deriva Max	162	2.8	0.008806	0.000147	Cumple
N+11.25	20	365	Ex Deriva Max	129.9	2.2	0.012247	0.00021	Cumple
N+7.50	20	430	Ex Deriva Max	84.4	1.4	0.013813	0.000237	Cumple
N+3.75	20	39	Ex Deriva Max	32.7	0.6	0.008724	0.00015	Cumple

TABLE: Joint	Drifts SISMO	Y						
Story	Label	Unique Name	Load Case/Combo	Displacement X	Displacement Y	Drift X	Drift Y	Deriva X
				mm	mm			
N+15.00	1	281	Ey Deriva Max	2.8	159.2	0.00015	0.008354	Cumple
N+11.25	1	346	Ey Deriva Max	2.2	128.7	0.000208	0.012063	Cumple
N+7.50	1	411	Ey Deriva Max	1.4	83.9	0.000235	0.013693	Cumple
N+3.75	1	1	Ey Deriva Max	0.6	32.7	0.000148	0.008717	Cumple
N+15.00	4	284	Ey Deriva Max	2.8	159.2	0.00015	0.008354	Cumple
N+11.25	4	349	Ey Deriva Max	2.2	128.7	0.000208	0.012063	Cumple
N+7.50	4	414	Ey Deriva Max	1.4	83.9	0.000235	0.013693	Cumple
N+3.75	4	7	Ey Deriva Max	0.6	32.7	0.000148	0.008717	Cumple
N+15.00	17	297	Ey Deriva Max	2.8	159.2	0.00015	0.008354	Cumple
N+11.25	17	362	Ey Deriva Max	2.2	128.7	0.000208	0.012063	Cumple
N+7.50	17	427	Ey Deriva Max	1.4	83.9	0.000235	0.013693	Cumple
N+3.75	17	33	Ey Deriva Max	0.6	32.7	0.000148	0.008717	Cumple
N+15.00	20	300	Ey Deriva Max	2.8	159.2	0.00015	0.008354	Cumple
N+11.25	20	365	Ey Deriva Max	2.2	128.7	0.000208	0.012063	Cumple
N+7.50	20	430	Ey Deriva Max	1.4	83.9	0.000235	0.013693	Cumple
N+3.75	20	39	Ey Deriva Max	0.6	32.7	0.000148	0.008717	Cumple

Tabla A- 8. Tabla de Derivas Sismo Y Modelo 2

Anexo B. Diseño por el método de análisis directo

Consideración de las Imperfecciones Iniciales: Para considerar las imperfecciones iniciales, se tiene en cuenta aplicando Cargas Ficticias o cargas nocionales, como lo especifica la sección F.2.3.2.2.2 de la NSR-10.

ads Load	Туре	Self Weight Multiplier	Auto Lateral Load	Click To: Add New Load
x D D x D x SD	Notional Dead Live Super Dead Notional Notional		Auto Auto	Modify Load Modify Lateral Load Delete Load
κL γ D γ SD γ L	Notional Notional Notional Notional	0 0 0 0 •	Auto Auto Auto Auto	OK Cancel
	🕌 Auto Notional L	.oad Generation		×
	Notional Load Base Load F	Value Pattem D		
	Load Ratio	Direction	0.002	
	Global X	() Global Y	
		ОК	Cancel	

Figura B-1. Definición de Cargas Ficticias Nocionales

Estas cargas ficticias son aplicadas para cada caso de carga vertical y en cada dirección "X" y "Y".

Reducción de la Rigidez: Se usarán las rigideces reducidas, como se establece en la sección F.2.3.2.3, numeral 1 y 2 de la NSR-10, aplicando un factor 0.8EA para la rigidez axial y 0.8EI para la rigidez flexional; también se aplicará un factor de reducción adicional, τ_b , a la rigidez flexional de todos los miembros que contribuyen a la estabilidad de la estructura.

$$\begin{split} \tau_b &= 1.0, \qquad si \left. \frac{P_u}{P_y} \le 0.5 \right. \\ \tau_b &= 4 \left(\frac{P_u}{P_y} \right) \left[1 - \left(\frac{P_u}{P_y} \right) \right], \qquad si \left. \frac{P_u}{P_y} > 0.5 \right. \end{split}$$

Estos valores de τ_b , serán calculados automáticamente por el programa de cálculo ETABS, definido en sus variables de diseño.

Aplicación de las Fuerzas Sísmicas: Como la aplicación del método de Análisis Directo es realizado por el programa de cálculo ETABS 2015 y es un análisis no lineal, la aplicación de las fuerzas sísmicas solo se deben obtener por un análisis estático y no por un análisis Modal Espectral; el cual se definirá de una forma automática por el programa de cálculo.

IV. Espectro Elastico de A	celeraciones d	de Diseño		
h [m]	15	Altura Total	de la Estructu	ra
Periodo Aproximado en D	ireccion de X			
Ct	0.072	Parametro pa	ara el calculo	del periodo
α	0.8	Parametro pa	ara el calculo	del periodo
T=Tax [s]	0.63	$T_a = C_t \cdot h^{\alpha}$	Periodo Funda	amental Aprox.
Periodo Aproximado en D	ireccion de Y			
Ct	0.072	Parametro pa	ara el calculo	del periodo
α	0.8	Parametro pa	ara el calculo	del periodo
T=Tay [s]	0.63	$T_a = C_t \cdot h^{\alpha}$	Periodo Funda	amental Aprox.
Periodo Aproximado Defi	nitivo			
T=Ta[s]	0.63			
T0 [s]	0.13	$T = 0.1 A_{1}$,F _v	$A_v F_v$
Tc [8]	0.65	$T_0 = 0.1 \frac{1}{A_0}$	$_{a}F_{a}$ I_{c} -	$\frac{0.48}{A_a F_a}$
TL[s]	3.72	$T_L = 2.4F_v$		
Sa	0.72	Aceleracion	Horizontal de	Diseño

Figura B-2. Definición del Espectro Elástico de Aceleraciones

Figura B-3. Definición de las Cargas Sísmicas para Derivas. (E)

Figura B- 4. Definición de las Cargas Sísmicas para Diseño. (E/R)

)irection and Eccentricity		Factors	
🗸 X Dir	Y Dir	Base Shear Coefficient, C	0.103
🗸 X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
Ecc. Ratio (All Diaph.)	0.05	Story Range Top Story	N+15.00 -
Overwrite Eccentricities	Overwrite	Bottom Story	Base 💌

Direction and Eccentricity		Factors	
X Dir	✓ Y Dir	Base Shear Coefficient, C	0.103
X Dir + Eccentricity	✓ Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	V Dir - Eccentricity		
		Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	N+15.00 -
Overwrite Eccentricities	Overwrite	Bottom Story	Base

Definición de los Parámetros y Normas de Diseño: En la Figura B- 5 y Figura B-6 se muestra las variables y normas de diseño, los cuales se definen para obtener las resistencias requeridas y el diseño de los elementos teniendo en cuenta los parámetros anteriormente mencionados.

				Item Description				
	Item	Value		The selected design code. Subsequent design is based on this				
01	Design Code	AISC 360-10		selected code.				
02	Multi-Response Case Design	Step-by-Step - All						
03	Framing Type	SMF						
04	Seismic Design Category	D	=					
05	Importance Factor	1						
06	Design System Rho	1						
07	Design System Sds	0.72						
08	Design System R	7						
09	Design System Omega0	3						
10	Design System Cd	7						
11	Design Provision	LRFD						
12	Analysis Method	Direct Analysis						
13	Second Order Method	General 2nd Order						
14	Stiffness Reduction Method	Tau-b Variable						
15	Add Notional load cases into seismic combos?	No						
16	Beta Factor	1.3		Explanation of Color Coding for Values				
17	BetaOmega Factor	1.6		Blue: Default Value				
10		0.0						
To D	efault Values Reset To	Previous Values		Black: Not a Default Value				
All	Items Selected Items All	Items Selected Ite	ms	Red: Value that has changed durin the current session				

Figura B- 5. Definición de los parámetros de diseño para elementos de Acero

01 Desig 02 Multi 03 Desig 04 Analy	In Code Response Case Design	AISC 360-10 Step-by-Step - All				
02 Multi- 03 Desig 04 Analy	Response Case Design	Sten-by-Sten - All	-			
03 Desig 04 Analy						
04 Analy	in Provision	LRFD				
	sis Method	Direct Analysis				
05 Seco	nd Order Method	General 2nd Order				
06 Stiffn	ess Reduction Method	Tau-b Variable				
07 Phi(E	ending)	0.9	-			
08 Phi(C	ompression)	0.75	_			
09 Phi(T	ension-Yielding)	0.9				
10 Phi(T	ension-Fracture)	0.75				
11 Phi(S	hear)	0.9				
12 Phi(S	hear-Short Webed Rolled I)	1				
13 Phi(T	orsion)	0.9				
14 Ignor	e Seismic Code?	No				
15 Ignor	e Special Seismic Load?	No				
16 Is Do	ubler Plate Plug-Welded?	Yes		- Explanation of Color Coding for Values		
17 HSS	Welding Type	ERW		Blue: Default Value		
10 Ded	UCC Thislance?	M-	-]		

Figura B- 6. Definición de los parámetros de diseño para columnas compuestas

Combinaciones de Carga: Las combinaciones de carga para el Modelo 1 y el Modelo 2 se muestran en la tabla B-1:

TABLE: Load	atic - Nonli	inear										
Name	Stiffness From	Mass Source	Load Type	Load Name	Scale Factor	Geometric Nonlinearity	Load Application	Monitored DOF	Monitored Story	Monitored Point	Results Saved At	Design Load Type
UDStIS1-NL	None	Previous	Load Pattern	D	1.4	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS1-NL			Load Pattern	SD	1.4							
UDStIS1-NL			Load Pattern	Nx D	1.4							
UDStIS1-NL			Load Pattern	Nx SD	1.4							
UDStIS2-NL	None	Previous	Load Pattern	D	1.4	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS2-NL			Load Pattern	SD	1.4							

