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ABSTRACT

TITLE: COMPARATIVE STUDY OF LINEAR TECHNIQUES ACTIVE VIBRATION CONTROL
H-INFINITY AND ADAPTIVE FILTERS ON A FLEXIBLE STRUCTURE OF ONE DEGREE OF
FREEDOM *

AUTHOR: EFRAIN GUILLERMO MARIOTTE PARRA **

KEY WORDS: Active Vibration Control (AVC), Adaptive Control, Robust Control, Flexible
Structure, Finite Impulse Response (FIR) filter, H- and p-synthesis Robust Controller, Filtered-x
Least Mean Square (FXLMS), Recursive Least Square (RLS)

DESCRIPTION:

The present study compared the designs of controllers based on Robust Control and Adaptive
Control methodologies applied in Active Vibration Control (AVC). The AVC systems were
implemented in a three-cart plant. The comparison was performed using as a decision criterion
the trade-off relationship between the generalization of the solution and the magnitude of the
disturbance rejection against the computational cost and control effort.

The Robust H- controller and the p-synthesis Robust Controller were applied considering two
parameters of uncertainty. The designed controllers were confronted using colored noise
bandwidth. Simulations in Matlab environment showed an improved performance of Robust
controller synthesized by the technique of mixed-.

Adaptive Control methodologies were used as an adaptive System Identification (SI) for every
propagation path of each disturbance. The Sl generated Finite Impulse Response (FIR) filters
that modeled the dynamic responses of every path. Control simulations were performed on
these models adopting feedforward and feedback filter designs. Filters were compared beneath
periodic disturbances. Real time simulations in Matlab environment displayed more efficient
results when using Recursive Least Square (RLS) filter.

The best controllers out of the comparisons carried out previously were confronted by changing
the parameters of the plant: the bandwidth of the frequency response was increased.

Finally, the advantages of employing each controller are presented. As a result, the Adaptive
Filter rejects better periodic disturbances than the Robust Controller, which rejects better non-
periodic disturbances.

* Magister degree work
**Physical-Mechanical Engineering Department, School of Mechanical Engineering. Director: Jabid Quiroga Méndez
M.Sc. Codirector: Carlos Borras Pinilla PhD

11



RESUMEN

TITULO: ESTUDIO COMPARATIVO DE LAS TECNICAS LINEALES DE CONTROL ACTIVO
DE VIBRACIONES H-INFINITO Y FILTROS ADAPTATIVOS PARA UNA ESTRUCTURA
FLEXIBLE DE UN GRADO DE LIBERTAD*

AUTOR: EFRAIN GUILLERMO MARIOTTE PARRA **

PALABRAS CLAVES: Control Activo de Vibraciones (Active Vibration Control, AVC), Control
Adaptativo, Control Robusto, Estructura Flexible, Filtro de Respuesta Finita al impulso (Finite
Impulse Response, FIR), Controlador H- y p-Synthesis, Minimos cuadrados (Least Mean
Square, LMS), Recursive Least Square, RLS.

DESCRIPCION:

En el presente estudio se compararon los disefios de los controladores basados en las
metodologias de Control Robusto y de Control Adaptativo aplicado al Control Activo de
Vibracion (AVC). EL sistema AVC fue implementado en una planta de tres masas con un grado
de libertad. La comparacion se realizé utilizando como criterio de decision la relacion de trade-
off entre la generalizacién de la solucién y la magnitud del rechazo de las perturbaciones contra
el costo de célculo y el esfuerzo en el control aplicado.

Los Controladores Robustos H- y p-sintetizado son disefiados considerando incertidumbres
paramétricas. Dichos controladores se contrastaron usando ruido coloreado. Las simulaciones
realizadas el ambiente de Matlab muestran mejor rendimiento al controlador robusto sintetizado
usando la técnica mixed-p.

Se aplicé la metodologia de Control Adaptativo para realizar Identificacién del Sistema (Sl) en
cada camino de propagacion de las perturbaciones estudiadas. La identificacion del Sistema
configuro filtros de Respuesta Finita al Impulso (FIR) que modelaron las respuestas dinamicas
de dichos caminos. Las simulaciones fueron realizadas usando disefios de filtros en
Feedforward y Feedback. Los Filtros fueron comparados empleando perturbaciones periddicas.
Simulaciones en tiempo real en el ambiente de Matlab mostraron mejores resultados al filtro
RLS.

Los controladores resultantes de cada comparacion previamente realizada se contrastaron
aplicandolos a la planta con un ancho de banda mas grande. Finalmente, las ventajas de
emplear cada controlador son expuestas. Como resultado, Filtro Adaptativo rechaza mejor
perturbaciones periddicas que el Controlador Robusto, el cual rechaza mejor las perturbaciones
no-periédicas

* Proyecto de grado de Maestria
** Facultad de Ingenierias Fisico-Mecanicas, Escuela de Ingenieria Mecéanica. Director: M.Sc. Jabid Quiroga Méndez.,
Codirector: PhD Carlos Borras Pinilla.
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INTRODUCTION

Nowadays, the problem of acoustic noise is more evident as the number of
machines (engines, turbines, fans and compressors) increases in the
transportation and manufacturing industries. This noise is generated by
vibrations of flexible structures. Those machines’ perpetual movements
generate periodic vibrations. There are two ways to eliminate this noise: through
canceling the vibration with a robust flexible structure or by placing acoustic
actuators. A strong relationship between these two methods is denoted in order
to present an unified solution. The traditional way of damping vibration is
passive by using mufflers or dampers. These elements tend to increase the
rigidity of the structure by decreasing the cutoff frequency of the plant, thus
eliminating the vibration to the range of “high frequency”; however, they are
robust, costly or ineffective in many cases at “low frequencies”, where it is

possible the operating point of the machine can be located.

Active Vibration Control (AVC) uses an electromechanical or electroacoustic
system which cancels the unwanted emissions, such as the accelerations
resulting from positioning servo system, based on the principle of superposition
of waves. Specifically, a secondary vibration of equal magnitude is produced in
opposite phase, which is added to the first vibration canceling the initial one.
These systems are developed to increase the precision in measurement and
manufacturing systems, to promote technologies that require it, as in the case
of lab-on-a-chip technology. In general, this type of positioning mechanism

systems have several degrees of freedom creating mixed accelerations with
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amplitudes and frequencies varying in time (changing operating points), making
such systems difficult to control. Adaptive methods provide a greater range of
frequencies to be controlled. The problem of vibration control is delimited to low
frequency ranges where the system behaves linearly and simulation is still valid.
It is necessary, since the control system behaves based on the simulation of the
actual model. If the simulation does not have the same response as the real

model, the control will not be the appropriated one.

Figure 1. Scheme of a positioning servo system (Robotic arm)
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This investigation was proposed to solve the AVC linear problem, which is
applicable to electromechanical systems for high precision positioning with
several degrees of freedom. The types of accelerations at the end of the
positioning mechanism are observed as periodic vibrations caused by the servo
motors oscillation frequencies; impulsive acceleration due to changes of
direction in the positioning without slowing; and non-periodic vibrations,
simulated as white noise caused by agents external to the operation of the
machine and the sensor noise of the control system. The case study of this
investigation is the model of an AVC system at the end of the chain of servo

systems, where it performs the main operation of the machine, as shown in
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Figure 1. Firstly, the AVC system will observe all accelerations previously
raised. Finally, it will reject these disturbances in order to not affect the activity
of the machine. The AVC system is a structure of one Degree of Freedom
(DOF) to facilitate simulation. The structure consists of one mass connected to
the reference framework by springs, modeled as a spring and damper system in

parallel, the scheme is shown in figure 2.

Figure 2. Scheme of the studied Plant

@(t), w(t)

 Working tool

The disturbance rejection is an application of both, the Robust Control and the
Adaptive Control using electromechanical systems. In the case of Robust
Control “worst-case” principle is used. The H-infinity norm, that is the maximum
possible amplitude value for a given disturbance in the system, was
implemented to find an objective function so minimize both, the maximum
amplitude value and the use of control, to reject this disturbance. Unlike
Feedback control, the Robust Control design process does not required a

precise knowledge about the Plant. This gives the versatility to control the plant
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under various operating points within a preset range allowed in the design. The
uncertainties may be caused whether by the linearization of the model or by the
uncertain values of the Plant parameters. The design of the «-norm can be
posed as an optimization problem using the system «~-norm as a cost function.
The «~-norm is the “worst-case” gain of the system and therefore provides a
favorable match to engineering specifications, which are typically given in terms
of bounds on errors and controls. The small-gain theorem states that, for
unstructured perturbation, robust stability depends on the ~-norm of the closed
loop system from the perturbation input to the perturbation output. The
minimization of the closed loop oo-norm, therefore, can also be used as a

means of maximizing robustness [10].

For Adaptive Control Filter design, there are more uncertainties about the
possible operating points of the Plant. This is why; it is looked for the controller
to be more autonomous due to possible drastic changes in the lifetime of the
machine. To solve this, the control system was designed with a System
Identification of the Plant. This system used also an Adaptive Filter to pull out
the filter modeling of the Plant through the use of white noise. The Adaptive
Filter algorithm seeks to reduce the error between the reference signal, the
disturbance to be rejected, and the signal generated for the task. Linear
algorithms such as LMS (Least Mean Square) and (RLS) Recursive Least
Square are used to search for improved controlled response of the rejection of

system disturbances [11, 12, 13, 15].
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1. OBJECTIVES

1.1. GENERAL OBJECTIVE

Theoretical study was performed on linear Active Vibration Control (AVC) of
a flexible structure with one degree of freedom (Studied Plant), to reject
periodic vibrations using Adaptive Filters and Robust Control, looking for an
improved performance based on the trade-off relationship between the

generalization of the solution and the disturbance attenuation.

1.2. SPECIFIC OBJECTIVES

Simulation of the plant studied and the implementation of the AVC were
programed in the Matlab environment considering the uncertainties of the
model, and the use of Robust Control toolbox and the Digital Signal
Processing (DSP) toolbox.

Robust Control was implemented in the Studied Plant simulation to eliminate
disturbances on mass 2, see Figure 8 and 9. Using H « , complex p-
Synthesis and Mixed p-Synthesis techniques. A comparative study was
made based on “worst-case” scenario analysis.

AVC was implemented by means of three adaptive filters to simulate the
Studied Plant: 1) a feedforward Filtered-X Least Mean Square (FXLMS); 2)
an Adaptive Feedforward filter, using the algorithm Recursive Least Square
(RLS), and modeling the propagation path of “Feedback Compensation”;
and 3) Feedback FxLMS-based filter. Performance comparison was made

based on the trade-off relationship between the generalization of the solution
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versus the computational cost and the amount of attenuation of the
disturbance.
e The performances of the Robust Controller and Adaptive Filter were

confronted by applying them to the Studied Plant.

2. BACKGROUND

2.1. ACTIVE VIBRATION CONTROL AVC

AVC has long been applied, in particular to ships. Mallock (1905), reported
about vibration on steam ship by synchronization of two engines in opposite
phase, and Allen (1945), on roll stabilization by buoyancy control with activated
fins, auxiliary rudders with variable angle of attack protruding laterally from the
ship hull into water. Active damping of aircraft skin vibration was proposed in
1942, providing multichannel Feedback Control with displacement sensor and
electromagnetic actuators, mainly in order to prevent fatigue damage. Early
publications can also be found on the AVC in mechanical wave filters where a
desire longitudinal wave mode in a bar is superimposed by an interfering a
detrimental flexural wave mode, the latter can be damped by pair of
piezoelectric patches on either side of the bar which are connected through an

electrical resistor [24].

Damping and stiffness control in mechanical junction can be achieved by dry
friction control where the pressing force is controlled by a piezoelectric actuator,
in Feedback or Feedforward Control, typically by a nonlinear algorithm, e.g., a

Neural Network. Active Control technology has been applied for improved
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vibration isolation of tables for optical experiments, scanning microscopes,
vibrations sensitive semiconductor manufacturing, and active compensation
systems for electromagnetic stray-fields which is important, e.g., for high-

resolution electron microscope. [24]

The Active Control of sound or vibration involves the introduction of a number of
controlled “Secondary” interferences destructively with the field caused by the
original primary noise [11, 12, 14]. The extent of which such destructive
interference is possible depends of the geometric arrangement of the primary
and secondary source and their environment, and on the spectrum of the field
produced by the primary source. In broad terms, considerable cancellation of
the primary field can be achieved if the primary and secondary source are
positioned within half of a wavelength of each other at the frequency of interest.
Active methods of control are thus best at attenuating low frequency sound,
which complements more conventional passive methods of control since these

tends to work best at high frequencies [14].

One form of primary sound or vibration fields which is particular importance in
practice is that produced by rotating machines. The waveform primary field in
these cases is nearly periodic, and since it is generally possible to directly
observe the action of the machine producing the original disturbance, the
fundamental frequency of the excitation is generally known. Each secondary
source can be driven at each harmonic via controller which adjusts the
amplitude and face of references signal whose frequency is arranged to be a

multiple of this known fundamental frequency. It is often desirable to design
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these controllers adaptive, because the frequency or spatial distribution of the
primary field changes with time, and the controller is required to track these
changes. A more difficult adaptive task has to be performed when the response
of the system to be controlled to a given secondary excitation also varies with
time. In this case the algorithm which simultaneous performs identification and

control must be implemented [14].

2.2. ROBUST CONTROL

The purpose of Robust Control is to design a controller that guarantee the
stability and desired performance of a system, despite system non-linearity,
unmodeled dynamics, disturbance, and changes of parameters at different
operating points. H, control design and p-synthesis are the most popular
Robust Control techniques [23]. There are many applications in Robust Control
field. A three-cart problem with two uncertainties and two outputs, with
disturbance rejection in a mechanical path is used as a case of study in [16]. In
[17] System Identification and controller design for a level control plant with non-
linearity, time delay and change of parameters is provided using different
operating points. The purpose of this study is determinate the influence of these

uncertainties in the controller design and operation.

In [21] is recognized the parametric uncertainties inherent to the design or
construction of a flexible robot manipulator, modeling them as unstructured
uncertainties, improving the designing of the AVC system. In [1] the AVC is
studied using robust stability control with a delayed Feedback to compensate

the unmodeled dynamics of a flexible robot manipulator.
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[3] presents a procedure for design and tuning of reduced orders H,,
feedforward compensators for active vibration control systems subject to wide
band disturbances for a three-cart problem, this paper also considers the use of
an identification system for propagation paths. H,, Robust Controller and the
controller order reduction technique are applied. In [9] the mixed p-synthesis
robust performance’s design is studied for a two-mass two-spring system with

stiffness uncertainty and time delay's uncertainty.

In [8] the design methodologies and architectures of the robust controllers H,,
and p-Synthesis are studied for different plants characterized by parametric
uncertainties such as stiffness and damping, unmodeled delay’s and actuator’s

force uncertainties.

