
A COMPARATIVE STUDY OF LINEAR TECHNIQUES ACTIVE 
VIBRATION CONTROL H-INFINITY AND ADAPTIVE FILTERS ON 

A FLEXIBLE STRUCTURE OF ONE DEGREE OF FREEDOM 
 
 
 
 
 
 
 
 
 
 
 
 

EFRAÍN GUILLERMO MARIOTTE PARRA B.Sc. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dynamics, Control and Robotics, DicBOT Research Group 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSIDAD INDUSTRIAL DE SANTANDER 
DEPARTMENT OF PHYSICAL-MECHANICAL ENGINEERING 

MASTER OF MECHANICAL ENGINEERING 
BUCARAMANGA 

2015 



A COMPARATIVE STUDY OF LINEAR TECHNIQUES ACTIVE 
VIBRATION CONTROL H-INFINITY AND ADAPTIVE FILTERS ON 

A FLEXIBLE STRUCTURE OF ONE DEGREE OF FREEDOM 
 
 

 

 

EFRAíN GUILLERMO MARIOTTE PARRA, B.Sc. 

 

 

Master Research Project 

Submitted to the Graduate Committee of the School of Mechanical 
Engineering 

 

 

 

Director JABID E. QUIROGA MÉNDEZ, M.Sc. 

 

 

Co-Director CARLOS BORRÁS PINILLA, Ph.D. 

 

 

 

Dynamics, Control and Robotics, DicBOT Research Group 

 
 
 
 
 

UNIVERSIDAD INDUSTRIAL DE SANTANDER 
DEPARTMENT OF PHYSICAL-MECHANICAL ENGINEERING 

MASTER OF MECHANICAL ENGINEERING 
BUCARAMANGA 

2015 



5 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicatory 

To Pablo for being the engine of my relentless craving for life. Without 

you, I would not have any reason to do anything. To Heidy, for being my 

match. To my mother, for whom I always feel gratefulness for your 

unconditional love. 

Acknowledgment 

To Farides for helping me untangle the wires of ideas so that anyone can 

read this book. To Andres for his patience and unconditional support of a 

true friend. To Alvaro for being the best one and my friend.  



6 
 

CONTENTS 

 Page 

INTRODUCTION ............................................................................................................. 13 

1. OBJECTIVES ...................................................................................................... 17 

1.1. GENERAL OBJECTIVE ..................................................................................... 17 

1.2. SPECIFIC OBJECTIVES .................................................................................... 17 

2. BACKGROUND ................................................................................................... 18 

2.1. ACTIVE VIBRATION CONTROL AVC ............................................................... 18 

2.3. ADAPTIVE CONTROL ........................................................................................ 21 

3. BASIC CONCEPTS ............................................................................................. 23 

3.1. DISTURBANCE REJECTION ANALYSIS ......................................................... 23 

3.2. COST FUNCTION ................................................................................................ 25 

3.2.1. Norms .................................................................................................................. 25 

3.2.2. Quadratic Cost Function ................................................................................... 26 

3.2.3. Cost Function for Systems with Random Inputs ........................................... 27 

3.2.4. The System ∞-Norm Cost Function ................................................................. 27 

3.3. ROBUSTNESS .................................................................................................... 28 

3.3.1. Unstructured Uncertainty ................................................................................. 29 

3.3.2. Unstructured Uncertainty Models .................................................................... 30 

3.3.3. Stability Robustness Analysis ......................................................................... 33 

3.3.4. Structured Uncertainty ...................................................................................... 33 

3.3.5. Structured Singular Value and Stability Robustness .................................... 35 

3.4. THE PROBLEM OF THE 𝓗∞ CONTROLLER .................................................. 38 

3.5. THE PROBLEM OF THE μ-SYNTHESIS CONTROLLER ................................. 41 

3.6. ADAPTIVE FILTER ............................................................................................. 43 

3.6.1. Adaptive Filtering Methodology ....................................................................... 43 

3.7. SYSTEM IDENTIFICATION ................................................................................ 44 

4. ROBUST CONTROL DESIGN ............................................................................ 45 

4.1. PARAMETRIC UNCERTAINTIES ...................................................................... 45 

4.2. THREE-CART MIMO DYNAMICS ...................................................................... 48 

4.2.1. Inertial Actuator Modeling ................................................................................ 53 

4.3. 𝓗∞  ROBUST CONTROLLER DESIGN ............................................................ 54 

4.3.1. Nominal Model and Structured Uncertainties ................................................ 55 



7 
 

4.3.2. Scaling ................................................................................................................. 57 

4.3.3. The Limitation Imposed on the Performance ................................................. 58 

4.4. CONTROLLER DESIGN ..................................................................................... 60 

4.4.1. Robust Stability and Performance ................................................................... 62 

4.5. µ-SYNTHESIS AND DK-ITERATION ................................................................. 63 

4.6. MIXED µ-SYNTHESIS ......................................................................................... 64 

4.7. DISTURBANCE REJECTION SIMULATIONS ................................................... 66 

4.8. PRELIMINARY CONCLUSIONS ........................................................................ 69 

5. ADAPTIVE CONTROLLER DESIGN .................................................................. 71 

5.1. THREE-CART DYNAMICS WITH INERTIAL ACTUATOR ............................... 71 

5.2. SYSTEM IDENTIFICATION OF THE PROPAGATION PATHS ........................ 74 

5.2.1. SI Global Primary Path FIR Filter ..................................................................... 79 

5.2.2. Feedback Coupling Propagation Path Identification ..................................... 81 

5.2.3. Image of the Disturbance Path ......................................................................... 82 

5.2.4. SI Secondary Path.............................................................................................. 84 

5.3. AVC USING FILTERED-X LMS FIR ADAPTIVE FILTER .................................. 85 

5.4. ADAPTIVE FEEDBACK AVC USING FxLMS ALGORITHM ............................ 89 

5.5. ADAPTIVE FEEDFORWARD AVC USING RLS ALGORITHM WITH 

FEEDBACK COUPLING ................................................................................................ 93 

5.6 PRELIMINARY CONCLUSIONS ............................................................................. 95 

6. COMPARATIVE ANALYSIS ............................................................................... 97 

6.1. RLS ADAPTIVE FILTER ..................................................................................... 98 

6.2. MIXED-μ ROBUST CONTROLLER ...................................................................100 

7. CONCLUSIONS ..................................................................................................103 

8 RECOMMENDATIONS ..............................................................................................105 

BIBLIOGRAPHY ............................................................................................................106 

ANNEXES ......................................................................................................................110 

 

  



8 
 

LIST OF FIGURES 

 Page 

Figure 1. Scheme of a positioning servo system (Robotic arm) ................. 14 

Figure 2. Scheme of the studied Plant .......................................................... 15 

Figure 3 Unstructured uncertainties in the plant model: a) additive 

uncertainty; b) input-multiplicative uncertainty; c) output-

multiplicative uncertainty; d) input-Feedback uncertainty; e) 

output-Feedback uncertainty ........................................................ 32 

Figure 4 Standard form of the structured uncertainty model ..................... 34 

Figure 5. Diagonal scaling of the plant: (a) the Feedback perturbation; 

(b) diagonal scaling added to the plant and the perturbation; (c) 

diagonal scaling leaves the diagonal perturbation unchanged ... 36 

Figure 6. Block Diagram Defining General Adaptive Filter Algorithm 

Inputs and Outputs .......................................................................... 43 

Figure 7. Using an Adaptive Filter to Identify an Unknown System ........... 44 

Figure 8. Modeled Real Plant ......................................................................... 46 

Figure 9. A three-cart simplified model, the spring constant 𝒌 and 

damping ratio b are uncertainties ................................................... 47 

Figure 10. Frequency response of the nominal model ................................ 51 

Figure 11. Comparative Bode plot of the Unmodeled Dynamics vs Plant 

input delay ........................................................................................ 52 

Figure 12. Comparative Bode plot of the actuator nominal model vs 20 

randomly sampled models .............................................................. 54 

Figure 13. MIMO weights for robust synthesis ............................................. 55 

Figure 14. Bode Plot for nominal and 20 samples of uncertainties ............ 57 

Figure 15. Bode plot comparison between closed-loop target and the 

open-loop response ......................................................................... 60 

Figure 16. N-∆ Block Diagram ........................................................................ 61 

Figure 17. Bode plot of the open loop system and compare to the close 

loop response with the controller ................................................... 62 

Figure 18. Bode plot comparison between open loop system and the 

close loop response with the robust controller ............................ 64 

Figure 19. Bode plot comparison between closed-loop target and the 

close loop response with the Mixed-µ controller .......................... 65 

Figure 20. Disturbance rejection response .................................................. 66 

Figure 21. Disturbance rejection response of the worst-case .................... 67 

Figure 22. Robust performance as a function of controller order .............. 68 

Figure 23. Disturbance rejection comparison 87th and 8th controller 

order .................................................................................................. 69 

Figure 24. Scheme of the Plant, AVC system ............................................... 72 



9 
 

Figure 25. Block diagram of the plant of the AVC system a) open loop b) 

with the feedforward compensator ................................................. 74 

Figure 26. Block Diagram of the System Identification Using the NLMS 

Adaptive Filter .................................................................................. 75 

Figure 27. Primary path SI Using the NLMS Adaptive Filter with 1000 

Filter order ........................................................................................ 76 

Figure 28. Primary path Impulse response identification............................ 77 

Figure 29. Primary path SI Using the NLMS Adaptive Filter with 500 

Filter order ........................................................................................ 77 

Figure 30. Frequency characteristics of the primary, secondary and 

reverse paths .................................................................................... 79 

Figure 31. SI of Global Primary path using the NLMS Adaptive Filter. a) 

Estimation Error b) Magnitude response of the FIR filter ............. 80 

Figure 32. SI of the Feedback Coupling path, using the NLMS Adaptive 

Filter. a) Estimation Error b) Magnitude response of the FIR 

filter ................................................................................................... 81 

Figure 33. Image of the disturbance path Identification Using the NLMS 

Adaptive Filter. a) Estimation Error b) Magnitude response of 

the FIR filter ...................................................................................... 83 

Figure 34. Secondary Path Identification Using the NLMS Adaptive 

Filter. a) Estimation Error b)Magnitude response of the FIR 

filter ................................................................................................... 84 

Figure 35. a) Schematic arrangement of Feedforward AVC system with 

FxLMS b) Block Diagram ................................................................. 86 

Figure 36. Power spectral of AVC of the Filtered-x LMS ............................. 88 

Figure 37. Disturbance rejection of the feedback Filtered-x LMS ............... 88 

Figure 38. Schematic arrangement of feedback AVC system with FxLMS 

b) Block Diagram .............................................................................. 90 

Figure 39. Disturbance rejection of the AVC using feedback FxLMS ........ 91 

Figure 40. Power spectral of the AVC system using feedback FxLMS ...... 92 

Figure 41. Power Spectrum of AVC System using RLS algorithm with 

Feedback Coupling .......................................................................... 94 

Figure 42. Disturbance rejection of the AVC using RLS algorithm with 

feedback coupling ............................................................................ 95 

Figure 43. Disturbance rejection using RLS algorithm Feedforward 

Compensator: Residual Acceleration ............................................ 98 

Figure 44. Disturbance rejection using RLS algorithm Feedforward 

Compensator Magnitude Response ............................................. 100 

Figure 45. Disturbance rejection using Mixed-μ Robust Controller: 

Frequency response ...................................................................... 101 

Figure 46. Disturbance rejection using Mixed-μ Robust Controller: 

Residual Acceleration .................................................................... 102 



10 
 

LIST OF ANNEXES 

 Page 

ANNEX A. PROGRAMMING OF THE ROBUST CONTROL ......................... 111 

ANNEX B. PROGRAMING OF SYSTEM IDENTIFICATION ......................... 116 

ANNEX C. PROGRAMING OF ADAPTIVE FILTERS .................................... 122 

 

  



11 
 

ABSTRACT 

 

TITLE: COMPARATIVE STUDY OF LINEAR TECHNIQUES ACTIVE VIBRATION CONTROL 
H-INFINITY AND ADAPTIVE FILTERS ON A FLEXIBLE STRUCTURE OF ONE DEGREE OF 
FREEDOM * 

 

AUTHOR: EFRAÍN GUILLERMO MARIOTTE PARRA ** 

 

KEY WORDS: Active Vibration Control (AVC), Adaptive Control, Robust Control, Flexible 
Structure, Finite Impulse Response (FIR) filter, H∞ and µ-synthesis Robust Controller, Filtered-x 
Least Mean Square (FxLMS), Recursive Least Square (RLS) 

 

DESCRIPTION: 

The present study compared the designs of controllers based on Robust Control and Adaptive 
Control methodologies applied in Active Vibration Control (AVC). The AVC systems were 
implemented in a three-cart plant. The comparison was performed using as a decision criterion 
the trade-off relationship between the generalization of the solution and the magnitude of the 
disturbance rejection against the computational cost and control effort.  

The Robust H∞ controller and the µ-synthesis Robust Controller were applied considering two 
parameters of uncertainty. The designed controllers were confronted using colored noise 
bandwidth. Simulations in Matlab environment showed an improved performance of Robust 
controller synthesized by the technique of mixed-µ.  

Adaptive Control methodologies were used as an adaptive System Identification (SI) for every 
propagation path of each disturbance. The SI generated Finite Impulse Response (FIR) filters 
that modeled the dynamic responses of every path. Control simulations were performed on 
these models adopting feedforward and feedback filter designs. Filters were compared beneath 
periodic disturbances. Real time simulations in Matlab environment displayed more efficient 
results when using Recursive Least Square (RLS) filter.  

The best controllers out of the comparisons carried out previously were confronted by changing 
the parameters of the plant: the bandwidth of the frequency response was increased. 

Finally, the advantages of employing each controller are presented. As a result, the Adaptive 
Filter rejects better periodic disturbances than the Robust Controller, which rejects better non-
periodic disturbances. 

 
 
 
 
 
 
* Magister degree work 
**Physical-Mechanical Engineering Department, School of Mechanical Engineering. Director: Jabid Quiroga Méndez 
M.Sc. Codirector: Carlos Borrás Pinilla PhD 
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RESUMEN 

 

TÍTULO: ESTUDIO COMPARATIVO DE LAS TÉCNICAS LINEALES DE CONTROL ACTIVO 
DE VIBRACIONES H-INFINITO Y FILTROS ADAPTATIVOS PARA UNA ESTRUCTURA 
FLEXIBLE DE UN GRADO DE LIBERTAD* 

 

AUTOR: EFRAÍN GUILLERMO MARIOTTE PARRA ** 

 

PALABRAS CLAVES: Control Activo de Vibraciones (Active Vibration Control, AVC), Control 
Adaptativo, Control Robusto, Estructura Flexible, Filtro de Respuesta Finita al impulso (Finite 
Impulse Response, FIR), Controlador H∞ y μ-Synthesis, Mínimos cuadrados (Least Mean 
Square, LMS), Recursive Least Square, RLS. 

 

DESCRIPCIÓN: 

En el presente estudio se compararon los diseños de los controladores basados en las 
metodologías de Control Robusto y de Control Adaptativo aplicado al Control Activo de 
Vibración (AVC). EL sistema AVC fue implementado en una planta de tres masas con un grado 
de libertad. La comparación se realizó utilizando como criterio de decisión la relación de trade-
off entre la generalización de la solución y la magnitud del rechazo de las perturbaciones contra 
el costo de cálculo y el esfuerzo en el control aplicado.  

Los Controladores Robustos H∞ y μ-sintetizado son diseñados considerando incertidumbres 
paramétricas. Dichos controladores se contrastaron usando ruido coloreado. Las simulaciones 
realizadas el ambiente de Matlab muestran mejor rendimiento al controlador robusto sintetizado 
usando la técnica mixed-μ.  

Se aplicó la metodología de Control Adaptativo para realizar Identificación del Sistema (SI) en 
cada camino de propagación de las perturbaciones estudiadas. La identificación del Sistema 
configuró filtros de Respuesta Finita al Impulso (FIR) que modelaron las respuestas dinámicas 
de dichos caminos. Las simulaciones fueron realizadas usando diseños de filtros en 
Feedforward y Feedback. Los Filtros fueron comparados empleando perturbaciones periódicas. 
Simulaciones en tiempo real en el ambiente de Matlab mostraron mejores resultados al filtro 
RLS. 

Los controladores resultantes de cada comparación previamente realizada se contrastaron 
aplicándolos a la planta con un ancho de banda más grande. Finalmente, las ventajas de 
emplear cada controlador son expuestas. Como resultado, Filtro Adaptativo rechaza mejor 
perturbaciones periódicas que el Controlador Robusto, el cual rechaza mejor las perturbaciones 
no-periódicas 

 

 

 
* Proyecto de grado de Maestría 
** Facultad de Ingenierías Físico-Mecánicas, Escuela de Ingeniería Mecánica. Director: M.Sc. Jabid Quiroga Méndez., 
Codirector: PhD Carlos Borrás Pinilla. 
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INTRODUCTION 

Nowadays, the problem of acoustic noise is more evident as the number of 

machines (engines, turbines, fans and compressors) increases in the 

transportation and manufacturing industries. This noise is generated by 

vibrations of flexible structures. Those machines’ perpetual movements 

generate periodic vibrations. There are two ways to eliminate this noise: through 

canceling the vibration with a robust flexible structure or by placing acoustic 

actuators. A strong relationship between these two methods is denoted in order 

to present an unified solution. The traditional way of damping vibration is 

passive by using mufflers or dampers. These elements tend to increase the 

rigidity of the structure by decreasing the cutoff frequency of the plant, thus 

eliminating the vibration to the range of “high frequency”; however, they are 

robust, costly or ineffective in many cases at “low frequencies”, where it is 

possible the operating point of the machine can be located.  

Active Vibration Control (AVC) uses an electromechanical or electroacoustic 

system which cancels the unwanted emissions, such as the accelerations 

resulting from positioning servo system, based on the principle of superposition 

of waves. Specifically, a secondary vibration of equal magnitude is produced in 

opposite phase, which is added to the first vibration canceling the initial one. 

These systems are developed to increase the precision in measurement and 

manufacturing systems, to promote technologies that require it, as in the case 

of lab-on-a-chip technology. In general, this type of positioning mechanism 

systems have several degrees of freedom creating mixed accelerations with 
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amplitudes and frequencies varying in time (changing operating points), making 

such systems difficult to control. Adaptive methods provide a greater range of 

frequencies to be controlled. The problem of vibration control is delimited to low 

frequency ranges where the system behaves linearly and simulation is still valid. 

It is necessary, since the control system behaves based on the simulation of the 

actual model. If the simulation does not have the same response as the real 

model, the control will not be the appropriated one. 