Tabla B-1. Casos de carga No-lineales

TABLE: Load Cases - Static - Nonlinear		near										
Nama	Stiffness	Mass	Load Tures	Load	Scale	Geometric	Load	Monitored	Monitored	Monitored	Results	Design Load
Name	From	Source	гоад Туре	Name	Factor	Nonlinearity	Application	DOF	Story	Point	Saved At	Туре
<u> </u>						I	I	I		I		
UDStIS2-NL			Load Pattern	Nx D	-1.4							
UDStIS2-NL			Load Pattern	Nx SD	-1.4							
UDStIS3-NL	None	Previous	Load Pattern	D	1.4	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS3-NL			Load Pattern	SD	1.4							
UDStIS3-NL			Load Pattern	Ny D	1.4							
UDStIS3-NL			Load Pattern	Ny SD	1.4							
UDStIS4-NL	None	Previous	Load Pattern	D	1.4	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS4-NL			Load Pattern	SD	1.4							
UDStIS4-NL			Load Pattern	Ny D	-1.4							
UDStIS4-NL			Load Pattern	Ny SD	-1.4							
UDStIS5-NL	None	Previous	Load Pattern	D	1.2	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS5-NL			Load Pattern	L	1.6							
UDStIS5-NL			Load Pattern	SD	1.2							
UDStIS5-NL			Load Pattern	Nx D	1.2							
UDStIS5-NL			Load Pattern	Nx L	1.6							
UDStIS5-NL			Load Pattern	Nx SD	1.2							
UDStIS6-NL	None	Previous	Load Pattern	D	1.2	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS6-NL			Load Pattern	L	1.6							
UDStIS6-NL			Load Pattern	SD	1.2							
UDStIS6-NL			Load Pattern	Nx D	-1.2							
UDStIS6-NL			Load Pattern	Nx L	-1.6							
UDStIS6-NL			Load Pattern	Nx SD	-1.2							
UDStIS7-NL	None	Previous	Load Pattern	D	1.2	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS7-NL			Load Pattern	L	1.6							
UDStIS7-NL			Load Pattern	SD	1.2							
UDStIS7-NL			Load Pattern	Ny D	1.2							
UDStIS7-NL			Load Pattern	Ny L	1.6							
UDStIS7-NL			Load Pattern	Ny SD	1.2							
UDStIS8-NL	None	Previous	Load Pattern	D	1.2	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS8-NL			Load Pattern	L	1.6							
UDStIS8-NL			Load Pattern	SD	1.2							
UDStIS8-NL			Load Pattern	Ny D	-1.2							
UDStIS8-NL			Load Pattern	Ny L	-1.6							
UDStIS8-NL			Load Pattern	Ny SD	-1.2							
UDStIS9-NL	None	Previous	Load Pattern	D	1.344	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS9-NL			Load Pattern	L	1							
UDStIS9-NL			Load Pattern	SD	1.344							
UDStIS9-NL			Load Pattern	Ex Diseño	1							
UDStIS9-NL			Load Pattern	Ey Diseño	0.3							
UDStIS10-NL	None	Previous	Load Pattern	D	1.344	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS10-NL			Load Pattern	L	1		1	1	1	1	1	1
UDStIS10-NL			Load Pattern	SD	1.344							
UDStIS10-NL		İ	Load Pattern	Ex Diseño	-1					1	1	1
UDStIS10-NL	1	İ	Load Pattern	Ey Diseño	-0.3	İ		1	1	1	1	1
UDStIS11-NL	None	Previous	Load Pattern	D	1.344	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS11-NI	1		Load Pattern	I	1				1	1	1	20001100
UDStIS11-NI	1		Load Pattern	SD	1.344					1	1	
UDStIS11-NI			Load Pattern	Ev Diseño	1					1	1	1
UDStIS11-NL			Load Pattern	Ex Diseño	0.3		1	1		1	-	1
UDStIS12-NL	None	Previous	Load Pattern	D	1.344	P-delta	Full Load	UX	N+15.00	1	Final State	Program
	1				L	1				1	1	Determined

TABLE: Load	Cases - St	atic - Nonli	inear									
Name	Stiffness From	Mass Source	Load Type	Load Name	Scale Factor	Geometric Nonlinearity	Load Application	Monitored DOF	Monitored Story	Monitored Point	Results Saved At	Design Load Type
	1	1	1	1	1	1	1	1	1	1	1	
UDStIS12-NL			Load Pattern	L	1							
UDStIS12-NL			Load Pattern	SD	1.344							
UDStIS12-NL			Load Pattern	Ey Diseño	-1							
UDStIS12-NL			Load Pattern	Ex Diseño	-0.3							
UDStIS13-NL	None	Previous	Load Pattern	D	0.756	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS13-NL			Load Pattern	SD	0.756							
UDStIS13-NL			Load Pattern	Ex Diseño	1							
UDStIS13-NL			Load Pattern	Ey Diseño	0.3							
UDStIS14-NL	None	Previous	Load Pattern	D	0.756	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS14-NL			Load Pattern	SD	0.756							
UDStIS14-NL			Load Pattern	Ex Diseño	-1							
UDStIS14-NL			Load Pattern	Ey Diseño	-0.3							
UDStIS15-NL	None	Previous	Load Pattern	D	0.756	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS15-NL			Load Pattern	SD	0.756							
UDStIS15-NL			Load Pattern	Ey Diseño	1							
UDStIS15-NL			Load Pattern	Ex Diseño	0.3							
UDStIS16-NL	None	Previous	Load Pattern	D	0.756	P-delta	Full Load	UX	N+15.00	1	Final State	Program Determined
UDStIS16-NL			Load Pattern	SD	0.756							
UDStIS16-NL			Load Pattern	Ey Diseño	-1							
UDStIS16-NL			Load Pattern	Ex Diseño	-0.3							

Donde:

- *D* = Carga de Peso Propio (Carga Muerta).
- SD = Carga Sobreimpuesta (Carga Muerta).
- *L* = Sobrecarga de Uso (Carga Viva).
- *E*_{X Diseño} = Sismo de Diseño en la dirección de análisis X (Sismo Estático).
- *E*Y *Diseño* = Sismo de Diseño en la dirección de análisis Y (Sismo Estático).
Anexo C. Resultados del diseño de los elementos que conforman las conexiones a diseñar.

Figura C-1. Resultados de Diseño de Columna C8 del Modelo 1

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Envelope)

					Ele	emen	t Details						
vel	Element	Unique	e Name	S	ection		Combo	Loca	tion	F	Frame Typ	be	Classificatio
3.75	C8	8	в С	C.T.C. 4	400X400	X30	UDStIS9	C)	Speci	ial Moment	Frame	Compact
				LLR	F and D	emai	nd/Capac	ity Ra	atio				
			-	L (m	im) L	LRF	Stress	Ratio	o Limi	t			
			-	3750	0.0	0.467		0.95					
				Ana	Analysis and Design Parameters								
		-	Provision	n A	Analysis	5	2nd O	rder	F	educ	tion		
		-	LRFD Direct Analysis General 2nd Order Tau-b V		u-b Va	riable							
			Stiffness Reduction Factors										
			αP, /Py αP, /Pe τь EA factor EI factor										
			0.081		0.0	006		1	0	.8	0.8	_	
			Design Code Parameters										
		Φ.	Φ	(Φ _{ΤΥ}	Φ	TF	Φ,	4	V-RI	Φντ		
		0.9	0.9		0.9	0.	75	0.9		1	1		
					Sect	tion P	roperties						
		A (mm	²) J (mr	m⁴)	I 33 (mn	n⁴)	I ₂₂ (mm⁴) 🗛	م _{v3} (mr	n²)	A v2 (mm²))	
		44400	151959	0000	1019720	000	101972000	00	18600		18600		
					Des	ign P	roperties						
		S 33 (mr	m³) S ₂₂	(mm³)) Z ₃₃	(mm³	²) Z ₂₂ (mm³)	r ₃₃	(mm)	r 22 (mr	n)	
		509860	00 509	98600	61	74000	15	1.5	1	51.5			
		Material Properties											
		E (MPa) f _y (MPa) R _y α											
		200000 352 1.1 NA											
					HSS Se	ection	Paramet	ers					
			_	HSS W	Velding	Red	duce HSS	Thick	ness	?			
		ERW No											
				Stres	ss Chec	k for	ces and N	lomer	nts				
	Location	(mm)	P (N)	M ut	33 (N-mn	n)	M u22 (N-	nm)	V _{u2}	(N)	V _{u3} (N)	T u (N-r	 nm)
	0	-1	1272535.95	31	2602001		7377621	8.03	1196	15.87	18941.17	-29902	7.78

327

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	Κ,	K ₂	B 1	B ₂	C m
Major Bending	0.837	1	1	1	1	0.51
Minor Bending	0.837	1	1	1	1	0.666

Parameters for Lateral Torsion Buckling

Ltb	K _{Ib}	C _b
0.837	1	1.952

Demand/Capacity (D/C) Ratio

D/C Ratio =	$(P_r/2P_c) + (M_{r33}/M_{c33}) + (M_{r22}/M_{c22})$
0.244 =	0.047 + 0.16 + 0.038

Axial Force and Capacities

P "Force (N)	φP _{nc} Capacity (N)	фР _∞ Capacity (N)
1272535.95	13622956.37	14065920

Moments and Capacities

	M "Moment (N-mm)	фМ "Capacity (N-mm)	φM _n NoL _{TBD} (N-mm)
Major Bending	312602001	1955923200	1955923200
Minor Bending	73776218.03	1955923200	

Torsion Moment and Capacities

T "Moment (N-mm)	T _n Capacity (N-mm)	φT n Capacity (N-mm)		
-299027.78	1712769381	1541492443		

Shear Design

	V "Force (N)	φV _n Capacity (N)	Stress Ratio
Major Shear	120053.3	3535488	0.034
Minor Shear	3373.42	3535488	0.001

Figura C- 2. Resultados de Diseño de Viga B29 del Modelo 1 ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

Element Details

Level	Element Unique Name		Location (mm) Combo		Element Type	Section	Classification
N+3.75	B29	49	7300	UDS:IS9	Special Moment Frame	W24X84	Compact

L	LRF	and	Demand/Ca	pacity	/ Ratio
---	-----	-----	-----------	--------	---------

L (mm)	LLRF	Stress Ratio Limit
7500.0	1	0.95

Analysis	and	Design	Parameters	

Provision	Analysis	2nd Order	Reduction
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable

Stiffness Reduction Factors

αP,/P,	αP,/P,	т,	EA factor	EI factor
-0.003	-3.703E-04	1	0.8	0.8

Φ.	Φ.	Φτγ	Φτε	Φ.,	Ф _{V-IU}	Φντ
0.9	0.9	0.9	0.75	0.9	1	1

Design Code Parameters

Section Properties

A (mm²)	J (mm⁴)	I ₃₃ (mm⁴)	I 22 (mm*)	A ., (mm²)	A .; (mm²)
15935.5	1540056.3	986468478.7	39292246.6	8961.8	7307.7

Design Properties

S 33 (mm³)	S 22 (mm³)	Z (mm³)	Z 22 (mm³)	r 🔤 (mm)	r 22 (mm)	C ֶ (mm')
3223015.9	343001.9	3670702.3	534218.3	248.8	49.7	3.441E+12

Material Properties

E (MPa)	f ₇ (MPa)	R ,	α
200000	352	1.1	NA

Stress Check forces and Moments

Location (mm)	P., (N)	M (N-mm)	M (N-mm)	V 12 (N)	V _{u3} (N)	T , (N-mm)
7300	14303.02	-264936548	79750	100812.97	-72.64	-5.41

Axial Force & Biaxial Moment Design Factors (H1.2,H1-1b)

	L Factor	Κ.,	κ,	Β,	Β.	С.,
Major Bending	0.947	1	1	1	1	1
Minor Bending	0.333	1	1	1	1	1

Parameters for Lateral Torsion Buckling

L ₁₀	K	С,
0.333	1	2.078

Demand/Capacity (D/C) Ratio Eqn.(H1.2,H1-1b)

D/C Ratio =	(P, /2P a) + (M (2) /M (2)) + (M (22 /M (22))
0.23 =	0.001 + 0.228 + 4.712E-04

Axial Force and Capacities

P , Force (N)	φP _∞ Capacity (N)	φP _{ee} Capacity (N)
14303.02	4014884.01	5048351.19

Moments and Capacities

	M . Moment (N-mm)	φM , Capacity (N-mm)	φM , No L , 100 (N-mm)
Major Bending	264936548	1162878500	1162878500
Minor Bending	79750	169240353	

Shear Design

	V, Force (N)	φV, Capacity (N)	Stress Ratio
Major Shear	100812.97	1543392.01	0.065
Minor Shear	72.64	1703456.76	4.264E-05

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo
100835.11	UDStIS16	100812.97	UDStIS16

Figura C-3. Resultados de Diseño de Columna C7 del Modelo 1

ETABS 2015 Encased Composite Column Design

AISC 360-10 Composite Steel Section Check (Strength Envelope)

2	
3	

Element Details

Level	Element	Unique Name	Section	Combo	Location	Classification
N+3.75	C7	7	C.S.C.R. 650X650	UDStIS11	0	Compact

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
3750.0	0.402	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction	
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable	

