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pasión para no detenerme y soñar en grande. En medio de mis debilidades Su

Gracia me ha sostenido.

A mi paciente y trabajadora esposa, Diana, quien es consciente de que cuando se
escribe una tesis las personas más cercanas al autor también sufren. Su amor, su

comenprensión y sus oraciones me infunden aliento.

3



AGRADECIMIENTOS

Tengo una deuda de gratitud muy grande con muchı́simas personas. El trabajo
de investigación de tesis doctoral me ha permitido conocer personas maravillosas.
De antemano, agradezco al profesor Rodolfo Villamizar por su apoyo durante todos
estos años de investigación. Sus consejos, revisiones y aportes han sido funda-
mentales para la ejecución de esta tesis. Ha sido mi mentor en el área de control
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y Mecatrónica de la UAL, especialmente a Martha Barceló por ayudarme con los
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RESUMEN

TÍTULO: Robust Control approach for Multivariable Systems under De-
lays, Parametric Uncertainty and External Disturbances∗

AUTOR: Jose Jorge Carreño Zagarra∗∗

PALABRAS
CLAVE:

Control Robusto, Rechazo Activo de Perturbaciones, Observa-
dores GPI, Sistemas Inciertos, Sistemas con Retardo.

DESCRIPCIÓN:

Esta disertación propone un nuevo esquema de control para sistemas multiva-
riables con o sin retardos de tiempos, perturbaciones externas e incertidumbre pa-
ramétrica. La metodologı́a de diseño combina el enfoque de control robusto para
sistemas inciertos y el uso de observadores de alta ganancia para la estimación y
atenuación de perturbaciones en lı́nea. En la etapa de control feedback se propone
el uso de controladores QFT, controladores PI robustos de 2 grados de libertad y
controladores reset, con el fin de lograr especificaciones robustas de rendimiento y
estabilidad en presencia de incertidumbre en los parámetros del modelo de planta.
En la etapa de control feedforward se plantea el diseño de observadores GPI ya que
debido a su caracterı́stica de reconstrucción de variables de fase y estimación de un
número finito de derivadas de la perturbación proporcionan propiedades de mitiga-
ción o rechazo de perturbaciones, seguimiento de trayectoria, rendimiento robusto
y estabilización de salida.

El esquema de control propuesto fue validado con éxito en un fotobiorreactor ex-
perimental disponible en la Universidad de Almerı́a (España), en donde se obtuvo
una mejora significativa en la precisión de la regulación del pH del cultivo de mi-
croalgas y, en consecuencia, una influencia positiva en la producción de biomasa.
También se realizaron validaciones numéricas en modelos multivariables no linea-
les, que incluye un proceso de refrigeración de un ciclo, un modelo de turbina eólica
marina disponible en la Universidad de Stuttgart (Alemania) y el modelo UVA/Pádo-
va de la Universidad de Virginia (EEUU) para la regulación de glucosa en pacientes
con diabetes Mellitus tipo 1. En todos los casos se verifica que el esquema de control
propuesto presenta estabilidad y desempeño robusto a pesar de las perturbaciones
externas, incertidumbre paramétrica y retardos de tiempo.

∗ Trabajo de investigación doctoral.
∗∗ Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Tele-

comunicaciones. Doctorado en Ingenierı́a. Director: Ing. Rodolfo Villamizar Mejia.
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ABSTRACT

TITLE: Robust Control approach for Multivariable Systems under De-
lays, Parametric Uncertainty and External Disturbances∗

AUTHOR: Jose Jorge Carreño Zagarra∗∗

KEYWORDS: Robust Control, Active Disturbance Rejection Control, GPI Ob-
servers, Uncertain Systems, Time-delay Systems.

DESCRIPTION:

This dissertation proposes a new control scheme for multivariate systems with or
without time delays, external disturbances, and parametric uncertainty. The design
methodology combines the robust control approach for uncertain systems and high-
gain observers used to estimate and attenuate online disturbances. In the feedback
control stage, the use of QFT controllers, robust PI controllers with 2 degrees of free-
dom, and reset controllers are proposed to achieve robust performance and stability
specifications in the presence of uncertainty in the plant model parameters. In the
feedforward control stage, the design of observers is proposed since due to their
characteristic of reconstruction of phase variables and estimation of a finite number
of derivatives of the disturbance, they provide properties of mitigation or rejection of
disturbances, trajectory tracking, performance robust and stabilizing output.

The proposed control scheme was successfully validated in an experimental pho-
tobioreactor available at the University of Almerı́a (Spain). A significant improvement
in the precision of the microalgae culture’s pH regulation is obtained; consequently,
a positive influence in biomass production. Numerical validations are also performed
on non-linear multivariable models, including a one-cycle cooling process, an offs-
hore wind turbine model available at the University of Stuttgart (Germany), and the
UVA / Pádova model from the University of Virginia (USA) for glucose regulation in
patients with type 1 Diabetes Mellitus. In all cases, it is verified that the proposed con-
trol scheme presents stability and robust performance despite external disturbances,
parametric uncertainty, and time delays.

∗ Trabajo de investigación doctoral.
∗∗ Facultad de Ingenierı́as Fisicomecánicas. Escuela de Ingenierı́as Eléctrica, Electrónica y de Tele-

comunicaciones. Doctorado en Ingenierı́a. Director: Ing. Rodolfo Villamizar Mejia.
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1. INTRODUCTION

1.1. Problem Definition and Motivation

Historically, the process industry has recognized the vital job of automatic control
on the proper functioning of the production processes. Although the preferred control
strategy in most applications is PID (Proportional-Integral-Derivative) control, seve-
ral features are not explicitly considered in the design of these classic controllers,
such as delays, unmeasurable variables, parameter uncertainty, time-variant sys-
tems, nonlinearities, constraints, and multivariable interactions. Many developments
of modern control theory are designed to contend with these features; however, the
industry has been conservative in applying these approaches. This fact has led many
critics to say that there is a gap between theory and control practice.

Control systems frequently work in the presence of time delays, mainly due to the
time it takes to obtain the necessary information for decision-making and execution.
From the classical control perspective, the presence of delays reduces the phase
margin of the systems and which can eventually destabilize the closed-loop respon-
se. However, the rational introduction of a delay may help achieve stability in unstable
systems [118], which has been a motivation to take advantage of this type of dynamic
systems [29, 49, 75, 77, 118]. Typical systems with delays are chemical processes,
communication, transport, power, tele-operation and bio-systems.

On the other hand, there are always modeling errors due to the difficulty of accu-
rately modeling a complicated process. There are many causes of this discrepancy,
collectively referred to as model uncertainties in the systems theory literature [51].
The development of methods to address model uncertainty is a big challenge, and
many control strategies are available today to tackle it. Sometimes, in an attempt to
take into account all relevant dynamics and reduce the modeling error, there could
be developments of increasingly sophisticated models. However, this maneuver can
lead to models that are too difficult for mathematical analysis and controller’s design.

External disturbances cause another common problem in the control systems.
Such disturbances are harmful to system performance, so rejection is one of the
main objectives in the controller design. In industrial processes - like oil and metal
industries - the production systems are usually influenced by external disturbances,
such as variations in primal matter quality, production load fluctuations, and varia-
tions of complicated production environments. In the biomedical system, for exam-
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ple, regulating blood glucose in diabetic patients, external disturbances are related
to food intake, physical activity, and stress, among others.

Traditional feedback control schemes-such as PID controllers-attenuate distur-
bances relatively slowly. Although Feed-forward control provides an effective method
for disturbances rejection, its implementation ideally requires that disturbances are
measured by sensors. Unfortunately, in many cases, the disturbances are difficult to
measure by sensors physically. For this purpose, disturbance observers provide a
practical estimation of the perturbations for a wide range of dynamic systems.

This dissertation presents a new control scheme for dynamic systems with delay
and parameter uncertainty. The approach uses the feedback controller design for
uncertain systems and the active disturbance rejection control approach.

1.2. Objectives and scope of the research

1.2.1. General objective

To improve the dynamic performance of multivariable systems in presence of time
delays, external disturbances and parametric uncertainty, through a robust feedforward-
feedback control approach.

1.2.2. Specific objectives

In order to accomplish the general objective, the next specific ones were propo-
sed:

1. To integrate the characteristics of feedback and feedforward controllers based
on state observers for active disturbance rejection to obtain a robust scheme for
system with parametric uncertainty and external disturbances.

2. To propose a predictive feedback-feedforward control for active disturbance re-
jection in time-delays systems with parametric uncertainty.

3. To validate the proposed control strategy for multivariable systems addressing
problems of time delay, external disturbances and parametric uncertainty.
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1.3. Organization of the dissertation

This dissertation is formulated into six chapters. The present chapter contains
the introduction, motivation, and the key objective of the thesis. Chapter 2 presents
a brief literature review on some open problems in automatic control. The control
problems studied are uncertain parameters, external disturbances, and time-delay.
Chapter 3 presents the theoretical framework, which covers topics such as fun-
damentals of active disturbances rejection control, differential flatness, limitations
of classical controllers, and robust controller design based on quantitative control
theory. The robust control proposal is presented in Chapter 4. This chapter presents
the control scheme proposed in this thesis for uncertain systems with and without
time delay.

Chapter 5 is assigned to the numerical and experimental validation of the ro-
bust control approach on kind of systems cases. Finally, Chapter 6 presents some
conclusions derived from this thesis and future work.

1.4. Academic Production

Published articles

1. Carreño-Zagarra, J. J., Guzmán, J. L., Moreno, J. C., Villamizar, R. (2019). Li-
near active disturbance rejection control for a raceway photobioreactor. Control
Engineering Practice, 85, 271-279.

2. Carreño-Zagarra, J.J., Villamizar, R., Moreno, J.C., Guzmán, J.L. Active Dis-
turbance Rejection and PID Control of a One-stage Refrigeration Cycle, IFAC-
PapersOnLine, Volume 51, Issue 4, 2018, Pages 444-449, ISSN 2405-8963.

3. Carreño-Zagarra, J.J., Villamizar, R., Guzmán, J.L., Moreno, J.C. Predictive acti-
ve disturbance rejection control for insulin in patients with T1DM, IFAC-PapersOnLine.
(Accepted).

International conferences

1. 7th Symposium on System Structure and Control, Sept. 9-11, 2019, Sinaia, Ru-
mania. Research presented: Predictive active disturbance rejection control for
insulin in patients with T1DM. Authors: Jose Jorge Carreño Zagarra, Rodolfo Vi-
llamizar Mejı́a, Jose Carlos Moreno, Jose Luis Guzmán.
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2. 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control,
May 9-11, 2018, Gante, Bélgica. Research presented: Active Disturbance Rejec-
tion and PID Control of a One-Stage Refrigeration Cycle. Authors: J.J. Carreño-
Zagarra, R. Villamizar, J.C. Moreno, J.L. Guzmán.

3. 14th IEEE International Conference on Control and Automation (ICCA), June 12-
15, 2018, Anchorage, USA. Nonlinear robust control of offshore wind turbines
based on flat filtering and reset compensation. Authors: J.J. Carreño-Zagarra; R.
Villamizar.

4. XXXVIII Jornadas de Automática, sept. 6-8, 2017, Gijón, Spain. Research pre-
sented: Control Robusto del pH en Fotobiorreactores Mediante Rechazo Activo
de Perturbaciones. Authors: J.J. Carreño- Zagarra, R. Villamizar, J.C. Moreno,
J.L. Guzmán.

5. 12th International Conference on Informatics in Control, Automation and Robo-
tics (ICINCO), July 21-23, 2015. Research presented: Design of Robust Control
Strategy for Non-Linear Multivariable Systems with Delay, Parametric Uncertainty
and External Disturbances. Authors: J.J. Carreño-Zagarra; R. Villamizar.

The information corresponding to the contribution made by each one of the aut-
hors in the written articles can be consulted in Table 1.
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2. LITERATURE REVIEW

2.1. Open problems in control systems

Today the PID controller is the most common solution to practical automatic con-
trol problems. Although proportional and integral action controllers have been in use
for a long time, the PID controller’s current form emerged with pneumatic controllers
in the 1930s [6]. However, there are several characteristics not considered explicitly
in the design of these PID controllers, such as delays, unmeasurable variables, para-
meter uncertainty, time-variant systems, nonlinearities, constraints, and multivariable
interactions.

In this chapter a review of the results in the control of systems with delays, para-
meter uncertainty and external disturbances is carried out in order to explore possi-
bilities that address control problems.

2.1.1. Dead time

Deadtime is the property of a physical system by which the response to an ap-
plied input is delayed. When material, information, or energy is physically transmitted
from one location to another, a delay associated with the transmission is conside-
red [118]. The control of these delays has been of great interest since they are the
leading cause of instability and poor performance in control systems, such as ther-
mal processes, long transmission lines in pneumatic systems, distillation processes,
among others.

Figure 1. Delay in a feedback system

There are various sources of delay. One of these sources is the nature of the
system, that is, the way the system works. For example, in chemical reactors, there
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is a finite time reaction, and in an internal combustion engine, time is required to
mix air and fuel. Another source of dead-time is the transport delay, which occurs
when materials go through heat or mass transfer systems, as in a heating system
where the transport delay occurs because of hot air. A delay could also be present
in the communication between the parts of the system. For example, it takes time for
signals to travel between controllers, sensors, and actuators in any typical closed-
loop system, particularly in network control systems and high availability systems
(see Fig. 1).

Figure 2. Step response of a time delayed system
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Figure 2 shows the typical operation of a central heating system, where T is the
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temperature measured by a sensor placed in the room [78]. When a change of 1 % is
introduced at the set-point, the settling time of the closed-loop control system with the
PI controller is much longer than in the open-loop system (Fig. 2). The introduction of
this PI element is a necessary modification to guarantee zero error in a stable state. If
a faster response is attempted by modifying the proportional gain, oscillations could
occur (as shown in Figure 2b) or even make the control system unstable.

A system with multiple delays in the state vector can be represented as:

dx(t)

dt
= A0x(t) +

N∑
i=1

Aix(t− τi) (2.1)

where x(t) is the n-dimensional state variable, Ai, with i = 0, 1, ..., N , is an n × n
matrix, N is a positive integer and τi is the time delay.

Moreover, the characteristic equation of eq. (2.1) is given by:

f (s; τ1, τ2, ...τN) =

∣∣∣∣∣sI − A0 −
N∑
i=1

Aie
−sτi

∣∣∣∣∣ = 0 (2.2)

Due to the presence of exponential terms, equation (2.2) is a quasi-polynomial
and a transcendental equation, which has an infinite number of roots in the complex
plane C. Therefore, equation (2.1) is asymptotically stable only if all the roots of
the above equation are on the left half-plane of the jω axis. Verifying the asymptotic
stability of equation (2.2) can be tricky since it has an infinite number of characteristic
equations [106].

It is evident that delays are a crucial cause of instability and poor performance of
dynamic systems, added to the fact that they are frequently found in various engi-
neering and physical systems. The design of stability analysis and control of systems
with time delay has attracted the attention of many researchers [66, 104]. The dif-
ficulty in controlling these processes is that downtime causes a phase delay that
decreases the phase margin, deteriorating both the performance and the system’s
stability.

PID controllers

Due to the low cost and easy implementation, most of the controllers used in
the industry are based on classic control schemes [7, 119]. In this approach, the
idea is to tune the drivers, considering the inherent delay of the process. The design
problem is to reduce highly conservative design conditions [18, 52, 83, 104]. The
design and implementation of PID controllers in systems with variable time delays
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are studied in [122], and in [98] an application of PID controllers with the dynamic
adaptation of their parameters based on the measured delay is presented.

Although PID controllers can control many processes, they have many limita-
tions. Consider, for example, the unity feedback system of Figure 3, with the transfer
function of the plant as:

Figure 3. Feedback control scheme

G(s) =
K

1 + Ts
e−τs (2.3)

and PID control as:

K(s) = Kp

(
1 + Tds+

1

Tis

)
(2.4)

The transfer function in closed loop would be given by:

T (s) =
K(s)G(s)

1 +K(s)G(s)

=
KKp (TdTis

2 + Tis+ 1) e−τs

(Ts+ 1)Tis+KKp (TdTis2 + Tis+ 1) e−τs
(2.5)

and the characteristic equation of the closed loop system is:

(Ts+ 1)Tis+KKp

(
TdTis

2 + Tis+ 1
)
e−τs = 0 (2.6)

Since equation (2.6) is a transcendental equation stability analysis or designing
a controller to ensure stability. In order to simplify the analysis, it is assumed that
Ti = T . Then, the closed-loop transfer function becomes:

T (s) =
KKpe

−τs

Ts+KKpe−τs
(2.7)
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This system is stable only when:

0 < Kp <
πT

2τK
(2.8)

Therefore, the controller’s gain is limited by the duration of the delay: the higher
the delay, the lower the maximum gain allowed. Thus, a slower response is obtained.

Dead Time Compensation (DTC)

Control schemes for dead time compensation can be classified into two types: the
Smith Predictor and Finite Spectrum Assignment (FSA). In 1957, the Smith Predictor
is proposed in order to design controllers that isolate the feedback loop delay, ob-
taining significant simplifications in the system analysis and design of the controller
[115].

Figure 4 shows the block diagram of a control system based on the Smith Pre-
dictor. C(s) represents the controller, G(s) = P (s)e−τs is the controlled process and
Z(s) = P (s)(1− e−τs) the Smith Predictor.

Figure 4. Control system based on the Smith predictor

Assuming there are no disturbances in the system, the closed-loop transfer fun-
ction is given by:

T (s) =
C(s)P (s)

1 + C(s)P (s)
e−τs (2.9)

Although this configuration allows the controller’s design regardless of the magni-
tude of the delay, it has some limitations, such as not being able to apply to unstable
processes, significant sensitivity to modeling errors, and external disturbances. It
only applies to systems with constant delay and input (i.e., not applicable to systems
with the delayed state) [130].
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To overcome some limitations of Smith Predictor, in 1974, the technique of finite
spectrum allocation was developed. This new approach is useful not only for the
design of controllers for unstable systems with delay in the input but also in the
states [73]. The technique is based on the transformation of the state vector of the
process to eliminate delays of the characteristic equation of the system so that the
closed-loop poles can be allocated from the required specifications of design [38].
This method does not require prior knowledge of the spectrum of the plant, only then
spectral points, while the others left are automatically deleted [5].

Consider a system described in state space as:

ẋ(t) = Ax(t) +Bu(t− τ)

y(t) = Cx(t) (2.10)

From this expression, the transfer function of the plant is:

G(s) = P (s)e−τs =

[
A B
C 0

]
e−τs (2.11)

Finite Spectrum Assignment (FSA) takes on the following feedback control law
[130]:

u(t) = Fxp(t) (2.12)

The state predicted xp(t) is given by:

xp(t) = eAτx(t) +

∫ τ

0

eAτBu(t− λ)dλ (2.13)

Similar to the control scheme based on the predictor, the delay term is removed
from the design process. The resulting closed-loop system is stable if A + BF is
stable.

Although DTC structures are more complex and require more excellent know-
ledge for tuning than traditional PIDs, these have better compensation for delays,
especially when process downtime is dominant [16]. However, because the state
prediction is made from the model, these techniques have a high sensitivity to mo-
deling errors, especially when the delay is considerable. If a high order model with
delay to describe the dynamics of a process is needed, both a primary controller of
higher-order in the DTC as a traditional (different to PID) controller is needed. In the-
se cases, it is clear that the limitations on the performance of PID are due to model
order and not to delay [16].
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Sliding mode control

Sliding mode control is a robust control technique that uses non-linear switching
elements to bring the system’s states to the desired point of operation through a path
defined in advance by the designer. This trajectory is called the surface or sliding line
due through the commutation control law guarantees that from any point in the state
space, the paths go towards it and slide until reaching the desired operating point.

Sliding mode control (SMC) supplies a powerful way to deal with a robust stabili-
zation problem for dynamic systems of finite dimension (i.e., systems without delay).
The presence of delay in a sliding mode control approach can produce oscillations in
the design surface neighborhood. Some studies reveal possible behavioral changes
(bifurcations) that arise in these types of systems [90]. This fact led to the research of
SMC controller design for systems with input or state delays [93]. In [126], a control
structure is proposed in sliding modes for the convergence in a finite time of systems
with input delay.

The uncertainty of the plant model in systems with delay makes the control pro-
blem more complicated even for linear systems invariant over time. A possible way to
handle this problem is to employ high gain or sliding mode control techniques, which
are useful tools to reject the system uncertainty. However, the straight implementa-
tion of these robust control techniques without considering time delays can produce
oscillations or instability of the closed-loop system [37]. To overcome these limita-
tions, a predictor-based approach can be applied that compensates the time delay
in the control input resulting in a delay-free closed-loop system. In [95] a sliding sur-
face based on a predictor is exposed, which minimizes the effects of system entry
delays, and derives a robust control law that guarantees the existence of a sliding
mode and overcomes the delay and uncertainty of the system.

As is the case with other conventional control laws, if the delay is not taken into
account when making the design, the system may become unstable or aggravate
the effect of chattering [117]. In [45] a methodology to design controllers in sliding
mode based on LMI (Linear Matrix Inequalities) for systems containing either one de-
lay, multiple delays, constant delays, or variable delays is proposed. The conditions
for the presence of the sliding status are studied by using the Lyapunov-Krasovskii
and Lyapunov-Razumikhin functions, and an LMI scheme is used in the optimization
procedure.

Delay scheduling

Delay Scheduling is a recent technique that improves the stability of multivariable
systems by introducing hold buffers in the feedback loop. This idea of selectively
increasing delays can add desired dynamic performance characteristics, such as
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fast disturbance rejection. Since delayed data can make it difficult the tracking, the
design goal is to reschedule them to improve the performance [81].

Let take the MIMO dynamics system as:

ẋ(t) = Ax(t) +Bu(t) (2.14)

Suppose that (A,B) is a controllable pair, and the requested state trajectory to
be trailed is given by x∗(t). Using the conventional computerized torque method, the
control law applies the delayed state information for its corrective actions in which
multiplicative delays appear. Defining the state error vector as ex(t) = x∗(t) − x(t),
Eq. (2.14) can be rewritten as follows:

ėx(t) = Aex(t) +Bū(t) (2.15)

where ū(t) is the full-state feedback of the form ū(t) = Kex(t), with the appropriate
eigenvalue distribution of A + BK for disturbance rejection. In the delay scheduling
approach, the signal ū(t) uses retarded data on ex(t). One way is to use m delayed
parts of the vector ex, that is, e1 (t− τ1), e2 (t− τ2),..., em (t− τm). In this way, the new
error dynamics becomes:

ėx(t) = Aex(t) +B
m∑
j=1

Kjex (t− τj) (2.16)

which is a popular class of LTI multiple time-delayed system (MTDS), whose stability
property must be ensured. The error ex(t) must approximate zero and remain at
that value for successful tracking. The following expression gives the characteristic
equation of the system:

CE(s) = det

[
sI − A−B

m∑
j=1

Kje
−τjs

]
= 0 (2.17)

These systems are recognized as LTI-MTDS of retarded type due to the existence
of integer multiples of a delay, τj, such as e−τjs, e−2τjs, e−3τjs, etc.