 

Figure 1. Scheme of a positioning servo system (Robotic arm) 

 

This investigation was proposed to solve the AVC linear problem, which is 

applicable to electromechanical systems for high precision positioning with 

several degrees of freedom. The types of accelerations at the end of the 

positioning mechanism are observed as periodic vibrations caused by the servo 

motors oscillation frequencies; impulsive acceleration due to changes of 

direction in the positioning without slowing; and non-periodic vibrations, 

simulated as white noise caused by agents external to the operation of the 

machine and the sensor noise of the control system. The case study of this 

investigation is the model of an AVC system at the end of the chain of servo 

systems, where it performs the main operation of the machine, as shown in 
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Figure 1. Firstly, the AVC system will observe all accelerations previously 

raised. Finally, it will reject these disturbances in order to not affect the activity 

of the machine. The AVC system is a structure of one Degree of Freedom 

(DOF) to facilitate simulation. The structure consists of one mass connected to 

the reference framework by springs, modeled as a spring and damper system in 

parallel, the scheme is shown in figure 2. 

 

Figure 2. Scheme of the studied Plant 

 

 

The disturbance rejection is an application of both, the Robust Control and the 

Adaptive Control using electromechanical systems. In the case of Robust 

Control “worst-case” principle is used. The H-infinity norm, that is the maximum 

possible amplitude value for a given disturbance in the system, was 

implemented to find an objective function so minimize both, the maximum 

amplitude value and the use of control, to reject this disturbance. Unlike 

Feedback control, the Robust Control design process does not required a 

precise knowledge about the Plant. This gives the versatility to control the plant 
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under various operating points within a preset range allowed in the design. The 

uncertainties may be caused whether by the linearization of the model or by the 

uncertain values of the Plant parameters. The design of the ∞-norm can be 

posed as an optimization problem using the system ∞-norm as a cost function. 

The ∞-norm is the “worst-case” gain of the system and therefore provides a 

favorable match to engineering specifications, which are typically given in terms 

of bounds on errors and controls. The small-gain theorem states that, for 

unstructured perturbation, robust stability depends on the ∞-norm of the closed 

loop system from the perturbation input to the perturbation output. The 

minimization of the closed loop ∞-norm, therefore, can also be used as a 

means of maximizing robustness [10]. 

For Adaptive Control Filter design, there are more uncertainties about the 

possible operating points of the Plant. This is why; it is looked for the controller 

to be more autonomous due to possible drastic changes in the lifetime of the 

machine. To solve this, the control system was designed with a System 

Identification of the Plant. This system used also an Adaptive Filter to pull out 

the filter modeling of the Plant through the use of white noise. The Adaptive 

Filter algorithm seeks to reduce the error between the reference signal, the 

disturbance to be rejected, and the signal generated for the task. Linear 

algorithms such as LMS (Least Mean Square) and (RLS) Recursive Least 

Square are used to search for improved controlled response of the rejection of 

system disturbances [11, 12, 13, 15]. 
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1. OBJECTIVES 

 

1.1. GENERAL OBJECTIVE 

 Theoretical study was performed on linear Active Vibration Control (AVC) of 

a flexible structure with one degree of freedom (Studied Plant), to reject 

periodic vibrations using Adaptive Filters and Robust Control, looking for an 

improved performance based on the trade-off relationship between the 

generalization of the solution and the disturbance attenuation. 

1.2. SPECIFIC OBJECTIVES 

 Simulation of the plant studied and the implementation of the AVC were 

programed in the Matlab environment considering the uncertainties of the 

model, and the use of Robust Control toolbox and the Digital Signal 

Processing (DSP) toolbox. 

 Robust Control was implemented in the Studied Plant simulation to eliminate 

disturbances on mass 2, see Figure 8 and 9. Using H ∞ , complex μ-

Synthesis and Mixed μ-Synthesis techniques. A comparative study was 

made based on “worst-case” scenario analysis. 

 AVC was implemented by means of three adaptive filters to simulate the 

Studied Plant: 1) a feedforward Filtered-X Least Mean Square (FxLMS); 2) 

an Adaptive Feedforward filter, using the algorithm Recursive Least Square 

(RLS), and modeling the propagation path of “Feedback Compensation”; 

and 3) Feedback FxLMS-based filter. Performance comparison was made 

based on the trade-off relationship between the generalization of the solution 
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versus the computational cost and the amount of attenuation of the 

disturbance. 

 The performances of the Robust Controller and Adaptive Filter were 

confronted by applying them to the Studied Plant. 

 

2. BACKGROUND 

 

2.1. ACTIVE VIBRATION CONTROL AVC 

AVC has long been applied, in particular to ships. Mallock (1905), reported 

about vibration on steam ship by synchronization of two engines in opposite 

phase, and Allen (1945), on roll stabilization by buoyancy control with activated 

fins, auxiliary rudders with variable angle of attack protruding laterally from the 

ship hull into water. Active damping of aircraft skin vibration was proposed in 

1942, providing multichannel Feedback Control with displacement sensor and 

electromagnetic actuators, mainly in order to prevent fatigue damage. Early 

publications can also be found on the AVC in mechanical wave filters where a 

desire longitudinal wave mode in a bar is superimposed by an interfering a 

detrimental flexural wave mode, the latter can be damped by pair of 

piezoelectric patches on either side of the bar which are connected through an 

electrical resistor [24]. 

Damping and stiffness control in mechanical junction can be achieved by dry 

friction control where the pressing force is controlled by a piezoelectric actuator, 

in Feedback or Feedforward Control, typically by a nonlinear algorithm, e.g., a 

Neural Network. Active Control technology has been applied for improved 
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vibration isolation of tables for optical experiments, scanning microscopes, 

vibrations sensitive semiconductor manufacturing, and active compensation 

systems for electromagnetic stray-fields which is important, e.g., for high-

resolution electron microscope. [24] 

The Active Control of sound or vibration involves the introduction of a number of 

controlled “Secondary” interferences destructively with the field caused by the 

original primary noise [11, 12, 14]. The extent of which such destructive 

interference is possible depends of the geometric arrangement of the primary 

and secondary source and their environment, and on the spectrum of the field 

produced by the primary source. In broad terms, considerable cancellation of 

the primary field can be achieved if the primary and secondary source are 

positioned within half of a wavelength of each other at the frequency of interest. 

Active methods of control are thus best at attenuating low frequency sound, 

which complements more conventional passive methods of control since these 

tends to work best at high frequencies [14]. 

One form of primary sound or vibration fields which is particular importance in 

practice is that produced by rotating machines. The waveform primary field in 

these cases is nearly periodic, and since it is generally possible to directly 

observe the action of the machine producing the original disturbance, the 

fundamental frequency of the excitation is generally known. Each secondary 

source can be driven at each harmonic via controller which adjusts the 

amplitude and face of references signal whose frequency is arranged to be a 

multiple of this known fundamental frequency. It is often desirable to design 
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these controllers adaptive, because the frequency or spatial distribution of the 

primary field changes with time, and the controller is required to track these 

changes. A more difficult adaptive task has to be performed when the response 

of the system to be controlled to a given secondary excitation also varies with 

time. In this case the algorithm which simultaneous performs identification and 

control must be implemented [14]. 

 

2.2. ROBUST CONTROL 

The purpose of Robust Control is to design a controller that guarantee the 

stability and desired performance of a system, despite system non-linearity, 

unmodeled dynamics, disturbance, and changes of parameters at different 

operating points. ℋ∞ control design and µ-synthesis are the most popular 

Robust Control techniques [23]. There are many applications in Robust Control 

field. A three-cart problem with two uncertainties and two outputs, with 

disturbance rejection in a mechanical path is used as a case of study in [16]. In 

[17] System Identification and controller design for a level control plant with non-

linearity, time delay and change of parameters is provided using different 

operating points. The purpose of this study is determinate the influence of these 

uncertainties in the controller design and operation. 

In [21] is recognized the parametric uncertainties inherent to the design or 

construction of a flexible robot manipulator, modeling them as unstructured 

uncertainties, improving the designing of the AVC system. In [1] the AVC is 

studied using robust stability control with a delayed Feedback to compensate 

the unmodeled dynamics of a flexible robot manipulator.  
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[3] presents a procedure for design and tuning of reduced orders 𝐻∞ 

feedforward compensators for active vibration control systems subject to wide 

band disturbances for a three-cart problem, this paper also considers the use of 

an identification system for propagation paths. 𝐻∞ Robust Controller and the 

controller order reduction technique are applied. In [9] the mixed µ-synthesis 

robust performance’s design is studied for a two-mass two-spring system with 

stiffness uncertainty and time delay's uncertainty. 

In [8] the design methodologies and architectures of the robust controllers 𝐻∞ 

and µ-Synthesis are studied for different plants characterized by parametric 

uncertainties such as stiffness and damping, unmodeled delay’s and actuator’s 

force uncertainties. 

 

2.3. ADAPTIVE CONTROL 

Since the characteristic of the acoustic noise source and the environment are 

time varying, the frequency content, amplitude, phase, and sound velocity of the 

undesired noise are non-stationary. An Active Noise Control (ANC) system 

must therefore be adaptive in order to cope with these variations. Adaptive 

Filters adjust their coefficients to minimize an error signal, and can be design as 

Finite Impulse Response (FIR) or Infinite Impulse Response (IIR). The most 

common form of adaptive filter is the FIR filter using the Least-Mean-Square 

(LMS). The development of improved Digital Signal Processing (DSP) hardware 

allows these more sophisticated algorithms to be implemented in real time to 

improve system performance, obtaining large amounts of noise reduction in a 

small package, particularly at low frequencies [18, 19]. 
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Adaptive Feedforward broadband is used in AVC when a measure of the 

disturbance is available. The additive feedback coupling between the 

compensator system and the measurement of the disturbance was studied, 

concluding that the absence of this feedback propagation path caused an error 

in the Adaptive Control [20]. On the other hand, this feedback coupling may 

destabilize the system. Simultaneous use of an Adaptive Feedback 

compensator and Feedforward compensation to disturbance rejection was 

proposed [2]. The action of the Feedback loop adds a new design specification 

for the stability conditions to the adaptive Feedforward compensation. In [18] 

the DSP algorithm was reviewed for ANC, and is studied the DSP broadband 

Feedforward Control and the Adaptive Feedback Control, with the purpose of 

showing the differences in implementation between the Feedforward and 

Feedback schemes. In [4, 5] the adaptive sinusoidal disturbance rejection in 

linear discrete time systems was studied using an approach based on the 

parameterizing the set of stabilizing controllers applying the Youla-Kucera 

Parametrization. In [6, 7] a theoretical framework for stochastic modeling of 

FxLMS-Based ANC was proposed to model without using conventional 

simplifying assumptions regarding the physical plant to be controlled. In [25] a 

stochastic analysis of FxLMS-based Internal Model Control (IMC) Feedback 

ANC system was conducted when a primary noise is band-limited white noise. 

In [22] the algorithms and DSP implementation was studied to adaptive filtering 

for AVC system. 
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For the studied Active Control it is possible to find a generalized solution to AVC 

for several types of vibrations at the same time without sacrificing the 

attenuation using the most common controllers in both control cases. 

 

3. BASIC CONCEPTS 

 

3.1. DISTURBANCE REJECTION ANALYSIS 

The control system must maintain the output close to the desire value in the 

presence of the disturbances. Disturbances are inputs beyond the control of the 

designer and are usually inputs that tend to drive the output away from its 

desired value. Disturbance inputs consist of an infinite variety of types, which 

complicates the analysis of disturbance rejection. A set of “Typical” disturbance 

are therefore defined. The system response, subject to these disturbances is 

used to characterize the disturbance rejection of the system. 

Disturbance inputs often exist for short period of time. Wind guts on antennas, 

meteor strikes on spacecrafts, and sticking of a motor shaft are all examples of 

a short duration disturbances. Short-duration disturbances can be approximated 

by impulse functions. 

Constant and step disturbance are also commonly encountered. Gravity on an 

airplane, engine torque on helicopter, and solar pressure on geosynchronous 

satellite are examples of constant or nearly constant disturbances. Step 

disturbance are encountered when a load is placed on a motor, a robot picks up 

an object, and when a satellite experiences solar pressure upon departing 
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Earth’s shadow. The steady-state analysis of step and constant disturbance is 

identical. The analysis of step disturbance requires, in addition, the computation 

of transient response. 

Sinusoidal disturbance such waves acting on a ship, acoustic waves acting on a 

structure (Earthquake acting on a building), and vibrations caused by rotating 

machinery frequently appear in control applications. Disturbance can often be 

characterized as existing only within a given frequency band. The frequency 

response (From the disturbance input to the reference output) provides a very 

useful tool for evaluating the effects of sinusoidal or band-limited disturbance. 

Disturbances are often best modeled as random processes. A simple random 

process that is often employed in disturbance rejection analysis is white noise. 

Examples of white noise disturbance are turbulence acting on a jetliner, choppy 

seas acting on a ship, and measurement noise in a closed loop control system. 

White noise is an idealization of a zero mean random input with a short 

correlation time (True white noise does not exist in nature). When colored white 

noise disturbance are more appropriate, this colored noise disturbances can 

then be accomplished by analyzing the combination of the plant and the 

shaping filter subject to a white noise disturbance. 

The specification of the disturbances in particular application proves to be one 

of the more difficult task in control design. The disturbance rejection of a control 

system can be evaluated by applying a representative disturbance input to the 

system and finding the resulting tracking problem error and control input. The 
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frequency response of the closed loop system can also be used to quantify the 

disturbance rejection. 

 

3.2. COST FUNCTION 

The performance of a control system can be quantified in many applications by 

a cost function. A cost function is, in general, a real-valued, non-negative 

function of the system, or the time histories of the state, the reference output, 

and control inputs, subject to a given set of initial conditions and inputs. The 

cost (the real number resulting from the application of the cost function) can be 

used to evaluate the performance of a system, where superior performance is 

indicated by a smaller cost. The cost can also be based to compare the 

performance of multiple controller design; that is, the decision on which of 

several alternative design is superior can be made by comparing their cost. The 

controller that minimizes the cost, over all possible design or a set of possible 

candidates’ designs, is known as an optimal controller. The selection of a cost 

function for practical application is a useful art in control design. The cost 

function given is based on norms. 

 

3.2.1. Norms 

The norm, denoted ‖∗‖𝑝 , is a real-valued function of the element of a linear 

space  ℬ. A linear space is a set where any linear combination of element is 

also an element of the set, and can be composed of vectors, signals, systems 

or other possible collection of elements. A norm has the following properties 
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‖𝑥‖𝑝 ≥ 0 

‖𝑥‖𝑝 = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 0 

𝛼‖𝑥‖𝑝 = |𝛼|‖𝑥‖𝑝 

‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝 

where 𝑥, 𝑦 ∈  ℬ  and 𝛼 is an scalar. Intuitively, norms provide a measure of the 

size of the vector, signal or system. Norms can also be used to denote the 

distance between two vectors, two signals, or two systems. 

 

3.2.2. Quadratic Cost Function 

The goals of the control system are to drive the output errors to zero1, and to do 

this while using a reasonable amount of control. A typically control design 

represents a compromise between keeping the output errors small and keeping 

the control small. The cost function should therefore, include a measure of both 

the size of the output errors and the size of the control. 

𝐽 = ∫ 𝑦𝑇(𝑡)𝑌(𝑡)𝑦(𝑡)𝑑𝑡 = ‖𝑦(𝑡)‖𝑌(𝑡)
2

𝑡𝑓

0

 

Where the reference output is assumed to include both: the output errors and 

the control inputs. This cost functions is quadratic since it is a quadratic function 

of the reference output. The weighting function 𝑌(𝑡) is a positive definite matrix, 

                                                           
1 the output errors include both the errors between the outputs and the reference inputs, and 

any state or linear combination of state that the control system is tasked with driving to zero 
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selected to quantify the relative importance of the various outputs errors and 

control inputs. The parameter 𝑡𝑓 is the final time, which can be infinity if the 

control system is intended to operate indefinitely. 

 

3.2.3. Cost Function for Systems with Random Inputs 

The state and control trajectories become random processes when the system 

is subject to random disturbance inputs. The quadratic cost function, as defined 

above, are then random variables instead of the desirable real values. The 

expected value of the signal can be used to provide a real measure of 

performance: 

𝐽 = 𝐸 [∫ 𝑦𝑇(𝑡)𝒀(𝑡)𝑦(𝑡)𝑑𝑡

𝑡𝑓

0

] = ∫ 𝐸[𝑦𝑇(𝑡)𝒀(𝑡)𝑦(𝑡)]𝑑𝑡

𝑡𝑓

0

 

In applications where the random inputs are stationary, the system operates 

long enough that the initial transient can be ignored, the weighting matrix is time 

invariant and the closed-loop system is stable, the cost, 

∫ 𝐸[𝑦𝑇(𝑡)𝒀(𝑡)𝑦(𝑡)]𝑑𝑡

𝑡𝑓

0

 

is proportional to the cost with a time-varying weighting matrix. 

 

3.2.4. The System ∞-Norm Cost Function 

The maximum gain of a generic system over all frequencies is given by the 

system ∞-norm: 
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‖𝑮‖∞ = sup
𝜔

 𝜎|𝑮(𝑗𝜔)| 

Where sup
𝜔

 is the supremum operator and  𝜎 is the maximum singular value, 𝑮 

is the transfer function of the generic system, this cost function is particularly 

applicable to the design of the system where the performance is specified by 

bounds of the output error and the control, and reasonable bounds can be 

generated for sinusoidal disturbance inputs. The ∞-norm also finds applications 

in robustness analysis. The ∞-norm is imprinted as the maximum system gain 

over the given time interval. 

 

3.3. ROBUSTNESS 

Mathematical model uses physics, chemistry, aerodynamics and so on, in order 

to produce an equation that describes the plant. A number of assumptions are 

typical made during this process in order to yield a simple model. Examples 

include ignoring friction between moving parts, and ignoring vibration on a 

motor shaft. This assumptions are justified by the need of simple design models 

and difficult encountered in generating over more accurate models, for example, 

the friction between moving parts may be difficult to determine and may change 

episodically, creating errors in an initial accurate model. For these reasons, a 

mathematical model is never a perfect representation of the physical object. 

The control system engineer should be assured that a design will function 

acceptably before committing implementation. Such assurance can be obtained 

by analyzing control system stability and performance with respect to a range of 
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plant models that is expected to encompass the actual plant. This type of 

analysis is termed robustness analysis. 

The analysis of robustness requires that the discrepancy between the 

mathematical model of the plant and the actual plant be quantified. Since a 

perfect mathematical model of the plat is not available, this discrepancy can not 

be uniquely defined. Instead, a set of mathematical models is defined which 

includes the actual plants dynamics. This set is specified by a nominal plant and 

a set of perturbations termed admissible perturbations. The admissible 

perturbations are typically assumed to be bound, where the bound is dependent 

of the uncertainty of the model. 

A controller that works adequately for all admissible perturbations is termed 

robust. There are two types of Robustness, robust stability and robust 

performance. A control system is said to be robustly stable if it is stable for all 

admissible perturbations. A control system is said to perform robustly if it 

satisfies the performance specification for all admissible perturbations. Note that 

stability and performance robustness depends on the controller, the nominal 

model, and the set of disturbances. Performance robustness also depends on 

the performance specifications. 

 

3.3.1. Unstructured Uncertainty 

Uncertainty can be modeled as a perturbation of the nominal plant. This 

perturbation is an error bound transfer function, where bounded is defined in 

terms of the system ∞ norm. This type of plant uncertainty is termed 
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unstructured since not detailed model of the disturbance (the unknown transfer 

function) is employed. 