2.3. ADAPTIVE CONTROL

Since the characteristic of the acoustic noise source and the environment are
time varying, the frequency content, amplitude, phase, and sound velocity of the
undesired noise are non-stationary. An Active Noise Control (ANC) system
must therefore be adaptive in order to cope with these variations. Adaptive
Filters adjust their coefficients to minimize an error signal, and can be design as
Finite Impulse Response (FIR) or Infinite Impulse Response (IIR). The most
common form of adaptive filter is the FIR filter using the Least-Mean-Square
(LMS). The development of improved Digital Signal Processing (DSP) hardware
allows these more sophisticated algorithms to be implemented in real time to
improve system performance, obtaining large amounts of noise reduction in a

small package, particularly at low frequencies [18, 19].
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Adaptive Feedforward broadband is used in AVC when a measure of the
disturbance is available. The additive feedback coupling between the
compensator system and the measurement of the disturbance was studied,
concluding that the absence of this feedback propagation path caused an error
in the Adaptive Control [20]. On the other hand, this feedback coupling may
destabilize the system. Simultaneous use of an Adaptive Feedback
compensator and Feedforward compensation to disturbance rejection was
proposed [2]. The action of the Feedback loop adds a new design specification
for the stability conditions to the adaptive Feedforward compensation. In [18]
the DSP algorithm was reviewed for ANC, and is studied the DSP broadband
Feedforward Control and the Adaptive Feedback Control, with the purpose of
showing the differences in implementation between the Feedforward and
Feedback schemes. In [4, 5] the adaptive sinusoidal disturbance rejection in
linear discrete time systems was studied using an approach based on the
parameterizing the set of stabilizing controllers applying the Youla-Kucera
Parametrization. In [6, 7] a theoretical framework for stochastic modeling of
FxLMS-Based ANC was proposed to model without using conventional
simplifying assumptions regarding the physical plant to be controlled. In [25] a
stochastic analysis of FxLMS-based Internal Model Control (IMC) Feedback
ANC system was conducted when a primary noise is band-limited white noise.
In [22] the algorithms and DSP implementation was studied to adaptive filtering

for AVC system.
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For the studied Active Control it is possible to find a generalized solution to AVC
for several types of vibrations at the same time without sacrificing the

attenuation using the most common controllers in both control cases.

3. BASIC CONCEPTS

3.1. DISTURBANCE REJECTION ANALYSIS

The control system must maintain the output close to the desire value in the
presence of the disturbances. Disturbances are inputs beyond the control of the
designer and are usually inputs that tend to drive the output away from its
desired value. Disturbance inputs consist of an infinite variety of types, which
complicates the analysis of disturbance rejection. A set of “Typical” disturbance
are therefore defined. The system response, subject to these disturbances is

used to characterize the disturbance rejection of the system.

Disturbance inputs often exist for short period of time. Wind guts on antennas,
meteor strikes on spacecrafts, and sticking of a motor shaft are all examples of
a short duration disturbances. Short-duration disturbances can be approximated

by impulse functions.

Constant and step disturbance are also commonly encountered. Gravity on an
airplane, engine torque on helicopter, and solar pressure on geosynchronous
satellite are examples of constant or nearly constant disturbances. Step
disturbance are encountered when a load is placed on a motor, a robot picks up

an object, and when a satellite experiences solar pressure upon departing
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Earth’s shadow. The steady-state analysis of step and constant disturbance is
identical. The analysis of step disturbance requires, in addition, the computation

of transient response.

Sinusoidal disturbance such waves acting on a ship, acoustic waves acting on a
structure (Earthquake acting on a building), and vibrations caused by rotating
machinery frequently appear in control applications. Disturbance can often be
characterized as existing only within a given frequency band. The frequency
response (From the disturbance input to the reference output) provides a very

useful tool for evaluating the effects of sinusoidal or band-limited disturbance.

Disturbances are often best modeled as random processes. A simple random
process that is often employed in disturbance rejection analysis is white noise.
Examples of white noise disturbance are turbulence acting on a jetliner, choppy
seas acting on a ship, and measurement noise in a closed loop control system.
White noise is an idealization of a zero mean random input with a short
correlation time (True white noise does not exist in nature). When colored white
noise disturbance are more appropriate, this colored noise disturbances can
then be accomplished by analyzing the combination of the plant and the

shaping filter subject to a white noise disturbance.

The specification of the disturbances in particular application proves to be one
of the more difficult task in control design. The disturbance rejection of a control
system can be evaluated by applying a representative disturbance input to the

system and finding the resulting tracking problem error and control input. The
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frequency response of the closed loop system can also be used to quantify the

disturbance rejection.

3.2. COST FUNCTION

The performance of a control system can be quantified in many applications by
a cost function. A cost function is, in general, a real-valued, non-negative
function of the system, or the time histories of the state, the reference output,
and control inputs, subject to a given set of initial conditions and inputs. The
cost (the real number resulting from the application of the cost function) can be
used to evaluate the performance of a system, where superior performance is
indicated by a smaller cost. The cost can also be based to compare the
performance of multiple controller design; that is, the decision on which of
several alternative design is superior can be made by comparing their cost. The
controller that minimizes the cost, over all possible design or a set of possible
candidates’ designs, is known as an optimal controller. The selection of a cost
function for practical application is a useful art in control design. The cost

function given is based on norms.

3.2.1.Norms

The norm, denoted ||+, , is a real-valued function of the element of a linear

space B. A linear space is a set where any linear combination of element is
also an element of the set, and can be composed of vectors, signals, systems

or other possible collection of elements. A norm has the following properties
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llxll, = 0
lx|l, = 0if and only if x =0
allxll, = lalllxl,
llx + yll, < llxll, + llyll,

where x,y € B and a is an scalar. Intuitively, norms provide a measure of the
size of the vector, signal or system. Norms can also be used to denote the

distance between two vectors, two signals, or two systems.

3.2.2. Quadratic Cost Function

The goals of the control system are to drive the output errors to zero!, and to do
this while using a reasonable amount of control. A typically control design
represents a compromise between keeping the output errors small and keeping
the control small. The cost function should therefore, include a measure of both

the size of the output errors and the size of the control.

ty

J= f YTOY©yDde = lyOl2e
0

Where the reference output is assumed to include both: the output errors and
the control inputs. This cost functions is quadratic since it is a quadratic function

of the reference output. The weighting function Y (t) is a positive definite matrix,

1the output errors include both the errors between the outputs and the reference inputs, and
any state or linear combination of state that the control system is tasked with driving to zero
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selected to quantify the relative importance of the various outputs errors and
control inputs. The parameter t, is the final time, which can be infinity if the

control system is intended to operate indefinitely.

3.2.3. Cost Function for Systems with Random Inputs

The state and control trajectories become random processes when the system
is subject to random disturbance inputs. The quadratic cost function, as defined
above, are then random variables instead of the desirable real values. The
expected value of the signal can be used to provide a real measure of

performance:

ty ty
J=E f YT OYOyDdt| = f E[yT (DY (©)y(®)]dt
0 0

In applications where the random inputs are stationary, the system operates
long enough that the initial transient can be ignored, the weighting matrix is time

invariant and the closed-loop system is stable, the cost,

tf

| B @@y

0
is proportional to the cost with a time-varying weighting matrix.
3.2.4. The System «-Norm Cost Function

The maximum gain of a generic system over all frequencies is given by the

system e-norm:
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Gl = sup G]G(jw)]
w

Where sup is the supremum operator and & is the maximum singular value, G
w

Is the transfer function of the generic system, this cost function is particularly
applicable to the design of the system where the performance is specified by
bounds of the output error and the control, and reasonable bounds can be
generated for sinusoidal disturbance inputs. The «-norm also finds applications
in robustness analysis. The co-norm is imprinted as the maximum system gain

over the given time interval.

3.3.ROBUSTNESS

Mathematical model uses physics, chemistry, aerodynamics and so on, in order
to produce an equation that describes the plant. A number of assumptions are
typical made during this process in order to yield a simple model. Examples
include ignoring friction between moving parts, and ignoring vibration on a
motor shaft. This assumptions are justified by the need of simple design models
and difficult encountered in generating over more accurate models, for example,
the friction between moving parts may be difficult to determine and may change
episodically, creating errors in an initial accurate model. For these reasons, a
mathematical model is never a perfect representation of the physical object.
The control system engineer should be assured that a design will function
acceptably before committing implementation. Such assurance can be obtained

by analyzing control system stability and performance with respect to a range of
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plant models that is expected to encompass the actual plant. This type of

analysis is termed robustness analysis.

The analysis of robustness requires that the discrepancy between the
mathematical model of the plant and the actual plant be quantified. Since a
perfect mathematical model of the plat is not available, this discrepancy can not
be uniquely defined. Instead, a set of mathematical models is defined which
includes the actual plants dynamics. This set is specified by a nominal plant and
a set of perturbations termed admissible perturbations. The admissible
perturbations are typically assumed to be bound, where the bound is dependent

of the uncertainty of the model.

A controller that works adequately for all admissible perturbations is termed
robust. There are two types of Robustness, robust stability and robust
performance. A control system is said to be robustly stable if it is stable for all
admissible perturbations. A control system is said to perform robustly if it
satisfies the performance specification for all admissible perturbations. Note that
stability and performance robustness depends on the controller, the nominal
model, and the set of disturbances. Performance robustness also depends on

the performance specifications.

3.3.1. Unstructured Uncertainty
Uncertainty can be modeled as a perturbation of the nominal plant. This
perturbation is an error bound transfer function, where bounded is defined in

terms of the system oo norm. This type of plant uncertainty is termed
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unstructured since not detailed model of the disturbance (the unknown transfer

function) is employed.

3.3.2. Unstructured Uncertainty Models

An unstructured perturbation can be connected to the plant in a number of
ways, each generating a unique set of possible plant models. Five basic
connections of the perturbation to the nominal plant model are presented:
additive perturbation, input multiplicative perturbation, output-multiplicative
perturbation, input Feedback perturbation, and output Feedback perturbation.
And additive unstructured uncertainty models the actual plant as equal to the
nominal plant plus a perturbation:

G(s) = Go(s) + Aq(s)

Where Ay(s) denotes the additive perturbation. An input-multiplicative
uncertainty models the actual plant as the nominal plant plus a series of
combinations of the perturbation and the nominal plant (the perturbation

appears on the input to the nominal plant):

G(s) = Go(s)[I1+ A;(s)]

Where A;(s) denotes the input multiplicative perturbation. An output-
multiplicative uncertainty models the actual plant as the nominal plant plus a
series of combinations of the nominal plant and the perturbation (the

perturbation appears on the output of the nominal plant):

G(s) = [1+ Ag(s)]Go(s)
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Where A,(s) denotes the output-multiplicative perturbation. An input Feedback
uncertainty models the actual plant as the nominal plant in series with the
perturbation in a Feedback loop (the Feedback loop appears in the input of the

nominal plant):

G(s) = Go()[1+ Ap()]
Where Ay;(s) denotes the input Feedback perturbation. An output Feedback
loop uncertainty models the actual plant as the nominal plant in series with the
perturbation in a Feedback loop (the Feedback loop appears on the output to

the nominal plant):

G(s) = [1+ Apo()] " Go(s)

Where Af(s) denotes the output Feedback perturbation. Block diagrams of
these five uncertainty models, appearing in a Feedback system are given in
figure 3.

The uncertainty models are used to represent various types of uncertainty in the
plant. the additive perturbation represents unknown dynamics operating in
parallel with the plant. The multiplicative perturbation represents unknown
dynamics operating in series with the plant. The Feedback perturbations are
used primarily to represent uncertainty in the gain and phase of the plant (or the

control loop if a feedback control is applied to the plant).
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Figure 3 Unstructured uncertainties in the plant model: a) additive uncertainty;
b) input-multiplicative uncertainty; c) output-multiplicative uncertainty; d) input-

Feedback uncertainty; e) output-Feedback uncertainty
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Go(s) > Go(s) +
K(s) 4—— K(s) <4+—

Stability robustness or performance can be evaluated when the disturbances in

these models are bounded:
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E{A,(iw)} < Amax(iw)
Where & is the maximum singular value, and {A'(jw)} can be any of the

disturbances described above.

3.3.3. Stability Robustness Analysis
A general Feedback system, where the perturbation is bounded A, <1 is
internally stable for all possible perturbations provided the nominal closed loop

system is stable and

”NYde” = Sgp{a[NYde(iw)]} =1

Where N,, is the nominal closed loop system response from the augmented

awd
perturbation input to the augmented perturbation output. This results known as
the small-gain theorem and provides a test for robust stability with respect to the

bound perturbation.

3.3.4. Structured Uncertainty

Structured uncertainties arise when the plant is subject to multiple
perturbations. Multiple perturbations occurs when the plants contains a number
of uncertain parameters, or when the plant contains multiple unstructured
uncertainties. For example, the plant model may be well specified except for
two uncertainties constants, which are modeled as a nominal value plus a
perturbation. The structured uncertainty is a very general way of modeling
uncertainty, structured uncertainties also arise when the perturbation is
restricted to be purely real or when other constraints on the perturbation are

present.
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A plant subject to structured uncertainty can be placed in standard form
analogous that used for unstructured uncertainty. The standard form of the
structured uncertainty model has the individual perturbation normalized to 1 and
placed in a feedback loop around the nominal plant. The standard form of the
structured uncertainty model is shown in Figure 4. The structured perturbation
A(s) is a block diagram transfer function:
Aq(s) 0 0 0
A(s) = 0 A, :(S) 0

0 0 - A0

Where n is the number of perturbations and the blocks A;(s) € Ci*™ represents
the individual perturbations applied to the plant. An individual block can
represent an uncertain in a parameter (Scalar perturbation) or an unstructured
uncertainty. The set of all transfer functions matrices with this block diagram
form is denoted A The structured perturbation is normalized so that its infinity

norm is bound by 1: ||A]l, < 1.

Figure 4 Standard form of the structured uncertainty model

Al(s) 0
[ 0 A".(SJ ‘

Wa(s) Ya(s)
N(s)

¥(s)

Wi(s)
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3.3.5. Structured Singular Value and Stability Robustness

The stability of a system subject to a structural uncertainty is determinate by
analyzing the Feedback system in Figure 5. The nominal closed-loop system is
assumed to be stable. Stability may be evaluated by determining the “size” of
the smallest perturbation the results in a pole with a non-negative real part. A
perturbation that results in such a pole is termed a destabilizing perturbation.

The Structured Singular Value is defined as follows:

1
r&li%l (A) such that det(I + NA) =0
€

pua(N) =

ux(N) = 0if det(I+ NA) # 0 forallA €A
The Structured Singular Value (SSV) is, in general, a real-valued function of a
complex matrix N, which depends on the structure of the perturbation as
defined by A
The stability robustness criterion for a system with structured uncertainty is
summarized as follow: a general Feedback system, as given in Figure 4, is

internally stable for all possible perturbations:
A(jw) € Aand Al < 1

if and only if the nominal closed-loop system is internally stable and

sup{| Ny vy )]} < 1
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Figure 5. Diagonal scaling of the plant: (a) the Feedback perturbation; (b)
diagonal scaling added to the plant and the perturbation; (c) diagonal scaling

leaves the diagonal perturbation unchanged
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The SSV of a transfer function N(s) is the inverse of the smallest perturbation

that, when placed in the Feedback loop, yields a closed-loop pole located at s.