Stiffness Reduction Factors

αΡ ,/ Ρ _y	αP , /P _*	τ _b	EA factor	El factor
0.114	0.008	1	0.8	0.8

Design Code Parameters

Φ	Φь	Φ _{TY}	Φ _{TF}	Φv	Φ _{V-RI}	Φ _{VT}
0.9	0.75	0.9	0.75	0.9	1	1

Design Code Parameters

A (mm²)	J(mm⁴)	l ₃₃ (mm⁴)	l ₂₂ (mm⁴)	A _{v3} (mm²)	A _{v2} (mm²)
73644.9	3601999686	2334201383	1850595319	64687	44515.3

Design Properties of Embedded Steel Section

b _f (mm)	h (mm)	t _f (mm)	t _w (mm)	A (mm²)	I ₃₃ (mm⁴)	I ₂₂ (mm⁴)	Z ₃₃ (mm³)	Z 22 (mm³)
398.8	386.1	33.3	0	33419.3	890735250.8	348801934.7	5243860.5	2671091.4

Design Properties of Reinforcement and Concrete Section

b (mm)	h (mm)	Ag (mm²)	A sr (mm²)	A sri(maj) (mm²)	A sri(min) (mm²)	A ₀ (mm²)
650	650	422500	5096.8	0	1019.4	383983.9

Material Properties

E c (MPa)	E s (MPa)	E, (MPa)	f'。(MPa)	Fy(MPa)	f _{y,rebar} (MPa)
20637	200000	200000	28	352	420

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
3750.0	0.402	0.95

Demand/Capacity (D/C) Ratio

D/C Ratio =	$(P_{r}/2P_{c}) + (M_{r33}/M_{c33}) + (M_{r22}/M_{c22})$
0.43 =	0.091 + 0.263 + 0.076

Location (mm)	P (N)	M _{u33} (N-mm)	M 🗤 (N-mm)	V _{u2} (N)	V 13 (N)	T _u (N-mm)
0	-2959249.96	720080024	-144706020	202008.9	-26771.01	0

Stress Check Forces and Moments

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	κ,	K ₂	B ₁	B ₂	Cm
Major Bending	0.837	1	1	1	1	0.639
Minor Bending	0.837	1	1	1	1	0.755

Parameters for Lateral Torsion Buckling

Lub	K	Cb
0.837	1	1.559

Axial Force and Capacitie	s
---------------------------	---

P u Force (N)	φP _{nc} Capacity (N)	φPnt Capacity (N)	
2959249.96	16324099.01	12513807.28	

Moments and Capacities

	M "Moment (N-mm)	φM _n Capacity (N-mm)	фМ " No L _{ТВD} (N-mm)
Major Bending	720080024	2737033142	2737033142
Minor Bending	144706020	1896861622	

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo
100835.11	UDStIS16	100812.97	UDStIS16

Figura C-4. Resultados de Diseño de Viga B5 del Modelo 1

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

Element Details

Level	Element	Unique Name	Location (mm)	Combo	Element Type	Section	Classification
N+3.75	B5	25	325	UDStIS12	Special Moment Frame	W24X84	Compact

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
7500.0	0.748	0.95

Provision	Analysis	2nd Order	Reduction	
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable	

Analysis and Design Parameters

Stiffness Reduction Factors

αP,/P,	αP,/P,	T _b	EA factor	EI factor
-0.001	-2.021E-04	1	0.8	0.8

Design Code Parameters

Ф.	Φ	Φ _{т Υ}	Φ ,,	Φ.,	Φ _{V-RI}	Φ ντ
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties

A (mm²)	J (mm⁴)	I 33 (mm*)	I 22 (mm4)	A ,3 (mm²)	A _{v2} (mm²)
15935.5	1540056.3	986468478.7	39292246.6	8961.8	7307.7

Design Properties

S (mm²)	S 22 (mm³)	Z 20 (mm³)	Z 22 (mm³)	r 33 (mm)	r 22 (mm)	C _∗ (mm⁴)
3223015.9	343001.9	3670702.3	534218.3	248.8	49.7	3.441E+12

Material Properties

E (MPa)	f, (MPa)	Ry	α
200000	352	1.1	NA

Stress Check forces and Moments

Location (mm)	P (N)	(N-mm) ددی	M 1222 (N-mm)	V2 (N)	V ₄₃ (N)	T (N-mm)
325	8386.87	-571969187	-19138.76	-309081.37	-15.69	14.21

Axial Force & Biaxial Moment Design Factors (H1.2,H1-1b)

	L Factor	Κ,	K _z	Β,	B ₂	С.,
Major Bending	0.913	1	1	1	1	1
Minor Bending	0.25	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Lib	K ₁₂	C
0.25	1	1.156

Demand/Capacity (D/C) Ratio Eqn.(H1.2,H1-1b)

D/C Ratio =	$(P_{,/2}P_{,c}) + (M_{,_{23}}/M_{,_{23}}) + (M_{,_{22}}/M_{,_{22}})$
0.493 =	0.001 + 0.492 + 1.131E-04

Axial Force and Capacities

P Force (N)	φP _n Capacity (N)	φP _n :Capacity (N)
8386.87	4297769.68	5048351.19

Moments and Capacities

	M , Moment (N-mm)	φM , Capacity (N-mm)	фМ., No L :80 (N-mm)
Major Bending	571969187	1162878500	1162878500
Minor Bending	19138.76	169240353	

Shear Design

	V., Force (N)	φV, Capacity (N)	Stress Ratio
Major Shear	309081.37	1543392.01	0.2
Minor Shear	15.69	1703456.76	9.212E-06

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo
309081.37	UDStIS16	309075.16	UDStIS16

Figura C-5. Resultados de Diseño de Columna C8 del Modelo 2

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Summary)

Element Details

Level	Element	Unique Name	Location (mm)	Combo	Element Type	Section	Classification
N+3.75	C8	8	0	UDStIS9	Special Moment Frame	W14X193	Compact

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
3750.0	0.466	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction	
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable	

Stiffness Reduction Factors

αP,/P,	αP,/P。	T _b	EA factor	El factor
0.099	0.016	1	0.8	0.8

Design Code Parameters

Φ.	Φ.	Φ _{τΥ}	Фт	Φ.,	Φ _{V-RI}	Φ
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties

A (mm	²) J(mm⁴)	I 33 (mm4)	I 22 (mm ⁴)	A _{v3} (mm²)	A ₇₂ (mm²)
36645.	1 14484853.6	998955421.4	387511457.2	29171.6	8900

Design Properties

S (mm³)	S 22 (mm²)	Z 20 (mm²)	Z 22 (mm³)	r 33 (mm)	r 22 (mm)	C _* (mm*)
5074703.4	1943484.5	5817407.7	2949671.5	165.1	102.8	1.233E+13

Material Properties

E f, (MPa)		Ry	α	
200000	352	1.1	NA	

Stress Check forces and Moments

Location (mm)	P., (N)	M (N-mm)	M	V 12 (N)	V "3 (N)	T , (N-mm)
0	-1274914.82	350389382	40319119.91	135505.89	13426.97	-6978.76

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	κ,	K z	Β,	B ₂	С.,
Major Bending	0.837	1	1	1	1	0.504
Minor Bending	0.837	1	1	1	1	0.556

Parameters for Lateral Torsion Buckling

Lite	K	C .
0.837	1	1.974

Demand/Capacity (D/C) Ratio Eqn.(H1-1b)

D/C Ratio =	$(P, /2P_{c}) + (M_{23} / M_{23}) + (M_{22} / M_{22})$
0.292 =	0.059 + 0.19 + 0.043

Axial Force and Capacities

P Force (N)	φP _n Capacity (N)	φP _n : Capacity (N)
1274914.82	10829770.97	11609163.88

Moments and Capacities

	M "Moment (N-mm)	φM " Capacity (N-mm)	φΜ " No L ₁₈₀ (N-mm)
Major Bending	350389382	1842954766	1842954766
Minor Bending	40319119.91	934455938	

Shear Design

	V., Force (N)	φV, Capacity (N)	Stress Ratio
Major Shear	135505.89	1879676.24	0.072
Minor Shear	13426.97	5544929.09	0.002

Figura C-6. Resultados de Diseño de Viga B29 del Modelo 2

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Envelope)

Element Details

Level	Element	Unique Name	Section	Combo	Location	Frame Type	Classification
N+3.75	B29	49	W24X84	UDStIS9	7303.2	Special Moment Frame	Compact

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
7500.0	1	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable

Stiffness Reduction Factors

α Ρ ,/ Ρ ,	αP,/P,	τ _b	EA factor	El factor
0	0	1	0.8	0.8

Design Code Parameters

Φ,	Φ,	Φτγ	Φτε	Φγ	Φ _{V-RI}	Φ _{ντ}
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties

A (mm²)	J (mm⁴)	I 33 (mm*)	I 22 (mm4)	A ,3 (mm²)	A _{v2} (mm²)
15935.5	1540056.3	986468478.7	39292246.6	8961.8	7307.7

Design Properties

S 33 (mm²)	S 22 (mm ³)	Z 33 (mm²)	Z 22 (mm³)	r 33 (mm)	r 22 (mm)
3223015.9	343001.9	3670702.3	248.8	49.7	3.441E+12

Material Properties

(MPa)	f, (MPa)	R _y	α
200000	352	1.1	NA

Stress Check forces and Moments

Location (mm)	P., (N)	M .,, (N-mm)	M	V2 (N)	V., (N)	T (N-mm)
7303.2	0	-289695781	0	107617.62	0	1153.76

Axial Force & Blaxial Moment Design Factors (H1-1b)

	L Factor	κ,	Κz	Β,	B ₂	С.,
Major Bending	0.948	1	1	1	1	1
Minor Bending	0.333	1	1	1	1	1

Parameters for Lateral Torsion Buckling

L	κ	C
0.333	1	2.093

Demand/Capacity (D/C) Ratio

D/C Ratio =	(P,/2P,) + (M,,,,/M,,,,) + (M,,,/M,,,,)
0.249 =	0 + 0.249 + 0

Axial Force and Capacities

P, Force (N)	φP _{ac} Capacity (N)	φP _a ; Capacity (N)
0	4014884.01	5048351.19

Moments and Capacities

	M . Moment (N-mm)	φM . Capacity (N-mm)	φM a No L _{TED} (N-mm)
Major Bending	289695781	1162878500	1162878500
Minor Bending	0	169240353	

Shear Design

	V., Force (N)	φV, Capacity (N)	Stress Ratio
Major Shear	107617.62	1543392.01	0.07
Minor Shear	0	1703456.76	0

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo
107598.96	UDStIS16	107617.62	UDStIS16

Figura C-7. Resultados de Diseño de Columna C6 del Modelo 2

ETABS 2015 Composite Column Design

AISC 360-10 Composite Section Check (Strength Envelope)

Element Details

Level	Element	Unique Name	Section	Combo	Location	Classification
N+3.75	C6	6	C-S-C 400X450X22	UDS1S12	0	Compact

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
3750.0	0.402	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable

Stiffness Reduction Factors

σΡ ,/ Ρ ,	αP,/P.	T b	EA factor	El factor
0.223	0.016	1	0.8	0.8

Design Code Parameters

Φ.	Φ	Φτγ	Φ _{TF}	Φ.,	• _{V-3}	Φντ
0.9	0.75	0.9	0.75	0.9	1	1

Design Properties of Steel Section

A (mm²)	J (mm*)	1 23 (mm*)	1 22 (mm*)	A ,3 (mm²)	A (mm²)
35464	1428857018	1052105325	873507125.3	17192.7	19279.8

Material Properties

E " (MPa)	f'_(MPa)	F _y (MPa)	Ry
200000	28	352	0

LLRF and Demand/Capacity Ratio

L (mm)	LLRF	Stress Ratio Limit
3750.0	0.402	0.95

Demand/Capacity (D/C) Ratio

D/C Ratio =	$(P_{+}/P_{+}) + (8/9)(M_{+\infty}/M_{+\infty}) + (8/9)(M_{+\infty}/M_{+\infty})$
0.637 =	0.241 + 0.249 + 0.047