 

3.3.2. Unstructured Uncertainty Models 

An unstructured perturbation can be connected to the plant in a number of 

ways, each generating a unique set of possible plant models. Five basic 

connections of the perturbation to the nominal plant model are presented: 

additive perturbation, input multiplicative perturbation, output-multiplicative 

perturbation, input Feedback perturbation, and output Feedback perturbation. 

And additive unstructured uncertainty models the actual plant as equal to the 

nominal plant plus a perturbation: 

𝑮(𝑠) = 𝑮𝟎(𝑠) + 𝚫𝒂(𝑠) 

Where 𝚫𝟎(𝑠) denotes the additive perturbation. An input-multiplicative 

uncertainty models the actual plant as the nominal plant plus a series of 

combinations of the perturbation and the nominal plant (the perturbation 

appears on the input to the nominal plant): 

𝑮(𝑠) = 𝑮𝟎(𝑠)[𝐈 + 𝚫𝒊(𝑠)] 

Where 𝚫𝒊(𝑠) denotes the input multiplicative perturbation. An output-

multiplicative uncertainty models the actual plant as the nominal plant plus a 

series of combinations of the nominal plant and the perturbation (the 

perturbation appears on the output of the nominal plant): 

𝑮(𝑠) = [𝐈 + 𝚫𝟎(𝑠)]𝑮𝟎(𝑠) 
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Where 𝚫𝟎(𝑠) denotes the output-multiplicative perturbation. An input Feedback 

uncertainty models the actual plant as the nominal plant in series with the 

perturbation in a Feedback loop (the Feedback loop appears in the input of the 

nominal plant): 

𝑮(𝑠) = 𝑮𝟎(𝑠)[𝐈 + 𝚫𝒇𝒊(𝑠)]
−𝟏

 

Where 𝚫𝒇𝒊(𝑠) denotes the input Feedback perturbation. An output Feedback 

loop uncertainty models the actual plant as the nominal plant in series with the 

perturbation in a Feedback loop (the Feedback loop appears on the output to 

the nominal plant): 

𝑮(𝑠) = [𝐈 + 𝚫𝒇𝟎(𝑠)]
−𝟏

𝑮𝟎(𝑠) 

Where 𝚫𝒇𝟎(𝑠) denotes the output Feedback perturbation. Block diagrams of 

these five uncertainty models, appearing in a Feedback system are given in 

figure 3. 

The uncertainty models are used to represent various types of uncertainty in the 

plant. the additive perturbation represents unknown dynamics operating in 

parallel with the plant. The multiplicative perturbation represents unknown 

dynamics operating in series with the plant. The Feedback perturbations are 

used primarily to represent uncertainty in the gain and phase of the plant (or the 

control loop if a feedback control is applied to the plant). 
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Figure 3 Unstructured uncertainties in the plant model: a) additive uncertainty; 

b) input-multiplicative uncertainty; c) output-multiplicative uncertainty; d) input-

Feedback uncertainty; e) output-Feedback uncertainty 

 

 

Stability robustness or performance can be evaluated when the disturbances in 

these models are bounded: 



33 
 

𝜎{𝚫′(𝑗𝜔)} ≤ Δ𝑚𝑎𝑥(𝑗𝜔)  

Where 𝜎 is the maximum singular value, and {𝚫′(𝑗𝜔)} can be any of the 

disturbances described above. 

 

3.3.3. Stability Robustness Analysis 

A general Feedback system, where the perturbation is bounded Δ∞ ≤ 1 is 

internally stable for all possible perturbations provided the nominal closed loop 

system is stable and 

‖𝑁𝑦𝑑𝑤𝑑
‖ = sup

𝜔
{𝜎[𝑁𝑦𝑑𝑤𝑑

(𝑗𝜔)]} ≤ 1 

Where 𝑁𝑦𝑑𝑤𝑑
  is the nominal closed loop system response from the augmented 

perturbation input to the augmented perturbation output. This results known as 

the small-gain theorem and provides a test for robust stability with respect to the 

bound perturbation. 

 

3.3.4. Structured Uncertainty 

Structured uncertainties arise when the plant is subject to multiple 

perturbations. Multiple perturbations occurs when the plants contains a number 

of uncertain parameters, or when the plant contains multiple unstructured 

uncertainties. For example, the plant model may be well specified except for 

two uncertainties constants, which are modeled as a nominal value plus a 

perturbation. The structured uncertainty is a very general way of modeling 

uncertainty, structured uncertainties also arise when the perturbation is 

restricted to be purely real or when other constraints on the perturbation are 

present. 
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A plant subject to structured uncertainty can be placed in standard form 

analogous that used for unstructured uncertainty. The standard form of the 

structured uncertainty model has the individual perturbation normalized to 1 and 

placed in a feedback loop around the nominal plant. The standard form of the 

structured uncertainty model is shown in Figure 4. The structured perturbation 

Δ(𝑠) is a block diagram transfer function: 

𝚫(𝑠) = [

Δ1(𝑠)
0
⋮
0

0
Δ2(𝑠)

⋮
0

0
⋯
⋱
⋯

0
0
⋮

Δ𝑛(𝑠)

] 

Where n is the number of perturbations and the blocks Δ𝑖(𝑠) ∈ 𝑪𝒍𝒊×𝒏𝒊 represents 

the individual perturbations applied to the plant. An individual block can 

represent an uncertain in a parameter (Scalar perturbation) or an unstructured 

uncertainty. The set of all transfer functions matrices with this block diagram 

form is denoted Δ̅ The structured perturbation is normalized so that its infinity 

norm is bound by 1: ‖Δ‖∞ ≤ 1. 

 

Figure 4 Standard form of the structured uncertainty model 
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3.3.5.  Structured Singular Value and Stability Robustness 

The stability of a system subject to a structural uncertainty is determinate by 

analyzing the Feedback system in Figure 5. The nominal closed-loop system is 

assumed to be stable. Stability may be evaluated by determining the “size” of 

the smallest perturbation the results in a pole with a non-negative real part. A 

perturbation that results in such a pole is termed a destabilizing perturbation. 

The Structured Singular Value is defined as follows: 

𝜇Δ̅(𝑁) =
1

min
Δ∈Δ̅

𝜎(Δ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡(𝑰 + 𝑵𝚫) = 0
 

𝜇Δ̅(𝑁) = 0 𝑖𝑓 𝑑𝑒𝑡(𝑰 + 𝑵𝚫)  ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 Δ ∈ Δ̅ 

The Structured Singular Value (SSV) is, in general, a real-valued function of a 

complex matrix N, which depends on the structure of the perturbation as 

defined by Δ̅ 

The stability robustness criterion for a system with structured uncertainty is 

summarized as follow: a general Feedback system, as given in Figure 4, is 

internally stable for all possible perturbations: 

Δ(𝑗𝜔) ∈ ∆̅ 𝑎𝑛𝑑 ‖∆‖∞ ≤ 1 

if and only if the nominal closed-loop system is internally stable and 

sup
𝜔

{𝜎[𝑁𝑦𝑑𝑤𝑑
(𝑗𝜔)]} ≤ 1 
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Figure 5. Diagonal scaling of the plant: (a) the Feedback perturbation; (b) 

diagonal scaling added to the plant and the perturbation; (c) diagonal scaling 

leaves the diagonal perturbation unchanged 

 

The SSV of a transfer function 𝑵(𝑠) is the inverse of the smallest perturbation 

that, when placed in the Feedback loop, yields a closed-loop pole located at s. 
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The closed loop poles of this system are not changed by the inclusion of the 

diagonals matrices 𝔇𝐿(𝑠) and 𝔇𝑅(𝑠) and their inverses: 

𝔇𝐿(𝑠) = [

d1(𝑠)𝑰𝒍𝟏

0
⋮
0

0
d2(𝑠)𝑰𝒍𝟐

⋮
0

0
⋯
⋱
⋯

0
0
⋮

d𝑛(𝑠)𝑰𝒍𝒏

] 

𝔇𝑅(𝑠) = [

d1(𝑠)𝑰𝒓𝟏

0
⋮
0

0
d2(𝑠)𝑰𝒓𝟐

⋮
0

0
⋯
⋱
⋯

0
0
⋮

d𝑛(𝑠)𝑰𝒓𝒏

] 

The uncertainty blocks have their dimensions ∆𝑖(𝑠) ∈ 𝑪𝑙𝑖×𝑟𝑖 and the identity 

matrices have the dimensions𝑰𝒓𝒊
∈ ℝ𝒓𝒊×𝒓𝒊. These dimensions match up with the 

perturbation blocks to yield. 

Since the maximum singular value is changed by inclusions of the scaling 

matrices, and this result is valid for all diagonal scaling matrices (with the given 

block structure) and for all s, then: 

𝜇Δ̅(𝑁) = min
{𝑑1,𝑑2,…,𝑑𝑛}

𝑑𝑖∈ (0,∞)

𝜎(𝕯𝑹(𝑠)𝑵𝕯𝑳(𝑠)
−1) 

The parameters 𝑑𝑖 are called D-scale. This bound is valid for all complex D-

scales, and as special case, for all real 𝔇 scale. For the case of complex 

perturbations, the phase shift of the perturbation is arbitrary, and any phase 

shift (including sign changed) imparted by 𝔇 -scales has no effect on the bound. 

Therefore, the minimization above can be performed over the set of possible 

real 𝔇 -scale without lose generality. 
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The perturbed closed-loop transfer function is dependent on both the nominal 

closed-loop transfer function and the perturbation. The conditions for 

performance robustness can be precisely stated in terms of these transfer 

functions. 

sup
𝜔

={𝜇∆̅[𝑵𝒚𝒅𝒘𝒅
(𝑠)]} ≤ 1 

 

3.4. THE PROBLEM OF THE 𝓗∞ CONTROLLER 

The ℋ∞ output Feedback controller (or simply the ℋ∞ controller) utilizes partial 

state measurement, corrupted by disturbances, to generate the control. The 

suboptimal ℋ∞ control problem is defined by the plant and cost function. The 

plant is given by the following state model: 

�̇� = 𝑨𝒙(𝑡) + [𝑩𝒖 𝑩𝒘] [
𝒖(𝑡)

𝒗(𝑡)
] 

[
𝒎(𝑡)

𝒚(𝑡)
] = [

𝑪𝒎

𝑪𝒚
] 𝒙(𝑡) + [

0 𝑫𝒎𝒘

𝑫𝒚𝒖 0 ] [
𝒖(𝑡)

𝒚(𝑡)
] 

Where the 𝑥(𝑡) is a vector that represents the states of the plant, 𝒖(𝑡) is a 

vectors that represents the control signals, the disturbance signals are 𝒘(𝑡), 

𝒎(𝑡) is the vector that represents the measured signals, and 𝒚(𝑡)  is the vector 

that represents the the references outputs. Matrices that represents the weights 

𝑩𝒖 to the control, 𝑩𝒘 to the disturbance signals, 𝑪𝒎 to the measurements, 𝑪𝒚 to 

the reference output, and the weights for the paths 𝑫𝒎𝒘 from the disturbance 

signals to the measurements, and 𝑫𝒚𝒖 from the control signal to the reference 

outputs. The matrices 𝑩𝒘and 𝑫𝒎𝒘  are assumed to satisfy the following 

conditions: 
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𝑫𝒎𝒘 𝑩𝒘
𝑻   =  0;  

𝑫𝒎𝒘 𝑫𝒎𝒘
𝑻   =  𝑰 

These conditions require that the disturbance entering the plant and the 

measurement are distinct and the output equation of the plant be scaled to 

normalize the measurement noise. The matrices 𝑪𝒚 and 𝑫𝒚𝒖 are assumed to 

satisfy the following conditions: 

𝑫𝒚𝒖
𝑻  𝑪𝒚  =  𝟎; 

𝑫𝒚𝒖
𝑻  𝑫𝒚𝒖  =  𝑰.  

These conditions require that the reference output consist of an output 

dependent only on the state and a distinct output depend only on the control 

input. The plant is assumed to be controllable from the control input and 

observable from the measured output. These conditions guarantee that the 

plant can be stabilized using output Feedback, a necessity when operating over 

infinite time intervals and always desirable. These conditions guarantee the 

existence of a steady-state ℋ∞ suboptimal output Feedback for sufficiently 

large performance bounds. 

The suboptimal ℋ∞ control problem is to find a Feedback controller for the 

above plant such that the ∞-norm of the closed-loop system is bounded: 

‖𝐺𝑦𝑤‖
∞,[0,𝑡𝑓]

= 𝑠𝑢𝑝
‖𝑤(𝑡)‖

2,[0,𝑡𝑓]

‖𝑦(𝑡)‖2,[0,𝑡𝑓]

‖𝑤(𝑡)‖2,[0,𝑡𝑓]

< 𝛾 
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The closed-loop system is also required to be internally stable when the final 

time is infinite. The solution of the optimal ℋ∞ control problem (minimizing the 

closed-loop ∞-norm) is calculated using the Structured Singular Value. 

The steady-state ℋ∞ controller is the solution to the following suboptimal control 

problem: find a linear, time-invariant controller system, described in Laplace 

domain as follows: 

𝒖(𝑠) = 𝑲(𝑠)𝒎(𝑠) 

that internally stabilizes the closed-loop system and bounds the ∞-norm of the 

closed loop-system: 

‖𝐺𝑦𝑤‖
∞,

< 𝛾 

The steady-state ℋ∞ suboptimal control can be obtained by combining the 

existence results for the full information controller and the output estimator, we 

find as follows: A solution exists for ℋ∞ suboptimal control problem if and only if 

the following conditions are satisfied: 

1. There is a positive semidefinite solution of the algebraic Ricatti equation 

𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷( 𝑩𝒖 𝑩𝒖
𝑻 − 𝜸−𝟐 𝑩𝒘𝑩𝒘

𝑻  )𝑷 + 𝑪𝒚
𝑻𝑪𝒚  = 0  

Such 𝑨 − 𝑷( 𝑩𝒖 𝑩𝒖
𝑻 − 𝜸−𝟐 𝑩𝒘𝑩𝒘

𝑻  )𝑷  is stable (i.e., has only eigenvalues with 

negative real parts). 

2. There is a positive semidefinite solution of the algebraic Ricatti equation  

𝑨𝑸 + 𝑸𝑨𝑻  − 𝑸( 𝑪𝒎
𝑻  𝑪𝒎  −  𝜸−𝟐𝑪𝒚

𝑻𝑪𝒚)𝑸 + 𝑩𝒘𝑩𝒘
𝑻  = 𝟎  

Such that: 𝑨 − 𝑸( 𝑪𝒎
𝑻  𝑪𝒎  − 𝜸−𝟐𝑪𝒚

𝑻𝑪𝒚)𝑸 is stable. 
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3. the spectral radius of the product of these Ricatti solutions is bounded: 

𝜌 ( 𝑷𝑸 ) <  𝜸𝟐  

The suboptimal full information controller is then given by 

𝒖(𝑡) =  − 𝑩𝒖
𝑻𝑷𝒙(𝑡) = − 𝑲𝒙(𝑡). 

The suboptimal ℋ∞ estimator gain can be written in terms of the Ricatti 

equation solution: 

𝑮(𝑡) =  𝑸(𝑡)𝑪𝒎
𝑻   

 

3.5. THE PROBLEM OF THE μ-SYNTHESIS CONTROLLER 

Robust performance can be analyzed using the SSV for system containing both 

structured and unstructured perturbation. The direct computation of the SSV is 

intractable in all but the simplest case. The μ-synthesis design methodology 

attempts to minimize the supremum of the closed-loop system’s SSV: 

𝐽 = 𝜇∆̅(𝑁) = 𝑠𝑢𝑝
{𝑑1,𝑑2,…,𝑑𝑛}

𝑑𝑖∈(𝑜,∞)

𝜎(𝕯𝑹(𝑗𝜔)𝑵(𝑗𝜔)𝕯𝑳(𝑗𝜔)−1). 

Direct minimization of this cost function is typically not tractable. As an 

alternative, it is reasonable to minimize the upper bound of the SSV. D-K 

iteration seeks to overcome this problem by alternatively performing ∞-norm 

optimization and D-Scale optimization.  

The D-K iteration algorithm is summarized as follow: 
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1. Model the Plant. The plant model should include disturbance inputs, control 

inputs, reference outputs, measured outputs, and perturbations. Append the 

performance block to the uncertainty matrix. 

2. Generate a control system to minimize the ∞-norm of the transfer function 

from the augmented perturbation input to the augmented perturbation output. 

3. Compute the Structured Singular Value for the closed-loop system (with both 

uncertainty and performance blocks). Save the D-Scale used in computing 

the SSV. 

4. Fit a low-order transfer function to each frequency-dependent D-Scale. 

5. Append this transfer function to the plant. The rational transfer function 

approximation for the D-scales and the inverse D-scales are append to the 

nominal close-loop system. This is typically accomplished by generating state 

models for the D-scales and the inverse D-scales, and appending these 

states models to the nominal closed-loop system.  

6. For this augmented plant, generate a controller to minimize the ∞-norm of the 

transfer function from the augmented perturbation input to the augmented 

perturbation output. 

7. Return to step 4, until the SSV of the closed-loop system fails to improve  

This algorithm has typically been found to converge to a minimum cost in a few 

iterations. The D-K iteration algorithm is not guarantee to converge to the global 

minimum of the cost function. Further, this global minimum is not guaranteed to 

equal the global minimum of the cost function, except when the number of 

performance and perturbation blocks is less than or equal to 3. 
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3.6. ADAPTIVE FILTER  

Adaptive filtering involves the changing of filter parameters (coefficients) over 

time, to adapt to changing signal characteristics. Over the past three decades, 

digital signal processors have made great advances in increasing speed and 

complexity, and reducing power consumption. As a result, real-time adaptive 

filtering algorithms are quickly becoming practical and essential for the future of 

communications, both wired and wireless. 

 

3.6.1. Adaptive Filtering Methodology 

Adaptive Filters self-learn using the error signal as the objective function. As the 

signal into the filter continues, the Adaptive Filter coefficients adjust themselves 

to achieve the desired result, such as identifying an unknown filter or canceling 

noise in the input signal. In figure 6, the shaded box represents the Adaptive 

Filter, comprising the Adaptive Filter and the adaptive Recursive Least Squares 

(RLS) algorithm. 

 

Figure 6. Block Diagram Defining General Adaptive Filter Algorithm Inputs and 

Outputs 
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3.7. SYSTEM IDENTIFICATION 

One common Adaptive Filter application is to use adaptive filters to identify an 

unknown system, such as the response of an unknown communications 

channel or the frequency response of an auditorium, to pick fairly divergent 

applications. Other applications include echo cancellation and channel 

identification.  

In figure 7, the unknown system is placed in parallel with the Adaptive Filter. 

This layout represents just one of many possible structures. The shaded area 

contains the Adaptive Filter system.  

Clearly, when 𝑒(𝑘) is very small, the Adaptive Filter response is close to the 

response of the unknown system. In this case the same input feeds both the 

Adaptive Filter and the Unknown System. 

