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the convolutions of an overcomplete collection of convolutional dictionary elements (atoms) and sparse coefficient

maps. Both collections must satisfy a series of restrictions. The CSDR model offers some interesting advantages to

other sparse representation models. For example, the convolutional operator allows for noise removal, shift invariance,

tolerance (to some degree) to deformation, rotation, and translation. These properties make the CSDR an interesting

model for its use in compressive spectral imaging (CSI). CSI states that a spectral image of interest can be recovered

from a small set of compressive measurements, because an optimization problem, with high probability, recovers the

missing information since the data is assume to be sparse in some domain. The state-of-the-art methods uses the sparse

signal representation model (SSR) as a representation basis in order to recover the full size spectral image from a series

of compressive measurements. This work proposes to change the SSR model for the signal-based CSDR framework

in order to profit on CSDR’s properties.
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Introduction

Unlike a color image which divides the visible electromagnetic spectrum into three bands, or colors

(i.e. red, green and blue), a spectral image (SI) divides the same spectrum into tens or hundreds of

bands. Some SI even include near the infrared and ultraviolet wavelengths (Tan et al., 2016). Each

spectral pixel sm,n ∈ RL, with m = 1, ...,M and n = 1, ...,N, is considered to be unique for each

physical material, allowing to identify the materials that compose a captured scene (Swamy et al.,

2017). Hence, the information contained in SIs has been widely used in detection, classification

and identification applications in a wide range of fields as precision agriculture, food quality mo-

nitoring and security operations (Ramirez et al., 2014). A SI is stored as a three-dimensional (3D)

array S ∈RM×N×L, where M×N is the spatial resolution and L is the number of wavelength bands.

The acquisition process for SI implies expensive time and storage requirements, since the

spatial and spectral coordinates have to be individually scanned and stored (Ghamisi et al., 2017).

Compressive Spectral Imaging (CSI) was developed in order to reduce both the scanning time

and stored measurements by capturing and compressing simultaneously a SI via multiple two-

dimensional (2D) random spectral projections (Arce et al., 2014). CSI is founded on the assum-

ption that natural SI can be represented as a lineal combination of a few waveforms in a dictionary,

and therefore can be compressed. Then, a SI s ∈ RMNL (in its vectorized form) can be represen-

ted as a sparse collection of coefficients, θθθ ∈ RMNL, in some proper domain, ΨΨΨ ∈ RMNL×MNL, as

s = ΨΨΨθθθ (Duarte and Baraniuk, 2012). The compressive sensing process can be modeled by means
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of a compressive sensing matrix, H ∈ RK×MNL, where K ≪ MNL. Then the acquisition process

under the CSI framework can be modeled as y = HΨΨΨθθθ +ω , where y ∈ RK are the compressive

sensed measurements and ω ∈ RK models the sensing noise.

A reliable version of the original spectral image, s, can be recovered from the compre- ssive

sensed measurements y solving an inverse optimization problem (Arce et al., 2014). The inverse

problem results extremely ill-posed since there exists several feasible SI that match the random

projections (Candes and Wakin, 2008). To address this ill-posing problem, minimizing objectives

have been explored which include regularizations related to realistic characteristics of the scene

under analysis besides the data fidelity term.

In general, state-of-the-art CSI recovery methods use orthonormal analytic basis, as the

Wavelet-DCT-kronecker-product basis (Arce et al., 2014) to sparsely represent a SI data cube. On

the other hand, synthesis basis allow to create custom-made dictionaries which increases the spar-

sity level of a sparse representation. Consider the image s ∈ RN where N is the number of pixels,

and the dictionary D ∈RN×M, where each of the M columns is a possible image in RN (Elad et al.,

2010). This is, each column is an atomic image and the matrix D is a dictionary of atoms. The

multiplication of D with a sparse vector x, where ∥x∥0 = k0 ≪ M, produces a lineal combination

of k-atoms with varying weights, generating an image. The vector x describes which atoms and

what "portions.are used in the image reconstruction. This process is referred as atom composition.
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An alternative approach to the classical overcomplete dictionaries, for sparsely repre- sen-

ting signals, is the convolutional sparse dictionary representation (CSDR) signal model. More

precisely, CSDR states that a signal can be expressed as a sum of cyclic convolutions of sparse

coefficient maps with an overcomplete collection of dictionary filters (Papyan et al., 2017). The

main advantage of CSDR lies in the fact that the dictionary filters can be learned directly from the

signal of interest, improving the reconstruction quality. Furthermore, the collection of convolutio-

nal dictionary filters can be expressed as a concatenation of banded circulant matrices, providing a

local shift invariant structure and invariance to deformation (Papyan et al., 2018). These characte-

ristics make CSDR widely used in image classification applications(Chang et al., 2014) and super

resolution imaging (Gu et al., 2015).

Indeed, the CSDR signal model provides the mathematical foundation for convolutio- nal

neural networks (CNN) which can automatically learn features within a signal using a hierarchical

neural network, in a way similar to the process of human cognition(Liang and Li, 2016). A typical

CNN is a multi-layered architecture consisting of an input, an output layer and multiple hidden

layers, i.e. of a series of convolutional layers capable of assembling more complex patterns using

smaller and simpler patterns through convolution operations. On the other hand, the CSDR model

is a single-layer architec- ture which can be formulated as a lineal expansion equivalent to the basis

pursuit (BP) scheme, as seen in (Chen et al., 2001). The only similarity between CSDR and CNN

frameworks lies in the convolution operations used for representing an image.
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CSDR has experienced an increment in its use thanks to recent developments of compu-

tationally effective algorithms. A particular example is the convolutional basis pursuit deNoising

(CBPDN) algorithm (Wohlberg, 2016b) which has been proposed for removing noise from a stack

of grayscale images. However, CBPDN expresses each grayscale image independently, missing the

correlation between the color bands (when dealing with color images), leading to lower recovery

qualities. A second consideration to be held is CBPDN’s integration with the CSI recovery mathe-

matical formulation. CBPDN’s formulation for L independent spectral bands is hard to modify

in order to integrate it within the CSI recovery formulation. Despite this, CBPDN is suitable for

extension into a full 3D CSC framework which includes both spatial and spectral SI’s correlation,

and is suitable for integration within a CSI recovery scheme.

This work proposes to extend the 2D convolutional sparse representation to a 3D convolu-

tional sparse representation, without deviating from the canonical CSDR formulation proposed in

(Papyan et al., 2017). More precisely, we propose to represent a SI as the sum of convolutions of

3D coefficient maps with their corresponding 3D convolutional dictionary elements, or “atoms".

These dictionary elements exploit both the spatial and spectral correlations within a SI, overco-

ming the limitations presented by approa- ches that recover every spectral band, thus leading to

improved reconstruction qualities. The proposed 3D CSDR is formulated similar to a Basis Pursuit

problem, as a lineal and convex formulation, and solved using the Alternating Direction Method

of Multipliers (ADMM) method (Boyd et al., 2010).
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The organization of the dissertation is as follows: Chapter 2 introduces the concepts of

Spectral Images (SI) and the justification for Compressive Sensing Image (CSI), in addition to

the concept of Sparse Signal Representation (SSR) and theoretical basis. Chapter 3 parts from the

SSR concept and introduce the concept of Synthesis Basis, such as overcomplete dictionaries and

its applications in classification. The chapter concludes with the introduction to the concept of

Convolutional Dictionary Sparse Representation (CDSR), which serves as introduction to the next

chapter. Chapter 4 contains the proposed Convolutional Sparse Representation of SIs using a 3D

operator, its solution and application in denoising. This chapter also includes the application of

the CSC3D framework within a CSI formulation. Finally, this chapter contains the synthetic and

experimental performance evaluation of the proposed frameworks. Chapter 5 contains the natural

extension of CSC3D for 4D signals such as spectral videos. This chapter includes the mathematical

formulation of the proposed CSC4D framework for sparse representation and signal denoising.

It also includes the extension of the proposed CSC3D-CSI into CSC4D-SR for super resolution

problems and CSC4D-CSVS for compressive sensing spectral videos. Finally, this chapter contains

the synthetic and experimental performance evaluation of the proposed frameworks.
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1. Objectives

General Objective

To develop an algorithm to design a dictionary for sparse image representation within a

compressive spectral imaging framework.

Specific Objectives

To determine the performance of the state-of-the-art dictionary design methods and com-

pressive spectral imaging architectures.

To develop a dictionary design algorithm for obtaining both a sparse representa- tion and a

dictionary to synthesize a spectral image.

To develop a dictionary design algorithm for simultaneously sparsely represent and recons-

truct a spectral image within a compressive spectral imaging framework.

To evaluate the performance of the proposal dictionary design algorithm within a simulated

compressive spectral imaging scheme.

To test the performance of the proposed dictionary design algorithm using data captured by

experimental laboratory implementations of spectral imaging architectures.
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2. Research Contributions

Most of the material presented in this doctoral dissertation appears in the following publications

by the author:

Journal papers

C. Barajas-Solano, J. M. Ramirez, and H. Arguello. Convolutional Sparse Coding Frame-

work for Compressive Spectral Imaging, Journal of Visual

Communication and Image Representation, 2019, 1 (15).

C. Barajas-Solano, J. M. Ramirez, and H. Arguello. Compressive Spectral Video Sensing

Using The Multidimensional Convolutional Sparse Coding Frame- work CSC4D, Journal of

Visual Communication and Image Representation (submitted).

Main Conference Papers

C. Barajas-Solano, J. M. Ramirez, H. Garcia, and H. Arguello, Tridimensional convolutional

sparse coding of spectral images, Optical Sensors and Sensing Congress 2019, 2019.

C. Barajas-Solano, H. Garcia, and H. Arguello, Convolutional basis pursuit denoising of

spectral images using a tri-dimensional sparse representation. 2019 22nd Symposium on

Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings,

2019.
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C. Barajas-Solano, J. M. Ramirez, and H. Arguello. Spectral Video Compression Using Con-

volutional Sparse Coding. Data Compression Conference (DCC), 2020.

This doctoral dissertation proposes a single cyclic convolutional operation for sparsely re-

presenting Spectral Images (SI) and Spectral Videos (SV), following a ND-dimensio- nal convolu-

tional framework. The convolutional sparse representation uses a collection of small convolutional

dictionary elements for representing the features within a N-dimensional signal, and a collection of

sparse coefficient maps for indicating the participation of each convolutional dictionary element.

The sum of all the convolutions of dictionary-coefficient pairs give as result the SI/SV of interest.

The structure of the convolution operation makes the representation framework robust to noise,

shifting, and deformation of the features within the represented signal.

For SIs, we propose a single 3D cyclic convolutional operator which includes all the spatial-

spectral correlations of a SI without the need of additional elements. This simplifies the convex

minimization to a single ℓ2 plus a linear restriction. The results of this contribution were published

in (Barajas-Solano et al., 2019a) and (Barajas-Solano et al., 2019c). For SVs, we change the 3D

operator by a 4D cyclic convolutional operator. Again, this single convolutional operator includes

the spatial-spectral-temporal correlations of a SV. The results of this contribution were published

in (Barajas-Solano et al., 2020). The convex minimization is also a single ℓ2 plus a linear restriction.

We propose to use a dual convex minimization scheme, with both minimizations solved

alternately, for obtaining both the collection of convolutional dictionary elements and sparse coef-
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ficient maps. However, given the high dimensionality of the collection of dictionary elements and

sparse coefficient maps, the proposed approach has high demands on computing time and memory

capacity. In this regard, this doctoral dissertation proposes a set of optimal computational routines

in order to decrease the computing time and memory requirements to a fraction. The results of this

contribution were published in (Barajas-Solano et al., 2019b).

The cyclic convolutional operators, 3D and 4D, have been successful in sparsely represen-

ting SIs and SVs and for applications as denoising, even for super resolution problems. Howe-

ver, the ND-convolutional framework was planned initially for recover- ing SIs from compressed

measurements using a CSI framework. In this regard, the proposed convolutional operators have

outperformed the state-of-the-art Sparse Signal Representation framework at mid and low noise

levels, and matched its perfor- mance at high noise levels. However, the convolutional approach

improves the sharpness in the recovered SIs and SVs. The results of this contribution were pu-

blished in (Barajas-Solano et al., 2019b).
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3. Spectral Images (SI), Compressive Sensing Imaging (CSI) and Sparse Signal

Representation (SSR)

The purpose of this chapter is to clarify the main concepts involved in this dissertation such as

spectral images, and the way how these large volume datasets can be acquired using Compressive

Spectral Imaging. The chapter concludes with some state-of-the-art methods on sparse signal re-

presentation.

The notation to be used in this doctoral dissertation is introduced in Table 1 in order to

facilitate the reading of the mathematical formulation.

3.1. Spectral Images (SI)

A Spectral Image (SI) captures image data within specific wavelength ranges across the electro-

magnetic spectrum. In comparison to an RGB image, which captures only three colors (or spectral

bands) of the electromagnetic spectrum, a SI can capture dozens or hundreds of spectral bands.

Therefore, a SI contains both spatial and spectral information of an scene. The latter represents the

response to the absorption, or emission, of electromagnetic radiation to certain wavelengths at a

given spatial coordinate (Shaw and Burke, 2003).

A SI is composed by a series of gray-scale images, with each pixel ranging from 0 to 1 that

characterizes the fraction of incident light, at a given spectral wavelength band, reflected by an
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Notation Description
M, N, L, T , d, Md , α , β ,
γ , ρ , λ , σ

denote real scalars.

x denotes 1D arrays.
X denotes 2D arrays.
XXX denotes 3D and 4D arrays.
∥x∥0 denotes the ℓ0 pseudo-norm, calculated as the number of non-zero entries

of the vector x.
∥x∥p = (∑ |x|)1/p denotes the ℓp norm for 1 ≤ p ≤ 2.
⊗ denotes the Kronecker product.
n∗ denotes the n-dimensional cyclic convolution operation.
⊙ denotes the Hadamard product.
at denotes temporal index.
a( j),a( j+1) denotes iteration step.
aT and aH denotes transpose and conjugated transpose, respectively.
am as a single sub-index, denotes the m− th element of a collection.
ai, j as a pair of sub-indexes, denotes spatial coordinates.
[.] denotes horizontal concatenation.
vec(.) denotes the rearrangement of an N-dimensional array into a 1D array.
diag(x) denotes the creation of a diagonal matrix with the array x ∈RN as its main

diagonal.
X̂XX = FND(XXX ) and
XXX = F−1

ND(X̂XX )
denote the ND-dimensional Fourier transform and its inverse, respectively.

Table 1
Detailed list of the particular notation to be used within this doctoral dissertation.
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object in a scene. In RGB imaging, the sensor pixels are covered with red, green, and blue filters,

such that each pixel senses only one color, and the colorful object is obtained using techniques

such as spatial deconvolution and demosaicing (Sahoo et al., 2017). In spectral imaging, the sensor

simultaneously samples multiple spectral bands over a large number of spatial locations.

A SI SSS ∈ RM×N×L is formed by stacking all the captured spectral bands, where M ×N is

the spatial resolution and L is the number of spectral bands captured. Each pixel in the resulting

image, si, j ∈RL, contains a spectral reflectance measurement and can be used to identify a material

within the scene given that different materials absorb and reflect light at given wavelengths band

in a unique way according to its composition (Swamy et al., 2017). This uniqueness is also called

spectral signature. As shown in Fig. 1, each measurement is associated with a coordinate system

that creates a function si, j,k, where i, j are the spatial coordinates and k is the spectral coordinate.

Three-dimensional spectral datacubes (i, j,k) are acquired using four basic techniques (Lu

and Fei, 2014), each one with its context-dependent advantages and disadvantages:

Point scanning, where a spectral sensor (i.e. spectrophotometer) scans point-by-point the

scene. Despite its spectral resolution, this process is time consuming and requires the scanned

scene to remain still (see Fig. 2(A)).

Spatial scanning, where a slit spectra (i,k) is obtained by projecting a strip of the scene

onto a slit and dispersing the slit image with a prism, or a grating, into a 2D sensor. The
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Figure 1. Spectral image scheme. A spectral pixel si, j,k is composed by the reflectance
measurements at a wide range of wavelengths at a single spatial coordinate.

spatial dimension is collected through platform movement or scanning, with the drawbacks

inherent to having mechanical parts integrated into the optical train (see Fig. 2(B)).

Spectral scanning, where optical band-pass filters (either tuneable or fixed) feeds the 2D

sensor, one spectral band at the time, (i, j). The scene is spectrally scanned by exchanging

one filter after another while the platform must be stationary (see Fig. 2(C)).

Non-scanning (snapshot), where the full datacube is yielded at once, without any scan-

ning. A single snapshot represents a perspective projection of the datacube, from which

its three-dimensional structure can be reconstructed. The most prominent benefits of these

snapshot hyperspectral imaging systems are the snapshot advantage (higher light throughput)

and shorter acquisition time (see Fig. 2(D)).

Most of the methods are related to scanning operations where multiple exposures cause



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 27

Figure 2. SI sensing techniques: (A) Point scanning. (B) Spatial scanning. (C) Spectral scanning.
(D) Snapshot. Taken from (Wang et al., 2017).

motion artifacts. Then, there is a trade-off between acquisition time and the Signal to Noise Ratio

(SNR): the faster each band is acquired, the fewer photons are acquired, decreasing SNR. The sa-

me problem exists in color imaging as well, but in spectral imaging, there is even lower energy per

band, many more bands, and a huge amount of data that needs to be stored or transmitted.

3.2. Compressive Spectral Imaging (CSI)

Traditional SI scanning techniques follow the Nyquist/Shannon theorem (Shannon, 1949), which

states that the sampling rate must be greater than twice the bandwidth of an input signal. On the

other hand, Compressive Spectral Imaging (CSI) proposes to sense the spatial-spectral information

of a 3D SI with a set of 2D encoded random spectral projections (Correa et al., 2014; Arguello and

Arce, 2013). The success of CSI lies in that both the sensing and compressing process are carried
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out simultaneously, thus reducing the number of sensed measure- ments and increasing the acqui-

sition speed compared to traditional methods (Rueda et al., 2015). These advantages have led to

CSI been applied in areas such as remote sensing (Fowler, 2014), X-ray diffraction (Greenberg

et al., 2014), and biomedical imaging (Rousset et al., 2016).

CSI requires two conditions in order to make possible to recover the original spectral sce-

ne (Candes and Romberg, 2007). The first one is sparsity which requires the signal to be sparse

in some domain. The second one is incoherence which is applied through the isometric property,

sufficient for sparse signals.

The more known architectures used to perform CSI are the Coded Aperture Snapshot Spec-

tral Imager (CASSI) (Arce et al., 2014), Dual Dispersive CASSI (DD-CASSI)(Gehm et al., 2007),

Dual-coded Snapshot Imager (Lin et al., 2014b), the Spatial-Spectral Encoded Compressive Spec-

tral Imager (SSCSI) (Lin et al., 2014a), and the Snapshot Colored Compressive Spectral Imager

(SCCSI) (Correa et al., 2015, 2016). These architectures use an optical element named a coded

aperture which let pass through or blocks the light in order to randomly encode the information.

When the coded aperture codifies only the spatial dimension it can be modeled as a matrix contai-

ning 1 and 0 representing the translucent and blocking elements, respectively. When the codifica-

tion is in the spatial-spectral dimensions it can be modeled as a 3D structure. Further, the encoded

light is scattered into its spectral components to finally be integrated into a 2D detector. These CSI

architectures can be modeled by means of a compressive sensing matrix, H ∈ RMNK×MNL, where
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K ≪ L is the number of shots required to obtain the compressive sensed measurements y ∈RMNK ,

such that y = Hs and s = vect(SSS )

Figure 3. CASSI, DD-CASSI, and SCCSI sensing process scheme.

Figure 3 shows a top view of the sensing process for the first spatial slice and illustrates

the structure of the sensing matrix H characterizing the CASSI, DD-CASSI, and SCCSI com-

pressive optical architectures to acquire an SI with 6× 6 spatial pixels, L = 4 spectral bands, and

K = 2 snapshots. In the traditional CASSI architecture, the slice is spatially codified with a mask
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containing blocking and translucent elements. The encoded light is dispersed into its spectrum

components, and a sensor integrates the encoded and dispersed light. In the sensing matrix, the

vectorized coded aperture is located in the diagonal and it is repeated with a N downward shift

for each spectral band. The number of compressed measurements is given by m = KN(N +L−1).

Each snapshot is obtained by changing the spatial distribution of the mask.

In the DD-CASSI architecture, the slice is dispersed into its spectrum components. Then,

the dispersed light is encoded with a mask containing blocking and translucent elements, and a

second dispersion is done before the light is integrated into the sensor. The sensing matrix can be

seen as the vectorized coded aperture pattern circular repeated for each spectral band. As there is

a double dispersion process the number of compressed measurements is given by m = KN2. Each

snapshot is obtained by changing the spatial distribution of the mask.

Finally, in the SCCSI architecture, the spatial slice is decomposed into its spectral com-

ponents. Then, a mask located over the sensor whose pixels contain color optical filters encodes

the dispersed light in the spatial and spectral dimensions before integrate it into the sensor. In the

sensing matrix, the optical filters, identified with a different color, are located in the diagonal with

a N downward shift for each spectral band whereby the number of compressed measurements is

given by m = KN(N +L− 1). Here, each snapshot is obtained by rotating the dispersive element

a specified angle. In all sensing matrices, each snapshot results in a concatenation of two matrices

with the structure previously described.



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 31

3.3. SI Recovery Using Sparse Signal Representation (SSR)

In order to recover a suitable version of the image of interest from compressive measurements,

CSI relies in the Sparse Signal Representation (SSR) framework. According to SSR, a SI can be

represented as a set of sparse coefficients on a specific basis. This is, the vectorized representa-

tion of a spectral image, s ∈ RMNL, is S-sparse on some basis ΨΨΨ ∈ RM×M×L when only S of its

coefficients are non-zero. Arce et al. (Arce et al., 2014) proposed to use a three-dimensional (3D)

basis resulting of the Kronecker product ΨΨΨ = ΨΨΨ1⊗ΨΨΨ2, where ΨΨΨ1 is the two-dimensional-Wavelet

Symmlet-8 basis and ΨΨΨ2 is the Discrete Cosine Transform (DCT) basis (Duarte and Baraniuk,

2012).