Since time-delayed LTI systems could present multiple stable operating zones
-known as pockets- in the delay space, the control problem is finding and experi-
mentally testing such pockets [81]. For analytical pocket localization in [81], a novel
technique known as Cluster Treatment of Characteristic Roots (CTCR) is used. Re-
searches such as [80–82] have reported robust control performance for tracking and
disturbance rejection in the face of long time delays.
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Model predictive control (MPC)

MPC is a powerful control technique that has found great acceptance in indus-
trial applications such as in academia. This success is possible due to the fact that
systems are useful both in single variable and multivariable systems, considering
the restrictions of the control system and inherently compensate for delays in the
process [91].

Due to the MPC controllers’ predictive environment, time delays are considered
internally, which allows them to be compared with DTC algorithms [16, 78]. Each
linear MPC can be stated as a DTC two degrees of freedom when the primary con-
troller is calculated using an optimization process. The optimization structure of the
internal DTC is defined as much by the process model as the model of disturban-
ces, and is not dependent on the optimization procedure even when considering the
restrictions. Figure 5 illustrates this idea.

Figure 5. Outline of model predictive control

Figure 6 shows the general structure of an MPC controller predictor for a process
with time delay. The prediction yp consists of the addition of the output of the delay
free ideal model ŷ(t + d|t), and a correction based on the current plant output y(t)
and the predicted output ŷ(t|t), passing through a filter [78].

Although the reference tracking is not dependent on the characteristics of the pre-
dictor, response to disturbance rejection, and robustness of the closed-loop system
are associated with the predictor filter block MPC. Therefore, these two characteris-
tics are affected by the dead time of the process, and in some applications, a greater
scheme is required.

2.1.2. Uncertainty systems

Control system design depends significantly on the dynamic model of the plant or
process. As a real process may be too complex to be described so absolutely precise
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Figure 6. General structure of predictor MPC

by a mathematical model, they always have modeling errors. The origins and causes
of this discrepancy are many and control theory is referred collectively as uncertainty
in the model: parametric uncertainty, little knowledge of the dynamics of the process,
unknown entries and dynamic despised and simplifications in the model, among
others [51, 97]. For example, if a model based on the linearized about a nominal
operating point of a nonlinear system controller is designed, the nonlinearities are
presented as modeling uncertainties (see Figura 7).

Figure 7. Control system with uncertainty in the plant model.

Items with uncertainty can be classified as structured and unstructured uncer-
tainties. In the first class, sources of uncertainty of systems are localized, obtaining
with this a tighter or structured modeling errors description. In the unstructured un-
certainties, a magnitude dimension of the uncertainty is commonly known, usually
depending on the frequency. These elaborate uncertainties generally are presen-
ted in the high-frequency range and could include uncertain time delays, parasitic
coupling, hysteresis, and other non-linearities. An example of this type of uncertainty
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occurs in the linearization of a non-linear system. If the real system is non-linear
and the model used for its representation is linear, the difference operates as an
unstructured uncertainty [74].

Unstructured uncertainties

Dynamic disturbances that take place in different regions of a system and can be
grouped into an unique block of disturbance ∆, are known as unstructured uncer-
tainty. This type of uncertainty can be described in different ways, and some of the
most used models are: additive uncertainty, multiplicative uncertainty and feedback
uncertainty. Some types of uncertainty are shown in Figure 8, where Pn(s) is the
nominal model of the system and P (s) is the dynamics of the real disturbed system.

Table 2 shows the models of the different types of unstructured uncertainty. I
is the identity matrix. The multiplicative uncertainty representations show relative
errors, while additive descriptions provide an account of absolute error between the
real behavior of the system and the nominal model used [47]. For this type of uncer-
tainty a dimension of the magnitude of ∆(s) is known, generally dependent on the
frequency:

Table 2. Modelling of unstructured uncertain systems

Model of uncertainty Real plant

Additive uncertain P (s) = Pn(s) + ∆(s)
Input multiplicative uncertain P (s) = Pn(s) [I + ∆(s)]

Output multiplicative uncertain P (s) = [I + ∆(s)]Pn(s)
Input feedback uncertain P (s)−1 = [I + ∆(s)]Pn(s)−1

Output feedback uncertain P (s)−1 = Pn(s)−1 [I + ∆(s)]
Plant feedback uncertain P (s)−1 = Pn(s)−1 + ∆(s)

¯σ [∆(jω)] ≤ δ(ω) ∀ω (2.18)

Structured uncertainties

If the sources of the system’s uncertainties are somehow located, a more ad-
justed or structured description of the modeling errors will be available. This can be
constituted in turn by multiple localized and independent unstructured uncertainties
∆i(s). These uncertainties may correspond to non-modeled dynamics of actuators,
sensors and even the same plant. Therefore, the complete uncertainty of the system
is of the form:
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Figure 8. Modelling of uncertain systems

(a) Additive (b) Input multiplicative

(c) Output multiplicative (d) Input feedback

(e) Output feedback (f) Plant feedback

∆(s) = diag{∆i(s)}; i = 1, 2, ..., p (2.19)

where p is the number of blocks.

In many industry control systems dynamic disturbances are produced by an
inexact description of the characteristics of the components, the change of opera-
ting points, or the effects of wear on plant components, etc. Such disturbances can
represent variations of determinate system parameters, around some feasible ran-
ges of values. They affect the performance of the low frequency range and are called
parametric uncertainties [47].

Consider for example a first order system whose transfer function is given by:
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P (s) =
K

τs+ 1
(2.20)

Assume that in this process there is uncertainty around the pole, τ = τ0 +δτ , with
τ0 as the nominal value. The representation of this uncertainty can be done with a
multiplicative model as follows:

P (s) =
K

(τ0 + δτ) s+ 1

=
K

τ0s+ 1

[
τ0s+ 1

τ0s+ δτs+ 1

]
=

K

τ0s+ 1

(
1− δτs

τ0s+ δτs+ 1

)
= Pn(s)(1 + ∆(s)) (2.21)

where, in this case

∆(s) =
−δτs

τ0s+ δτs+ 1
(2.22)

When a dynamic system is depicted through the standard configuration in Fig. 9,
and the uncertainty ∆ has a particular structure (such as unmodelled dynamics and
parameter variations), it is stated that it has a structured uncertainty. This block dia-
gram is used to illustrate how the uncertainty influences the input/output relationship
of the control system [47].

Control approaches of uncertain systems

Currently, two main approaches try to overcome the uncertainty in the model:
adaptive control [100, 114] based on online identification process and adjustment
of the slider to the desired conditions; and robust control [53, 84, 103], which gua-
rantees the preservation of specific properties of the control loop for the whole fa-
mily of controlled plants. Various strategies of adaptive control have been proposed
considering uncertainty SISO and MIMO systems. Such controllers often involve so-
me functions to approximate the unknown dynamics. However, the approximation
error and disturbance - internal or external - can impair controller performance or
even destabilize the closed-loop control system. Therefore, to ensure the controller’s
performance, the design of adaptive controllers incorporates various robust compo-
nents, resulting in robust adaptive controllers [48, 58, 69, 124].
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Figure 9. Standard M −∆ configuration

2.1.3. Disturbance rejection

The disturbance rejection dilemma is a perennial topic of research that encom-
passes the theory and control applications. Traditional control methods such as Pro-
portional Integral Derivative (PID) and Linear Quadratic Regulatory (LQR) controllers
are often unable to meet high precision control specifications in the presence of un-
certainties and strong disturbances. The main reason is that these methods do not
explicitly take into account the attenuation of the effect of such control problems [72].
Typical characteristics of the disturbance rejection methods are summarized below:

Adaptive Control : is a non-linear control technique that automatically modifies the
controller parameters to guarantee that the closed-loop system’s behavior maintains
the essential design characteristics. Since this technique identifies the controlled
model parameters online and then adjusts the controller parameters based on that
estimate, it is generally very effective in dealing with model uncertainties. Howe-
ver, as successful adaptive control applications generally rely heavily on the laws of
adaptation, when these critical parameters are difficult to identify or estimate online,
these methods are not valid.

Robust Control : is an approach to controller design that explicitly deals with un-
certainty. Robust control methods are designed to achieve robust performance and
stability in the presence of parameters uncertain or disturbances defined within a set
of values, which is generally compact. The robustness of this technique is usually
obtained by sacrificing the transient performance of other highlights. Therefore, the
robust control is often criticized for occasionally being conservative.

Sliding mode control : is a non-linear control technique that modifies the dynamics
of a non-linear system by employing a discontinuous control signal that forces the
system to ”slip.along a cross-section of normal system behavior. Although this techni-
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que can suppress the effects of parameter variations and external disturbances, the
discontinuous switching of the controller makes it prone to inducing high-frequency
vibrations. Several modification methods can effectively reduce this problem; howe-
ver, this leads to a deterioration of the performance to the rejection of disturbances
[72].

Internal Model Control : is a linear control technique that makes use of a plant
model to calculate the input movements to be made. Although due to its simple
concept and intuitive design philosophy, this technique has received high acceptance
in control theory, it is generally available for linear systems, and its application in
high-dimensional systems usually presents a very high computational cost due to
the need to calculate the inverse of a high-dimensional transfer matrix [72].

The objective of the cited control schemes is to reject disturbances through feed-
back, so this rejection is based on the tracking error between the measured outputs
and the setpoints [52]. In the event of strong disturbances, such controllers cannot
react fast enough, although ultimately they can suppress disturbances by regulating
feedback relatively slowly. Due to this fact, these control approaches are commonly
recognized as passive anti-disturbance control (PADC) methods [72].

To overcome the limitations of PADC methods in handling disturbances, the so-
called active disturbance rejection control (ADRC) approach has recently been pro-
posed. The idea of such a control approach is to directly counteract disturbances
through an anticipated compensation control design based on disturbances’ estima-
tes through the use of observers. Usually, this control structure involves two parts:
feedback control and feedforward control based on disturbance observer. Feedback
control is generally employed to ensure monitoring and stabilizing the dynamics of
the nominal controlled plant. At this stage, the disturbances and uncertainties do
not necessarily need to be considered. A disturbance observer can estimate these
characteristics in order to be compensated for by a progress controller [72].
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3. THEORETICAL FRAMEWORK

3.1. Quantitative Feedback Theory

Control engineering occupies a monumental place in the design of technology.
Control concepts are usually the key factor in achieving speed and precision in mul-
tidisciplinary systems, including aerospace missions, power plants, chemical proces-
ses, transportation, energy systems, robotics, and environmental projects [41].

The theory of automatic control began in the early thirties when feedback am-
plifiers for communication appeared in commercial use. At that time, the use of the
feedback was initiated with the purpose to make the characteristics of the amplifier
less sensitive to the uncertainties and physical anomalies of the electronic com-
ponents. However, as is well known, the use of feedback creates serious stability
problems.

In 1932 Nyquist presented his famous work entitled Nyquist Stability Criterion,
which would be expanded by Back in 1934 to analyze the stability of feedback am-
plifiers. In 1945, after seven years of research in the Bell Telephone laboratories,
Hendrick Bode published the most influential work in the automatic control of the
twentieth century: his book Network Analysis and Feedback Amplifier Design. The-
re, he presented the fundamentals of feedback, systems analysis and compensator
design in the frequency domain.

In 1959, a scientist from the Hughes Aircraft company named Isacc Horowitz,
would introduce a laborious formulation of the genuine frequency methodology foun-
ded by Bode with considerations of unawareness of the plant under quantitative
analysis. In his book Fundamental Theory of Automatic Linear Feedback Control
Systems, Horowitz presents the need to quantify the design of the controller accor-
ding to the desired specifications and the uncertainty of the plant.

Four years later (1963), in his book Synthesis of Feedback Systems, Horowitz
would formally broaden Bode’s original concepts and provide novel proposals such
as the control of two degrees of freedom. There, he handles a wide set of sensitivity
problems in feedback control and exposes the first work in which a control problem
was treated quantitatively in a systematic way [44]. However, until 1972, coinciding
with the introduction of the Nichols diagram as a working tool, Horowitz and his
doctoral student Marcel Sidi used the name of Quantitative Feedback Theory (QFT)
for first time.
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Since then, the QFT control theory has been widely used, with flying colors
applied in monovariable and multivariable systems, linear and non-linear systems,
delayed processes, minimum and non-minimum phase systems, discrete time sys-
tems, etc. Also it has been employed in multiple real-world applications, such as
wind energy, light control, spacecraft, water treatment plants, mechanical and power
systems, chemical reactors and motion control.

Figure 10 describes the big picture of QFT control system design, closing the gap
between control theory and real-world applications. This figure shows the essential
aspects of the design process of the control system, and provides an overview of
what it means to achieve a practical and successful control system design, presen-
ting the factors that aid to close the gap between the theory and the real world. When
making a practical design of the control system, the engineer must consider that the
objective of the design process is not only limited to a satisfactory robust design but
also that the implementation must comply with the functional requirements [44]. In
this process the model simulations are very useful in the early evaluation, but if the
system works optimally, hardware tests must be carried out in the circuit and the
system to verify the unmodified effects that have not been taken into account during
the design and the phases implementation.

As shown in Figure 10, the key elements of QFT are the incorporation of perfor-
mance specifications (at the beginning of the design process), the construction of
templates to characterize the model of the plant at several frequencies, the capacity
to inspect frequency responses of the linear time-invariant (LTI) plants that symboli-
ze the nonlinear dynamical system at all its operating points, the design boundaries
drawn on the Nichols chart and finally, the relationship of the closed-loop control
system with the frequency domain design and the operating condition. To ensure a
favorable control design, the control system must ensure that all requirements are
met during the simulation and system test. If the control system failure in any of the
simulation or system tests, then the designer can use the QFT components to mark
that malfunction during the design process and provide any necessary adjustments
[55].

3.1.1. Basic concepts of QFT

QFT is a control design methodology that reiterates the employment of feedback
to mitigate the impact of plant uncertainty and fulfill functioning specifications. This
methodology uses the classical frequency response examination that includes Bode
diagrams, templates representations, and Nichols charts and hypothesizes that the
feedback is needed primarily when the plant presents model uncertainty or when
there are external disturbances operating on the plant [55].

The QFT design is based on the two-degree-of-freedom feedback scheme shown
in Fig. 11, which structure incorporates many single-loop systems, cascaded-loop
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Figure 10. QFT control system design: closing the gap [44].
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Figure 11. The single-loop feedback system

and multi-loop systems designed sequentially or decentralized. The feedback control
system includes the set of plants with uncertainty =P (jω), the controller K(jω) and
the prefilter F (jω) to be designed, and the dynamics of the sensor H(jω). The inputs
of the system are: the reference R(jω), the disturbances W (jω), D1(jω) and D1(jω),
and the noise N(jω).

The methodology for designing QFT controllers consists of the following steps:
(1) the model of the plant with uncertainty is defined; (2) the specifications in the
frequency domain are defined; (3) based on the model with uncertainty and closed-
loop specifications, the contours are calculated; (4) the controller is designed by
adding poles and zeros to meet the specifications at each working frequency; (5) if
the control system requires reference tracking specifications, a pre-filter is synthesi-
zed; (6) finally, after designing the controller K(jω) and the filter F (jω) its behavior
is validated against the established specifications.

Define plant models and uncertainty

The description of the physics of the plant is fundamental to understand the pos-
sibilities and limitations of the control system, and to design an appropriate controller
to meet the specifications. Consider an uncertain plant P, where P ∈ ℘, and ℘ is the
set of possible plants due to uncertainty.

TP (jωi) is the template for the frequency ωi, that is, the group of complex num-
bers that describe the frequency response of the uncertain plant at a fixed frequency.
In other words, the templates are the representation of the n-dimensional parameter
space in the Nichols diagram at each frequency of interest. This model uncertainty
is a consequence of many factors, including inaccuracies measuring the parame-
ters unknown dynamics, unknown high-frequency components, sensor and actuator
errors, nonlinear dynamics, temperature changes, etc.
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Figure 12. Templates for solar plant

The template for the frequency ω = 0.001 rad/s of a model of a solar plant is
shown in Figure 12. The linear system, which includes the solar plant and a feedfor-
ward block, is represented by the following model with parametric uncertainty:

℘(s) =

{
P (s) =

K

τs+ 1
e−tds : td = 39, τ ∈ [75, 525] , K ∈ [0.8, 1.05]

}
(3.1)

where K is the system gain in oC, td is the time delay (in seconds) and τ is the
time constant (in seconds). A nominal plant is selected from the family of plants. The
final controller designed by QFT will be the same, no matter what nominal plant is
chosen.

Performance specifications

Robust stability and performance specifications (tracking, disturbance rejection,
noise immunity, resonance frequency attenuation, etc.) can be done in terms of fre-
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quency functions δk(ω) that are allocated on the magnitude of the following system
transfer functions:

y(s) =
1

1 +KPH
[PD1 +D2 + PK(W + FR)− PKHN ] (3.2)

u(s) =
1

1 +KPH
[K(W + FR)−KH(N + PD1 +D2)] (3.3)

e(s) =
1

1 +KPH
[PHD1 +HD2 + PKHW + FR−HN ] (3.4)

Table 3 shows the stability and performance specifications in terms of transfer
functions: |Tk(jω)| = δk(ω), k = 1, 2, ..., 5. δ1(ω) restricts the transfer function |L/(1 +
L)|, L = KP , placing conditions on the robust stability, the control effort in the input
disturbance rejection, and the sensor noise attenuation. δ2(ω) and δ3(ω) constrain the
output and input disturbance rejection, respectively. δ4(ω) confines the control signal
|K/(1 + L)| for the system output disturbance rejection, the noise attenuation, and
the tracking of reference signals. The upper δ5b(ω) and lower δ5a(ω) models restrict
the signal tracking [54].

Table 3. Single loop specifications (without loosing generality, H(s) = 1)
Specification Application

|T1(jω)| =
∣∣∣ P (jω)K(jω)
1+P (jω)K(jω)

∣∣∣ ≤ δ1(ω) gain and phase margins;
tracking bandwidth

|T2(jω)| =
∣∣∣ 1
1+P (jω)K(jω)

∣∣∣ ≤ δ2(ω) Sensitivity reduction; rejec-
tion of disturbance at plant
output

|T3(jω)| =
∣∣∣ P (jω)
1+P (jω)K(jω)

∣∣∣ ≤ δ3(ω) disturbance rejection at
plant input

|T4(jω)| =
∣∣∣ K(jω)
1+P (jω)K(jω)

∣∣∣ ≤ δ4(ω) control effort minimization

δ5−lo(ω) ≤
∣∣∣F (jω)P (jω)K(jω)

1+P (jω)K(jω)

∣∣∣ ≤ δ5−up(ω) Tracking problem

The specifications set is given by:

Stability specification The stability margins (gain margin and phase margin) are
commonly used to calculate the degree of stability of a closed-loop system. A way
to measure the stability is with Mc circles, which represent the locus of constant
magnitude δ1 of the closed-loop transfer function in the Nichols chart. As the Mc

circles enclose (0 db,−180) point, they are also related with the stability margins.
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Equation (3.5) describes the Mc circle (δ1) as a function of phase margin (PM ), and
equations (3.6) and (3.7) present PM and GM (gain margin) as a function of the Mc

circles (δ1), respectively.

δ1 =
0.5[

cos(π−PM
2

)
] (3.5)

PM = π − 2cos−1
(

0.5

δ1

)
(3.6)

GM = 20 log10

(
1 +

1

δ1

)
(3.7)

In order to obtain a phase margin of 41.8 and a gain margin of 4.68dB for the
solar plant model described in equation (3.1), δ1 = 1.4 is selected (see Figure 13).

Figure 13. Stability specification in the Nichols chart: δ1 = 1.4

Disturbance rejection at plant output Unlike the stability, the sensitivity specifi-
cation δ2(ω) is typically only define for selective low to middle frequencies. Due to
this, the high frequency activity of the actuators is reduced and possible mechani-
cal fatigue problems are avoided. A practical selection of δ2(ω) is shown in (3.8).
The specification has also a slope of −20dB/dec that reaches the −3dB level at the
frequency ω = ad, and has a 0 value for high frequency [41].

δ2(s) =
s

s+ ad
(3.8)
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Figure 14. Sensitivity or plant output disturbance rejection specification

Sensitivity specification for different values of the parameter ad -which is the in-
verse of the time constant- is presented in Figure 14. As can be seen, the expression
gives a good disturbance rejection at low frequencies.

Figure 15 shows the time-domain response when a step disturbance is establis-
hed in the plant for different levels of disturbance rejection. For large values of ad,
shorter rise times and settling times are obtained.

Figure 15. Step response for plant output disturbance

Reference tracking specification QFT methodology demands that the desired
tracking control ratios be modeled in the frequency domain to accomplish the requi-
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red gain and the desired time-domain performance specifications for a step input.
Thus, the system’s tracking performance specifications for a simple second-order
system are based upon satisfying some or all of the step forcing function figures of
merit for underdamped and overdamped responses [44].

In order to reduce the high frequency activity of the actuators and avoid possible
mechanical fatigue problems, the reference tracking specifications are generally defi-
ned only for some low to mid frequencies. A practical choice is given by the following
expressions:

δ5−up(s) =
ω2
n/a(s+ a)

s2 + 2ζωns+ ω2
n

(3.9)

δ5−lo(s) =
1

(τ1s+ 1)(τ2s+ 1)(τ3s+ 1)
(3.10)

If, for example, a peak overshoot of 20 % and an establishment time close to
35min is desired for the solar collector system, the following transfer functions could
be defined:

δ5−up(s) =
0.002947s+ 1.2 ∗ 10−5

s2 + 0.00381s+ 1.2 ∗ 10−5
(3.11a)

δ5−lo(s) =
1

1.8225 ∗ 106s3 + 1.7212 ∗ 105s2 + 740.11s+ 1
(3.11b)

Figure 16 shows the time response of y(t) for both specifications. The variables
y(t)U and y(t)L in the figure represent the upper and lower bounds, respectively, of
the tracking performance specifications; that is, an admissible response y(t) must lie
between these bounds [54].

Figure 16. System time-domain tracking performance specifications.
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Computation of QFT bounds

Once the P0(jω) nominal plant has been selected, the QFT design methodology
converts the closed-loop specifications - presented in Table 3 - and the uncertainty
of the plant into a set of constraint curves or contours B(jω) for each frequency of
interest jωi ∈ Ω, drawn on the Nichols diagram.