 

Figure 7. Using an Adaptive Filter to Identify an Unknown System 
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4. ROBUST CONTROL DESIGN 

 

The active mass driver's model shown in Figure 8 provides a faithful test bed for 

the abstraction shown in Figure 2, for this reason this model was chosen as the 

Studied Plant. In this chapter, the AVC design applied on the Studied Plant 

using Robust Control methodology is described. The design was applied on a 

flexible structure with two uncertain parameters with real parts, unmodeled 

delay, unmeasurable disturbances, two noisy measurements, one control 

signal, and one performance output. First, parametric uncertainties were fully 

identified at several operating points considering physical constraints. Then, the 

three-cart’s physical system dynamics was described. The ℋ∞ controller was 

proposed to reject the disturbance. The unstructured uncertainties were 

released from the parametric uncertainties and their effects on the system 

performance were studied. The mixed µ-synthesis and DK iteration were used 

to improve Robust performance.  

 

4.1. PARAMETRIC UNCERTAINTIES 

The model of the Studied Plant consists of five metal plates connected by 

springs, the first and last plates are the supports and each of them are equipped 

with one inertial actuator. The first will excite the structure (disturbance) and the 

second will create vibrational forces which can counteract the effect of these 

vibrational disturbances. 
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Figure 8. Modeled Real Plant 

 

 

The Plant was simplified to a two dimensional scheme. The simplified plant was 

obtained and expressed in Space-State representation. This representation is 

called the Nominal Plant Model (see Figure 9). In this simplification, all four 

parallel springs are assumed all with the same constant, and they are modeled 

as one spring and one dash pot in parallel. 
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Figure 9. A three-cart simplified model, the spring constant 𝒌 and damping ratio 

b are uncertainties 

 

 

 
𝑘𝑠𝑖𝑚𝑝 = ∑𝑘𝑖 ± 휀

4

1

 
(1) 

The error of model simplification is assumed about 10 % of the real value at low 

frequencies. This error may be caused by uncertainty in the manufacturing 

process, also because of the uncertainty in the linear model. Equations of 

energy balance were used to model the movement of the masses, equations (2) 

and (3): 

 
𝑥𝑚𝑎𝑥 ∗ 𝑓𝑏 ∗ �̅� = (

1

2
𝑘𝑠𝑖𝑚𝑝(𝑥𝑚𝑎𝑥)

2 −
1

2
𝑚(𝑉𝑚𝑎𝑥)

2) 
(2) 
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 𝑓𝑏 =
0.95

2𝑥𝑚𝑎𝑥�̅�
𝑘𝑠𝑖𝑚𝑝(𝑥𝑚𝑎𝑥)

2 =
0,475𝑥𝑚𝑎𝑥𝑘𝑠𝑖𝑚𝑝

�̅�
(−

1

2
𝑚(𝑉𝑚𝑎𝑥)

2) 
(3) 

Where 𝑥 is the displacement of the mass, 𝑉 is the velocity of the mass, 𝑘 is the 

simplified spring constant, and 𝑓𝑏 is the damping coefficient. Masses are 

constrained in displacement and speed to emulate the real plant. The damping 

coefficient is a parametric uncertainty caused by the uncertainty of the spring 

constant, and it is assumed with a low value due to the worst case model to 

control is a pure mass-spring system. This is because, the system will not lose 

energy by friction but by the superposition of the vibrations (the AVC situation), 

making more difficult the design of the controller. The parametric uncertainties 

were calculated with the upper and lower bound for the parameters 𝑘 𝑎𝑛𝑑 𝑓𝑏. 

 

𝑘 ∈ [𝑘𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑 𝑘𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑] 

𝑓𝑏 ∈ [𝑓𝑏𝑙𝑜𝑤𝑒𝑟−𝑏𝑜𝑢𝑛𝑑
𝑓𝑏𝑢𝑝𝑝𝑒𝑟−𝑏𝑜𝑢𝑛𝑑] 

(4) 

 

4.2. THREE-CART MIMO DYNAMICS 

The dynamic of the Mass-Spring-Dash pot (MSD) system shown in Figure 9 is 

described by: 

 {

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝟏𝑓𝑠 + 𝑩𝟐𝑑𝑠(𝑡)           

𝒎(𝑡) = 𝑪𝟐𝒙(𝑡) + 𝑫𝟐𝟐𝒘𝟎(𝑡) + 𝑫𝟐𝟏𝒖(𝑡)

𝒚(𝑡) = 𝑪𝟏𝒙(𝑡) + 𝑫𝟏𝟏𝒖(𝑡)                       

 
(5) 

 

Where 

 
𝒙(𝑡) = [𝒙𝟏(𝑡) 𝒙𝟐(𝑡) 𝒙𝟑(𝑡) 𝒗𝟏(𝑡) 𝒗𝟐(𝑡) 𝒗𝟑(𝑡)]

𝑻 
(6) 
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𝑤0 = [𝑑𝑠(𝑡) 𝜐1 𝜐2]

𝑇 
(7) 

 𝒚(𝑡) = 𝑪𝟏𝒙(𝑡) + 𝑫𝟏𝟏𝒖(t) 
(8) 

 

The State dynamic matrix is described by: 

 𝑨 = [
𝟎𝟑×𝟑 𝐼3×3

𝑨𝟐𝟏 𝑨𝟐𝟐
] (9) 

 

Where 

 

𝑨𝟐𝟏 =

[
 
 
 
 
 
 −

𝑘1 + 𝑘2

𝑚1

𝑘2

𝑚1
0

𝑘2

𝑚2
−

𝑘2 + 𝑘3

𝑚2

𝑘2

𝑚2

0
𝑘3 + 𝑘4

𝑚3
−

𝑘4

𝑚3]
 
 
 
 
 
 

 

 𝑨𝟐𝟐 =

[
 
 
 
 
 
 −

𝑏1 + 𝑏2

𝑚1

𝑏2

𝑚1
0

𝑏2

𝑚2
−

𝑏2 + 𝑏3

𝑚2

𝑏2

𝑚2

0
𝑏3 + 𝑏4

𝑚3
−

𝑏4

𝑚3]
 
 
 
 
 
 

  

(10) 

 

 𝑩𝟏 =

[
 
 
 
 
𝟎𝟑×𝟏

𝟎
𝟎
𝟏

𝒎𝟑 ]
 
 
 
 

  𝑩𝟐 =

[
 
 
 
 
𝟎𝟑×𝟏

𝟏

𝒎𝟏

𝟎
𝟎 ]

 
 
 
 

   𝑩 = [𝑩𝟏 𝑩𝟐]   
(11) 

 
𝑪𝟏𝟏 = [0 1 0 0 0 0]; 𝑪𝟐𝟏 = 𝑨(𝟓, : ); 𝑪𝟑𝟏 = 𝑨(𝟔, : ); 𝑪 = [

𝑪𝟏𝟏

𝑪𝟐𝟏

𝑪𝟑𝟏

] 
(12) 
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𝑫𝟏𝟏 = [𝟎𝟐×𝟏]; 𝑫𝟏𝟐 = [𝟎𝟐×𝟑];  𝑫𝟐𝟏 = [𝟎𝟐×𝟏]; 𝑫𝟐𝟐 = [
0 1 0
0 0 1

] ; 

𝑫 = [
𝑫𝟏𝟏 𝑫𝟏𝟐

𝑫𝟐𝟏 𝑫𝟐𝟐
] 

(13) 

 

The 𝑘𝑖 are the spring constants; 𝑏𝑖 are the damping coefficients; 𝑚𝑖, 𝑥𝑖𝑎𝑛𝑑 𝑣𝑖 are 

the mass, position and speed of mass 𝑖 = 1, . . ,3, respectively; 𝑓𝑠 is the control 

force signal, 𝑑𝑠 is the disturbance source. 

The MIMO system includes one disturbance random input force 𝑤(𝑡)  acting on 

mass 𝑚1 and two accelerometers on masses 𝑚2, 𝑚3. The control force 𝑢(𝑡) 

drive the inertial actuator with an unmodeled delay upon the mass 𝑚1. The 

disturbance force 𝑑𝑠(𝑡) is an independent stationary stochastic process 

generated by applying continuous-time white noise 𝜉(𝑡) with zero mean in a 

low-pass filter. The low pass filter, 𝑊𝑑𝑖𝑠𝑡(𝑠) = 𝑃𝑑𝑖𝑠𝑡/(𝑠 + 𝑃𝑑𝑖𝑠𝑡), has a pole in 

𝑃𝑑𝑖𝑠𝑡. This is caused by the low cross frequency of real mechanical system, as 

follows: 

 𝑑𝑆(𝑠) = 𝑊𝑑𝑖𝑠𝑡(𝑠)𝜉(𝑠) 
(14) 

The overall State-Space representation includes the disturbance dynamics via 

one augmented state variables 𝑥[7,1]. For the current case, the following 

parameters in (5) are known and fixed (the units are omitted): √𝑘
𝑚⁄ = 2  

The 𝒚(𝑡) vector represents the position of mass 𝑚2(𝑥𝑚2
) and acceleration on 

masses 𝑚2(𝑎𝑚2
) and 𝑚3(𝑎𝑚3

): 
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 {

𝑦1(𝑡) = 𝑥2(𝑡)

𝑦2(𝑡) = �̈�2(𝑡)

𝑦3(𝑡) = �̈�3(𝑡)

 
(15) 

All Feedback loops use two measurements 𝑧(𝑡)  

 {
𝑧1(𝑡) = �̈�2(𝑡) + 𝜈1(𝑡)

𝑧2(𝑡) = �̈�3(𝑡) + 𝜈2(𝑡)
 

(16) 

In Equation (16), 𝜈1(𝑡) and 𝜈2(𝑡) are white noise caused by the sensor’s 

dynamics and they are defined by  𝐸𝜈𝑖(𝑡) = 0, 𝐸(𝜈(𝑡)𝜈(𝜏)) = 10−16𝛿(𝑡 − 𝜏), 

where 𝜈(𝜏) =  [𝜈1(𝑡) 𝜈2(𝑡)]
𝑇 

The frequency response of the nominal plant can be observed in Figure 10, also 

the two poles of 𝑎𝑚2
 which have to be diminished by the controller. On the other 

hand, the pole at 2 rad/s in 𝑎𝑚3
 is an obstacle to obtain the desired performance 

in the robust design, because a greater control effort is produced at this 

frequency. For this reason the 𝑎𝑚3
 signal was chosen as a performance output 

because it is a measure of the control effort. 

Additionally, there is unmodeled delay τ in control channel caused by the delay 

between the actuator force and its action on mass  𝑚1, so neglecting τ produces 

an error about  𝑒−𝑠𝜏−1. The transport delay of 0.5 s [22] in the system is modeled 

by a weight function that operates as a high pass filter. On the other hand, the 

inertia of the masses and springs causes a transport delay in the plant. 

 

 

Figure 10. Frequency response of the nominal model 
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Figure 11. Comparative Bode plot of the Unmodeled Dynamics vs Plant input 

delay 
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This delay is named after Unmodeled Dynamics due to the delay was not taken 

into account in the State-Space representation. Matlab software models this 

delay using a digital highpass filter as part of the structure of the representation. 

Modeled as a complement of the structure, the design of the robust controller 

does not take the delay in count. To consider this Unmodeled Delay, it was 

modeled using a transfer function of a highpass filter with a similar behavior to 

the delay model using the Matlab digital filter. The weight function of 

Unmodeled Dynamics is a transfer function that models the inertia of the 

Studied Plant. The differences between Time-Delay response of the actual 

plant, modeled as a digital filter, and the frequency response of the Unmodeled 

Dynamic weight (17) are shown in Figure 11. 

 
𝑤𝑢𝑛𝑚𝑜𝑑(𝑠) =

2,1𝑠

𝑠 + 40
 

(17) 

 

4.2.1. Inertial Actuator Modeling 

The model of the inertial actuator is a first order low pass filter that penalizes 

high frequencies content in the control signal and limits the band pass: 

 𝐴𝑐𝑡𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =
1

(
𝑠
50

+ 1)
 (18) 

 

The constraints of the actuator are established by a System Identification (SI) 

process. Variations between the actuator model and the physical device can be 

modeled as a family of actuator models. The resulting family of models 

embraces a nominal model with an amount of uncertainty that is frequency 

dependent, (see Figure 12). 
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Figure 12. Comparative Bode plot of the actuator nominal model vs 20 
randomly sampled models 

 

 

At low frequency, the frequency responses of the models are similar to the 

nominal actuator. In turn, the variations of the frequency responses increase as 

the frequency increases. The weighting function,  𝑊𝑎𝑐𝑡 , reflects this behavior 

and it is used to modulate the amount of uncertainty as a function of frequency. 

The resulting model of the actuator is an uncertain State-Space model. 

 

4.3. 𝓗∞  ROBUST CONTROLLER DESIGN 

The generalized plant is obtained connecting all dynamic models and signal, as 

shown in Figure 13. Linear Fractional Transformation (LFT) of the plant is 
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obtained using Matlab software. The optimal controller is found solving the two 

Ricatti equations to the LFT model [17]. 

 

Figure 13. MIMO weights for robust synthesis 

 

 

4.3.1.  Nominal Model and Structured Uncertainties 

The parametric uncertainties, gain and time delay determined by modeling, are 

converted into unstructured uncertainties for  𝓗∞   controller design. Equation 

(19) expresses the transfer function of the generalized plant considering the 

uncertainties raised so far in (4) and (17) as a transformation of the nominal 

plant. 

 𝑮𝒖 = 𝑲𝒑𝒆
−𝝉𝒔𝑮𝟎(𝑠) 

(19) 
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These parametric uncertainties can be converted into the multiplicative 

uncertainty general form of: 

 ∀𝐺𝑢(𝑠) ∈ Ω 𝐺𝑢 = (1 + Δ(𝑠)𝑊𝑡(𝑠)𝐺𝑛(𝑠)) (20) 

 

Where Ω is the family of plants, 𝐺𝑛(𝑠) is the nominal plant, 𝐺𝑢 is the generalized 

plant. 

In this case, 𝑊𝑡(𝑠) is a stable transfer function indicating the upper bound of the 

uncertainty and Δ(𝑠) indicates the normalized uncertainty, ‖Δ(𝑠)‖∞ ≤ 1  . In this 

general representation, Δ(𝑠)𝑊𝑡(𝑠) represents the deviation of the model system 

by the uncertainties present in gain and time delay. The parameters 

uncertainties of (4) are represented by: 

 
𝑘𝐿 ≤ 𝑘𝑛𝑜𝑚 ≤ 𝑘𝐻 ⟹ 𝑘 = 𝑘𝑛𝑜𝑚 + (𝜎𝑘)𝛿𝑘;  𝛿𝑘 ≤ 1 

(21) 

 𝑏𝐿 ≤ 𝑏𝑛𝑜𝑚 ≤ 𝑏𝐻 ⟹ 𝑏 = 𝑏𝑛𝑜𝑚 + (𝜎𝑏)𝛿𝑏;  𝛿𝑏 ≤ 1 
(22) 

 

In (20), the delay is replaced by a multiplicative uncertainty simplifying the 

controller design. In Figure 14 is observed the differences between the nominal 

plant model and a family of plants generated randomly. 
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Figure 14. Bode Plot for nominal and 20 samples of uncertainties 

 

 

4.3.2.  Scaling 

The signal references, the disturbance input, and the control signals are 

normalized in time and frequency domains. The performance of the resulting 

controller depends on this weighting. The control is penalized by a factor of 1 at 

low frequencies and by a factor of 10 at high frequencies with cross frequency 

of 100 rad/s. The Control Weight 𝑾𝒖 is expressed by (23) 

 𝑾𝒖 =
𝑮𝒖 ∗ (𝑠 + 𝑃𝑢)

(𝑠 + 𝑍𝑢)
 

(23) 
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The models of each sensor are constant transfer functions, where each 

constant determinates the sensor accuracy.𝑵𝒂𝒄𝒄𝒆𝒍𝟏  is the accelerometer on 

mass 𝒎𝟐 and 𝑵𝒂𝒄𝒄𝒆𝒍𝟐 is the accelerometer on mass 𝒎𝟑. The sensor weighted 

function 𝑾𝒏(𝒔) is (24) 

 
𝑊𝑛 = [𝑵𝒂𝒄𝒄𝒆𝒍𝟏 𝑵𝒂𝒄𝒄𝒆𝒍𝟐]

𝑇 
(24) 

 

The Control Weight and the sensor weighted function, together with the 

Unmodeled Dynamic's weight (17) and the actuator (18), limit the bandwidth of 

the closed loop system by penalizing large high-frequencies control signals. The 

weight functions (17), (18), and (23), (24) are the same in any of the 

subsequent designs. 

 

4.3.3. The Limitation Imposed on the Performance 

The bandwidth of the sensitivity function is assumed to be the system 

bandwidth. The increase of the bandwidth produces a faster response of the 

system and a large peak on the sensitivity function. Otherwise, decreasing this 

bandwidth causes a reduction of the phase margin and a more sensitivity to the 

noise and parameters variations. Therefore, it is proposed (25) and (26) which 

are the tradeoff between the mentioned problems above and the reference 

disturbance rejection problem. The weight functions (25) and (26) are applied in 

the output vector 𝒚(𝑡). 
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 𝑊𝑝 =
𝐺𝑝 ∗ (𝑠/𝑀𝑝 + 𝜔𝑝)

(𝑠 + 𝜔𝑝)
 (25) 

 𝑊𝑎𝑐3
=

1

𝐺𝑎3

∗
(𝑠 + 𝜔𝑎3

)

(𝑠 + 𝜔𝑎3
/𝑀)

 (26) 

 

In (25), 𝑴𝒑 is the maximum value of the sensitivity function in all frequencies,𝝎𝒑 

is the bandwidth from the normalized disturbance to the 𝒎𝒂𝟐
 and 𝝎𝒂𝟑

 is the 

bandwidth from the disturbance source (𝒅𝒔) to 𝒎𝒂𝟑
. The transfer function of the 

actuator works as a low pass filter (See figure 13). In addition, the transfer 

functions, that represent the propagation paths of the accelerations from the 

inertial actuator to masses 2 and 3 𝒂𝒎𝟐
 and 𝒂𝒎𝟑

  respectively), work also as low 

pass filters. Therefore, transfer functions (25) and (26) represent the goal of 

disturbance rejection. They attenuate disturbances only below 10 rad/s, 

because beyond this value transfer functions studied have a frequency 

response below -70dB. 

The comparison of the close-loop targets response using the weight function 

(25) and (26) with the open loop response can be observed in Figure 15. 
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Figure 15. Bode plot comparison between closed-loop target and the open-loop 

response 

 

 

4.4.  CONTROLLER DESIGN 

The suboptimal 𝓗∞   control problem is to find a Feedback controller for the 

generalized plant such that the ∞-norm of the closed-loop system. Bode plot 

comparison between closed-loop target and the open-loop response is bound: 

 ‖𝐺𝑦𝑤‖
∞,[0,𝑡𝑓]

= sup
‖𝜔(𝑡)‖2,[0,𝑡𝑓]

‖𝑦(𝑡)‖2,[0,𝑡𝑓]

‖𝑤(𝑡)‖2,[0,𝑡𝑓]
< 𝛾 (27) 

 

 



61 
 

Figure 16. N-∆ Block Diagram 

 

 

This is a suboptimal solution; an optimal solution is obtained by minimization of 

the closed loop system ∞-norm. Where 𝜸 are the performance bounds imposed 

to the design. The block diagram of Figure 13 is used to obtain generalized 

plant N in Figure 16 and the LFT model. 