Then, s can be expressed as the linear product of ΨΨΨ with a set of coefficients θθθ ∈RMNL and

∥θθθ∥0 = S. However, to solve the ∥θθθ∥0 requires exhaustive searches over all θθθ , a process that has

exponential complexity. Besides, the sparse recovery problem is an undetermined system of linear

equations which leads the existence of uniqueness of the solution is guaranteed as soon as the sig-

nal is sufficiently sparse, and the measurement matrix satisfies the Restricted Isometry Property

(RIP) at a certain level (Foucart, 2012).

Over the last decades, several sparse recovery algorithms have been proposed and can be

classified into three main categories (Arjoune et al., 2017):
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Convex and Relaxation Methods. This kind of algorithms solve the sparse recovery sig-

nal problem through convex relaxation problems. Example of these methods include the Basis

Pursuit algorithm (Chen et al., 2001), which relaxes the ℓ0 norm with a ℓ1 norm, and the sparse

vector θθθ satisfies the equation ΦΦΦθθθ = y, where y ∈ RN are the measurements, as

argmin∥x∥1

s.t.: ΦΦΦx = y.
(1)

The Gradient Descent method (Garg and Khandekar, 2009), another example of convex

and relaxation methods, is an iterative algorithm that finds the sparse solution for problem 1 where

the measurement matrix ΦΦΦ satisfies the RIP with an isometric constant δ2,3 < 1/3. This algorithm

calculates iteratively a sparse signal x ∈ RM from measurements y ∈ RN using

x = Hs

(
x+

1
γ

ΦΦΦ
T r
)
, (2)

where γ = δ2,3 + 1/3, ΦΦΦ
T is the transpose of the measurement matrix, r = y−ΦΦΦx is the

residue and Hs is an operator that keeps only the largest magnitude coordinates and sets all other

values to zero.

Greedy Methods. Greedy methods aim to recover the sparse signal through an iterative

process where each iteration makes the best local improvement to the current approximations in

hope of obtaining a good overall solution. One example of greedy methods is the Orthogonal Mat-
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ching Pursuit (OMP) (Tropp et al., 2006), which computes the best nonlinear appro-

ximation of sparse solution of problem 1. At each iteration, it locates the column k from the mea-

surement matrix ΦΦΦ with the largest correlation residue r = y−ΦΦΦx by taking the higher absolute

value of the inner product calculated between each column and the residue as

k = argmax j
{∣∣ΦΦΦT r j

∣∣} . (3)

Then, the selected column k is appended to the set S = S∪{k}. OMP then estimates the

target variale by solving least-squares problem restricted to the columns in S and set all other

components of x to zero by using the following formula

(x̂i)S = (ΦΦΦS)
†.y; (x̂i)SC = 0, (4)

where S is the set of selected columns, SC denotes complement of the set S, ΦΦΦ
† denotes the pseudo-

inverse of the matrix ΦΦΦ, and (ΦΦΦS)
† =(ΦΦΦT

S ΦΦΦS)
−1ΦΦΦ

T
S is the pseudo-inverse of the matrix ΦΦΦ restricted

to the set S. The residue is updated as r = y−ΦΦΦx̂ and the algorithm iterates by selecting a new

column to be added to the set until the stopping criteria are met.

Another example of greedy methods is the Iterative Hard Thresholding proposed by Blu-

mensath et. al. (Blumensath and Davies, 2009). It finds the sparse signal x ∈RN subject to y = ΦΦΦx

where y ∈ RN is the measurement and ΦΦΦ ∈ RM×N is the measurement matrix. The solution is
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updated iteratively as

xn+1 = Hs(xn +ΦΦΦ
T (y−ΦΦΦxn)), (5)

where Hs is a hard thresholding operator that sets all the largest elements of x in term of magnitude

to zero.

Bayesian Methods. Methods in the Bayesian framework solves the sparse recovery pro-

blem by taking into account a prior knowledge of the sparse signal distribution. Bayesian compres-

sive sensing via Laplace Prior requires a definition of a joint distribution of the hierarchical model

p(x,γ,β ,y) (Ji et al., 2008) and is defined as

p(x,γ,β ,y) = p(y/x,β ).p(x/y).p(γ).p(β ), (6)

where γ and β are hyper parameters and the observation y can be described as a Gaussian distri-

bution with zero mean and variance β−1:

p(y/x,β ) = N(y/ΦΦΦx,β−1), (7)

with a gamma prior placed on β as follows:

p(β/α
β ,bβ ) = Γ(β/α

β ,bβ ). (8)
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The signal model is equivalent to using a Laplacian prior on the signal x as

p(x|γ) =
(

γ

2

)N
exp
(
−γ

2
∥x∥1

)
. (9)

The Bayesian inference is given by

p(x,γ,β ,γ/y) = p(x/y,γ,β ,λ )p(γ,β ,γ/y). (10)

Since p(x/y,γ,β ,λ ) ∝ p(x,y,γ,β ,λ ), then the distribution p(x/y,γ,β ,λ ) is a multi-

variate Gaussian distribution N(x/µ,Σ) with parameters µ = Σβφ T y, Σ = (βφ T φ +ΛΛΛ)−1 and

Λ = diag(1/γi). p(γ,β ,λ/y) = [p(γ,β ,λ ,y)/p(y)] ∝ p(γ,β ,λ ,y) is used to estimate the hyperpa-

rameters by maximizing the joint distribution p(γ,β ,λ ,y) or its algorithm l

l =Log(p(γ,β ,λ ,y)) =−1
2

log|C|− 1
2

yT C−1y+Nlog(λ )− 1
2

Σγi +
ϑ

2
log
(

ϑ

2

)
− log

(
ϑ

2

)
+

(
ϑ

2
−1
)

log(λ )− ϑ

2
λ +(aβ −1)log(β )−bβ

β .

(11)

The updates of other parameters can be found by solving dl
dλ

= 0 and dl
dβ

= 0. The results

are given by

λ =
N −1+ ϑ

2

Σi
γi
2 + ϑ

2

, (12)

β =
N
2 +aβ

⟨∥y−ΦΦΦx∥2⟩
2

+bβ . (13)

Another probabilistic approach used to estimate the components of x is the Relevance Vec-
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tor Machines (RVM) proposed by Badacan et. al. (Babacan et al., 2010). This algorithm uses a

hierarchical prior to estimate a full posterior on x and on the variance σ2, which defines a zero

mean Gaussian prior on each element of x. Instead of using the inverse of noise variance, RVM

models the prior on x using the precision of a Gaussian density function αi such that

p(x/α) =
N

∏
i=1

N(xi/0,α−1
i ), (14)

where N(xi/0,α−1
i ) denotes the Gaussian distribution with a mean equal to zero and a variance

α
−1
i . In addition, a Gamma prior is considered over α as

p(α/a,b) =
N

∏
i=1

Γ(αi/a,b), (15)

where Γ(αi/a,b) denotes a gamma distribution. Similarly, a Gamma prior is considered over α0 =

1/σ2 as

p(α0/c,d) =
N

∏
i=1

Γ(α0/c,d). (16)

The logarithm of the marginal likelihood can be expressed analytically as

L (α,α0) = log(p(y/α,α0)),

= log
∫

p(y/x,α0)p(x/α,α0)dx,

=−1
2
[
Klog(2π)+ log |C|yT C−1y

]
,

(17)
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where C = σ2I+ΦΦΦΛ−1ΦΦΦ
T , Λ = diag(1/γi). Thus, the problem of recovering a sparse signal from

few measurements in the context of Relevance Vector Machine becomes the search for the hyper

parameters α and α0.

Conclusions

The SSR model is a proven one-size-fits-all representation basis for all kind of signals, from 1D

to 3D and above. The Kronecker basis proposed by Arce et. al. exploits the strengths of different

representation basis for representing different kinds of correlations (spatial, spectral, etc). Howe-

ver, this size-fits-all has its limitations for representing small details such as border sharpness. In

overall, the maximum reconstruction quality is limited due to the nature of the Kronecker basis

itself.

The recovery methods, on the other hand, have a strong mathematical foundation, and re-

quires strong restrictions, i.e. a convex formulation or a Bayesian approach; or require lengthy

iterative process which relies in computing processing and memory capacity. Chapter 3 presents a

synthetic alternative to the theoretical SSR model.
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4. Sparse Dictionary Representation (SDR) and Convolutional Sparse Dictionary

Representation (CSDR)

The purpose of this chapter is to clarify the concepts of sparse representation using synthetic dic-

tionaries, and how these can represent from 1D signals to color images. The chapter concludes

with the formulation of the convolutional sparse representation of N-dimensional signals, and how

to profit on the DFT in order to keep such representation feasible.

Sparse representation (Bruckstein et al., 2009; Mairal and Bach, 2014) is a widely used

technique for a very broad range of signal and image processing applications, such as face (Chen

and Su, 2017) and pattern recognition (Wright et al., 2010), speech denoising (Jafari and Plumbley,

2011), super resolution (Yang et al., 2008), blind source separation (Li et al., 2006), and bioinfor-

matics (Yuan et al., 2012). Given a signal s and an overcomplete dictionary matrix D, sparse coding

is the inverse problem of finding the sparse representation x with only a few non-zero entries such

that Dx ≈ s, as shown in Figure 4. Most sparse coding algorithms optimize a functional consisting

of a data fidelity term and a sparsity inducing penalty

argmin
x

1
2
∥Dx− s∥2

2 +λR(x), (18)

where R(·) denotes a sparsity-inducing function such as the ℓ1 norm or the ℓ0 pseudo-norm. The

two leading families of sparse coding methods are a wide variety of convex optimization algo-
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Figure 4. Sparse representation of the patches division of an image S using an overcomplete
dictionary D and sparse coefficients X.

rithms (e.g. Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2010)) solving

Eq. (18) when R(x) = ∥x∥1 and a family of greedy algorithms (e.g. Matching Pursuit (MP) (Ma-

llat and Zang, 1993) and Orthogonal Matching Pursuit (OMP) (Pati et al., 1993)) for approximate

solution when R(x) = ∥x∥0.

When applied to images, this decomposition is usually applied independently to a set of

overlapping image patches covering the image; this approach is convenient, but often necessitates

somewhat ad hoc subsequent handling of the overlap between patches, and results in a representa-

tion over the whole image that is suboptimal (Wohlberg, 2014).

4.1. Dictionary Learning and Design

Considering Eq. (18), the question then changes into how to obtain a dictionary D capable of

representing the scene s. Dictionary learning techniques as MOD (Engan et al., 1999) and K-SVD

(Aharon et al., 2006) are based in a iterative two stage procedure:

1. Sparse coding step: Given a fix D, find a sparse x.
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2. Dictionary update step: fix x and update D.

4.1.1. Method of Optimal Directions (MOD). The Method of Optimal Directions, MOD,

proposed by Engan et al. (Engan et al., 1999), is based on the Generalized Lloyd Algorithm, GLA

(Gersho, 1992). The main steps of the algorithm are explained in Algorithm 1.

The suggested stop criteria can be: maximum number of iterations or almost constant MSE.

Due to lack of guarantee for the new frame to be better than the previous, the algorithm should

allow the MSE to perform iterations without terminat- ing the training.

4.1.2. K-SVD. K-SVD (Aharon et al., 2006) is an algorithm, based on the k-means cluste-

ring algorithm, aimed to learn an overcomplete dictionary D ∈RN×K that contains K signal atoms,

via a singular value decomposition approach. A collection of M-length signal vectors arranged in

Y ∈ RN×M can be represented sparsely as a linear combinations of the atoms in D by solving

argmin
{D,X}

∥DX−Y∥2
F , (19)

with X∈RK×M sparse column-wise. The K-SVD algorithm is summarized in Algorithm 2. K-SVD

performs well for both synthetic and real images in applications such as filling in missing pixels

and compression and outperforms alternatives such as the nondecimated Haar and overcomplete

or unitary DCT.
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Algorithm 1 MOD
Require: initial frame F0 ∈RN×K and number of frame vectors to be used in each approximation, m. Assign counter

variable i = 1.
1: Approximate each training vector, xl , using a vector selection algorithm:

x̃l =
K

∑
k=1

wl(k)fk (20)

where wl(k) is the coefficient corresponding to vector fk, and only m of the wl(k)’s are different to zero.
2: Find the residuals.
3: Given the approximations and residuals, adjust the frame vectors ⇒ Fi.
4: Find the new approximations, and calculate the new residuals. If the stop criterion hasn’t been reach yet, then do

i = i+1; otherwise, stop.

Algorithm 2 K-SVD
Require: set an initial dictionary D0 with ℓ2 normalized columns. Set J = 1.

1: Sparse Coding Stage: use any pursuit algorithm to compute the representation vectors xi for each sample yi, by
approximating the solution of

argmin
{xi}

∥Dxi −yi∥2
2

s.t.: ∥xi∥0 ≤ T0, ∀i = 1, ...,M
(21)

2: Dictionary coding stage: for each k = 1, ...,K in D(J−1), update it by:
3: Define the group of examples that use this atom, wk = {i | 1 ≤ i ≤ N,xk

T (i) ̸= 0}
4: Compute the overall representation error matrix, Ek, by

Ek = Y− ∑
j ̸=k

d jxk
T . (22)

5: Restrict Ek by choosing only the columns corresponding to wk, and obtain ER
k .

6: Apply SVD decomposition ER
k = U∆∆∆VT . Choose the updated dictionary column d̃k to be the first column of U.

Update the coefficient vector xk
R to be the first column of V multiplied by ∆∆∆(1,1).
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4.2. Classification Using Sparse Dictionaries

One of the earliest approaches to classification using sparse dictionaries is template matching (Scott

and Nowak, 2004) where a template (or prototype) is generated and compared to the test pattern

to be recognized. The metric for similarity is often a correlation measure, but if the template is

modeled statistically, a likelihood measure can be used.

Given a signal y and a template xp, a measure that can be used for template matching is

Mp(m) = ∑
j

∣∣y( j)−xp( j−m)
∣∣ , ∀ j | ( j−m) ∈ D, (23)

where D denotes the domain of definition of the template, m indicates the amount of translation

provided to the template and p identifies the class.

Thiagarajan et al (Thiagarajan et al., 2008) proposed a template based statistical classifica-

tion frame- work in the data representation domain, where an unlabeled training data set is sparsely

represented using an overcomplete dictionary. A source model is assumed, with each source using

a set of dictionary elements chosen from a large dictionary, called the generating dictionary (see

Fig. 5).

Chen et al (Chen and Su, 2017) proposed the Sparse Embedded Dictionary Learning (SEDL)

for face recognition problems. Here, the training samples are composed of c classes, each vectori-
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Figure 5. The probability source model. PS1, PS2, and PS3 are the sources and each source
represents a class that uses a fixed set of dictionary atoms from the generating dictionary. Taken
from (Thiagarajan et al., 2008).

zed as y ∈ Rm and the i-th class as Yi ∈ [y1, ...,yni] ∈ Rm×ni , where ni is the number of samples in

the i-th class, with i = 1, ...,c, and the training data matrix Y = [Y1, ...,Yi, ...,Yc] ∈ Rm×n. Conside-

ring the high dimensionality of face images (Nguyen et al., 2012), dimensionality reduction aims

to learn an orthogonal projection matrix P ∈ Rp×m, where p denotes the lower dimension of data

(p < m).

Let X = [X1, ...,Xi, ...,Xc] denotes the coefficients of Y coded over dictionary D (see Fig.

6).The reconstruction error is then defined as

r(P,Y,D,X) = ∥PY−DX∥2
F +

c

∑
i=1

∥∥PYi −DiXi
i
∥∥2

F +
c

∑
i=1

c

∑
j=1, j ̸=i

∥∥∥D jX
j
i

∥∥∥2

F
, (24)

where the first term states that the dimensionality reduction PY can be well represented by the
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Figure 6. The relationship between variables in term ∥PY−DX∥2
F . Taken from (Chen and Su,

2017).

dictionary D; the second term ensures that each sub-dictionary should be able to well present the

data which can enhance the discriminative ability during the classification stage and minimize the

reconstruction error of source domain caused by dimensionality reduction; and the third term gua-

rantees that the effect of other sub-dictionary is minimized.

In the case of hyperspectral images, Wang et al (Wang et al., 2014) propose a hinge loss

function that is directly related to the classification task as the objective function for dictionary

learning. The resulting online learning procedure systematically “pulls” and “pushes” dictionary

atoms so that they become better adapted to distinguish between different classes. Let the data set

to contain N labeled SI pixels of m spectral bands coming from C classes: {xi ∈Rm,yi ∈ {1...C}}.

For each class c = 1, ...,C there exists a dictionary Dc ∈ Rm×nc
of nc atoms such that nc is much

smaller than the number of samples in class c, and any data sample in this class can be well

approximated as the linear combination of a small number of active atoms selected from Dc

xi ≈ Dc
ααα

c
i , |αααc

i |0 ≤ K, ∀yi = c, (25)
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where αααc
i ∈ Rnc

is the sparse code for pixel xi with respect to the dictionary Dc. Wang et al adopts

an objective function so that the Learning Vector Quantization (LVQ) (Bottou, 2004) can be ex-

ploited in building a sparse dictionary classification (LSRC) as

LLSRC(xi,yi;D) = max
(

0,ryi
i − rĉi

i +b
)
, (26)

where ĉi is the most competitive class in reconstructing the signal excluding the true class yi and

b is a nonnegative parameter controlling the ?margin? between the classes. Thus, the problem of

LSRC dictionary design can be formulated as

D∗ = argmin
D∈D

1
N ∑

i
LLSRC(xi,yi;D), (27)

which is optimized over the whole training set.

4.3. Tensorial Dictionary Sparse Representation

A notation based in tensors can effectively represent an organized multidimensional array of nu-

merical values (Tao et al., 2007) as indicated by its order. A vector a ∈ RN is a first-order tensor,

a matrix A ∈ RN×M is a second-order tensor and a data cube, like a hyperspectral image, is a

third-order tensor A ∈RN×M×L. In this way, the neighborhood relationship across both the spatial

and spectral dimensions can be fully preserved . Recent studies have proven the effectiveness of

a tensor representation on the performance of various hyperspectral applications such as: image
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denoising (Liu and Tao, 2016), tensor PCA (Velasco-Forero and Angulo, 2013), and tensor neigh-

borhood graph learning (Gao et al., 2015).

Du et al (Du et al., 2017) propose to split a hyperspectral image into a group of third-order

tensor patches with the same size. Given a third-order tensor I ∈ RLW×LH×LS
, it is divided into

overlapping blocks of size lW × lH (with lW < LW and lH < LH). Then we can reconstruct a group of

3D patches {Pi, j}1≤i≤nW ,1≤ j≤nH ∈RlW×lH×LS
and the number of patches equal to N = nW nH . Each

patch is a data cube which preserves all the spectral information from the original hyperspectral

image, representing both the spatial and spectral correlations. The dictionary learning objective

function can be expressed then, in terms of tensors, as

argmin
DW ,DH ,DS,Zi

N

∑
i=1

∥∥∥Pi −Zi ×1 DW ×2 DH ×3 DS
∥∥∥

2

s.t.: Ot(Zi)≤ s,

(28)

where DW ∈ RlW×dW
, DH ∈ RlH×dH

and DS ∈ RlS×dS
(with lW < dW , lH < dH , lS < dS) are the

three dictionaries, Zi ∈ RdW×dH×dS
is a redundant coefficient tensor of patch Pi, Ot(Zi) ≤ s is a

generalization of the matrix sparsity in tensor form, which can constraint Zi to be a sparse tensor,

and × j is the j-mode product between ta tensor and a matrix.
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4.4. Convolutional Sparse Dictionary

A variation of the sparse dictionary representation is the Convolutional Sparse Dictionary Repre-

sentation (CSDR), a synthesis framework for sparsely representing signals using a collection of

convolutional dictionary elements and sparse coefficient maps, both learned directly from the sig-

nal of interest (Bruckstein et al., 2009). This signal specificity allows for higher reconstruction

qualities.

1D CSDR. CSDR states that a given signal s ∈ RN can be represented as the sparse com-

bination of a collection of dictionary elements {dm, m= 1, ...,Md | dm ∈Rd} and its corresponding

sparse coefficient maps {xm, m = 1, ...,Md | xm ∈ RN}, as

s =
Md

∑
m=1

dm
1∗xm +ωωω, (29)

where ωωω denotes a reconstruction error. It is worth noting that the sparse coefficient maps have

the same dimension as s, while the dictionary elements are much smaller, d ≪ N. The structure of

the convolution operation makes the representation frame-work robust to noise, shifting, and de-

formation of the features within the represented signal. These properties makes of CDSR an useful

framework for denoising and machine learning (Papyan et al., 2017).



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 48

We can then replace Eq. (18) with the following formulation

argmin
{xm}

1
2

∥∥∥∥∥ Md

∑
m=1

dm
1∗xm − s

∥∥∥∥∥
2

2

+λ ∥xm∥1 , (30)

supposing a fixed collection of dictionary elements, and optimizing the coefficient maps.

Gray-scale Images using CSDR. For the case of a single gray-scale image S ∈ RM×N ,

Eq. (30) converts into

argmin
{Xm}

1
2

∥∥∥∥∥ Md

∑
m=1

Dm
2∗Xm −S

∥∥∥∥∥
2

F

+λ

Md

∑
m=1

∥xm∥1 , (31)

where (
2∗) represents the 2D cyclic convolution, {Dm ∈ Rd×d|m = 1, ...,Md} is a collection of

convolutional dictionary elements, and {Xm ∈RM×N |m = 1, ...,Md} is a collection of sparse coef-

ficient maps. It is worth noting that each Xm is the same size of the image S ∈ RM×N , while each

Dm ∈ Rd×d is smaller than the image with d ≪ M,N. Finally, xm ∈ RMN is the vectorized version

of each Xm.