36



The closed loop poles of this system are not changed by the inclusion of the

diagonals matrices D, (s) and Dx(s) and their inverses:

dl(S)Ill O 0 0

:DL (S) — 0 d2 (5;)112 0
0 0 e dp(S)Iy,

dl (S)IT1 0 0 0

o= 0 GO0
0 0 o GO,

The uncertainty blocks have their dimensions A;(s) € C*"i and the identity
matrices have the dimensionsl,, € R"*"i. These dimensions match up with the

perturbation blocks to yield.

Since the maximum singular value is changed by inclusions of the scaling
matrices, and this result is valid for all diagonal scaling matrices (with the given

block structure) and for all s, then:

s(N) = min (Dr(s)ND,;(s) !
uz(N) @i s (Dgr(s) ()™
d;€ (0,00)

The parameters d; are called D-scale. This bound is valid for all complex D-
scales, and as special case, for all real D scale. For the case of complex
perturbations, the phase shift of the perturbation is arbitrary, and any phase
shift (including sign changed) imparted by D -scales has no effect on the bound.
Therefore, the minimization above can be performed over the set of possible

real D -scale without lose generality.
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The perturbed closed-loop transfer function is dependent on both the nominal
closed-loop transfer function and the perturbation. The conditions for
performance robustness can be precisely stated in terms of these transfer

functions.

sup = {ME[N}’de(S)]} <1

3.4.THE PROBLEM OF THE #,, CONTROLLER

The H,, output Feedback controller (or simply the #,, controller) utilizes partial
state measurement, corrupted by disturbances, to generate the control. The
suboptimal #,, control problem is defined by the plant and cost function. The

plant is given by the following state model:

%= Ax(t) + [By By [‘;8

Sol=[8]=0+ o, 5150

Where the x(t) is a vector that represents the states of the plant, u(t) is a
vectors that represents the control signals, the disturbance signals are w(t),
m(t) is the vector that represents the measured signals, and y(t) is the vector
that represents the the references outputs. Matrices that represents the weights
B, to the control, B,, to the disturbance signals, C,, to the measurements, C, to
the reference output, and the weights for the paths D,,, from the disturbance
signals to the measurements, and D,,, from the control signal to the reference
outputs. The matrices B,and D,,, are assumed to satisfy the following

conditions:
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D, B, = 0;

D, DI, =1
These conditions require that the disturbance entering the plant and the
measurement are distinct and the output equation of the plant be scaled to
normalize the measurement noise. The matrices C, and D,, are assumed to
satisfy the following conditions:

T — 0
Dl C, = 0;

D}, Dy, =L
These conditions require that the reference output consist of an output
dependent only on the state and a distinct output depend only on the control
input. The plant is assumed to be controllable from the control input and
observable from the measured output. These conditions guarantee that the
plant can be stabilized using output Feedback, a necessity when operating over
infinite time intervals and always desirable. These conditions guarantee the
existence of a steady-state H,, suboptimal output Feedback for sufficiently

large performance bounds.

The suboptimal #H,, control problem is to find a Feedback controller for the

above plant such that the co-norm of the closed-loop system is bounded:

1y ®llo,)

G = sup ———
|| yW”oo,[O,tf] ||W(t)||2_[0_tf] ”W(t)llz,[o,tf]
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The closed-loop system is also required to be internally stable when the final
time is infinite. The solution of the optimal #,, control problem (minimizing the

closed-loop co-norm) is calculated using the Structured Singular Value.

The steady-state H,, controller is the solution to the following suboptimal control
problem: find a linear, time-invariant controller system, described in Laplace
domain as follows:

u(s) = K(s)m(s)
that internally stabilizes the closed-loop system and bounds the ~-norm of the

closed loop-system:

Gyl <¥
The steady-state H, suboptimal control can be obtained by combining the
existence results for the full information controller and the output estimator, we
find as follows: A solution exists for H,, suboptimal control problem if and only if
the following conditions are satisfied:

1. There is a positive semidefinite solution of the algebraic Ricatti equation
PA+ A"P-P(B,BL - y*B,BY)P+ ClC, =0

Such A—P(B, Bl — y"2B,BT )P is stable (i.e., has only eigenvalues with

negative real parts).

2. There is a positive semidefinite solution of the algebraic Ricatti equation
AQ + QA" —qQ(C}, C,, — ¥ 2C)C)Q + BB, =0

Such that: 4 — Q(C}, C,, — Y~ 2C,C,)Q is stable.
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3. the spectral radius of the product of these Ricatti solutions is bounded:

p(PQ)< y?

The suboptimal full information controller is then given by

u(t) = — BIPx(t) = — Kx(¢).
The suboptimal H, estimator gain can be written in terms of the Ricatti

eguation solution:

G() = QO

3.5.THE PROBLEM OF THE p-SYNTHESIS CONTROLLER

Robust performance can be analyzed using the SSV for system containing both
structured and unstructured perturbation. The direct computation of the SSV is
intractable in all but the simplest case. The p-synthesis design methodology

attempts to minimize the supremum of the closed-loop system’s SSV:

J=wmN) = sup G(DrUwINGw)DL(w)™).

1,d2,...dn
d;€(0,)

Direct minimization of this cost function is typically not tractable. As an
alternative, it is reasonable to minimize the upper bound of the SSV. D-K
iteration seeks to overcome this problem by alternatively performing «-norm

optimization and D-Scale optimization.

The D-K iteration algorithm is summarized as follow:
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1. Model the Plant. The plant model should include disturbance inputs, control
inputs, reference outputs, measured outputs, and perturbations. Append the
performance block to the uncertainty matrix.

2. Generate a control system to minimize the «-norm of the transfer function
from the augmented perturbation input to the augmented perturbation output.

3. Compute the Structured Singular Value for the closed-loop system (with both
uncertainty and performance blocks). Save the D-Scale used in computing
the SSV.

4. Fit a low-order transfer function to each frequency-dependent D-Scale.

5. Append this transfer function to the plant. The rational transfer function
approximation for the D-scales and the inverse D-scales are append to the
nominal close-loop system. This is typically accomplished by generating state
models for the D-scales and the inverse D-scales, and appending these
states models to the nominal closed-loop system.

6. For this augmented plant, generate a controller to minimize the «-norm of the
transfer function from the augmented perturbation input to the augmented
perturbation output.

7. Return to step 4, until the SSV of the closed-loop system fails to improve

This algorithm has typically been found to converge to a minimum cost in a few
iterations. The D-K iteration algorithm is not guarantee to converge to the global
minimum of the cost function. Further, this global minimum is not guaranteed to
equal the global minimum of the cost function, except when the number of

performance and perturbation blocks is less than or equal to 3.
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3.6.ADAPTIVE FILTER

Adaptive filtering involves the changing of filter parameters (coefficients) over
time, to adapt to changing signal characteristics. Over the past three decades,
digital signal processors have made great advances in increasing speed and
complexity, and reducing power consumption. As a result, real-time adaptive
filtering algorithms are quickly becoming practical and essential for the future of

communications, both wired and wireless.

3.6.1. Adaptive Filtering Methodology

Adaptive Filters self-learn using the error signal as the objective function. As the
signal into the filter continues, the Adaptive Filter coefficients adjust themselves
to achieve the desired result, such as identifying an unknown filter or canceling
noise in the input signal. In figure 6, the shaded box represents the Adaptive
Filter, comprising the Adaptive Filter and the adaptive Recursive Least Squares

(RLS) algorithm.

Figure 6. Block Diagram Defining General Adaptive Filter Algorithm Inputs and
Outputs
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3.7.SYSTEM IDENTIFICATION

One common Adaptive Filter application is to use adaptive filters to identify an
unknown system, such as the response of an unknown communications
channel or the frequency response of an auditorium, to pick fairly divergent
applications. Other applications include echo cancellation and channel
identification.

In figure 7, the unknown system is placed in parallel with the Adaptive Filter.
This layout represents just one of many possible structures. The shaded area

contains the Adaptive Filter system.

Clearly, when e(k) is very small, the Adaptive Filter response is close to the
response of the unknown system. In this case the same input feeds both the

Adaptive Filter and the Unknown System.

Figure 7. Using an Adaptive Filter to Identify an Unknown System

»  Unknown System

xk) |

44



4. ROBUST CONTROL DESIGN

The active mass driver's model shown in Figure 8 provides a faithful test bed for
the abstraction shown in Figure 2, for this reason this model was chosen as the
Studied Plant. In this chapter, the AVC design applied on the Studied Plant
using Robust Control methodology is described. The design was applied on a
flexible structure with two uncertain parameters with real parts, unmodeled
delay, unmeasurable disturbances, two noisy measurements, one control
signal, and one performance output. First, parametric uncertainties were fully
identified at several operating points considering physical constraints. Then, the
three-cart’s physical system dynamics was described. The #,, controller was
proposed to reject the disturbance. The unstructured uncertainties were
released from the parametric uncertainties and their effects on the system
performance were studied. The mixed p-synthesis and DK iteration were used

to improve Robust performance.

4.1. PARAMETRIC UNCERTAINTIES

The model of the Studied Plant consists of five metal plates connected by
springs, the first and last plates are the supports and each of them are equipped
with one inertial actuator. The first will excite the structure (disturbance) and the
second will create vibrational forces which can counteract the effect of these

vibrational disturbances.
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Figure 8. Modeled Real Plant

The Plant was simplified to a two dimensional scheme. The simplified plant was
obtained and expressed in Space-State representation. This representation is
called the Nominal Plant Model (see Figure 9). In this simplification, all four
parallel springs are assumed all with the same constant, and they are modeled

as one spring and one dash pot in parallel.
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Figure 9. A three-cart simplified model, the spring constant k and damping ratio
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The error of model simplification is assumed about 10 % of the real value at low
frequencies. This error may be caused by uncertainty in the manufacturing
process, also because of the uncertainty in the linear model. Equations of
energy balance were used to model the movement of the masses, equations (2)

and (3):

_ 1 1 2
Xmax * fp *V = (E ksimp(xmax)2 - Em(Vmax)z) 2)
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0.95 0,475Xmaxks; 1 3
b = mksimp (xmax)z = 7Ir_;ax il (_Em(vmax)2> ( )

Where x is the displacement of the mass, V is the velocity of the mass, k is the
simplified spring constant, and f;, is the damping coefficient. Masses are
constrained in displacement and speed to emulate the real plant. The damping
coefficient is a parametric uncertainty caused by the uncertainty of the spring
constant, and it is assumed with a low value due to the worst case model to
control is a pure mass-spring system. This is because, the system will not lose
energy by friction but by the superposition of the vibrations (the AVC situation),
making more difficult the design of the controller. The parametric uncertainties

were calculated with the upper and lower bound for the parameters k and f,.

k € [klower—bound kupper—bound]

(4)

fb € [fblower—bound fbupper—bound]

4.2. THREE-CART MIMO DYNAMICS

The dynamic of the Mass-Spring-Dash pot (MSD) system shown in Figure 9 is

described by:

x(t) = Ax(t) + B4f; + B,d,(t)
m(t) = Cyx(t) + Dywo(t) + Daqu(t) ()
y(t) = C1x(t) + Dyqu(t)

Where

() = [X:(8) 10 x3() vi(®) va(t) va(O] ()
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wo = [ds(t) vy Uz]T (7)

y(t) = Cyx(t) + Dyqu(t) (8)

The State dynamic matrix is described by:

A= 03><3 13><3] (9)
Az Az
Where
r kit k, k, 0
m1 m1
kZ kz + k3 k2
Ay = = — -2
mz m2 m2
0 ks +k, k,
m3 m3
(10)
[ b; + b, 2 0
ml m1
Azz - e —_ ——
mz mz mz
0 b; + b, b,
m3 m3
03,1 [03x1]
0 1
=0 = | ma | = (11)
B, = B;=|m, | B=[B1 B;]
N
mg 0
C11 (12)
Ci1=[0 1 0 0 0 0];Cz =AC(5,:);C31=A(6,:);C = |Cxq
C3q
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0 1 0],

D1y = [02x1]; D12 = [02x3]; D21 = [02x1]; D22 = [0 0 1

(13)

D D
D:[ 11 12]

D21 DZZ

The k; are the spring constants; b; are the damping coefficients; m;, x;and v; are
the mass, position and speed of mass i = 1,..,3, respectively; f; is the control
force signal, d; is the disturbance source.

The MIMO system includes one disturbance random input force w(t) acting on
mass m; and two accelerometers on masses m,,ms;. The control force u(t)
drive the inertial actuator with an unmodeled delay upon the mass m;. The
disturbance force d (t) is an independent stationary stochastic process
generated by applying continuous-time white noise £(t) with zero mean in a
low-pass filter. The low pass filter, Wy (s) = Pyise /(s + Pgist), has a pole in
P,is:. This is caused by the low cross frequency of real mechanical system, as

follows:

ds(s) = Wyist (5)E(S) (14)

The overall State-Space representation includes the disturbance dynamics via
one augmented state variables x;,). For the current case, the following

parameters in (5) are known and fixed (the units are omitted): k/m =2

The y(t) vector represents the position of mass m,(x,,,) and acceleration on

masses m;(a,,) and ms(an,,):
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y1(t) = x,(t)

Ya(t) = %,(6) (19)
y3(t) = ¥3(t)
All Feedback loops use two measurements z(t)
{21(15) = X,(8) + v1(8) (16)
7z (t) = X5(t) + v, (t)

In Equation (16), v4(t) andv,(t) are white noise caused by the sensor’s
dynamics and they are defined by Ev;(t) =0, E(v(t)v(r)) = 10715(t — 1),
where v(7) = [v,(t) v,(®)]F

The frequency response of the nominal plant can be observed in Figure 10, also
the two poles of a,,, which have to be diminished by the controller. On the other
hand, the pole at 2 rad/s in a,,, is an obstacle to obtain the desired performance
in the robust design, because a greater control effort is produced at this
frequency. For this reason the a,,, signal was chosen as a performance output
because it is a measure of the control effort.

Additionally, there is unmodeled delay T in control channel caused by the delay
between the actuator force and its action on mass m;, so neglecting T produces
an error about e~5*~1, The transport delay of 0.5 s [22] in the system is modeled
by a weight function that operates as a high pass filter. On the other hand, the

inertia of the masses and springs causes a transport delay in the plant.

Figure 10. Frequency response of the nominal model
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Figure 11. Comparative Bode plot of the Unmodeled Dynamics vs Plant input
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This delay is named after Unmodeled Dynamics due to the delay was not taken
into account in the State-Space representation. Matlab software models this
delay using a digital highpass filter as part of the structure of the representation.
Modeled as a complement of the structure, the design of the robust controller
does not take the delay in count. To consider this Unmodeled Delay, it was
modeled using a transfer function of a highpass filter with a similar behavior to
the delay model using the Matlab digital filter. The weight function of
Unmodeled Dynamics is a transfer function that models the inertia of the
Studied Plant. The differences between Time-Delay response of the actual
plant, modeled as a digital filter, and the frequency response of the Unmodeled
Dynamic weight (17) are shown in Figure 11.