For the block diagram of Figure 13 the LFT is derived via the generalized plant. 

The minimization of the Maximum Singular Value of the generalized plant N is 

solved numerically by using the 𝓗∞   Robust Control Toolbox in MATLAB. The 

outcome of this problem is a controller with the same order of the generalized 

plant with a Space-State representation of 13 states, 1 output (control), and 2 

inputs 𝒂𝒎𝟐
 and 𝒂𝒎𝟑

. The frequency response of the closed loop system with the 

controller proposed and the modeled uncertainties are shown in Figure 17. The 

influence of the pole at 2 rad/s is noted in the actuator force frequency response 

(see Figure 17). The attenuation of high frequencies responses caused by the 

low bandwidth of actuator model is presented in the same figure. 
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Figure 17. Bode plot of the open loop system and compare to the close loop 

response with the controller 

 

 

4.4.1.  Robust Stability and Performance 

The peak gain of the close-loop system is 0.3461. Therefore, the robust stability 

is guaranteed and the system is stable even in the worst condition.  

Although the system has reached the robust stability, the controller cannot 

estimate-control correctly all possible states within the range prescribed by the 

weighting functions. This means that the driver is unable to model the bounded 

uncertainties. This situation can lead to produce a controller gain of 6.23 at 1.95 

rad/seconds. 
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4.5.  µ-SYNTHESIS AND DK-ITERATION 

The minimization of the maximum Structured Singular Value (SSV), not the ∞ 

norm which is the maximum singular value, is a mathematically precise method 

to generate controllers that meet robust performance specifications. Robust 

Performance can be analyzed using the SSV as given by the cost function. 𝓓 −

𝓚 Iteration seeks to overcome the problem of minimization of SSV by 

alternatively performing ∞-norm optimization and D-scale optimization. 

The controller based on µ-synthesis is obtained using the controller cost 

function (26) as an objective function to minimize the control effort. The 

resulting controller has a 𝟑𝟓𝒕𝒉 order with a µ value of 1.2538 and the system 

gain only models 89.4% of the uncertainties. The complex µ -synthesis process 

performed considers the uncertainties 𝒌 and 𝒇𝒃 as complex variables. This 

process was not able to reduce the µ value below the unit, giving no an 

acceptable Robust performance. This occurs because the variation range is too 

large for the performance desired, considering the number of measured signals 

and output references. This situation may also happen because the DK-scaling 

considers the parametric uncertainties, stiffness and damping, as complex 

variables which penalize the optimization process. 

 

 

 

 

 



64 
 

Figure 18. Bode plot comparison between open loop system and the close loop 

response with the robust controller 

 

 

The frequency response of the closed loop system is shown in Figure 18. The 

influences of the poles in the open loop frequency responses at 𝒂𝒎𝟐
 and 𝒂𝒎𝟑

 

are attenuated by the controller. 

 

4.6. MIXED µ-SYNTHESIS 

In the interest of improving the Robust performance to a desire value a Mixed-µ 

synthesis is used. Mixed-µ synthesis considers real part uncertain parameters 

directly in the synthesis process. A scaling function was applied to the DK-
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iteration process. After this process, the order associated with the complex 

uncertainties was settled of 𝟓𝒕𝒉 and 𝟔𝒕𝒉  order for the uncertain real-valued 

parameters both used in Mixed-µ synthesis.  

The controller obtained from the Mixed µ-Synthesis is a State-Space model with 

1 output, 2 inputs, and 87 states, with the µ value of 0.8271. The close loop 

response with the mixed-µ controller is shown in Figure 19. The frequency 

response of the actuator force slightly increase its magnitude around the poles 

of 𝒂𝒎𝟐
 and 𝒂𝒎𝟑

 without surpass the 0 dB magnitude, reaching a desired Robust 

performance. 

 

Figure 19. Bode plot comparison between closed-loop target and the close loop 

response with the Mixed-µ controller 
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4.7. DISTURBANCE REJECTION SIMULATIONS 

To compare the disturbance rejection performance white noise is injected into 

the low-pass  𝑾𝒅𝒊𝒔𝒕 filter to simulate the input disturbance (𝒇𝒔). The disturbance 

rejection simulation in Matlab environment of the Complex and mixed µ-

synthesis controller in closed loop with the system are presented in Figure 20. 

 

Figure 20. Disturbance rejection response 

 

 

The mixed-µ controller weighted the real part of the uncertainties, stiffness and 

damping, producing less control than the Complex µ-Synthetized. This is what 

makes different Robust performances of Complex µ-Synthesis from Mixed-µ 

Synthesis. The “worst-case” disturbance rejection scenario is shown in Figure 
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21. The system presents the desired performance with both controllers. 

However, the mixed-µ controller has also the advantage in the disturbance 

rejection at 𝒙𝒎𝟐
 , and the controller force 𝒇𝒔 is lower, showing the desired robust 

performance. 

 

Figure 21. Disturbance rejection response of the worst-case 

 

 

The order reduction is applied to the Mixed-µ controller to decrease the 

computational cost. In order to reduce the controller order, The Robust Control 

toolbox of Matlab was used to evaluate the performance of every controller, 

from the 𝟖𝟕𝒕𝒉 order controller to the first order controller. In Figure 22 the results 

are shown: 
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Figure 22. Robust performance as a function of controller order 

 

 

As shown in Figure 22, the 𝟖𝒕𝒉 order controller presents the desired Robust 

performance with a reasonable computational cost for a non-adaptive controller 

with a maximum gain of 0, 9796. In Figure 23, the differences in disturbance 

rejection of the closed loop system using both, the 𝟖𝟕𝒕𝒉   order controller and 

the 𝟖𝒕𝒉 order controller, are shown when white noise is injected to the closed 

loop generalized plant via  𝑾𝒅𝒊𝒔𝒕. 

 

 

 

 



69 
 

Figure 23. Disturbance rejection comparison 87th and 8th controller order 

 

 

4.8. PRELIMINARY CONCLUSIONS 

In this study a design of a Robust controller is accomplished providing Robust 

stability and Robust performance.  

 The desired Robust performance is obtained through proposed weight 

functions for parametric uncertainties, delay and inertial actuator 

uncertainty, besides the reduction of the frequency response of the 

propagation paths to mass accelerations of the Studied Plant. 

 By using  𝓗∞  controller for the Studied Plant, a cost function of 6.23 was 

achieved. In this case, it was considered to reduce the range of 

uncertainties of the model or, to decrease the signal range to reject. None 
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of them was an option for this design. A mixed-mu complex synthesis was 

used to obtain an improved Robust performance. 

 Furthermore, the µ-synthesis provided a more competent Robust 

performance in disturbance rejections at the same conditions of uncertainty. 

In this study is recommended the  𝓗∞  Controller for systems with low 

range parametric uncertainties or designs with only stability requirements.  

 Also, the complex µ-Synthesis procedure, when the modeled uncertainties 

are real-valued and they are considered as complex variables, produces a 

controller which uses more effort trying to compensate the imaginary value 

of the uncertainties. 
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5. ADAPTIVE CONTROLLER DESIGN 

 

Within this Chapter, Active Vibration Control (AVC) for a three-cart problem is 

studied. A comparison of Adaptive Filters is implemented using the Filtered-x 

Least Mean Square (FxLMS) algorithm and Recursive Least Square (RLS) 

algorithm, when a correlated measurement of the disturbance is available. The 

proposed RLS compensator considers a Feedback coupling between the 

compensator and the measure of the disturbance. The secondary propagation 

path of the plant was estimated using System Identification (SI) Normalized 

LMS (NLMS) algorithm. The internal “positive” coupling is considered as a Finite 

Impulse Response (FIR) filter estimated by the Real Plant parameters. The 

propagation paths are fully identified as a group of transfer functions in series 

considering the electrical domain and mechanical domain. Simulations using 

DSP system toolbox of Matlab had shown a superior performance of RLS 

algorithm with a reasonable computer cost. 

 

5.1. THREE-CART DYNAMICS WITH INERTIAL ACTUATOR 

Figure 24 represents an AVC system using a vibration measurement correlated 

with the disturbance and an inertial actuator for reducing the residual 

acceleration. The system consists of five metallic plates connected by springs. 

The plates M1 and M3 are equipped with inertial actuators. M1 serves as 

disturbance generator (inertial actuator 1 in figure 24) and M3 serves for 

disturbance compensation (inertial actuator 2 in Figure 24). The system is 
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equipped with a measure of the residual acceleration (on plate M2) and a 

measure of the disturbance being sensed by an accelerometer on plate M1. 

 

Figure 24. Scheme of the Plant, AVC system 

 

 

The path between the disturbance (in this case, generated by the inertial 

actuator on the top of the structure) and the residual acceleration is called the 

Global Primary path. The path between the measure of position M1 (an image 

of the disturbance) and the residual acceleration (in open loop) is called the 

Primary path, and the path between the inertial actuator for compensation and 

the residual acceleration is called the Secondary path. When the compensator 

system is active, the actuator acts upon the residual acceleration, but also on 

the measurement of the image of the disturbance (a positive feedback). 

The disturbance is the pressure wave of the inertial actuator (see figure 24) 

located on top of the structure. The output of the compensator system is the 
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pressure wave of the inertial actuator located at the bottom of the structure. The 

parameters of the filter are estimated to minimize the measurement of the 

residual acceleration. The block diagram of the AVC system can be observed in 

Figure 8. The 𝑾𝒅𝒊𝒔𝒕(𝒛) filter is emulating the band limiter filter and the power 

amplifier. The perturbation source is white noise filtered by 𝑾𝒅𝒊𝒔𝒕(𝒛) to 

obtain  𝒅𝒔(𝒕). The filter  𝑷𝑮 emulates the global primary path which contains the 

disturbance inertial actuator and the mechanical path between pressure wave 

and the residual acceleration. The filter  𝑷𝑪  characterizes the dynamics of the 

disturbance source and the image of the disturbance (inertial actuator + 

dynamics of the mechanical system). The compensation actuator is modeled by 

the transfer function 𝑨𝒄𝒕 with the control signal as input and the pressure wave 

as output (power amplifier + the compensation inertial actuator). 

The secondary path is represented by 𝑺 block which models the dynamics of 

the travel of the pressure wave from the compensation inertial actuator to the 

residual acceleration in the absence of the disturbance. 𝑭𝒄 is the block that 

emulates the mechanical path between the inertial compensator actuator and 

the correlated disturbance. The feedforward compensator is the 𝑲𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆 block 

with �̈�𝟏 as the correlated noise and the residual acceleration (the desired 

signal) as inputs and the output �̂�(𝒕) is the control signal. The value of �̈�𝟏  is the 

sum of the correlated disturbance measurement �̈�𝟏𝒑
 obtained in the absence of 

the feedforward compensation (see figure 25(a)) and the effect of the actuator 

used for compensation. 
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Figure 25. Block diagram of the plant of the AVC system a) open loop b) with 

the feedforward compensator 

 
 

5.2. SYSTEM IDENTIFICATION OF THE PROPAGATION PATHS 

A System Identification process was implemented to estimate the impulse 

response of the four propagation paths in the AVC system. The models 

obtained consider the Unmodeled Dynamics inherent to the simplification of the 

Plant. The SI process applied an Adaptive Filter with Normalized LMS algorithm 

to adapt the impulse response of the Unknown System (Nominal plant + 

uncertainties + the measurement error) injecting band limited noise to both i.e. 

the Adaptive Identification System and the Unknown System and comparing 

theirs responses, see Figure 26 (a) 
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Figure 26. Block Diagram of the System Identification Using the NLMS Adaptive 

Filter 

 

a) 

 

b) 

The initial coefficients of the Adaptive Filters, that identify each system, are 

taken as the coefficients of a FIR filter. This filter emulates the impulse 

response obtained initially for each propagation path. The FIR filter obtained 

has a response time of 10 ms. the identification process of the filter is shown in 

Figure 27. The main characteristic of this new filter is the length of the 

secondary path filter estimated since it is not as long as the actual secondary 

path and does not need to be like so that the control is adequate in most cases. 

The excitation signal used to identify the different paths of the system was a 
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broad band white noise signal, and then used an impulse response to verify the 

accuracy of the estimation. 

 

Figure 27. Primary path SI Using the NLMS Adaptive Filter with 1000 Filter 

order 

 

 

The same Identification was applied using a 500 Filter order. 

Figure 30 shows the behavior of the estimated secondary path impulse 

response and the comparison with the real path. 
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Figure 28. Primary path Impulse response identification 

 

Figure 29. Primary path SI Using the NLMS Adaptive Filter with 500 Filter order 
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The accuracy of the 500 FIR filter is low. The performance in the estimation of 

the true impulse response tail is poor and affects significantly the operation of 

the AVC system during its operation in the chosen task. After matching the two 

results it is concluded that the ideal size of the FIR filters for the System 

Identification spans between this two values. 800 Filter order was chosen 

because of its performance in contrast to its computational cost. 

SI was performed independently from Vibration Control; however, it is part of 

this as a separate function that can be used each time the error of the 

disturbance rejection is very large, or cannot be reduced by the action of the 

controller due to drastic changes of operating point. In other words, it is a way to 

generalize the control solution.  

The FIR filters that emulate the propagation paths of the Studied Plant are 

presented in Figure 30. For the purposes of studying adaptive filters, these 

filters are not changed and the input signals of the system will be kept in the 

same range. The frequency characteristics of the various paths are shown in 

Figure 31. 
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Figure 30. Frequency characteristics of the primary, secondary and reverse 

paths 

 

5.2.1.  SI Global Primary Path FIR Filter 

The primary propagation path 𝑷𝑪 is modeled by a linear filter. This Filter was 

obtained in absence of compensation and by observing the correlated 

accelerometer signal after an impulse disturbance was applied. The coefficients 

of the FIR impulse response filter represent the response of the entire global 

primary path. 
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Figure 31. SI of Global Primary path using the NLMS Adaptive Filter. a) 

Estimation Error b) Magnitude response of the FIR filter 

 

a) 

 

b) 
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5.2.2. Feedback Coupling Propagation Path Identification  

The Propagation path of the “Additive” Feedback Coupling is the effect of the 

compensation inertial actuator over the correlated accelerometers in the 

absence of perturbation. 

 

Figure 32. SI of the Feedback Coupling path, using the NLMS Adaptive Filter. a) 

Estimation Error b) Magnitude response of the FIR filter 

 

a) 
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b) 

5.2.3.  Image of the Disturbance Path 

Image of the Disturbance Path is the effect of the disturbance inertial actuator 

over the correlated accelerometers in the absence of compensation or 

disturbance rejection. 
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Figure 33. Image of the disturbance path Identification Using the NLMS 

Adaptive Filter. a) Estimation Error b) Magnitude response of the FIR filter 

 

a) 

 

b) 
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5.2.4. SI Secondary Path 

System Identification of the secondary path was applied when there was 

absence of disturbance and white noise was applied through the compensator 

inertial actuator. 

 

Figure 34. Secondary Path Identification Using the NLMS Adaptive Filter. a) 

Estimation Error b)Magnitude response of the FIR filter 

 

a) 
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b) 

5.3.  AVC USING FILTERED-X LMS FIR ADAPTIVE FILTER  

In the design of the FIR Adaptive Filter using the filtered-x LMS algorithm was 

not considered the additive feedback coupling. The correlated noise is the 

measure of the image of the perturbation (See Figure 35), �̈�1(𝑡) and the desired 

signal is �̈�2(𝑡). The Adaptive Compensator is a Feedforward controller with a 

step size of 0.01.  
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Figure 35. a) Schematic arrangement of Feedforward AVC system with FxLMS 

b) Block Diagram 

 

a) 

 

b) 
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The experiments had been carried out by first applying the disturbance in open 

loop during 30 seconds and after that by closing the loop with the adaptive 

Feedforward-Feedback algorithms. Time domain results obtained in open loop 

and with the compensator (using Adaptive Feedforward compensation 

algorithm) on the AVC system are shown in Figure 35. The filter for algorithm 

had been computed based on the parameter estimation obtained from the SI 

process. The band limited disturbance frequencies source emulates the 

bandwidth attribute of the rotating machinery vibration. Specifically, generated 

noise might come from a typical electric servomotor. 

The Figure 36 shows the resulting power spectral of the residual acceleration. 

Channel 1 is the residual accelerometer without compensation and channel 2 is 

the residual acceleration with compensation. In Figure 36, channel 2, it is 

observed frequencies of 21 and 50 Hz. The higher components of the 

disturbance are attenuated below -40 dB. On the other hand, a decrease in the 

compensation performance at components of 34 and 36 Hz is observed. These 

components are partially ignored by the compensator algorithm and give the 

maximum amplitude value of the error signal. 

Figure 37 shows the disturbance rejection of the system using Feedback 

FxLMS Algorithm. 
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Figure 36. Power spectral of AVC of the Filtered-x LMS 

 

 

Figure 37. Disturbance rejection of the feedback Filtered-x LMS 
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The results are shown as a plot of the residual acceleration measured by the 

residual accelerometer [𝑚 𝑠2⁄ ] seen in Figure 38 and they are quantified as the 

variance of the history of the residual force (error) in mass 2. The variance of 

the residual error with the Feedforward compensator is: 𝑣𝑎𝑟(𝑒(𝑡)) =

0.0019(16.40𝑑𝐵) , with a reduction of (26.40𝑑𝐵) compared with the open loop 

Plant. 

 

5.4.  ADAPTIVE FEEDBACK AVC USING FxLMS ALGORITHM 

A new approach was proposed to improve the attenuation of the disturbance: 

the Feedback Control scheme using FxLMS algorithm. The Figure 38 shows the 

scheme of the Adaptive Feedback AVC System. The system synthesizes or 

regenerates its own reference signal, using an estimated path and the Adaptive 

Filter output and the error signal. The advantage of this scheme is the use of 

only one accelerometer. The reference signal or primary noise is expressed in 

Z-Domain as 𝐷𝑖𝑠𝑡′(𝑧) = 𝐸(𝑧) + �̂�𝐺(𝑧)𝑦(𝑧) where�̂�𝐺(𝑧) is the estimated 

secondary propagation path, and 𝐸(𝑧) the error signal. 𝑦(𝑧) is the secondary 

signal produced by the Adaptive Filter. 
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Figure 38. Schematic arrangement of feedback AVC system with FxLMS b) 

Block Diagram 

 

a) 

 

b) 
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When comparing Figures 37 to Figure 39 can be noted a decrease in 

performance of the compensation when the Adaptive Feedback FxLMS was 

implemented. The lack of compensation performance is attributed to the SI 

process because, although, the correlation between the desired signal and the 

correlated signal is 1, the system was incapable to fully identify specific values 

of frequencies. 