The CDSR approach can divided into two subproblems for its full solution:

1. Fixing the dictionary elements and updating the coefficient maps, and

2. Fixing the coefficient maps and updating the dictionary elements.

Wohlberg (Wohlberg, 2014) proposes that the coefficient maps update problem can be sol-
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ved via ADMM by adding an auxiliary variable {Ym} as

argmin
{Xm},{Ym}

1
2

∥∥∥∥∥ Md

∑
m=1

Dm
2∗Xm −S

∥∥∥∥∥
2

F

+λ

Md

∑
m=1

∥ym∥1 ,

s.t.: Xm = Ym, ∀m = 1, ...,Md.

(32)

Color Images using CSDR. From this point it is easy to extend to color images. Here, a

RGB image is treated as a stack of gray-scale images, S ∈ RM×N×3. Wohlberg et al. proposed the

convolutional basis pursuit denoising (CBPDN) (Wohlberg, 2016b) as a low computational cost

alternative for the convolutional representation of a stack of gray-scale images by solving

argmin
{Xc,m}

1
2

3

∑
c=1

∥∥∥∥∥ Md

∑
m=1

Dm
2∗Xc,m −Sc

∥∥∥∥∥
2

F

+λ

3

∑
c=1

Md

∑
m=1

∥Xc,m∥1 +µ ∥Xc,m∥2,1 , (33)

where {Xm,c, m = 1, ...,Md , c = 1,2,3 | Xm,c ∈ RM×N} are the sparse coefficient maps for each

dictionary element indexed by m and the cth channel of the RGB image; while {Dm, m = 1, ...,Md |

Dm ∈ RdM×dN} is a collection of dictionary elements. CBPDN represents the spatial correlation

within each color channel in a RGB image, independently for each channel. This leads to missing

the correlation between channels. Figure 7 shows a collection of dictionary elements obtained from

a color image. Note the different textures obtained from the original image.

CSDR Solution in the Fourier Domain. While solving 2D cyclic convolutions have a

high numerical cost associated, a solution in the Discrete Fourier Transform (DFT) domain has

been proposed for this case (Bristow and Eriksson, 2013), profiting on the DFT properties. A 2D
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Figure 7. A selection of filters learned from an unaligned set of lions. The spatially invariant
algorithm produces expression of generic Gabor-like filters as well as specialized domain specific
filters, such as the highlighted ?eye?. Taken from (Bristow and Eriksson, 2013).

spatial cyclic convolution can be expressed as a Hadamard product in the Fourier domain as

A
2∗B = F−1

2D {F2D{A}⊙F2D{B}}, (34)

with ⊙ denoting Hadamard product, F2D{·} denoting the 2D Fourier Transform, F−1
2D {·} deno-

ting the 2D Inverse Fourier Transform. Finally, F2D{A} and F2D{B} have the same size. This

can be achieved by zero-padding one or both matrices, in the spatial domain. The complexity of

the cyclic convolution is estimated as O((MN)2) while the DFT’s is estimated as O(MNlog(MN))

and Hadamard’s as O(MN).
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4.5. N-Dimensional CSDR

Considering the versatility of the CSC model for representing 1D signals, gray-scale and RGB

images, plus the optimal computational strategies exposed in section 4.4, then it leads to think

about a general model for representing multidimensional signals as

SSS =
Md

∑
m=1

DDDm
N∗XXX m +ΩΩΩ , (35)

where SSS ∈ RL1×...×LN , {DDDm, m = 1, ...,Md |DDDm ∈ Rd1×...×dN} and {XXX m, m = 1, ...,Md |XXX m ∈

RL1×...×LN}, with di ≪ Li, and its solution in the Fourier domain as

A
N∗B = F−1

ND{FND{A}⊙FND{B}}, (36)

with FND{·} denoting the ND Fourier Transform and F−1
ND{·} denoting the ND Inverse Fourier

Transform. The complexity of the cyclic convolution is estimated then as O((L1...LN)
2), whi-

le the complexity for DFT is estimated as O(L1...LN log(L1...LN)), and hadamard product’s as

O(L1...LN). This means that it is feasible, computationally speaking, to represent higher dimen-

sion signals using the CDSR framework while keeping the computational cost within a reasonable

limit. Equation (35) is the basis for the extension of the Convolutional Sparse Coding (CSC) fra-

mework presented in this doctoral dissertation, which will be presented in Chapter 4.

The CSC signal model provides the mathematical foundation for convolutional neural net-
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works (CNN) which can automatically learn features within a signal using a hierarchical neural

network, in a way similar to the process of human cognition (Liang and Li, 2016) (Yu et al., 2017).

A typical CNN is a multi-layered architecture consisting of an input, an output layer and multiple

hidden layers, i.e. of a series of convolutional layers capable of assembling more complex patterns

using smaller and simpler patterns through convolution operations. On the other hand, the CSC

model is a single-layer architecture, which can be formulated as a linear expansion equivalent to

the basis pursuit (BP) scheme (Chen et al., 2001). The only similarity between CSC and CNN

frameworks lies in the convolution operations used for representing an image.

Conclusions

The synthesis DSR is a signal-based representation which requires to be learned for each set of

signals to be represented. However, this specificity allows for a higher level of reconstruction qua-

lity. The mathematical formulation of the minimization problems is somehow more lax, compared

to the SSR model, but profits on being formulated as a ℓ2 − ℓ1 problem.

On the other hand, the CSDR model profits on the robust convolutional model, and redu-

ces the complexity for its solution by profiting on the DFT theorem. However, the state-of-the-art

reports the dimensions of the CSDR model up to 2D signals. For 3D signals (color images), the

state-of-the-art suggest on expanding the use of the existing 2D model, missing the correlation of

the third dimension (spectral axis), limiting the quality of the reconstructed spectral images.
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Chapter 4 includes the proposal of a new 3D cyclic convolutional operator in order to re-

present the spatial-spectral correlations of an SI.
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5. Convolutional Sparse Dictionary Representation for Spectral Images and Compressive

Sensing Imaging

The purpose of this chapter is to introduce the first three contributions of this doctoral dissertation:

a 3D convolutional sparse representation for SIs, its application in CSI, and the optimal numerical

routines for its solution. This chapter includes the mathematical formulations and the derivation of

their numerical solution. It also includes the synthetic and laboratory experiments in order to asses

the performance of the proposed framework.

5.1. Definition Of Procedures And Dimensions Transformations

A series of procedures to be used in this doctoral dissertation are introduced below in order to fa-

cilitate the reading of the mathematical formulation and numerical solution. This doctoral research

includes two types of N̄-D arrays, listed bellow:

Single N̄-D arrays AAA ∈ RL1×...×LN̄ .

Collections of Md N̄-D arrays {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}

Also, this doctoral dissertation proposes four types of dimensional arrangements and do-

main transformations over the N̄-D arrays:

Unfolding: To rearrange a N̄-D array, or collection of arrays, into a single 1D array. The term

comes from unfolding a tightly folded scarf into a single string of fabric. This dimensional
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arrangement is necessary to use a N̄-D array into a single lineal formulation, and is akin to a

vectorization.

Equivalent Operator: To express the sum of convolutions, or hadamard products, as a single

matrix operator. This rearrangement goes along the unfolding, or vectorization, of a collec-

tion of N̄-D arrays.

Folding: To rearrange a 1D array into a N̄-D array, or collection of arrays. The term comes

from folding a string of fabric into a tightly packed manner. This dimensional arrangement

is necessary in order to perform correctly the N̄-D Fourier Transforms.

Fourier Transform: To transform a single N̄-D array, or collection of arrays, to or from the

Fourier domain. It is not advised to perform 1D Fourier transforms on 1D arrays and then

folding the result as N̄-D arrays. For this reason is necessary to perform the corresponding

folding operations in order to solve FN̄{AAA }, and its inverse F−1
N̄ {ÂAA }.

Bellow are listed the several rearrangements and domain transformations over both types of

N̄-D arrays. Note that the domains R and C are interchangeable.

Algorithm 3 Unfolding a N̄-D array
Require: Array AAA ∈ RL1×...×LN̄ ; dimensions L1, ...,LN̄ .

1: Create M̄ = L1 · ... ·LN̄ .
2: Create a ∈ RM̄ by vectorizing AAA columnwise as a = vec(AAA ).
3: return Array a ∈ RM̄ , with M̄ = L1 · ... ·LN̄ .
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Algorithm 4 Unfolding a collection of Md N̄-D arrays
Require: Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}; dimensions L1, ...,LN̄ ; value Md .

1: Create M̄ = L1 · ... ·LN̄ .
2: Vectorize each AAA m columnwise as am = vec(AAA m), as explained in Algorithm 3.
3: Create the resulting array a = [aT

1 ...a
T
Md

]T ∈ RM̄Md .
4: return Array a ∈ RM̄Md , with M̄ = L1 · ... ·LN̄ .

Algorithm 5 Equivalent operator of sum of convolutions
Require: Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}; dimensions L1, ...,LN̄ ; value Md .

1: For each AAA m create a equivalent convolutional matrix Ām ∈ RM̄×M̄

2: Concatenate all equivalent convolutional matrices into Ā = [Ā1...ĀMd ] ∈ RM̄×M̄Md .
3: return Equivalent operator Ā ∈ RM̄×M̄Md .

Algorithm 6 Equivalent operator of sum of Hadamard products
Require: Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ CL1×...×LN̄}; dimensions L1, ...,LN̄ ; value Md .

1: Vectorize each AAA m, as stated in Algorithm 7, to create the diagonal matrices Ām = diag(vec(AAA m)) ∈ CM̄×M̄ .
2: Concatenate all diagonal matrices into Ā = [Ā1...ĀMd ] ∈ CM̄×M̄Md .
3: return Equivalent operator Ā ∈ CM̄×M̄Md .

Algorithm 7 Folding a 1D array into a N̄-D array

Require: Array a ∈ RM̄; dimensions L1, ...,LN̄ .
1: Create AAA as a RL1×...×LN̄ columnwise rearrangement.
2: return Array AAA ∈ RL1×...×LN̄ .

Algorithm 8 Folding a 1D M̄Md array into a collection of Md N̄-D arrays

Require: Array a ∈ RM̄Md ; dimensions L1, ...,LN̄ ; value Md .
1: Divide a into Md am ∈ RM̄ arrays.
2: Fold each am array into AAA m ∈ RL1×...×LN̄ , as explained in Algorithm 4.
3: return Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}.

Algorithm 9 Fourier transform of N̄-D array
Require: Array AAA ∈ RL1×...×LN̄ ; dimensions L1, ...,LN̄ .

1: Obtain Â = FN̄{AAA }
2: return Array Â ∈ CL1×...×LN̄ .
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Algorithm 10 Fourier transform of a collection of Md N̄-D arrays
Require: Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}; dimensions L1, ...,LN̄ ; value Md .

1: For each AAA m obtain the Fourier Transform ˆAAA m, as stated in Algorithm 9.
2: Create the collection ÂAA = {ÂAA m,m = 1, ...,Md}.
3: return Collection ÂAA = {ÂAA m,m = 1, ...,Md | ÂAA m ∈ CL1×...×LN̄}.

Algorithm 11 Inverse Fourier transform of N̄-D array

Require: Array ÂAA ∈ CL1×...×LN̄ ; dimensions L1, ...,LN̄ .
1: Obtain A = F−1

N̄ {ÂAA }
2: return Array A ∈ RL1×...×LN̄ .

Algorithm 12 Inverse Fourier transform of a collection of Md N̄-D arrays

Require: Collection ÂAA = {ÂAA m,m = 1, ...,Md | ÂAA m ∈ CL1×...×LN̄}; dimensions L1, ...,LN̄ ; value Md .
1: For each AAA m obtain the Inverse Fourier Transform ˆAAA m, as stated in Algorithm 11.
2: Create the collection AAA = {AAA m,m = 1, ...,Md}.
3: return Collection AAA = {AAA m,m = 1, ...,Md |AAA m ∈ RL1×...×LN̄}.

5.2. Convolutional Sparse Coding for Spectral Im- ages (CSC3D)

In order to represent SI’s using a CSDR framework, it would be natural to extend CBPDN fra-

mework in Eq. (33) from C = 3 to C = L channels. While being a simple escalation of CBPDN’s

proven algorithm, this framework misses completely the intrinsic spectral correlation of SI’s by

representing each channel independently.

Taking the previous into consideration, we propose a single 3D cyclic convolutional opera-

tor based in the following statements:

1. A single convolutional operator could include all SI’s spatial-spectral correlations within a

single operation.
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2. A single operator simplifies the mathematical formulation, based in the SSR framework

(section 3.3).

3. A single cyclic operator could profit extensively on the DFT solution stated in Eq. (36).

4. There is no need for the additional channel-wise summation of CBPDN, which induces

additional complexity to the formulation.

Based on the previous premises, the proposed single 3D cyclic convolutional operator is

then defined as

SSS =
Md

∑
m=1

DDDm
3∗XXX m +ΩΩΩ , (37)

where SSS ∈ RM×N×L is the SI of interest to be represented convolutionally; {DDDm, m = 1, ...,Md |

DDDm ∈ RdM×dN×dL} is a collection of 3D convolutional dictionary elements with di ≪ M,N,L;

{XXX m, m = 1, ...,Md | XXX m ∈ RM×N×L} is a collection of 3D sparse coefficient maps; and ΩΩΩ re-

presents the reconstruc- tion error (Barajas-Solano et al., 2019c).

In order to include Eq. (37) within a minimization scheme we can express it as the single

linear operation

s = vec(SSS ) = D̄x+ωωω, (38)

where:

s ∈ RMNL results from unfolding SSS (see Algorithm 3, L1 × ...×LN̄ = M×N ×L).
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D̄ = [D̄1...D̄Md ] ∈ RMNL×MNLMd is created from {DDDm} (see Algorithm 5, L1 × ...× LN̄ =

M×N ×L).

xm ∈ RMNL results from unfolding {XXX m} (see Algorithm 4, L1 × ...×LN̄ = M×N ×L).

each equivalent convolutional matrix D̄m is created in such way that D̄mxm = vec(DDDm
3∗XXX m).

Creating The Equivalent Convolutional Matrices. Lets us make a pause in the narrati-

ve of this doctoral dissertation for addressing the complexity of constructing the equivalent con-

volutional matrices D̄m, and operator D̄, by using the example shown in figure 8 and dimensions

dM = 2,dN = 2,dL = 2,M = 4,N = 4,L = 3. Then, the matrices DDDm and XXX m have dimensions

R2×2×2 and R4×4×3, respectively.

The first step is to create the equivalent spatial 2D cyclic convolutional sub-matrices DDD l,m ∈

RMN×MN , where l = 1,2 (see the highlighted red rectangle in the upper left corner in Figure 8). In

this example, we have a collection of R16×16 sub-matrices which can be seen between the white

lines in Figure 8. Note the self-replicating disposition of the elements, and the circular shifting

effect in the top right corner of each sub-matrix, because of the cyclic convolution.

The spectral dimension, L = 3, generates the equivalent 3D cyclic convolutional matrices

DDDm ∈ RMNL×MNL, or R48×48, by self-replicating the equivalent 2D cyclic convolutional matrices

in a 3×3 grid in a cyclic pattern.
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As shown in Figure 8, matrix D̄m has a very specific structure given by the size of DDDm and

XXX m. If we were to use different values for the convolutional dictionaries and sparse coefficient

maps but keeping the exact dimensions, then matrix D̄m would keep the same structure. However,

a minor change in DDDm’s or XXX m’s dimensions changes D̄m completely.

The last step left is to create the operator D̄ as the concatenation of several matrices D̄m as

shown in Figure 9. However, the construction and manipulation of operator D̄ isn’t viable within

a minimization scheme. For this reason we profit on the Discrete Fourier Transform for simplicity

of calculations, which will be explained in section 5.2.

Creating The Dual Optimization Formulation. Once the lineal operator D̄ has been

explained, then we can formulate the minimization scheme as

argmin
x

1
2

∥∥D̄x− s
∥∥2

2 +λ ∥x∥1 . (39)

Equation (39) is called the Coefficient Update Problem (CUP) and obtains the optimal coef-

ficient maps for a fixed collection of convolutional elements (Barajas-Solano et al., 2019a). It is

safe to assume that an optimal 3D convolutional dictionary will rarely be available a priori for a

specific SI. In order to obtain an optimal 3D convolutional dictionary for a given SI, we modify

Eq. (39) by introducing some changes.
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Figure 8. Example of D̄m for DDDm ∈ R2×2×2 and XXX m ∈ R4×4×3. The red rectangle highlights a 2D
equivalent cyclic convolution matrix.

Figure 9. Schematic for D̄ with M = 10,N = 10,L = 4,Md = 4 and dM = dN = dL = 2.
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First, we profit on the convolution’s commutativity property so DDD
3∗XXX =XXX

3∗DDD , and shift

the linear operation in Eq. (38) to

s = vec(SSS ) = X̄d+ωωω, (40)

where X̄ = [X̄1...X̄Md ] ∈RMNL×MNLMd is created following Algorithm 5 (L1× ...×LN̄ = M×N ×

L) so that X̄mdm = vec(XXX m
3∗DDDm); and d = [vec(DDD1)

T ...vec(DDDMd)
T ]T ∈ RMNLMd as indicated in

Algorithm 4 (L1 × ...×LN̄ = M×N ×L).

Second, there is an implicit zero-padding in the formulation of array d in order to match

the size of the dictionary elements to the size of the coefficient maps. Let be the zero-padding

operator Zp : RdM×dN×dL → RM×N×L, with the dictionary elements being zero-padded and the

desired resulting filters as ZT
p dm. Then, let be the constraint set, according to (Wohlberg, 2016c)

CZp =
{

x ∈ RMNL : (I−ZpZT
p )x = 0,∥x∥2 = 1

}
, (41)

which guarantees that the obtained dictionary elements are normalized and keeps the desired size.

Next, the indicator function of the constrained set is introduced as

ιCZ(x) =


0 if x ∈ CZp

∞ if x /∈ CZp.

, (42)
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and applied over each vectorized individual convolutional element dm ∈RMNL, but for simplifying

the notation it will be applied over the whole collection. The ℓ1 norm is then replaced by ιCZ in

order to avoid the scaling ambiguity between dictionary filters and coefficients.

Finally, the unconstrained problem for obtaining a set of convolutional dictionary elements

for a SIs, the Dictionary Update Problem (DUP), can be written as

argmin
x

1
2

∥∥X̄d− s
∥∥2

2 + ιCP(d). (43)

Eq. (39) and (43) are solved alternately, and form the first product of this doctoral dissertation:

the Convolutional Sparse Coding 3D (CSC3D) framework for representing SIs. This formulation

fulfills the second specific objective of this doctoral dissertation.

Coefficients Update Problem (CUP). Eq. (39) is referred to as the Coefficients Update

Problem (CUP) and seeks to adjust a collection of coefficient maps to a fixed collection of convolu-

tional 3D dictionary elements in order to sparsely represent a SI of interest. Eq. (39) can be solved

using the alternating directions multiplier method, ADMM (Boyd et al., 2010), by introducing an

auxiliary variable as

argmin
x,v

1
2

∥∥D̄x− s
∥∥2

2 +λ ∥v∥1 ,

s.t.: v = x.

(44)
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The augmented Lagrangian for Eq. (44) can be written as stated in (Barajas-Solano et al.,

2019a) as

L {x,v,g}= 1
2

∥∥D̄x− s
∥∥2

2 +λ ∥v∥1 +
ρ

2
∥x−v+g∥2

2 , (45)

where g is the so called dual variable. The variable updates are obtained from Eq. (45) as

x j+1 := argmin
x

1
2

∥∥D̄x− s
∥∥2

2 +
ρ

2

∥∥x−v j +g j∥∥2
2 , (46)

v j+1 := argmin
v

ρ

2

∥∥x j+1 −v+g j∥∥2
2 +λ ∥v∥1 , (47)

g j+1 = g j +x j+1 −v j+1. (48)

The dual variable g can be interpreted as a vector of prices and Eq. (48) is then called a

price update or price adjustment step (Boyd et al., 2010). The solutions to subproblems (46) and

(47) are presented bellow.

Coefficient Maps Update. The linear representation of the 3D convolution in Eq. (46)

can be solved efficiently by profiting the DFT convolution theorem (Bristow and Eriksson, 2013),

which states that a N-dimensional cyclic convolution can be expressed as a Hadamard product in

the n-dimensional Fourier domain, as stated in Appendix 1, as

Md

∑
m=1

DDDm
3∗XXX m = F−1

3D

(
Md

∑
m=1

F3D(DDDm)⊙F3D(XXX m)

)
. (49)
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Eq. (49) can be simplified by transforming the sums of Hadamard products into a matrix-

vector product, just as in Eq. (38). The detailed steps for creating the equivalent matrix-vector

product in the Fourier domain are listed in Algorithms 6 and 4. Then, the sum of 3D convolutions

can be solved efficiently as
Md

∑
m=1

DDDm
3∗XXX m ≃ F−1

3D

(
ˆ̄Dx̂
)
, (50)

minding, of course, that ˆ̄Dx̂ ∈ CMNL must be folded first into a 3D array as explained in Appendix

1. Eq. (50) can be used to optimize the solution of Eq. (46) by expressing the latter in the Fourier

domain. We begin by replacing w j = v j − g j ∈ RMNLMd and creating ŵ j ∈ CMNLMd by folding

(Algorithm 8, L1× ...×LN̄ = M×N×L), transforming to the Fourier domain (Algorithm 10), and

unfolding (Algorithm 4, L1× ...×LN̄ = M×N×L). Finally, we can rewrite Eq. (46) in the Fourier

domain as

x̂ j+1 := argmin
x̂

ρ

2

∥∥∥ ˆ̄Dx̂− ŝ
∥∥∥2

2
+

ρ

2

∥∥x̂− ŵ j∥∥2
2 . (51)

Solving the derivative of Eq. (51) and equaling to zero, the solution to the optimization

problem is

x̂ j+1 =
(

ˆ̄DH ˆ̄D+ I
)−1( ˆ̄DH ŝ j + ŵ j

)
. (52)

Eq. (52) seems to have a simple closed form solution, but the size of matrix ˆ̄D makes a

direct inverse procedure unfeasible. It is necessary to clarify the true dimension of the numerical

cost necessary for the solution of Eq. (52) before continuing. Taking into consideration the follo-

wing dimensions M = 128, N = 128, L = 16, Md = 30 as a practical example, lets solve then the
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following statements:

The dimensions of ˆ̄D = [ ˆ̄D1...
ˆ̄DMd ] ∈ CMNL×MNLMd become 262.144× 7.864.320; the dia-

gonal matrix ˆ̄Di ∈ CMNL×MNL becomes 262.144×262.144, with MNL = 262.144 non-zero

complex elements.