2,1s 17)
s+ 40

Wunmod (s) =

4.2.1. Inertial Actuator Modeling
The model of the inertial actuator is a first order low pass filter that penalizes

high frequencies content in the control signal and limits the band pass:

1

+1) (18)

Actyominar = ( S
50

The constraints of the actuator are established by a System Identification (SI)
process. Variations between the actuator model and the physical device can be
modeled as a family of actuator models. The resulting family of models
embraces a nominal model with an amount of uncertainty that is frequency

dependent, (see Figure 12).
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Figure 12. Comparative Bode plot of the actuator nominal model vs 20
randomly sampled models
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At low frequency, the frequency responses of the models are similar to the
nominal actuator. In turn, the variations of the frequency responses increase as
the frequency increases. The weighting function, W, , reflects this behavior
and it is used to modulate the amount of uncertainty as a function of frequency.

The resulting model of the actuator is an uncertain State-Space model.

4.3.H, ROBUST CONTROLLER DESIGN
The generalized plant is obtained connecting all dynamic models and signal, as

shown in Figure 13. Linear Fractional Transformation (LFT) of the plant is

54



obtained using Matlab software. The optimal controller is found solving the two

Ricatti equations to the LFT model [17].

Figure 13. MIMO weights for robust synthesis
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4.3.1. Nominal Model and Structured Uncertainties

The parametric uncertainties, gain and time delay determined by modeling, are
converted into unstructured uncertainties for #£, controller design. Equation
(19) expresses the transfer function of the generalized plant considering the
uncertainties raised so far in (4) and (17) as a transformation of the nominal

plant.

Gy = K,e ™G (s) (19)
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These parametric uncertainties can be converted into the multiplicative

uncertainty general form of:

VG, (s) € QG, = (1 + AW, (5)Gn(s)) (20)

Where Q is the family of plants, G,,(s) is the nominal plant, G, is the generalized
plant.

In this case, W;(s) is a stable transfer function indicating the upper bound of the
uncertainty and A(s) indicates the normalized uncertainty, |[A(s)|lo < 1 . In this
general representation, A(s)W,(s) represents the deviation of the model system
by the uncertainties present in gain and time delay. The parameters

uncertainties of (4) are represented by:

kL < knom < kH = k= knom + (Uk)ak; Sk <1 (21)

bL < bnom < bH =b= bnom + (Ub)ab; 619 <1 (22)

In (20), the delay is replaced by a multiplicative uncertainty simplifying the

controller design. In Figure 14 is observed the differences between the nominal

plant model and a family of plants generated randomly.
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Figure 14. Bode Plot for nominal and 20 samples of uncertainties
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4.3.2. Scaling

The signal references, the disturbance input, and the control signals are
normalized in time and frequency domains. The performance of the resulting
controller depends on this weighting. The control is penalized by a factor of 1 at
low frequencies and by a factor of 10 at high frequencies with cross frequency
of 100 rad/s. The Control Weight W,, is expressed by (23)

_Gyx(st+Ph) (23)
Y (s+2Zy)
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The models of each sensor are constant transfer functions, where each
constant determinates the sensor accuracy.N,...;1 IS the accelerometer on
mass m, and N,...;z IS the accelerometer on mass m;. The sensor weighted

function W,,(s) is (24)

24
W, = [Naccell NaccelZ]T ( )

The Control Weight and the sensor weighted function, together with the
Unmodeled Dynamic's weight (17) and the actuator (18), limit the bandwidth of
the closed loop system by penalizing large high-frequencies control signals. The
weight functions (17), (18), and (23), (24) are the same in any of the

subsequent designs.

4.3.3. The Limitation Imposed on the Performance

The bandwidth of the sensitivity function is assumed to be the system
bandwidth. The increase of the bandwidth produces a faster response of the
system and a large peak on the sensitivity function. Otherwise, decreasing this
bandwidth causes a reduction of the phase margin and a more sensitivity to the
noise and parameters variations. Therefore, it is proposed (25) and (26) which
are the tradeoff between the mentioned problems above and the reference
disturbance rejection problem. The weight functions (25) and (26) are applied in

the output vector y(t).
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_ Gp * (/M + wp) (25)

w,
p (s + wp)
W, = g O Pas)_ (26)
Go, (5+ wg, /M)

In (25), M,, is the maximum value of the sensitivity function in all frequencies,w,
is the bandwidth from the normalized disturbance to the m,, and w,, is the
bandwidth from the disturbance source (d;) to m,,. The transfer function of the

actuator works as a low pass filter (See figure 13). In addition, the transfer
functions, that represent the propagation paths of the accelerations from the
inertial actuator to masses 2 and 3 a,,, and a,,, respectively), work also as low
pass filters. Therefore, transfer functions (25) and (26) represent the goal of
disturbance rejection. They attenuate disturbances only below 10 rad/s,
because beyond this value transfer functions studied have a frequency

response below -70dB.

The comparison of the close-loop targets response using the weight function

(25) and (26) with the open loop response can be observed in Figure 15.
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Figure 15. Bode plot comparison between closed-loop target and the open-loop

response

From: dist

To: am2

Magnitude (dB)
To: xm2

o e T e 1 E
£ T —= il
© T T e — e — ]
b J—_IU . . . N Lo Lo___ = Lo R TR T
= — Open-loop
— — Closed-loop target
100 —————

10° 10°
Frequency (rad/s)

4.4. CONTROLLER DESIGN
The suboptimal #H,, control problem is to find a Feedback controller for the
generalized plant such that the «-norm of the closed-loop system. Bode plot

comparison between closed-loop target and the open-loop response is bound:

ly ()1l 2,0,t
sup et (27)
lo@llfo,) Iw (Ol (0.t

”Gywlloo,[o,tf] -
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Figure 16. N-A Block Diagram
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uy (1) ya(t)
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This is a suboptimal solution; an optimal solution is obtained by minimization of
the closed loop system co-norm. Where y are the performance bounds imposed
to the design. The block diagram of Figure 13 is used to obtain generalized
plant N in Figure 16 and the LFT model.

For the block diagram of Figure 13 the LFT is derived via the generalized plant.
The minimization of the Maximum Singular Value of the generalized plant N is
solved numerically by using the #,, Robust Control Toolbox in MATLAB. The
outcome of this problem is a controller with the same order of the generalized
plant with a Space-State representation of 13 states, 1 output (control), and 2
inputs a,,, and a,,,. The frequency response of the closed loop system with the
controller proposed and the modeled uncertainties are shown in Figure 17. The
influence of the pole at 2 rad/s is noted in the actuator force frequency response
(see Figure 17). The attenuation of high frequencies responses caused by the

low bandwidth of actuator model is presented in the same figure.
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Figure 17. Bode plot of the open loop system and compare to the close loop

response with the controller
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4.4.1. Robust Stability and Performance
The peak gain of the close-loop system is 0.3461. Therefore, the robust stability

is guaranteed and the system is stable even in the worst condition.

Although the system has reached the robust stability, the controller cannot
estimate-control correctly all possible states within the range prescribed by the
weighting functions. This means that the driver is unable to model the bounded
uncertainties. This situation can lead to produce a controller gain of 6.23 at 1.95

rad/seconds.
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4.5. p-SYNTHESIS AND DK-ITERATION

The minimization of the maximum Structured Singular Value (SSV), not the oo
norm which is the maximum singular value, is a mathematically precise method
to generate controllers that meet robust performance specifications. Robust
Performance can be analyzed using the SSV as given by the cost function. D —
X Iteration seeks to overcome the problem of minimization of SSV by

alternatively performing co-norm optimization and D-scale optimization.

The controller based on p-synthesis is obtained using the controller cost
function (26) as an objective function to minimize the control effort. The
resulting controller has a 35 order with a p value of 1.2538 and the system
gain only models 89.4% of the uncertainties. The complex u -synthesis process
performed considers the uncertainties k and f, as complex variables. This
process was not able to reduce the p value below the unit, giving no an
acceptable Robust performance. This occurs because the variation range is too
large for the performance desired, considering the number of measured signals
and output references. This situation may also happen because the DK-scaling
considers the parametric uncertainties, stiffness and damping, as complex

variables which penalize the optimization process.
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Figure 18. Bode plot comparison between open loop system and the close loop

response with the robust controller
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The frequency response of the closed loop system is shown in Figure 18. The

influences of the poles in the open loop frequency responses at a,,, and a,,,

are attenuated by the controller.

4.6. MIXED p-SYNTHESIS
In the interest of improving the Robust performance to a desire value a Mixed-u
synthesis is used. Mixed-pu synthesis considers real part uncertain parameters

directly in the synthesis process. A scaling function was applied to the DK-
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iteration process. After this process, the order associated with the complex
uncertainties was settled of 5* and 6‘* order for the uncertain real-valued
parameters both used in Mixed-u synthesis.

The controller obtained from the Mixed p-Synthesis is a State-Space model with
1 output, 2 inputs, and 87 states, with the p value of 0.8271. The close loop
response with the mixed-p controller is shown in Figure 19. The frequency
response of the actuator force slightly increase its magnitude around the poles
of an,, and a,,, without surpass the 0 dB magnitude, reaching a desired Robust

performance.

Figure 19. Bode plot comparison between closed-loop target and the close loop

response with the Mixed-p controller
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4.7.DISTURBANCE REJECTION SIMULATIONS

To compare the disturbance rejection performance white noise is injected into
the low-pass W, filter to simulate the input disturbance (f). The disturbance
rejection simulation in Matlab environment of the Complex and mixed p-

synthesis controller in closed loop with the system are presented in Figure 20.

Figure 20. Disturbance rejection response

0.05
|
E 0
<
-0.05
0
0.05 ' : : : : : : : :
— ' ' ' ' ' ' ' '
S Krob
..E Km
(V) Sy 2w e 4 : . L
S W\}W 5
S 1
2 : i
-0.05 | ] ] ] ] ] ] | ]
0 10 20 30 40 50 60 70 80 a0 100
—
4]
Q
c
@
e
[
=
b
o
L)
e
m -
o 0 10 20 30 40 50 60 70 80 a0 100

Time (sec)

The mixed-p controller weighted the real part of the uncertainties, stiffness and
damping, producing less control than the Complex p-Synthetized. This is what
makes different Robust performances of Complex p-Synthesis from Mixed-p

Synthesis. The “worst-case” disturbance rejection scenario is shown in Figure
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21. The system presents the desired performance with both controllers.
However, the mixed-u controller has also the advantage in the disturbance

rejection at x,,,, , and the controller force f is lower, showing the desired robust

performance.

Figure 21. Disturbance rejection response of the worst-case
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The order reduction is applied to the Mixed-u controller to decrease the
computational cost. In order to reduce the controller order, The Robust Control
toolbox of Matlab was used to evaluate the performance of every controller,
from the 87" order controller to the first order controller. In Figure 22 the results

are shown:
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Figure 22. Robust performance as a function of controller order
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As shown in Figure 22, the 8 order controller presents the desired Robust
performance with a reasonable computational cost for a non-adaptive controller
with a maximum gain of 0, 9796. In Figure 23, the differences in disturbance
rejection of the closed loop system using both, the 87" order controller and
the 8" order controller, are shown when white noise is injected to the closed

loop generalized plant via W 4.
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Figure 23. Disturbance rejection comparison 87th and 8th controller order
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4.8. PRELIMINARY CONCLUSIONS

In this study a design of a Robust controller is accomplished providing Robust

stability and Robust performance.

The desired Robust performance is obtained through proposed weight
functions for parametric uncertainties, delay and inertial actuator
uncertainty, besides the reduction of the frequency response of the

propagation paths to mass accelerations of the Studied Plant.

By using H,, controller for the Studied Plant, a cost function of 6.23 was
achieved. In this case, it was considered to reduce the range of

uncertainties of the model or, to decrease the signal range to reject. None
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of them was an option for this design. A mixed-mu complex synthesis was

used to obtain an improved Robust performance.

Furthermore, the p-synthesis provided a more competent Robust
performance in disturbance rejections at the same conditions of uncertainty.
In this study is recommended the H, Controller for systems with low

range parametric uncertainties or designs with only stability requirements.

Also, the complex p-Synthesis procedure, when the modeled uncertainties
are real-valued and they are considered as complex variables, produces a
controller which uses more effort trying to compensate the imaginary value

of the uncertainties.
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5. ADAPTIVE CONTROLLER DESIGN

Within this Chapter, Active Vibration Control (AVC) for a three-cart problem is
studied. A comparison of Adaptive Filters is implemented using the Filtered-x
Least Mean Square (FXLMS) algorithm and Recursive Least Square (RLS)
algorithm, when a correlated measurement of the disturbance is available. The
proposed RLS compensator considers a Feedback coupling between the
compensator and the measure of the disturbance. The secondary propagation
path of the plant was estimated using System ldentification (SI) Normalized
LMS (NLMS) algorithm. The internal “positive” coupling is considered as a Finite
Impulse Response (FIR) filter estimated by the Real Plant parameters. The
propagation paths are fully identified as a group of transfer functions in series
considering the electrical domain and mechanical domain. Simulations using
DSP system toolbox of Matlab had shown a superior performance of RLS

algorithm with a reasonable computer cost.

5.1. THREE-CART DYNAMICS WITH INERTIAL ACTUATOR

Figure 24 represents an AVC system using a vibration measurement correlated
with the disturbance and an inertial actuator for reducing the residual
acceleration. The system consists of five metallic plates connected by springs.
The plates M1 and M3 are equipped with inertial actuators. M1 serves as
disturbance generator (inertial actuator 1 in figure 24) and M3 serves for

disturbance compensation (inertial actuator 2 in Figure 24). The system is
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equipped with a measure of the residual acceleration (on plate M2) and a

measure of the disturbance being sensed by an accelerometer on plate M1.

Figure 24. Scheme of the Plant, AVC system
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The path between the disturbance (in this case, generated by the inertial
actuator on the top of the structure) and the residual acceleration is called the
Global Primary path. The path between the measure of position M1 (an image
of the disturbance) and the residual acceleration (in open loop) is called the
Primary path, and the path between the inertial actuator for compensation and
the residual acceleration is called the Secondary path. When the compensator
system is active, the actuator acts upon the residual acceleration, but also on
the measurement of the image of the disturbance (a positive feedback).

The disturbance is the pressure wave of the inertial actuator (see figure 24)

located on top of the structure. The output of the compensator system is the
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pressure wave of the inertial actuator located at the bottom of the structure. The
parameters of the filter are estimated to minimize the measurement of the
residual acceleration. The block diagram of the AVC system can be observed in
Figure 8. The W (2) filter is emulating the band limiter filter and the power
amplifier. The perturbation source is white noise filtered by W (2z) to
obtain dg(t). The filter P; emulates the global primary path which contains the
disturbance inertial actuator and the mechanical path between pressure wave
and the residual acceleration. The filter P, characterizes the dynamics of the
disturbance source and the image of the disturbance (inertial actuator +
dynamics of the mechanical system). The compensation actuator is modeled by
the transfer function Act with the control signal as input and the pressure wave

as output (power amplifier + the compensation inertial actuator).