Every plant in the ωi-template can be expressed as P (ωi) = pejθ = p∠θ. Similarly,
the compensator polar form is K(ωi) = kejφ = k∠φ, with φ ∈ [−2π, 0]. By substituting
the specifications in Table 3 the quadratic inequalities in Table 4 are obtained. The
general form of these inequalities is given by the following expression:

Imωi
= (p, θ, δm, φ) = ak2 + bk + c ≥ 0 (3.12)

where p, θ y δm are known, φ varies between −2π and 0 rad, and k is unknown.

With an appropriate algorithm shown in [24], the quadratic inequalities in Table
4 are solved and translated into a set of curves on the Nichols chart for each fre-
quency of interest and type of specification. These curves, known as bounds, can be
solid or dashed lines. A solid line means that the area that satisfies the specification
inequality is above the line, and a dashed line means that the area that satisfies the
specification inequality is below the line [41].

After calculating and drawing the contours on the Nichols diagram, for each spe-
cification and at each frequency, these contours are intersected so that finally there
is only one curve for each frequency: the most restrictive. Figure 17 shows both the
union and the intersection of bounds computed for the tracking reference specifica-
tions described in (3.11a) and (3.11b), and stability specification fixed in δ1 =1.4 for
the solar plant model with uncertainty presented in (3.1).

Table 4. Quadratic inequalities
m Bound quadratic inequality
1 p2

[
1− 1

δ21

]
k2 + 2p cos(ϕ+ θ)k + 1 ≥ 0

2 p2k2 + 2p cos(ϕ+ θ)k +
[
1− 1

δ21

]
3 p2k2 + 2p cos(ϕ+ θ)k +

[
1− p2

δ23

]
4

[
p2 − 1

δ24

]
k2 + 2p cos(ϕ+ θ)k + 1 ≥ 0

5 p2ep
2
d

[
1− 1

δ25

]
k2 + 2pepd

[
pe cos(ϕ+ θd)− pd

δ25
cos(ϕ+ θe)

]
k +

[
p2e −

p2d
δ25

]
≥ 0
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Figure 17. Bounds of two specifications: stability and tracking references

(a) Union of bounds (b) Intersection of bounds

Controller design

Once the contours are plotted in the Nichols diagram and the open loop function
L0 = P0K is superimposed, the controller is designed including poles and zeros until
all specifications in the frequency domain are met. This design process is known as
loop-shaping.

As mentioned, the bounds define the uncertain plant model and the control spe-
cifications at each frequency. An robust controller is acquired if L0 is exactly on top
of the bounds at each frequency. In other words, a qualified controller design will
place L0 above the solid-line bounds and below the dashed-line bounds. This will
provide the minimum possible controller magnitude at every frequency (minimum
cost of feedback ) to meet the required specifications with all the plants within the
uncertainty [41].

A general expression for the controller structure K(s) is the following transfer
function:

K(s) = kG

∏nrz

i=1(s/zi + 1)
∏ncz

i=1(s
2/ω2

ni + 2ζi/ωnis+ 1)

sr
∏mrp

j=1(s/pj + 1)
∏mcp

j=1(s2/ω2
nj + 2ζj/ωnjs+ 1)

(3.13)

where kG is the controller gain, pj is a real pole, zi is a real zero, ωni the natural
frequency and ζi the damping of a complex zero, and ωnj the natural frequency and
ζj the damping of a complex pole. The controller may have also some integrators,
with r = 0, 1 o 2, etc.

Looking at the intersection of bounds presented in Figure 17b a controller that
meets these QFT bounds has been design, as shown in Figure 18. In this figure
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Figure 18. Loop-shaping for solar plant

the small circles and numbers in the figure indicate the frequencies for the function
L0(s) = P0(s)K(s). The objective is to move each small circle above the solid-line
bounds or below the dashed-line bounds. The proposed controller is given by the
following expression:

K(s) =
0.5555(s+ 0.018)(s+ 0.0077)

s(s+ 0.014)
(3.14)

Synthetize Prefilter

Taking into account the controller K(s) in eq. (3.14), and the reference tracking
specifications given in equations (3.11a) and (3.11b), a prefilter F (s) is designed
to ensure that all the input/output functions P (s)K(s)F (s)/[1 + P (s)K(s)] are inside
the band defined by the limits δ5−up(ω) and δ5−lo(ω). Thus, while the basic objective
of the K(jω) controller is to reduce uncertainty and achieve stability and rejection of
disturbance objectives, etc., the objective of the prefilter is to comply with the tracking
specifications.

The prefilter for the solar plant described in eq. (3.1) is shown in the following
expression and the input/output functions and limits in Figure 19:

F (s) =
1

150s+ 1
(3.15)
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Figure 19. Prefilter F (jω) for reference tracking specifications for solar plant
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Analysis and Validation

Once the design of the controller and the filter is finished, its performance is
analyzed against the given specifications, both in the time domain and in the fre-
quency domain.

Figure 20 shows the analysis of the closed-loop stability in the frequency domain
for the illustrative example of the solar plant. The red dashed line is the stability
specification δ1, defined in equation (4.30), and the solid line represents the worst
case of the function PK/(1 + PK) at each frequency due to the model uncertainty.

3.2. Active Disturbance Rejection Control

The idea of feedback is deceptively simple and yet extremely powerful. Feedback
can reduce the effects of disturbances, make the system robust to process varia-
tions, and ensure that it follows input signals appropriately. Feedback has also had a
profound influence on technology. The feedback principle application has produced
significant advances in the fields of control, communication, and instrumentation.

The PID controller is an easy realization of feedback. Such controllers are found
in a large number of all industries and are presented in many different ways. They are
a key element of motor control, very useful in distributed process control systems,
and are also integrated into many special-purpose systems. It is estimated that in
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Figure 20. Stability analysis for solar plant
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process control, more than 95 percent of control loops are of the PID type. Most ties
are actually PI control [6].

However, it is well known that the PID is substantially burdened by the current
demands of modern industry that, due to the search for efficiency and the cost of
skilled labor, place much value on feedback control technologies. Despite the merit
of its simplicity, some authors question whether PID control will temporarily outlive
its usefulness and wonder what will replace this highly successful control mecha-
nism while preserving its essential robustness and, at the same time, eliminating its
restrictions [50].

Active Disturbance Rejection Control (ADRC) was one of the main research to-
pics of the late Professor J. Han, which addressed the limitations of classical con-
trollers. His vision of simplifying controller design via appropriate, simultaneous, sta-
te estimation and disturbance estimation, followed by disturbance cancellation and
feedback, has proved to be a robust scheme embracing many fields of academic
and industrial automatic control engineering. As a control design tool, it applies to
linear and nonlinear, continuous and discrete, SISO and MIMO systems, Systems
with delays at the inputs and systems described by fractional order time derivatives.

3.2.1. PID control limitations

Classical PID is a simultaneous feedback control mechanism widely used in in-
dustrial control systems, consisting of three different parameters: proportional, in-

48



Figure 21. PID control topology

tegral, and derivative, as shown in Fig. 21, where the error between the setpoint
yref =constant and plant y(t), i.e., e(t) = yref−y(t), as well as its integration

∫ t
0
e(τ)dτ

and differentiation de(t)/dt are used in linear combination to provide the control law:

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(3.16)

This PID controller has the capacity to remove errors in the steady state via inte-
gral action, and can predict the future with the derivative part. PI and PID controllers
are necessary for many control problems, especially when the dynamics of the pro-
cess are favorable and the behavioral requirements are not demanding [6].

Consider the second-order system whose transfer function is as follows:

y(s)

u(s)
=

kω2
n

s2 + 2ζωns+ ω2
n

(3.17)

Let e(t) = yref − y(t) = yref − x1 = e1, ė1 = −ẋ1 = e2, and ë(t) = −ẍ1, and the
error dynamics can be seen as

{
ė1(t) = e2(t)
ė2(t) = −ω2

n(e1(t)− yref )− kω2
nu(t)− 2ζωne2(t)

(3.18)

Denoting e0 =
∫ t
0
e(τ)dτ , then e = e1 = ė0 and considering equation (3.16), the

error equation can be written as:

ė0 = e1

ė1 = e2

ė2 = ω2
n (yref − kike0)− ω2

n (1 + kkp) e1 − ωn (kdkωn + 2ζ) e2 (3.19)

which is asymptotically stable if{
kikω

2
n > 0, kkp + 1 > 0, kdkω

2
n + 2ζωn > 0

ωn (kkp + 1) (kdkωn + 2ζ) > kki
(3.20)
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The design goal e1 = e(t) = yref − y → 0, or x1 → yref , is achieved if the gains
ki,kp and kd are chosen to fulfill (3.20), for the values ζ, ωn, k 6= 0 selected. Although
for many plants of the form of (3.17), a collection of PID gains could be readily se-
lected (either analytically or experimentally). Precisely said ease of adjustment and
simplicity denote its fundamental restrictions, which are visible in the existence of
progressively demanding control system performance [50].

In general, in the PID controller framework, four fundamental points must be
handled. 1) PID is often implemented without part D due to noise sensitivity. 2) The
integral expression, although to suppress the steady-state error, presents other pro-
blems such as saturation and reduced stability margin. 3) The reference signal is
commonly a step function, which is not suitable for most dynamic systems as it is
equivalent to requiring the control signal to perform a sudden jump.4) Although the
weighted sum of the three terms in (3.16) is simple, it might not be the best control
law based on the present and past of the error and its exchange rate [50].

3.2.2. Differential flatness

The differential flatness is derived from the algebraic differential approach as pro-
posed by Fliess et al in 1995 [34]. This is a property of some controlled dynamic
systems whose trajectories can be planned without solving differential equations
and where the feedback controller design problem can be reduced to a set of deco-
upled LTI systems [108]. It can be found in continuous- and discrete-time systems,
linear and nonlinear systems, finite-dimensional, single and multivariable systems,
and even infinite-dimensional systems.

Consider the nonlinear system of the form:

ẋ = f(x, u), y = h(x, u), x ∈ Rn, u ∈ Rm, y ∈ Rp (3.21)

Let γ, α, β be finite multi-indices. System (3.21) is differentially flat if a vector
known as the group of flat outputs exist, with dimension equal to the number of
inputs:

z = φ(x, ẋ, · · · , x(γ))ε Rm (3.22)

The components of these variables are differentially independent, so there are
functions ψ and θ such that:

x = ψ(z, ż, · · · , z(α)), u = θ(z, ż, · · · , z(β)) (3.23)
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Flatness connotes that all variables in the system (inputs, outputs and states)
can be differentially characterized according to the components of a vector z that
is a combination of the state variables and a finite number of their time derivatives.
Normally, the set of flat outputs is not unique [111].

On the other hand, to introduce the representation of flat systems in the multiva-
riable linear case (MIMO), consider the linear time-invariant system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (3.24)
with B = [b1, b2, ..., bm] ∈ Rn×m.

The Kalman controllability matrix is defined by the following non-square n × nm
matrix:

K =
[
B;AB;A2B; . . . ;An−1B

]
(3.25)

A system (A,B) is controllable whenever rank(K) = n. If the system is controlla-
ble outside the matrixK a set of n linearly independent column vectors can always be
extracted to form the controllability matrix Kc. It can be assumed that the n-column
full-rank controllability matrix K is of the form:

Kc =
[
b1;Ab1; · · · ;Aγ1−1b1; b2;Ab2; · · · ;Aγ2−1b2; · · · ; bm;Abm; · · · ;Aγm−1bm

]
(3.26)

where the set of integers γ1, ..., γm are the Kronecker controllability indices of the
inputs and they satisfy

∑m
j=1 γj = m.

The state coordinate transformation z = K−1c x leads to a system of the following
form:

ż = Fz +Gu (3.27)
where F = K−1c AKc and G = K−1c B

The flat outputs are defined by the following expression:

Z =
[
φ1, φ2, . . . , φm

]T
z =


φ1

φ2
...
φm

κ−1c x (3.28)

with φj, j = 1, 2, ...,m, is of the form:

φj = [

γ1︷ ︸︸ ︷
0, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸

γj

, 0, . . . , 0] (3.29)

where the 1 occupies the position
∑j

i=1 γi in the n-dimensional row vector.
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3.2.3. Extended state observers

ADRC based on observers is then introduced by examining, in an introductory
manner, a small illustration that will also be useful for the desired generalization.
Consider the following flat disturbed system:

ẏ(t) = u(t) + ξ(t) (3.30)

where ξ(t) is a uniformly completely bounded disturbance with, in addition, a uni-
formly completely limited first-order time derivative ξ̇(t) [111]. Consequently, let con-
sider the presence of finite constants α0 and α1 such that:

sup
t
|ξ(t)| ≤ α0, sup

t
|ξ̇(t)| ≤ α1 (3.31)

Regard, for λ > 0, the consequent disturbance observer for the first-order system:

˙̂y = u+ z + λ (y − ŷ) (3.32)

where z is an secondary variable to be defined based on the stability of the output
estimation error and the perturbation prediction error, described by η(t) = ξ(t)−z(t).
The output prediction error es(t) = y(t)− ŷ(t), then advance in accordance with:

ės = −λes + ξ(t)− z = −λes + η (3.33)

Let ρ be a rigidly positive constant quantity. Regard the subsequent positive defi-
nite Lyapunov function candidate in the (es, η) space:

V (es, η) =
1

2
e2s(t) +

1

2ρ
η2(t) (3.34)

The time derivative of the function V (es, η) associated with the estimation error
dynamics has the following composition:

V̇ (t) = es(t)ės(t) +
1

ρ
η(t)η̇(t)

= −λe2s + ηes +
1

ρ
η(ξ̇ − ż)

= −λe2s + η

[
es +

1

ρ
(ξ̇ − ż)

]
(3.35)

It can be noted that the alternative

ż(t) = ξ̇(t) + ρes(t) (3.36)
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guides to the negative semi-definite time derivative of function V , i.e., V̇ = −λe2s ≤ 0.
The observer paths asymptotically concur with es(t) = 0 and to η(t) = z(t)− ξ(t) = 0.
Based on these conditions, the prediction error dynamics fulfills the asymptotically
exponentially stable dynamics:

ës = −λės − ρes (3.37)

However, since ξ(t) is unknown, dynamics selected in advance for z, is unrea-
lizable. For this reason, the following remodeled proposal for the dynamics of z is
proposed:

ż = ρes = ρ(y − ŷ) (3.38)

In this case, the following observer is available for the perturbed system:

{
˙̂y(t) = u(t) + z(t) + λ (y(t)− ŷ(t))
ż(t) = ρ (y(t)− ŷ(t))

(3.39)

This observer is commonly called the Extended State Observer (ESO) and the
error estimate fulfills the following exogenous dynamics:

{
ės(t) = ξ(t) + z(t) + λes(t)
ż(t) = ρes(t)

(3.40)

i.e.,
ës + λės + ρes = ξ̇(t) (3.41)

The prediction error dynamics is a disturbed linear system that will be globally
asymptotically exponentially stable as long as the constants ρ and λ are selected to
be rigidly positive. Suppose ε is a small and rigidly positive parameter employed in
a singular disturbance approach to analyze the stability of the high-gain prediction
error system. Let ρ and λ be as follows [111]:

λ =
2ζωn
ε

, ρ =
ω2
n

ε2
(3.42)

where are the natural frequency and the damping ratio desired in closed-loop. The
choice of these parameters establishes that the injected dynamics to be:

ë+

(
2ζωn
ε

)
ė+

(
ω2
n

ε2

)
e = ξ̇(t) (3.43)
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In terms of a Lyapunov stability analysis, a Lyapunov function candidate V (es, η)
is prescribed as defined in (3.34). Considering the z dynamics in (3.40), the subse-
quent time derivative for V along the exogenous dynamics is obtained:

V̇ = −λe2 +
(ξ(t)− z)ξ̇(t)

ρ
≤ −λe2 +

|(ξ − z)|
∣∣∣ξ̇(t)∣∣∣

ρ

≤ −λe2 +
|(ξ − z)|α1

ρ
(3.44)

This expression guides the semi-definite time derivative of function V to be ne-
gative, therefore, the observer paths asymptotically converge to es(t) = 0 and to
η(t) = z(t)− ξ(t) = 0 [111].

3.2.4. Generalities on GPI observers

GPI control, or control based on integral reconstructors, is a new advancement in
the literature about automatic control. This method proposes the structural recons-
truction of the state from inputs and outputs, modulates the effect of initial conditions
and modulates the effect of classical disturbances: that is, constant, ramp, parabolic
disturbances. As a result of these errors and due to the principle of superposition,
the integral error compensation completes the stable feedback design [112].

Consider the perturbed system (3.30) next to the following uniform absolute boun-
dedness supposition concerning to the second-order time derivative of the disturban-
ce input:

sup
t
|ξ(t)| ≤ α0, sup

t
|ξ̇(t)| ≤ α1 (3.45)

An extended observer for the disturbed first-order system may be the following:

ẏ0 = y1(t) (3.46)

where e0 = y − y0 is the observation error of the output whose perturbed linear
dynamics is given by:

d3e0
dt3

+ λ2
d2e0
dt2

+ λ1
de0
dt

+ λ0e0 =
d2ξ(t)

dt2
(3.47)

The selection of the observer design parameter set can be established according
to the characteristic polynomial of a required asymptotically exponentially stable pre-
diction error dynamics ([111]). For appropriate rigorously positive values p, ωn and ζ,
said polynomial can have the following form:
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pcl(s) = (εs+ p)
(
ε2s2 + 2ζωnεs+ ω2

n

)
= 0 (3.48)

Hence, the observer parameters can be selected as follows:

λ2 =
p+ 2ξωn

ε
, λ1 =

2ξωnp+ ω2
n

ε2
, λ0 =

ω2
np

ε3
(3.49)

Using the expression (3.46) the corresponding estimation error dynamics for e0 is
given by:

ė0 = −λ2e0 − λ1
∫ t

0

e0(σ1)dσ1 − λ0
∫ t

0

∫ σ1

0

e0(σ2)dσ2dσ1 + ξ(t) (3.50)

Regardless of the system order, there is the option of expanding the typical ob-
server using a suitable linear combination of estimation error integrators. This fact
results in the probability of predicting some number of time derivatives of the pertur-
bation signal [111].

Example Consider the following mathematical model of the two tank system in
Fig. 22:

ẋ1 = − c
A

√
x1 + 1

A
u

ẋ2 = − c
A

√
x2 + c

A

√
x1

y = x2

(3.51)

Regulating the output y(t) of the system is desired, so that it tracks a given
smooth trajectory yref (t). System parameters A and c are assumed to be known.

The two tank system admits the following input-output model:

ÿ =
1

2A

[
c2/A2

ẏ + c
A

√
y

]
u− c

2A

ẏ
√
y
− c2

2A2
(3.52)

Consider the following simplified system with a nonlinear input gain:

ÿ =
1

2A

[
c2/A2

ẏ + c
A

√
y

]
u+ ξ(t) (3.53)

where:

ξ(t) = − c

2A

ẏ(t)√
y(t)
− c2

2A2
(3.54)
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Figure 22. A two tank system

For the disturbed system defined in eq. (3.52) the following nonlinear control law
is proposed:

u = 2A
A2

c2

(
y1 +

c

A

√
y
)
v (3.55)

v = −ξ̂(t) + ÿref (t)− 2ζcωnc (y1 − ẏref (t))− ω2
nc(y − yref (t)) (3.56)

where y1 is the estimated output velocity which is synthesized by the following
GPI observer:

ẏ0 = y1 + λ5(y − y0)
ẏ1 = 1

2A

[
c2/A2

y1+
c
a

√
y

]
u+ z1 + λ4(y − y0)

ż1 = z2 + λ3(y − y0)
ż2 = z3 + λ2(y − y0)
ż3 = z4 + λ1(y − y0)
ż4 = λ0(y − y0),
ξ̂(t) = z1

(3.57)

The coefficients {λ0, λ1, . . . , λ5} are chosen in accordance with the well known
rule of equating the closed loop characteristic polynomial of the system to one with
roots conveniently situated in the left half of the complex plane. One way to select
these parameters is through the definition of the following characteristic equation for
the estimation error:

pobs(s) =
(
s2 + 2ζoωnos+ ω2

no

)3
= 0 (3.58)
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In other words:

{
λ0 = ω6

no, λ1 = 6ζoω
5
no, λ2 = 3ω4

no (1 + 4ζ2o )
λ3 = 4ω3

noζo (3 + 2ζ2o ) , λ4 = 3ω2
no (1 + 4ζ2o ) , λ5 = 6ζoωno

(3.59)

In Fig. 23 the response of ADRC controlled two tank system is presented. As can
be seen the controlled system quickly follows the set level reference. The parameters
of the plant are given by c = 1.2 m2.5/s, A = 4 m2, the parameter of the controller
are ζ = 1.5 and ωn = 5 rad/s, and the observer parameters are ζo = 2 and ωno = 40
rad/s. The block diagram in Simulink is presented in Figure 24.

Figure 23. Output trajectory tracking for ADRC controlled two tank system
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Figure 24. Block diagram in Simulink

Program codes The code corresponding to the disturbance observer is presen-
ted below:

function Yh=Observador(u) ux=u(1); y0=u(2);
y0h=u(3); y1h=u(4);
z1=u(5); z2=u(6);
z3=u(7); z4=u(8);

%Parameters
c=1.2; A=4; zo=2; wno=40;
lam5=(6*zo*wno);
lam4=(12*wno2 ∗ zo2 + 3 ∗ wno2);
lam3 = (8 ∗ wno3 ∗ zo3 + 12 ∗ wno3 ∗ zo);
lam2 = (12 ∗ wno4 ∗ zo2 + 3 ∗ wno4);
lam1 = 6 ∗ wno5 ∗ zo;
lam0 = wno6;

%Observer
Yh(1,1)=y1h+lam5*(y0-y0h);
Yh(2,1)=c2/(2 ∗ A3) ∗ ux/(y1h+ c/A ∗ sqrt(y0)) + z1 + lam4 ∗ (y0− y0h);
Y h(3, 1) = z2 + lam3 ∗ (y0− y0h);
Y h(4, 1) = z3 + lam2 ∗ (y0− y0h);
Y h(5, 1) = z4 + lam1 ∗ (y0− y0h);
Y h(6, 1) = lam0 ∗ (y0− y0h);

The program code of the control law is the following:

58



function uc=controlADRC(u)
c=1.2; A=4;wn=5; zi=1.5;

y0=u(1); yp=u(2); yr=u(3);
yrp=u(4); yrpp=u(5); z1=u(6);

%Control law
uc=2*A3/c2 ∗ (yp+ c/A ∗ sqrt(y0)) ∗ ...
(−z1 + yrpp+ 2 ∗ zi ∗ wn ∗ (yrp− yp) + wn2 ∗ (yr − y0));

The program code for the trajectory path is the following:

function Fs=trayectoria(u)
t=u(1); a=0.275; b1=0.29;
b=0.33; eps=b/a;

t1=6; t2=23;
delt=t2-t1;
tdif = abs(t-t1);

z1in = 3;
z1f =5; z1dif = z1f-z1in;

tau=(tdif/delt);
tau2=tau*tau;
tau3=tau*tau2;
tau4=tau*tau3;
tau5=tau*tau4;
tau6=tau*tau5;
tau7=tau*tau6;
tau8=tau*tau7;
tau9=tau*tau8;

r1=12870;
r2=91520;
r3=288288;
r4=524160;
r5=600600;
r6=443520;
r7=205920;
r8=54912;
r9=6435;
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z1st1 = z1in;
fr=r1-r2*tau+r3*tau2-r4*tau3+r5*tau4-r6*tau5+r7*tau6-r8*tau7+r9*tau8;
z1stt = z1in+z1dif*tau8*fr;
z1st2 = z1f;

if (t <= t1)
Fs=z1st1;
end

if (t > t1 t <= t2)
Fs=z1stt;
end

if (t > t2)

Fs=z1st2;
end
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4. ROBUST CONTROL APPROACH

4.1. Introduction

Most of the controller design methodologies that exist are based on the mathema-
tical description of the dynamics of the plant. Nevertheless, several physical systems
in the real world are nonlinear, time-variant, and considerably uncertain, so precise
numerical models of physical plants are generally unavailable in process control. A
solution to this problem is the robust control, which allows to guarantee robust stabi-
lity and robust behavior in the presence of bounded disturbances and uncertainties
in the model.