Stress Check Forces and Moments

Location (mm)	P , (N)	M ,33 (N-mm)	M ₄₂₂ (N-mm)	V? (N)	V ,a (N)	T. (N-mm)
0	-2781782.86	-528809709	92337015.38	-185999.18	21152.74	1551978.24

	L Factor	κ.	K ₂	Β.,	B 2	C
Major Bending	0.837	1	1	1	1	0.545
Minor Bending	0.837	1	1	1	1	0.73

Axial Force & Biaxial Moment Design Factors (H1-1a)

Parameters for Lateral Torsion Buckling

Lit	Kn	C .
0.837	1	1.825

Axial Force and Capacities

P , Force (N)	ϕP_{∞} Capacity (N)	φP " Capacity (N)
2781782.86	11526819.14	11234995.2

Moments and Capacities

	M. Moment (N-mm)	φM , Capacity (N-mm)	φM , (No LTB) (N-mm)
Major Bending	528809709	1891158210	1891158210
Minor Bending	92337015.38	1750720770	

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo
107598.96	UDStIS16	107617.62	UDStS16

Figura C-8. Resultados de Diseño de Viga B5 del Modelo 2

ETABS 2015 Steel Frame Design

AISC 360-10 Steel Section Check (Strength Envelope)

	Element Details								
Level	Element	Unique Name	Section	Combo	Location	Frame Type	Classification		
N+3.75	B5	25	W24X84	UDStIS12	225	Special Moment Frame	Compact		

Element Details

LLRF and	Demand/Capac	ity Ratio
----------	--------------	-----------

L (mm)	LLRF	Stress Ratio Limit
7500.0	0.748	0.95

Analysis and Design Parameters

Provision	Analysis	2nd Order	Reduction	
LRFD	Direct Analysis	General 2nd Order	Tau-b Variable	

Stiffness Reduction Factors

αP,/P,	αP,/P	T _b	EA factor	El factor
0	0	1	0.8	0.8

Design Code Parameters

Φ.	Φ.	Φτr	Фть	Φ.,	Φ _{v-Ri}	Φ.vt
0.9	0.9	0.9	0.75	0.9	1	1

Section Properties

A (mm²)	J (mm⁴)	l 33 (mm ⁴)	I ₂₂ (mm ⁴)	A .3 (mm²)	A ,2 (mm²)
15935.5	1540056.3	986468478.7	39292246.6	8961.8	7307.7

Design Properties

S 33 (mm²)	S 22 (mm³)	Z ₃₃ (mm²)	Z ₂₂ (mm ³)	r ₃₃ (mm)	r22 (mm)
3223015.9	343001.9	3670702.3	248.8	49.7	3.441E+12

Material Properties

E (MPa)	f ₇ (MPa)	R,	α
200000	352	1.1	NA.

Stress Check forces and Moments

Location (mm)	P. (N)	M (N-mm)	M.222 (N-mm)	V2 (N)	V 13 (N)	T., (N-mm)
225	0	-602281024	0	-311590.98	0	-1970.98

Axial Force & Biaxial Moment Design Factors (H1-1b)

	L Factor	κ,	K ₂	Β,	B ₂	C.,.
Major Bending	0.94	1	1	1	1	1
Minor Bending	0.25	1	1	1	1	1

Parameters for Lateral Torsion Buckling

Lip	K	C
0.25	1	1.158

Demand/Capacity (D/C) Ratio

D/C Ratio =	$(P_{r}/2P_{c}) + (M_{r11}/M_{c11}) + (M_{r22}/M_{c22})$
0.518 =	0 + 0.518 + 0

Axial Force and Capacities

_	P., Force (N)	φP ,. Capacity (N)	φP Capacity (N)				
	0	4297769.68	5048351.19				

Moments and Capacities

	M. Moment (N-mm)	φM, Capacity (N-mm)	φM n No L του (N-mm)
Major Bending	602281024	1162878500	1162878500
Minor Bending	0	169240353	

Shear Design

	V., Force (N)	φV, Capacity (N)	Stress Ratio
Major Shear	311590.98	1543392.01	0.202
Minor Shear	0	1703456.76	0

End Reaction Major Shear Forces

Left End Reaction (N)	Load Combo	Right End Reaction (N)	Load Combo		
311590.98	UDSIIS16	311583.63	UDS:IS16		

Anexo D. Cálculo de la resistencia nominal a flexión mpcc de la columna compuesta (tipo perfil revestido).

D.1 Dimensionamiento de la Columna Compuesta. Las dimensiones de la sección de la columna compuesta es de 65cm X 65cm, a continuación, se definirán las propiedades de los materiales para su respectivo dimensionamiento y refuerzo.

Como el diseño corresponde a estructuras metálicas, se unificarán unidades las cuales serán en (mm) y (MPa). Para comprender la nomenclatura se muestra a continuación la figura A-1.

Figura D-1. Geometría de la Sección Columna Compuesta Tipo Perfil Embebido

Dimensiones de la Columna:

 $h_1 = 650 \text{ mm}$

 $h_2 = 650 \text{ mm}$

 $A_g = 4225 \times 10^2 \,\mathrm{mm^2}$

Resistencia de los Materiales:

- f'_c = 28 MPa (Resistencia del Concreto a la Compresión)
- F_{yr} = 420 MPa (Resistencia del Acero de Refuerzo)
- F_y = 352 MPa (Resistencia del Perfil Metálico)
- E = 200000 MPa (Modulo de Elasticidad del Acero)
- E_c = 24870.06 MPa (Modulo de Elasticidad del Concreto)

D.1.1 Selección del Refuerzo longitudinal, Transversal y Perfil Metálico

Para determinar las dimensiones de los componentes de la columna, se toman los requisitos dados por el Titulo F de la NSR-10, estos parámetros dados en este reglamento corresponden a los mínimos a tener a cuenta en los elementos que la componen, en caso que, en los cálculos, se determinen dimensiones menores a las dadas por este.

D.1.1.1 Refuerzo Longitudinal

- F.3.4.1.4.2 Columnas Compuestas Embebidas
- (2) Miembros con ductilidad alta

C.21.6.3 Refuerzo Longitudinal

C.21.6.3.1 El área de refuerzo longitudinal, A_{st} , no debe ser menor que $0.01A_g$ ni mayor que $0.01A_g$.

$$A_{stmin} = 0.01 * 65 * 65 = 42.25 cm^2$$

$$A_{stmax} = 0.04 * 65 * 65 = 169 cm^2$$

C.10.13 Elementos compuestos sometidos a compresión.

C.10.13.8 Estribos de refuerzo alrededor de un núcleo de acero estructural.

C.10.13.8.5 Las barras longitudinales colocadas dentro de los estribos no deben ser menores de 0.01 ni mayores de 0.08 veces al área neta de concreto.

 $A_{stmin} = 0.01 * 65 * 65 = 42.25 cm^2$

 $A_{stmax} = 0.08 * 65 * 65 = 338 cm^2$

 $42.25cm^2 < 10\phi1'' = 50.67cm^2 < 169cm^2 y 338cm^2$

F.2.9.2 Fuerza axial

F.2.9.2.1 Miembros compuestos tipo perfil revestido

F.2.9.2.1.1 Limitaciones Para que un miembro califique como miembro compuesto tipo perfil revestido, se debe cumplir las siguientes limitaciones:

El área de la sección transversal del núcleo del acero debe comprender al menos el 1% de la sección transversal compuesta total.

El revestimiento de concreto del núcleo del acero debe reforzarse con barras longitudinales continuas y estribos o espirales.

Cuando se usen estribos, se suministrarán como mínimo varillas de 9.5mm de diámetro espaciadas 305 mm a centros, o varillas de 12.7 mm de diámetro o

mayores espaciadas a 406 mm a centros. Se permite el uso de alambre corrugado o malla electrosoldada con un área equivalente.

En ningún caso el espaciamiento de los estribos debe ser superior a 0.5 veces la menor dimensión de la columna.

$$s = 0.5 * 650 = 325mm$$

La mínima relación de áreas para el refuerzo longitudinal continuo, ρ_{sr} , será de 0.004, donde ρ_{sr} está dada por:

$$\rho_{sr} = \frac{A_{sr}}{A_g}$$

Donde:

 $A_{sr} = Area de las barras de refuerzo continuo, mm²$

 $A_g = A'_rea bruta de la sección compuesta, mm^2$

$$A_{sr} = \rho_{sr} A_g = 0.004 * 650 * 650 = 1690 mm^2$$

Se coloca 10 barras $\phi 1$ ".

D.1.1.2 Refuerzo Transversal

Separación de estribos en zona confinada NSR-10 Titulo *F.3.4.1.4.2 Columnas compuestas embebidas*

Las columnas de sistemas sísmicos compuestos de las secciones F.3.7 y F.3.8 deben cumplir los requisitos de F.2.9 además de los requisitos de esta sección, para miembros con ductilidad moderada y alta.

(1) Miembros con ductilidad moderada Las columnas compuestas embebidas con ductilidad moderada deben satisfacer los siguientes requisitos:

(i) El máximo espaciamiento del refuerzo transversal en la parte superior e inferior debe tomarse como el menor de los siguientes:

(a) La mitad de la dimensión menor de la sección.

 $h_1 = 650 \text{ mm}$ $h_2 = 650 \text{ mm}$

$$s = (h_1 \ o \ h_2) = \frac{650}{2} = 325mm$$

(b) 8 veces el diámetro de la barra longitudinal.

 $\phi_{\text{barra Longitudinal}} = 1" = 25.4 \text{ mm}$

 $s = 8\phi_{bl} = 8 * 25.4 = 203.2mm$

(c) 24 veces el diámetro del refuerzo transversal.

φbarra Transversal = 3/8" = 9.53 mm

 $s = 24\phi_{bt} = 24 * 9.5 = 228mm$

(d) 300 mm.

Se toma la menor separación para este ítem s=203.2 mm

(2) Miembros con ductilidad alta

Las columnas compuestas embebidas con ductilidad alta deben satisfacer los siguientes requisitos, además de los del numeral (1) anterior.

(i) El refuerzo transversal estará compuesto por estribos de confinamiento como lo define C.21 y deben cumplir con los siguientes requisitos:

C.21.6.4 — Refuerzo transversal

C.21.6.4.3 — La separación del refuerzo transversal a lo largo del eje longitudinal del elemento no debe exceder la menor de (a), (b), y (c):

(a) La cuarta parte de la dimensión mínima del elemento.

 $h_1 = 650 \text{ mm}$ $h_2 = 650 \text{ mm}$

$$s = \frac{650}{4} = 162.5mm$$

(b) Seis veces el diámetro de la barra de refuerzo longitudinal menor,
 φ_{barra Longitudinal} = 1" = 25.4 mm.

$$s = 6\phi_{bl} = 6 * 25.4 = 152.4mm$$

(c) s_o, según lo definido en la siguiente ecuación.

$$s_o = 100 + \left(\frac{350 - h_x}{3}\right)$$

 h_x = Espaciamiento máximo horizontal, medido centro a centro entre ganchos

suplementarios o ramas de estribos cerrados de confinamiento de todas las caras de la columna, mm

 $h_x = 551 mm$

$$s_o = 100 + \left(\frac{350 - 551}{3}\right) = 99.67mm$$

El valor de s_o no debe ser mayor a 150 mm y no es necesario tomarlo menor a 100 mm.