The secondary path is represented by § block which models the dynamics of
the travel of the pressure wave from the compensation inertial actuator to the
residual acceleration in the absence of the disturbance. Fcis the block that
emulates the mechanical path between the inertial compensator actuator and
the correlated disturbance. The feedforward compensator is the Kgqp¢ive blOCK
with X; as the correlated noise and the residual acceleration (the desired
signal) as inputs and the output i(t) is the control signal. The value of X, is the
sum of the correlated disturbance measurement le obtained in the absence of
the feedforward compensation (see figure 25(a)) and the effect of the actuator

used for compensation.
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Figure 25. Block diagram of the plant of the AVC system a) open loop b) with
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5.2.SYSTEM IDENTIFICATION OF THE PROPAGATION PATHS

36

Global
Secondary Path

A System lIdentification process was implemented to estimate the impulse

response of the four propagation paths in the AVC system. The models

obtained consider the Unmodeled Dynamics inherent to the simplification of the

Plant. The Sl process applied an Adaptive Filter with Normalized LMS algorithm

to adapt the impulse response of the Unknown System (Nominal plant +

uncertainties + the measurement error) injecting band limited noise to both i.e.

the Adaptive Identification System and the Unknown System and comparing

theirs responses, see Figure 26 (a)
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Figure 26. Block Diagram of the System Identification Using the NLMS Adaptive

Filter
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The initial coefficients of the Adaptive Filters, that identify each system, are
taken as the coefficients of a FIR filter. This filter emulates the impulse
response obtained initially for each propagation path. The FIR filter obtained
has a response time of 10 ms. the identification process of the filter is shown in
Figure 27. The main characteristic of this new filter is the length of the
secondary path filter estimated since it is not as long as the actual secondary
path and does not need to be like so that the control is adequate in most cases.

The excitation signal used to identify the different paths of the system was a
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broad band white noise signal, and then used an impulse response to verify the

accuracy of the estimation.

Figure 27. Primary path S| Using the NLMS Adaptive Filter with 1000 Filter

order
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The same Identification was applied using a 500 Filter order.

Figure 30 shows the behavior of the estimated secondary path impulse

response and the comparison with the real path.
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Figure 28. Primary path Impulse response identification
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Figure 29. Primary path Sl Using the NLMS Adaptive Filter with 500 Filter order
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The accuracy of the 500 FIR filter is low. The performance in the estimation of
the true impulse response tail is poor and affects significantly the operation of
the AVC system during its operation in the chosen task. After matching the two
results it is concluded that the ideal size of the FIR filters for the System
Identification spans between this two values. 800 Filter order was chosen

because of its performance in contrast to its computational cost.

S| was performed independently from Vibration Control; however, it is part of
this as a separate function that can be used each time the error of the
disturbance rejection is very large, or cannot be reduced by the action of the
controller due to drastic changes of operating point. In other words, it is a way to

generalize the control solution.

The FIR filters that emulate the propagation paths of the Studied Plant are
presented in Figure 30. For the purposes of studying adaptive filters, these
filters are not changed and the input signals of the system will be kept in the
same range. The frequency characteristics of the various paths are shown in

Figure 31.
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Figure 30. Frequency characteristics of the primary, secondary and reverse

paths
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5.2.1. Sl Global Primary Path FIR Filter

The primary propagation path P, is modeled by a linear filter. This Filter was
obtained in absence of compensation and by observing the correlated
accelerometer signal after an impulse disturbance was applied. The coefficients
of the FIR impulse response filter represent the response of the entire global

primary path.

79



Figure 31. Sl of Global Primary path using the NLMS Adaptive Filter. a)

Estimation Error b) Magnitude response of the FIR filter
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5.2.2. Feedback Coupling Propagation Path Identification
The Propagation path of the “Additive” Feedback Coupling is the effect of the
compensation inertial actuator over the correlated accelerometers in the

absence of perturbation.

Figure 32. Sl of the Feedback Coupling path, using the NLMS Adaptive Filter. a)

Estimation Error b) Magnitude response of the FIR filter
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5.2.3. Image of the Disturbance Path
Image of the Disturbance Path is the effect of the disturbance inertial actuator
over the correlated accelerometers in the absence of compensation or

disturbance rejection.
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Figure 33. Image of the disturbance path Identification Using the NLMS

Adaptive Filter. a) Estimation Error b) Magnitude response of the FIR filter
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5.2.4. S| Secondary Path

System lIdentification of the secondary path was applied when there was

absence of disturbance and white noise was applied through the compensator

inertial actuator.

Figure 34. Secondary Path Identification Using the NLMS Adaptive Filter. a)

Estimation Error b)Magnitude response of the FIR filter
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5.3. AVC USING FILTERED-X LMS FIR ADAPTIVE FILTER

In the design of the FIR Adaptive Filter using the filtered-x LMS algorithm was
not considered the additive feedback coupling. The correlated noise is the
measure of the image of the perturbation (See Figure 35), X, (t) and the desired
signal is X,(t). The Adaptive Compensator is a Feedforward controller with a

step size of 0.01.
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Figure 35. a) Schematic arrangement of Feedforward AVC system with FXLMS

b) Block Diagram
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The experiments had been carried out by first applying the disturbance in open
loop during 30 seconds and after that by closing the loop with the adaptive
Feedforward-Feedback algorithms. Time domain results obtained in open loop
and with the compensator (using Adaptive Feedforward compensation
algorithm) on the AVC system are shown in Figure 35. The filter for algorithm
had been computed based on the parameter estimation obtained from the Sl
process. The band limited disturbance frequencies source emulates the
bandwidth attribute of the rotating machinery vibration. Specifically, generated

noise might come from a typical electric servomotor.

The Figure 36 shows the resulting power spectral of the residual acceleration.
Channel 1 is the residual accelerometer without compensation and channel 2 is
the residual acceleration with compensation. In Figure 36, channel 2, it is
observed frequencies of 21 and 50 Hz. The higher components of the
disturbance are attenuated below -40 dB. On the other hand, a decrease in the
compensation performance at components of 34 and 36 Hz is observed. These
components are partially ignored by the compensator algorithm and give the
maximum amplitude value of the error signal.

Figure 37 shows the disturbance rejection of the system using Feedback

FXLMS Algorithm.
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Figure 36. Power spectral of AVC of the Filtered-x LMS

. Channel 1
L S e S ——Channel 2 "]
D T | S .
P O S 0 S SO ) N — .
£ ! ! ! ! [
3]
o
-60
-80
-100
RBW=58.59 mHz Frequency (Hz)

Figure 37. Disturbance rejection of the feedback Filtered-x LMS
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The results are shown as a plot of the residual acceleration measured by the
residual accelerometer [m/s?] seen in Figure 38 and they are quantified as the
variance of the history of the residual force (error) in mass 2. The variance of
the residual error with the Feedforward compensator is:var(e(t)) =
0.0019(16.40dB) , with a reduction of (26.40dB) compared with the open loop

Plant.

5.4. ADAPTIVE FEEDBACK AVC USING FXLMS ALGORITHM

A new approach was proposed to improve the attenuation of the disturbance:
the Feedback Control scheme using FXLMS algorithm. The Figure 38 shows the
scheme of the Adaptive Feedback AVC System. The system synthesizes or
regenerates its own reference signal, using an estimated path and the Adaptive
Filter output and the error signal. The advantage of this scheme is the use of
only one accelerometer. The reference signal or primary noise is expressed in
Z-Domain as Dist'(z) = E(z) + S;(2)y(z) whereS;(z) is the estimated
secondary propagation path, and E(z) the error signal. y(z) is the secondary

signal produced by the Adaptive Filter.
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Figure 38. Schematic arrangement of feedback AVC system with FXLMS b)
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When comparing Figures 37 to Figure 39 can be noted a decrease in
performance of the compensation when the Adaptive Feedback FXLMS was
implemented. The lack of compensation performance is attributed to the Sl
process because, although, the correlation between the desired signal and the
correlated signal is 1, the system was incapable to fully identify specific values

of frequencies.

Figure 39. Disturbance rejection of the AVC using feedback FXLMS
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The Figure 40 shows frequency spectrum of the closed-loop system. The higher
peaks to attenuate at 21 and 50 Hz can be observed in Channel 1. The
Feedback FXLMS AVC has a higher computational cost due to the calculation of
the reference disturbance signal. The Feedback Compensator has less time

than Feedforward compensators to minimize the residual error, making the
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value of the cost function higher or in this case for the same cost a lower

performance of the disturbance rejection.

The AVC system feedback has a lower performance in rejecting the disturbance
than the compensator in Feedforward. This is because the reference signal is
disturbed by the modeling propagation paths by filtering part of the information
about which frequencies must be rejected. This gap of information on the
reference signal, the non-rejected frequencies, occurs in the digital domain
where the reference signal is calculated, and is affected by the order of the FIR
modeler filters. Actual Plant dynamics do not lessen these frequencies, so to
make a decision; the compensator misses attenuated frequencies in the
calculation. Therefore, the compensator does not attenuate these frequencies,

as it does not take action on them.

Figure 40. Power spectral of the AVC system using feedback FXLMS
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For an algorithm of minimization like the LMS, linear error alone is not robust
enough to counteract this disturbance in the reference signal.

When the feedback controller is active, the variance of the residual acceleration
is: var(e(t)) = 0.02(16dB) with a disturbance rejection of (20dB).

A reasonable length (300) of adaptive filter order is used because the
augmentation of this value can affect the real response of the system caused by
the extra calculation of the order. In this study, the FXLMS algorithm and the
RLS algorithm were selected due to their simplicity, deriving in low
computational cost. On the other hand, many other control applications
complement the compensation of this controller with an extra reasonable
computational cost, less than trying to augment the length or order of the

applied compensator.

5.5. ADAPTIVE FEEDFORWARD AVC USING RLS ALGORITHM WITH
FEEDBACK COUPLING

A new control scheme was proposed in order to improve the performance
observed in the Feedforward FXLMS. The new compensator considered the
Feedback Coupling caused by the compensator actuator affecting the
correlated disturbance as shown in Figure 25. The performance of the new
control scheme can be noted in Figure 41. In this Figure is presented the
frequency response of the residual acceleration with and without compensation
in Channel 2 and Channel 1 respectively:

The peaks observed in the spectrum of channel 2, Figure 41, are the

frequencies applied as the disturbance source. The attenuation of the highest
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peaks on channel 1 at 18Hz, 30Hz and 42 Hz is observed. The maximum value
of the attenuated signal in this new scheme is at 42 Hz frequency as noted in
the FXLMS scheme. Therefore, the RLS algorithm is capable of identify and
compensate this frequency value.

Figure 42 shows the residual acceleration of the Plant with and without

compensation to attenuate the disturbance.

Figure 41. Power Spectrum of AVC System using RLS algorithm with Feedback

Coupling
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When using only adaptive feedforward compensation RLS, the variance of the
residual acceleration is var(e(t)) = 0.003(36dB) with a reduction of (39.2dB).

Clearly, RLS scheme brings a significant improvement in performance in
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respect to the other schemes offering adaptation capabilities to the disturbance

characteristics.

Figure 42. Disturbance rejection of the AVC using RLS algorithm with feedback

coupling
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5.6 PRELIMINARY CONCLUSIONS
Present study took three different designs of Adaptive Filter with FXLMS
algorithm and RLS algorithm applied to periodical disturbances rejection.
e The attenuation of the FxLMS Feedforward AVC System uses a
reasonable amount of effort to find the opposite form of the perturbation
to attenuate the disturbance. There are not many operations out of the

block algorithm. This is a reliable form to attenuate the perturbation.
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There are frequencies that are ignored in the adaptation algorithm within
the compensation of the Feedforward AVC systems due to extra
calculation added in the simulation. These frequencies are the reason of
the maximum amplitude value of the residual acceleration.

To perform the attenuation of the disturbance the design of the Feedback
AVC System using the FXLMS is developed. Although, the correlation
between the two input signals of the adaptive filter is high. The algorithm
does not attenuate all the frequency response of the residual
acceleration. This is caused by corrupted signal due to the extra
calculation added to extracted the reference signal.

Using the Feedforward AVC system with RLS algorithm and considering
the Feedback Coupling showed improved results in the attenuation of the
disturbance. Although, the Feedback Coupling may cause instability
when the wrong adaptation step is used. This happens because of its
offset sum of the Feedback Coupling plus the image of the disturbance.
Implementing AVC with "The Feedback from Compensation" instead of
using the estimated secondary path filters, is closer to the real

propagation path model, and hence the real Plant dynamics.
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6. COMPARATIVE ANALYSIS

The difference between Robust Control and Adaptive Control is the way the
lack of knowledge we have about the Plant to be controlled can be
compensated.

Robust Control carries out an investigation on the life of the Plant, trying to find
all the uncertainties that could lead to model the System. Under this
investigation we found these uncertainties during: the design and construction
of the System to find the uncertainty in the constants (parameters) of the model;
the relationship between the Plant with surroundings to understand the
uncertainties that may affect the normal behavior of the model; and the Plant
operation to understand the possible changes in control operating points, all in
order to convert these uncertainties in part of the model of the Generalized
Plant. Thus, find a “worst-case” situation to design the controller. Following this
idea, we cannot say that there is an ideal Driver situation, but the suboptimal or
optimal Driver for the model that attempts to emulate the Plant. The more the
model approaches the actual Plant, the most optimal the driver would be. But
more effort is needed to design it. When designing the controller, the
determining factor is not necessarily to find the closest model to reality but the
most suitable to the specific application.

Adaptive Control seeks to compensate the uncertainties on the Plant lifetime.
This is achieved by focusing on increasing the response capacity of the
controller to a set of possible responses of the Machine. The bigger and more

varied the set of answers to control; much more great must be the capacity for
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decision, making your controller a generalized design. Also, the computational
cost is increased, becoming it a trade-off relationship. The controller may
compensate for uncertainties, recognizing and cataloging them, whether, they
are inherent to the lack of accuracy of the design or the operation of the plant,
staggering the phases of adjustment or increasing the number of adaptive

filters.

6.1. RLS ADAPTIVE FILTER

Figure 43. Disturbance rejection using RLS algorithm Feedforward
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Adaptive Filter using the RLS algorithm with positive feedback for the design of
the filter had a reduction of almost 40 dB of its original value when the
disturbance is a sum of periodic noise.

But, due to this algorithm to reduce the error of the residual acceleration is
simple; the filter cannot anticipate actions to eliminate non-periodical noise. By
increasing the data buffer of the filter the error can be minimized. However, in
the cost-benefit ratio it is unjustifiable an increased computational cost to
increase the filter performance

Adaptive Filters may reject periodic disturbance characteristics of rotating
machines, better than the Robust Control, and more widespread because of its
S| of the Plant with reasonable computational cost. The noise injected to
compare the Adaptive Control is a mixture of 12 sinusoidal signals that emulate
different sources of periodic type of disturbance, typical from servo positioning
systems. The amplitude of the signals depends on the proximity between the
source and the AVC system. Frequencies and the offset between the signals
are random, but the frequencies are between a bandwidth of 0 to 150 Hz. The
simulation of the AVC rejection is presented in figure 44.