Several approaches for robust stability and robust control design problems ha-
ve been developed, however some of these methods are too conservative. Some
works have solved H∞ continuous and discrete time control problems through ba-
sic procedures in LMI. In [39], for example, a parameterization of two LMI-based all
suboptimal H∞ controllers was provided. Although this study was founded on Lya-
punov’s quadratic equations for stability and performance analysis, the controllers
designed could be excessively conservative and difficult to implement in real plants
[40].

Model uncertainty makes much more difficult the controller design, since specifi-
cations not only for a single plant with fixed parameters, but for each and every one
of the plants within the uncertainty, must be accomplished. The independent study of
a control solution for each plant within the uncertainty, that is the brute-force solution,
is very time consuming or even impossible. To deal simultaneously with not just one,
but many performance specifications at the same time, including stability, reference
tracking, disturbance rejection, actuator limitations, reduction of vibrations, noise re-
jection, etc., for uncertain systems, Quantitative Feedback Theory (QFT) can be a
powerful robust control design tool [41].

In situations where the disturbance can be measured, a feedforward block could
add to mitigate or suppress the effect of the disturbance. Nevertheless, in processes
where external disturbances cannot measure in a direct line, an active disturbance
rejection control (ADRC) can be used. This method requires the least amount of
information from the plant, tolerating the uncertainty in the model. The mixed effect
of both external disturbances and unmodeled dynamics is dealt with as a secondary
state, predicted by using an additional dimension represented for a Luenbergeer-
type state observer [21, 23, 111]. Once the total perturbation is predicted, it can
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Figure 25. Disturbance observer based control scheme

cancel out in the control law, reducing a complex non-linear control problem in a
single linear invariant time.

One class of observers for active rejection of disturbances are the GPI observers,
which naturally act as extended state observers and are an extension of these. These
GPI observers are capable of on-line estimating a finite number of time derivatives of
the disturbance input. The design consists of the incorporation of output error integral
injections to cancel the effects of state-dependent and exogenous disturbance input
signals, altering the plant’s dynamics [111].

This chapter presents the control scheme proposed in this thesis for uncertain
systems with and without time delay. As can be seen in Fig. 25, the design con-
sists of combining feedforward and robust feedback controllers. The feedback con-
trol is employed for tracking and stabilizing the uncertain plant. The disturbances are
compensated by a feedforward control where an extended observer estimates such
disturbances.

First, the feedforward controller is designed, which consists of tuning parameters
of the disturbance observer. Next, the robust feedback controller is designed for the
equivalent plant (uncertain plant plus feedforward controller).

4.2. Feedforward Controller Design

A natural conception to deal with the problem of non-measurable disturbances is
to estimate the perturbation from accessible variables, and then a suitable control
signal is applied based on the estimation. This notion could be instinctively extended
to deal the uncertainty as part of the disturbance [25].

In this dissertation, the use of GPI observers is proposed due to their robust
phase variable regeneration feature and high-gain based perturbation estimation, in
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addition to the prediction of a finite number of perturbation input time derivatives. This
approach results in properties of mitigation or disturbance rejection and provides
trajectory tracking, robust performance and output stabilization [107].

Consider a single-input single-output linear system, described by the subsequent
frequency domain expression:

y(s) = Pr(s) [u(s) + d(s)] (4.1)

where u(s) is the input signal, y(s) the controlled variable, d(s) the external pertur-
bation, and Pr(s) the real plant.

Fig. 26 presents the blocks diagram for the disturbance observer, in the frequency
domain, for system described by (4.1), where Q(s) is the disturbance filter.

Figure 26. Blocks diagram of disturbance observer

The transfer function of the equivalent plant with input uc(t) and output y(t):

Peq(s) =
Pr(s)

1−Q(s) +Dd̂y(s)Pr(s)
(4.2)

In order to achieve that Peq(s) ≈ Pr(s) it must be guaranteed that:

Dd̂y(s) = Q(s)P−1n (s) (4.3)

where, Pn(s) is the nominal plant.

In this way, the transfer function is described as follows:

Peq(s) =
Pr(s)

1−Q(s)
(

1− Pr(s)
Pn(s)

) (4.4)
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In order to show how the observer estimates the disturbances (external and in-
ternal), consider the estimated disturbance signal:

d̂(s) = Dd̂y(s)y(s)−Q(s)u(s) (4.5)

By substituting (4.1) and (4.3) in (4.5), it is obtained that:

d̂(s) = d(s)QPrP
−1
n −Q

[(
1− PrP−1n

)
u(s)

]
(4.6)

When ĺım
s→0

Q(s)
[(

1− PrP−1n

)
u(s)

]
≈ 0, the disturbance estimation error can be

approximated as:

ed(s) = d̂(s)− d(s) ≈ d(s)(Q(s)− 1) (4.7)

The disturbance estimation error ed(s) will trend to zero as time goes to infinity, if
the filter Q(s) is selected as a low-pass form: that is, ĺım

s→0
Q(s) = 1.

The design of the Q(s) filter has an important function in the observer design. To
optimally predictive the effect of the disturbance, the filter Q(s) should be unity gain
over a frequency range. However, this fact could increase sensor noise and also ma-
ke it impossible to implement the observer due to the inverse of the nominal plant
Pr(s) is required. Typically, the filter Q(s) is designed in such a way that the degree
of the denominator of the transfer function is greater than the degree of the nominal
plant in order to ensure that the transfer function Dd̂y(s) is implementable. The se-
lection of a pass filter is since the perturbation d̂(t) is usually low or medium, while
the noise of the sensors is of medium or high frequency. Thus, the observer could
predict the perturbation in a low and medium frequency range while also filtering out
the high-frequency measurement noise.

4.2.1. Disturbance rejection of linear systems

As mentioned above, the Generalized Proportional Integral (GPI) observers were
introduced by Sira-Ramirez and Feliu-Batlle in the framework of sliding-mode ob-
servers to be applied in the online detection of obstacles in the operation of flexible
robots [110]. The great advantage of employing this type of observers is to use a
design that inherently introduces iterated output error integral injections to attenua-
te the influence on the prediction error of external and state-dependent disturbance
input signals actuating on the dynamics of the process [111].
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Consider the n-dimensional flat system:

y(n) = K(t, y)u+ ψ(t) (4.8)

where K(t, y) is known, evenly bounded and far from zero, and the function ψ(t)
which is unknown and is uniformly absolutely bounded, as well as each of its tem-
poral derivatives to a finite order m. Lets consider the following observer of grade
n+m:

ẏ0 = y1 + λm+n−1(y − y0)

ẏj = yj+1 + λm+n−j−1(y − y0),

j = 1, ..., n− 2

ẏn−1 = Knu+ z1 + λm(y − y0)

żl = zl+1 + λm−l(y − y0), l = 1, 2, ...,m− 1

żm = λ0(y − y0) (4.9)

where the transfer function of the disturbance filter is given by the following expres-
sion:

Q(s) =
z1(s)

u(s)
=
λm−1s

m−1 + λm−2s
m−2 + ...+ λ0

sn+m + λn+m−1sn+m−1 + ...+ λ0
(4.10)

This observer is commonly called as Generalized Proportional Integral (GPI) and
the disturbance estimation error can be reduced as small as desired if the observer
gain parameters {λ0, ..., λm+n−1} are appropriately selected. This causes the esti-
mation error of the time-varying disturbance to be confined to a sufficiently small
neighborhood around the origin of the phase space of such estimation error.

The coefficients λj are selected such that the following polynomial in the complex
variable s, is Hurwitz:

pobs(s) = sm+n + λm+n−1s
m+n−1 + ...+ λ0 = 0 (4.11)

The GPI observer is a generalized description of ESO since, by setting m = 1,
the GPI is reduced by a linear ESO. For this reason, the GPI will provide greater
accuracy of estimation in the presence of polynomial time series disturbances, that
is, higher order time-varying disturbances. This type of observer achieves a more
accurate disturbance estimate since, due to the integral chain, more information from
the perturbation is used in the observer design. In other words, the internal model of

65



the perturbation is inherently incorporated into the observer for the prediction of the
disturbance [25].

There are multiple ways to select the GPI observer parameters. By using the
methodology proposed by [63], in order to mitigate typical peaking effects in high
gain observers, the coefficient λ0 can be chosen as:

λ0 =
Tα0

λn+m
(4.12)

where α0 is an arbitrary and strictly positive constant and the term T > 0 is known as
the desired settling time or generalized time constant. The parameters λ0, λ1...λn+m
are determined by:

λi =
T iα0

αi−1α2
i−2α

3
i−3...α

i−1
1 λn+m

, i = 1, ..., n+m− 1 (4.13)

λn+m =
T n+mα0

αn+m−1α2
n+m−2α

3
n+m−3...α

n+m−1
1

(4.14)

From the above expressions, α1 is the desired damping factor of the observer and it
must be an adjustable constant parameter greater than 2. [63] proposes to calculate
the remaining αk coefficients by:

αk = α1

sin
(

kπ
n+m

)
+ sin

(
π

n+m

)
2 sin

(
kπ
n+m

) , k = 2, ..., n+m− 1 (4.15)

4.2.2. Disturbance rejection of time-delay systems

One of the main problems of classic controllers is their behavior against plants
with a considerable delay. Such delays may be due to the time spent in sensing,
transmitting over large distances, calculating or sending the control law to the en-
trance of the plant or even because parts of the process require covering certain
distances at finite speeds before having a measurement.

Despite being a new control design framework, ADRC applications continue to
grow, but they are not without constraints. For example, most successful ADRC so-
lutions have been achieved with systems with small time delays, and processes with
large delays still represent a major challenge. This work proposes a new Smith pre-
dictor scheme with active disturbance rejection for systems with time delay and pa-
rametric uncertainty.
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Consider the n-dimensional, time-delay smooth dynamic system:

f (n)(t) = K(t, f, ḟ , .., f (n−1))u(t− td) + ξ(t)

y(t) = cof + c1ḟ + ...+ cn−1f
(n−1) (4.16)

where td is the time-delay, K(t, f, ḟ , .., f (n−1)) is the nonlinear input gain matrix,
evenly bounded, known and far from zero; y is the output of the system and the
function ξ(t) can be unknown and uniformly absolutely bounded as well as each of
its temporal derivatives to a finite order m. f is the flat output of the system described
in (4.16), such that the input u and the output y can in turn be expressed as a linear
combination of the flat output and a finite number of its derivatives, i.e., that y and u
differential functions of the flat output f [109].

Lets consider the following extended state observer of grade n+m:

ḟ0 = f1 + λm+n−1(f − f0)

ḟj = fj+1 + λm+n−j−1(f − f0),

j = 1, ..., n− 2

ḟn−1 = Knu(t− td) + z1 + λm(f − f0)

żl = zl+1 + λm−l(f − f0), l = 1, 2, ...,m− 1

żm = λ0(f − f0) (4.17)

where Kn is the nominal gain of the plant. This observer is commonly called as Ge-
neralized Proportional Integral (GPI) and the disturbance estimation error can be
reduced as small as desired if the observer gain parameters {λ0, ..., λm+n−1} are
appropriately selected. The coefficients λj are selected such that the following poly-
nomial in the complex variable s, is Hurwitz:

pobs(s) = sm+n + λm+n−1s
m+n−1 + ...+ λ0 = 0 (4.18)

Let d(t) be the disturbance at plant input, defined as d(t) = ξ(t)/K(t, y) and z1 the
estimate of such disturbance, i.e. z1 = d̂(t). The transfer function between the control
signal and the input disturbance estimation is given by: u(s)/z1(s) = −Q(s)e−tds,
where:

Q(s) =
λm−1s

m−1 + λm−2s
m−2 + ...+ λ0

sn+m + λn+m−1sn+m−1 + ...+ λ0
(4.19)

By using the methodology proposed by [65], in order to mitigate typical peaking
effects in high gain observers, the coefficients λi can be chosen.
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The fundamental objective of controlling delayed systems is to design a GPI ob-
server that estimates, even if approximately, the state-dependent ξ(t) disturbance of
the original system. The GPI observer must also be able to predict the future values,
ξ(t + td), of the unknown disturbance ξ(t), in order to compensate them from the
controller designed for the advanced system and thus be able to follow the advan-
ced output reference asymptotically while the generated control is shared with the
plant.

Robust Smith Predictor Scheme

The Smith predictor (SP) is undoubtedly the most widely used downtime com-
pensator in time delay plant control due to its high effectiveness and simple imple-
mentation. Its main advantage is to mitigate the effect of time delay in the characte-
ristic equation of the closed loop control system in systems without uncertainty [79].
However, this control structure has several limitations, such as low performance in
uncertain plants, it cannot be applied in the control of plants with integrators or uns-
table, it does not work well when there is a time delay variable in time, and it presents
low robustness to external measurable or non-measurable disturbances.

This work proposes a methodology for the robust design of Smith predictors for
disturbance rejection in systems with delay and parametric uncertainty. Consider
the control scheme based on disturbance observer (DOB) in Fig. 27. The transfer
function between the output and the input disturbance is given by:

Pdy(s) =
[1−Q(s)e−t̂ds]P (s)e−tds

1 +
[
P (s)
Pn(s)

e−tds − e−t̂ds
]
Q(s)

(4.20)

where Pn is the average model used in the Smith Predictor and the disturbance
observer.

Figure 27. Predictive Disturbance Observer for Time-Delay systems
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In the block diagram of the Fig. 27 the GPI observer is the basis of a estimation
approach of the advanced disturbance d(t + td), with the purpose of canceling said
disturbance in the advance system called, Pn(s). This makes it possible to reduce
the problem of non-linear control with input delay, to a weakly disturbed linear sys-
tem with input delay. The approximate cancellation of the disturbance input for the
system in advance allows to utilize the classical Smith predictor in the consequence
dominant linear problem. According to Smith’s predictor methodology, a linear feed-
back controller K(s) can be proposed, which takes into account the error between
the output of the plant and the delayed exit of the system in advance.

The transfer function from controller signal to the output of the plant -which will
be called equivalent plant of the system- is given by the following expression:

Peq(s) =
P (s)e−tds + Pn(s)(1− e−t̂ds)

1 +
[
P (s)
Pn(s)

e−tds − e−t̂ds
]
Q(s)

(4.21)

y(s)

y∗(s)
=

e−tds(
1− e−t̂ds

) Pn(s)
P (s)

+ e−tds
(4.22)

The diagram shown in Fig. 27 is rearranged to an equivalent structure, as shown
in Fig. 28, where the expression Peq(s) is presented in eq. (4.21) and H(s) is the
denominator of eq. (4.22).

Figure 28. Equivalent Structure of the Smith Predictor

An inspection of the equivalent plant configuration shows that, if there is no uncer-
tainty in the model, the design of the controller can be done without considering the
effect of the disturbance observer. Nevertheless, if there is a model-plant mismatch
the expression Peq(s) is different from P (s)e−tds. As a result, the control system is
influenced by the uncertainty and a robust control technique must be considered.

4.3. Robust feedback controller

As mentioned, in real systems there is always a certain degree of uncertainty.
Such uncertainty implies that the output of a system cannot accurately predicted
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even if the inputs and model are known. Therefore, it is preferable that the controller
is robust, that is, the controller is insensitive to uncertainty, affirming that a robust
control system retains its stability and performance properties against model uncer-
tainties in the plant.

The robust control theory aims to ensure that the designed controller works well
when implemented in the actual process. This objective can be considered to be
composed of a series of sub-objectives, which are presented in Table 3. It is not
always possible to achieve good rejection of disturbances together with robustness,
so compromise solutions must be adopted in the design. To reach appropriate com-
promise solutions to the conditions of disturbances and uncertainty in the system
considered, it is useful to have indices that ”measure”the sensitivity and robustness
properties of a given controller. Two indexes traditionally used are the sensitivity fun-
ctions of the loop.

Table 5. Description of control sub-objectives
Sub-
objective

Description

Nominal
stability

It is the main sub-objective. The system must be stable
in closed loop for given or nominal working conditions.

Nominal
performance

The controller must supply adequate suppression of dis-
turbance signals (at the plant, sensors and actuators)
and measurement noise, and must ensure tracking re-
ference commands for the nominal plant.

Robust
stability

The control system must be stable in closed loop for the
set of possible plants that may occur as a result of the
uncertainty in the model parameters.

Robust
performance

The controller must supply adequate disturbance signals
rejection and measurement noise attenuation, and must
ensure adequate tracking and decoupling of reference
commands, for all models of the plant in some set defined
by a uncertainty model.

Reviewing the closed-loop response of the 2 degree of freedom control system in
Fig. 11, it can be said that it is governed by four transfer functions, collectively called
sensitivity functions:

T (s) =
P (s)K(s)

1 + P (s)K(s)
, S(s) =

1

1 + P (s)K(s)
(4.23)

Si(s) =
P (s)

1 + P (s)K(s)
, Su(s) =

K(s)

1 + P (s)K(s)
(4.24)
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These transfer functions correspond to the sensitivity (S(s)), complementary sen-
sitivity (T (s)), input sensitivity (Si(s)) and control sensitivity (Su(s)), and are algebrai-
cally related as follows:

S(s) + T (s) = 1

Si(s) = S(s)P (s) =
T (s)

K(s)

Su(s) = S(s)K(s) =
T (s)

P (s)
(4.25)

In addition to specify the response of the system to signals, the T (s) and S(s)
functions serve to specify the robustness properties of the system. As the reference
signal normally has a low frequency spectrum, T (s) is specified as a low-pass filter,
and thus reject the measurement noise, usually high frequency.

The sensitivity function S(s) is crucial in feedback system design because it ta-
kes care of several design performance requirements. The tracking error, relative
stability and disturbance attenuation properties depends on S(s). Generally, |S(jω)|
is constrained to be small at low frequencies, but gradually tends to increase to unity
as ω →∞ for system in which the open loop transfer function is strictly proper.

Assume that uncertainty is represented in model ∆(s) with multiplicative structu-
re:

P (s) = Pn(s) (1 + ∆(s)) (4.26)

where Pn(s) is the nominal plant, and the level of uncertainty is known:

|∆(jω)| ≤ WT (ω) (4.27)

Typically, WT (ω) is an increasing function with the frequency ω (that is, the model
is more uncertain at higher frequencies). Then, if the control system of Fig. 11 is
stable with the Pn(s) plant, it will be stable with the P (s) plant if and only if:

|Tn(jω)| < 1

WT (ω)
⇐⇒ |WT (ω)T (jω)| < 1, ∀ ω (4.28)

where Tn(jω) is the nominal complementary sensitivity.

The nominal performance of the system can be specified by defining the form of
|Sn(jω)| with a given weight function WS(ω) requiring that:

|Sn(jω)| < 1

WS(ω)
⇐⇒ |WS(ω)Sn(jω)| < 1, ∀ ω (4.29)
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If eq. (4.29) is preserved from the nominal plant to the real plant, and stability is
also preserved, the system has robust performance. Robust performance, as intuiti-
vely can be expected, requires robust stability as a necessary condition.

This dissertation proposes the use of different feedback controllers to achieve
robust performance and stability specifications in the presence of uncertainty in the
parameters of the plant model. The use of quantitative control theory, the design of
robust PI controllers of 2 degrees of freedom and the use of resets controllers is
proposed.

4.3.1. Quantitative robust controller

QFT is a robust control engineering methodology that can simultaneously hand-
le several performance specifications at the same time, such as stability, reference
tracking, disturbance rejection, model uncertainty, actuator limitations, noise rejec-
tion, vibration reduction, etc. This versatility has allowed QFT to be successfully ap-
plied in different applications, including monovariable and multivariable, stable and
unstable, and linear and nonlinear systems, among others.

The reliability of the final controller depends on the adequate description of the
uncertainty. If the uncertainty covers the entire operating range of the plant, a con-
troller that complies with all QFT bounds will guarantee good performance for each
possible plant. However, a large uncertainty would make it more difficult to obtain a
suitable controller for the problem, due to a trade-off between the size of the uncer-
tainty and the achievable performance of the controller [41].

In order to take advantage of the potential of QFT in the control of uncertain
systems, this dissertation proposes the use of this technique, both in systems with
delay and in systems free of delay. Based on the scheme in Fig. 28, the use of the
following design specifications is proposed:

Stability specification∣∣∣∣ y∗(jω)

F (jω)r(jω)

∣∣∣∣ =

∣∣∣∣ K(jω)Peq(jω)

1 +K(jω)Peq(jω)

∣∣∣∣ ≤ δU(ω) (4.30)

where K(jω) is the controller and Peq(jω) is the equivalent-plant.

The stability specification has to be achieved at every frequency of interest, where
this inequality imposes a maximum over-impulse in closed-loop system response. It
also guarantees minimum phase and gain margins, which reflects the degree of
stability of the control system.
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Disturbance rejection at plant output∣∣∣∣y∗(jω)

do(jω)

∣∣∣∣ =

∣∣∣∣ 1

1 +K(jω)Peq(jω)

∣∣∣∣ ≤ δs(jω) (4.31)

Unlike the stability, the sensitivity specification δs(ω) is usually only defined for some
low to middle frequencies. In this way, the high frequency activity of the actuators is
reduced and possible mechanical fatigue problems are avoided.