Separación máxima de estribos en la zona confinada =100mm

D.1.1.3 Longitud de la zona confinada y no confinada NSR-10 Titulo *F.3.4.1.4.2 Columnas compuestas embebidas*

Las columnas de sistemas sísmicos compuestos de las secciones F.3.7 y F.3.8 deben cumplir los requisitos de F.2.9 además de los requisitos de esta sección, para miembros con ductilidad moderada y alta.

(1) Miembros con ductilidad moderada

Las columnas compuestas embebidas con ductilidad moderada deben satisfacer los siguientes requisitos:

(ii) Estos espaciamientos deben mantenerse en una distancia vertical igual o mayor a las siguientes longitudes, medidas a partir de la cara del nudo y a ambos lados de cualquier sección donde se espera que se presente una articulación plástica.

(a) 1/6 de la altura libre de la columna.

L_c (Altura libre de la columna) = 3138mm

$$Zona \ Confinada = \frac{3138}{6} = 523mm$$

(b) La máxima dimensión de la sección transversal.

 $h_1 = 650 \text{ mm}$ $h_2 = 650 \text{ mm}$ Zona confinada = 650 mm

(c) 450 mm.

Se toma como longitud para la zona confinada para los estribos= 650 mm.

C.21.6.4.1 — El refuerzo transversal en las cantidades que se especifican en C.21.6.4.2 hasta C.21.6.4.4, debe suministrarse en una longitud I_0 medida desde cada cara del nudo y a ambos lados de cualquier sección donde pueda ocurrir fluencia por flexión como resultado de desplazamientos laterales inelásticos del pórtico. La longitud I_0 no debe ser menor que la mayor de (a), (b) y (c):

- (a) La altura del elemento en la cara del nudo o en la sección donde puede ocurrir fluencia por flexión.
- I_0 (d viga) = 612 mm
- (b) Un sexto de la luz libre del elemento

$$l_o = \frac{3138}{6} = 523mm$$

(c) 450 mm.

Se toma como zona de confinamiento para estribos=620mm

Teniendo en cuenta las longitudes de confinamiento calculadas en (ii) y C.21.6.4.1 tomamos como longitud de confinamiento

L = 650 mm, (65 cm)

D.1.1.4 Separación de estribos en Zona No Confinada NSR-10 Titulo *F.3.4.1.4.2 Columnas compuestas embebidas*

(1) Miembros con ductilidad moderada
 Las columnas compuestas embebidas con ductilidad moderada deben satisfacer los siguientes requisitos:
 (iii) El especiamiente en la longitud restante de la columna no debe exceder el debla

(iii) El espaciamiento en la longitud restante de la columna no debe exceder el doble de los espaciamientos mencionados en (i).

$$s \leq 2 * 100 = 200mm$$

NSR-10 Titulo C.21.6.4 — Refuerzo transversal

C.21.6.4.5 — Más allá de la longitud l_o , especificada en C.21.6.4.1, el resto de la columna debe contener refuerzo en forma de espiral o de estribo cerrado de confinamiento, que cumpla con C.7.10, con un espaciamiento, **s**, medido centro a centro que no exceda al menor de seis veces el diámetro de las barras longitudinales de la columna o 150 mm., a menos que C.21.6.3.2 ó C.21.6.5 requieran mayores cantidades de refuerzo transversal.

C.7.10 — Refuerzo transversal para elementos a compresión

C.7.10.2 — Los requisitos para el refuerzo transversal de elementos compuestos sometidos a compresión deben cumplir con lo especificado en C.10.13.

C.10.13 — Elementos compuestos sometidos a compresión C.10.13.8 — Estribos de refuerzo alrededor de un núcleo de acero estructural Un elemento compuesto, hecho de concreto confinado lateralmente con estribos alrededor de un núcleo de acero estructural, debe cumplir con C.10.13.8.1. a C.10.13.8.7.

C.10.13.8.1 — La resistencia a la fluencia de diseño del núcleo de acero estructural debe ser la resistencia a la fluencia especificada mínima para el grado de acero estructural usado, pero no debe exceder de 350 MPa.

C.10.13.8.2 — Los estribos transversales deben extenderse por completo alrededor del núcleo de acero estructural.

C.10.13.8.3 — Los estribos transversales deben tener un diámetro no menor que 0.02 veces la mayor dimensión lateral del elemento compuesto, excepto que los estribos no deben ser menores a No. 10 y no necesitan ser mayores de No. 16. Puede emplearse refuerzo electrosoldado de alambre de un área equivalente.

 $\phi > 0.02$ mayor dimension columna ($h_1 = 650$ mm o $h_2 = 650$ mm)

$$\phi > 0.02 * 65 = 1.3 cm$$
; Se colocan estribos $\phi = 1/2$ "

C.10.13.8.4 — El espaciamiento vertical entre los estribos transversales no debe exceder de la mitad de la menor dimensión lateral del elemento compuesto, ni de 48 veces el diámetro de los estribos, ni 16 veces el diámetro de las barras longitudinales.

$$s \le \frac{65}{2} = 32.5cm$$

$$s \le 48\phi_{estribos} = 48 * 1.27 = 60.96 \approx 61 cm$$

 $s \le 16\phi_{longitudinal} = 16 * 2.54 = 40.64 \approx 41cm$

Separación en zona no confinada 20 cm

D.1.1.5 Área de estribos A_{sh} (cm²) NSR-10 Titulo C.21.6.4 — Refuerzo transversal

C.21.6.4.4 — Debe proporcionarse refuerzo transversal en las cantidades que se especifican de (a) o (b), a menos que en 21.6.5 se exija mayor cantidad.

(a) La cuantía volumétrica de refuerzo en espiral o de estribos cerrados de confinamiento circulares, ρ_s , no debe ser menor que la requerida por la ecuación (C.21-6):

f'c (Resistencia del concreto) = 28 MPa

 F_y (resistencia del acero de refuerzo) = 420 MPa

$$\rho_s = 0.12 \frac{f'_c}{F_v} = 0.12 * \frac{21}{420} = 0.006$$

Y no debe ser menor que la requerida por la ecuación (c.10-5).

(b) El área total de la sección transversal del refuerzo de estribos cerrados de confinamiento rectangulares, A_{sh}, no debe ser menor que la requerida por las ecuaciones (C.21-7) y (C.21-8).

$$A_{sh} = 0.3 \frac{sb_c f'_c}{f_{yt}} \left[\left(\frac{A_g}{A_{ch}} \right) - 1 \right]$$

$$A_{sh} = 0.09 \frac{sb_c f'_c}{f_{yt}}$$

Donde:

S = Separación de los estribos

- *b*_c = Dimensión transversal del nucleo del elemento medida entre los bordes externos del refuerzo transversal con área A_{sh}, mm
- $A_g = A'_r rea bruta de la sección de concreto, mm^2$
- A_{ch} = Área de la sección transversal de un elemento estructural, medida entre los bordes exteriores del refuerzo transversal, mm²
- S = 75 mm
- $b_c = 570 mm$
- $A_g = 422500 \ mm^2$
- $A_{ch} = 324900 \ mm^2$

$$A_{sh} = 0.3 * \frac{75 * 570 * 28}{420} \left[\left(\frac{422500}{324900} \right) - 1 \right] = 256.8mm^2 \approx 2.57cm^2$$

$$A_{sh} = 0.09 * \frac{75 * 570 * 28}{420} = 256.5mm^2 \approx 2.57cm^2$$

$$2\phi 1/2" = 2 * 1.27 = 2.53 cm^2 \approx 2.57 cm^2$$
 (OK)

Se colocarán estribos en dos ramas de ϕ 1/2" espaciados a 75mm en la zona de confinamiento.

F.3.4.1.4.2 Columnas compuestas embebidas

(2) Miembros con ductilidad alta

(ii) El refuerzo transversal estará compuesto por estribos de confinamiento como lo define C.21 y deben cumplir con los siguientes requisitos:

$$A_{sh} = 0.09h_{cc}s\left(1 - \frac{F_yA_s}{P_n}\right)\left(\frac{f'_c}{F_{yh}}\right)$$

Donde:

- *h*_{cc} = Dimensión de la sección transversal confinada del núcleo, medida centro a centro del refuerzo transversal, mm
- s = Espaciamiento del refuerzo transversal medido a lo largo del eje longitudinal del miembro, mm
- F_y = Esfuerzo límite de fluencia mínimo del núcleo de acero estructural, MPa
- As = Área de la sección transversal del núcleo de acero estructural, mm2
- Pn = Resistencia nominal a compresión axial de la columna compuesta, N
- *f'_c* = Resistencia a compresión del concreto, MPa
- F_{yh} = Esfuerzo límite de fluencia mínimo del refuerzo transversal, MPa

$$h_{cc} = 570 mm$$

$$F_y = 352 MPa$$

- $A_{s} = 33500 \text{ mm2}$
- Pn = 22332771.61 N

$$f'_c = 28 MPa$$

 $F_{yh} = 420 M pa$

$$A_{sh} = 0.09 * 570 * 75 * \left(1 - \frac{352 * 33500}{22332771.61}\right) \left(\frac{28}{420}\right) = 121.06mm^2 \approx 1.21cm^2$$

$$2\phi 1/2" = 2 * 1.27 = 2.53 cm^2 > 1.21 cm^2$$
 (OK)

D.1.2 Calculo de la Resistencia Nominal a Flexión, M_{pcc} para la Columna Compuesta.

Para el cálculo de la resistencia nominal a flexión de la columna compuesta, la cual está conformada por perfiles laminados que actúan conjuntamente con una sección de concreto estructural, se determinara mediante la iteración entre fuerzas axiales y la flexión, el cual se rige por la sección I5, utilizando el Método 2 simplificado de las especificaciones del AISC 2010; que permite el uso de un método de compatibilidad de deformaciones o un método de distribución de tensiones plásticas.

El Método 2 simplificado, implica la construcción de una curva de interacción por partes lineales utilizando las ecuaciones de resistencia plástica, pero con una reducción de la curva de interacción, ver figura A-2

Figura D-2. Diagrama de Interacción para Columnas Compuestas – Método 2

Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

D.1.2.1 Limitaciones para Miembros compuestos tipo perfil revestidos.

Según la NSR-10 en la sección F.2.9.2 determina lo siguiente:

F.2.9.2.1.1 — Limitaciones — Para que un miembro califique como columna compuesta tipo perfil revestido, se deben cumplir las siguientes limitaciones:

 (a) El área de la sección transversal del núcleo del acero debe comprender al menos el 1% de la sección transversal compuesta total.

> $A_{perfil} \ge 1\%$ de la seccion trasnversal $A_{perfil} = 650 * 650 * 0.01 = 4225 mm^2$

Realizando la Comparación

$$A_{s \, perfil} = 33500 mm^2 > 4225 mm^2 \ (OK)$$

(b) El revestimiento de concreto del núcleo del acero debe reforzarse con barras longitudinales continuas y estribos o espirales.

D.1.2.2 Chequeo del Limite Ancho – Espesor de perfiles de Acero o Compuestos.

La NSR-10 en la sección F.3.5.3.5.1 especifica que las vigas y columnas que hacen parte del sistema de resistencia sísmica, para un grado de disipación de energía especial, deben ser miembros con ductilidad alta λ_{da} ; por lo tanto debe cumplir los requisitos de relación ancho – espesor definidos en la Tabla F.3.4-1

$$\lambda_{da} = 0.30 \sqrt{\frac{E}{F_y}}$$

$$\lambda_{da} = 0.30 \sqrt{\frac{200000}{352}} = 7.15$$

Relación ancho - espesor de las aletas de la columna:

$$\lambda = \frac{b_{fc}}{2t_{fc}} = \frac{396}{2*33.3} = 5.95 < 7.15 \ (OK)$$

Como la relación $\lambda \leq \lambda_{da}$, las aletas de la columna satisfacen los requerimientos de miembros de alta ductilidad.