The amplitudes of the frequency response of the Global Primary Path
propagation is affected by the frequency response of the plant, according to its
form, since the response of the propagation path as the sum of the latter and

the disturbing signal is counted.
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Figure 44. Disturbance rejection using RLS algorithm Feedforward
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6.2. MIXED-y ROBUST CONTROLLER

Applied to Active Vibration Control (AVC), Robust Control has its best
application for the mixed-mu controller (which allows scaling to give the real and
imaginary values separated by the minimization of the computational cost of the
controller designed) improving the robustness with the worst possible scenario.
The rejection of the disturbance as white noise is performed up to 10% of its

original value in the worst case, when the maximum possible control is applied.
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Figure 45. Disturbance rejection using Mixed-u Robust Controller: Frequency

response
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The Robust Controller is capable of reject the unknown disturbance modeled as
Pseudo-random white noise, with a robust performance of mu = 0, 85. The
resulting controller has a 20 order. The figure 45 shows the resulting controller
in action. The disturbance is colored noise applied to the Studied Plant and the

closed loop.
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Figure 46. Disturbance rejection using Mixed-u Robust Controller: Residual
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7. CONCLUSIONS

The comparative study between the techniques of control, Robust and

Adaptive, took place through applying them to Active Vibration Control (AVC) in

the Studied Plant, concluding:

Considering that the bigger and more varied the set of answers to control, much

greater must be the capacity for decision making the controller-generalized

design, but also increasing their computational cost, becoming a trade-off

relationship.

When the disturbance is a sum of periodic noise, due to its algorithm is
simple, the filter cannot anticipate actions to eliminate non-periodic noise.
Increasing the data buffer of the filter may help further minimize the error
but in the cost benefit-ratio it is unjustifiable an increased computational
cost to increase the filter performance.

The Robust Controller has a better performance by eliminating non-periodic
disturbances. Its advantage lies on the ability to model a family of systems
with similar dynamic responses within a specified range. While the
disturbances do not exceed the range of uncertainties, their performance is
greater than the Adaptive Filters. Another advantage is minimizing the
computational cost and the use of control.

Sl not only generalizes the answer of the Adaptive AVC problem but also
improves the disturbance rejection by making fewer filters to model the

plant. By reducing the number of modeler filters, the lower the disturbance
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between the measures of the disturbing signal and the image of them. With
less disruption of signals is greater the effectiveness of the linear error
reduction algorithms.

From the viewpoint of the applicability of the proposed controller and its
possible final output in industry, the best solution to the AVC problem is the
mixed mu-Synthesis. Despite having a lower generalization, in respect to
the other proposals and due to the extra effort, to study in detail all the
possible uncertainties and the need for a good designer criterion for weights
of each uncertainty, mu-Synthesis is able to reject non-periodic
disturbances much better than the Adaptive Filters.

On the other hand, the Adaptive Filter is much more general in the solution.
The generalization can be increased by augmenting the length of the filter
and the ability to recognize disturbances near the dynamic response of the
nominal Plant. In general, the proposed solution is able to recognize any
type of modified time response with the dynamic response of the Plant that
controls. However, the filter does it one at a time between identifications of
the system. In addition, you need to implement an Sl in the Plant. At the
same time, the designer should be very careful not to disturb the image of
the disturbance causing the least amount of digital signal processing, which

is unlikely to control complex systems.
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8 RECOMMENDATIONS

Based on the conclusions, Robust Control can reject non-periodic disturbances
within a small range with a reasonable computational cost and the use of

Adaptive Filters to model and control the Plant.

Only under the influence of periodic disturbances the following is

recommended:

e When making a design of an AVC system, constrain the types of
disturbances which the plant will be under control.

e If the designer needs to remove all signs listed in this research, it is
recommended to use both controllers in a complementary way to reduce
each of the disturbances, by first applying the Robust Controller, the
Synthesized Mixed-MU Controller, in closed loop with Feedback, to
eliminate non-periodical disturbances and then the Feedforward Adaptive

Filter with the RLS algorithm.
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ANNEX A. PROGRAMMING OF THE ROBUST CONTROL

Q

% Program to model, to analyze
and to control a nominal plant

using Robust Control. The
nominal plant consists of a
flexible structure of 3 masses

connected by springs. The mass 1
is disturbed by a pressure wave.

The plant 1is controllable from
the mass 3. An inertial actuator
is located on the mass 3 to
reduce the disturbance on the

mass 2 transmitted from the mass
1.

% This program is part of the
master in mechanical engineering
project by Efrain Guillermo
Mariotte Parra; A COMPARATIVE
STUDY OF LINEAR TECHNIQUES AVC
H-INFINITY AND STRUCTURE
ADAPTIVE FILTERS FLEXIBLE ONE

DEGREE OF FREEDOM

o

% Bucaramanga April 14 of 2014
clear all

close all

clc

%% PROBLEM IDENTIFICATION

o°

Flexible structure of 3 masses
conected by springs

g Primary path of the
disturbance of one degree of
freedom

% System Constant

ml = 1; % lkg

m2 = 1; 5 kg

m3 = 1; 5 kg

%% Parametric uncertainties
modeling

k =

ureal ('k',2,'range', [1.5,2.5]);

k1l =
k2
k3
k4 =

% N/m

([l
.o~

AN AN A

~.

~.
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b =
ureal('b',0.01, 'range', [0.008,0.
0121);

bl = b;

b2 = b;

b3 = b;

b4 = b;

%% Modeling of the uncertainty
by the actuators delay.

s delay’s model between the
actuator’s force and the mass 1,
the maximum delay is about 0,05
seconds, if the delay isn’t
considered, the model error will
be of exp(-s*tau)-1. This error
can be modeled as an uncertainty
due to it 1s missed in the
Space-State representation of
the Plant. A highpass filter
that limited the magnitude of
the frequency response of the
nominal plant models this delay
Wunmod = 2.1*s/ (s+40)

Wunmod = 2.1*tf([1 0], [1 401);
tau = ss(l, "inputdelay',0.05);
bodemag (tau-

1, Wunmod, logspace (0, 3,200)) ;
title('Multiplicative Time-Delay
Error: Actual vs. Bound')

legend ('Actual', 'Bound', "Locatio
n', '"NorthWest"'")

grid on

% Space-State Representation of

the nominal plant

All = zeros(3,3);

Al2 = eye(3,3);

A21 = [-(k1+k2)/ml k2/ml 0;k2/m2
- (k2+k3)/m2 k3/m2; 0 k3/m3 -
(k3+k4) /m37;

A22 = [-(bl+b2)/ml b2/ml 0;b2/m2
- (b24+b3)/m2 b3/m2; 0 b3/m3 -
(b3+b4) /m37;

Bl = zeros(3,2);

B2 = [0 1/ml; 0 O ; 1/m3 01;

$D11 = [0; 0]; D12 = zeros(2,3);
D21 = zeros(2,1); D22 = Cl;

A =[All Al2; A21 A22];

B

[B1;B2];



C = [0 1 0 0 0 0;

A(5,:);A(6,:)];

D = zeros(3,2); %[Dl11 DI12; D21
D22];

Planta = ss(A,B,C,D);
Planta.statename =
{lxll,lle,lx3l,lvll,

'V2','V3'};
Planta.outputname =
{"xm2"', 'am2', 'am3'};

%% Transport delay between the
control force and the
acceleration of the mass 1
addition

deltaT =
ultidyn('deltaT', [1,1], "bound', O
.4);

Planta =
Planta*append (l+deltaT*Wunmod, 1)
Planta.inputname =
figure

bode (Planta.Nominal(1,1), 'r+',P1

{"£s','ds'};

anta(l,1),'b',{0.1,10}); grid on
legend ('Nominal Plant', 'Family
of Plant with

uncertainty', 'location', 'southwe
st')

title('Bode Plot for nominal and
20 samples of uncertainties')

%% Poles analysis of the Studied
system
tzero(Planta({'am2'},{"'fs'}))
zero (Planta ({'xm2"'},{"'fs'}))

%% Bode diagram of the Plant and
its uncertainties

figure
bodemag (Planta.Nominal ({'xm2', 'a
m2','am3"}, 'ds"), 'r',{0.1,10});
grid on
legend ('Perturbation
ds', 'location', 'southwest');
title(['Gain from external
disturbance (ds)'...

'to displasment m2 and Body
aceleration 2 and 3'])

%% Model of the inertial
actuator

ActNom = tf (1, [1/50 11);

Wunc = makeweight(0.4,2,1.5);
unc =

ultidyn('unc', [1,1], "bound',0.35
, 'samplestatedim', 5);
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Act = ActNom* (1 + Wunc*unc);
Act.inputname = 'u';
Act.outputname = 'fs';

%% Bode diagram of the Actuator
and its uncertainty

figure

bode (Act, 'b',Act.Nominalvalue, 'r
o',logspace(-1,3,120));grid on

title('Nominal and 20 random
actuator models')

%% Normalization of the nominal
plant signals.

% The actuator is penalized by a
factor of 1 at low frequencies
and by a factor of 10 at high
frequencies with a cut frequency

of 100 Hz.

Wu = 15*tf£([1 50],[1 5001);

Wu.u = 'u';

Wu.y = 'el';

% the function to color the
noise, 1is a first order filter
Wdist

[

% The disturbance has a pole at
0.25 rad/s

Wdist = tf(0.25, [1 0.25]);
Wdist.u = 'dist'; Wdist.y =
ldsl;

bodemag (Wdist, Wu) ;

grid on

o)

% The target 1is to reduce the
disturbance on the mass 2 by a
factor of 80 and below the 0.1
rad/s

Wp = 1/0.28 * tf([l1 0.15],I[1
161);

Wacc3 = 1/70 * tf([1 20],I[1
0.151);

targets = [WP;0;Wacc3];

WP.u = 'am2'; WP.y = 'e2';
Wacc3.u = 'am3'; Wacc3.y = 'e3';
% the controller measures the
displacement of the mass 2 with
the noise of the sensor and
applies the control with the



force F1l, the sensor noise 1is
modeled as a constant 0.001

wnl = t£(0.001);
wnl.u = 'noise'; wnl.y= 'nul';
wn2 = tf£(0.05);
wn2.u = 'noise'; wn2.y= 'nu2';

% Closed loop target

figure

bodemag (Planta.NominalValue ({'am
2',"'xm2"','am3"'}, 'ds') *Wdist, 'b",
targets, 'r—--',{0.5,10});

grid on

title ('Response to disturbance')
legend ('Open-loop', 'Closed-1loop

target', 'location', "southwest')

%% Connections between the
nominal plant, the actuator and
the weight matrices

x2meas = sumblk('ml = am2 +
nul');
x3meas = sumblk('m2 = am3 +
nu2');
ICinputs = {'dist'; 'noise';'u'};
ICoutputs =

{'el';'e2';'e3';'ml';'mZ'};
Plantaic=connect (Planta(2:3,:),A
ct,WP,Wacc3,Wu,Wdist,wnl,wn2, ...

x2meas, x3meas, ICinputs, ICoutputs

)7
get (Plantaic)
%% nominal H-infinity synthesis

ncont = 1;
nmeas = 2;

[K,~,gamma, info]=hinfsyn (Plantai
c,nmeas, ncont) ;

info %#0k<NOPTS>
gamma $#0k<NOPTS>
K.u = {'am2','am3'}; K.y = '"u';

CL=connect (Planta.nominal, Act.no
minal,K,Wdist, 'dist’', {"xm2"'; "am?2
';'am3'; 'fs'});
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figure

bodemag (Planta.Nominal (:, 'ds'), "'
k:'",CL(:,:,1), 'b-=",{0.5,10});
grid on

legend ('Open loop', 'Close
loop', 'location', 'southwest');
title('Plant deformation');

%% Robust Stability analysis

SIMK =
connect (Planta,Act,K,Wdist, "dist
y{'xm2'; 'am2'; 'am3'; "fs'}) ;

ropt =
robustperfOptions ('Sensitivity"',
'off");

[rpcmarg, rpcunc, rpcreport] =
robustperf (SIMK, ropt) ;

rpcreport %#o0k<NOPTS>

%% Robust Design mu

[

% Using the D-K iteration
obtain a robust controller

to

[Krob, ~,RPmuval, dkinfo] =
dksyn (Plantaic(:, :),nmeas, ncont)

’

o)

% Examination of the mu-—
Synthesis controller

size (Krob)

RPmuval $#o0k<NOPTS>

%% Closed loop system with the
robust controller connection
Krob.u = {'am2','am3'};

Krob.y = 'u';

SIMKrob =
connect (Planta,Act,Krob,Wdist, 'd
ist', {'xm2"';'am2'; 'am3'; 'fs'; 'ds
"}

ropt =

robustperfOptions ('Sensitivity',
'off');

[rpcmargrob, rpcuncrob, rpcreportr
ob] = robustperf (SIMKrob, ropt) ;
rpcreportrob $#o0k<NOPTS>

figure



bodemag (Planta.Nominal (:, 'ds'), '
k:'",SIMKrob.nominal (:,:,1), "b—-
',{0.5,10});

grid on

legend ('Open loop', 'Closed
loop', "location', 'southwest');
title('Plant deformation');

opt =
dksynOptions ('MixedMU', 'on', 'Aut
oScalingOrder', [5 6]);

[Km, gm, mu_m]=dksyn (Plantaic, nmea
s,ncont, opt) ;

% mu value when treating k1l as
real:

mu_m %$#ok<NOPTS>

Km.u = {'am2',6 'am3'}; Km.

'

y =
u';

clsimKm =
connect (Planta,Act,Km,Wdist, 'dis
t',{'xm2"', 'am2', 'am3"', 'fs', 'ds'}

)7

figure

bodemag (Planta.Nominal (:, 'ds'),’
k:',clsimKm.nominal (:,:,1), 'b—-
', {0.1,10});

grid on

legend ('Open loop', 'Closed
loop', "location', 'southwest');
title('Plant deformation');

%% Worst case analysis

om = logspace(-1,3,100);

clpKred = ufrd(SIMK,om) ;

clpKrob = ufrd(SIMKrob,om) ;
clpKm = ufrd(clsimKm, om) ;

wopt =
wcgainOptions ('sensitivity', 'off
")

[maxgainK,badpertK]=

wcgain (clpKred, wopt) ;

maxgainK %#ok<NOPTS>

[maxgainKrob, badpertKrob]=
wcgain (clpKrob, wopt) ;
maxgainKrob $#o0k<NOPTS>

[maxgainKm, badpertKm]=
wcgain (clpKm, wopt) ;
maxgainKm $#0k<NOPTS>
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%% Disturbance Rejection
Simulations

t = 0:.01:100;

dist = randn(size(t)):;

yKred =
lsim (SIMKrob.Nominal,dist, t);
yKm =

lsim(clsimKm.Nominal,dist, t);

% Plot

figure

subplot (311)

plot(t,yKred(:,2),'b",t,yKm(:,2)
lrl)

title('Nominal

Rejection Response')

ylabel ('Xm2")

grid

subplot (312)

plot(t,yKred(:,4),'b',t,yKm(:,4)

s ')

ylabel ('fs (control)")

legend ('Krob', "Km', 'Location', 'N

orthWest')

grid

subplot (313)

plot (t, yKred(:,5),'k")

Disturbance

ylabel ('ds (disturbance) ")
xlabel ('Time (sec) ')
grid

oo
00

Worst Case

clsimKrob wc =
usubs (SIMKrob, badpertKrob) ;
clsimKm wc =
usubs (clsimKm,badpertKm) ;

yKc wc =
lsim(clsimKrob wc,dist,t);

yKm_ wc =
lsim(clsimKm wc,dist,t);

figure

subplot (211)

plot (t,yKc wc(:,2),'b",t, yKm wc(
:,2),'c")

title ('Worse-Case
Rejection Response')
ylabel ('Xm2")

grid

subplot (212)
plot(t,yKc wc(:,4),'b", t, yKm wc(
,4),'c")

ylabel ('fs (control) ')

legend ('Krob', '"Km', "Location', 'N
orthWest')

grid

Disturbance



%% Controller Simplification

%$To create a controller matrix
with the reduced order

NS = order (Km) ;

StateOrders = 1:NS;

Kred = reduce (Km, StateOrders) ;

% To calculate the performance

margin of each reduced
controller

CLP = 1ft(Plantaic(:,:,1),Kred);
$Linear Fractional
Transformation Reduce Closed
loop

ropt =

robustperfOptions ('Sensitivity',

'off', 'Display', 'off', "Mussv', 'a
")

PM = robustperf (CLP, ropt) ;

% Comparison between the
performance of every reduced
controller and the synthetized
controller.