Reference tracking specification Two functions TU(ω) and TL(ω) are given that
indicate the output specifications of the closed-loop transfer function magnitude:

TL(jω) ≤
∣∣∣∣y∗(jω)

r(jω)

∣∣∣∣ =

∣∣∣∣F (jω)K(jω)Peq(jω)

1 +K(jω)Peq(jω)

∣∣∣∣ ≤ TU(jω) (4.32)

In order to reduce the high frequency activity of the actuators and avoid possible
mechanical fatigue problems, the reference tracking specifications are generally only
defined for some low to mid frequencies. A practical choice is given by the following
expressions [41]:

TU(s) =
ω2
n/a(s+ a)

s2 + 2ζωns+ ω2
n

TL(s) =
1

(τ1s+ 1)(τ2s+ 1)(τ3s+ 1)
(4.33)

As mentioned above, the scheme in Fig. 28 has been proposed for the design
of controllers for systems with delay. However, the same scheme can be used for
delay-free systems, only if the block which contains the delay is omitted.

Reset mechanism

In order to improve the performance of linear controllers designed in QFT, a re-
set mechanism of the state can be added. The reset state of the controller (or one
of its coordinates) applies only when a certain condition is met. The condition that
activates or triggers the reset is normally the zero crossing of the tracking error.

The first reset mechanism, called the Clegg integrator (reset control scheme in
Fig. 29) was proposed in 1958. This component has the following dynamics:
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Figure 29. Clegg Integrator (CI)


u̇(t) = e(t) if e(t) 6= 0

u(t+) = 0 if e(t) = 0
(4.34)

The first expression of the above equation represents the continuous mode (the
integral action) and the second the discrete mode or reset, which is triggered at the
zero crossing of the input, causing a zero restart of the control action [9].

To understand the advantages of using resets control schemes consider the
transfer function of a plant P (s) = 1/s(s + 0.5). Figure 30 shows the step response
of this system for a classic controller and the same controller but with reset mecha-
nism. The figure shows the improvement achieved with reset control: a noticeable
reduction in overshoot and faster response than the linear system. In this way, reset
control emerges as a good option to overcome the typical linear design trade-offs
between robustness and bandwidth, or other competing objectives [9].

It can be verified that like a normal integrator, the CI provides -20dB/dec, but
with a phase of only about -38◦ (instead of -90◦). This property is very appropriate
to achieve bandwidth and phase margin without the trade-off of fundamental linear
limitations [10].

In order to obtain better performance, the following P + CI present in [9] can be
used:


u(t) = kp

(
e(t) + 1

τi

∫ t
0
e(σ)dσ

)
if e(t) 6= 0

u(t+) = kpe(t) if e(t) = 0

(4.35)

The previous expression indicates that when e(t) 6= 0 a proportional-integral con-
trol scheme is presented, but when there is a zero crossing of the error the control
action is proportional.

The frequency response of this control scheme is given by the following expres-
sion:
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Figure 30. Comparison of linear controller and reset system.

(P + CI)(jω) = kp

[
j (ωτi + 4/π) + 1

jωτi

]
(4.36)

With this structure a phase lead up to 52◦ is achieved with respect to its ba-
se linear PI control. Then the P+CI structure allows better performance in terms of
bandwidth and robustness.

For systems with uncertainty, the design of the reset controller can be done by
using the QFT technique. In this case, the open-loop transfer function is described
by L(s) = G(s)P (s), where the frequency response of the feedback compensator is
given by the PI + CI compensator (4.36), that is, G(jω) = (PI +CI)(jω). This open-
loop transfer function can be used to design the compensator, guaranteeing that the
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response has the desired oscillatory characteristic for the reset to be effective and in
the presence of large plant uncertainty [9].

4.3.2. Robust 2-DoF PI controller

Although in most industrial process control applications the requested set-point
of the output variable typically is kept constant, in some cases, in order to alternati-
vely guarantee the operation of disturbance rejection and set point monitoring, it is
necessary to change the implementation of a one degree of freedom controller to a
two degree of freedom (2-DoF) implementation. The additional parameter provided
by the 2-DoF control algorithm improves its servo control operation while considering
the performance of regulatory control and the robustness of the closed-loop control
system [3].

This subsection presents the design of 2-DoF (two degree of freedom) PI robust
control scheme that includes the GPI observer presented in the previous section.

Consider the following 2-DoF PI control algorithm:

uc(s) = Kp

[
βr(s)− y(s) +

r(s)− y(s)

Tis

]
(4.37)

where the controller parameters to be tuned are θ = {Kp, Ti, β}. Then, the controller
output (4.37) is rearranged as follows (See Fig. 31):

uc(s) = Cr(s)r(s)− Cy(s)y(s) (4.38)

where Cr(s) and Cy(s) are given by:

Cr(s) = Kp

(
β +

1

Tis

)
(4.39)

Cy(s) = Kp

(
1 +

1

Tis

)
(4.40)

Optimization of Cost Functionals

From Figure 31 and equation (4.38), considering measurement noise, the re-
ference, and disturbance, the controlled variable can be obtained by the following
relation:

y(s) = Myr(s)r(s) +Myd(s)d(s) +Myn(s)n(s) (4.41)
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Figure 31. Two-degrees-of-freedom closed-loop control system

where
Myr(s) =

Cr(s)P (s)

1 + Cy(s)P (s)
(4.42)

Myd(s) =
P (s)

1 + Cy(s)P (s)
(4.43)

Myn(s) =
−Cy(s)P (s)

1 + Cy(s)P (s)
(4.44)

Myr is the transfer function from the setpoint to the controlled variable (or servo-
control closed loop transfer function),Myd is that from the load-disturbance to the out-
put variable (regulatory control closed-loop transfer function) and Myn is the transfer
function from the noise signal to the output variable [2].

Therefore, the target global control system noise free output is computed as fo-
llows:

ytg(s) = M tg
yr(s)r(s) +M tg

yd(s)d(s) (4.45)

and in the time domain as follows:

ytg(t) = ytgr (t) + ytgd (t) (4.46)

For the model-reference regulatory control and the servo-control response op-
timization, the cost functionals to be optimized are respectively defined as follows
[2]:

Jd(θp, θcy, θd) =

∫ ∞
0

[
ytgd (θp, θcy, θd, t)− yd(θp, θcy, t)

]2
dt (4.47)

Jr(θp, θc, θd) =

∫ ∞
0

[
ytgr (θp, θc, θd, t)− yr(θp, θc, t)

]2
dt (4.48)

where θd are the design parameters selected so that the control system robustness
matches a target value measured using the maximum sensitivity, θp the equiva-
lent plant parameters, θcy are the parameters of the expression (4.40), θcr are the
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parameters of the expression (4.39) and θc = θcr ∪ θcy the controller parameters.
ytgd (θp, θcy, θd, t) and ytgr (θp, θc, θd, t) are the target regulatory control closed-loop step
response and the target step response of the servo-control closed-loop transfer fun-
ction. Both step signals are of unit magnitude.

For the 2-DoF controller design, the following overall cost functional is optimized:

JT (θp, θc, θd) = Jr(θp, θc, θd) + Jd(θp, θcy, θd) (4.49)

With this cost functional, the same importance is assigned to the disturbance
rejection and the references tracking. The controller parameters θ∗c are obtained by
solving the optimization problem defined by the following equation:

J∗T = JT (θp, θ
∗
c , θd) = mı́n

θc
JT (θp, θc, θd) (4.50)

The controlled process model can be expressed as a quotient of polynomials in
s:

P (s) =
N−p (s)N+

p (s)

Dp(s)
(4.51)

where N+
p (s) is the controlled process model non-invertible part (right-half plane

zeros and/or dead-time).

Substituting (4.40) and (4.51) in (4.43), the target regulatory control-loop transfer
function is given by:

M tg
yd(s) =

(Ti/Kp) sN
+
p (s)

DM (θp, θcy, θd, s)
(4.52)

where DM (θp, θcy, θd, s) is the denominator of all the control system closed-loop
transfer functions with DM(s = 0) = 1. Substituting (4.39), (4.40) and (4.51) in (4.42),
the target servo-control transfer function is:

M tg
yr(s) =

(βTis+ 1)N+
p (s)

DM (θp, θcy, θd, s)
(4.53)

According to [2], to achieve a non-oscillatory output signal and, as a secondary
consequence a smooth control signal, the target closed-loop transfer functions (4.52)
and (4.53) are fixed such that the target global control system output ytg(s) (4.45) for
a first-order plus dead-time system is as follows:

ytg(s) =
e−λs

τcτs+ 1
r(s) +

(Ti/Kp) se
−λs

(τcτs+ 1)2
d(s) (4.54)
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The variable τc is a dimensionless design parameter, indicating the closed-loop sys-
tem response speed in relation to the open-loop process speed [2], and is selected
in order to achieve a non-oscillatory and smooth response with no steady-state error.

Robustness

A way of expressing system robustness is to use the stability margin Ms, which
is the smallest length from the Nyquist curve to the critical point (-1,0). This measu-
re is the complementary value of the maximum peak of the sensitivity function, or
Maximum sensitivity, defined as follows:

Ms = máx
ω

∣∣∣∣ 1

1 +K(jω)P (jω)

∣∣∣∣ (4.55)

where K(jω) is the frequency response of the controller.

It is feasible to acquire the normalized controller parameters and the consequen-
ce control system robustness as functions of the performance specification, τc, and
the model parameters, θp. Nevertheless, to reduce the design method, the controller
parameters are expressed as functions of the closed-loop control system robustness
parameter, Ms. In this way, the control system robustness Ms uses the relative speed
τc as the design parameter.

Parameters design θd from (4.49) are chosen just like that the control system
robustness with is adjusted to a objective value (robust design) measured by the
maximum sensitivity [2]. Low values of Ms imply Nyquist curve distant from the criti-
cal point, and consequently greater robustness [19].

By using (4.45) with (4.47) and (4.48) in order to optimize (4.49), the closed-loop
response relative speed τc is tuned to acquire a objective robustness level M t

s.

4.4. Feedforward and feedback controllers
integrated design

An alternative form of robust design is to tune simultaneously the feedforward
and feedback controller using the QFT methodology, and in this way the uncertain
system parameters are considered in the tuning stage.

For example, consider the linear perturbed SISO observable system in Fig. 32,
where y(t) is the output signal, ξ(t) is the external perturbation input and the group of
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parameters {a0, a1, . . . , an−1, b} are uncertain but limited by a set of closed intervals
in the real axis, ai ∈ [ai,min, ai,max], and b ∈ [bmin, bmax] [57].

The idea is to develop an ADRC scheme that is robust with respect to the poly-
nomial disturbance inputs of the form

ξ(t) =
r−1∑
i=0

pit
i (4.56)

where all parameters pi are fully uncertain.

The linear system has the subsequent state representation in observable cano-
nical manner:

˙̂x = Ax̂+ λx(y − ŷ) +B (u+ ω) (4.57a)

ż = Fz + λz(y − ŷ) (4.57b)

where Cz = [1, 0, 0, . . . , 0], ω = Czz and ŷ = Cx̂. The state transition matrices for
the linear SISO system in the figure are as follows:

A =


−an−1 1 0 · · · 0 0
−an−2 0 1 · · · 0 0

...
... . . . . . . ...

−a1 0 0 · · · 0 1
−a0 0 0 · · · 0 0

 , B =


0
0
...
0
b


(n×1)

(4.58)

λx =


λn+r−1
λn+r−2

...
λr+1

λr

 , F =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
0 0 0 · · · 0


(r×r)

λz =
[
λr−1 λr−2 · · · λ1 λ0

]T
(4.59)

By taking the Laplace transform for the eq. (4.57b), the following expression is
obtained:

sz(s) = Fz(s) + λz(Y (s)− Cx̂(s))

(sI − F )z(s) = λz(Y (s)− Cx̂(s))

z(s) = (sI − F )−1λz (Y (s)− Cx̂(s)) (4.60)
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Figure 32. Control of linear perturbed SISO system combining LADRC and QFT

where,
Λ = (sI − F )−1λz ⇒ z(s) = Λ(Y (s)− Cx̂) (4.61)

Now, by applying Laplace transformation in eq. (4.57a) and replacing the expres-
sion in eq. (4.61), the transfer function of Y (s) with respect to x̂(s) is obtained:

sx̂(s) = Ax̂(s) + λx(Y (s)− Cx̂(s)) +Bu+BCzz(s)

(sI − A+ λxC)x̂(s) = λxY (s) +Bu+BCzΛ(Y (s)− Cx̂(s))

(sI − A+ λxC +BCzΛC)x̂(s) = Bu+ (λx +BCzΛ)Y (s)

x̂(s) = Γ [Bu+ (λx +BCzΛ)Y (s)] (4.62)

where,
Γ = (sI − A+ λxC +BCzΛC)−1 (4.63)

With the suggested GPI observer, the subsequent ADRC approach for the trajec-
tory tracking of the specified plant with uncertainty is presented:

u = −ξ̂(t) +
[y∗(t)](n) −

∑n−1
j=0 κj(yj − [y∗(t)](j))

b
(4.64)

where y∗(t) is the requested output reference trajectory, and the collection of cons-
tant coefficients {κ0, κ1, . . . , κn−1} are the controller design parameters.

The control law described in eq. (4.64) can be rewritten as follows:

u = K̄f (R− x̂)− Czz (4.65)

where R is the reference input and K̄f ∈ Rn is a constant vector given by:

K̄f =
[κ0, κ1, . . . , κn−1]

b
(4.66)
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By combining the equations (4.65), (4.61) and (4.62) an expression for u(s) in
terms of Y (s) and R(s) is obtained

u(s) = K̄f (R− x̂(s))− CzΛ(Y (s)− Cx̂(s))

u(s) = K̄fR− (K̄f − CzΛC)x̂(s)− CzΛY (s)

u(s) = K̄fR− (K̄f − CzΛC)Γ [Bu+ (λx +BCzΛ)Y (s)]− CzΛY (s)[
1 + (K̄f − CzΛC)ΓB

]
u(s) = K̄fR−

[
(K̄f − CzΛC)Γ(λx +BCzΛ) + CzΛ

]
Y (s) (4.67)

The previous equation can be written as

u(s) =
D2(s)

D1(s)

[
D3(s)

D2(s)
R(s)− Y (s)

]
= K(s) [F (s)R(s)− Y (s)] (4.68)

where K(s) and F (s) are the feedback controller and prefilter of the block diagram
in Fig. 32. Such transfer functions can be calculated as:

K(s) =
D2(s)

D1(s)
(4.69)

F (s) =
D3(s)

D2(s)
(4.70)

with:

D1(s) =
[
1 + (K̄f − CzΛC)ΓB

]
D2(s) = (K̄f − CzΛC)Γ(λx +BCzΛ) + CzΛ

D3(s) = K̄f

[
1, 0, · · · , 0

]
(4.71)

In order to show the advantages of a combination between the linear active distur-
bance rejection control and the quantitative feedback theory, an illustrative example
is presented below.

Example Consider the inverted pendulum shown in Fig. 33. The equation that
describe is given by the following expression:

(M +m)ẍ = u(t)−mLθ̈ cos θ +mLθ̇2 sin θ − kẋ(
I +mL2

)
θ̈ = mgl sin θ −mLẍ cos θ (4.72)
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Figure 33. Inverted pendulum on a cart

where,

u(t) is the force applied to the cart

θ(t) is the pendulum angle to be controlled

x(t) is the position of the cart

m is the end mass

M is the cart mass

L = 0.5m is the stick length

k is the friction coefficient between the rail and the cart

I is the stick inertia

g = 9.8m/s2 is the gravity

The uncertain parameters are

M ∈ [0.9, 1.1]kg, m ∈ [0.1, 0.2]kg

k ∈ [0.1, 0.2]Ns/m, I ∈ [5, 10]10−3kgm2

By linearizing the non-linear multivariable model close to the operation point, the
state space description is given by:

83



ẋ =


0 1 0 0

0 −k(I+mL2)
(M+m)I+mL2M

m2L2g
(M+m)I+mL2M

0

0 0 0 1

0 mLk
(M+m)I+mL2M

mLg(M+m)
(M+m)I+mL2M

0

x +


0

I+mL2

(M+m)I+mL2M

0
− mL

(M+m)I+mL2M

u
y =

[
0 0 1 0

]
x

(4.73)

Given the state variables:

x = [x1, x2, x3, x4]
T =

[
∆x,∆ẋ,∆θ,∆θ̇

]T
The goal is to design a robust controller K(s) to keep the pendulum in the vertical

position for the following stability and performance specifications [44]:

-A minimum phase margin of 45◦

-Disturbance rejection plant output:∣∣∣∣ 1

1 + P (jω)K(jω)

∣∣∣∣ < ∣∣∣∣0.05 ((jω/0.05) + 1)

(jω + 1)

∣∣∣∣ (4.74)

The system in Eq. (4.73) is flat. By combining the equations (3.25), (3.27) and
(3.28), the flat output is given by the following expression:

F = −mML2 + IM + Im

m2L2g

[
mL∆x+ (I +mL2)∆θ

]
(4.75)

For an ADRC treatment of the control problem one would take:

F (4) = u(t) + ξ(t) (4.76)

For the previous disturbed system the following GPI observer is proposed:

Ḟ0 = F1 + λ4 (F − F0)

Ḟ1 = F2 + λ3 (F − F0)

Ḟ2 = F3 + λ2 (F − F0)

Ḟ3 = z1 + u+ λ1 (F − F0)

ż1 = λ0 (F − F0) (4.77)
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Assume that the state feedback control law in Eq. (4.66) is replaced by a PI
controller, such that:

K̄f =
kps+ ki

s
(4.78)

By combining the equations (4.78), (4.76) and (4.69), the following feedback con-
troller is obtained:

K(s) =
kps

6 + α5s
5 + α4s

4 + α3s
3 + α2s

2 + α1s+ λ0ki
s2 (s4 + λ4s3 + λ3s2 + λ2s+ λ1)

(4.79)

where,
α5 = (λ4kp + λ0 + ki) ; α4 = (λ3kp + λ4ki)

α3 = (λ2kp + λ3ki) ; α2 = (λ1kp + λ2ki) ; α1 = (λ0kp + λ1ki)

Because it may be difficult to tune a sixth-grade controller (as it appears in eq.
(4.79)), the method described in equations (4.12) - (4.15) is used to avoid the peak
effect in the estimation of the disturbance.

Selecting the parameters for the observer α0 = 1, α1 = 3 and T = 0.35 [s], and
kp = 80, ki = 100 for the controller, the results in Fig. 34 are obtained.

Simulation results indicate that the combination of QFT and ADRC more quickly
rejects external disturbances. Another notable advantage in the proposed control
scheme is its low energy consumption compared to the results obtained with the
QFT controller without observer.
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Figure 34. Control of inverted pendulum

86



5. NUMERICAL VALIDATION

This chapter validates the performance of the control scheme proposed in this
doctoral thesis in three cases of simulation of non-linear multivariable systems: a
one-state refrigeration cycle, an offshore wind turbine model and a glucose regula-
tion system in patients with diabetes type 1 mellitus. The discussions presented in
this chapter have been taken from [20, 22, 23], which are research published by the
author during the execution of this doctoral thesis. In all cases, numerical validation
required the use of MATLAB version 9.6 and the robust control toolbox presented in
[41].

5.1. Numerical Case 1: One-Stage Refrigeration
Cycle

Refrigeration by steam compression is one of the most widely used technologies
for generating cold, more in industrial than domestic refrigeration [92]. The power
demand range varies from 1 kW to 1 MW, which implies a high energy consumption
and consequently, a substantial impact on economic and environmental balances.
For example, supermarkets -which are high energy consumers- consume between 2
and 3 MW per year, and approximately 50 % of this energy is consumed in the cooling
processes. Besides, around 30 % of the energy in the world is employed for ventila-
ting, heating, and air conditioning (HVAC systems), in conjunction with refrigerators
and water heaters [59]. Accurately, several researchers reflect that air conditioners
and refrigerators demand 28 % of energy expenditure at home in the USA [12]. Thus,
improving energy efficiency in the refrigeration cycle could lead to a significant re-
duction in energy consumption.

Steam compression refrigeration systems are highly non-linear multivariable sys-
tems, with cross-coupling variables, thus their dynamic modeling is not trivial. Due to
advances in the technology industry, variable speed compressors and electronic ex-
pansion valves have progressively displaced current single-speed compressors and
thermostatic expansion valves, respectively. This fact must lead to advanced control
schemes, which save energy and mitigate fluctuations in the output variables, thus
obtaining more precise control and better system performance.

In this section the stated robust control problem is solved for a one-stage refri-
geration cycle using the active disturbance rejection approach through the design of
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GPI observers in the internal control loops and PID controllers in the external loops
by means of QFT methodology [53].

5.1.1. Process model

According to Fig. 35, a refrigeration cycle consists of: i) variable-speed compres-
sor, ii) electronic expansion valve, iii) evaporator and iv) condenser, where the goal
of each period is to suppress heat from the secondary flux at the evaporator and
turn off the heat at the condenser by transporting it to the secondary flux. The inver-
se Rankine cycle is implemented. The refrigerant passes into the evaporator at a low
temperature and pressure and evaporates at the same time that suppressing heat
from the secondary evaporator flux [13]. Then, the compressor raises the refrigerant
pressure and temperature, and it passes into the condenser, where its temperature
declines, condenses, and turns into subcooled liquid in the time that transporting
heat to the secondary condenser flux. The expansion valve ends the cycle by kee-
ping the pressure difference between the condenser and the evaporator [13].

Figure 35. Vapour compression system [11]

A large variety of refrigeration cycle system models can be found: from very com-
plex to simple models. The latter is oriented to multivariable control strategies. The
dynamical model used in this work is inspired by [70]. The heat exchangers are mo-
deled using the switched moving boundary method [92], where the heat exchanging
zone is divided into variable-length subzones of superheated, two-phase or/and sub-
cooled refrigerant. Depending on the quantity and classification of existing subzones,
up to five model characterizations or methods for the condenser and two modes for
the evaporator are defined [4].

For every mode, the state vectors xc and xe in (5.1) gather the most relevant
information at each instant of condenser and evaporator, respectively.
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xc = [hc,sh Pc hc,sc ζc,sh ζc,tp γc]
T

xe = [ζe,tp Pe he,sh γe]
T

xcycle = [xc xe]
T (5.1)

The state vectors xe and xc contain mixed elements such as the evaporation
and condensation pressures, Pe and Pc, specific enthalpies relating the single-phase
zones such as hc,sh, hc,sc and he,sh, the zone lengths ζc,sh, ζc,tp and ζe,tp, and the mean
void fractions at both heat exchangers γc and γe [12].

The uniform state vectors facilitate, through the heat exchanger modes, the es-
tablishment of a permanent dynamic system structure formulated in the form of a
non-linear descriptor that is presented subsequently [4]:

Zc (xc,uc) ẋc = fc (xc,uc)

Ze (xe,ue) ẋe = fe (xe,ue) (5.2)

Each mode in both heat exchangers has its own coefficient matrix Z(x,u), for-
cing function f(x,u) to store thermodynamic variables, and mass and energy balance
terms [4]. The choice of model outputs will depend on the interfaces of other system
components models:

uc = [ṁc,sec Tc,sec,in ṁc,in ṁc,out hc,in]T

ue = [ṁe,sec Te,sec,in ṁe,in ṁe,out he,in]T (5.3)

where ṁ is he mass flow and T is the temperature. The subscripts are defined
as: c: condenser, e: evaporator, sec: secondary flux, in: inlet and out: outlet.