El análisis para el alma de la columna se encuentra especificada en la Tabla F.3.4-1.

 C_a = Relación entre la resistencia requerida y la resistencia de diseño.

$$C_a = \frac{P_u}{\phi_c F_y A_g}$$

$$C_a = \frac{2915598.10 \, N}{0.9 * 352 * 335 * 10^2} = 0.26$$

Se presenta el caso en que $C_a > 0.125$ entonces se debe cumplir:

$$\lambda_{da} = 0.77 \sqrt{\frac{E}{F_y}} (2.93 - C_a) \ge 1.49 \sqrt{\frac{E}{F_y}}$$
$$\lambda_{da} = 0.77 \sqrt{\frac{200000}{352}} (2.93 - 0.27) \ge 1.49 \sqrt{\frac{200000}{352}}$$

$$\lambda_{da} = 48.82 \ge 35.52 \quad (OK)$$
$$\frac{h}{t} = \frac{320.40}{21.10} = 15.18$$
$$\frac{h}{t} = 15.18 < \lambda_{da} = 49.00 \ (OK)$$

Se cumplen los requerimientos de relación ancho-espesor tanto para la aleta como para el alma de la columna.

D.1.2.3 Calculo de la Curva de Interacción por el método de distribución de tensiones plásticas.

En la Tabla D- 1, Tabla D- 2, se encuentra las propiedades geométricas de la sección compuesta:

Tabla D- 1.	Propiedades	geométricas	sección de	e la	columna	de	concreto
		0					

					ARI	EAS		EJE X	- X	EJES Y - Y	
GEGGION	ואווט	ENSION	ES	Ag	A _{sr}	A _{srs}	A _c	I _c	l _{sr}	I _c	l _{sr}
SECCION	h ₂	h ₁	С	X10 ²	X10 ²	X10 ²	X10 ²	X10 ⁶	X10 ⁶	X10 ⁶	X10 ⁶
	mm	mm	mm	mm ²	mm ²	mm ²	mm ²	mm ⁴	mm^4	mm ⁴	mm ⁴
Columna	650.00	650.00	62.23	4225	50.67	10.13	3839.33	14595.41	280.11	14649.84	225.69

Tabla D- 2. Propiedades geométricas de la Columna Perfil W para sección compuesta embebida

			DIMENSIONES						EJE X - X				EJES Y - Y			
	PERFIL	ALTU	JRA	AL	A	DISTA	NCIAS	AREA	I _x	S _x	r _x	Z _x	l _y	Sγ	r _y	Ζ _γ
		d	t _{wc}	b _{fc}	t _{fc}	r	h	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
		mm	mm	mm	mm	mm	mm	mm ²	mm^4	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
	W 14X176	387.00	21.10	396.00	33.30	15.00	320.40	335.00	894.10	4620.00	163.00	5260.00	350.20	1760.00	102.00	2676.00

Fuente: STECKERL, Catálogo de Productos Hierros y Aceros. [Base de datos en línea]. 2da edición 2012. Disponible en http://steckerlaceros.com/catalogo/index.html.

Figura D- 3. Ecuaciones para el cálculo del diagrama de Interacción de la sección compuesta tipo perfil revestido

Fig. I-1a. W-shapes, strong-axis anchor points.

Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010. **Paso 1.** Calculo de la fuerza a compresión y flexión nominal de la curva de interacción para los puntos A, B, C, D, sin incluir los efectos de esbeltez. Se usan las ecuaciones de la Figura D-3, alrededor del eje fuerte x-x:

Punto A (Pura compresión)
$$P_A = A_s F_y + A_r F_{yr} + 0.85 f'_c A_c$$

$$P_A = (335 * 10^2) * (352) + (50.67 * 10^2) * (420) + 0.85 * (28) * (3839.33 * 10^2)$$

$$P_A = 23057773.13N \approx 23057.77KN$$

$$M_A = 0.00N.mm \approx 0.00KN.m$$

Punto D (Momento Máximo Nominal)

$$P_D = \frac{0.85f'_c A_c}{2}$$

$$P_D = \frac{0.85 * 28 * 3839.33 * 10^2}{2}$$

$$P_D = 4568801.87N \approx 4568.80KN$$

$$Z_r = (A_{sr} - A_{srs}) \left(\frac{h_2}{2} - c\right)$$

$$Z_r = (50.67 * 10^2 - 10.13 * 10^2) \left(\frac{650}{2} - 62.23\right)$$

$$Z_r = 1065197.88mm^3$$

$$Z_{c} = \frac{h_{1}h_{2}^{2}}{4} - Z_{s} - Z_{r}$$

$$Z_c = \frac{650 * 650^2}{4} - 5260 * 10^3 - 1065.19 * 10^3$$

$$Z_c = 62331052.12mm^3$$

$$M_D = Z_s F_y + Z_r F_{yr} + \frac{Z_c}{2} (0.85f'_c)$$

 $M_D = 5260 * 10^3 * 352 + 1065.197 * 10^3 * 420 + \frac{62331.052}{2} * (0.85 * 28)$

 $M_D = 3040642629.32N.\,mm \,\approx 3040.64KN.\,m$

Punto B (Pura Flexión) $P_B = 0.00N \approx 0.00KN$

Se asume hn está por debajo del patín

$$h_n \le \frac{d}{2} - t_{fc}$$

$$h_n = \frac{0.85f'_c(A_c + A_{srs}) - 2F_{yr}A_{srs}}{2[0.85f'_c(h_1 - t_{wc}) + 2F_yt_{wc}]}$$

$$h_n = \frac{0.85 * 28 * (3839.33 * 10^2 + 10.13 * 10^2) - 2 * 420 * 10.13 * 10^2}{2 * [0.85 * 28 * (650 - 21.10) + 2 * 352 * 21.10]}$$

$$h_n = 139.33mm$$

$$Z_{sn} = t_{wc}h_n^2$$

$$Z_{sn} = 21.1 * 139.33^2$$

$$Z_{sn} = 409629.89mm^2$$

$$Z_{cn} = h_1h_n^2 - Z_{sn}$$

$$Z_{cn} = 650 * 139.34^2 - 409629.89$$

$$Z_{cn} = 12209300.43mm^3$$

$$M_B = M_D - Z_{sn} F_y - \frac{Z_{cn} (0.85 f'_c)}{2}$$

 $M_B = 3040642629.32 - 409629.89 * 352 - \frac{12209300.43 * (0.85 * 28)}{2}$

 $M_B = 2751162232.29N.mm \approx 2751.16KN.m$

Punto C (Punto Intermedio) $P_c = 0.85 f'_c A_c$

$$P_C = 0.85 * 28 * 3839.33 * 10^2$$

$$P_C = 9137603.73N \approx 9137.60KN$$

$$M_C = M_B$$

 $M_C = M_B = 2751162232.29N.mm \approx 2751.16KN.m$
Paso 2. Calculo de la fuerza a compresión y flexión nominal de la curva de interacción para los puntos A', B', C', D', incluyendo la reducción por los efectos de esbeltez.

Se calculará los efectos de esbeltez por el eje débil de la columna, ya que la longitud efectiva (KL) es la misma en las dos direcciones, su relación de esbeltez no lo es; tendiendo a tener una rigidez efectiva menor por el eje débil de la sección compuesta El_{eff}; teniendo en cuenta que los momentos de inercia para la sección de concreto y del acero de refuerzo son similares alrededor de cada eje, la columna de perfil metálico tendrá mayor tendencia a pandearse por su eje débil.

El factor de reducción por efectos de esbeltez, λ , se calcula para el punto A utilizando la sección F.2.9.2.1.2 de la NSR-10

 $P_{no} = P_A$

 $P_{no} = P_A = 23057773.13N \approx 23057.77KN$

$$C_1 = 0.1 + 2\left(\frac{A_s}{A_c + A_s}\right) \le 0.3$$

$$C_1 = 0.1 + 2\left(\frac{335 * 10^2}{3839.33 * 10^2 + 335 * 10^2}\right) \le 0.3$$

$$C_1 = 0.26 < 0.3$$

$$C_1 = 0.26$$

$$EI_{eff} = E_s I_{sy} + 0.5 E_s I_{sry} + C_1 E_c I_{cy}$$

$$EI_{eff} = 200000 * 350.20 * 10^{6} + 0.5 * 200000 * 225.69 * 10^{6} + 0.26 * 24870.06$$
$$* 14595.41 * 10^{6}$$

 $EI_{eff} = 187169322988579N.\,mm^2 \approx 186986.06KN.\,m^2$

$$P_e = \pi^2 \left(\frac{EI_{eff}}{KL} \right) / (KL)$$

Donde K=1.0, acorde con el análisis por el método directo.

$$P_e = \pi^2 \frac{(187169322988579)}{(1*3138)^2}$$

 $P_e = 187598143.6N \approx 187598.14KN$

Realizando la comparación: $P_e \ge 0.44P_{no}$

 $187598.14KN \ge 0.44 * 23057.77KN$

187598.14KN > 10145.42KN (OK)

Entonces:
$$P_n = P_{no} \left[0.658^{\frac{P_{no}}{P_e}} \right]$$

$$P_n = 23057773.13 * \left[0.658 \frac{23057773.13}{187598143.6} \right]$$

$$P_n = 21901578.86N \approx 21901.58KN$$

$$\lambda = \frac{P_n}{P_{no}}$$
364

$$\lambda = \frac{21901.58KN}{23057.77KN} = 0.95$$

Esta misma reducción de resistencia, pro efectos de esbeltez, se le debe aplicar a todos los puntos del diagrama de interacción.

 $P_{A\prime} = \lambda P_A$ $P_{A\prime} = 0.95 * (23057773.13N) = 21901578.86N \approx 21901.58KN$

 $P_{B'} = \lambda P_B$

 $P_{B'} = 0.95 * (0.00N) = 0.00N \approx 0.00KN$

 $P_{C'} = \lambda P_C$

 $P_{C'} = 0.95 * (9137603.73N) = 8679413.56 \approx 8679.41KN$

$$P_{D'} = \lambda P_D$$

 $P_{D'} = 0.95 * (4568801.87N) = 4339706.78N \approx 4339.71KN$

Paso 3. Construcción de la curva de interacción de diseño para los puntos A", B", C", D" y chequeo para cada combinación de carga.

El paso final en el procedimiento es reducir la superficie de Interacción para el diseño, utilizando los factores de reducción por resistencia.

Diseño por Compresión:

$$\phi = 0.75$$
$$P_{X''} = \phi_c P_{X'}$$

Donde X = A, B, C, y D

 $P_{A\prime\prime} = 0.75 * (21901578.86N)$ $P_{A\prime\prime} = 16426184.15 \approx 16426.18KN$

$$P_{B''} = 0.75 * (0.00N)$$

 $P_{B''} = 0.00N \approx 0.00KN$

$$P_{C''} = 0.75 * (8679413.56N)$$

 $P_{C''} = 6509560.17N \approx 6509.56KN$

 $P_{D''} = 0.75 * (4339706.78N)$

 $P_{D''} = 3254780.085N \approx 3254.78KN$

Diseño por Flexión:

$$\phi = 0.75$$
$$M_{X''} = \phi_b M_{X'}$$

Donde X = A, B, C, y D

$$M_{A''} = 0.90 * (0.00N.mm)$$

$$M_{A''} = 0.00N.mm \approx 0.00KN.m$$

$$M_{B''} = 0.90 * (2751162232.29N.mm)$$

Ahora se puede dibujar el diagrama de Interacción, con las superficies de resistencia nominales (con y sin los efectos de esbeltez) y resistencia como se muestra en la Figura D- 4.