%% Graphics order controller vs
performance
figure

plot (StateOrders, [PM.LowerBound]

, 'b-0o', ...
StateOrders, repmat (1/mu_m, [1

NS]),'r'");

title ('Robust performance as a

function of controller order')

legend ('reduced

order', 'Controller MU'")

grid on

%% Controller reduced

Krob8 = Kred(:,:,8);

Krob8.u = {'am2', 'am3'};

Krob8.y = 'u';

CLredK =

connect (Planta,Act, Krob8,Wdist, '
dist',{'xm2', 'am2', 'am3','fs"','d
s'h);

yKred =
lsim(CLredK.Nominal,dist, t);
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% Plot

figure

subplot (311)

plot (t,yKred(:,2),'b',t,yKm(:,2)
lrl)

title('Nominal

Rejection Response')

ylabel ("Xm2")

grid

subplot (312)

plot(t,yKred(:,4),'b",t,yKm(:,4)

;')

ylabel ('fs (control)')

legend ('Krob', '"Km', 'Location', 'N

orthWest')

grid

subplot (313)

plot (t,yKred(:,5),'k")

Disturbance

ylabel ('ds (disturbance) ")
xlabel ('Time (sec) ')

grid

om = logspace(-1,3,100);

clpKred = ufrd(CLredK, om) ;

wopt =
wcgainOptions ('sensitivity', 'off
")

[maxgainKred,badpertKred]=
wcgain (clpKred, wopt) ;

maxgainKred $#0k<NOPTS>



ANNEX B. PROGRAMING OF SYSTEM IDENTIFICATION

ANNEX B1: PROGRAMING OF THE SYSTEM IDENTIFICATION OF THE

GLOBAL SECONDARY PATH

function
IdentifySP()

[SNLMS, n,dS,yS,eS]=

clear all
close all
clc

%% PROBLEM IDENTIFICATION

% Flexible Structure of 3 masses
connected by mechanical elements
(Springs)

% Disturbance secondary Path of
one degree of freedom

o)

s System Constants

ml = 0.1; % 1lkg
m2 = 0.1; % kg
m3 = 0.1; % kg
%% Modeling of the parametric
uncertainty

k = 5000;

k1 = k; % N/m
k2 = k;

k3 = k;

k4 = k;

b =1;

bl b;

b2 = b;

b3 b;

b4 b;

%% Modeling of the uncertainty
due the Actuator’s delay

% Model of the delay between
actuator force and the mass 1

% maximum delay 1s about 0.05
seconds.

Wunmod = 2.1*tf([1 0], [1 40]);

o)

% State-Space Representation of
the nominal plant

All =
Al2

zeros (3,3);
eye(3,3);
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A21 = [-(kl+k2)/ml k2/ml 0;k2/m2
-(k24+k3)/m2 k3/m2; 0 k3/m3 -
(k3+k4) /m31;

A22 = [-(bl+b2)/ml b2/ml 0;b2/m2
- (b24b3)/m2 Db3/m2; 0 b3/m3 -
(b3+b4) /m3] ;

Bl = zeros(3,2);

B2 [0 1/ml; O O ; 1/m3 0];

A =[All A12; A21 A22];

B = [B1l;B2];

c [A(5,:);A(4,:) 17

D = zeros(2,2);

Planta = ss(A,B,C,D);
Planta.statename={'x1"', 'x2"',
,'Vl','VZ','V3'};
Planta.outputname =
{'am2', "aml'};
Planta.inputname =

|X3|

{'fs','ds'};
%% Inertial actuator’s model

ActNom = tf (100, [1 807);

Wunc = makeweight (0.50,2,10);
unc=ultidyn ('unc', [1,1], "type',
gainbound', '"bound',0.25, 'samples
tatedim', 7) ;

Act = ActNom* (1 + Wunc*unc) ;
Act.inputname = 'u';

Act.outputname = 'fs';

%% Noise

wnl = t£(0.001);

wnl.u = 'noise'; wnl.y= 'nul';

%% Global secondary Path

disturbance propagation

[numS,denS]=ss2tf (Planta.a, Plant
a.b,Planta.c,Planta.d,1);

S = tf(numS (1, :),denS);

S.y = 'x2s';
% disturbance addition
global secondary path

on the

deltaT=ultidyn('deltaT',6 [1,1],'b
ound',0.25);
S = S*¥(l+deltaT*Wunmod) ;



S.u = "fs' ;

xIlmeas = sumblk('ml = x2s +
nul');

%% Secondary Path
interconnection

ICinputs = {'u'; 'noise'};
ICoutputs = {'ml'};

Secondaryic=connect (S,Act,wnl, x1
meas, ICinputs, ICoutputs) ;

get (Secondaryic)

figure

bodemag (Secondaryic, {0.5 1600}) ;
grid on

%% Secondary Path Identification

Ts = 4;

sigman = 0.0001;

[x2s] = impulse (Secondaryic,Ts);
x2s = x2s(:,1)/norm(x2s(:,1));
figure

plot (x2s) ;

grid on

ntrS = 30000;

s = randn(ntrS,1l); % Synthetic

random signal to be played
x2sfir=dsp.FIRFilter ('Numerator'
,X2s.");
ds = step(x2sfir,s) + ... %
random signal propagated through
secondary path
sigman*randn (ntrS,1);
measurement noise at
acelerometer

o°

the

%% Design the Path

Estimate

Secondary

M = 800; %900
muGp = 0.3; %1
SEstLMS=dsp.LMSFilter ('Method', '
Normalized LMS', 'StepSize',
muGp, ...

'Length', M);
[yvS,eS,SEst] =
step (SEst1lMS, s,dS) ;

n = l:ntrS;
figure
subplot (2,1,1)
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plot(n,ds);
grid on
ylabel ('Signal value');

legend ('Desired Signal');
subplot (2,1,2)

plot(n,yS,n,eS);

xlabel ("Number of iterations');
ylabel ('Signal value');
title('Secondary Path
Identification Using
Adaptive Filter');
legend ('Output

System

the NLMS

Signal', 'Error

Signal');

%% Accuracy of the secondary
path

Fs = 1600;

[N,min]=size (x2s);

t = (1:N)/Fs;

figure

subplot(2,1,1)
plot(t,x2s,'k");

xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('True Secondary
Impulse Response');

grid on

subplot(2,1,2)
plot(t(1l:M),SEst,'c',t, [x2s(1:M)
-SEst (1:M); x2s(M+1:N)],'k");
xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('Secondary Path Impulse
Response Estimation');
legend('Estimated', "Error'");
grid on

Path

%% Design of the FIR filter

SNLMS=dsp.FIRFilter ('Numerator',
SEst.");

W = linspace (0,400,800);

fvtool (SNLMS, '"Fs',1600, 'Frequenc
yRange', 'Specify freqg. vector',

'FrequencyVector', W) ;

save ('Secondary', 'SNLMS', 'n', 'dS

’ ys'rlesl);

end



ANNEX B2: PROGRAMING OF THE GLOBAL SECONDARY PATH SYSTEM

IDENTIFICATION

function[PgNLMS, n,dS, yGp,eGp]l=
IdentifyGP ()

clear all
close all
clc

%% PROBLEM IDENTIFICATION

% Flexible Structure of 3 masses
connected by mechanical elements
(Springs)

% Disturbance secondary Path of
one degree of freedom

o)

s System Constants

ml = 0.1; % lkg
m2 = 0.1; % kg

m3 = 0.1; % kg
%% Modeling of the parametric
uncertainty

k = 5000;

k1l = k; % N/m

k2 = k;

k3 = k;

k4 = k;

b =1;

bl b;

b2 = b;

b3 = b;

b4 b;

%% Modeling of the uncertainty
due the Actuator’s delay

% Model of the delay between
actuator force and the mass 1

% maximum delay 1s about 0.05
seconds.

Wunmod = 2.1*tf([1 O], [1 401);

% State-Space Representation of
the nominal plant

All =
Al2
A21 =
- (k2+k3)/m2 k3/m2;
(k3+k4) /m3];

zeros (3,3);

eye(3,3);

[-(k1+k2)/ml k2/ml 0;k2/m2
0 k3/m3 -
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A22 = [-(bl+b2)/ml b2/ml 0;b2/m2
- (b2+b3) /m2 b3/m2; 0 b3/m3 -
(b3+b4) /m37];

Bl = zeros(3,2);

B2 = [0 1/ml; 0 O ; 1/m3 07;

A =[All Al2; A21 A22];

B = [B1;B2];

C [A(5,:);A((4,:)];

D = zeros(2,2);

Planta = ss(A,B,C,D);
Planta.statename =

{"x1','x2","'x3",'vl','v2"','v3'};
Planta.outputname =

{'am2', 'aml"'};

Planta.inputname = {'fs', 'ds'};

bodemag (Planta, {1,1600}) ;

grid on

%% Colored noise function is a
first order filter Wdist, the
disturbance has a pole in 0.25
rad/s

Wdist = tf(8, [1 101);

Wdist.u = 'dist'; Wdist.y =

ldSl;

%% Noise

wnl = t£(0.0005);

wnl.u = 'noise'; wnl.y= 'nul';

%% Global primary Path

disturbance propagation

[numG, denG] =

ss2tf (Planta.a,Planta.b,Planta.c
,Planta.d, 2);

Gp = tf(numG(1l,:),denG);

Gp.y = 'x2p';
% disturbance addition
global primary path

on the

deltaT =

ultidyn('deltaT', [1,1], "bound', 0
.25);
Gp =
Gp.u =

Gp* (l+deltaT*Wunmod) ;
'dS' :



x1lmeas =
nul');

sumblk ('ml = x2p +

%% Primary Path interconnection

ICinputs = {'dist'; 'noise'};
ICoutputs = {'ml'};
Globalic =

connect (Gp,Wdist,wnl, xlmeas, ICin
puts, ICoutputs) ;
get (Globalic)

bodemag (Globalic, {1,1600})
grid on

%% Primary Path Identification

Ts = 4;
sigman = 0.0001;
[x2p] = impulse (Globalic,Ts);

x2p =x2p(:,1)/norm(x2p(:,1));

ntrS = 30000;

s = 0.015*randn (ntrS,1); %
Synthetic random signal to be
played

Hfir =

dsp.FIRFilter ('Numerator',x2p.")
dS = step(Hfir,s) + ... % random
signal propagated through
secondary path

sigman*randn (ntrS,1); %
measurement noise at the
acelerometer

%% Design the primary Path
Estimate

M = 800; %900
muGp = 0.6; %1
PgEstLMS =

dsp.LMSFilter ('Method', "Normaliz

ed LMS', 'StepSize', muGp, ...
'Length', M);

[yGp, eGp, PgEst] =

step (PgEstLMS, s,dS) ;

figure

n = l:ntrS;
subplot (2,1,1)
plot (n,ds);
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ylabel ('Signal value');

legend ('Desired Signal');
subplot (2,1,2)

plot(n, yGp,n,eGp);

xlabel ('Number of iterations');
ylabel ('Signal value');
title('Secondary Identification
Using the NLMS Adaptive
Filter');

legend ('Output Signal', 'Error
Signal');

%% Accuracy of the primary path

Fs = 1600;

[N,min]=size (x2p);

t = (1:N)/Fs;

figure

subplot(2,1,1)

plot (t,x2p, 'k'");

xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('True Secondary Path
Impulse Response');

grid on

subplot(2,1,2)
plot(t(1:M),PgEst, 'c',t, [x2p(1:M
)-PgEst (1:M); x2p(M+1:N)],"'k");
xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('Secondary Path Impulse
Response Estimation');

legend ('Estimated', "Error'");
grid on

%% Design of the FIR filter

PgNLMS =

dsp.FIRFilter ('Numerator', PgEst.
")

W = linspace(0,400,4800);

fvtool (PgNLMS, 'Fs',1600, 'Frequen
cyRange', 'Specify freq. vector',

'FrequencyVector', W) ;

save ('GlobalP', "PgNLMS', 'n', 'dS"
,vprv,verv);

end



ANNEX B3: PROGRAMING
IDENTIFICATION

function [FCNLMS,n,dS,yFC,eFC]
IdentifyFC()

clear all
close all
clc

%% PROBLEM IDENTIFICATION

% Flexible Structure of 3 masses
connected by mechanical elements
(Springs)

% Disturbance secondary Path of
one degree of freedom

o)

s System Constants

ml = 0.1; % lkg
m2 = 0.1; % kg

m3 = 0.1; % kg
%% Modeling of the parametric
uncertainty

k = 5000;

k1l = k; % N/m

k2 = k;

k3 = k;

k4 = k;

b =1;

bl b;

b2 = b;

b3 = b;

b4 b;

%% Modeling of the uncertainty
due the Actuator’s delay

% Model of the delay between
actuator force and the mass 1

% maximum delay 1s about 0.05
seconds.