In this work neither the mass flow ṁe,sec nor the inlet temperature Te,sec,in are
intended to be regulated. Consequently, the cooling requirement could be presen-
ted as a target on the outlet temperature of the secondary evaporator flux Te,sec,out,
where the mass flow and inlet temperature operate as measurable perturbations.
Concerning the condenser, the inlet temperature Te,sec,in and mass flow ṁc,sec of the
secondary flux are also treated as perturbations. The manipulated variables are the
compressor speed N and the expansion valve opening Av [13].
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Uncertain linear model

In order to describe the fundamental dynamic behaviour of the refrigerator system
and to design the robust controller, linear models were identified at different operating
points by means of a step response. Each model is expressed in the continuous
transfer matrix form: [

∆Te,sec,out(s)
∆TSH(s)

]
= G(s)

[
∆Av(s)
∆N(s)

]
(5.4)

where,

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
(5.5)

and

Gij =
kij
(
Tzijs+ 1

)(
τpijs+ 1

) (
Tfijs+ 1

) ; i, j = 1, 2. (5.6)

The fixed parameters of the obtained model are the following:

τp11 = 26.133 [s], τp12 = 30.494 [s], τp21 = 27.5 [s], τp22 = 39.927 [s],

Tz11 = 42.6 [s], Tz12 = 9.1954 [s], Tz21 = 38.6 [s], Tz22 = 52.675 [s].

And the uncertain parameters of the dynamic model are the following:

k11 = [−0.02532,−0.015204] ◦C, k12 = [−1.96,−1.49] 10−3 ◦C

k21 = [−0.407,−0.229] ◦C, k22 = [0.137, 0.172] ◦C

Tf11 = [0.1, 0.27] [s], Tf12 = [0.25, 0.57] [s],

Tf21 = [0.0146, 0.247] [s], Tf22 = [5.76, 7.68] 10−2 [s].

The so-called fixed parameters were kept constant at the different points of ope-
ration of the identification process while the so-called uncertain parameters changed
in value in each test. Table 6 includes the accepted range of the input variables, used
in the identification of the uncertain parameters model.

5.1.2. Feedforward control design

By considering that the linear system the Eq. (5.6) is controllable, its flat outputs,
fi, are given by:

fi =
kiiui(s)

(τpiis+ 1) (Tfiis+ 1)
; i = 1, 2. (5.7)
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Table 6. Input variable ranges
Variable Range Units
Av [10, 100] %
N [30, 50] Hz

Tc,sec,in [27, 33] oC
Te,sec,in [−22,−18] oC
Tsurr [20, 30] oC
ṁc,sec [125, 175] gs−1

ṁe,sec [0.0075, 0.055] gs−1

Pc,sec,in – bar
Pe,sec,in – bar

Therefore, controlled temperatures are determined by the following differential
equation:

Ti = Tzii
dfi
dt

+ fi; i = 1, 2. (5.8)

Now, from Eq. (5.7) the following simpler perturbed system can be obtained:

f (2) = kiiui + ξ(t) (5.9)

where ξ(t) is the disturbed signal that included depreciated dynamics.

An GPI observer (5.10) is designed for the system (5.9), which provides simulta-
neous estimations of the phase variables associated with the flat output f and the
disturbance ξ(t)

ḟ0 = f1 + λ3(f − f0)

ḟ1 = kiiui + z1 + λ2(f − f0)

ż1 = z1 + λ1(f − f0)

ż2 = λ0(f − f0) (5.10)

where f0 is the estimation of the flat output f , f1 is the first derivative of f0 and
z1 = ξ̂(t) is the disturbance estimation. To guarantee an establishment time at around
20 seconds of the estimation error, the observer gain parameters in equations (4.12)
- (4.15) were set as: T = 6 [s], α0 = 4 and α1 = 4. In this way the estimation error
characteristic polynomial is defined by pobs(s) = s4+21.85s3+59.68s2+23.87s+1.194 =
0.
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5.1.3. Feedback control design

For the design and validation of the controller, an operation point is selected within
the uncertainty of the plant model. Let Pr(s, θ) be the transfer function of the plant
with uncertainty θ, the nominal plant is given by:

Pn(s) = Pr(s, θn) (5.11)

where θn is the parameters vector of the operation point, which was selected as:

θn =
θmax + θmin

2
(5.12)

where θmin and θmax are the lower and the upper parameters vector, respectively, of
the uncertainty set.

In order to analyse the interaction of the inputs and outputs of the system, the
Bristol relative gain matrix is used, which is defined by:

R = Pn(0). ∗ P−Tn (0) (5.13)

In the case of the selected nominal plant, the obtained result is:

R =

[
0.85 0.15
0.15 0.85

]
(5.14)

This indicates that the pairs input-output u1 − y1 and u2 − y2 should be taken to
utilize the design of two single-input & single-output (SISO) controllers.

Table 7 shows the stability, sensitivity and reference tracking specifications given
by (4.30), (3.8), (3.9) and (3.10) for the equivalent plants P (s) of G11(s) and G22(s).

By using loop shaping on the Nichols chart with bounds computed from the tem-
plate of the equivalent plant, the 2DOF controller is obtained as follows:

K(s) = Kp +
Ki

s
+

Kds

(s/β + 1)
(5.15)

F (s) =
1

λs+ 1
(5.16)

Table 8 shows the controller and filter parameters for each SISO system.

Figure 36 shows the block diagram of the feedback-feedforward control for the
one-cycle refrigeration system.
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Table 7. Performance specifications
Parameter Units For G11(s) For G22(s)

δU – 1.66 1.45
ad – 0.01 0.0001
ωn rad/s 0.6 0.2
ζ – 0.5 0.5
a – 1 1
τ1 s 2 6
τ2 s 3 7
τ3 s 4 8

Table 8. Parameters of filters and controller
Parameter For G11(s) For G22(s)

Kp -2.2 1.44
Ki -5 1
Ki -0.228 0.41
β 100 16
λ 2 5

Figure 36. Block diagram of one-cycle refrigeration control system

5.1.4. Numerical validation and analysis

Fig. 37 shows the stability, sensibility and tracking reference analysis in the fre-
quency domain, where the dashed line is the specification in the frequency domain
and the solid line in each plot represents the worst case. Fig. 37(a) presents the
analysis of the closed-loop stability specification, defined in (4.30), for G11(s) and
Fig. 37(d) for G22(s). The control system meets the stability specification since the
solid line is below the dashed line δU in all the analysed cases.
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Fig. 37(b) shows the frequency-domain analysis of the sensitivity specification for
G11(s) and Fig. 37(e) for G22(s). The control system meets the sensitivity specifica-
tion in all the studied cases, since the solid line is below the dashed line δs. Fig. 37(c)
and Fig. 37(f) present the limits TL(jω) and TU(jω) in (4.32) in order to analyse the
reference tracking specification in the time-domain. The control system meets the
specification (is between the upper and lower limits) in all the studied cases.
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Figure 37. Robustness Specifications Analysis. Stability: (a) G11(s), (d) G22(s);
Disturbance rejection: (b) G11(s), (e) G22(s); Reference tracking: (c) G11(s), (f) G22(s).
Specification (dashed line) and worst case within the uncertain plants at each frequency
(solid line).

On other hand, Fig. 38 shows the reference tracking of the controlled variables
TSH and Tsec,evap,out within the considered range. Fig. 38(a) plots the manipulated
variables, corresponding to Av and N . The PID controller with disturbance observer
reacts quickly to the reference changes, despite the non-measurement of the pertur-
bation variables and the existing dynamic coupling of the multivariable system (Fig.
38(b)).

In order to carry out a quantitative comparison between the two controllers, the
average of eight performance indices is evaluated. The first two indicators are the
Ratios of Integrated Absolute Error (RIAE), considering that both the outlet tempera-
ture of evaporator secondary flux Tsecevapout and the amplitude of superheating (TSH)
must follow the trajectories set for each one. The third indicator is the Ratio of Inte-
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grated Time multiplied Absolute Error (RITAE) for the output signal Tsecevapout, consi-
dering that numerical validation usually includes a step change in its set-point. The
fourth, fifth, and sixth indicators are the Ratios of Integrated Time multiplied Absolu-
te Error (RITAE) for the second output signal (TSH), considering that that numerical
validation includes three sudden changes in its set-point. The seventh and eighth
indicators are the Ratios of Integrated Absolute Variation of Control signal (RIAVU)
for the two control signals, the valve opening Av, and the compressor speed N . The
mixed index is presented as the average value of the eight individual indices [13].
Therefore, the combined performance index is described by:

J (C1, C2) =
1

8

8∑
i=1

Ri (C1, C2) (5.17)

where each Ri (C1, C2) is the ratio between the i-th performance index of C2 (PID
controller with observer) and the i-th performance index C1 (PID controller without
observer). These indices are presented in the following expressions:

IAEi =

∫ time

0
|ei(t)| dt

ITAEi =

∫ tc+ts

tc

(t− tc) |ei(t)| dt

IAV Ui =

∫ time

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt (5.18)

Since the index J (C1, C2) in (5.17) is equal to 0.4, the PID controller with GPI obser-
ver has a better performance than the reference controller.

5.1.5. Conclusions

In this section, the problem of robust control of a one-stage refrigeration cycle
is solved by using GPI observers designed and robust PID controllers designed by
QFT methodology. The observer’s efficiency is since the unknown parameters, and
external perturbations of the flat input-output dynamics are considered an added ad-
ditive perturbation, which is a function of time with the assumption of being uniformly
bounded. This non-linear perturbation and the phase variables associated with the
flat output are sufficiently accurately estimated in line through linear high-gain Luen-
berger observers, called GPI observers.

The proposed method is easy to implement, making it an appealing solution for
refrigeration systems. Reference tracking analysis and a combined performance in-
dex show that the robust controller reacts quickly to the reference changes, despite
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Figure 38. Comparison of the descentralized PID controller with the ADCR-PID
controller: (a) Input variables; (b) Output variables.

the non-measurement of the disturbance variables and the dynamic coupling of the
multi-variable system, compared to decentralized PIDs proposed with the bench-
mark. Besides, stability and sensitivity specifications are reached throughout the
range of uncertainty of the identified model.
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5.2. Numerical Case 2: Offshore Wind Turbine

Wind turbines are complex systems, with large flexible structures working under
unpredictable and turbulent environmental conditions. High uncertainty and nonli-
near models, substantial variations of wind speed, mechanical fatigue, and stabi-
lity problems are the main challenges for designing advanced control systems [44],
[121]. Thus, in this control approach, manipulated variables such as torque and pitch,
controlled variables such as rotor speed and tower displacement, and actuator cons-
traints were also taken into account.

Most of the control techniques applied to these systems are: decentralized PID
[125], optimal LQG [8], [102], predictive [60], [128], H∞ [76], [94], based on fuzzy
logic [105], based on neural networks [17], [71], based on the estimated wind speed
[61] and adaptive control [116], [36], [85].

On the other hand, floating wind turbines offer the opportunity of being used with
offshore wind energy. However, movements of their platform make these systems
much more dynamic compared with the ground-landed ones. This fact demands high
requirements on the control system, especially on the blades angle control pitch.
Thus, novel controllers should be designed to regulate the rotor speed and reduce
structural loads during the floating platform’s low-frequency motion.

This section compares the dynamic performance of a nonlinear control approach
based on flat filtering concerning a baseline controller on an offshore wind turbine.
Feedback linearization and Generalized Proportional Integral (GPI) compensator are
used to reduce load and mechanical fatigue in the collective pitch blade, at the same
time, a PI reset controller is designed to regulate the rotor speed for an uncertain pa-
rameter model of the generator torque. To validate the control approach, a baseline
controller is used, which combines an Indirect Speed Controller (ISC) and a collecti-
ve blade pitch controller (CPC). Simulation results show that the controller based on
flatness and reset mechanism significantly reduces rotor speed and power variations
in full load conditions and perfect wind preview.

5.2.1. Wind turbine modeling

A typical system wind energy conversion can be represented as in Fig. 39, whe-
re wind energy captured by the turbine is converted into mechanical torque through
the drive train and then transformed into electrical energy by a doubly-fed induc-
tion generator connected, for example, to the grid. The aerodynamic torque can be
expressed as Eq. (5.19).

Ma = 0.5ρπCP (λ, β)R3v2/λ (5.19)

97



where R [m] is the length of the blades, λ = ωtR/v is the speed ratio, ωt [rad/s] is the
turbine speed and CP (λ, β) is the non-linear power coefficient.

Figure 39. A typical conversion system for wind energy

On the other hand, a two-mass drive train model with flexible shaft can be ex-
pressed by the equations (5.20) and (5.21).

Jtω̇t = Ma −NMg (5.20)

meT ẍT + ceT ẋT + keT (xT − x0T ) = Fa (5.21)

where Jt [kg/s2] is the inertia of turbine, Mg [Nm] is the electrical generator torque,
xT [m] is the tower top force-aft displacement, N is the gear box ratio meT [kg], ceT
[N-s/m] y keT [N/m] are the tower equivalent modal mass, structural damping, and
bending stiffness, respectively.

The aerodynamic thrust is given by Eq. (5.22).

Fa = 0.5ρπCT (λ, β)R2v2 (5.22)

where CT is the effective thrust coefficient.

5.2.2. Feedforward-feedback control design

As turbines increase in size, alleviating structural loads plays an important ro-
le in the design of controllers. Therefore, one of the main purposes of the control
system is to maintain both the maximum mechanical loads in the turbine structure
and the mechanical fatigue within the design limits [44]. The block diagram of the
robust control approach for the wind generation system proposed in this dissertation
is presented in Fig. 40.
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Figure 40. Feedback-Feedforward control approach for offshore wind turbine

Pitch control

For pitch control a feedback linearization based on differential flatness is propo-
sed. Let a class of non-linear systems representable in the form of Eq. (5.23):

ẋ1 = x2

ẋ2 = x3

...

ẋn = fn(x1, x2, ..., xn) + ugn(x1, x2, ..., xn) (5.23)

These kinds of systems represented by Eq. (5.23) are exactly linearizable by
redefining the control variable in terms of the state and an external auxiliary input.
This redefinition can be interpreted as a non-linear feedback process by transforming
the coordinate of the control variable.

Multivariable systems, which are exactly linearizable by means of state coordi-
nate transformation, and static state feedback, constitute the simplest class of flat
systems [108].

By defining the auxiliary input as Eq. (5.24), a linear system that exhibits a pure
integration chain structure occurs.

w = fn(x1, x2, ..., xn) + ugn(x1, x2, ..., xn) (5.24)

For Eq. (5.22) the auxiliary variable can be defined by the following expression:
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w = ẍT =
Fa − ceT ẋT − keT (xT − x0T )

meT

(5.25)

Then, the output tracking error is governed by:

ëxT = ew (5.26)

where exT = xT − xref , ew = w − ẍref and xref is the desired steady state value
for xT

A stabilizing state feedback control law is given by:

ew = −k2ėxT − k1exT (5.27)

In order to consider the integral reconstruction of ėxT the control law and the
above equation can be modified by the following expression [35], [112], [110]:

ew = −k2 ˆ̇exT − k1exT − k0
∫ t

0

exT (σ)dσ (5.28)

where the estimated ˆ̇exT is computed by integrating the next equation :

ˆ̇exT =

∫ t

0

ew(σ)dσ (5.29)

In Laplace transform terms the subsequent expression for the suggested output
error feedback controller is obtained:(

1 +
k2
s

)
ew(s) = −

(
k1 +

k0
s

)
exT (5.30)

The robust controller presents the subsequent combined time and frequency do-
main notation:

w(s) = −
[
k1s+ k0
s+ k2

]
(xT − xref ) (5.31)

The characteristic polynomial of the closed loop system is then given by the fo-
llowing fourth order polynomial:

pk(s) = s3 + k2s
2 + k1s+ k0 = 0 (5.32)
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whose roots are defined and achieved by appropriately selecting the coefficients
{k0, k1, k2}. By choosing the coefficients k0, k1, k2 such that pk(s) = (s + α)(s2 +
2ζωns + w2

n) is possible to maintain the tracking error vector in a small area around
the origin. The design parameters of the characteristic polynomial of the observer
were set to be:

ωn = 2 [rad/s], ζ = 0.5, α = 10

By combining equations (5.22) and (5.25), the following control law is obtained:

CT (λ, β) =
meTw + ceT ẋT + keT (xT − x0T )

kv
(5.33)

where kv = 0.5ρπR2v2.

By using a inverse function of the look-up table CT (λ, β), the desired pitch angle
is obtained:

βd = β(λ,CT ) (5.34)

Torque Control

By linearising equation 2 around the point of operation P0 = (wt0, v0, β0) the follo-
wing linear equation is obtained:

Jt∆ω̇t = αω∆ωt + αv∆v + αβ∆β −N∆Mg (5.35)

with
αω =

∂Ma

∂ωt

∣∣∣∣
P0

, αv =
∂Ma

∂v

∣∣∣∣
P0

, αβ =
∂Ma

∂β

∣∣∣∣
P0

Then, the uncertain linear model with lumped disturbance is the following:

∆ωt(s)

∆Mg(s)
=

Ka

s+ a
+ d(s) (5.36)

where Ka = −N/Jt and a = αω/Jt = [0.0774, 0.444], for wind speed between 13
and 25 m/s.

By using a PI controller, the characteristic equation of the system is as follows:

s2 + (a+Kakp)s+Kaki = 0 (5.37)
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The parameters ki (integral gain) and kp (proportional gain) of the controller can
be selected based on the desired sensitivity function, defined as:

S(s) =
s(s+ a)

s2 + (a+Kakp)s+Kaki
(5.38)

The parameters kp and ki can be selected in such a way that the following sensi-
tivity specification is obtained:

|S(s)| ≤ s

s+ 10
(5.39)

Reset Control

In order to improve the robustness and speed of the torque controller the following
P + CI control based in [9] is proposed:


u(t) = kp

(
e(t) + 1

τi

∫ t
0
e(σ)dσ

)
if e(t) 6= 0

u(t+) = kpe(t) if e(t) = 0

(5.40)

The previous expression indicates that when e(t) 6= 0 a proportional-integral con-
trol scheme is presented, but when there is a zero crossing of the error the control
action is proportional.

The frequency response of this control scheme is given by the following expres-
sion:

(P + CI)(jω) = kp

[
j (ωτi + 4/π) + 1

jωτi

]
(5.41)

With this structure a phase lead up to 52◦ is achieved with respect to its ba-
se linear PI control. Then the P+CI structure improves its performance in terms of
bandwidth and robustness.

Baseline Controller

The baseline controller is described in [62] and combines an Indirect Speed Con-
troller (ISC) and a collective blade pitch controller (CPC). Both controllers use the
generator speed as the input and they are designed to work independently in the
below-rated and above-rated wind speed range. Baseline Collective Pitch Controller
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The collective blade pitch control signal is calculate using a gain-scheduled PI
controller on the speed error between the filtered and the rated generator speed
[62]:

∆β = GK(β)

(
KP∆ωg +KI

∫ t

0

∆ωg(τ)dτ

)
(5.42)

where the dimensionless gain-correction factor GK(β) is given by the following ex-
pression:

GK(β) =

(
1 +

β

βk

)−1
(5.43)

βk is the blade-pitch angle at which the pitch sensibility is twice its value at the rated
operating point. In other words,

∂Pa
∂β

(β = βk) = 2
∂Pa
∂β

(β = 0) (5.44)

In order to ensure a second order characteristic response given by ωnφ = 0.6
[rad/seg] and ζφ =0.6 to 0.7, [62] proposes the following Proportional-Integral cons-
tants:

KP =
2Jtω̂tζφωnφ

−∂Pa

∂β
(β = 0)

; KI =
Jtω̂tω

2
nφ

−∂Pa

∂β
(β = 0)

(5.45)

Baseline Torque Controller

For the torque controller, the operation is divided into five control regions: 1, 11
2
, 2, 21

2

and 3. In region 1, the wind speed is too low for extracting power. Region 2 is a con-
trol region for optimizing power capture. The generator torque needed to maintain the
maximum power coefficient CP,max in this region can be determined by the Indirect
Speed Controller (ISC) [101]:

Mg = kiscω
2
g (5.46)

where kisc =
ρπR5CP,max

(λoptN)3

In region 3, the torque controller regulates wind power by inverting the equation
of the electrical power:

Mg =
Pg,rated
ηgωg

(5.47)

The transition regions 11
2

and 21
2

use a linear function as state feedback and link
the region 2 to region 1 and 3, respectively [101].
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Figure 41. Reaction to an EOG at 13m/s (left) and 25m/s (right) in the case of
perfect wind preview using the 5MW reference wind turbine. Simulated with
reduced SLOW model: Baseline controller (blue), Non-linear GPI (green) and
Non-linear GPI with reset (red).

5.2.3. Numerical results and discussions

In this section, the non-linear GPI pitch controller and the reset torque controller
are compared with respect to a baseline controller. The control goal is to maintain
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constant the rotor speed at 12 r.p.m, generator power at 5MW and to reduce struc-
tural loads.

In order to validate the performance of the proposed control methodology two
Extremes Operating Gust signals (EOGs) -also known as ”The Mexican Hat”due to
its shape- are applied according to Commission IE et al. [27] to the Simplified Low
Order Wind Turbine SLOW model (SLOW) developed by Schlipf [101].

Figure 41 shows the reaction for EOG signals at 13 and 25 m/s, in the case
of perfect wind preview using the 5MW reference wind turbine. Both the non-linear
controller and the GPI non-linear controller with reset provide an active rejection of
the perturbations, greater than the Baseline controller, ensuring that the rotor speed
and the tower displacement recover their values quickly at a steady-state. However,
the reset mechanism allows a rapid stabilization of rotor speed with considerable
less control effort for both wind speed profiles. For the wind speed of 13 m/s the non-
linear controller without reset reaches saturation and the generator torque Mg has
sustained oscillations for the wind speed of 25 m/s. This situation does not occur if
the reset mechanism is added since for both wind speed values the generator torque
recovers rapidly after the rotor speed passes for through its nominal value.

5.2.4. Conclusions

In this section, a control scheme based on GPI and reset controllers for a nonli-
near model of an offshore wind turbine is presented and numerically validated. The
GPI controller’s coefficients are calculated in a trivial form, with assumes global pole
placement effort for the closed-loop dominant stability. The combination of the feed-
back controller and the observer works appropriately, and the extended observer
design is not required. This approach could easily be amplified to simplify control of
nonlinear, uncertain, and exogenously disturbed systems.

The proposed controller scheme for offshore wind turbines actively rejects dis-
turbances, ensuring maximum efficiency in the wind energy system conversion. The
5MW reference wind turbine simulation results show that the nonlinear controller with
reset mechanisms performs more efficiently than the baseline feedback controller for
EOG at 13 and 25 m/s, in the perfect wind preview.