 

Figure 39. Disturbance rejection of the AVC using feedback FxLMS 

 

 

The Figure 40 shows frequency spectrum of the closed-loop system. The higher 

peaks to attenuate at 21 and 50 Hz can be observed in Channel 1. The 

Feedback FxLMS AVC has a higher computational cost due to the calculation of 

the reference disturbance signal. The Feedback Compensator has less time 

than Feedforward compensators to minimize the residual error, making the 
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value of the cost function higher or in this case for the same cost a lower 

performance of the disturbance rejection. 

The AVC system feedback has a lower performance in rejecting the disturbance 

than the compensator in Feedforward. This is because the reference signal is 

disturbed by the modeling propagation paths by filtering part of the information 

about which frequencies must be rejected. This gap of information on the 

reference signal, the non-rejected frequencies, occurs in the digital domain 

where the reference signal is calculated, and is affected by the order of the FIR 

modeler filters. Actual Plant dynamics do not lessen these frequencies, so to 

make a decision; the compensator misses attenuated frequencies in the 

calculation. Therefore, the compensator does not attenuate these frequencies, 

as it does not take action on them. 

 

Figure 40. Power spectral of the AVC system using feedback FxLMS 
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For an algorithm of minimization like the LMS, linear error alone is not robust 

enough to counteract this disturbance in the reference signal. 

When the feedback controller is active, the variance of the residual acceleration 

is: 𝑣𝑎𝑟(𝑒(𝑡)) = 0.02(16𝑑𝐵)  with a disturbance rejection of (20𝑑𝐵). 

A reasonable length (300) of adaptive filter order is used because the 

augmentation of this value can affect the real response of the system caused by 

the extra calculation of the order. In this study, the FxLMS algorithm and the 

RLS algorithm were selected due to their simplicity, deriving in low 

computational cost. On the other hand, many other control applications 

complement the compensation of this controller with an extra reasonable 

computational cost, less than trying to augment the length or order of the 

applied compensator. 

 

5.5.  ADAPTIVE FEEDFORWARD AVC USING RLS ALGORITHM WITH 

FEEDBACK COUPLING 

A new control scheme was proposed in order to improve the performance 

observed in the Feedforward FxLMS. The new compensator considered the 

Feedback Coupling caused by the compensator actuator affecting the 

correlated disturbance as shown in Figure 25. The performance of the new 

control scheme can be noted in Figure 41. In this Figure is presented the 

frequency response of the residual acceleration with and without compensation 

in Channel 2 and Channel 1 respectively: 

The peaks observed in the spectrum of channel 2, Figure 41, are the 

frequencies applied as the disturbance source. The attenuation of the highest 
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peaks on channel 1 at 18Hz, 30Hz and 42 Hz is observed. The maximum value 

of the attenuated signal in this new scheme is at 42 Hz frequency as noted in 

the FxLMS scheme. Therefore, the RLS algorithm is capable of identify and 

compensate this frequency value.  

Figure 42 shows the residual acceleration of the Plant with and without 

compensation to attenuate the disturbance. 

 

Figure 41. Power Spectrum of AVC System using RLS algorithm with Feedback 

Coupling 

 

 

When using only adaptive feedforward compensation RLS, the variance of the 

residual acceleration is 𝑣𝑎𝑟(𝑒(𝑡)) = 0.003(36𝑑𝐵)  with a reduction of (39.2𝑑𝐵). 

Clearly, RLS scheme brings a significant improvement in performance in 
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respect to the other schemes offering adaptation capabilities to the disturbance 

characteristics. 

 

Figure 42. Disturbance rejection of the AVC using RLS algorithm with feedback 

coupling 

 

 

5.6 PRELIMINARY CONCLUSIONS 

Present study took three different designs of Adaptive Filter with FxLMS 

algorithm and RLS algorithm applied to periodical disturbances rejection. 

 The attenuation of the FxLMS Feedforward AVC System uses a 

reasonable amount of effort to find the opposite form of the perturbation 

to attenuate the disturbance. There are not many operations out of the 

block algorithm. This is a reliable form to attenuate the perturbation. 
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 There are frequencies that are ignored in the adaptation algorithm within 

the compensation of the Feedforward AVC systems due to extra 

calculation added in the simulation. These frequencies are the reason of 

the maximum amplitude value of the residual acceleration. 

 To perform the attenuation of the disturbance the design of the Feedback 

AVC System using the FxLMS is developed. Although, the correlation 

between the two input signals of the adaptive filter is high. The algorithm 

does not attenuate all the frequency response of the residual 

acceleration. This is caused by corrupted signal due to the extra 

calculation added to extracted the reference signal. 

 Using the Feedforward AVC system with RLS algorithm and considering 

the Feedback Coupling showed improved results in the attenuation of the 

disturbance. Although, the Feedback Coupling may cause instability 

when the wrong adaptation step is used. This happens because of its 

offset sum of the Feedback Coupling plus the image of the disturbance.  

 Implementing AVC with "The Feedback from Compensation" instead of 

using the estimated secondary path filters, is closer to the real 

propagation path model, and hence the real Plant dynamics. 
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6. COMPARATIVE ANALYSIS 

 

The difference between Robust Control and Adaptive Control is the way the 

lack of knowledge we have about the Plant to be controlled can be 

compensated.  

Robust Control carries out an investigation on the life of the Plant, trying to find 

all the uncertainties that could lead to model the System. Under this 

investigation we found these uncertainties during: the design and construction 

of the System to find the uncertainty in the constants (parameters) of the model; 

the relationship between the Plant with surroundings to understand the 

uncertainties that may affect the normal behavior of the model; and the Plant 

operation to understand the possible changes in control operating points, all in 

order to convert these uncertainties in part of the model of the Generalized 

Plant. Thus, find a “worst-case” situation to design the controller. Following this 

idea, we cannot say that there is an ideal Driver situation, but the suboptimal or 

optimal Driver for the model that attempts to emulate the Plant. The more the 

model approaches the actual Plant, the most optimal the driver would be. But 

more effort is needed to design it. When designing the controller, the 

determining factor is not necessarily to find the closest model to reality but the 

most suitable to the specific application. 

Adaptive Control seeks to compensate the uncertainties on the Plant lifetime. 

This is achieved by focusing on increasing the response capacity of the 

controller to a set of possible responses of the Machine. The bigger and more 

varied the set of answers to control; much more great must be the capacity for 
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decision, making your controller a generalized design. Also, the computational 

cost is increased, becoming it a trade-off relationship. The controller may 

compensate for uncertainties, recognizing and cataloging them, whether, they 

are inherent to the lack of accuracy of the design or the operation of the plant, 

staggering the phases of adjustment or increasing the number of adaptive 

filters. 

 

6.1.  RLS ADAPTIVE FILTER 

 

Figure 43. Disturbance rejection using RLS algorithm Feedforward 

Compensator: Residual Acceleration 
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Adaptive Filter using the RLS algorithm with positive feedback for the design of 

the filter had a reduction of almost 40 dB of its original value when the 

disturbance is a sum of periodic noise.  

But, due to this algorithm to reduce the error of the residual acceleration is 

simple; the filter cannot anticipate actions to eliminate non-periodical noise. By 

increasing the data buffer of the filter the error can be minimized. However, in 

the cost-benefit ratio it is unjustifiable an increased computational cost to 

increase the filter performance 

Adaptive Filters may reject periodic disturbance characteristics of rotating 

machines, better than the Robust Control, and more widespread because of its 

SI of the Plant with reasonable computational cost. The noise injected to 

compare the Adaptive Control is a mixture of 12 sinusoidal signals that emulate 

different sources of periodic type of disturbance, typical from servo positioning 

systems. The amplitude of the signals depends on the proximity between the 

source and the AVC system. Frequencies and the offset between the signals 

are random, but the frequencies are between a bandwidth of 0 to 150 Hz. The 

simulation of the AVC rejection is presented in figure 44. 

The amplitudes of the frequency response of the Global Primary Path 

propagation is affected by the frequency response of the plant, according to its 

form, since the response of the propagation path as the sum of the latter and 

the disturbing signal is counted. 
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Figure 44. Disturbance rejection using RLS algorithm Feedforward 

Compensator Magnitude Response 

 

 

6.2. MIXED-μ ROBUST CONTROLLER 

Applied to Active Vibration Control (AVC), Robust Control has its best 

application for the mixed-mu controller (which allows scaling to give the real and 

imaginary values separated by the minimization of the computational cost of the 

controller designed) improving the robustness with the worst possible scenario. 

The rejection of the disturbance as white noise is performed up to 10% of its 

original value in the worst case, when the maximum possible control is applied. 
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Figure 45. Disturbance rejection using Mixed-μ Robust Controller: Frequency 

response 

 

The Robust Controller is capable of reject the unknown disturbance modeled as 

Pseudo-random white noise, with a robust performance of mu = 0, 85. The 

resulting controller has a 20 order. The figure 45 shows the resulting controller 

in action. The disturbance is colored noise applied to the Studied Plant and the 

closed loop. 
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Figure 46. Disturbance rejection using Mixed-μ Robust Controller: Residual 

Acceleration 
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7. CONCLUSIONS 

 

The comparative study between the techniques of control, Robust and 

Adaptive, took place through applying them to Active Vibration Control (AVC) in 

the Studied Plant, concluding:  

Considering that the bigger and more varied the set of answers to control, much 

greater must be the capacity for decision making the controller-generalized 

design, but also increasing their computational cost, becoming a trade-off 

relationship. 

 When the disturbance is a sum of periodic noise, due to its algorithm is 

simple, the filter cannot anticipate actions to eliminate non-periodic noise. 

Increasing the data buffer of the filter may help further minimize the error 

but in the cost benefit-ratio it is unjustifiable an increased computational 

cost to increase the filter performance. 

 The Robust Controller has a better performance by eliminating non-periodic 

disturbances. Its advantage lies on the ability to model a family of systems 

with similar dynamic responses within a specified range. While the 

disturbances do not exceed the range of uncertainties, their performance is 

greater than the Adaptive Filters. Another advantage is minimizing the 

computational cost and the use of control.  

 SI not only generalizes the answer of the Adaptive AVC problem but also 

improves the disturbance rejection by making fewer filters to model the 

plant. By reducing the number of modeler filters, the lower the disturbance 
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between the measures of the disturbing signal and the image of them. With 

less disruption of signals is greater the effectiveness of the linear error 

reduction algorithms. 

 From the viewpoint of the applicability of the proposed controller and its 

possible final output in industry, the best solution to the AVC problem is the 

mixed mu-Synthesis. Despite having a lower generalization, in respect to 

the other proposals and due to the extra effort, to study in detail all the 

possible uncertainties and the need for a good designer criterion for weights 

of each uncertainty, mu-Synthesis is able to reject non-periodic 

disturbances much better than the Adaptive Filters.  

 On the other hand, the Adaptive Filter is much more general in the solution. 

The generalization can be increased by augmenting the length of the filter 

and the ability to recognize disturbances near the dynamic response of the 

nominal Plant. In general, the proposed solution is able to recognize any 

type of modified time response with the dynamic response of the Plant that 

controls. However, the filter does it one at a time between identifications of 

the system. In addition, you need to implement an SI in the Plant. At the 

same time, the designer should be very careful not to disturb the image of 

the disturbance causing the least amount of digital signal processing, which 

is unlikely to control complex systems. 
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8 RECOMMENDATIONS 

 

Based on the conclusions, Robust Control can reject non-periodic disturbances 

within a small range with a reasonable computational cost and the use of 

Adaptive Filters to model and control the Plant.  

Only under the influence of periodic disturbances the following is 

recommended: 

 When making a design of an AVC system, constrain the types of 

disturbances which the plant will be under control. 

 If the designer needs to remove all signs listed in this research, it is 

recommended to use both controllers in a complementary way to reduce 

each of the disturbances, by first applying the Robust Controller, the 

Synthesized Mixed-MU Controller, in closed loop with Feedback, to 

eliminate non-periodical disturbances and then the Feedforward Adaptive 

Filter with the RLS algorithm. 

.  
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ANNEX A. PROGRAMMING OF THE ROBUST CONTROL 

% Program to model, to analyze 

and to control a nominal plant 

using Robust Control. The 

nominal plant consists of a 

flexible structure of 3 masses 

connected by springs. The mass 1 

is disturbed by a pressure wave. 

The plant is controllable from 

the mass 3. An inertial actuator 

is located on the mass 3 to 

reduce the disturbance on the 

mass 2 transmitted from the mass 

1. 

 
% This program is part of the 

master in mechanical engineering 

project by Efrain Guillermo 

Mariotte Parra; A COMPARATIVE 

STUDY OF LINEAR TECHNIQUES AVC 

H-INFINITY AND STRUCTURE 

ADAPTIVE FILTERS FLEXIBLE ONE 

DEGREE OF FREEDOM 

 
% Bucaramanga April 14 of 2014 
clear all 
close all 
clc 

  
%% PROBLEM IDENTIFICATION 

  
% Flexible structure of 3 masses 

conected by springs 

% Primary path of the 

disturbance of one degree of 

freedom 

 
% System Constant 

  
m1 = 1;            % 1kg 
m2 = 1;            % kg 
m3 = 1;            % kg 

  
%% Parametric uncertainties 

modeling 

  
k = 

ureal('k',2,'range',[1.5,2.5]); 

  
k1 = k;            % N/m 
k2 = k;              
k3 = k; 
k4 = k; 

  

b = 

ureal('b',0.01,'range',[0.008,0.

012]); 
b1 = b; 
b2 = b; 
b3 = b; 
b4 = b; 

  
%% Modeling of the uncertainty 

by the actuators delay. 

% delay’s model between the 

actuator’s force and the mass 1, 

the maximum delay is about 0,05 

seconds, if the delay isn’t 

considered, the model error will 

be of exp(-s*tau)-1. This error 

can be modeled as an uncertainty 

due to it is missed in the 

Space-State representation of 

the Plant. A highpass filter 

that limited the magnitude of 

the frequency response of the 

nominal plant models this delay 

Wunmod = 2.1*s/(s+40) 

  
Wunmod = 2.1*tf([1 0],[1 40]); 
tau = ss(1,'inputdelay',0.05); 
bodemag(tau-

1,Wunmod,logspace(0,3,200)); 
title('Multiplicative Time-Delay 

Error: Actual vs. Bound') 
legend('Actual','Bound','Locatio

n','NorthWest') 
grid on 

  
% Space-State Representation of 

the nominal plant 

  
A11 = zeros(3,3);  
A12 = eye(3,3); 
A21 = [-(k1+k2)/m1 k2/m1 0;k2/m2 

-(k2+k3)/m2 k3/m2; 0 k3/m3 -

(k3+k4)/m3]; 
A22 = [-(b1+b2)/m1 b2/m1 0;b2/m2 

-(b2+b3)/m2 b3/m2; 0 b3/m3 -

(b3+b4)/m3]; 

  
B1 = zeros(3,2); 
B2 = [0 1/m1; 0 0 ; 1/m3 0]; 

  
%D11 = [0; 0]; D12 = zeros(2,3); 

D21 = zeros(2,1); D22 = C1; 

  
A =[A11 A12; A21 A22]; 
B = [B1;B2]; 
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C = [0 1 0 0 0 0; 

A(5,:);A(6,:)]; 
D = zeros(3,2); %[D11 D12; D21 

D22]; 

  
Planta = ss(A,B,C,D); 
Planta.statename = 

{'x1','x2','x3','v1','v2','v3'}; 
Planta.outputname = 

{'xm2','am2','am3'}; 

  
%% Transport delay between the 

control force and the 

acceleration of the mass 1 

addition  

 
deltaT = 

ultidyn('deltaT',[1,1],'bound',0

.4); 
Planta = 

Planta*append(1+deltaT*Wunmod,1)

; 
Planta.inputname = {'fs','ds'}; 
figure 
bode(Planta.Nominal(1,1),'r+',Pl

anta(1,1),'b',{0.1,10}); grid on 
legend('Nominal Plant','Family 

of Plant with 

uncertainty','location','southwe

st') 
title('Bode Plot for nominal and 

20 samples of uncertainties') 
%% Poles analysis of the Studied 

system 
tzero(Planta({'am2'},{'fs'})) 
zero(Planta({'xm2'},{'fs'})) 
%% Bode diagram of the Plant and 

its uncertainties 

  
figure 
bodemag(Planta.Nominal({'xm2','a

m2','am3'},'ds'),'r',{0.1,10}); 

grid on 
legend('Perturbation 

ds','location','southwest'); 
title(['Gain from external 

disturbance (ds)'... 
    'to displasment m2 and Body 

aceleration 2 and 3']) 

  
%% Model of the inertial 

actuator 

  
ActNom = tf(1,[1/50 1]); 
Wunc = makeweight(0.4,2,1.5); 
unc = 

ultidyn('unc',[1,1],'bound',0.35

,'samplestatedim',5); 

Act = ActNom*(1 + Wunc*unc); 
Act.inputname = 'u'; 
Act.outputname = 'fs'; 

  
%% Bode diagram of the Actuator 

and its uncertainty 

 

  
 figure 
 

bode(Act,'b',Act.Nominalvalue,'r

o',logspace(-1,3,120));grid on 
 title('Nominal and 20 random 

actuator models') 

  
%% Normalization of the nominal 

plant signals. 

% The actuator is penalized by a 

factor of 1 at low frequencies 

and by a factor of 10 at high 

frequencies with a cut frequency 

of 100 Hz. 