Wunmod = 2.1*tf([1 O], [1 401);

Q

% State-Space Representation of
the nominal plant

All = zeros(3,3);

Al2 = eye(3,3);

A21 = [-(k1+k2)/ml k2/ml 0;k2/m2
-(k24+k3)/m2 k3/m2; 0 k3/m3 -
(k3+k4) /m3];
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OF FEEDBACK COUPLING SYSTEM

A22 = [-(bl+b2)/ml b2/ml 0;b2/m2
- (b24+b3)/m2 b3/m2; 0 Db3/m3 -
(b3+b4) /m3] ;

Bl =
B2 =

zeros (3,2);

[0 1/ml; 0 O ; 1/m3 0];
=[All Al2;
[B1;B2];
[A(5,:);A(4,
zeros (2,2);

A21 A22];

)1

o Qw >
|

Planta = ss(A,B,C,D);
Planta.statename =
{VX1V’VXZV’VXBV’VV1V’|V2|’|V3|};
Planta.outputname =
{'am2', 'aml"'};
Planta.inputname = {'fs', 'ds'};

oo
)

Inertial actuator’s model

ActNom = tf (100, [1 80]);

Wunc = makeweight (0.50,2,100);
unc =
ultidyn('unc', [1,1], 'type', 'gain
bound', '"bound', 0.5, 'samplestated
im',7);

Act = ActNom* (1 + Wunc*unc) ;
Act.inputname = 'u';

Act.outputname = 'fs';

%% Noise

wnl = t£(0.001);

wnl.u = 'noise'; wnl.y= 'nul';

%% Feedback Coupling Path
propagation

[numFc, denFc] =
ss2tf (Planta.a,Planta.b,Planta.c
,Planta.d, 1) ;

Fc = tf (numFc (2, :),denFc);

Fc.y = 'xls';
% disturbance addition
global primary path

on the

deltaT =
ultidyn('deltaT', [1,1], "bound', 0
.1)
Fc
Fc.u =

|~

Fc* (1+deltaT*Wunmod) ;
VfSV ,.



x1lmeas = xls +

nul');

sumblk ('ml =

%% Primary Path interconnection

ICinputs = {'u'; 'noise'};
ICoutputs = {'ml'};
Reverseic =

connect (Fc,Act,wnl, xlmeas, ICinpu
ts, ICoutputs);

get (Reverseic)

bodemag (Reverseic, {1,1600}) ;
grid on

%% Primary Path Identification

Ts = 4;

[x1s] = impulse (Reverseic,Ts);
xls = x1s(:,1)/norm(xls(:,1));
figure

plot (x1s);

grid on

ntrS = 30000;

] = 0.015*randn (ntrS,1); %
Synthetic random signal to be
played

x1lsfir =

dsp.FIRFilter ('Numerator',xls.")

dS = step(xlsfir,s) + ... %

random signal propagated through

secondary path
0.0001*randn (ntrS,1);

oe

measurement noise at the
acelerometer

%% Design the Secondary Path
Estimate

M = 800; %900

muGp = 0.6; %1

FCEstLMS =

dsp.LMSFilter ('Method', "Normaliz

ed LMS', 'StepSize', muGp, ...
'Length', M);

[yFC,eFC,FCEst] =

step (FCEstLMS, s,dS) ;

figure
n = l:ntrS;
subplot (2,1,1)
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plot(n,ds);

grid on

ylabel ('Signal value');
legend('Desired Signal')
subplot (2,1,2)

plot (n,yFC,n,eFC);

xlabel ("Number of iterations');
ylabel ('Signal value');

title('Secondary Identification
Using the NLMS Adaptive
Filtexr');

legend ('Output Signal', 'Error
Signal');

grid on

%% Accuracy of the secondary
path

Fs = 1600;

[N,min]=size (x1ls);

t = (1:N)/Fs;

figure

subplot(2,1,1)

plot(t,xls,'k");

xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('True Secondary
Impulse Response');

grid on

subplot(2,1,2)
plot(t(1:M),FCEst,'c',t, [xls(1:M
)—FCEst (1:M); x1s(M+1:N)],'k");
xlabel ('Time [sec]');

ylabel ('Coefficient value');
title('Secondary Path Impulse
Response Estimation');
legend('Estimated', "Error');
grid on

Path

%% Design of the FIR filter

FCNLMS =
dsp.FIRFilter ('Numerator',FCEst.
')

W = linspace (0,400,4800);

fvtool (FCNLMS, 'Fs',1600, 'Frequen
cyRange', 'Specify freqg. wvector',

'FrequencyVector', W) ;
save ('Feedback', '"FCNLMS', 'n', 'dS
', 'yFC', 'eFC");

end



ANNEX C. PROGRAMING OF ADAPTIVE FILTERS

ANNEX C1: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION

USING FLMS ALGORITHM

clear all
close all
clc

%% Loading Transfer Function of

the Disturbance Propagation
Paths

load('GlobalP.mat'"); %
Global Primary path

load ('Secondary.mat'"); %
Global secondary propgation path
load ('ds2x1lp'"); %
Image of the disturbance

propagation path

%% High pass disturbance filter

delayW = 15;

Flow = 145; % Lower band-edge:
79 Hz

Fhigh = 150; % Upper band-edge:
80 Hz

Astop = 15; % 10 dB stopband
attenuation

Apass = 5; % Filter order

N = 160;

fd =1600;

d =

fdesign.highpass ('Fst, Fp,Ast,Ap'
,Flow,Fhigh, Astop, Apass, £d) ;
Hd = design (d,
'cheby2', 'SystemObject', true);
% Filter noise to
impulse response
Gl = step (Hd, [zeros (delayW, 1) ;
log (0.99*rand (N-
delayW,1)+0.01) .*...

sign (randn (N-
delayW,1)) .*exp(-0.01* (1:N-
delayW) ') 1);
Gl = Gl/norm(Gl);

generate

% FIR Filter to be used to model
primary propagation path

Hfirl =
dsp.FIRFilter ('Numerator',Gl.");

%% Estimation noise
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SigmaN_ Sim =
sigman 0.001;
accelerometer noise variance

0.001;

and
the

%% Actuator
secondary path
disturbance signal

response
to

delayW = 6;
N = 1000;
% Filter noise to
impulse response
Simp =
step (SNLMS, [zeros (delayW, 1) ;
log(0.99*rand (N-
delayW,1)+0.01).*...

sign (randn (N-
delayW,1)) .*exp(-0.01* (1:N-
delayW) ') 1):

generate

Simp = Simp/norm(Simp) ;

ntrS = 30000;

s = randn(ntrS,1); % Synthetic
random signal to be played
Shatfir =
dsp.FIRFilter ('Numerator',Simp.'
)

x2hats = step(Shatfir,s) + ... %
random signal propagated through
Global primary path

SigmaN Sim*randn(ntrsS,1); %
measurement noise at the
accelerometer
L=900;

Mu = 0.6;
SdigLMS =

dsp.LMSFilter ('Method', "Normaliz

ed LMS', 'StepSize', Mu,...
'Length', L);

[yShat,eShat, ShatlLMS] =

step (SdigLMS, s, x2hats) ;

Shat =

dsp.FIRFilter ('Numerator', ShatLM

S.");

%% adaptive filtered-LMS: reduce

noise



L = 500; %700
MuW = 0.00000025; %0.01
Hfx =

dsp.FilteredXLMSFilter ('Length',
L, 'StepSize',MuWw, ...

'SecondaryPathCoefficients', Shat
LMS) ;

%% Generator of the sinusoidal
signal to create asymptotically
the noise

Fs = 1600;

A = ones(1l,24);

FO = 5; k = 1:24 ; Lk =
length (k) ;

F = FO*k; phase = randn(l,Lk);
Hsin =

dsp.SineWave ('Amplitude', A, "Freq
uency',F, 'PhaseOffset',phase, ...

'SamplesPerFrame', 512, 'SampleRat
e',Fs);

Hts =
dsp.TimeScope ('TimeSpan',1000, 'Y
Limits', ...

[_
0.1,0.1], "NumInputPorts',2, 'Posi

tion', [10 10 750 750]
, 'ShowGrid', ...

true, 'ShowlLegend', true);
% Spectrum analyzer to show

original and attenuated noise
Hsa =
dsp.SpectrumAnalyzer ('SampleRate
',Fs, 'OverlapPercent',80, ...

'SpectralAverages', 20, '"PlotAsTwo
SidedSpectrum', false, ...
'ShowGrid', true) ;

%% Simulation of the adaptive
control using Filtered-LMS

for m = 1:200

s = step(Hsin); % Generate
sine waves with random phase

x = sum(s,2); % Generate
synthetic noise by adding all
sine waves

xp =randn (size(x));

signl = step (Hfirl,xp);

x2p = step(PgNLMS,xp) +
% Propagate noise through
primary path

sigman*randn (size(x)); %

Add measurement noise

if m <= 100
% No noise control for
first 200 iterations
e = x2p;
uhat = zeros(size(x)):;
y = zeros(size(x));
else
% Enable active noise

control after 200 iterations

x2hats = step(Shat,y);
uhat = step (WNLMS,xp) +
sigman*randn (size (x)); %+
x2hats;
[y,el =
step (Hfx,uhat, x2p) ;
end
step (Hts, x2p,e); % Show
spectrum of original (Channel 1)
% and
attenuated noise (Channel 2)
step (Hsa, [x2p,e]) ; % Show
the spectrum analyzer
end

corrcoef (uhat, x2p)
release (Hts); % Release spectrum
analyzer

ANNEX C2: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION

USING FEEDBACK FXLMS ALGORITHM

clear all
close all
clc

load ('GlobalP.mat') ;
load ('Secondary.mat'");
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%% Secondary path and inverse

primary path estimation
% Estimation noise
SigmaN Sim = 0.001;
sigman = 0.001;



and
the

%% Actuator
secondary path
disturbance signal

response
to

delayW = 6;
N = 1000;
Fs = 1600;
% Filter noise to
impulse response
Simp =
step (SNLMS, [zeros (delayW, 1) ;
log (0.99*rand (N-
delayW,1)+0.01).*...

sign (randn (N-
delayW,1)) .*exp(-0.01* (1:N-
delayW) ') 1);

generate

Simp Simp/norm(Simp) ;
ntrS = 30000;
s = randn(ntrS,1l); % Synthetic
random signal to be played
Shatfir =
dsp.FIRFilter ('Numerator',Simp."
)
x2hats = step(Shatfir,s) + ... %
random signal propagated through
Global primary path

SigmaN Sim*randn (ntrS,1); %
measurement noise at the
accelerometer

L=900;

Mu = 0.6;

SdigLMs =

dsp.LMSFilter ('Method', "Normaliz

ed LMS', 'StepSize', Mu, ...
'Length', L);

[yShat,eShat, ShatLMS] =

step (SdiglMS, s, x2hats) ;

Shat =

dsp.FIRFilter ('Numerator', ShatLM

l:ntrsS;

plot (n,x2hats,n, yShat,n,eShat) ;

% xlabel ('Number of

iterations');

ylabel ('Signal value');
title('Secondary

o

o

Identification Using the NLMS
Adaptive Filter');

% legend ('Desired Signal’,
‘Output Signal’, ‘Error
Signal');
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%% adaptive filtered-LMS: reduce
noise

L = 800;

Muw = 0.00000018;

Hfx =

dsp.FilteredXLMSFilter ('Length',
L, 'StepSize',MuWw, ...

'LeakageFactor', 1, 'SecondaryPath
Coefficients',ShatlLMSs) ;

%% Generator of the sinusoidal
signal to create asymptotically
the noise

Fs = 1600;
A= (0.9 0.8 0.75 0.5 0.4 0.2];
FO = 5; LA = length(A);

[10 15 20 30 50 60] ; phase

F =
= randn(1l,LA);

Hsin =
dsp.SineWave ('Amplitude', A, "Freq
uency',F, 'PhaseOffset', phase, ...

'SamplesPerFrame', 512, 'SampleRat
e',1600);

Hts =
dsp.TimeScope ('TimeSpan', 500, 'YL
imits', ...
[_
1,1], "NumInputPorts', 2, 'Position
', [1 1 750 750] ,'ShowGrid', ...
true, 'ShowlLegend', true);

o)

% Spectrum analyzer to show
original and attenuated noise
Hsa =
dsp.SpectrumAnalyzer ('SampleRate
',Fs, 'OverlapPercent',80, ...

'SpectralAverages', 20, 'PlotAsTwo

SidedSpectrum', false, ...
'ShowGrid', true) ;

%% Simulation of the adaptive

control using Filtered-LMS

for m = 1:200
s = step(Hsin); % Generate
sine waves with random phase



X = sum(s,2); % Generate
synthetic noise by adding all
sine waves

$xp = randn(size(x));

x2 = step(PgNLMS,x) + ... %

Propagate noise through primary
path

sigman*randn (size(x)); %
Add measurement noise
if m <= 100

% No noise control for
first 200 iterations

e = x2;

y = zeros(size(x));

x2phat = zeros(size(x));
else

% Enable active noise

control after 200 iterations

if m == 101
x2phat = x2;
end
[YIe] =
step (Hfx, x2phat, x2) ;
x2shat = step(Shat,y);
x2phat = e - x2shat;
end
step (Hts, x2,e); % Show
spectrum of original (Channel 1)
% and
attenuated noise (Channel 2)

step (Hsa, [x2,e])
end
corrcoef (x2,x2phat)
release (Hts); % Release spectrum

analyzer

ANNEX C3: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION
USING FEEDFORWARD RLS ALGORITHM WITH FEEDBACK COUPLING

clear all
close all
clc

%% Loading Transfer Function of
the Disturbance Propaation Paths

oe

load('GlobalP.mat'");
Global Primary Path

load('Secondary.mat'); %
Global Secondary propagation
path

load ('ds2x1lp'"); %
Image of the disturbance

propagation path
load ('Feedback') ;
compensation feedback to the
correlation accelerometer
propagation path
load ('PrimaryPath');
Primary Path

oe

o\°

o)

% Variance of the White
inherent to the sensor

noise

sigman = 0.001;

%% Generator of the sinusoidal
signal to create asymptotically
the noise

Fs = 1600;
A = [0.6 0.5 0.45 0.3 0.2 0.11;
FO = 5; LA = length(Ad);
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F = [10 15 20 30 50 60] ;
phase = randn(1l,LA);
Hsin =

dsp.SineWave ('Amplitude', A, 'Freq
uvuency',F, '"PhaseOffset',phase, ...

'SamplesPerFrame', 512, 'SampleRat
e'IFS);

%% Setting the RLS filter

M = 70; %
Filter order

delta = 50000000; %
Initial input covariance
estimate

PO = (1/delta)*eye (M,M); %

Initial setting for the P matrix
Hadapt =
dsp.RLSFilter (M, '"Method', '"Conven
tional RLS', 'ForgettingFactor',
1,'InitialInverseCovariance', P0)

’

Hts =
dsp.TimeScope ('TimeSpan', 1000, 'Y
Limits', ...

[_
1,1], "NumInputPorts', 2, 'Position
', [1 1 750 750] ,'ShowGrid', ...
true, 'ShowlLegend', true);

4



% Spectrum analyzer to show
original and attenuated noise

Fs = 1600;

Hsa =
dsp.SpectrumAnalyzer ('SampleRate
',Fs, 'OverlapPercent', 80, ...

'SpectralAverages', 20, 'PlotAsTwo
SidedSpectrum', false, ...
'ShowGrid', true) ;

for k = 1:200

S = step(Hsin); % Generate
sine waves with random phase

X = sum(s,2); % Generate
synthetic noise by adding all

sine waves

x2p = step(PgNLMS,x) + ..
% Propagate noise through
primary path

sigman*randn (size(x)); % Add

measurement noise % Noise
if k ==
x1 = step (WNLMS, x) ;
mx1 = x1 +
sigman*randn (size (x));
end
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x2 = step (PNLMS, x1);
mx2 = X2 +
sigman*randn (size (x));

if k <= 100
% No noise
first 100 iterations
y=zeros (size (x));

control for

e = x2p;

x1 = step (WNLMS, x) +
step (FCNLMS, y) ;

mx1 = x1 +
sigman*randn (size (x));

else

x1 = step (WNLMS, x) +
step (FCNLMS, v) ;

mx1 = x1 +
sigman*randn (size (x));

[y,el =
step (Hadapt,mx1,mx2) ;

xX25 = step (SNLMS, vy) ;

[

% Propagate compensation through
secondary path
e = x2 + x2s;

end

step (Hts, x2p,e);

step (Hsa, [x2p,el);
end
corrcoef (x1,x2p)
release (Hts)