Considering that a complex number takes 16bytes in RAM space as two float numbers, then

ˆ̄Di takes 262.144∗16Bytes = 4MB of RAM space.

Considering that ˆ̄D contains Md = 30 matrices ˆ̄Di, then ˆ̄DH ˆ̄D contains M2
d = 900 matrices

ˆ̄Di, for a total of 900∗4MB = 3.52GB of RAM space.

Matrix I ∈ CMNLMd×MNLMd must be also float in order to operate correctly, with MNLMd

non-zero elements. Then, matrix I takes 128∗128∗16∗30∗8 Bytes = 60MB of RAM space.

Matrix ˆ̄DH ˆ̄D+ I takes 3.57GB of RAM space, with dimensions 7.864.320×7.864.320.

Now, the complexity of inverting a 3.57GB matrix is evident. Eq. (52) can be solved by

using the Woodbury Matrix Inverse method (Henderson and Searle, 1981), explained in Appendix

2, as

x̂ j+1 = b− ˆ̄DH
(

I+ ˆ̄D ˆ̄D
H
)−1

ˆ̄Db, (53)

with b = ˆ̄DH ŝ j + ŵ j. Now, lets analyze the inversion in Eq. (53) by solving the following state-

ments:

Consider ˆ̄D = [ ˆ̄D1...
ˆ̄DMd ] ∈ CMNL×MNLMd , and each ˆ̄Di ∈ CMNL×MNL a diagonal matrix.
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The product ˆ̄D ˆ̄DH ∈RMNL×MNL is a diagonal matrix with MNL= 262.144 non-zero complex

elements, and takes 262.144∗16Bytes = 4MB of RAM space.

Matrix I ∈ CMNL×MNL takes 262.144∗8Bytes = 2MB of RAM space.

We must invert matrix I+ ˆ̄D ˆ̄DH , which only takes 6MB of RAM space.

Matrix I+ ˆ̄D ˆ̄DH is diagonal, which inversion results trivial.

The previous statements give an idea on the potential RAM space saved by using the Wood-

bury matrix identity formula, as explained in Appendix 2. However, given the structure of matrix

ˆ̄D, then Eq. (53) can be optimized even further, decreasing the overall complexity. For example,

the product ˆ̄D ˆ̄DH has complexity O((MNL)3Md). This research work proposes a collection of

numerical rearrangements in order to reduce the overall complexity of solving Eq. (52) to just

O(MNLMd). The full explanation can be found in detail in Appendix 3, which is listed as one of

the contributions of this doctoral dissertation.

Finally, the update d j+1 is obtained by folding, transforming from the Fourier domain and

unfolding (Algorithms 8, 12, and 4 respectively with L1 × ...×LN̄ = M×N ×L).

Sparse Coefficient Maps Update. Eq. (47) has a closed form solution via soft thresholding

(Rockafellar, 1970) as

v j+1 = S λ

ρ

(
x j+1 +g j) . (54)
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The CUP solution is summarized in Algorithm 13.

Algorithm 13 CUP Solution for 3D CDSR

Require: D̄, ˆ̄D, v j, g j, ρ , λ and sizes M, N, L and Md .
1: Build ẑ j.
2: Solve x j+1 in Eq. (46) using (Eq. (53).
3: Solve v j+1 Eq. (47) using (Eq. (54).
4: Solve g j+1 in Eq. (48).
5: return Sparse coefficient maps v j+1, split variable update v j+1, and dual variable update g j+1.

Dictionary Update Problem (DUP). Eq. (43) is referred to as the Dictionary Update

Problem (DUP) and seeks to adjust a collection of convolutional 3D dictionary elements to a given

collection of sparse coefficient maps. Just as with CUP, Eq. (43) can be solved using the alternating

directions multiplier method, ADMM (Boyd et al., 2010), by introducing an auxiliary variable as

argmin
d,p,q

1
2

∥∥X̄d− s
∥∥2

2 + ιCZ(q),

s.t.: q = d.

(55)

The augmented Lagrangian for Eq. (55) can be written as stated in (Barajas-Solano et al.,

2019a) as

L {d,q, t}= 1
2

∥∥X̄d− s
∥∥2

2 + ιCZ(q)+
σ

2
∥d−q+ t∥2

2 , (56)

where q is the so called dual variable. The variable updates are obtained from Eq. (56) as

d j+1 := argmin
d

σ

2

∥∥X̄d− s
∥∥2

2 +
σ

2

∥∥d−q j + t j∥∥2
2 , (57)



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 69

q j+1 := argmin
q

σ

2

∥∥d j+1 −q+ t j∥∥2
2 + ιCZ(q), (58)

t j+1 = t j +d j+1 −q j+1. (59)

The dual variable t can be interpreted as a vector of prices and Eq. (59) is then called a price

update or price adjustment step (Boyd et al., 2010). The solutions to subproblems (57) and (58)

are presented bellow.

Convolutional Dictionary Update. Problem (57) can be solved efficiently by profiting the

DFT convolution theorem as described for problem (46), thus rewriting problem (57) as

d̂ j+1 := argmin
d̂

σ

2

∥∥∥ ˆ̄Xd̂− ŝ j
∥∥∥2

2
+

σ

2

∥∥d̂− ŵ j∥∥2
2 , (60)

by replacing w j = q j − t j ∈ RMNLMd and creating ŵ j =∈ CMNLMd by folding (Algorithm 8, L1 ×

...×LN̄ = M ×N ×L), transforming to the Fourier domain (Algorithm 10), and unfolding (Algo-

rithm 4, L1 × ...×LN̄ = M×N ×L). Just as with the CUP update steps, matrix ˆ̄X is built from the

updated coefficient maps v j+1 in Eq. (54) by folding (Algorithm 8, L1 × ...×LN̄ = M ×N ×L),

transforming to the Fourier domain (Algorithm 10) and creating the equivalent operator (Algo-

rithm 6, L1 × ...×LN̄ = M ×N ×L). Solving the derivative and equaling to zero, the solution to

Eq. (60) is

d̂ j+1 =
(

ˆ̄XH ˆ̄X+ I
)−1( ˆ̄XH ŝ+ ŵ j

)
. (61)

Matrix ˆ̄X have the same concatenated diagonal structure as ˆ̄D in CUP, then Eq. (61) can be
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solved directly using the optimized routine explained in Appendices 2 and 3 as

d̂ j+1 = b− ˆ̄XH
(

I+ ˆ̄X ˆ̄X
H
)−1

ˆ̄Xb, (62)

with b = ˆ̄Xŝ+ ŵ j. Finally, the update d j+1 is obtained by folding (Algorithm 8,L1 × ...× LN̄ =

M ×N ×L), transforming from the Fourier domain (Algorithm 12) and unfolding (Algorithm 4,

L1 × ...×LN̄ = M×N ×L).

Note that the solutions (53) and (62) has similar structures due to the similar ℓ2− ℓ2 formu-

lations. The main difference is the lineal operator D̂ and X̂, respectively. These two operators have

the same concatenated diagonal matrices structure, which helps to simplify the numerical imple-

mentation.

Desired Convolutional Dictionary Update. Eq. (58) has closed solution via the proximal

of ιCZ (Rockafellar, 1970)

q j+1 =
ZpZT

p (d j+1 + t j)∥∥ZpZT
p (d j+1 + t j)

∥∥ . (63)

The DUP solution is summarized in Algorithm 14.

Algorithm 14 DUP Solution for 3D CDSR

Require: X̄, ˆ̄X, q j, t j, σ and sizes M, N, L and Md .
1: Build ẑ j.
2: Solve d j+1 in Eq. (57) using (Eq. (61).
3: Solve q j+1 Eq. (58) using (Eq. (63).
4: Solve t j+1 in Eq. (59).
5: return :Convolutional dictionary d j+1, split variable update q j+1, and dual variable update t j+1.
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Proposed CSC3D Algorithm. The proposed CSC3D framework consists in alternately

solving two related problems, CUP and DUP, in order to obtain both a collection of sparse coeffi-

cient maps and convolutional dictionary elements. Additionally, the regularization parameters ρ,λ

and σ can be updated in each iteration according to (Boyd et al., 2010), section 3.3, or they can be

set to a fixed value. Thus, this doctoral dissertation proposes to solve both problems alternately, as

exposed in Algorithm 15.

Algorithm 15 CSC3D Algorithm
Require: {XXX 0

m ∈RM×N×L|m = 1, ...,Md} as zeros ; {DDD0
m ∈RM×N×L|m = 1, ...,Md} as random; M,N,L,Md ,d,ρ0,λ ,

σ0 and s.
1: Set {VVV 0

m}= {XXX 0
m} and build the vectorization v0.

2: Set {QQQ0
m}= {DDD0

m} and build the vectorization q0.
3: Build D̄ and ˆ̄D from {DDD0

m}.
4: Set j = 0.
5: repeat
6: Solve CUP as explained in Algorithm 13.
7: Update ρ j+1 according to (Boyd et al., 2010), section 3.3
8: Fold v j+1 into {VVV j+1

m }, as explained in Algorithm 7, and build X̄ and ˆ̄X from it.
9: Solve DUP as explained in Algorithm 14.

10: Update σ j+1 according to (Boyd et al., 2010), section 3.3
11: Fold q j+1 into {QQQ j+1

m }, as explained in Algorithm 7, and build D̄ and ˆ̄D from it.
12: until the residuals meet a given tolerance, or completed a number of iterations.
13: return the sparse coefficient maps {VVV j+1

m } and the convolutional dictionary elements {QQQ j+1
m }

As with all iterative methods, ADMM is sensitive to initial values. Different empiric initia-

lization alternatives for the initial dictionary elements {DDD0
m} were tested, which included a full

random cube and variations of zero-value cubes with some non-zero positions. The chosen alter-

native can be described as a centered random-value subcube ∈Rd2×d2×d2 , with d2 = d/2, within an

all zeros Rd×d×d cube. This variation showed the best trade-off between the highest Peak Signal-

to-Noise Rate value (PSNR, for reconstruction quality) and the lowest NoN Zero percentage of

elements (NNZ, for sparsity), in both mean and standard deviation.
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About the convergence boundaries analysis, the proposed CSC3D is strongly based in the

same Basis Pursuit scheme used in Wohlberg’s CBPDN. This is, a convex ℓ2 − ℓ1 formulation for

CUP and a ℓ2−indicator function for DUP. Both problems are essentially an ℓ2 and a convex res-

triction formulation. The main difference is that CSC3D replaces the 2D convolutions per layer

in CBPDN for one full 3D convolutional sparse representation, i.e. a 3D cyclic convolution. As

explained in (Bristow and Eriksson, 2013), the introduction of the convolution operations in the

ADMM does not modify the convergence of the ADMM solution (Nishihara et al., 2015), even if

a global minimum cannot be guaranteed. When expressed in the Fourier domain, the structures of

both CBPDN and CSC3D are identical, thus implying the same convergence boundaries. Howe-

ver, CSC3D’s higher numerical dimension requires a higher grade of optimization, as explained in

Appendices 2 and 3.

Estimated Numerical Complexity. We will now estimate the numerical complexity of the

more complex subproblems in CUP and DUP. Subproblem (47)’s solution, Eq. (54), is obtained by

a soft-thresholding problem and subproblem (58)’s solution, Eq. (63), is akin to a hard-thresholding

problem. Both complexities are negligible.

One of the most important sources of numerical complexity is the 3D convolutional ope-

ration, with complexity O((MNL)2), considering that the dictionary elements are zero-padded to

match the dimensions of the sparse coefficient maps. The 3D convolution complexity is reduced
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to a fraction by expressing it as a Hadamard product, profiting on the Discrete Fourier Transform

(DFT) Theorem, reducing the cost to O(MNLlog(MNL)).

Finally, the greatest source of numerical complexity are the inversions in Eqs. (52) and

(61), as solutions to subproblems (46) and (57). Again, the canonical complexity for inverting

ÂHÂ+αI ∈ RMNLMd×MNLMd is O((MNLMd)
3). However, by profiting on the concatenated dia-

gonal structure of ˆ̄D and ˆ̄X and the dimensions rearrangement exposed in Appendix B of (Barajas-

Solano et al., 2019a), the inversion complexity falls to O(MN LMd) as shown in Eqs. (53) and

(62). Table 2 summarizes the different complexities for the stated subproblems and their solutions.

Eq. Complexity Solution
(47) and (58) Negible Implemented
(46) and (57) O((MNLMd)

3) Original
(53) and (62) O(MNLMd) Implemented

Table 2
Complexity review of the proposed CSC3D algorithm.

5.3. CSC3D Synthetic Performance Evaluation

The proposed CSC3D algorithm performance was tested with a use case, specifically a denoising

scheme with sn = s+σηηη , where ηηη is a standard white Gaussian noise with standard deviation

σ > 0. The noise levels included 10dB, 15dB, and 20dB of SNR. The details for the performance

evaluation are listed bellow.
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Figure 10. Example spectral bands of the test images: Pavia University (a) full frequencies and (c)
high frequencies; Salinas (b) full frequencies and (d) high frequencies.
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Test Images. The test images were 128× 128× 16 sections of the Pavia University and

Salinas spectral datasets, plus its high-frequencies versions (see Figure 10). Wolhberg et al. (Wohl-

berg, 2016c) reported that the convolutional dictionaries perform better when reconstructing the

high frequency components of an image. Therefore, the high-frequency components for the SIs

sections were extracted using a high pass filter, and included as test images.

Performance Evaluation. The recovery performances were compared against two (2)

state-of-the-art techniques: a full-basis approach and a synthetic signal-based approach, as listed

bellow

Arce et. al. Kronecker basis (Arce et al., 2014), based in the SSR framework.

Foi et. al. 3-D transform-domain collaborative filtering BM3D (Dabov et al., 2007).

The performance metrics used were the Peak Signal to Noise Ratio (PSNR) for measuring

the recovery quality, and the ℓ0 norm for measuring the sparsity of the solutions. Considering that

the convolutional coefficient maps are in fact a collection of Md sparse cubes RM×N×L×Md , compa-

red to the single sparse cube RM×N×L of the Kronecker basis, then the sparsity of the convolutional

coefficient maps will be measured as

sparsity = maxMd
m=1 ∥Xm∥0 . (64)

This is, the sparsity of the convolutional solutions will be the maximum sparsity of the individual

coefficient maps.
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Initializations and Regularizer Parameters. The initial values for the collection of coef-

ficients were set to zero for the three schemes (CSC3D, SSR y BM3D), and the initial dictionary

was established as a collection of random Md = 30 dictionary elements of cubic size d = 8 for

CSC3D. The proposed algorithm has proven to be sensible to the initialization of the dictionary,

with the heuristic initialization strategy with the best results in terms of PSNR as

Dm(i, j,k) =


N (0,1) if 3 ≤ i, j,k ≤ 6

0 otherwise.

(65)

Results. Figure 11 shows that, when dealing with natural SIs, the proposed 3D CSC algo-

rithm is able to match and outperform the denoising performance of the both the Kronecker basis,

BM3D, and BM4D at 15dB and 20dB SNR levels (see Figure 11(a) and 11(b)). However, when

dealing with higher levels of noise, 10dB SNR, the recovery quality drops. This is due to the effect

of higher levels of noise in Eq. (43), affecting the estimation of the dictionary elements, leading to

possible over fitting issues. When dealing with the high frequencies versions of the datasets, the

proposed 3D CSC outperform the state-of-the-art at all noise levels by up to 5dB (see Figure 11(c)

and 11(d)). For more information about the performance of the proposed CSC3D, please refer to

Appendix 5.
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SSR BM4D

Figure 11. Recovery quality of the simulated results using the Peak Signal-to-Noise Ratio (PSNR)
metric, at three different noise levels for the Pavia (a) full (b) high frequencies and Salinas (c) full
(d) high frequencies test images. The proposed CSC3D is compared against state-of-the-art
denoising techniques as SSR, BM3D, and DM4D.
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5.4. Convolutional Sparse Coding for Compressive Spectral Imaging (CSC3D-CSI)

The main objective of this doctoral dissertation is to profit the properties of the CDSR frame-

work for recovering a SI from compressed measurements. This means, to change the SSR based

representation basis ΨΨΨ proposed by Arce et. al. in

argmin
θθθ

1
2
∥HΨΨΨθθθ −y∥2

2 +λ ∥θθθ∥1 , (66)

by a CSDR model. In (Barajas-Solano et al., 2019b) we proposed the convex minimization problem

argmin
x

1
2

∥∥HD̄x−y
∥∥2

2 +λ ∥x∥1 , (67)

as an expansion of the formulation of CUP in Eq. (39). Eq. (67) includes the sensing matrix H ∈

RK×MNL and the compressive measurements y = Hvec(SSS ) ∈ RK , with K < MNL. Eq. (67) aims

to learn a collection of sparse coefficients x = vec({XXX m, m = 1, ...,Md |XXX m ∈ RM×N×L}) from

some compressed measurements y, using a fixed collection of convolutional dictionary elements

D̄ = f ({DDDm, m = 1, ...,Md |DDDm ∈RdM×dN×dL}), in order to recover a SI of interest SSS ∈RM×N×L.

As explained in section 4.1., operator D̄ can be treated as a sparsifying operator but should not be

considered as a basis under any circumstance.

The complimentary problem, obtaining a collection of convolutional dictionary elements

d = vec({DDDm, m = 1, ...,Md | DDDm ∈ RdM×dN×dL}) from a collection of sparse coefficient X̄ =
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f ({XXX m, m = 1, ...,Md |XXX m ∈ RM×N×L}) maps can be formulated as

argmin
d

1
2

∥∥HX̄d−y
∥∥2

2 + ιCZ(d), (68)

with ιCZ defined in Eq. (41) and (42).

Coefficients Update Problem for CSI (CUP-CSI). Eq. (67) is referred to as the Coef-

ficients Update Problem for CSI (CUP-CSI) and can be solved using the alternating directions

multiplier method, ADMM (Boyd et al., 2010), just as the original CSD3D problem. We begin by

introducing two auxiliary u and v variables as

argmin
x,u,v

1
2
∥Hu−y∥2

2 +λ ∥v∥1 ,

s.t.: u = D̄x,

v = x.

(69)

The augmented Lagrangian for Eq. (69) can be written as

L {x,u,v, f,g}= 1
2
∥Hu−y∥2

2 +λ ∥v∥1 +
ρ

2

∥∥D̄x−u+ f
∥∥2

2 +
ρ

2
∥x−v+g∥2

2 , (70)

where f and g are the so called dual variables. The variable updates are obtained from Eq. (70) as

x j+1 := argmin
x

ρ

2

∥∥D̄x−u j + f j∥∥2
2 +

ρ

2

∥∥x−v j +g j∥∥2
2 , (71)
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u j+1 := argmin
u

1
2
∥Hu−y∥2

2 +
ρ

2

∥∥D̄x j+1 −u+ f j∥∥2
2 , (72)

v j+1 := argmin
v

ρ

2

∥∥x j+1 −v+g j∥∥2
2 +λ ∥v∥1 , (73)

f j+1 = f j + D̄x j+1 −u j+1, (74)

g j+1 = g j +x j+1 −v j+1. (75)

The dual variables f and g can be interpreted as vectors of prices, and Eqs. (74) and (75) are

called price updates or price adjustment steps. The dual variables are updated separately to drive

the variables into consensus, and the quadratic regularization helps pulling the variables toward

their average value while still attempting to minimize variables x, u and v (Boyd et al., 2010). The

solutions to subproblems (71) to (73) are presented bellow.

Coefficient Maps Update. Eq. (71) is similar in its formulation to Eq. (46), with a minor

difference in the first ℓ2 element. Then, just as Eq. (46), Eq. (71) can be solved efficiently in

the Fourier Domain by performing the following rearrangements. First, lets replace z j = u j −

f j ∈ RMNL and create ẑ j ∈ CMNL by folding, transforming to Fourier and unfolding following

Algorithms 7, 9, and 3 respectively with L1× ...×LN̄ = M×N×L. Second, lets replace w j = v j −

g j ∈RMNLMd and create ŵ ∈CMNLMd by folding, transforming to Fourier and unfolding following

Algorithms 8, 10, and 4 respectively with L1 × ...×LN̄ = M ×N ×L. Finally, we can rewrite Eq.
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(71) in the Fourier domain as

x̂ j+1 := argmin
x̂

ρ

2

∥∥∥ ˆ̄Dx̂− ẑ j
∥∥∥2

2
+

ρ

2

∥∥x̂− ŵ j∥∥2
2 . (76)

Solving the derivative of Eq. (76) and equaling to zero, the solution to the optimization

problem is

x̂ j+1 =
(

ˆ̄DH ˆ̄D+ I
)−1( ˆ̄DH ẑ j + ŵ j

)
, (77)

which can be solved directly by using a combination of the Woodbury formula and exploiting the

concatenated structure of ˆ̄D, as explained in Appendix 3, with solution

x̂ j+1 = b− ˆ̄DH
(

I+ ˆ̄D ˆ̄D
H
)−1

ˆ̄Db, (78)

with b = ˆ̄DH ẑ j + ŵ j ∈ CMNLMd . Finally, the update x j+1 is obtained from x̂ j+1 by folding, ob-

taining the inverse transform and unfolding following Algorithms 8, 12, and 4 respectively with

L1 × ...×LN̄ = M×N ×L.

Note that the solution for x̂ j+1 in both CUP and CUP-CSI are similar, with a minor dif-

ference in the derivation of the auxiliary variable b. This similarity is due to a couple of factors.