  
Wu = 15*tf([1 50],[1 500]); 
Wu.u = 'u';  
Wu.y = 'e1'; 

  
% the function to color the 

noise, is a first order filter 

Wdist 

% The disturbance has a pole at 

0.25 rad/s 

  
Wdist = tf(0.25, [1 0.25]); 
Wdist.u = 'dist'; Wdist.y = 

'ds'; 
bodemag(Wdist,Wu); 
grid on 

  
% The target is to reduce the 

disturbance on the mass 2 by a 

factor of 80 and below the 0.1 

rad/s 

  
WP = 1/0.28 * tf([1 0.15],[1 

16]); 
Wacc3 = 1/70 * tf([1 20],[1 

0.15]); 
targets = [WP;0;Wacc3]; 
WP.u = 'am2'; WP.y = 'e2'; 
Wacc3.u = 'am3'; Wacc3.y = 'e3'; 

  
% the controller measures the 

displacement of the mass 2 with 

the noise of the sensor and 

applies the control with the 
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force F1, the sensor noise is 

modeled as a constant 0.001 

  
wn1 = tf(0.001);  
wn1.u = 'noise'; wn1.y= 'nu1'; 

  
wn2 = tf(0.05);  
wn2.u = 'noise'; wn2.y= 'nu2'; 

  
% Closed loop target 

  
figure 
bodemag(Planta.NominalValue({'am

2','xm2','am3'},'ds')*Wdist,'b',

targets,'r--',{0.5,10}); 
grid on 
title('Response to disturbance') 
legend('Open-loop','Closed-loop 

target','location','southwest') 

  
%% Connections between the 

nominal plant, the actuator and 

the weight matrices 

  
x2meas = sumblk('m1 = am2 + 

nu1'); 
x3meas = sumblk('m2 = am3 + 

nu2'); 

  
ICinputs = {'dist';'noise';'u'}; 
ICoutputs = 

{'e1';'e2';'e3';'m1';'m2'}; 
Plantaic=connect(Planta(2:3,:),A

ct,WP,Wacc3,Wu,Wdist,wn1,wn2,... 
    

x2meas,x3meas,ICinputs,ICoutputs

); 

  
get(Plantaic) 

  
%% nominal H-infinity synthesis 

  
ncont = 1; 
nmeas = 2; 

  
[K,~,gamma,info]=hinfsyn(Plantai

c,nmeas,ncont); 

  
info %#ok<NOPTS> 
gamma  %#ok<NOPTS> 

  
K.u = {'am2','am3'}; K.y = 'u'; 
CL=connect(Planta.nominal,Act.no

minal,K,Wdist,'dist',{'xm2';'am2

';'am3';'fs'}); 

  

figure 
bodemag(Planta.Nominal(:,'ds'),'

k:',CL(:,:,1),'b--',{0.5,10}); 
grid on 
legend('Open loop','Close 

loop','location','southwest'); 
title('Plant deformation'); 

  
%% Robust Stability analysis  

  
SIMK = 

connect(Planta,Act,K,Wdist,'dist

',{'xm2';'am2';'am3';'fs'}); 

  
ropt = 

robustperfOptions('Sensitivity',

'off'); 
[rpcmarg,rpcunc,rpcreport] = 

robustperf(SIMK,ropt); 
rpcreport %#ok<NOPTS> 

  
%% Robust Design mu 

  
% Using the D-K iteration to 

obtain a robust controller 

 
[Krob,~,RPmuval,dkinfo] = 

dksyn(Plantaic(:,:),nmeas,ncont)

; 

  
% Examination of the mu-

Synthesis controller 
size(Krob) 
RPmuval %#ok<NOPTS> 

  
%% Closed loop system with the 

robust controller connection  

  
Krob.u = {'am2','am3'}; 
Krob.y = 'u'; 
SIMKrob = 

connect(Planta,Act,Krob,Wdist,'d

ist',{'xm2';'am2';'am3';'fs';'ds

'}); 

  
ropt = 

robustperfOptions('Sensitivity',

'off'); 

  
[rpcmargrob,rpcuncrob,rpcreportr

ob] = robustperf(SIMKrob,ropt); 
rpcreportrob %#ok<NOPTS> 

  
figure 
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bodemag(Planta.Nominal(:,'ds'),'

k:',SIMKrob.nominal(:,:,1),'b--

',{0.5,10}); 
grid on 
legend('Open loop','Closed 

loop','location','southwest'); 
title('Plant deformation'); 

  
%% Mixed mu 

  
opt = 

dksynOptions('MixedMU','on','Aut

oScalingOrder',[5 6]); 
[Km,gm,mu_m]=dksyn(Plantaic,nmea

s,ncont,opt); 

 
% mu value when treating k1 as 

real: 
mu_m %#ok<NOPTS> 

  
Km.u = {'am2','am3'};  Km.y = 

'u'; 
clsimKm = 

connect(Planta,Act,Km,Wdist,'dis

t',{'xm2','am2','am3','fs','ds'}

); 

  
figure 
bodemag(Planta.Nominal(:,'ds'),'

k:',clsimKm.nominal(:,:,1),'b--

',{0.1,10}); 
grid on 
legend('Open loop','Closed 

loop','location','southwest'); 
title('Plant deformation'); 

  
%% Worst case analysis 

  
om = logspace(-1,3,100); 
clpKred = ufrd(SIMK,om); 
clpKrob = ufrd(SIMKrob,om); 
clpKm = ufrd(clsimKm,om); 
wopt = 

wcgainOptions('sensitivity','off

'); 
[maxgainK,badpertK]= 

wcgain(clpKred,wopt); 
maxgainK %#ok<NOPTS> 

  
[maxgainKrob,badpertKrob]= 

wcgain(clpKrob,wopt); 
maxgainKrob %#ok<NOPTS> 

  
[maxgainKm,badpertKm]= 

wcgain(clpKm,wopt); 
maxgainKm %#ok<NOPTS> 

  

%% Disturbance Rejection 

Simulations 

  
t = 0:.01:100; 
dist = randn(size(t)); 
yKred = 

lsim(SIMKrob.Nominal,dist,t); 
yKm = 

lsim(clsimKm.Nominal,dist,t); 

  
% Plot 
figure 
subplot(311) 
plot(t,yKred(:,2),'b',t,yKm(:,2)

,'r') 
title('Nominal Disturbance 

Rejection Response') 
ylabel('Xm2') 
grid 
subplot(312) 
plot(t,yKred(:,4),'b',t,yKm(:,4)

,'r') 
ylabel('fs (control)') 
legend('Krob','Km','Location','N

orthWest') 
grid 
subplot(313) 
plot(t,yKred(:,5),'k') 
ylabel('ds (disturbance)') 
xlabel('Time (sec)') 
grid 

 

%% Worst Case  

  
clsimKrob_wc = 

usubs(SIMKrob,badpertKrob); 
clsimKm_wc = 

usubs(clsimKm,badpertKm); 
yKc_wc = 

lsim(clsimKrob_wc,dist,t); 
yKm_wc = 

lsim(clsimKm_wc,dist,t); 

  
figure  
subplot(211) 
plot(t,yKc_wc(:,2),'b',t,yKm_wc(

:,2),'r') 
title('Worse-Case Disturbance 

Rejection Response') 
ylabel('Xm2') 
grid 
subplot(212) 
plot(t,yKc_wc(:,4),'b',t,yKm_wc(

:,4),'r') 
ylabel('fs (control)') 
legend('Krob','Km','Location','N

orthWest') 
grid 
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%% Controller Simplification 

  
%To create a controller matrix 

with the reduced order 
NS = order(Km); 
StateOrders = 1:NS; 
Kred = reduce(Km,StateOrders); 

  
% To calculate the performance 

margin of each reduced 

controller 

 
CLP = lft(Plantaic(:,:,1),Kred);      

%Linear Fractional 

Transformation Reduce Closed 

loop 
ropt = 

robustperfOptions('Sensitivity',

'off','Display','off','Mussv','a

'); 
PM = robustperf(CLP,ropt); 

 
% Comparison between the 

performance of every reduced 

controller and the synthetized 

controller. 

  
%% Graphics order controller vs 

performance 
figure 

  
plot(StateOrders,[PM.LowerBound]

,'b-o',... 
    StateOrders,repmat(1/mu_m,[1 

NS]),'r'); 
title('Robust performance as a 

function of controller order') 
legend('reduced 

order','Controller MU') 
grid on 

  
%% Controller reduced 

  
Krob8 = Kred(:,:,8); 

  
Krob8.u = {'am2','am3'}; 
Krob8.y = 'u'; 
CLredK = 

connect(Planta,Act,Krob8,Wdist,'

dist',{'xm2','am2','am3','fs','d

s'}); 

  
yKred = 

lsim(CLredK.Nominal,dist,t); 

  

% Plot 
figure 
subplot(311) 
plot(t,yKred(:,2),'b',t,yKm(:,2)

,'r') 
title('Nominal Disturbance 

Rejection Response') 
ylabel('Xm2') 
grid 
subplot(312) 
plot(t,yKred(:,4),'b',t,yKm(:,4)

,'r') 
ylabel('fs (control)') 
legend('Krob','Km','Location','N

orthWest') 
grid 
subplot(313) 
plot(t,yKred(:,5),'k') 
ylabel('ds (disturbance)') 
xlabel('Time (sec)') 
grid 

  
om = logspace(-1,3,100); 
clpKred = ufrd(CLredK,om); 
wopt = 

wcgainOptions('sensitivity','off

'); 
[maxgainKred,badpertKred]= 

wcgain(clpKred,wopt); 
maxgainKred %#ok<NOPTS>
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ANNEX B. PROGRAMING OF SYSTEM IDENTIFICATION 

ANNEX B1: PROGRAMING OF THE SYSTEM IDENTIFICATION OF THE 

GLOBAL SECONDARY PATH  

function [SNLMS,n,dS,yS,eS]= 

IdentifySP() 

  
clear all 
close all 
clc 

  
%% PROBLEM IDENTIFICATION 

  
% Flexible Structure of 3 masses 

connected by mechanical elements 

(Springs) 
% Disturbance secondary Path of 

one degree of freedom 

  
% System Constants 

  
m1 = 0.1;            % 1kg 
m2 = 0.1;            % kg 
m3 = 0.1;            % kg 

  
%% Modeling of the parametric 

uncertainty 

  
k = 5000; 
k1 = k;            % N/m 
k2 = k; 
k3 = k; 
k4 = k; 

  
b = 1; 
b1 = b; 
b2 = b; 
b3 = b; 
b4 = b; 

  
%% Modeling of the uncertainty 

due the Actuator’s delay 
% Model of the delay between 

actuator force and the mass 1 
% maximum delay is about 0.05 

seconds.  

  
Wunmod = 2.1*tf([1 0],[1 40]); 

  
% State-Space Representation of 

the nominal plant 

  
A11 = zeros(3,3);  
A12 = eye(3,3); 

A21 = [-(k1+k2)/m1 k2/m1 0;k2/m2 

-(k2+k3)/m2 k3/m2; 0 k3/m3 -

(k3+k4)/m3]; 
A22 = [-(b1+b2)/m1 b2/m1 0;b2/m2 

-(b2+b3)/m2 b3/m2; 0 b3/m3 -

(b3+b4)/m3]; 

  
B1 = zeros(3,2); 
B2 = [0 1/m1; 0 0 ; 1/m3 0]; 

  
A =[A11 A12; A21 A22]; 
B = [B1;B2]; 
C = [A(5,:);A(4,:)]; 
D = zeros(2,2); 

  
Planta = ss(A,B,C,D); 
Planta.statename={'x1','x2','x3'

,'v1','v2','v3'}; 
Planta.outputname = 

{'am2','am1'}; 
Planta.inputname = {'fs','ds'}; 

  
%% Inertial actuator’s model 

  
ActNom = tf(100,[1 80]); 
Wunc = makeweight(0.50,2,10); 
unc=ultidyn('unc',[1,1],'type','

gainbound','bound',0.25,'samples

tatedim',7); 
Act = ActNom*(1 + Wunc*unc); 
Act.inputname = 'u'; 
Act.outputname = 'fs'; 
 

%% Noise 
wn1 = tf(0.001);  
wn1.u = 'noise'; wn1.y= 'nu1'; 

  
%% Global secondary Path 

disturbance propagation 

  
[numS,denS]=ss2tf(Planta.a,Plant

a.b,Planta.c,Planta.d,1); 
S = tf(numS(1,:),denS); 
S.y = 'x2s'; 

  
% disturbance addition on the 

global secondary path 

  
deltaT=ultidyn('deltaT',[1,1],'b

ound',0.25); 
S = S*(1+deltaT*Wunmod); 



117 
 

S.u = 'fs' ; 
x1meas = sumblk('m1 = x2s + 

nu1'); 

  
%% Secondary Path 

interconnection 

  
ICinputs = {'u';'noise'}; 
ICoutputs = {'m1'}; 
Secondaryic=connect(S,Act,wn1,x1

meas,ICinputs,ICoutputs); 
get(Secondaryic) 
figure 
bodemag(Secondaryic,{0.5 1600}); 
grid on 

  
%% Secondary Path Identification 

  
Ts = 4; 
sigman = 0.0001; 
[x2s] = impulse(Secondaryic,Ts); 
x2s = x2s(:,1)/norm(x2s(:,1)); 
figure 
plot(x2s); 
grid on 

  
ntrS = 30000; 
s = randn(ntrS,1); % Synthetic 

random signal to be played 
x2sfir=dsp.FIRFilter('Numerator'

,x2s.'); 
dS = step(x2sfir,s) + ... % 

random signal propagated through 

secondary path 
    sigman*randn(ntrS,1); % 

measurement noise at the 

acelerometer 

  
%% Design the Secondary Path 

Estimate 

  
M = 800;  %900 
muGp = 0.3; %1 
SEstLMS=dsp.LMSFilter('Method','

Normalized LMS','StepSize', 

muGp,... 
    'Length', M); 
[yS,eS,SEst] = 

step(SEstLMS,s,dS); 

  
n = 1:ntrS; 
figure 
subplot(2,1,1) 

plot(n,dS); 
grid on 
ylabel('Signal value'); 
legend('Desired Signal'); 
subplot(2,1,2) 
plot(n,yS,n,eS); 
xlabel('Number of iterations'); 
ylabel('Signal value'); 
title('Secondary Path System 

Identification Using the NLMS 

Adaptive Filter'); 
legend('Output Signal','Error 

Signal'); 

  
%% Accuracy of the secondary 

path 

  
Fs = 1600; 
[N,min]=size(x2s);  
t = (1:N)/Fs; 
figure 
subplot(2,1,1) 
plot(t,x2s,'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('True Secondary Path 

Impulse Response'); 
grid on 
subplot(2,1,2) 
plot(t(1:M),SEst,'c',t,[x2s(1:M)

-SEst(1:M); x2s(M+1:N)],'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('Secondary Path Impulse 

Response Estimation'); 
legend('Estimated','Error'); 
grid on 

  
%% Design of the FIR filter 

  
SNLMS=dsp.FIRFilter('Numerator',

SEst.'); 
W = linspace(0,400,800); 
fvtool(SNLMS,'Fs',1600,'Frequenc

yRange','Specify freq. vector', 

... 
    'FrequencyVector',W); 

  
save('Secondary','SNLMS','n','dS

','yS','eS'); 

  
end 
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ANNEX B2: PROGRAMING OF THE GLOBAL SECONDARY PATH SYSTEM 

IDENTIFICATION 

function[PgNLMS,n,dS,yGp,eGp]= 

IdentifyGP() 

  
clear all 
close all 
clc 

  
%% PROBLEM IDENTIFICATION 

  
% Flexible Structure of 3 masses 

connected by mechanical elements 

(Springs) 
% Disturbance secondary Path of 

one degree of freedom 

  
% System Constants 

  
m1 = 0.1;              % 1kg 
m2 = 0.1;            % kg 
m3 = 0.1;              % kg 

  
%% Modeling of the parametric 

uncertainty 

 
k = 5000; 
k1 = k;            % N/m 
k2 = k;              
k3 = k; 
k4 = k; 

  
b = 1; 
b1 = b; 
b2 = b; 
b3 = b; 
b4 = b; 

 
%% Modeling of the uncertainty 

due the Actuator’s delay 
% Model of the delay between 

actuator force and the mass 1 
% maximum delay is about 0.05 

seconds.  

  
Wunmod = 2.1*tf([1 0],[1 40]); 

  
% State-Space Representation of 

the nominal plant 

  
A11 = zeros(3,3);  
A12 = eye(3,3); 
A21 = [-(k1+k2)/m1 k2/m1 0;k2/m2 

-(k2+k3)/m2 k3/m2; 0 k3/m3 -

(k3+k4)/m3]; 

A22 = [-(b1+b2)/m1 b2/m1 0;b2/m2 

-(b2+b3)/m2 b3/m2; 0 b3/m3 -

(b3+b4)/m3]; 

  
B1 = zeros(3,2); 
B2 = [0 1/m1; 0 0 ; 1/m3 0]; 

  
A =[A11 A12; A21 A22]; 
B = [B1;B2]; 
C = [A(5,:);A(4,:)]; 
D = zeros(2,2); 

  
Planta = ss(A,B,C,D); 
Planta.statename = 

{'x1','x2','x3','v1','v2','v3'}; 
Planta.outputname = 

{'am2','am1'}; 
Planta.inputname = {'fs','ds'}; 
bodemag(Planta,{1,1600}); 
grid on 

 
%% Colored noise function is a 

first order filter Wdist, the 

disturbance has a pole in 0.25 

rad/s 

  
Wdist = tf(8, [1 10]); 
Wdist.u = 'dist'; Wdist.y = 

'ds'; 

 
%% Noise 
wn1 = tf(0.0005);  
wn1.u = 'noise'; wn1.y= 'nu1'; 

  
%% Global primary Path 

disturbance propagation 

 
[numG,denG] = 

ss2tf(Planta.a,Planta.b,Planta.c

,Planta.d,2); 
Gp = tf(numG(1,:),denG); 
Gp.y = 'x2p'; 

  
% disturbance addition on the 

global primary path 

  
deltaT = 

ultidyn('deltaT',[1,1],'bound',0

.25); 
Gp = Gp*(1+deltaT*Wunmod); 
Gp.u = 'ds' ; 
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x1meas = sumblk('m1 = x2p + 

nu1'); 

  
%% Primary Path interconnection 

  
ICinputs = {'dist';'noise'}; 
ICoutputs = {'m1'}; 
Globalic = 

connect(Gp,Wdist,wn1,x1meas,ICin

puts,ICoutputs); 
get(Globalic) 

  
bodemag(Globalic,{1,1600}) 
grid on 

  
%% Primary Path Identification 

  
Ts = 4; 
sigman = 0.0001; 
[x2p] = impulse(Globalic,Ts); 
x2p =x2p(:,1)/norm(x2p(:,1)); 
ntrS = 30000; 
s = 0.015*randn(ntrS,1); % 

Synthetic random signal to be 

played 
Hfir = 

dsp.FIRFilter('Numerator',x2p.')

; 
dS = step(Hfir,s) + ... % random 

signal propagated through 

secondary path 
    sigman*randn(ntrS,1); % 

measurement noise at the 

acelerometer 

  
%% Design the primary Path 

Estimate 

  
M = 800;  %900 
muGp = 0.6; %1 
PgEstLMS = 

dsp.LMSFilter('Method','Normaliz

ed LMS','StepSize', muGp,... 
    'Length', M); 
[yGp,eGp,PgEst] = 

step(PgEstLMS,s,dS); 

  
figure 
n = 1:ntrS; 
subplot(2,1,1) 
plot(n,dS); 

ylabel('Signal value'); 
legend('Desired Signal'); 
subplot(2,1,2) 
plot(n,yGp,n,eGp); 
xlabel('Number of iterations'); 
ylabel('Signal value'); 
title('Secondary Identification 

Using the NLMS Adaptive 

Filter'); 
legend('Output Signal','Error 

Signal'); 

  
%% Accuracy of the primary path 

  
Fs = 1600; 
[N,min]=size(x2p); 
t = (1:N)/Fs; 
figure 
subplot(2,1,1) 
plot(t,x2p,'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('True Secondary Path 

Impulse Response'); 
grid on 
subplot(2,1,2) 
plot(t(1:M),PgEst,'c',t,[x2p(1:M

)-PgEst(1:M); x2p(M+1:N)],'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('Secondary Path Impulse 

Response Estimation'); 
legend('Estimated','Error'); 
grid on 

  
%% Design of the FIR filter 

  
PgNLMS = 

dsp.FIRFilter('Numerator',PgEst.