Figura D-4. Diagrama de Interacción para la Columna Compuesta

Usando los Valores de resistencia calculados anteriormente, con las ecuaciones de interacción de la flexión y la compresión se calculan los índices:

Si
$$P_u < \phi_c \lambda P_c$$

$$\frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

Si $P_u \ge \phi_c \lambda P_c$

$$\frac{P_u - \phi_c \lambda P_C}{\phi_c \lambda P_A - \phi_c \lambda P_C} + \frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

Tomamos la combinación de carga UDStIS11 Max para el cálculo del índice de interacción:

$$P_u = 2959250.0 \text{ N}$$

 $M_u = 720080024.0 \text{ N.mm}$

 $P_u < \phi_c \lambda P_c$

2959250.0N < 6509560.17N (OK)

$$\frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

$$\frac{720080024 N.mm}{2476046009.06N.mm} + 0 \le 1.0$$

$$0.29 \le 1.0 \ (OK)$$

Usando los Valores nominales calculados anteriormente, calculamos la resistencia nominal a flexión de la sección compuesta M_{pcc}; entrando al diagrama de Interacción Figura D-4, con la carga axial ultima P_u de cada combinación y calculamos el momento nominal resistente de la columna compuesta M_{pcc}:

Tomamos la combinación de carga UDStIS11 Max para el cálculo del índice de interacción:

 $P_{u} = 2959250.0 N$ $P_{u} = 2959.25 KN$ $M_{pcc} = M_{c} = M_{B} = 2751162232.29N.mm$ $M_{pcc} = M_{c} = M_{B} = 2751.16KN.m$

En la Tabla D-3 se muestran los valores del índice de Interacción de la flexión – compresión y el momento nominal de la sección compuesta M_{pcc} , para cada combinación.

Tabla D- 3.	Valores de	Indices y	Мрсс	de	la	sección	compuesta	para	cada
combinación									

Combinación	Observación	P _u (N)	M _{ux} (N.mm)	Índice de Interaccion		M _{PCC}
1	UDStIS1	2229231.4	43938253.06	0.02	Ok	2751162232.29
2	UDStIS2	2229237.6	43928091.77	0.02	Ok	2751162232.29
3	UDStIS3	2237092.8	60575965.46	0.02	Ok	2751162232.29
4	UDStIS4	2221376.2	27289928.99	0.01	Ok	2751162232.29
5	UDStIS5	2621595	53653588.62	0.02	Ok	2751162232.29
6	UDStIS6	2621604.1	53641749.35	0.02	Ok	2751162232.29
7	UDStIS7	2630914.8	73266345.99	0.03	Ok	2751162232.29
8	UDStIS8	2612284.2	34028362.05	0.01	Ok	2751162232.29
9	UDStIS9 Max	2696666.3	252870372	0.10	Ok	2751162232.29
10	UDStIS9 Min	2696666.3	252870372	0.10	Ok	2751162232.29
11	UDStIS10 Max	2471992.8	148623092	0.06	Ok	2751162232.29
12	UDStIS10 Min	2471992.8	148623092	0.06	Ok	2751162232.29
13	UDStIS11 Max	2959250	720080024	0.29	Ok	2751162232.29

Combinación	Observación	P _u (N)	M _{ux} (N.mm)	Índice de Interaccion		M _{PCC}
13	UDStIS11 Max	2959250	720080024	0.29	Ok	2751162232.29
14	UDStIS11 Min	2959250	720080024	0.29	Ok	2751162232.29
15	UDStIS12 Max	2209398.7	616667114	0.25	Ok	2751162232.29
16	UDStIS12 Min	2209398.7	616667114	0.25	Ok	2751162232.29
17	UDStIS13 Max	1313710.9	220849216	0.09	Ok	2751162232.29
18	UDStIS13 Min	1313746.9	220789075	0.09	Ok	2751162232.29
19	UDStIS14 Max	1093817.8	173499938	0.07	Ok	2751162232.29
20	UDStIS14 Min	1093853.2	173561394	0.07	Ok	2751162232.29
21	UDStIS15 Max	1570412.7	679821158	0.27	Ok	2751162232.29
22	UDStIS15 Min	1570535.2	679621849	0.27	Ok	2751162232.29
23	UDStIS16 Max	837020.52	633126467	0.26	Ok	2751162232.29
24	UDStIS16 Min	837143.61	633331858	0.26	Ok	2751162232.29
	Max	2959250			Min	2751162232.29

Anexo E. Cálculo de la resistencia nominal a flexión MPcc de la columna compuesta (tipo perfil relleno).

E.1 Dimensionamiento de la Columna Compuesta Las dimensiones de la sección de la columna compuesta es de 40cm X 45cm, a continuación, se definirán las propiedades de los materiales para su respectivo dimensionamiento y refuerzo.

Como el diseño corresponde a estructuras metálicas, se unificarán unidades las cuales serán en (mm) y (MPa). Para comprender la nomenclatura se muestra a continuación la Figura E-1.

Figura E-1. Geometría de la Sección Columna Compuesta Tipo Perfil Relleno

- Dimensiones de la Columna
- $d_c = 450 \text{ mm}$
- $b_c = 400 \text{ mm}$
- $A_g = 1800 \times 10^2 \, \text{mm}^2$
- Resistencia de los Materiales
- f'_c = 28 MPa (Resistencia del Concreto a la Compresión)
- F_{yr} = 420 MPa (Resistencia del Acero de Refuerzo)
- F_y = 352 MPa (Resistencia del Perfil Metálico)

- $E = 200\ 000\ \text{MPa}$ (Modulo de Elasticidad del Acero)
- E_c = 24870.06 MPa (Modulo de Elasticidad del Concreto)

E.1.1 Selección Perfil Metálico

Para determinar las dimensiones de los componentes de la columna, se toman los requisitos dados por el Titulo F de la NSR-10, estos parámetros dados en este reglamento corresponden a los mínimos a tener a cuenta en los elementos que la componen, en caso que, en los cálculos, se determinen dimensiones menores a las dadas por este.

E.1.1.1 Limitaciones

F.2.9.2.2.1 El área de la sección transversal del perfil de acero debe comprender al menos el 1% de la sección transversal compuesta total. Los miembros compuestos tipo perfil relleno deben clasificarse de acuerdo con el numeral F.2.9.1.4 para efectos de pandeo local.

$$A_{s \, perfil} \geq 1\% A_g$$

$$A_s = 0.01 * 400 * 450 = 1800 mm^2$$

Realizando la Comparación

$$A_s = 35464mm^2 > 1800mm^2 \ (OK)$$

F.2.9.1.4 — Clasificación de Secciones Compuestas Tipo perfil relleno para Pandeo Local — Para efectos de diseño a compresión, las secciones compuestas tipo perfil relleno se clasifican como compactas, no compactas o con elementos esbeltos. Una sección compuesta tipo perfil relleno se clasifica como compacta si la relación ancho a espesor no excede el límite λp de la tabla F.2.9.1-1a en ninguno de sus elementos de acero a compresión. Si la relación ancho a espesor excede el límite λp de la tabla F.2.9.1-1a en alguno de los elementos de acero a compresión, sin que se exceda el límite λr de la misma tabla en ninguno de ellos, la sección compuesta se clasifica como no compacta. Si la relación ancho a espesor de algún elemento de acero a compresión excede el límite λr de la tabla F.2.9.1-1a, la sección se clasifica como una sección con elementos esbeltos. Los valores de la relación ancho a espesor se limitarán a los máximos especificados en la misma tabla.

$$\lambda_p = 2.26 \sqrt{E/F_y}$$

$$\lambda_{da} = 2.26 * \sqrt{\frac{200000}{352}} = 53.87$$

Relación ancho – espesor de la sección de la columna:

$$\lambda = \frac{h_2}{t_{wc}} = \frac{450}{22} = 20.45 < 53.87 \ (OK)$$

E.1.2 Calculo de la Resistencia Nominal a Flexión, M_{pcc} para la Columna Compuesta.

Para el cálculo de la resistencia nominal a flexión de la columna compuesta, la cual está conformada por un perfil tubular que actúan conjuntamente con una sección de concreto estructural, se determinara mediante la iteración entre fuerzas axiales y la flexión, el cual se rige por la sección I5, utilizando el Método 2 simplificado de las especificaciones del AISC 2010; que permite el uso de un método de compatibilidad de deformaciones o un método de distribución de tensiones plásticas.

El Método 2 simplificado, implica la construcción de una curva de interacción por partes lineales utilizando las ecuaciones de resistencia plástica, pero con una reducción de la curva de interacción...Véase Figura E- 2...

Figura E-2. Diagrama de Interacción para Columnas Compuestas – Método 2

Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

E.1.2.1 Chequeo del Limite Ancho – Espesor de perfiles de Acero o Compuestos.

La NSR-10 en la sección F.3.5.3.5.1 especifica que las vigas y columnas que hacen parte del sistema de resistencia sísmica, para un grado de disipación de energía especial, deben ser miembros con ductilidad alta λ_{da} ; por lo tanto, debe cumplir los requisitos de relación ancho – espesor definidos en la Tabla F.3.4-1

$$\lambda_{da} = 1.40 \sqrt{\frac{E}{F_y}}$$
$$\lambda_{da} = 1.4 * \sqrt{\frac{200000}{352}} = 33.37$$

Relación ancho – espesor de la sección de la columna:

$$\lambda = \frac{h_2}{t_{wc}} = \frac{450}{22} = 20.45 < 33.37 \ (OK)$$

Como la relación $\lambda \le \lambda_{da}$, el perfil de la columna satisface los requerimientos de miembros de alta ductilidad.

E.1.2.2 Calculo de la Curva de Interacción por el método de distribución de tensiones plásticas.

En el Tabla E-1 y Tabla E-2, se encuentra la geometría de la sección compuesta:

Tabla E- 1. Propiedades geométricas de la Columna Perfil Cajón Sección compuesta rellena

DEDEU	DIMENSIONES					EJE >	(- X			EJES	Y - Y	
	ALTURA	BASE	Espesor	AREA	I _x	S _x	r _x	Z _x	l _y	Sγ	r _y	Zy
PERFIL	d _c	b _c	t _c	X10 ²	X10 ⁶	X10 ³		X10 ³	X10 ⁶	X10 ³		X10 ³
	mm	mm	mm	mm ²	mm ⁴	mm ³	mm	mm ³	mm^4	mm ³	mm	mm ³
Tubular	450.00	400.00	22.00	354.64	1052.11	4676.02	172.20	5579.59	873.51	4367.54	156.90	5136.29

Tabla E-2. Propiedades geométricas adicionales para el diseño sección compuesta rellena

		DIMENS	IONES	AR	EA	EJE X - X	EJES Y - Y
DEDEU	ALTURA BASE		A _C	Ag	I _{CX}	I _{CY}	
	PERFIL	h ₂	h ₁	X10 ²	X10 ²	X10 ⁶	X10 ⁶
		mm	mm	mm ²	mm ²	mm ⁴	mm^4
	Concreto	406.00	356.00	1445.36	1800.00	1526.49	1985.39

Figura E- 3. Ecuaciones para el cálculo del diagrama de Interacción de la sección compuesta tipo perfil relleno

Fuente: AMERICAN INSTITUTE OF STEEL CONSTRUCTION. AISC. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications or Steel Buildings. Ed 2010. Chicago. Illinois: AISC. 2010.

Paso 1. Calculo de la fuerza a compresión y flexión nominal de la curva de interacción para los puntos A, B, C, D, sin incluir los efectos de esbeltez.