First, the ADMM method generates simpler ℓ2 − ℓ2 minimizations for both CUP and CUP-CSI.

Second, the proposed CSC3D, and its linear representation, is compact and modular enough to be

integrated within the ADMM method. The modularity and formulation simplicity of the CSC3D
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operator is one of its strongest advantages.

Temporal Recovery From Compressed Measurements Update. Unlike Eq. (71), Eq. (72)

can be solved directly in the spatial domain by factorizing its derivative as

u j+1 =
(
HT H+ρI

)−1 (HT y+ρz j) , (79)

where z j = D̄x j+1 + f j ∈ RMNL. The inverse of matrix HT H+ ρI ∈ RMNL×MNL is expensive to

compute directly, so Eq. (79) is solved using Woodbury’s matrix identity, as explained in Appendix

2, as

u j+1 =
1
ρ

[
b−HT (

ρI+HHT)−1 Hb
]
, (80)

with b = HT y+ρz j ∈ RMNL.

Sparse Coefficient Maps Update. Eq. (73) has a closed form solution via soft thresholding

(Rockafellar, 1970) as

v j+1 = S λ

ρ

(
x j+1 +g j) . (81)

The CUP-CSI solution is summarized in Algorithm 16.

Dictionary Update Problem for CSI (DUP-CSI). Eq. (68) is referred to as the Dictio-

nary Update Problem for CSI (DUP-CSI) and can also be solved using the alternating directions
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Algorithm 16 CUP for CSI Solution

Require: D̄, ˆ̄D, H, u j, f j, v j, g j, ρ , λ and sizes M, N, L and Md .
1: Build ŵ j and ẑ j.
2: Solve x j+1 in Eq. (71) using (Eq. (78).
3: Solve u j+1 in Eq. (72) using (Eq. (79).
4: Solve v j+1 Eq. (73) using (Eq. (81).
5: Solve f j+1 and g j+1 in Eq. (74) and Eq. (75), respectively.
6: return Sparse coefficient maps v j+1, split variable updates u j+1 and v j+1, and dual variable updates f j+1 and

g j+1.

multiplier method, ADMM (Boyd et al., 2010), just as the CUP-CSI problem. We begin by intro-

ducing two auxiliary variables p and q as

argmin
d,p,q

1
2
∥Hp−y∥2

2 + ιCZ(q),

s.t.: p = X̄d,

q = d.

(82)

The augmented lagrangian for Eq. (82) is expressed as

L {d,p,q,r, t}= 1
2
∥Hp−y∥2

2 + ιCZ(q)+
σ

2

∥∥X̄d−p+ r
∥∥2

2 +
σ

2
∥d−q+ t∥2

2 , (83)

and the ADMM iterations as follows

d j+1 := argmin
d

σ

2

∥∥X̄d−p j + r j∥∥2
2 +

σ

2

∥∥d−q j + t j∥∥2
2 , (84)

p j+1 := argmin
p

1
2
∥Hp−y∥2

2 +
σ

2

∥∥X̄d j+1 −p+ r j∥∥2
2 , (85)
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q j+1 := argmin
q

σ

2

∥∥d j+1 −q+ t j∥∥2
2 + ιCZ(q), (86)

r j+1 = r j + X̄d j+1 −p j, (87)

t j+1 = t j +d j+1 − t j. (88)

Just as with CUP-CSI, the dual variables r and t are interpreted as vectors of prices, and

are updated separately to drive the variables d, p, and q into consensus (Boyd et al., 2010). The

solutions to subproblems (72) to (86) are presented bellow.

Convolutional Dictionary Update. Eq. (84) is akin to Eq. (71) and can be can be solved

efficiently by profiting the DFT convolution theorem by rewriting it in the Fourier domain as

d̂ j+1 := argmin
d̂

σ

2

∥∥∥ ˆ̄Xd̂− ẑ j
∥∥∥2

2
+

σ

2

∥∥d̂− ŵ j∥∥2
2 . (89)

Just as with the CUP-CSI update steps, matrix ˆ̄X is built from the solution v j+1 in Eq. (81)

by folding, transforming to Fourier, and creating the equivalent operator following Algorithms 8,

10, and 6 respectively. Second, we replace z j = p j
l − r j

l and create ẑ j by folding, transforming to

Fourier and unfolding following Algorithms 7, 9, and 3 respectively. Third, we replace w j = q j
l −t j

l

and create ŵ j by folding, transforming to Fourier and unfolding following Algorithms 8, 10, and

4 respectively. Creating ˆ̄X, ẑ j, and ŵ j uses Ł1 × ...ŁN̄ = M×N ×L. Finally, solving the derivative
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and equaling to zero, the solution to Eq. (89) is obtained as

d̂ j+1 =
(

ˆ̄XH ˆ̄X+ I
)−1( ˆ̄XH ẑ j

l + ŵ j
)
. (90)

Matrix ˆ̄X have the same concatenated diagonal structure as ˆ̄D in CUP-CSI, then Eq. (90)

can be solved directly, using the optimized routine explained in Appendix 3, as

d̂ j+1 = b− ˆ̄XH
(

I+ ˆ̄X ˆ̄X
H
)−1

ˆ̄Xb, (91)

with b = ˆ̄XH ẑ j
l + ŵ j ∈ CMNLMd . Finally, the update d j+1 is obtained by folding, transforming

from the Fourier domain and unfolding (Algorithms 8, 12, and 4 respectively with L1 × ...×LN̄ =

M×N ×L).

Temporal Recovery From Compressed Measurements Update. The solution to Eq (85) is

also obtained by applying factorization to its derivative in the spatial domain as

p j+1 =
(
HT H+σI

)−1 (HT y+ρz j) , (92)

where z j = X̄d j+1 + r j ∈ RMNL. As with Eq. (79), the matrix inversion cannot be solved directly

due to its size, and must be solved using Woodbury’s matrix identity, as explained in Appendix 2,

as

p j+1 =
1
σ

[
b−HT (

σI+HHT)−1 Hb
]
, (93)
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with b = HT y+σz j ∈RMNL. Note that Eq. (93) has the same structure than Eq. (80) due Eqs. (72)

and (85) having the same structure. The only difference lies in the auxiliary b which is specific for

both CUP-CSI and DUP-CSI.

Desired Convolutional Dictionary Update. Eq. (86) can be rewritten as

q j+1
m := argmin

qm

σ

2

∥∥d j+1
m −qm + t j

m
∥∥2

2 + ιCZ(qm), (94)

∀ m = 1, ...,Md . Solving via the proximal of ιCZ (Rockafellar, 1970), the closed solution for Eq.

(94) is

q j+1
m =

ZpZT
p (d

j+1
m + t j

m)∥∥∥ZpZT
p (d

j+1
m + t j

m)
∥∥∥

2

, (95)

and q j+1 = [q j+1
1

T
...q j+1

Md

T
]T .

The DUP-CSI solution is summarized in Algorithm 17.

Proposed CSC3D-CSI Algorithm. The proposed Compressive Spectral Convolutional

3D for CSI (CSC3D-CSI) frame- work consists in alternately solving two related problems, CUP-

CSI and DUP-CSI, for obtaining both a collection of sparse coefficient maps and convolutional

dictionary elements from compressed spectral measurements. As in CSC3D, the regularization pa-

rameters can be updated in each iteration according to (Boyd et al., 2010), section 3.3, or they can
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Algorithm 17 DUP for CSI Solution

Require: X̄, ˆ̄X, H, p j, r j, q j, t j, σ and sizes M, N, L and Md .
1: Build ŵ j and ẑ j.
2: Solve d j+1 in Eq. (84) using Eq. (90).
3: Solve p j+1 in Eq. (85) using Eq. (93).
4: Solve q j+1 Eq. (86) using Eq. (95).
5: Solve r j+1 and t j+1 in Eq. (87) and Eq. (88), respectively.
6: return Convolutional dictionary d j+1, split variable updates p j+1, and q j+1, and dual variable updates r j+1 and

t j+1.

Algorithm 18 Compressive Spectral Convolutional 3D for CSI Algorithm - CSC3D-CSI

Require: {XXX 0
m} as zeros ∈ RM×N×L×Md ; {DDD0

m} as random ∈ Rd×d×d×Md ; H ∈ RK×MNL; M,N,L,Md ,d,ρ0,λ and
σ0.

1: Set {VVV 0
m}= {XXX 0

m} and build the vectorization v0.
2: Set {QQQ0

m}= {DDD0
m} and build the vectorization q0.

3: Solve SSS 0 = ∑
Md
m=1DDD0

m
3∗XXX 0

m.
4: Set UUU 0 =PPP0 =SSS 0 and build the respective vectorizations u0 and p0.
5: Build D̄ and ˆ̄D from {DDD0

m}.
6: Set j = 0.
7: repeat
8: Solve CUP-CSI as explained in Algorithm 16.
9: Update ρ j+1 according to (Boyd et al., 2010), section 3.3

10: Fold v j+1 into {VVV j+1
m }, as explained in Algorithm 7, and build X̄ and ˆ̄X from it.

11: Solve DUP-CSI as explained in Algorithm 17..
12: Update σ j+1 according to (Boyd et al., 2010), section 3.3
13: Fold q j+1 into {QQQ j+1

m }, as explained in Algorithm 7, and build D̄ and ˆ̄D from it.
14: until the residuals meet a given tolerance, or completed a number of iterations.
15: return the sparse coefficient maps {VVV j+1

m } and the convolutional dictionary elements {QQQ j+1
m }
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be set to a fixed value. Thus, this doctoral dissertation propose to solve both problems alternately,

as exposed in Algorithm 18.

A mayor change in CSC3D-CSI, when compared with CSC3D and CBPDN, is the intro-

duction of a second split variable per problem, due to the presence of the matrix H. The additional

split variable simplifies the lineal formulation, generating an additional ℓ2 − ℓ2 convex optimiza-

tion subproblem. Then, the proposed CSC3D-CSI framework solves two ℓ2−ℓ2 minimizations per

subproblem, compared to CSC3D and CBPDN which solves only one. Now, the additional ℓ2 − ℓ2

minimization has the same structure as the original one proposed in CBPDN, and does not requi-

red to be solved in the Fourier domain. This identical structure, and the performance of numerical

experiments, leads to the conclusion that the convergence boundaries are not stretched far from the

canonical formulation.

Estimated Numerical Complexity. We will now estimate the numerical complexity of the

more complex subproblems in CUP-CSI and DUP-CSI. Subproblem (73)’s solution, Eq. (81), is

obtained by a soft-thresholding problem and subproblem (86)’s solution, Eq. (95), is akin to a

hard-thresholding problem. Both complexities are negligible.

Subproblems (72) and (85) have the same solution structure where the inversion of HTH+

αI ∈ RMNLT×MNLT represents the higher complexity. According to the Appendix A of (Barajas-

Solano et al., 2019a), their complexity can be reduced from O((MNL)3) to O(K2MNL), with
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Eq. Complexity Solution
(73) and (86) Negligible Implemented
(72) and (85) O((MNL)3) Original
(80) and (93) O(K2MNL) Implemented
(71) and (84) O((MNLMd)

3) Original
(78) and (91) O(MNLMd) Implemented

Table 3
Complexity review of the proposed CSC3D+CSI algorithm.

K ≪ MNL and H ∈ RK×MNLT , by profiting on HHT = I.

One of the most important sources of numerical complexity is the 3D convolutional ope-

ration, with complexity O((MNL)2), considering that the dictionary elements are zero-padded to

match the dimensions of the sparse coefficient maps. The 3D convolution complexity is reduced

to a fraction by expressing it as a Hadamard product, profiting on the Discrete Fourier Transform

(DFT) Theorem, reducing the cost to O(MNLlog(MNL)).

Finally, the greatest source of numerical complexity are the inversions in Eqs. (77) and

(90), as solutions to subproblems (71) and (84). Again, the canonical complexity for inverting

ÂHÂ+αI ∈ RMNLMd×MNLMd is O((MNLMd)
3). However, by profiting on the concatenated dia-

gonal structure of ˆ̄D and ˆ̄X and the dimensions rearrangement exposed in Appendix B of (Barajas-

Solano et al., 2019a), the inversion complexity falls to O(MNL Md). Table 3 summarizes the

different complexities for the stated subproblems and their solutions.
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5.5. CSC3D-CSI Synthetic Performance Evaluation

The performance evaluation of the proposed CSC3D-CSI algorithm was carried out following a

four-step scheme:

A. Sparse Representation. First, we evaluate the performance of the proposed CSC3D-

CSI algorithm for H = I. The inclusion of matrix H introduces a second ℓ2 − ℓ2 minimization,

increasing considerably the proposed solution complexity. It is necessary to measure the impact of

the second ℓ2 − ℓ2 minimization in a controlled simulation, and verify that CSC3D-CSI is able to

represent SIs. The performance of the proposed CSC3D-CSI algorithm is compared to the CBPDN

and the SSR model. More precisely, we use the Kronecker basis as the representation basis for re-

covering an SI from compressive spectral measurements, using an ADMM based algorithm (Boyd

et al., 2010).

The performance comparison is realized by computing the Peak Signal-to-Noise Ratio

(PSNR, dB) for assessing the reconstruction quality; while the percentage of non-zero elements

(NNZ,%) is used for evaluating the sparsity of the estimated coefficients. NNZ can be also des-

cribed as ∥x∥0 / |x| for the estimated coefficients vector using the SSR model, where |x| is the

total number of coefficients. For the case of CSC3D-CSI and CBPDN, the coefficients comprise a

collection of Md elements. The sparsity of CSC3D-CSI’s and CBPDN’s coefficients is measured
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according to (Papyan et al., 2017) as

NNZ = maxMd
m=1

∥xm∥0
|xm|

. (96)

B. Recovery from 3D-CASSI measurements. We evaluate the performance of the propo-

sed CSC3D-CSI from compressive spectral measurements using the 3D-CASSI architecture (Cao

et al., 2016). The quality of the recovered SI is assessed for different noise levels and various

compression ratios. The performance of the proposed CSC3D-CSI algorithm is compared to four

different state-of-the-art methods: a sparse signal model based method (SSR), the modified version

of the Approximate Message Passing method (Tan et al., 2016), a simplified version of an unmi-

xing approach (Vargas et al., 2019), and the low-rank minimization scheme (Gelvez et al., 2017).

C. Recovery from C-CASSI measurements. We evaluate the performance of the propo-

sed CSC3D-CSI from compressive spectral measurements using the C-CASSI architecture (Arce

et al., 2014). Preliminary tests showed low performances of the proposed CSC3D-CSI algorithm

with the C-CASSI architecture. For this reason we propose a side-information acquisition scheme,

based on (Galvis et al., 2017; Yuan et al., 2015). The performance of the CSC3D-CSI algorithm

along the side-information scheme is assessed for different noise levels and various compression

ratios, and compared to the four state-of-the-art recovery methods.
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D. Robustness to acquisition noise. The proposed Gaussian noise follows an ideal esti-

mation of the nature of the acquisition noise. The final step is to evaluate the performance of the

proposed CSC3D-CSI algorithm with a more realistic noise model. The proposed algorithm is also

compared against state-of-the-art recovery methods for comparison.

The test images used for the performance evaluation are sections of the Pavia University

(Gamba, 2004), Salinas Valley (del Pais Vasco, 2012), and Beads SIs (Yasuma et al., 2008) data-

sets. More precisely, each SI section has a size of 128× 128 pixels and 16 spectral bands. Con-

sidering that convolutional dictionaries have a low performance for representing low-frequency

components of multidimensional signals (Wohlberg, 2016a), this work uses the high-frequencies

versions of the original datasets, which are obtained by performing a high-pass filtering stage to

the image data. For illustrative purposes, Fig. 12 displays some bands of the datasets under test and

their respective high-frequency versions. The test methods Unmixing and Low-Rank require the

number of endmembers as input. Considering that these work uses the high frequency versions of

the selected datasets, then the number of endmembers were estimated according to (Bioucas-Dias

et al., 2008) and (Bacca et al., 2019) as 7 for Pavia, 3 for Salinas, and 4 for Beads.

CSC3D-CSI Sparse Representation Performance. The first evaluation scheme focuses

on assessing the performance of the proposed CSC3D-CSI algorithm for sparsely representing an

SI. For this case, the sensing matrix is reduced to the identity matrix, i.e. H = I. In particular, the

high-frequency versions of the SI under tests are recovered using the proposed algorithm, where a
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Figure 12. Example spectral bands recovered using the proposed CSC3D-CSI framework of the
(a) Pavia University, (b) Salinas, and (c) Beads test datasets, and its corresponding
high-frequencies-only versions.
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reconstructed version of the image under test is obtained by adding the low-frequency components

to the previously recovered high-frequency image.

For comparison purposes, Fig. 13 shows the evolution of the PSNR and NNZ of the propo-

sed CSC3D-CSI as the number of iterations increases. Note that the proposed CSC3D-CSI algo-

rithm outperforms both the SSR based approach and the CBPDN algorithm. Specifically, the pro-

posed algorithm provides a gain up to 10dB, keeping the sparsity at competitive levels. For illustra-

tive purposes, Fig. 14 displays some bands of the reconstructed SI using the proposed CSC3D-CSI

algorithm, with their respective PSNR values.

Fig. 15 shows the effect of size of the dictionary elements d = {6,8,10} and the number

of dictionary elements Md = {20,30,40} on the reconstruction quality. The PSNR values are ob-

tained by averaging 5 realizations for each combination d −Md , where for each trial a different

initial set of convolutional dictionaries {DDD0
m} are generated. The number of dictionary elements

affects directly the computational time of the proposed algorithm, so a small value for Md is pre-

ferable. Considering those results, we use a collection of 30 convolutional dictionary elements of

size 8×8×8.

Performance Using the 3D-CASSI CSI Architecture. The second step in the evaluation

scheme is to test the performance of the proposed CSC3D-CSI algorithm for recovering an SI from

compressive measurements using the 3D-CASSI architecture (Cao et al., 2016). More precisely,
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Figure 13. Simulated results of the performance of (a) PSNR and (b) NNZ for the proposed
CSC3D-CSI algorithm, the Kronecker basis (SSR), and the CBPDN algorithm.

Figure 14. Simulated results of the reconstruction quality for some chosen bands using the
proposed CSC3D-CSI algorithm.
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Figure 15. Mean PSNR of the simulation results at attempting to recover the Pavia scene at
various values of d and Md, using the proposed CSC3D-CSI. The standard deviations were well
bellow 1% of the mean PSNR, thus are not shown.

we evaluate the proposed algorithm over the high-frequency versions of the datasets, which can be

experimentally obtained using an optical architecture that filters out an SI’s low-frequency compo-

nents. First, the proposed algorithm was tested without noise using K = 4 shots, which corresponds

to a compression ratio of 0.25 given by the formula γ = KMN/MNL (Cao et al., 2016). Fig. 16

exhibits some recovered bands using the proposed algorithm with their corresponding PSNR.

Second, the proposed algorithm was tested for various levels of additive noise and various

levels of compression. Fig. 17 shows the effect of both the compression ratio and SNR levels over

the recovery quality. For different levels of compression the SNR of the compressive measurements

is fixed to 20dB. For different levels of noise the compression ratio is fixed to 4 shots.

For comparison purposes, the performance of the recovered SI using the the test methods

are also displayed. The proposed algorithm outperforms the test methods, at a fixed noise level

of 20dB SNR, for the entire set of compression ratios (see Fig. 17.(a)), but falls behind the SSR

approach when dealing with high levels of noise (see Fig. 17(b)). This can be due to the effect of

the sensing noise over the DUP-CSI problem, decreasing the proposed algorithm performance. On
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Figure 16. Simulation results of the recovery quality for some chosen bands from compressive
spectral measurements using the proposed CSC3D-CSI algorithm and the CSI 3D-CASSI
architecture with compression ratio of 0.25.

the other hand, the SSR based approach seems to reach a maximum level of performance at 15-

20dB of SNR, and non-improving with lower noise levels. The proposed CSC3D-CSI algorithm

does not show this behavior and improves its performance with low noise levels. It is worth noting

the low performance of the Unimixing method. This particular method includes a Total Variation

component that performs poorly with high-frequency images, decreasing its global performance.

Table 4 shows the performance comparison between the proposed CSC3D-CSI, the SSR
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Figure 17. Mean PSNR of the simulation results at attempting to recover the Pavia SI using
proposed CSC3D-CSI and the CSI 3D-CASSI architecture, for the various methods, (a) for fixed
20dB SNR and (b) fixed 4 shots. The standard deviations for five repetitions were well bellow 1%
of the mean PSNR, thus are not shown.

based approach, the HS-AMP, simplified Unfixing, and the Low-Rank methods, for five levels of

noise and four different compression ratios (number of shots).

The SSR based approach performs better with high noise levels (10dB) and high compres-

sion ratios (3 shots), but the proposed CSC3D-CSI matches its performance when the noise levels

decrease. The same behavior is observed for the 4 levels of compression, as with the non-increasing

performance of the SSR approach above 20dB SNR. The proposed CSC3D-CSI outperforms all

the state-of-the-art methods by up to 4dB with noise levels over 20dB SNR.