'); 
W = linspace(0,400,4800); 
fvtool(PgNLMS,'Fs',1600,'Frequen

cyRange','Specify freq. vector', 

... 
    'FrequencyVector',W); 

  
save('GlobalP','PgNLMS','n','dS'

,'yGp','eGp'); 

  
end 
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ANNEX B3: PROGRAMING OF FEEDBACK COUPLING SYSTEM 

IDENTIFICATION 

function [FCNLMS,n,dS,yFC,eFC] = 

IdentifyFC() 

  
clear all 
close all 
clc 

  
%% PROBLEM IDENTIFICATION 

  
% Flexible Structure of 3 masses 

connected by mechanical elements 

(Springs) 
% Disturbance secondary Path of 

one degree of freedom 

  
% System Constants 

  
m1 = 0.1;              % 1kg 
m2 = 0.1;            % kg 
m3 = 0.1;              % kg 

  
%% Modeling of the parametric 

uncertainty 

 
k = 5000; 
k1 = k;            % N/m 
k2 = k;              
k3 = k; 
k4 = k; 

  
b = 1; 
b1 = b; 
b2 = b; 
b3 = b; 
b4 = b; 

  
%% Modeling of the uncertainty 

due the Actuator’s delay 
% Model of the delay between 

actuator force and the mass 1 
% maximum delay is about 0.05 

seconds.  

  
Wunmod = 2.1*tf([1 0],[1 40]); 

  
% State-Space Representation of 

the nominal plant 

  
A11 = zeros(3,3);  
A12 = eye(3,3); 
A21 = [-(k1+k2)/m1 k2/m1 0;k2/m2 

-(k2+k3)/m2 k3/m2; 0 k3/m3 -

(k3+k4)/m3]; 

A22 = [-(b1+b2)/m1 b2/m1 0;b2/m2 

-(b2+b3)/m2 b3/m2; 0 b3/m3 -

(b3+b4)/m3]; 

  
B1 = zeros(3,2); 
B2 = [0 1/m1; 0 0 ; 1/m3 0]; 

  
A =[A11 A12; A21 A22]; 
B = [B1;B2]; 
C = [A(5,:);A(4,:)]; 
D = zeros(2,2); 

  
Planta = ss(A,B,C,D); 
Planta.statename = 

{'x1','x2','x3','v1','v2','v3'}; 
Planta.outputname = 

{'am2','am1'}; 
Planta.inputname = {'fs','ds'}; 

  
%% Inertial actuator’s model 

  
ActNom = tf(100,[1 80]); 
Wunc = makeweight(0.50,2,100); 
unc = 

ultidyn('unc',[1,1],'type','gain

bound','bound',0.5,'samplestated

im',7); 
Act = ActNom*(1 + Wunc*unc); 
Act.inputname = 'u'; 
Act.outputname = 'fs'; 

  
%% Noise 
wn1 = tf(0.001);  
wn1.u = 'noise'; wn1.y= 'nu1'; 

  
%% Feedback Coupling Path 

propagation 

  
[numFc,denFc] = 

ss2tf(Planta.a,Planta.b,Planta.c

,Planta.d,1); 
Fc = tf(numFc(2,:),denFc); 
Fc.y = 'x1s'; 

  
% disturbance addition on the 

global primary path 

  
deltaT = 

ultidyn('deltaT',[1,1],'bound',0

.1); 
Fc = Fc*(1+deltaT*Wunmod); 
Fc.u = 'fs' ; 
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x1meas = sumblk('m1 = x1s + 

nu1'); 

  
%% Primary Path interconnection 

  
ICinputs = {'u';'noise'}; 
ICoutputs = {'m1'}; 
Reverseic = 

connect(Fc,Act,wn1,x1meas,ICinpu

ts,ICoutputs); 
get(Reverseic) 
bodemag(Reverseic,{1,1600}); 
grid on 

  
%% Primary Path Identification 

  
Ts = 4; 
[x1s] = impulse(Reverseic,Ts); 
x1s = x1s(:,1)/norm(x1s(:,1)); 
figure 
plot(x1s); 
grid on 

  
ntrS = 30000; 
s = 0.015*randn(ntrS,1); % 

Synthetic random signal to be 

played 
x1sfir = 

dsp.FIRFilter('Numerator',x1s.')

; 
dS = step(x1sfir,s) + ... % 

random signal propagated through 

secondary path 
    0.0001*randn(ntrS,1); % 

measurement noise at the 

acelerometer 

  
%% Design the Secondary Path 

Estimate 

  
M = 800;  %900 
muGp = 0.6; %1 
FCEstLMS = 

dsp.LMSFilter('Method','Normaliz

ed LMS','StepSize', muGp,... 
    'Length', M); 
[yFC,eFC,FCEst] = 

step(FCEstLMS,s,dS); 

  
figure 
n = 1:ntrS; 
subplot(2,1,1) 

plot(n,dS); 
grid on 
ylabel('Signal value'); 
legend('Desired Signal') 
subplot(2,1,2) 
plot(n,yFC,n,eFC); 
xlabel('Number of iterations'); 
ylabel('Signal value'); 
title('Secondary Identification 

Using the NLMS Adaptive 

Filter'); 
legend('Output Signal','Error 

Signal'); 
grid on 
%% Accuracy of the secondary 

path 

  
Fs = 1600; 
[N,min]=size(x1s); 
t = (1:N)/Fs; 
figure 
subplot(2,1,1) 
plot(t,x1s,'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('True Secondary Path 

Impulse Response'); 
grid on 
subplot(2,1,2) 
plot(t(1:M),FCEst,'c',t,[x1s(1:M

)-FCEst(1:M); x1s(M+1:N)],'k'); 
xlabel('Time [sec]'); 
ylabel('Coefficient value'); 
title('Secondary Path Impulse 

Response Estimation'); 
legend('Estimated','Error'); 
grid on 

  
%% Design of the FIR filter 

  
FCNLMS = 

dsp.FIRFilter('Numerator',FCEst.

'); 
W = linspace(0,400,4800); 
fvtool(FCNLMS,'Fs',1600,'Frequen

cyRange','Specify freq. vector', 

... 
    'FrequencyVector',W); 
save('Feedback','FCNLMS','n','dS

','yFC','eFC'); 

  
end 
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ANNEX C. PROGRAMING OF ADAPTIVE FILTERS 

ANNEX C1: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION 

USING FLMS ALGORITHM 

clear all 
close all 
clc 

  
%% Loading Transfer Function of 

the Disturbance Propagation 

Paths 

  
load('GlobalP.mat');        % 

Global Primary path  
load('Secondary.mat');      % 

Global secondary propgation path 
load('ds2x1p');             % 

Image of the disturbance 

propagation path 

  
%% High pass disturbance filter 

  
delayW = 15; 
Flow   = 145; % Lower band-edge: 

79 Hz 
Fhigh  = 150; % Upper band-edge: 

80 Hz 
Astop  = 15;  % 10 dB stopband 

attenuation 
Apass  = 5;  % Filter order 
N = 160; 
fd =1600; 

  
d = 

fdesign.highpass('Fst,Fp,Ast,Ap' 

,Flow,Fhigh,Astop,Apass,fd); 
Hd = design(d, 

'cheby2','SystemObject',true); 

  
% Filter noise to generate 

impulse response 
G1 = step(Hd,[zeros(delayW,1); 

log(0.99*rand(N-

delayW,1)+0.01).*... 
    sign(randn(N-

delayW,1)).*exp(-0.01*(1:N-

delayW)')]); 
G1 = G1/norm(G1); 

  
% FIR Filter to be used to model 

primary propagation path 
Hfir1 = 

dsp.FIRFilter('Numerator',G1.'); 

  
%% Estimation noise 

  
SigmaN_Sim = 0.001;          
sigman = 0.001;             

accelerometer noise variance 

  
%% Actuator response and 

secondary path to the 

disturbance signal 

  
delayW = 6;  
N = 1000; 

  
% Filter noise to generate 

impulse response 
Simp = 

step(SNLMS,[zeros(delayW,1); 

log(0.99*rand(N-

delayW,1)+0.01).*... 
    sign(randn(N-

delayW,1)).*exp(-0.01*(1:N-

delayW)')]); 

  
Simp = Simp/norm(Simp); 

  
ntrS = 30000; 
s = randn(ntrS,1); % Synthetic 

random signal to be played 
Shatfir = 

dsp.FIRFilter('Numerator',Simp.'

); 
x2hats = step(Shatfir,s) + ... % 

random signal propagated through 

Global primary path 
    SigmaN_Sim*randn(ntrS,1); % 

measurement noise at the 

accelerometer 

  
L=900; 
Mu = 0.6; 
SdigLMS = 

dsp.LMSFilter('Method','Normaliz

ed LMS','StepSize', Mu,... 
    'Length', L); 
[yShat,eShat,ShatLMS] = 

step(SdigLMS,s,x2hats); 
Shat = 

dsp.FIRFilter('Numerator',ShatLM

S.'); 

  
%% adaptive filtered-LMS: reduce 

noise 
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L = 500; %700 
MuW = 0.00000025; %0.01 
Hfx = 

dsp.FilteredXLMSFilter('Length',

L,'StepSize',MuW,... 
    

'SecondaryPathCoefficients',Shat

LMS); 

  

  
%% Generator of the sinusoidal 

signal to create asymptotically 

the noise 
Fs = 1600; 
A = ones(1,24);  
F0 = 5; k = 1:24 ; Lk = 

length(k); 
F = F0*k; phase = randn(1,Lk); 
Hsin = 

dsp.SineWave('Amplitude',A,'Freq

uency',F,'PhaseOffset',phase,... 
    

'SamplesPerFrame',512,'SampleRat

e',Fs); 

  
Hts = 

dsp.TimeScope('TimeSpan',1000,'Y

Limits',... 
    [-

0.1,0.1],'NumInputPorts',2,'Posi

tion',[10 10 750 750] 

,'ShowGrid',... 
    true,'ShowLegend',true); 

  
% Spectrum analyzer to show 

original and attenuated noise 
Hsa = 

dsp.SpectrumAnalyzer('SampleRate

',Fs,'OverlapPercent',80,... 
    

'SpectralAverages',20,'PlotAsTwo

SidedSpectrum',false,... 
    'ShowGrid',true); 

  
%% Simulation of the adaptive 

control using Filtered-LMS 

  
for m = 1:200 
    s = step(Hsin); % Generate 

sine waves with random phase 
    x = sum(s,2);   % Generate 

synthetic noise by adding all 

sine waves 
    xp =randn (size(x)); 
    sign1 = step(Hfir1,xp); 
    x2p = step(PgNLMS,xp) + ... 

% Propagate noise through 

primary path 
        sigman*randn(size(x)); % 

Add measurement noise 
    if m <= 100  
        % No noise control for 

first 200 iterations 
        e = x2p; 
        uhat = zeros(size(x)); 
        y = zeros(size(x)); 
    else 
        % Enable active noise 

control after 200 iterations 
        x2hats = step(Shat,y); 
        uhat = step(WNLMS,xp) + 

sigman*randn(size(x)); %+ 

x2hats;  
        [y,e] = 

step(Hfx,uhat,x2p); 
    end 
    step(Hts,x2p,e); % Show 

spectrum of original (Channel 1) 
                         % and 

attenuated noise (Channel 2) 
    step(Hsa,[x2p,e]);  % Show 

the spectrum analyzer 
end 

  
corrcoef(uhat,x2p) 
release(Hts); % Release spectrum 

analyzer 

 

ANNEX C2: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION 

USING FEEDBACK FXLMS ALGORITHM  

clear all 
close all 
clc 

  
load('GlobalP.mat'); 
load('Secondary.mat'); 

  

%% Secondary path and inverse 

primary path estimation 

  
% Estimation noise 
SigmaN_Sim = 0.001; 
sigman = 0.001; 
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%% Actuator response and 

secondary path to the 

disturbance signal 

  
delayW = 6;  
N = 1000; 
Fs = 1600; 

  
% Filter noise to generate 

impulse response 
Simp = 

step(SNLMS,[zeros(delayW,1); 

log(0.99*rand(N-

delayW,1)+0.01).*... 
    sign(randn(N-

delayW,1)).*exp(-0.01*(1:N-

delayW)')]); 

  
Simp = Simp/norm(Simp); 

  
ntrS = 30000; 
s = randn(ntrS,1); % Synthetic 

random signal to be played 
Shatfir = 

dsp.FIRFilter('Numerator',Simp.'

); 
x2hats = step(Shatfir,s) + ... % 

random signal propagated through 

Global primary path 
    SigmaN_Sim*randn(ntrS,1); % 

measurement noise at the 

accelerometer 

  
L=900; 
Mu = 0.6; 
SdigLMS = 

dsp.LMSFilter('Method','Normaliz

ed LMS','StepSize', Mu,... 
    'Length', L); 
[yShat,eShat,ShatLMS] = 

step(SdigLMS,s,x2hats); 
Shat = 

dsp.FIRFilter('Numerator',ShatLM

S.'); 

  
% n = 1:ntrS; 
% 

plot(n,x2hats,n,yShat,n,eShat); 
% xlabel('Number of 

iterations'); 
% ylabel('Signal value'); 
% title('Secondary 

Identification Using the NLMS 

Adaptive Filter'); 
% legend('Desired Signal’, 

‘Output Signal’, ‘Error 

Signal'); 

  

  
%% adaptive filtered-LMS: reduce 

noise 

  
L = 800; 
MuW = 0.00000018; 
Hfx = 

dsp.FilteredXLMSFilter('Length',

L,'StepSize',MuW,... 
    

'LeakageFactor',1,'SecondaryPath

Coefficients',ShatLMS); 

  
%% Generator of the sinusoidal 

signal to create asymptotically 

the noise 

  
Fs = 1600; 
A = [0.9 0.8 0.75 0.5 0.4 0.2]; 
F0 = 5; LA = length(A); 
F = [10 15 20 30 50 60] ; phase 

= randn(1,LA); 

  
Hsin = 

dsp.SineWave('Amplitude',A,'Freq

uency',F,'PhaseOffset',phase,... 
    

'SamplesPerFrame',512,'SampleRat

e',1600); 

  
Hts = 

dsp.TimeScope('TimeSpan',500,'YL

imits',... 
    [-

1,1],'NumInputPorts',2,'Position

',[1 1 750 750] ,'ShowGrid',... 
    true,'ShowLegend',true); 

  
% Spectrum analyzer to show 

original and attenuated noise 
Hsa = 

dsp.SpectrumAnalyzer('SampleRate

',Fs,'OverlapPercent',80,... 
    

'SpectralAverages',20,'PlotAsTwo

SidedSpectrum',false,... 
    'ShowGrid',true); 

  
%% Simulation of the adaptive 

control using Filtered-LMS 

  
for m = 1:200 
    s = step(Hsin); % Generate 

sine waves with random phase 
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    x = sum(s,2);   % Generate 

synthetic noise by adding all 

sine waves 
    %xp = randn(size(x)); 
    x2 = step(PgNLMS,x) + ... % 

Propagate noise through primary 

path 
    sigman*randn(size(x));  % 

Add measurement noise 
    if m <= 100 
        % No noise control for 

first 200 iterations 
        e = x2; 
        y = zeros(size(x)); 
        x2phat = zeros(size(x)); 
    else 
        % Enable active noise 

control after 200 iterations 

    if m == 101 
        x2phat = x2; 
    end 
        [y,e] = 

step(Hfx,x2phat,x2); 
        x2shat = step(Shat,y); 
        x2phat = e - x2shat; 
    end 
    step(Hts,x2,e); % Show 

spectrum of original (Channel 1) 
                         % and 

attenuated noise (Channel 2) 
    step(Hsa,[x2,e]) 
end 
corrcoef(x2,x2phat) 
release(Hts); % Release spectrum 

analyzer 

 

ANNEX C3: PROGRAMMING FOR ADAPTIVE DISTURBANCE REJECTION 

USING FEEDFORWARD RLS ALGORITHM WITH FEEDBACK COUPLING 

clear all 
close all 
clc 

  
%% Loading Transfer Function of 

the Disturbance Propaation Paths 

  
load('GlobalP.mat');        % 

Global Primary Path  
load('Secondary.mat');      % 

Global Secondary propagation 

path 
load('ds2x1p');             % 

Image of the disturbance 

propagation path 
load('Feedback');           % 

compensation feedback to the 

correlation accelerometer 

propagation path 
load('PrimaryPath');        % 

Primary Path 

  
% Variance of the White noise 

inherent to the sensor 

  
sigman = 0.001; 

  
%% Generator of the sinusoidal 

signal to create asymptotically 

the noise 

  
Fs = 1600; 
A = [0.6 0.5 0.45 0.3 0.2 0.1]; 
F0 = 5; LA = length(A); 

F = [10 15 20 30 50 60] ; 
phase = randn(1,LA); 

  
Hsin = 

dsp.SineWave('Amplitude',A,'Freq

uency',F,'PhaseOffset',phase,... 
    

'SamplesPerFrame',512,'SampleRat

e',Fs); 

  
%% Setting the RLS filter 

  
M      = 70;                 % 

Filter order 
delta  = 50000000;             % 

Initial input covariance 

estimate 
P0     = (1/delta)*eye(M,M); % 

Initial setting for the P matrix 
Hadapt = 

dsp.RLSFilter(M,'Method','Conven

tional RLS','ForgettingFactor', 

1,'InitialInverseCovariance',P0)

; 

  
Hts = 

dsp.TimeScope('TimeSpan',1000,'Y

Limits',... 
    [-

1,1],'NumInputPorts',2,'Position

',[1 1 750 750] ,'ShowGrid',... 
    true,'ShowLegend',true); 
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% Spectrum analyzer to show 

original and attenuated noise 
Fs = 1600; 
Hsa = 

dsp.SpectrumAnalyzer('SampleRate

',Fs,'OverlapPercent',80,... 
    

'SpectralAverages',20,'PlotAsTwo

SidedSpectrum',false,... 
    'ShowGrid',true); 

  

  
for k = 1:200 
    s = step(Hsin); % Generate 

sine waves with random phase 
    x = sum(s,2);   % Generate 

synthetic noise by adding all 

sine waves 

     
    x2p = step(PgNLMS,x) + ...  

% Propagate noise through 

primary path 
    sigman*randn(size(x)); % Add 

measurement noise % Noise 

     
    if k == 1 
        x1 = step(WNLMS,x); 
        mx1 = x1 + 

sigman*randn(size(x)); 
    end 

     

    x2 = step(PNLMS,x1); 
    mx2 = x2 + 

sigman*randn(size(x)); 

     
    if k <= 100 
        % No noise control for 

first 100 iterations 
        y=zeros(size(x)); 
        e = x2p; 
        x1 = step(WNLMS,x) + 

step(FCNLMS,y); 
        mx1 = x1 + 

sigman*randn(size(x)); 
    else 
        x1 = step(WNLMS,x) + 

step(FCNLMS,y); 
        mx1 = x1 + 

sigman*randn(size(x)); 
        [y,e] = 

step(Hadapt,mx1,mx2); 
        x2s = step(SNLMS,y);       

% Propagate compensation through 

secondary path   
        e = x2 + x2s; 
    end 
    step(Hts,x2p,e); 
    step(Hsa,[x2p,e]); 
end 
corrcoef(x1,x2p) 
release(Hts) 

 

 