Finally, one of the main advantages of the GPI controller is that the tuning of the
control parameters at different points of operation of the wind generation system is
not required, however, the active disturbance rejection is guaranteed.
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5.3. Numerical Case 3: Glucose Control in Type 1
Diabetes Mellitus Patients

Diabetes is a hard illness in which the body either cannot produce or appropria-
tely use insulin. This disease causes high blood sugar levels, and thus could cause
damage to the organs, blood vessels and nerves, and is considered the fifth cause
of death worldwide after communicable diseases, cardiovascular diseases, cancer
and injury [131].

Glucose regulation is a topic that has been studied for several decades, and
different solutions have been proposed. With the appearance of new technologies
in glucose sensing and insulin infusion, acting upon glucose levels using real-time
measurements is now possible since the sampling period of most continuous gluco-
se monitors (CGM) is 5 minutes or less [86]. Therefore, a technological effort focused
on developing artificial pancreas systems to control insulin delivery has increased.

Due to the glucose-insulin system being a time-delayed process, the control de-
sign is more demanding since an additional phase lag is introduced, which limits the
bandwidth and reduces the stability margin. In these cases, a greater effort of the
compensator is needed to achieve the desired performance specifications, within the
physical limits imposed by the time delay [42]. The well-known predictor of Smith has
been the main method to treat such systems, since it can increase the closed-loop
bandwidth by eliminating the effect of time delay in the closed-loop. The prerequi-
site is an accurate system model available; otherwise, the non-perfect time-delay
cancellation in the loop can cause instability.

To deal simultaneously with not just one, but many performance specifications at
the same time, including stability, reference tracking, disturbance rejection, actuator
limitations, reduction of vibrations, noise rejection, etc. in the presence of uncertainty
in the model, quantitative feedback theory (QFT) can be a powerful robust control
design tool [41]. In [43] and [42] a Smith Predictor based on QFT is proposed to deal
with processes with large delays and uncertainty. The method is applicable in the
presence of uncertainty both in the model of the minimum phase part and in the time
delay.

This section presents a methodology for the design of feedback controller and
disturbances observer for a set of adult patients with type 1 diabetes by using the
QFT technique.

5.3.1. Mathematical model of gluco-regulatory system

The well-known Bergman’s model contains the minimal number of parameters
and is widely used in physiological researches to estimate glucose effectiveness
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and insulin sensitivity in the Intravenous Glucose Tolerance Test (IVGTT) [15]. This
model represents the response of the blood glucose concentration to an intrave-
nous glucose tolerance test and describes the behavior of glucose concentration in
plasma, G(t), and insulin concentration in plasma, I(t), which are connected by an
insulin-effect remote compartment denoted as Iis(t):

dG(t)

dt
= −p1 (G(t)−Gb)− Iis(t)G(t) + d(t)

dIis(t)

dt
= −p2Iis(t) + p3 (I(t)− Ib)

dI(t)

dt
= −nI(t) + u(t)/V1 (5.48)

where Gb [mg/dL] and Ib [pmol/L] correspond to the glucose and insulin basal level,
respectively. Intravenous glucose injection is defined as disturbance d(t) and the ac-
tuating variable is the intravenous insulin infusion rate u(t). Parameter p1 represents
the rate at which glucose is removed from the plasma. p2 and p3 are the fractional
transfer coefficients of insulin in and out of the remote compartment where insulin
action is expressed. n is the fractional disappearance rate of insulin and V1 is an as-
sumed intravenous insulin distribution volume. Fig. 42 illustrates a schema of mass
transport according to Eq. (5.48). The continuous lines denote mass transports and
the dashed line indicates the effect of one concentration on another.

Figure 42. Schematic representation of Bergman’s minimal model

The model formulated in [56], describes the carbohydrates catabolism to mono-
saccharide taking place during meal digestion, as well as intestinal absorption. The
intravenous glucose injection, represented by a two-compartment chain with identi-
cal transfer rates 1/tmax,g, is given by:

d(t) =
DgAgte

−t/tmax,g

Vgt2max,g
(5.49)
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where Dg [g] is the proportion of carbohydrates consumed, Ag is the carbohydra-
te bioavailability, tmax,g [min] the time-of-maximum presence rate of glucose in the
available glucose compartment and Vg [L/Kg] is the partition volume of the available
compartment (glucose distribution space).

Motivated by these simple glucose-insulin models, other approaches were pro-
posed. Recently, in [99] the following linear parameter- variant (LPV) model from the
subcutaneous insulin delivery (pmol/min) to the subcutaneous glucose discrepancy
(mg/dl) is presented:

Gj(s) = kj
(s+ z) e−15s

(s+ p1) (s+ p2) (s+ p3)
(5.50)

where z = 0.1501, p2 = 0.0138 [min−1], p3 = 0.0143 [min−2/(pmol/L)] and the domi-
nant pole p1 [min−1] is a variant parameter as a function of glucose. When conside-
ring the inter-patient variability, the model was adjusted by means of the 1800 rule,
obtaining a personalized gain k indicated by kj [mg/dL].

5.3.2. Feedforward control design

Considering that the linear system (5.50) is controllable, its flat output, f , is given
by:

f(s) =
e−15su(s)

(s+ p̄1) (s+ p2) (s+ p3)
(5.51)

Therefore, the plasma glucose is determined by the flat output by means of the
following expression:

Ĝ(t) = k̄
(
ḟ(t) + zf(t)

)
(5.52)

where k̄ and p̄1 are parameters of average model of adult patients in the UVA/Padova
simulator.

f (3) = ud − (p1 + p2 + p3) f̈ − (p1p3 + p1p2 + p2p3) ḟ − p1p2p3f (5.53)

with ud(t) the input signal delayed, i.e. ud = u(t− 15).

Letting ξ(t) = − (p1 + p2 + p3) f̈ − (p1p3 + p1p2 + p2p3) ḟ − p1p2p3f , the original
problem is reduced to one defined on a simpler system, said to be in perturbed
Brunovsky’s canonical form:

f (3) = ud + ξ(t) (5.54)

ξ(t) is the disturbance signal that includes the depreciated dynamics and the effect
of glucose ingestion.
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A state extended observer or GPI observer (5.55) is designed for the system
(5.54), which provides simultaneous estimations of the phase variables associated
with the flat output f and of the disturbance ξ(t):

ḟ0 = f1 + λ3(f − f0)

ḟ1 = f2 + λ2(f − f0),

ḟ2 = ud + z1 + λ1(f − f0)

ż1 = λ0(f − f0) (5.55)

where f0 is the estimation of the flat output f , f1 and f2 are the first and second
derivatives of f0 and z1 = ξ̂(t) is the disturbance estimation. To guarantee an es-
tablishment time close to 5 minutes of the estimation error, the observer gain pa-
rameters in equations (4.12) to (4.15) were set as: T = 1.25 [min], α0 = 1 and
α1 = 8. As a result, the estimation error characteristic polynomial is defined by
pobs(s) = s4 + 349.6s3 + 15280s2 + 97780s+ 78230 = 0.

Based on equations (5.52) and (5.55) the derivative of glucose can be estimated
by means of the following expression:

ˆ̇G(t) = k̄ [f2 + (λ2 + zλ3) (f − f0) + zf1] (5.56)

5.3.3. Feedback control design

Automatic regulation of blood glucose levels has competitive control objectives
such as fast response for meal perturbations and CGM noise immunity. Since these
commitments are very difficult to achieve with LTI controllers, multiple control struc-
tures have been proposed. In this work, a unique control scheme to regulate glucose
in multiple adult patients with type 1 diabetes is presented. In order to validate the ro-
bust design methodology, the UVA/Padova simulator is used, which was included in
the first simulator accepted by the U.S. Food and Drug Administration as a substitute
to animal trials for preclinical testing of insulin therapies for T1D patients [67, 68].

For the robust controller design, the Smith predictor and observer parameters in
Fig. 43 are set for the average adult model of the UVA/Padova. By considering high
uncertainty and intra-patient parametric variation the quantitative feedback theory
is used to satisfy the desired performance specifications. If the feedback control
scheme of Fig. 28 and equation (4.21) are considered, the equivalent plant with
uncertainty (that contains the predictor, observer, the model of the glucose metabolic
process in the patient, the CGM sensor and the insulin pump) is obtained.
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Figure 43. Block diagram of the robust control approach for closed-loop Artificial
Pancreas

Definition of robustness specifications

As a frequency-domain methodology, QFT works with a vector of frequencies
of interest. Based on the families of equivalent-plants generated from the definition
of the parametric uncertainty and by inspection of the Bode diagram, the following
vector of working frequencies is defined: w = [0.0003, 0.04, 0.4, 1]. For the glucose
regulation system an adequate glucose level in the patient in the presence of strong
disturbances due to food intake is required. Considering the benefits of the distur-
bance observer, robust stability specifications and reference tracking can be defined
for the feedback controller design.

In order to obtain a phase margin around 30.5◦ a δU = 1.9 is set in the robust
stability specification in eq. (4.30). For blood glucose response to meal the following
references tracking specifications have been considered:

TU(s) =
7.744 ∗ 10−5(10s+ 1)

s2 + 0.0264s+ 4.84 ∗ 10−4

TL(s) =
0.16

(40s+ 1)(50s+ 1)(60s+ 1)
(5.57)

These frequency specifications correspond to a closed loop time constant bet-
ween 65 and 95 minutes.

The controller design by loop-shaping is carried out on the Nichols chart. The
bilinear transformation, z-domain to the w′-domain and vice versa, is used in order

110



to accomplish the QFT design for discrete control system design in the w′-domain.
If the simulations satisfy the desired performance specification, then due to the bi-
linear transformation, the z-domain controller K(z) is obtained [55]. However, the
non-minimum phase (n.m.p.) characteristic of a w′-domain plant transfer function re-
quires an all-pass-filter to apply the QFT technique. When it has a small practical
sampling period a pseudocontinuous-time (PCT) representation of a sampled-data
system can be used.

Fig. 44 shows the QFT bounds and the loop shaping of K(s) for the obtained
PTC system. It is done by adding poles and zeros until the nominal loop lies near
its bounds. The proposed PID controller appropriately meets all the bounds and the
discrete transfer function is given by the following expression:
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Figure 44. QFT-bounds and K(s) design-loop-shaping

K(z) = Kp +KiTs
1

z − 1
+Kd

N

1 +N Ts
2
z+1
z−1

(5.58)

where Kp = −0.01767, Ki = −6.9872 ∗ 10−5, Kd = −1.1067, N = 1.13024 and Ts = 5
[min].

Taking into account the controller K(z) defined in equation (5.58), the reference
tracking specifications presented in (4.32), and the equivalent plant model presented
in (4.21), a prefilter F (z) assures that all the input/output function FKPeq/(1 +KPeq)
are inside the band defined by the limits TU(ω) and TL(ω). The prefilter is shown in
(5.59), and the input/output functions and limits in Fig. 45.
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F (z) =
7.63z + 7.278

z2 − 1.859z + 0.8681
10−4 (5.59)
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Figure 45. Prefilter for reference tracking specification.

Anti-windup mechanism

To overcome the limitations of simple LTI controllers, the inclusion of a non-linear
scheme is proposed, as shown in Fig. 46. The structure consists of an anti-windup
stage with an inner-loop around the integral part for the actuator saturation. Also
two switches are added to control insulin infusion and avoid hypoglycemic events.
The first switch allows the suspension of insulin when glucose values are lower than
basal glucose, i.e. ∆G = G(t)−Gb < 0. The second switch is used to limit the insulin
application provided by the controller only when there is a positive derivative in the
measured or estimated glucose. This ensures that the pump only delivers insulin
when there is an increase in glucose due to meal intake, otherwise the infusion will
be suspended.

5.3.4. Numerical validations and analysis

The analysis of the closed-loop stability in the frequency domain is shown in Fig.
47. The dashed line is the stability specification δU defined in equation (4.30). The
solid line represents the worst case of all the possible functions KPeq/(1 + KPeq) at
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Figure 46. Nonlinear dynamic control structure

each frequency due to the model uncertainty. The control system meets the stability
specification (the solid line is below the dashed line δU ) for all the plants within the
uncertainty.
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Figure 47. Stability analysis, frequency domain: δU specification (dashed line), and
worst case of KPeq/(1 +KPeq) within the uncertain plants at each frequency (solid
line).

Test 1: Three meals

Prior to the clinical trial, the algorithm must be meticulously tested in silico. In this
researcher, some results are shown considering the following points: i) the complete
in silico adult cohort of the 10 subject FDA accepted UVA/Padova simulator, a CGM
as sensor, and a CSII pump; ii) all meals contain 90 g of carbohydrates; iii) The first
meal that is shown in simulation for each in silico subject is dinner.

Fig. 48 shows the results of blood glucose for the 10 adult patients. It can be
validated that in none of the cases there are hypoglycemia levels.
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Figure 48. Proposed predictive.observer-based control using UVA/Padova simulator

Test 2: Two protocols

A second way to validate the robust controller designed for the complete cutting
of patients was using two meal protocols presented in [26]. In Protocol #1 a high
quantity of meal is considered, while protocol #2 presents fasting bands.

In this trial, the fasting phase of each patient is considered at the beginning of
the simulation. In addition, a postprandial period (PP) and one night (N) are defi-
ned as the time interval of 5 hours following the start of a meal, and the period
from midnight to 7:00 a.m., respectively [26]. Response times for the ten patients
to both protocols are depicted in Fig. 49. It can be seen that the designed predicti-
ve feedback-feedforward controller does not show hypoglycemia levels in any of the
cases.

5.3.5. Conclusions

In this section, a robust control strategy for the artificial pancreas problem for a
set of adult patients was presented. A linearized model with uncertainty is used for
designing a linear state controller using loop-shaping, joint to a feedforward contro-
ller based on GPI observer that simultaneously estimates states and disturbances.
A safety stage is added to regulate the amount of insulin once the blood glucose
concentration begins to decrease. This fact avoids low late postprandial levels and
hypoglycemic events and enables a safer closed-loop control. The most significant
advantage of this glucose regulation structure is that it does not require an indivi-
dualized design of the controller for each patient, but rather a single controller is
obtained for the set of adult patients. In silico results showed exemplary behavior in
all patients in different trial tests.
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(a) Protocol 1

(b) Protocol 2

Figure 49. Closed-loop responses for all the in silico adults (complete UVA/Padova
simulator) to protocol#1 and to protocol#2.
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6. EXPERIMENTAL VALIDATION

This chapter validates the experimental implementation of the control scheme
proposed in this doctoral thesis in a full-scale Raceway photobioreactor. For the des-
cription of this experimental case, all the information published by the author in [21]
has been taken. Experimental validation required the use of MATLAB software.

6.1. Experimental Case: Raceway Photobioreactor

Since the 50’s, the study of raceway-type photobioreactors has grown profoundly
intending to present industrial-scale solutions for the microalgae culture. Due to its
scalability and ease of cultivation, it is considered the most suitable production tech-
nology for the industrial of microalgae culture. Furthermore, this type of photobio-
reactor is preferred due to its low initial investment, simple operation, and low main-
tenance costs, compared to tubular-type photobioreactors [123]. This fact allows the
use of raceway photobioreactors for the production of biofuels from microalgae bio-
mass.

In this process, in addition to solar irradiance and temperature, pH can be con-
sidered the most important variable that influences the photosynthesis process in a
photobioreactor. The CO2 modifies the pH value since it changes the acidity of the
microalgae growth medium. Thus, different control schemes are present to manipu-
late this variable to regulate the pH level. Basic on-off controllers usually regulate
the pH conditions due to their simplicity and the lack of dynamic models. On the
other hand, PID and feedforward controllers have shown effective results in reducing
the influence of disturbances (i.e., radiation) on the pH tracking [30, 33]. Other con-
trol structures with beneficial results in photobioreactors are the predictive control
[14, 32, 129], event-based approach [88, 89] and model-free control [120].

This section describes a robust output feedback scheme, based on two-degrees-
of-freedom proportional-integral (PI) control and GPI observer for the active distur-
bances rejection in a Raceway type photobioreactor. This novel scheme approxima-
tely determines the non-linearities and exogenous and endogenous perturbations,
using the GPI observers, which include internal models represented by polynomials
in time and whose updating is automatic, allowing approximations arbitrarily close to
the perturbations unknown. Unlike state feedback control based only on GPI obser-
vers, the inclusion of a 2-DOF proportional-integral controller guarantees the robust-
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ness of the closed-loop control system using only the maximum sensitivity as the
design parameter.

6.2. Microalgal bioreactor: Operating principle

A Raceway reactor is a continuous flow system made up of a recirculation chan-
nel, usually about 0.3 m deep. Nutritious fertilizer is added into these channels, and
the crop is agitated with a paddle wheel. Although different types of open reactors
have been put into operation during the last decades, the most widely used photobio-
reactors include large shallow ponds, tanks, circular ponds and ponds with channels
[127].

The photobioreactor used in this research is placed at the Estación Experimental
Las Palmerillas in Almeria (Spain). It has a total surface area of 100m2, and two
50m channels, joined by U-shaped curves (see Fig. 50). The entire reactor is made
of white 3mm thick fiberglass and operates at a constant depth of 0.2m to ensure
desired performance, and taking into account power consumption issues, provides a
capacity of 20 m3 of medium (Fig. 50). The fluid circulates through a marine plywood
paddle-wheel, with eight paddles with 1.2m diameter, activated by an electric motor
with gear reduction and speed control using a frequency inverter [88].

The photobioreactor can be separated into three fundamental parts: paddlew-
heel, channels and sump. Consequently, three pH-T and dissolved oxygen probes
(5083 T and 5120, Crison, Barcelona, Spain) were placed at the end of each of
these sections, connected to transmitters (MM44, Crison, Barcelona, Spain). On a
scheduled basis, air or CO2 is supplied to the bottom of the sump using a diffuser to
control dissolved oxygen and pH of the culture. The gas flow into the photobioreactor
is measured with a mass flow sensor (PFM 725S-F01-F, SMC, Tokyo, Japan) [31].

6.3. Dynamic model of photobioreactor

The average irradiance strongly influences the growth rate of the microalgae (Iav)
received by the cells [1]. This variable is modeled as a function of the biomass density
(Cb), the total incident radiation on the reactor surface (Io), the light decrease of the
biomass (Ka) and the light path or culture depth (h) [46]. By considering the variation
of the amount of biomass with time, t, and the location along the reactor, x, the
average irradiance in any region of the photobioreactor could be computed using the
following equation:

Iav(t, x) =
I0(t)

KaCb(t, x)h

(
1− e(−KaCb(t,x)h)

)
(6.1)
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Figure 50. Raceway Photobioreactor

The photosynthesis ratio (PO2), described as the oxygen composition rate per bio-
mass mass unit, could be calculated as a function of dissolved oxygen concentration
[O2], average irradiance and pH into the culture, by the subsequent equation:

PO2(t, x) = (1− αs)
PO2,maxIav(t, x)n

KieIav(t,x)m + Iav(t, x)n
.(

1−
(

[02](t, x)

KO2

)z)(
B1e

−C1
pH(t,x) −B2e

−C2
pH(t,x)

)
− αsRO2 (6.2)

where PO2,max is the upper limit of the photosynthesis rate of microalgae under op-
timal conditions, RO2 is a dissolved oxygen release coefficient, n is the exponent
of the average radiation function, Ki, m and z are form coefficients and KO2 is the
oxygen inhibition constant. As the shadow influences the rate of photosynthesis, it is
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described by a dispersed factor αs in each cross-sectional surface. For the pH effect
on the photosynthesis rate, C1 and C2 are the activation energies of the Arrhenius
model, and B1 and B2 are the preexponential components [28].

Additionally, the carbon dioxide uptake, PCO2, could be described as a one-to-one
molar proportion between oxygen and carbon dioxide [96], from a basic equation of
photosynthesis, as follows:

PCO2(t, x) = −PO2(t, x) (6.3)

Additionally, by regarding an average value of oxygen coefficient yield, Yb/O2, the
resulting biomass could be calculated by the following equation:

Pb(t, x) = Yb/O2PO2(t, x) (6.4)

The injection of CO2 directly influences the pH, changing the acidity of the micro-
algae culture. To guarantee a high rate of photosynthesis, the optimal pH is between
7.0 and 9.0, with no significant photosynthesis rate variation being measured in this
range. Considering this fact, it is feasible to implement a control law to keep the pH
around 7.7 employing CO2 injections to change its value [89].

Linear model for control design

To propose a control law, this study uses a perturbed linear model at the operating
point. As is well known, the pH of the culture is highly dependent on the supply of
CO2 and solar radiation. The CO2 injected contributes to the generation of carbonic
acid and causes a decrease in the pH of the culture. Besides, in the presence of
irradiance, the microalgae carry out photosynthesis, a process in which the culture
absorbs CO2 and produces O2, thereby causing a gradual increase in pH. However,
the rise of solar radiation produces variations in the rate of photosynthesis, causing
an expansion of the pH rate [88].

The process dynamics could be depicted by a simplified linear model considering
the following statements:

The process control variable is the pH of the culture.

The opening of the flue gas injection valve is the manipulated variable.

The solar irradiation is the primordial perturbation of the system.

The following expression represents the linear model describing the pH level as
a function of the irradiance and the CO2 injection input around a operation point [88]:
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pH(s) =
k

τs+ 1
e−λsu(s) +

kr
τrs+ 1

I(s) (6.5)

where pH is the pH level of the culture, u is the amount of CO2 injected or control
signal, and I is the solar radiation. k = −0.228 [pH], τ = 158.5 [min] and λ = 2.98
[min] are the gain, time constant and delay of the transfer function from CO2 to pH,
and kr = 0.0007 [pH] and τr = 1903 [min] are the gain and time constant of the
transfer function from irradiation to pH. Figure 51 shows two examples of the model
validation obtained around the operating point of the system and with respect to a
unit step input signal. Notice that a fit greater than 80 % is obtained in both cases.

6.4. GPI observer design

Taking into account that the time delay of the transfer function from CO2 to pH is
much smaller than the time constant of the system, equation (6.5) can be approxi-
mated by the perturbed first order equation defined as:

ẏ = ku(t) + ξ(t) (6.6)

In order to estimate the disturbance, the following GPI observer is defined:

˙̂y = ku(t) + z1 + λ3(y − ŷ)

ż1 = z2 + λ2(y − ŷ)

ż2 = z3 + λ1(y − ŷ)

ż3 = λ0(y − ŷ) (6.7)

where z1 = ξ̂(t) is the estimated external perturbation (joint effect of the solar radia-
tion and the non-modelled dynamics).