Performance Using the C-CASSI CSI Architecture. The third step in the performance

evaluation is to test the performance of the proposed CSC3D-CSI algorithm for recovering an SI

from compressive measurements obtained using the C-CASSI architecture. Preliminary tests sho-
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3 Shots (0.19) 4 Shots (0.25) 5 Shots (0.31) 6 Shots (0.38)
Pavia Salinas Beads Pavia Salinas Beads Pavia Salinas Beads Pavia Salinas Beads

10dB
SSR 37.36 45.20 33.38 36.86 45.66 34.68 38.17 46.27 35.00 38.81 45.67 34.82

CSC3D-CSI 35.30 42.05 31.91 36.40 44.67 32.44 36.44 44.88 33.22 37.38 45.26 33.81
HS-AMP 34.85 41.68 31.83 35.15 42.09 33.49 35.39 42.27 33.18 35.43 42.69 33.74

Unmixing 26.83 32.03 20.84 27.27 32.92 23.93 27.53 33.08 24.65 27.70 33.17 24.86
Low-Rank 25.92 37.52 26.88 26.94 38.71 28.21 29.29 40.53 30.21 31.69 42.80 32.45

15dB
SSR 37.92 45.63 35.07 38.83 46.82 35.12 39.38 46.85 35.62 39.78 47.72 36.10

CSC3D-CSI 37.60 44.74 34.45 38.41 46.18 35.11 39.50 46.21 35.55 40.06 47.11 36.23
HS-AMP 36.59 44.29 34.12 36.75 44.54 35.87 37.16 44.86 35.97 37.15 45.57 36.49

Unmixing 28.75 32.45 21.15 28.94 32.99 24.37 29.20 33.22 25.00 29.39 33.16 25.25
Low-Rank 31.04 42.62 32.01 32.39 43.82 32.33 34.31 44.63 34.06 36.60 45.93 34.31

20dB
SSR 38.12 45.71 35.29 38.85 46.89 35.31 40.02 47.35 35.64 40.08 48.56 36.15

CSC3D-CSI 38.78 45.88 35.77 39.86 47.81 36.74 41.09 47.95 37.59 42.55 48.93 38.39
HS-AMP 37.29 45.65 35.16 37.50 46.39 36.41 37.62 46.78 37.49 37.82 47.25 38.34

Unmixing 29.56 32.70 21.62 29.55 33.17 24.48 29.81 33.25 25.11 29.98 33.30 25.31
Low-Rank 33.17 44.73 33.93 35.48 45.01 34.16 39.13 45.68 34.55 41.19 45.96 34.77

25dB
SSR 38.39 45.74 35.32 38.84 47.09 35.35 40.04 47.40 35.68 40.14 48.59 36.19

CSC3D-CSI 39.28 46.38 36.38 40.37 48.43 37.50 41.79 48.73 38.55 43.62 49.67 39.47
HS-AMP 37.53 46.13 35.47 37.67 47.09 37.26 37.87 47.28 37.95 38.03 47.87 38.69

Unmixing 29.81 32.80 23.14 29.98 33.21 24.55 30.07 33.29 25.16 30.16 33.35 25.32
Low-Rank 35.02 44.76 34.23 36.18 46.07 34.55 38.39 46.36 35.05 39.86 46.45 35.32

30dB
SSR 38.39 45.97 35.31 38.83 47.13 35.36 40.06 47.40 35.64 40.13 48.59 36.21

CSC3D-CSI 39.43 46.47 36.45 40.58 48.52 37.89 42.04 48.74 38.90 44.77 49.92 39.86
HS-AMP 37.60 46.28 35.56 37.74 47.44 37.33 37.92 47.30 38.06 38.09 48.04 38.81

Unmixing 29.83 32.96 24.19 30.07 33.22 24.83 30.18 33.35 25.23 30.16 33.39 25.54
Low-Rank 35.37 45.72 34.55 36.55 46.84 35.00 36.82 47.26 35.42 37.74 47.47 35.71

Table 4
Mean PSNR of the reconstructed datasets using the 3D-CASSI, for the various methods, using
five levels of noise and four compression ratios (number of shots). The combinations with the best
PSNR results are highlighted. The standard deviations for five repetitions were well bellow 1% of
the mean PSNR, thus are not shown.
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wed that the proposed algorithm can not reverse the C-CASSI band shifting, leading to recovery

qualities around 24-25dB.

An exhaustive analysis of the minimization routines yielded one possible cause: the interac-

tion between the C-CASSI sensing matrix and the linear operators D̄ and X̄. Both linear operators

are matrix representations of the cyclic convolution operation, therefore they have very defined

structures which include the circular shifting effect.

Consider the band-shifting structure of a single C-CASSI sensing matrix H depicted in Fi-

gure 18, and the circular shifting effect of matrix D̄ in Figure 9. When interacting with the optical

dispersion element represented in C-CASSI’s sensing matrix, the circular shifting effect of the

equivalent cyclic convolutional matrices is replicated off-site, as shown in Figure 19, adding noise

to the recovery routine.

In order to improve CSC3D-CSI performance we implement a Side Information Acquisi-

tion scheme based in (Galvis et al., 2017; Yuan et al., 2015), as seen in Fig. 20. This modification

aims to reduce the band-shifting effect over DUP-CSI by including a low-cost approximation of

the morphological features within the dictionary elements initialization. Contrary to the state-of-

the-art side information acquisition schemes, which capture an RGB image, the proposed side

information acquisition scheme captures a single 2D grayscale version of the original SI. This 2D

image contains all the important spatial features within the original (Galvis et al., 2017). Then, it
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N
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Figure 18. Detail of the band shifting for a single C-CASSI sensing matrix Ht . Taken from
(Barajas-Solano et al., 2019a).

Figure 19. Product HD̄ for the C-CASSI CSI architecture, and closeup. Note the off-site replicas
at the right side of the closeup.

CSC3D
CSI

Figure 20. Side information acquisition scheme for recovering SIs from compressive spectral
measurements obtained using the C-CASSI architecture.
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generates a low-cost approximation of the original SI, S̃SS ∈ RM×N×L, where each band S̃SS l is the

same grayscale version of the original SI SSS . The approximation S̃SS has the same spatial morpho-

logical features as SSS (Galvis et al., 2017), and is used to train an initial collection of dictionaries

{DDDo} and coefficients {XXX o}. Finally, the CSC3D-CSI algorithm adjusts the spectral features in

the resulting SSS 1, without falling into solution wells provoked by the band shifting.

The proposed CSC3D-CSI is used to recover the high-frequency version of the Pavia Uni-

versity test image from compressive measurements. However this time we use the C-CASSI ar-

chitecture along the proposed Side Information scheme. The compressive measurements include

4 shots, resulting in a compression ratio of 0.28 following the formula γ = KM(N +L−1)/MNL

(Arce et al., 2014). Note that the Side Information scheme contributes with more information, de-

creasing the actual compression. The recovery qualities can be seen in Fig. 21.

Second, the proposed algorithm, along the proposed side-information acquisition scheme,

is tested for various levels of additive sensing noise and various levels of compression. In order to

make a fair comparison, all the test methods included initializations based in S̃SS . For example, the

SSR based approach uses initial coefficients xo = ΨΨΨ
T s̃, where s̃ is the vectorized version of S̃SS and

ΨΨΨ
T : RMNL → CMNL is the Kronecker basis direct operator.

Fig. 22 shows the effect of both the compression ratio and SNR levels over the recovery

quality. For different levels of compression the SNR of the compressive measurements is fixed to
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Figure 21. Simulation results of the recovery quality for some chosen bands from compressive
spectral measurements using the proposed CSC3D-CSI algorithm, and the CSI C-CASSI
architecture with a compression ratio of 0.28 along the Side Information scheme.

20dB. For different levels of noise the compression ratio is fixed to 4 shots. The proposed algorithm

outperforms the state-of-the-art methods by up to 5dB for all the noise levels and compression

ratios.

Table 5 shows the performance comparison between the proposed CSC3D-CSI, the SSR

based approach, the HS-AMP, Unmixing, and the Low-Rank methods, for five levels of noise

and four different compression ratios. Although methods like SSR and HS-AMP have acceptable

performances, the proposed CSC3D-CSI algorithm outperforms the four state-of-the-art methods,
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Figure 22. Mean PSNR of the simulation results at attempting to recover the Pavia SI using the
proposed CSC3D-CSI and the CSI C-CASSI architecture, for the various methods, (a) for fixed
20dB SNR and (b) fixed 4 shots. The standard deviations for five repetitions were well bellow 1%
of the mean PSNR, thus are not shown.

in all the scenarios, by up to 3.5dB.

About the computing time for the proposed CSC3D-CSI and the state-of-the-art reference

methods. All five methods were implemented and run on Matlab in a Windows 10, Intel i7-479

@ 3.6GHz and 16GB RAM. Table 6 shows the mean time per iteration for each method. All the

methods exhibited few variations in the running time for all noise levels, compression ratios, and

CSI architectures. However, the Low-Rank based approach performed slower with the C-CASSI

architecture.

Robustness to acquisition noise. In this section, we evaluate the performance of the pro-

posed CSC3D-CSI method when the measurements are contaminated with different levels of Pois-

son noise. The objective is to asses CSC3D-CSI’s performance under conditions of photon and

calibration errors . Different integration times are emulated modifying the Poisson noise, creating

SNR levels between 18dB and 28dB. Considering the results obtained in sections 5.5 and 5.5, and
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3 Shots (0.21) 4 Shots (0.28) 5 Shots (0.35) 6 Shots (0.42)
Pavia Salinas Beads Pavia Salinas Beads Pavia Salinas Beads Pavia Salinas Beads

10dB
SSR 32.15 38.98 28.10 33.22 40.02 29.51 33.91 40.56 30.24 34.27 40.89 30.65

CSC3D-CSI 35.79 40.55 29.26 35.96 40.98 29.94 35.67 41.93 30.32 36.15 42.80 31.31
HS-AMP 30.75 37.47 26.84 31.17 37.94 27.25 31.56 38.21 27.77 31.95 38.46 28.09

Unmixing 28.42 32.55 22.37 28.49 32.66 23.95 28.65 32.89 24.16 28.83 32.99 24.57
Low-Rank 21.05 28.02 22.32 21.64 28.82 22.70 22.35 30.02 23.10 23.64 31.00 23.81

15dB
SSR 32.31 38.99 28.48 33.32 40.67 29.73 33.92 41.62 30.40 34.36 41.92 30.73

CSC3D-CSI 36.66 41.29 30.21 36.77 41.96 31.06 37.21 42.67 31.57 37.50 43.45 32.73
HS-AMP 30.79 37.61 26.87 31.22 37.94 27.33 31.62 38.25 27.77 31.96 38.54 28.17

Unmixing 29.19 32.97 24.34 29.41 33.05 24.50 29.49 33.18 24.92 29.65 33.24 24.88
Low-Rank 25.10 32.81 24.06 25.32 33.55 25.23 26.22 34.29 25.32 26.72 35.47 25.55

20dB
SSR 32.46 39.24 28.66 33.41 41.37 29.78 33.98 41.99 30.43 34.35 42.40 30.79

CSC3D-CSI 36.95 41.60 30.64 37.32 42.38 31.56 37.52 43.18 32.15 38.06 44.04 33.02
HS-AMP 30.93 37.76 27.08 31.28 38.05 27.39 31.65 38.28 27.79 31.97 38.55 28.19

Unmixing 29.58 32.99 24.78 29.82 33.04 25.14 29.94 33.29 25.21 29.97 33.33 25.37
Low-Rank 29.08 37.60 26.76 29.40 38.28 26.80 29.69 38.97 27.28 29.80 39.93 27.54

25dB
SSR 32.42 39.26 28.71 33.45 41.34 29.81 34.08 42.14 30.55 34.37 42.45 35.16

CSC3D-CSI 37.13 41.80 30.77 37.52 42.57 31.48 37.80 43.37 32.52 38.27 44.28 33.46
HS-AMP 31.16 37.93 27.34 31.35 38.23 27.51 31.73 38.29 27.89 32.04 38.58 28.21

Unmixing 29.59 33.18 25.12 29.95 33.24 25.31 29.98 33.31 25.46 30.19 33.34 25.51
Low-Rank 30.40 40.50 27.63 30.68 41.20 28.03 30.76 41.88 28.47 30.90 42.04 29.09

30dB
SSR 32.42 39.28 28.67 33.41 41.33 29.79 34.07 42.08 33.66 34.39 42.48 35.37

CSC3D-CSI 37.20 41.77 30.89 37.46 42.50 31.95 37.67 43.39 32.35 38.39 44.37 33.49
HS-AMP 31.31 38.33 27.48 31.67 38.39 27.64 31.79 38.61 27.91 32.07 38.79 28.22

Unmixing 29.79 33.24 25.13 29.99 33.31 25.42 30.14 33.36 25.54 30.19 33.37 25.56
Low-Rank 31.49 41.51 27.98 31.15 41.85 28.52 31.78 42.00 28.99 32.40 42.15 29.36

Table 5
Mean PSNR of the reconstructed datasets using the C-CASSI, for the various methods, using five
levels of noise and four compression ratios (number of shots). The combinations with the best
PSNR results are highlighted. The standard deviations for five repetitions were well bellow 1% of
the mean PSNR, thus are not shown.

CSC3D-CSI SSR HS-AMP Unmixing Low-Rank
Average time per iteration (s) 5.5 0.2 0.9 0.2 >60

Table 6
Average time per iteration, in seconds, for the proposed CSC3D-CSI and each of the state-of-the-
art reference methods. Note that this time per iteration does not take into account the computations
prior to the iterative cycle.
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Figure 23. Mean PSNR of simulated results at recovering the Pavia University SI using the (a)
3D-CASSI and (b) C-CASSI, for the proposed CSC3D-CSI, two test methods and four different
levels of Poisson acquisition noise, and a fixed compression ratio (4 shots). The standard
deviations for five repetitions were well bellow 1% of the mean PSNR, thus are not shown.

the time-per-iterations presented in Table 6, the selected state-of-the-art test methods are SSR and

HS-AMP, with a fixed compression ratio of 4 shots for both CSI architectures. Fig. 23 shows the

mean PSNR for the recovered Pavia dataset using four different levels of Poisson noise, both CSI

architectures and a fixed compression ratio (4 shots). The proposed CSC3D-CSI algorithm proves

to be robust to the change in the noise model, improving the state-of-the-art methods in up to 2dB

when using the 3D-CASSI CSI architecture, and up to 5dB for the C-CASSI CSI architecture.

All the above considering that the square ℓ2-norm formulation is more related to a Gaussian noise

model.
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Figure 24. Experimental setup for capturing compressed measurements using both the 3D-CASSI
and C-CASSI. The configuration of the DMD allows to obtain compressed measurements with
one or the other CSI architecture with a single experimental setup.

5.6. CSC3D-CSI Experimental Performance Evaluation

To experimentally prove the advantages of the proposed CSC3D-CSI framework over the state-

of-the-art SSR framework, we proposed the experimental acquisition setup shown in Figure 24.

This setup is composed of a 18− 55mm 1 : 3.5− 5.6 objective lens (Canon), a DLI4130 DMD

(DLInovations) with spatial resolution of 1024 × 768 and mirror pitch size of 13.68 µm, and

two monochrome charged-coupled device detector (AVT Stingray F-145B) with spatial resolu-

tion 1388×1038 and pitch size of 6.45 µm.
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The coded apertures were generated using the same routines as in section 5.5, for both 3D-

CASSI and C-CASSI, and uploaded into the DMD. The compressive measurements are obtained

using as a target the real scene instead of the white plate and replacing the monochromatic light

with a broadband white light. The experimental setup is synchronized such that the DMD sets the

pattern and the sensor captures the projection. After that, the DMD updates the coded aperture.

Each scene, with each CSI architecture was sensed using K=2 and K=4 shots.

Two target scenes were used to evaluate the performance of the proposed CSC3D-CSI fra-

mework against the SSR framework. The scenes are called Flowers and Lego Hulk and both have

128 × 128 pixels of spatial resolution and 12 bands sensed at (457-464), (465-477), (478-487),

(488-499), (500-514), (515-529), (530-549), (550-569), (570-594), (595-619), (620-649), (650-

685) nm. Considering the two CSI architectures, two different shots realizations, and two different

scenes, then we obtain a total of 8 experiments, plus the capture of the side information measure-

ments.

Figures 25 and 26 show a recovered example, plus close ups, of both datasets using the 3D-

CASSI architecture and K=4 shots. The first we note is the difference in colors in both recovered

SIs, with the CSC3D-CSI exhibiting a warmer color. In Figure 25 we can note a higher detailed at

recovering the threaded elements and less artifacts at recovering plain elements such as the leaf. In

Figure 26 we note a higher detailed at recovering the abdominal muscles detail, sharper borders,

and less artifacts when recovering uniform sections of the toy. In general, the CSC3D-CSI frame-
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work performs qualitatively better than the SSR framework.

Figures 27 and 28 shows with a higher detail the performance of both frameworks. Here

we present the spectrum of three points, per dataset, obtained using a light spectrometer (in black).

For each spectrum we present the recovered spectrums obtained using the CSC3D-CSI and SSR

frameworks, for both CSI architectures and shots numbers. Both figures evidence a higher perfor-

mance of the proposed CSC3D-CSI (in blue) over the SSR framework (in red) for both datasets,

CSI architectures and shots number.

For Figure 27, point P1 was selected because of its intense blue color; point P2 have a strong

presence of the green color; while point P3 is closer to the color white. The proposed CSC3D-CSI

framework performs satisfactorily in all three points, while the SSR framework seems to struggle

with the green color. However, its performance improves with a higher shots number, reaching the

level of performance of the CSC3D-CSI framework.

For Figure 28 the three points were chosen in order to sense colors green, blue and oran-

ge, respectively. Again the CSC3D-CSI performs satisfactorily in all three points, improving the

performance of the SSR framework. Both CSC3D-CSI and SSR improves the perfomance in the

point P1 with a higer number of shots. However, the SSR framework struggles at recovering the

blue and orange colors. This discrepancies in the spectrums for the SSR framework could explain

the dull colors in the recovered SIs.
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Figure 25. Experimental results of the recovered dataset Flowers at K=4 shots, and closeups, using the
proposed CSC3D-CSI and SSR frameworks, and two CSI arquitectures: 3D-CASSI and C-CASSI. Note
that the proposed CSC3D-CSI outperforms the SSR model at border sharpness, smooth surfaces, color
warmth, and reduction of artifacts. I.e., the threaded section (red) have sharper borders while the leaf
section (blue) is smoother for the proposed CSC3D-CSI at both CSI architectures.
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Figure 26. Experimental results of the recovered dataset Lego Hulk at K=4 shots, and closeups, using the
CSC3D-CSI and SSR frameworks, and two CSI arquitectures: 3D-CASSI and C-CASSI. Note that the
proposed CSC3D-CSI outperforms the SSR model at border sharpness, smooth surfaces, color warmth, and
reduction of artifacts. I.e., the abdominal section (red) is smoother and the spheres section (blue) have
fewer artifacts.
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Dataset Architecture Shots
P1 P2 P3

CSC3D-CSI SSR CSC3D-CSI SSR CSC3D-CSI SSR
Flowers 3D-CASSI 2 0.021 0.085 0.016 0.188 0.060 0.061

4 0.025 0.066 0.016 0.179 0.040 0.051
C-CASSI 2 0.014 0.064 0.015 0.252 0.058 0.073

4 0.016 0.630 0.020 0.149 0.065 0.077
Lego Hulk 3D-CASSI 2 0.064 0.190 0.083 0.323 0.043 0.272

4 0.051 0.117 0.055 0.227 0.031 0.164
C-CASSI 2 0.109 0.350 0.073 0.209 0.029 0.360

4 0.099 0.264 0.061 0.182 0.028 0.184

Table 7
SAM metric values evaluated at three different spatial points, compared to the acquired spectrum
using a spectrometer, for both recovered SIs using the proposed CSC3D-CSI framework and the
SSR model, and two different datasets. The evaluated SIs were recovered using K=4 shots.

Finally, Table 7 presents the estimated spectral angle mapper (SAM) values when com-

paring each experimental spectrum with all the recovered spectrums at all the possible dataset-

architecture-shots combinations. The CSC3D-CSCI framework outperforms the state-of-the-art

SSR in up to one order of magnitude.

5.7. Algorithm Convergence

In order to illustrate the good convergence of Algorithm 18, a typical evolution of cost function

is shown in Eq. (39) as a function of the iteration number. Considering that the indicator function

in (43) have only values 0 or ∞, then it is not included in the estimation of the cost function. The

high-frequencies version of the Pavia dataset was used for this experiment, and the compressive

measurements were simulated with the 3D-CASSI system, with 20dB SNR, and 4 shots. Fig. 29

confirms the convergence of the algorithm to a critical point of the objective function. Note that

one iteration of Algorithm 18 includes one iteration of Algorithm 16 and 17.
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Figure 27. Comparisson of the recovered spectrums of the Flowers dataset, in three different
spatial points, using K=2 and K=4 shots, and the CSI 3D-CASSI architecture for both the
proposed CSC3D-CSI and SSR models. Note that the proposed CSC3D-CSI outperforms the SSR
model at all compression levels with both CSI architectures.
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Figure 28. Comparisson of the recovered spectrums of the Lego Hulk dataset, in three different
spatial points, using K=2 and K=4, shots and the 3D-CASSI architecture for both the proposed
CSC3D-CSI and SSR models. Note that the proposed CSC3D-CSI outperforms the SSR model at
all compression levels with both CSI architectures.
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In order to analyze the sensitiviy to initialization, we ran the proposed algorithm with 200

different random initializations for the collection of dictionary elements, and all-zeros coefficient

maps. The histogram of the corresponding values of the objective function is shown in Fig. (30),

reporting a single mode, confirming the convexity of the proposed algorithm. The mode of the

objective function histogram corresponds to a PSNR of 40.3dB.

Conclusions. A 3D CSC framework is proposed for sparsely representing the spatial-

spectral correla- tions of SIs, exploiting the advantages of overcomplete convolutional dictionaries.

The proposed CSC3D is able to sparsely represent SIs, even in presence of noise, outperforming

the state-of-the-art approach. The proposed framework is formulated in order to fit a lineal mini-

mization framework so that it can be integrated within a CSI recovery scheme.

When integrated with a 3D-CASSI CSI architecture, the proposed CSC3D-CSI is able to

match and outperform the state-of-the-art approach at different compression ratios and noise levels,

for a set of different test images. On the other hand, when the proposed CSC3D-CSI is integrated

with the C-CASSI CSI architecture, it is not able to unmix the C-CASSI band-shifting and needs

a better initial set of convolutional dictionary elements for preserving the spatial features.

With the suggested C-CASSI Side Information approach, the proposed CSC3D-CSI is able

to outperform the state-of-the-art approach at various compression ratios and noise levels. The pro-

posed CSC3D-CSI algorithm proved to be robust when dealing with Poisson acquisition noises,
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improving various state-of-the-art for techni- ques.