Se usan las ecuaciones de la Figura A-3, alrededor del eje fuerte x-x:

Punto A (Pura compresión)

$$P_A = F_y A_s + 0.85 f'_c A_c$$

$$P_A = 352 * 354.65 * 10^2 + 0.85 * 28 * 1445.36 * 10^2$$

$$P_A = 15923264.52N \approx 15923.26KN$$

$$M_A = 0.00N \approx 0.00KN$$

Punto D (Momento Máximo Nominal)

$$P_D = \frac{0.85f'_c A_c}{2}$$

$$P_D = \frac{0.85 * 28 * 1445.36 * 10^2}{2}$$

$$P_D = \frac{0.85 * 28 * 1445.36 * 10^2}{2}$$

$$P_D = 1719968.26N \approx 1719.97KN$$

$$Z_c = \frac{h_1 h_2^2}{4} - 0.192 r_i^3$$

Como es una sección cajón armada $r_i = 0$

$$Z_c = \frac{356 * 406^2}{4} - 0.192 * 0^3$$

$$Z_c = 14670404mm^3$$

$$M_D = F_y Z_{sx} + \frac{0.85 f'_c Z_c}{2}$$

$$M_D = 352 * 5579.59 * 10^3 + \frac{0.85 * 28 * 14670.404 * 10^3}{2}$$

 $M_D = 2138595599.60N.\,mm \approx 2138.60KN.\,m$

Punto B (Pura Flexión)

$$P_B = 0.00N \approx 0.00KN$$

$$h_n = \frac{0.85f'_c A_c}{2[0.85f'_c h_1 + 4t_c F_v]} \le \frac{h_2}{2}$$

$$h_n = \frac{0.85 * 28 * 1445.36 * 10^2}{2 * [0.85 * 28 * 356 + 4 * 22 * 352]} \le \frac{406}{2}$$

$$h_n = 43.60mm \le 203mm \ (OK)$$

$$h_n = 43.60mm$$

$$Z_{sn} = 2t_c h_n^2$$

$$Z_{sn} = 2 * 22 * 43.60^{2}$$

$$Z_{sn} = 83642.30mm^{3}$$

$$Z_{cn} = h_{1}h_{n}^{2}$$

$$Z_{cn} = 356 * 43.60^{2}$$

$$Z_{cn} = 676741.22mm^{3}$$

$$M_{B} = M_{D} - Z_{sn}F_{y} - \frac{1}{2}Z_{cn}(0.85f'_{c})$$

$$M_{B} = 2138595599.60 - 83642.30 * 352 - \frac{1}{2} * 676741.22 * (0.85 * 28)$$

$$M_{B} = 2101100278.84N.mm \approx 2101.40KN.m$$

Punto C (Punto Intermedio)

•

 $P_{C} = A_{c}(0.85 * f'_{c})$ $P_{C} = 1445.36 * 10^{2} * (0.85 * 28)$ $P_{C} = 3439936.52N \approx 3439.94KN$ $M_{C} = M_{B}$

 $M_C = M_B = 2101100278.84N. mm \approx 2101.40KN. m$

Paso 2. Calculo de la fuerza a compresión y flexión nominal de la curva de interacción para los puntos A', B', C', D', incluyendo la reducción por los efectos de esbeltez.

El factor de reducción por efectos de esbeltez, λ , se calcula para el punto A utilizando la sección F.2.9.2.2.2 de la NSR-10

Como la sección de la columna es compacta entonces:

$$P_{no} = P_A$$

 $P_{no} = P_A = 15923264.52N \approx 15923.26KN$

$$C_3 = 0.6 + 2\left[\frac{A_s}{A_c + A_s}\right] \le 0.9$$

$$C_3 = 0.6 + 2 \left[\frac{354.64 * 10^2}{1445.36 * 10^2 + 354.64 * 10^2} \right] \le 0.9$$

$$C_3 = 0.99 \le 0.9$$

$$C_3 = 0.9$$
$$EI_{eff} = E_s I_{sy} + E_s I_{sr} + C_3 E_c I_{cy}$$

 $EI_{eff} = 200000 * 873.51 * 10^6 + 200000 * 0 + 0.9 * 24870.06 * 1526.49 * 10^6$

$$EI_{eff} = 208868936353276 N.mm^2$$

$$P_e = \pi^2 \frac{\left(EI_{eff}\right)}{(KL)^2}$$
380

Donde K=1.0, acorde con el análisis por el método directo.

$$P_e = \pi^2 \frac{(208868936353276)}{(1 * 3138)^2}$$

$$P_e = 209347472.55 N \approx 209347.47KN$$

Realizando la comparación:

 $P_e \ge 0.44 P_{no}$

 $209347.47KN \ge 0.44 * 15923.26KN$

 $209347.47KN \ge 7006.23 KN (OK)$

Entonces:

$$P_n = 15923264.52 \left[0.658^{\frac{15923264.52}{209347472.55}} \right]$$

 $P_n = 15424323.12 N \approx 15424.32 KN$

$$\lambda = \frac{P_n}{P_{no}}$$

$$\lambda = \frac{15424.32 \, KN}{15923.26 KN} = 0.97$$

Esta misma reducción de resistencia, por efectos de esbeltez, se le debe aplicar a todos los puntos del diagrama de interacción.

$$P_{A'} = \lambda P_A$$

 $P_{A\prime} = 0.97 * 15923264.52N = 15424323.12 N \approx 15424.32 KN$

$$P_{B'} = 0.95 * (0.00N) = 0.00N \approx 0.00KN$$

$$P_{C'} = \lambda P_C$$

 $P_{C'} = 0.97 * 3439936.52N = 3332149.15 N \approx 3332.15 KN$

$$P_{D'} = \lambda P_D$$

$$P_{D'} = 0.97 * 1719968.26 N = 1666074.58 N \approx 1666.07 KN$$

Paso 3. Construcción de la curva de interacción de diseño para los puntos A", B", C", D" y chequeo para cada combinación de carga.

El paso final en el procedimiento es reducir la superficie de Interacción para el diseño, utilizando los factores de reducción por resistencia.

$$\phi = 0.75$$
$$P_{X''} = \phi_c P_{X'}$$

Donde X = A, B, C, y D

 $P_{A''} = 0.75 * (15424323.12 N)$

 $P_{A''} = 11568242.34N \approx 11568.24 KN$

$$P_{B''} = 0.75 * (0.00N)$$

$$P_{B\prime\prime} = 0.00N \approx 0.00KN$$

 $P_{C''} = 0.75 * (3332149.15 N)$ $P_{C''} = 2499111.87 N \approx 2499.11KN$ $P_{D'} = 0.75 * (1666074.58 N)$ $P_{D'} = 1249555.93 N \approx 1249.56 KN$

• Diseño por Flexión:

$$\phi = 0.75$$
$$M_{X''} = \phi_b M_{X'}$$

Donde X = A, B, C, y D

 $M_{A''} = 0.90 * (0.00N.mm)$

 $M_{A''} = 0.00N.mm \approx 0.00KN.m$

 $M_{B''} = 0.90 * (2101100278.84N.mm)$

 $M_{B''} = 1890990250.95 N.mm \approx 1890.99 KN.m$

 $M_{C''} = 0.90 * (2101100278.84N.mm)$

 $M_{C''} = 1890990250.95 N.mm \approx 1890.99 KN.m$

 $M_{D''} = 0.90 * (2138595599.60N.mm)$

 $M_{D''} = 1924736039.64 N.mm \approx 1924.74 KN.m$

Ahora se puede dibujar el diagrama de Interacción, con las superficies de resistencia nominales (con y sin los efectos de esbeltez) y resistencia como se muestra en la Figura E- 4.

Figura E-4. Diagrama de Interacción para la Columna Compuesta

Usando los Valores de resistencia calculados anteriormente, con las ecuaciones de interacción de la flexión y la compresión se calculan los índices:

Si $P_u < \phi_c \lambda P_c$

$$\frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

Si $P_u \ge \phi_c \lambda P_c$

$$\frac{P_u - \phi_c \lambda P_C}{\phi_c \lambda P_A - \phi_c \lambda P_C} + \frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

Tomamos la combinación de carga UDStIS12 Min para el cálculo del índice de interacción:

 $P_u = 2781782.90 N$ $M_u = 528809709 N.mm$

 $P_u \ge \phi_c \lambda P_C$

2781782.90 N > 2499111.87 N (OK)

$$\frac{P_u - \phi_c \lambda P_C}{\phi_c \lambda P_A - \phi_c \lambda P_C} + \frac{M_{ux}}{\phi_b M_{cx}} + \frac{M_{uy}}{\phi_b M_{cy}} \le 1.0$$

 $\frac{2781782.90\,N - 2499111.87\,N}{11568242.34N - 2499111.87\,N} + \frac{528809709\,N.mm}{1890990250.95\,N.mm} + 0 \le 1.0$

$$0.31 \le 1.0 \ (OK)$$

Usando los Valores nominales calculados anteriormente, calculamos la resistencia nominal a flexión de la sección compuesta M_{pcc}; entrando al diagrama de Interacción Figura E- 4, con la carga axial ultima P_u de cada combinación y calculamos el momento nominal resistente de la columna compuesta M_{pcc}:

Tomamos la combinación de carga UDStIS12 Min para el cálculo del índice de interacción:

 $P_{u} = 2781782.90 N$ $P_{u} = 2781.78 KN$ $M_{pcc} = M_{c} = M_{B} = 2101100278.84 N.mm$ $M_{pcc} = M_{c} = M_{B} = 2101.10 KN.m$

En el Tabla E- 3 se muestran los valores del índice de Interacción de la flexióncompresión y el momento nominal de la sección compuesta M_{pcc} , para cada combinación.

Tabla E- 3.	Valores	de	Índices	у	Мрсс	de	la	sección	compuesta	para	cada
combinación											

Combinación	Observación	Pu(N)	Mux(N.mm)	Índice		MPCC
1	UDStIS1	2103700.5	44975265	0.02	Ok	2101100278.84
2	UDStIS2	2103727.3	44988084	0.02	Ok	2101100278.84
3	UDStIS3	2097146	33206067	0.02	Ok	2101100278.84
4	UDStIS4	2110281.9	56756881	0.03	Ok	2101100278.84
5	UDStIS5	2510185.5	54937332	0.03	Ok	2101100278.84
6	UDStIS6	2510217.7	54952798	0.03	Ok	2101100278.84
7	UDStIS7	2502345.6	40919392	0.02	Ok	2101100278.84
8	UDStIS8	2518057.6	68970165	0.04	Ok	2101100278.84
9	UDStIS9 Max	2361823.2	94536563.31	0.05	Ok	2101100278.84
10	UDStIS9 Min	2373987.2	74119833.24	0.04	Ok	2101100278.84
11	UDStIS10 Max	2548881.7	180873548	0.10	Ok	2101100278.84
12	UDStIS10 Min	2561104.5	201376464	0.11	Ok	2101100278.84
13	UDStIS11 Max	2141130.1	422738067	0.22	Ok	2101100278.84
14	UDStlS11 Min	2162114.6	387474732	0.20	Ok	2101100278.84
15	UDStIS12 Max	2760767.9	493600321	0.29	Ok	2101100278.84
16	UDStlS12 Min	2781782.9	528809709	0.31	Ok	2101100278.84
17	UDStIS13 Max	1038384.1	121209562	0.06	Ok	2101100278.84
18	UDStlS13 Min	1050409.6	100974186	0.05	Ok	2101100278.84
19	UDStIS14 Max	1221568.9	149317654	0.08	Ok	2101100278.84
20	UDStlS14 Min	1233650.3	169634949	0.09	Ok	2101100278.84
21	UDStIS15 Max	822188.54	443674084	0.23	Ok	2101100278.84
22	UDStlS15 Min	842932.82	408727313	0.22	Ok	2101100278.84
23	UDStIS16 Max	1429058.6	456469863	0.24	Ok	2101100278.84
24	UDStIS16 Min	1449831.8	491363801	0.26	Ok	2101100278.84
	Max	2781783			Min	2101100278.84