By selecting the coefficients λi, it is possible to obtain the estimation error cha-
racteristic polynomial defined by:

pobs(s) = s4 + λ3s
3 + λ2s

2 + λ1s+ λ0 = 0 (6.8)

The coefficients λ0...λ3 are calculated using the methodology in [64] described in
the previous section.
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Figure 51. Model validation examples

6.5. Feedback controller design

In Figure 52 the control system that includes disturbance observer implemented
in this work is illustrated. Peq(s) is the equivalent plant of both plant and observer.

If a linear model without parametric uncertainty is considered, the equivalent
plant model corresponds to the model of the plant without observer [23]. In this case
Peq(s) = P (s), where P (s) is the transfer function from the amount of CO2 injected to
pH level of the culture, defined in (6.5). This allows the observer’s design to be done
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Figure 52. Two-degrees-of-freedom closed-loop control system

independent of the tuning of the controller parameters.

Using the process model gain, k, the time constant, τ , and the transformation
ŝ = τs, the transfer function from the variation of CO2 to the pH could be presented
in a normalized form as follows:

Peq(ŝ) = P (ŝ) =
1

ŝ+ 1
e−τLŝ (6.9)

where τL = λ/τ is the time delay of the normalized model

The control law for the normalized process is given by:

uc(ŝ) = k̂p

[
βr(ŝ)− y(ŝ) +

1

τ̂iŝ
(r(ŝ)− y(ŝ))

]
(6.10)

where,

Kp =
k̂p
k
, Ti = τ̂iτ (6.11)

Solving the optimization problem (4.50), the resulting normalized controller para-
meters can be expressed by the expressions (6.12), (6.13) and (6.14) as functions
of the controlled process normalized model (6.9) and the target robustness level [3]:

k̂p =
a0 + a1τL

a2 + a3τL + a4τ 2L + a5τ 3L
(6.12)

τ̂i =
b0 + b1τL

b2 + b3τL + b4τ 2L + b5τ 3L + b6τ 4L
(6.13)

β = c0 + c1τL + c2τ
2
L + c3τ

3
L (6.14)
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The coefficients ai,bj y ck are a function of the maximum sensitivity specified in
the optimization problem.

6.6. Experimental results and discussions

This section shows the simulation and experimental results using the presented
GPI observer coupled with the 2DOF Proportional Integral controller to regulate pH
in raceway photobioreactors. The first step is concentrate on pH process modeling
to obtain the dynamical response to input variables. A linearized model around the
operating point was used for controller design purposes.

In this research, the photobioreactor was programmed to utilize flue gases, as
shown in Figure 53. The distribution was adjusted by a solenoid ON/OFF valve,
which is switched automatically using a consistent control algorithm. Regardless of
the control structure, the solenoid valve is operated with the PWM (Pulse Width
Modulation) technique, so that the control signal is transformed into a pulse train of
variable width [88]. This actuator limits the volumetric flow rate of CO2 between 0 to
5 L/min.
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Pressure
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Figure 53. Control system of pH

The robust controller was experimentally validated at real conditions on a raceway
photobioreactor in a 7-day period in Almerı́a (Spain) in winter 2017 (on December 20
and 21, 2017 and January 12 to 16, 2018). During this stage the microalgae culture
system was exhibited to different solar irradiance profiles, thus the proposed Linear
Active Disturbance Rejection Control (LADRC) approach was adequately evaluated.

In order to obtain a phase margin greater than 42◦ and a minimum gain mar-
gin of 1.71dB (this is a robustness given by Ms = 1.4), the constants of equations
(6.12), (6.13) and (6.14) were selected as shown in Table 9 [3]. The proposed con-
trol law, which combines the active disturbance rejection approach with the robust
two-degree freedom PI control, was defined by the following equation:

123



u(s) = Kp

[
βr(s)− y(s) +

1

Tis
e(s)

]
− 1

k
z1 (6.15)

Table 9. Robust tuning coefficients

j aj bj cj

0 0.7253 -0.1606 0.5049
1 0.6505 47.67 0.8330
2 0.0023 4.166 -0.1034
3 2.143 30.23 0
4 1 7.973 - - -
5 0 -4.738 - - -
6 - - - 1 - - -

Therefore, to guarantee a time constant approximately 25 times lower than the
process time constant the observer gain parameters for the observation error were
set as: T = 6 [min], α0 = 4, α1 = 4 and m = 3. Therefore the estimation error
characteristic polynomial is defined by pobs(s) = s4+9.105s3+20.72s2+13.82s+2.303 =
0. Although the dynamics of the observer can be made faster, the constraints of the
actuators must be considered to avoid saturation. The robust controller was started
using a 1-min sampling time.

Figure 54 shows experimental results for 7 days with profiles of sunny and cloudy
environment and a pH set-point fixed on 7.7. CO2 injection is not authorized during
the night since microalgae carry out the respiration process absorbing oxygen and
generating CO2. In this case, the control signal is deactivated and the reference
and the output are superimposed. However, this is not a problem since the pH level
depends on the solar irradiation (no present in this part of the day), which influences
the rate of photosynthesis.

In order to validate the performance of the controller, two specific experimenta-
tion days were selected (See Fig. 55). The sixth day corresponds to a sunny day,
without significant changes in solar irradiance. The LADRC scheme guarantees a
suitable set-point tracking, mitigating the perturbations induced by the solar radia-
tion profiles and variations in the pH due to the environment’s carbon value (acting
as a non-measurable perturbation). The GPI observer considers the linear model of
the system and predicts measurable and unmeasurable disturbance using a radi-
cally new perspective in state estimation, based on differential algebra. The 2DOF
proportional-integral controller ensures the robustness level for pH control purposes
using the maximum sensitivity as specification.

The first experimental day was very cloudy, but despite the energetic disturbances
associated with the appearance of clouds that suddenly generate abrupt changes in
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Figure 54. Experimental results of the robust LADRC for seven days

solar radiation, the robust controller performed well. Based on the experimental re-
sults, it could conclude that the controller can significantly mitigate the perturbance
effect. This fact is due to the GPI observer estimates the disturbance and the unk-
nown dynamics of the control system, and suppresses its effect by complementing
the control law with a cancellation effort. In all cases, the CO2 injection is maintained
in the range of work of the valve (0 to 5 L/min), i.e., at no time were impulsive peaks
due to the performance of the high gain disturbances observer.

On the other hand, to contrast the operation of the suggested controller with a
controller commonly used in microalgae production, simulation results are shown in
Figure 56. For this purpose, a PI controller coupled to a feedforward disturbance
compensator is tuned. The simulations were executed using the non-linear model of
the photobioreactor implemented and developed in the simulator described in [31].
The irradiance values used in the simulation correspond to measurements taken at
the Las Palmerillas experimental station during a sunny day and a cloudy day.

The PI feedback controller was tuning in accordance with the SIMC (Skoges-
tad Internal Model Control) design rule [113], resulting parameters Kp = −5.69
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Figure 55. Robust LADRC details for first and sixth day

and Ti = 232.4 min. An anti-windup [6] was added to handled with the control
signal saturation. For this purpose, a time constant Tt = 116 min has been tuned
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Figure 56. A comparative between PI+FF and LADRC

127



to reset the integrator. The feedforward disturbance compensation was obtained
using the metodology presented in [87], obtaining the following transfer function:
Cff (s) = −(0.0412s+ 6.69 ∗ 10−4)/(123.4s+ 1.86), where the non-realizable part was
neglected due to the time-delay reversal problem. All controllers have been executed
with sampling time Ts = 1 min.

Both validated control schemes can fix the pH level close to its reference (Fi-
gure 56). Nevertheless, the configurations using the GPI observer provides greater
quickness and precision. While the PI+Feedforward controller guarantees an esta-
blishment time of 185.9 min for the cloudy day and 397.7 min for the sunny day, the
LADRC scheme guarantees establishment times of 71.2 and 129.5 min, respectively.

Table 10. Performance indexes for feedforward PI controller and LADRC scheme for
a sunny day and a cloudy day.

2*Control
scheme Cloudy Sunny

IAE IAU CSE IAE IAU CSE
PI+CFF 262.96 5553 3.80 252.12 9175.7 7.24
LADRC 197.55 4065 4.58 172.95 4975.7 7.14

In addition, Table 10 shows three performance indices for the two controllers:
the Integrated Absolute Error (IAE), the Integrated Absolute Control signal (IAC) and
the Control System Effort (CSE). These indices were calculated using the following
expressions:

IAE =

∫ ∞
0

|e(t)|dt

IAC =

∫ ∞
0

|u(t)|dt

CSE = ||∆u(t)|| (6.16)

The IAE index indicates that the best precision, for the two days inspected, is
achieved with the LADRC scheme. Besides, the LADRC structure delivers the lowest
IAU value, being the most efficient in the use of control resources. The increased
accuracy of that control scheme based on GPI observers is achieved at the cost of
higher control signal variability, shown by the CSE index, where LADRC provides the
highest value. However, based on the results obtained in the performance indexes,
the LADRC uses the least amount of combustion gases of all the configurations
tested, being the most efficient in terms of energy consumption.

On the other hand, the amount of uncertainty can be reduced through active dis-
turbance rejection, implemented on an inner loop to produce a well-behaved plant,
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which is then regulated by the robust PI controller in the outer loop. Figure 57 shows
the bode plot of the plant transfer function assuming parametric uncertainty for K
and T of 50 % around the operation point, and it also shows the plant bode diagram
with GPI observer. It is observed that the effect of the parametric uncertainty is con-
siderably reduced by adding a disturbance observer, which allows to obtain greater
robustness in terms of the photobioreactor model parameter variations.

Figure 57. Bode plot of the Plant P (s) and equivalent plant with observer Peq(s)

Despite the notorious high-frequency peaks present in the equivalent plant with
observer magnitude bode diagram, it is essential to note that the standard robust
performance specifications, reference tracking, and disturbances rejection, are re-
quired at lower frequencies. However, if there are problems in the rejection of the
sensors’ noise, the disturbance observer can be redesigned.

6.7. Conclusions

In this section, the GPI observer’s evaluation, coupled with a robust tuning of the
2DOF PI controller, was presented. The study was carried out by means an experi-
mental validation, where a pH control challenge in a raceway photobioreactor was
examined. The results demonstrate that the novel robust control scheme provides
a positive influence on the studied process, even in the presence of modeling and
perturbance prediction errors. The experimental results for seven days with different
irradiance profiles show that the pH value was maintained around the setpoint, and
it can be inferred that the compensator can attenuate the perturbation influence for
both cloudy and sunny days. This fact can be achieved since the GPI observer esti-
mates the disturbance and unknown dynamics of the control system and suppresses
its effect by complementing the control law with a cancellation effort. The inclusion
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of 2DOF proportional-integral dealt with the performance/robustness trade-off using
the required closed-loop control system robustness in terms of maximum sensitivity.
The uncertainty could be considerably reduced by using an active disturbance rejec-
tion implemented on the inner loop in order to produce a well-behaved plant, which
was then regulated by the robust PI controller in the outer loop.

To compare the performance of the proposed controller with a controller com-
monly used in microalgae production, a PI controller coupled to a feedforward distur-
bance compensator was tuned. Although the simulations indicated that both control
schemes mitigated the disturbances’ effect, the configurations using the GPI obser-
ver obtained more exceptional quickness and precision. Besides, the performance
indices evaluated indicate that the LADRC used the least amount of combustion
gases of all the configurations tested, being the most efficient in terms of energy
consumption.
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7. CONCLUSIONS

Many problems or characteristics that affect the performance of dynamic systems
must be considered during the controller design process. Taking into account all the
existing challenges in a control system is a difficult task and could be regarded as a
significant problem in the controller design. In this dissertation, a robust scheme ap-
proach is proposes taking into account some of the essential open control problems
presented in various dynamic systems, such as parametric uncertainty, time delays,
and external disturbances. Therefore, the main contribution of this thesis is the study
of the open control problems mentioned to obtain robust controllers that effectively
improve the dynamics of systems with these problems.

The control approach combines robust feedback law and feedforward control.
The robust feedback controller is designed for tracking and stabilization of uncer-
tain plants. The inclusion of a 2DOF scheme allows dealing with the performan-
ce/robustness trade-off using the required closed-loop control system specifications.
Thus, the use of feedback techniques of two degrees of freedom, such as QFT and
robust tuning method for 2DoF Proportional-integral controllers proved to be a useful
tool for robustness in systems with parametric uncertainty and external disturbances.
To overcome the fundamental limitations of linear controllers, the use of reset mecha-
nisms in the design of feedback controllers is encouraged in this dissertation. It was
observed that the addition of this element is favorable because it guarantees speed
(bandwidth) and phase margin (robustness) in the control system without compromi-
sing both specifications.

In order to mitigate the effect of disturbances, this dissertation presents gene-
ralized proportional integral (GPI) observers in the feedforward scheme as a useful
tool for active disturbances rejection. Due to that selection of these parameters is
not easy, this dissertation proposes the use of a methodology to suitably mitigate
the typical peaking phenomenon in the design of high gain observers by the po-
le assignment method. It was shown that the addition of the disturbance observer
significantly reduces the effect of parametric uncertainty in the model, which impro-
ves the robustness of the control system and facilitates the design of the feedback
controller.

131



A. CODES PROGRAM

This appendix presents the programs used in the numerical validations and in the
experimental implementation.

A.1. One-state Refrigeration Cycle

Figure 58. Block diagram of the refrigeration cycle

In order to operate the controller, the following observer parameters must be
activated:
%Parámetros del observador para n=2, m=2
a0=4;a1=4;T=6;
a2=0.5*a1*(sin(2*pi/4)+sin(pi/4))/sin(2*pi/4);
a3=0.5*a1*(sin(3*pi/4)+sin(pi/4))/sin(3*pi/4);
L4=Tˆ4*a0/(a3*a2ˆ2*a1ˆ3);L3=Tˆ3*a0/(a2*a1ˆ2);
L0=a0/L4;L1=a0*T/L4;L2=Tˆ2/(a1*L4);
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A.2. Offshore Wind Turbine

A.3. Glucose Control in Type 1 Diabetes

A.4. Raceway Photobioreactor
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Control PH usando PI-2GDL y observador 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if exist('t_last_pH','var')==0 
    t_last_pH=clock; 
end 
  
if exist('active','var')==0 
    active=1; 
end 
  
if exist('xobs_1','var')==0 
    xobs_1=[0;0;0;0]; 
end 
  
if exist('ek_1','var')==0 
    ek_1=0; 
end 
  
if exist('inte_1','var')==0 
    inte_1=0; 
end 
  
if etime(clock,t_last_pH)>=60 %Esto es para tener tiempos de 
control distintos de tiempo de muestreo del SCRIPT 
   t_last_pH=clock; 
    
   if exist('pH_old','var')==1 
      pH_old(1:9)=pH_old(2:10); 
      pH_old(10)=pH3; 
   else 
       pH_old(1:10)=pH3; 
   end 
    
   pH_filtrada=(sum(pH_old))/10; 
    
   %Controlador PI-2GDL 
    
   phref=7.7; 
   OD2_max=180; 
    
beta=0.5205;Kp=-3.9174;Ti=1020.6;k=-1;ts=1; 
k3=9.105;k2=20.72;k1=13.82;k0=2.303; 
Ao=[-k3,1,0,0;-k2,0,1,0;-k1,0,0,1;-k0,0,0,0]; 
Bo=[1,k3-1;0,k2;0,k1;0,k0]; 
Co=[0,-1,0,0];Do=[1,0]; 
[G,H]=c2d(Ao,Bo,ts); 
  
ek = phref - pH_filtrada; 
inte=inte_1+ts*(ek+ek_1)/2*Kp/Ti; 
us=Kp*(beta*phref - pH_filtrada)+inte;%Señal de control PI-2GDL 



u=[us;-ek/k]; 
xobs=G*xobs_1+H*u; 
  
%/*actualizacion de senales*/ 
ut=us-xobs(2);%Señal de control total 
inte_1=inte; 
ek_1=ek; 
xobs_1=xobs; 
out1=ek; 
out2=xobs(1); 
out3=xobs(2); 
out4=us; 
  
if pH_filtrada > 8.0 
        active=1; 
        inte_1=0; 
        xobs_1=0; 
        if pH_filtrada > phref && Rad > 15 
            VCO2=100; 
        else 
            if pH_filtrada <phref 
                VCO2=0; 
            end 
        end 
        VAireRW1=0;     
         
    elseif pH_filtrada < phref && OD2 > OD2_max 
        active=0; 
        VCO2=0; 
        VAireRW1=5; 
         
    else 
        switch(active)           
            case 0 
                VCO2=0; 
                VAireRW1=5; 
            case 1 
                if pH_filtrada > phref && Rad > 15 
                     VCO2=ut*100; 
                     VCO2=0.5*VCO2+50; 
                     VAireRW1=5; 
                else 
                    if pH_filtrada <phref 
                        VCO2=0; 
                        VAireRW1=0; 
                    end 
                end 
        end      
end 
end 
 



Figure 59. Block diagram of the controller

Figure 60. Block diagram of wind turbine control
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Figure 61. Block diagram of glucose system

Figure 62. Block diagram of Raceway fotobioreactor
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Åström, K. J. and Hägglund, T. (2009). Control PID avanzado. Pearson, Madrid.

Athanasius, G. and Zhu, J. (2009). Design of robust controller for wind turbines. In
Emerging Trends in Engineering and Technology (ICETET), 2009 2nd International
Conference on, pages 7–12. IEEE.

Baños, A. and Barreiro, A. (2011). Reset control systems. Springer Science &
Business Media.

Barreiro, A. and Baños, A. (2012). Sistemas de control basados en reset. Revista
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thesis, Tesis doctoral, UPV, Valencia, Espana.

Stépán, G. (1989). Retarded dynamical systems: stability and characteristic fun-
ctions. Longman Scientific & Technical.

146



Takatsu, H., Itoh, T., and Araki, M. (1998). Future needs for the control theory in
industries—report and topics of the control technology survey in japanese industry.
Journal of Process Control, 8(5-6):369–374.

Tebbani, S., Titica, M., Join, C., Fliess, M., and Dumur, D. (2016). Model-based
versus model-free control designs for improving microalgae growth in a closed pho-
tobioreactor: Some preliminary comparisons. In Control and Automation (MED),
2016 24th Mediterranean Conference on, pages 683–688. IEEE.

Van Kuik, G. and Peinke, J. (2016). Long-term Research Challenges in Wind
Energy-A Research Agenda by the European Academy of Wind Energy, volume 6.
Springer.

Wang, Y.-J. (2011). Graphical computation of gain and phase margin specifications-
oriented robust pid controllers for uncertain systems with time-varying delay. Jour-
nal of Process Control, 21(4):475–488.

Weissman, J. and Goebel, R. (1987). Design and analysis of pond system for the
purpose of producing fuels. final report. Solar Energy Research Institute, Golden
CO, SERI/STR, pages 231–2840.

Wen, C., Zhou, J., Liu, Z., and Su, H. (2011). Robust adaptive control of uncertain
nonlinear systems in the presence of input saturation and external disturbance.
IEEE Transactions on Automatic Control, 56(7):1672–1678.

Wu, F., Zhang, X.-P., Ju, P., and Sterling, M. J. (2008). Decentralized nonlinear
control of wind turbine with doubly fed induction generator. IEEE Transactions on
Power Systems, 23(2):613–621.

Wu, Y., Gu, J., and Yu, X. (2002). Finite time sliding mode control for time de-
lay systems. In Proceedings of the 4th World Congress on Intelligent Control and
Automation (Cat. No. 02EX527), volume 2, pages 872–877. IEEE.

Xu, L., Weathers, P. J., Xiong, X.-R., and Liu, C.-Z. (2009). Microalgal bioreactors:
challenges and opportunities. Engineering in Life Sciences, 9(3):178–189.

Yang, X., Xu, L., Liu, Y., and Xu, D. (2007). Multivariable predictive functional control
for doubly fed induction generator. In Control and Automation, 2007. ICCA 2007.
IEEE International Conference on, pages 80–83. IEEE.

Yoo, S. J., Jeong, D. H., Kim, J. H., and Lee, J. M. (2016). Optimization of microalgal
photobioreactor system using model predictive control with experimental validation.
Bioprocess and biosystems engineering, 39(8):1235–1246.

Zhong, Q.-C. (2006). Robust control of time-delay systems. Springer Science &
Business Media.

147



Zimmet, P., Alberti, K., and Shaw, J. (2001). Global and societal implications of the
diabetes epidemic. Nature, 414(6865):782–787.

148


	CONTENT
	1 INTRODUCTION
	1.1 Problem Definition and Motivation
	1.2 Objectives and scope of the research
	1.2.1 General objective
	1.2.2 Specific objectives

	1.3 Organization of the dissertation
	1.4 Academic Production

	2 LITERATURE REVIEW
	2.1 Open problems in control systems
	2.1.1 Dead time
	2.1.2 Uncertainty systems
	2.1.3 Disturbance rejection


	3 THEORETICAL FRAMEWORK
	3.1 Quantitative Feedback Theory
	3.1.1 Basic concepts of QFT

	3.2 Active Disturbance Rejection Control
	3.2.1 PID control limitations
	3.2.2 Differential flatness
	3.2.3 Extended state observers
	3.2.4 Generalities on GPI observers


	4 ROBUST CONTROL APPROACH
	4.1 Introduction
	4.2 Feedforward Controller Design
	4.2.1 Disturbance rejection of linear systems
	4.2.2 Disturbance rejection of time-delay systems

	4.3 Robust feedback controller
	4.3.1 Quantitative robust controller
	4.3.2 Robust 2-DoF PI controller

	4.4 Feedforward and feedback controllers integrated design

	5 NUMERICAL VALIDATION
	5.1 Numerical Case 1: One-Stage Refrigeration Cycle
	5.1.1 Process model
	5.1.2 Feedforward control design
	5.1.3 Feedback control design
	5.1.4 Numerical validation and analysis
	5.1.5 Conclusions

	5.2 Numerical Case 2: Offshore Wind Turbine
	5.2.1 Wind turbine modeling
	5.2.2 Feedforward-feedback control design
	5.2.3 Numerical results and discussions
	5.2.4 Conclusions

	5.3 Numerical Case 3: Glucose Control in Type 1 Diabetes Mellitus Patients
	5.3.1 Mathematical model of gluco-regulatory system
	5.3.2 Feedforward control design
	5.3.3 Feedback control design
	5.3.4 Numerical validations and analysis
	5.3.5 Conclusions


	6 EXPERIMENTAL VALIDATION
	6.1 Experimental Case: Raceway Photobioreactor
	6.2 Microalgal bioreactor: Operating principle
	6.3 Dynamic model of photobioreactor
	6.4 GPI observer design
	6.5 Feedback controller design
	6.6 Experimental results and discussions
	6.7 Conclusions

	7 CONCLUSIONS
	A CODES PROGRAM
	A.1 One-state Refrigeration Cycle
	A.2 Offshore Wind Turbine
	A.3 Glucose Control in Type 1 Diabetes
	A.4 Raceway Photobioreactor

	BIBLIOGRAPHY