When using experimental measurements, the proposed CSC3D-CSI outperforms the SSR

framework in border sharpness, color warmth and absence of artifacts. This is also verified when

comparing the recovered spectrums with the ones measured experimentally using a light spectro-

meter.
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6. Convolutional Sparse Coding 4D and Compressive Spectral Video Sensing

The purpose of this chapter is to introduce the last two contributions of this doctoral dissertation:

a 4D convolutional sparse representation for Spectral Videos (SVs), and its application in CSVS.

This chapter includes the mathematical formulations and the derivation of their numerical solu-

tion. It also includes the synthetic experiments in order to asses the performance of the proposed

framework.

It is worth noting that the mathematical formulation for the new CSC framework is heavily

based on the CSC3D’s formulation, profiting on the modularity of the convolutional operation; but

differs in the dimensionality of the operators, rearrangements and transformations. For this reason

this chapter uses the same Algorithms presented in Chapter 4, but with a change in the introduced

dimensions. The fact that both CSC frameworks, 3D and 4D, uses the same formulation for repre-

senting different signal dimensions is a contribution in itself.

6.1. Spectral Video (SV) and Super Resolution (SR)

Spectral Video (SV) has emerged as an image modality used with great interest in object or human

tracking (Cheng et al., 2007)(Van-Nguyen et al., 2010)(Banerjee et al., 2009), cancer detection

(Leitner et al., 2013), bile duct inspection (Zuzak et al., 2013), and several types of surgery (Yi

et al., 2011).
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In essence, a SV SSS = {SSS t ∈RM×N×L|t = 1, ...,T} is a collection of SIs SSS t captured con-

secutively within a time frame at discrete intervals, analog to an RGB video (?). This means that

each frame, a full SI, must be captured within a small time period in order to capture the time

variations of interest within the observed scene. However, techniques such as push-broom (Sellar

and Boreman, 2005) or optical band-pass filters (Gat, 2000) require a considerable sensing time

in order to capture a single spectral frame. This limitations in the available technologies and time

restrictions leads to one of two scenarios: either we resort to faster and more expensive sensing

equipment in order to capture the desired SVs within the time limits; or we use available, and not

too expensive, technology to capture SVs with low spatial, spectral and/or temporal resolution,

within the time limits.

In this regard, Super-Resolution (SR) techniques (Buttingsrud and Alsberg, 2006; Kwan

et al., 2017) have emerged has a processing tool for recovering high-resolution information from

low-resolution measu- rements. In general, the SR problem describes the low-resolution measure-

ments as a compressed version of the high-resolution data, which is recovered solving an inverse

problem. In order to recover the high-resolution data, the state-of-the-art methods use the sparse

signal representation model (SSR) (Correa et al., 2016; Leon-Lopez et al., 2019) as a signal fra-

mework for recovering the information of interest. In this regard, the SSR model uses predefined

dictionaries, specifically orthonormal basis, for sparsely representing any signal.
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The SSR-SR formulation for SVs can be expressed as

argmin
θθθ

1
2
∥HΨΨΨθθθ − ṡ∥2

2 +λ ∥θθθ∥1 , (97)

where H ∈ RM1N1L1T×MNLT is a decimation matrix, with αA1 = A and α ∈ N∗; ṡ = Hvect(SSS ) ∈

RMNLT is the vectorization of the sensed low-resolution SV; ΨΨΨ is the SSR representation basis and

θθθ are the sparse coefficients. Eq. (97) aims to recover a full resolution SV from a low resolution

version, using a one-size-fits-all basis. This has the same intrinsic limitation, as in SIs and CSI, of

the upper-bounded reconstruction quality due to the generality of the representation basis.

On the other hand, synthesis frameworks, like the convolutional sparse coding (CSC), have

emerged as an alternative approach for sparsely representing multidimen- sional signals (Wohlberg,

2016b), and recently this signal model has been expanded in order to represent the spatial-spectral

correlations of spectral images (Barajas-Solano et al., 2019c). CSC’s specificity for representing

signals, and the attached invariance to shifting and deformation property (Papyan et al., 2017),

represents an attractive framework for sparsely representing SVs.

6.2. Convolutional Sparse Coding for Spectral Videos (CSC4D)

This work proposes to expand the CSC formulation to a full 4D CSC framework, in order to re-

present the spatial-spectral-temporal correlations in SVs. First, lets consider a SV as a tetrahedron

SSS ∈RM×N×L×T . Next, let DDD = {DDDm|Md
m=1 |||DDDm ∈RdM×dN×dL×dT } be a collection of 4D convolutio-
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nal dictionary elements and XXX = {XXX m|Md
m=1 |||XXX m ∈RM×N×L×T} a collection of sparse coefficient

maps, where dM,dN ,dL, dT ≪M,N,L,T . This means that while the SSR framework must integrate

a new appropriate basis for the new temporal dimension, the convolutional operator only requires

to scale up in order to accommodate the same information as expressed in Eq. (35).

With this scaling into consideration then a SV SSS can be represented as

SSS =
Md

∑
m=1

DDDm
4∗XXX m ≃ D̄x = X̄d, (98)

where
4∗ denotes the 4D cyclic convolution. Just as with CSC3D the equivalent lineal operator

D̄ ∈ RMNLT×MNLT Md is created following Algorithm 5 with Ł1 × ...×LN̄ = M ×N ×L×T . Al-

so, the vectorization x ∈ RMNLT Md is created following Algorithm 4, also with Ł1 × ...× LN̄ =

M×N ×L×T . The matrix X̄ and vector d are created in the same way profiting the convolution’s

commutativity property.

Although the expression for the linear equivalent operator used in CSC4D is similar to

the linear equivalent operator used in CSC3D, its full construction is more complicated than

simply a scaling up. Figure 31 presents the example matrix D̄m created from DDDm ∈ R2×2×2×2

and XXX m ∈ R4×4×3×2. Let us begin by the 3D cyclic convolutional matrices D̄t,m ∈ R48×48 with

t = 1,2 shown in Figure 8. The same equivalent convolutional submatrices are found hihglighted

in gold in Figure 31. For the temporal dimension T = 2 the 3D equivalent convolutional matrices
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are self-replicated in a 2×2 grid, in a cyclic pattern, increasing the size of the final matrix by T 2.

Finally, we create the equivalent convolutional matrix D̄ ∈ R96×96 (MNLT ×MNLT ). Note again

the sub-matrix-wise circular shifting effect in the top right corner in each quadrant.

Operator D̄m can be considered sparse given that only (dMdNdLdT )
2 elements out of (MNLT )2

are non-zero. Besides, note that these non-zero elements have a very specific position through D̄m,

which are in turn replicated along the different dimensions of cyclic convolutions. If we were to

change the values of DDDm ∈ R2×2×2×2, these new values would occupy the exact same positions in

D̄m. However, if we were to change DDDm’s or XXX m’s size then the self-replicating structure would

change significantly. Figure 31 shows a single D̄m example, while Figure 32 presents an schematic

of matrix D̄ = [D̄1...D̄Md ] with Md = 4.

With this in mind we can formulate the Convolutional Sparse Coding for Spectral Videos

(CSC4D) dual minimization problem, analogously to CSC3D, as

argmin
x

1
2

∥∥D̄x− s
∥∥2

2 +λ ∥x∥1 , (99)

argmin
x

1
2

∥∥X̄d− s
∥∥2

2 + ιCP(d), (100)

where s = vect(SSS ) ∈ RMNLT and ιCZ is a constraint function. Just as in the CSC3D case, each

dictionary element is desired to be small and one-norm, in order to avoid the scaling ambiguity

between dictionary filters and coefficients. For this, we zero-pad each of the Md dictionary elements
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using the operator Zp : RdMdNdLdT → RMNLT , in order to match the dimensions of the operator

X̄ ∈ RMNLT×MNLT Md . Then, the constraint set (Wohlberg, 2016c)

CZp =
{

x ∈ RMNLT : (I−ZpZT
p )x = 0,∥x∥2 = 1

}
, (101)

guarantees that the obtained dictionary elements are normalized and the zero-padding is removed.

Finally, the indicator function of the constrained set is introduced as

ιCZ(x) =


0 if x ∈ CZp

∞ if x /∈ CZp.

, (102)

and applied over each vectorized individual convolutional dictionary, but for notation simplicity it

will be applied over the whole collection. The single 4D cyclic convolutio- nal operator is listed as

the third contribution of this doctoral dissertation and its results can be found in (Barajas-Solano

et al., 2020).

Reconstruction Update Problem (RU). Eq. (99) is called the Reconstruction Update

Problem (RU) and aims to learn the spatial-spectral-temporal contributions of each one of the

elements in a given convolutional dictionary collection. Considering the nature and size of the

product HD̄, we propose to solve it using the alternating directions multiplier method, ADMM
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(Boyd et al., 2010), by introducing one auxiliary variable as

argmin
x,u,v

1
2

∥∥D̄x− s
∥∥2

2 +λ ∥v∥1 ,

s.t.: v = x,

(103)

with augmented Lagrangian given by

L {x,v,g}= 1
2

∥∥D̄x− s
∥∥2

2 +λ ∥v∥1 +
ρ

2
∥x−v+g∥2

2 , (104)

where g is the so called dual variable. The variable updates are obtained from Eq. (104) as

x j+1 := argmin
x

1
2

∥∥D̄x− s
∥∥2

2 +
ρ

2

∥∥x−v j +g j∥∥2
2 , (105)

v j+1 := argmin
v

ρ

2

∥∥x j+1 −v+g j∥∥2
2 +λ ∥v∥1 , (106)

g j+1 = g j +x j+1 −v j+1. (107)

The dual variable g can be interpreted as a vector of prices and Eq. (107) is then called

a price update or price adjustment step (Boyd et al., 2010). Note that the update steps (105) to

(107) for CSC4D’s RU are similar in its formulation to CSC3D’s CUP (46) to (48), with a different

equivalent convolutional operator. Except for the equivalent convolutional operator, CSC4D’s RU

formulation can be solved just as CSC3D’s CUP.
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Coefficients Map Update. The linear representation of the 4D convolution in Eq. (105)

can be solved efficiently by profiting the DFT convolution theorem (Bristow and Eriksson, 2013),

which states that a n-dimensional cyclic convolution can be expressed as a Hadamard product in

the n-dimensional Fourier domain as

Md

∑
m=1

DDDm
4∗XXX m = F−1

4D

(
Md

∑
m=1

F4D(DDDm)⊙F4D(XXX m)

)
. (108)

Eq. (108) can be simplified by transforming the sums of Hadamard products into a matrix-

vector product. First we create the equivalent operator ˆ̄D ∈ CMNLT×MNLT Md transforming to the

Fourier domain and concatenating as described in Algorithms 10, and 6 with L1 × ...×LN̄ = M×

N ×L×T . Second, we create x̂ ∈ CMNLT Md by transforming to the Fourier domain and unfolding

as described in Algorithms 10, and 4, also with L1 × ...×LN̄ = M ×N ×L×T . Then, the sum of

4D convolutions can be solved efficiently as

Md

∑
m=1

DDDm
4∗XXX m ≃ F−1

4D

(
ˆ̄Dx̂
)
, (109)

minding, of course, that ˆ̄Dx̂ must be folded first into a 4D array. Just as in CSC3D, we profit on the

Fourier solution in Eq. (109) to solve optimally Eq. (105), replacing w j = v j − g j ∈ RMNLT and

creating ŵ j by folding, transforming to the Fourier domain and unfolding (Algorithms 8, 10, and 4

respectively with L1 × ...×LN̄ = M×N ×L×T ). Finally, we can rewrite Eq. (105) in the Fourier
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domain as

x̂ j+1 := argmin
x̂

ρ

2

∥∥∥ ˆ̄Dx̂− ŝ
∥∥∥2

2
+

ρ

2

∥∥x̂− ŵ j∥∥2
2 . (110)

Just as in Eq. (51), Eq. (110) can be solved by using the Woodbury Matrix Inverse method

(Henderson and Searle, 1981), explained in Appendix 2, as

x̂ j+1 = b− ˆ̄DH
(

I+ ˆ̄D ˆ̄D
H
)−1

ˆ̄Db, (111)

with b = ˆ̄DH ŝ j+ ŵ j. Just as with CSC3D and CSC3D-CSI, the solution for x̂ j+1 in CSC4D has the

same structure. This is because the CSC4D formulation is a natural extension of CSC3D. The na-

ture of a single ND-convolutional operator allows for simplifying the mathematical formulations.

The real difference between Eq. (53) and Eq. (111) lies in the dimensions of the arrays, which

require a particular treatment, as explained in Appendix 4. Finally, the update x j+1 is obtained by

folding, transforming from the Fourier domain and unfolding (Algorithms 8, 12, and 4 respectively

with L1 × ...×LN̄ = M×N ×L×T ).

Sparse Coefficient Maps Update. Eq. (106) has a closed form solution via soft

thresholding (Rockafellar, 1970) as

v j+1 = S λ

ρ

(
x j+1 +g j) . (112)

The RU solution is summarized in Algorithm 19.
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Figure 29. Typical evolution of the objective function of the proposed CSC3D-CSI using
Algorithm: 18: Compressive Spectral Convolutional 3D for CSI Algorithm - CSC3D-CSI.

Algorithm 19 RU Solution for CSC4D

Require: D̄, ˆ̄D, v j, g j, ρ , λ and sizes M, N, L, T and Md .
1: Build ẑ j.
2: Solve x j+1 in Eq. (105) using Eq. (111).
3: Solve v j+1 Eq. (106) using Eq. (112).
4: Solve g j+1 in Eq. (107).
5: return Sparse coefficient maps v j+1, split variable update v j+1, and dual variable update g j+1.
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Figure 30. Histogram of the final values of the objective function of the proposed CSC3D-CSI
(71) obtained after 200 different random initializations.
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Figure 31. Example of D̄m for DDDm ∈ R2×2×2×2 and XXX m ∈ R4×4×3×2. The red rectangle
highlights a 2D equivalent cyclic convolution matrix; while the gold rectangle highlights the 3D
equivalent cyclic convolution matrix.

Figure 32. Schematic for D̄ with M = 10,N = 10,L = 4,T = 6,Md = 4 and
dM = dN = dL = dT = 2



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 129

Feature Extraction Problem (FE). Eq. (100) is referred to as the Feature Extraction

Problem (FE) and seeks to adjust a collection of convolutional 4D dictionary elements to a gi-

ven collection of sparse coefficient maps. Eq. (100) can be solved using the alternating directions

multiplier method, ADMM (Boyd et al., 2010), by introducing an auxiliary variable as

argmin
d,p,q

1
2

∥∥X̄d− s
∥∥2

2 + ιCZ(q),

s.t.: q = d.

(113)

The augmented Lagrangian for Eq. (113) can be written as stated in (Barajas-Solano et al.,

2019a) as

L {d,q, t}= 1
2

∥∥X̄d− s
∥∥2

2 + ιCZ(q)+
σ

2
∥d−q+ t∥2

2 , (114)

where q is the so called dual variable. The variable updates are obtained from Eq. (114) as

d j+1 := argmin
d

σ

2

∥∥X̄d− s
∥∥2

2 +
σ

2

∥∥d−q j + t j∥∥2
2 , (115)

q j+1 := argmin
q

σ

2

∥∥d j+1 −q+ t j∥∥2
2 + ιCZ(q), (116)

t j+1 = t j +d j+1 −q j+1. (117)

The dual variable t can be interpreted as a vector of prices and Eq. (117) is then called a

price update or price adjustment step (Boyd et al., 2010).
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Convolutional Dictionary Update. Problem (115) can be solved efficiently by profiting

the DFT convolution theorem as described for problem (105), thus we rewrite problem (115) as

d̂ j+1 := argmin
d̂

σ

2

∥∥∥ ˆ̄Xd̂− ŝ j
∥∥∥2

2
+

σ

2

∥∥d̂− ŵ j∥∥2
2 , (118)

by replacing w j = q j − t j ∈ RMNLT ∈ RMNLT Md , folding, transforming to the Fourier domain and

unfolding into ŵ j ∈CMNLT Md (Algorithms 8, 10, and 4 respectively with L1 × ...×LN̄ = M×N ×

L×T ); the operator ˆ̄X is creating by folding, transforming to the Fourier domain and creating the

equivalent operator from v j+1 in Eq. (112) (Algorithms 8, 10, and 6 respectively with L1 × ...×

LN̄ = M×N ×L×T ). Then, as with Eq. (60), Eq. (118) has closed solution

d̂ j+1 = b− ˆ̄XH
(

I+ ˆ̄X ˆ̄X
H
)−1

ˆ̄Xb, (119)

with b = ˆ̄Xŝ+ ŵ j ∈ CMNLT Md . Finally, the update d j+1 is obtained by folding, transforming from

the Fourier domain and unfolding (Algorithms 8, 12, and 4 respectively with L1 × ...× LN̄ =

M×N ×L×T ).

Desired Convolutional Dictionary Update. Eq. (116) has closed solution via the proximal

of ιCZ (Rockafellar, 1970)

q j+1 =
ZpZT

p (d j+1 + t j)∥∥ZpZT
p (d j+1 + t j)

∥∥ . (120)

The FE solution is summarized in Algorithm 20.
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Algorithm 20 FE Solution for CSC4D

Require: X̄, ˆ̄X, q j, t j, σ and sizes M, N, L , T and Md .
1: Build ẑ j.
2: Solve d j+1 in Eq. (115) using (Eq. (119).
3: Solve q j+1 Eq. (116) using (Eq. (120).
4: Solve t j+1 in Eq. (117).
5: return :Convolutional dictionary d j+1, split variable update q j+1, and dual variable update t j+1.

Proposed CSC4D. The proposed CSC4D framework consists in alternately solving two

related problems, RU and FE, in order to obtain both a collection of sparse coefficient maps and

convolu- tional dictionary elements. Additionally, the regularization parameters ρ,λ , and σ can be

updated in each iteration according to (Boyd et al., 2010), section 3.3, or they can be set to a fixed

value. Thus, this doctoral dissertation proposes to solve both problems alternately, as exposed in

Algorithm 21.

Algorithm 21 CSC4D Algorithm
Require: {XXX 0

m ∈RM×N×L|m = 1, ...,Md} as zeros ; {DDD0
m ∈RM×N×L|m = 1, ...,Md} as random; M,N,L,Md ,d,ρ0,λ ,

σ0 and s.
1: Set {VVV 0

m}= {XXX 0
m} and build the vectorization v0.

2: Set {QQQ0
m}= {DDD0

m} and build the vectorization q0.
3: Build D̄ and ˆ̄D from {DDD0

m}.
4: Set j = 0.
5: repeat
6: Solve RU as explained in Algorithm 19.
7: Update ρ j+1 according to (Boyd et al., 2010), section 3.3
8: Fold v j+1 into {VVV j+1

m }, as explained in Algorithm 7, and build X̄ and ˆ̄X from it.
9: Solve FE as explained in Algorithm 20.

10: Update σ j+1 according to (Boyd et al., 2010), section 3.3
11: Fold q j+1 into {QQQ j+1

m }, as explained in Algorithm 7, and build D̄ and ˆ̄D from it.
12: until the residuals meet a given tolerance, or completed a number of iterations.
13: return the sparse coefficient maps {VVV j+1

m } and the convolutional dictionary elements {QQQ j+1
m }

As with all iterative methods, ADMM is sensitive to initial values. Different empiric initia-
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lization alternatives for the initial dictionary elements {DDD0
m} were tested, which included a full

random cube and variations of zero-value cubes with some non-zero positions. The chosen al-

ternative can be described as a centered random-value subcube ∈ Rd2×d2×d2×d2 , with d2 = d/2,

within an all zeros Rd×d×d×d cube. This variation showed the best trade-off between the highest

Peak Signal-to-Noise Rate value (PSNR, for reconstruction quality) and the lowest NoN Zero per-

centage of elements (NNZ, for sparsity), in both mean and standard deviation.

About the convergence boundaries analysis, the proposed CSC4D is equal to the CSC3D’s

ℓ2−ℓ1 and ℓ2−indicator function. For this reason, the same analysis applied in the CSC3D formu-

lation works for the CSC4D formulation.

Estimated Numerical Complexity. We will now estimate the numerical complexity of the

more complex subproblems in CUP and DUP. The closed solution to Eq. (106), Eq. (112), is ob-

tained by a soft-thresholding problem and subproblem (116)’s solution, Eq. (120), is akin to a

hard-thresholding problem. Both complexities are negligible.

One of the most important sources of numerical complexity is the 4D convolutional opera-

tion, with complexity O((MNLT )2), considering that the dictionary elements are zero-padded to

match the dimensions of the sparse coefficient maps. The 4D convolution complexity is reduced

to a fraction by expressing it as a Hadamard product, profiting on the DFT Theorem, reducing the

cost to O(MNLT log(MNLT )).
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Eq. Complexity Solution
(106) and (116) Negible Implemented
(105) and (115) O((MNLT Md)

3) Original
(111) and (119) O(MNLT Md) Implemented

Table 8
Complexity review of the proposed CSC4D algorithm.

Finally, the greatest source of numerical complexity are the inversions as solutions to sub-

problems (105) and (115). Again, the canonical complexity for inverting ÂHÂ+αI∈RMNLT Md×MNLT Md

is O((MNL T Md)
3). Howe- ver, by profiting on the concatenated diagonal structure of ˆ̄D and ˆ̄X

and the dimensions rearrangement exposed in Appendix B of (Barajas-Solano et al., 2019a), the

inversion complexity falls to O(MNL T Md) as shown in Eqs. (111) and (119). Table 8 summarizes

the different complexities for the stated subproblems and their solutions.

6.3. CSC4D Synthetic Performance Evaluation

We now evaluate the performance of the proposed CSC4D operator for sparsely representing SVs

against the SSR model using an ADMM based algorithm (Boyd et al., 2010).

The performance comparison is carried out by computing the Peak Signal-to-Noise Ratio

(PSNR, dB) for assessing the reconstruction quality; while the percentage of non-zero elements

(NNZ,%) is used for evaluating the sparsity of the estimated coefficients. NNZ can be also descri-

bed as ∥x∥0 / |x| for the estimated coefficients vector using the SSR model, where |x| is the total
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(a)

(b)
Figure 33. False RGB of the test datasets (a) Cajas and (b) Chiva SVs.

number of coefficients. The sparsity of the coefficients is measured according to (Papyan et al.,

2017)

NNZ = maxMd
m=1

∥xm∥0
|xm|

. (121)

Two laboratory-captured spectral videos, Cajas and Chiva (see Fig 33) (Leon-Lopez et al.,

2019) were used for this test. Both data sets have spatial resolution 128× 128, 16 spectral bands

and 8 frames long. In particular, the high-frequency versions of the SVs under tests are recovered

using the proposed algorithm, where a reconstructed version of the image under test is obtained by

adding the low-frequency components to the previously recovered high-frequency video.

The number of convolutional elements was fixed to Md = 30 and the dictionary sizes were
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Cajas Chiva

Figure 34. Reconstruction quality performance (PSNR) of the simulated results for various levels
of sparsity (NNZ), for the proposed CSC4D and SSR approach with different time-compression
schemes.

fixed to dM = dN = dL = 8 and dT = 3. For both methods, CSC4D and SSR, the parameter λ was

varied in order to get the reconstruction quality in function of the sparsity level. All other regulari-

zer parameters were fixed to optimal values. Fig 34 shows the sparse representation performance,

for both datasets, for both frameworks. However, the main tendency is conserved. The proposed

CSC4D method outperforms the SSR approach by up to 20dB.

6.4. CSC4D and SR

In order to recover a high-resolution SV from low-resolution measurements, we propose to express

the low-resolution measurements as a decimated version of the objective dataset: ṡ = Hs, where

s = vec(SSS ) ∈ RMNLT , ṡ ∈ RM1N1L1T is the vector containing the low-resolution measurements

and H ∈ RM1N1L1T ×MNLT is a decimation matrix with M1 = M/α , N1 = N/β , L1 = L/γ , and

α,β ,γ ∈ N∗. Using the CSC4D model then ṡ = HD̄x = HX̄d. Just as in the 3D case, we propose
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two linked optimization problems, solved alternately, for obtaining the convolutional dictionary

elements and sparse coefficient maps. Then, the general optimization problems can be formulated

as

argmin
x

1
2

∥∥HD̄x− ṡ
∥∥2

2 +λ ∥x∥1 , (122)

argmin
d

1
2

∥∥HX̄d− ṡ
∥∥2

2 + ιCZ(d), (123)

Considering that convolutional dictionaries have a low performance for representing the

low-frequency components of multidimensional signals (Wohlberg, 2016a), this work uses the

high-frequencies versions of a dataset of interest. This version is obtained by performing a high-

pass filtering stage to the image data. On the other hand, the low-frequencies version of the original

dataset is interpolated up to scale, and added to the recovered high-resolution high-frequencies ver-

sion, completing the recovered high-resolution SV SSS 1, as shown in Fig 35.

Figure 35. Proposed CSC4D-SR scheme.

Reconstruction Update Problem for SR (RU-SR). Eq. (122) is called the Reconstruction

Update problem for SR (RU-SR) and aims to learn the spatial-spectral-temporal contributions of

each one of the elements in a given convolutional dictionary collection from low-res measurements.
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Considering the nature and size of the product HD̄, we propose to solve it using the alternating

directions multiplier method, ADMM (Boyd et al., 2010), by introducing two auxiliary variables

as

argmin
x,u,v

1
2
∥Hu− ṡ∥2

2 +λ ∥v∥1 ,

s.t.: u = D̄x,

v = x.

(124)

Considering the model for the N-dimensional CSC framework in Eq. (35), we propose to

profit on CSC3D formulation (Barajas-Solano et al., 2019a) and extend it on the required update

steps. Then, considering the augmented Lagrangian for Eq. (124) given by

L {x,u,v, f,g}= 1
2
∥Hu− ṡ∥2

2 +λ ∥v∥1 +
ρ

2

∥∥D̄x−u+ f
∥∥2

2 +
ρ

2
∥x−v+g∥2

2 , (125)

we obtain the update steps

x( j+1) := argmin
x

ρ

2

∥∥∥D̄x−u( j)+ f( j)
∥∥∥2

2
+

ρ

2

∥∥∥x−v( j)+g( j)
∥∥∥2

2
, (126)

u( j+1) := argmin
u

1
2
∥Hu− ṡ∥2

2 +
ρ

2

∥∥∥D̄x( j+1)−u+ f( j)
∥∥∥2

2
, (127)

v( j+1) := argmin
v

ρ

2

∥∥∥x( j+1)−v+g( j)
∥∥∥2

2
+λ ∥v∥1 , (128)

f( j+1) = f( j)+ D̄x( j+1)−u( j+1), (129)
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g( j+1) = g( j)+x( j+1)−v( j+1), (130)

where f and g are the so called dual variables, and the super indexes ( j) and ( j+ 1) refer to the

iteration steps.

Coefficient Maps Update. It should be noted that solving Eq. (126) requires the costly

creation of operator D̄ ∈ RMNLT×MNLT Md , and its transpose. By profiting on the DFT for the 4D

case
Md

∑
m=1

DDDm
4∗XXX m = F−1

4D

(
Md

∑
m=1

F4D(DDDm)⊙F4D(XXX m)

)
, (131)

we propose to solve Eq. (126) in the Fourier domain as

x̂( j+1) := argmin
x̂

ρ

2

∥∥∥ ˆ̄Dx̂− ẑ( j)
∥∥∥2

2
+

ρ

2

∥∥∥x̂− ŵ( j)
∥∥∥2

2
, (132)

by performing the following transformations:

x ∈ RMNLT Md is folded, transformed to the Fourier domain and unfolded into x̂ ∈ CMNLT Md

as indicated in Algorithms 8, 10, and 4.

w( j) = v( j)−g( j) ∈RMNLT Md is folded, transformed to the Fourier domain and unfolded into

ŵ ∈ CMNLT Md as indicated in Algorithms 8, 10, and 4.

z( j) = u( j)− f( j) ∈ RMNLT is folded, transformed to the Fourier domain and unfolded into

x̂ ∈ CMNLT as indicated in Algorithms 7, 9, and 3.
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ˆ̄D is created from {Dm} by transforming to the Fourier domain and creating the equivalent

operator as indicated in Algorithms 10, and 6.

All the previous rearrangements are performed using L1 × ...×LN̄ = M ×N ×L×T . The

original D̄ operator must be created as a concatenation of equivalent convolu- tional matrices with

defined structure, like the example in figure 31; while the operator ˆ̄D can be created as the con-

catenation of diagonal matrices, which is much easier to build. Although there is an associated

cost of O(MNLT log(MNLT )) for each 4D Fourier Transform, the memory save and simplicity of

operating simpler diagonal matrices makes up for this cost.

Finally, as with Eq. (76), Eq. (132) has closed solution

x̂( j+1) = b̂− ˆ̄DH
(

I+ ˆ̄D ˆ̄DH
)−1 ˆ̄Db̂. (133)

with b̂ = ˆ̄DHẑ( j)+ ŵ( j) ∈CMNLT Md . Eq. (133) can be solved using the dimensions rearrangements

proposed in the Appendices 3 and 4, minding the increase in the dimensions. Finally, the update

x j+1 is obtained from x̂ j+1 by folding, obtaining the inverse transform and unfolding following

Algorithms 8, 12, and 4 respectively with L1 × ...×LN̄ = M×N ×L×T .
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Temporal Recovery From Low-Res Measurements Update. Eq. (127) has closed solution

in the spatial domain as

u( j+1) =
(

HTH+ρI
)−1(

HTṡ+ρz( j)
)
, (134)

with z j = D̄x j+1 + f j ∈ RMNLT , and can also be solved using Woodbury’s matrix identity and

profiting HHT = I as

u( j+1) =
1
ρ

[
b−

(
1

ρ +1

)
HTHb

]
. (135)

with b = HTṡ+ρz( j).

Eq. (135) can be solved optimally by performing the products right-to-left. This is, start by

solving the matrix-to-vector product Hb, and continuing left wise, instead of solving the matrix-

to-matrix product HT H first.

Sparse Coefficient Maps Update. The last update step, Eq. (128), has a closed form solu-

tion via soft thresholding (Rockafellar, 1970) as

v( j+1) = S λ

ρ

(
x( j+1)+g( j)

)
. (136)

The variable updates for the RU-SR problem in CSC4D-SR are summarized in the Algo-

rithm 22:
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Algorithm 22 RU-SR for CSC4D-SR
Require: ṡ,H,d j,u j,v j, f j,g j,λ

1: create D̄ and ˆ̄D from d j

2: create ŵ = F4D
{

u j − f j
}

and ẑ = F4D
{

v j −g j
}

3: solve x̂ j+1 using Eq. (133), fold it into {X̂XX j+1
m } as explained in Algorithm 7, and x j+1 = vec

(
F−1

4D

{
{X̂XX j+1

m }
})

4: solve u j+1 using Eq. (135)
5: solve v j+1 using Eq. (136)
6: update f j+1 and g j+1 using Eq. (129) and (130)
7: return the updated split and dual variables u j+1,v j+1, f j+1,g j+1

Feature Extraction Problem for SR (FE-SR). Just as the sparse coefficient maps, the

collection of convolutional dictionary elements are also learned from the low-res measurements.

The minimization in Eq. (123) is called the Feature Extraction problem (FE), and is also solved

using ADMM by introducing two auxiliary variables

argmin
d,p,q

1
2
∥Hp− ṡ∥2

2 + ιCZ(q),

s.t.: p = X̄d,

q = d,

(137)

with augmented Lagrangian

L {d,p,q,r, t}= 1
2
∥Hp−y∥2

2 + ιCZ(q)+
σ

2

∥∥X̄d−p+ r
∥∥2

2 +
σ

2
∥d−q+ t∥2

2 , (138)

and updates

d( j+1) := argmin
d

σ

2

∥∥∥X̄d−p( j)+ r( j)
∥∥∥2

2
+

σ

2

∥∥∥d−q( j)+ t( j)
∥∥∥2

2
, (139)

p( j+1) := argmin
p

1
2
∥Hp− ṡ∥2

2 +
σ

2

∥∥∥X̄d( j+1)−p+ r( j)
∥∥∥2

2
, (140)
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q( j+1) := argmin
q

σ

2

∥∥∥d( j+1)−q+ t( j)
∥∥∥2

2
+ ιCZ(q), (141)

r( j+1) = r( j)+ X̄d( j+1)−p( j), (142)

t( j+1) = t( j)+d( j+1)− t( j). (143)

where r and t are the so called dual variables, and the superindexes j and j+1 refer to the iteration

step.

Convolutional Dictionary Update. Eq. (139) and Eq. (126) have analog structures, thus

can be solved as

d̂( j+1) =
(

ˆ̄XH ˆ̄X+ I
)−1( ˆ̄XHẑ( j)+ ŵ( j)

)
, (144)

where

d ∈ RMNLT Md is folded, transformed to the Fourier domain and unfolded into d̂ ∈ CMNLT Md

as indicated in Algorithms 8, 10, and 4.

w( j) = q( j)− t( j) ∈RMNLT Md is folded, transformed to the Fourier domain and unfolded into

ŵ ∈ CMNLT Md as indicated in Algorithms 8, 10, and 4.

z( j) = p( j)− r( j) ∈ RMNLT is folded, transformed to the Fourier domain and unfolded into

x̂ ∈ CMNLT as indicated in Algorithms 7, 9, and 3.

ˆ̄X is created from {X m} by transforming to the Fourier domain and creating the equivalent

operator as indicated in Algorithms 10, and 6.
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All the previous rearrangements are performed using L1 × ...×LN̄ = M ×N ×L×T . The

same numerical rearrangements from Apendices 3 and 4 also apply, minding the increase in the

dimensions. Eq. (144) has closed solution

d̂( j+1) = b̂− ˆ̄XH
(

I+ ˆ̄X ˆ̄XH
)−1 ˆ̄Xb̂. (145)

with b̂ = ˆ̄XHẑ( j)+ ŵ( j) ∈ CMNLT Md . Finally, d( j+1) is built from d̂( j+1) just as x( j+1) is built from

x̂( j+1).

Temporal Recovery From Low-Res Measurements Update. Again, Eq. (140) is analog to

Eq. (127), thus can be solved in the spatial domain as

p( j+1) =
1
σ

[
b−

(
1

σ +1

)
HTHb

]
, (146)

where b = HTṡ+σz( j) and z( j) = X̄d( j+1)+ r( j).

Desired Convolutional Dictionary Update. Finally, Eq. (141) can solved via proximal for

each m-4D dictionary element as

q( j+1)
m =

ZpZT
p(d

( j+1)
m + t( j)

m )∥∥∥ZpZT
p(d

( j+1)
m + t( j)

m )
∥∥∥

2

, (147)

The variable updates for the FE-SR problem are summarized in the Algorithm 23:
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Algorithm 23 FE-SR for CSC4D-SR
Require: ṡ,H,x j,p j,q j,a j,b j,λ

1: create X̄ and ˆ̄X from x j

2: create ŵ = F4D
{

p j −a j
}

and ẑ = F4D
{

q j −b j
}

3: solve d̂ j+1 using Eq. (145), fold it into {D̂DD j+1
m } as explained in Algorithm 7, and d j+1 = vec

(
F−1

4D

{
{D̂DD j+1

m }
})

4: solve p j+1 using Eq. (146)
5: solve q j+1 using Eq. (147)
6: update a j+1 and b j+1 using Eq. (142) and (143)
7: return the updated split and dual variables p j+1,q j+1,a j+1,b j+1

Proposed CSC4D-SR. Problems RU-SR and FE-SR are solved alternately, with RU-SR’s

updates feeding FE-SR and vice versa, per iteration, as explained in Algorithm 24. The process

continues until a desired reconstruction error, desired sparsity threshold or a maximum number of

iterations is achieved.

The CSC4D-SR formulation is considered the fourth contribution of this doctoral disserta-

tion and its results van be found in (Barajas-Solano et al., 2020).

Algorithm 24 CSC4D-SR

Require: ṡ,H,{DDD0
m},{XXX

0
m},λ ,ρ,σ ,M,N,L,T,Md,dM,dN ,dL,dT

1: Initialization:
2: build the vectorization d0 from {DDD0

m}
3: set {VVV 0

m}= {XXX 0
m} and build the vectorization v0

4: set {QQQ0
m}= {DDD0

m} and build the vectorization q0

5: set UUU 0 =PPP0 = ∑
Md
m=1DDD0

m
4∗XXX 0

m and build de vectorizations u0 and p0

6: set j=0;
7: Iterative Process:
8: repeat
9: solve (u j+1,v j+1, f j+1,g j+1) = RU-SR(ṡ,H,d j,u j,v j, f j,g j,λ ,ρ) as explained in Algorithm 22

10: solve (p j+1,q j+1,a j+1,b j+1) = FE-SR(ṡ,H,v j+1,p j,q j,a j,b j,σ) as explained in Algorithm 23
11: set d j = q j+1

12: until the residuals meet a given tolerance, or completed a number of iterations.
13: create {DDDm} and {XXX m} from q j+1 and v j+1, respectively

14: return SSS 1 = ∑
Md
m=1DDDm

4∗XXX m
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Estimated Numerical Complexity. We will now estimate the numerical complexity of the

more complex subproblems in FE-SR and RU-SR. Subproblem (128)’s solution, Eq. (136), is ob-

tained by a soft-thresholding problem and subproblem (141)’s solution, Eq. (147), is akin to a

hard-thresholding problem. Both complexities are negligible.

Subproblems (127) and (140) have the same solution structure where the inversion of

HTH+αI ∈ RMNLT×MNLT represents the higher complexity. According to the Appendix A of

(Barajas-Solano et al., 2019a), their complexity can be reduced from O((MNLT )3) to O((M1N1L1T )2MNLT ),

with M1N1L1 ≪ MNL and H ∈ RM1N1L1T×MNLT , by profiting on HHT = I.

One of the most important sources of numerical complexity is the 4D convolutional opera-

tion, with complexity O((MNLT )2), considering that the dictionary elements are zero-padded to

match the dimensions of the sparse coefficient maps. The 3D convolution complexity is reduced

to a fraction by expressing it as a Hadamard product, profiting on the Discrete Fourier Transform

(DFT) Theorem, reducing the cost to O(MNLT log(MNLT )).

Finally, the greatest source of numerical complexity are the inversions as solutions to sub-

problems (126) and (139). Again, the canonical complexity for inverting ÂHÂ+αI∈RMNLT Md×MNLT Md

is O((MNLT Md)
3). However, by profiting on the concatenated diagonal structure of ˆ̄D and ˆ̄X and

the dimensions rearrangement exposed in Appendix B of (Barajas-Solano et al., 2019a), the in-

version complexity falls to O(MNL T Md). Table 9 summarizes the different complexities for the
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stated subproblems and their solutions.

Eq. Complexity Solution
(128) and (141) Negligible Implemented
(127) and (140) O((MNLT )3) Original
(135) and (146) O((M1N1L1T )2MNLT ) Implemented
(126) and (139) O((MNLT Md)

3) Original
(133) and (145) O(MNLT Md) Implemented

Table 9
Complexity review of the proposed CSC4D+SR algorithm.

6.5. CSC4D-SR Synthetic Performance Evaluation

We now evaluate the performance of the proposed CSC4D method at recovering SVs from a spa-

tially decimated version. For this test we use the same datasets as in section 5.5.1. All the re-

gularizer parameters were fixed to optimal values, and the decimation matrix was creating using

α = 2, β = 2 and γ = 1 so ṡ ∈ R64·64·16·8 for both datasets. The mean reconstruction qualities we-

re 30.07dB for CSC4D-SR and 29.23dB for SSR. For the Chiva dataset, the mean reconstruction

qualities were 39.52dB for CSC4D-SR and 37.08dB for SSR (see Fig. 36(a) and 36(b)). Besides

outperforming the state-of-the-art method in PSNR values, the proposed CSC4D-SR also outper-

forms SSR in edge reconstruction, as seen in Fig. 37(a) and 37(b). Note the sharp edges in the

images reconstructed with the CSC4D-SR method, while the SSR’s reconstructed images have

blurred edges.

The same experiment was recreated with higher resolution versions of the same datasets,
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CSC4D-SR SSR
Mean PSNR Mean SSIM Mean PSNR Mean SSIM

Cajas 30.07dB 0.97 29.23dB 0.94
Chiva 39.52dB 0.97 37.08dB 0.93

Cajas 256×256 35.93dB 0.98 33.48dB 0.92
Chiva 256×256 46.48dB 0.99 44.53dB 0.97

Table 10
Mean PSNR and SSIM of the simulated results for the 8-frame SV collection, using both frame-
works and four datasets using the proposed CSC4D-SR. The proposed CSC4D-SR outperforms the
SSR method by up to 2dB in all scenarios. All standard deviations were bellow 1× 10−3, so they
are not shown.

256× 256 of spatial resolution. For the Cajas dataset, the mean reconstructi- on qualities were

35.93dB for CSC4D-SR and 33.48dB for SSR. For the Chiva dataset, the mean reconstruction

qualities were 46.48dB for CSC4D-SR and 44.53dB for SSR (see Fig. 38(a) and 38(b)). Again,

the proposed CSC4D-SR generates sharper edges than the state-of-the-art approach (see Fig. 39(a)

and 39(b)). The edge sharpness can be measured using SSIM, as shown in Table 10.

The CSC3D approach, created for sparsely representing SIs, can be easily scaled to repre-

sent the SVs as 4D datasets, without introducing new temporal operators. The proposed CSC4D

operator, and the CSC4D-SR model, profits on CSC’s invariance to shifting and deformation, lea-

ding to better qualities when sparsely representing SVs and recovering SVs from decimated ver-

sions. The proposed CSC4D-SR model improves the definition of the reconstructed edges, out-

performing the state-of-the-art. This improved sharpness improves the use and processing of the

recovered SVs.
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Figure 36. Simulated results of the reconstructed frames with the proposed CSC4D-SR and SSR
methods, for the datasets (a) Cajas and (b) Chiva. Note that the proposed CSC4D-SR outperforms
the SSR method with sharper edges, cleaner uniform areas and reduction of artifacts.
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Figure 37. Simulated results of the reconstructed close-up details with the proposed CSC4D-SR and SSR
methods, for the datasets (a) Cajas and (b) Chiva. For the Cajas dataset, note the sharper edges and dots
definition in all panels. For the Chiva dataset, note the detail in the tire and the back of the toy, besides the
lack of artifacts in the smooth areas of the last panel.
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Figure 38. Simulated results of the reconstructed frames with the proposed CSC4D-SR and SSR
methods, for the datasets (a) Cajas and (b) Chiva, 256×256 version. Note that the proposed
CSC4D-SR outperforms the SSR method with sharper edges, cleaner uniform areas and reduction
of artifacts.
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Figure 39. Simulated results of the reconstructed details with the proposed CSC4D-SR and SSR methods,
for the datasets (a) Cajas and (b) Chiva, 256×256 version. Note that the proposed CSC4D-SR outperforms
the SSR method with sharper edges, cleaner uniform areas and reduction of artifacts. For the Cajas dataset,
note the lack of definition around the color dots and stripes for the SSR method while the proposed
CSC4D-SR matches the original dataset; for the Chiva dataset note the flawless details around the tire and
toy body, besides the smooth areas.
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6.6. Compressive Spectral Video Sensing (CSVS)

A more interesting approach for quickly capturing SVs is the application of the Com- pressive Sen-

sing Imaging (CSI) framework to the SV case, also known as Compressive Spectral Video Sensing

(CSVS). CSI states that a full 3D SI can be recovered from a set of 2D encoded projections. This

is, a SI is simultaneously scanned and compressed, reducing both the scanning time and storage

requirements (Correa et al., 2015; Arguello and Arce, 2013; Barducci et al., 2012; Wang et al.,

2018). CSVS proposes to compressed sensing, consecutively, a collection of spectral frames using

a collection of 2D coding apertures per spectral frame, and to recover the full SV using an extended

version of the Sparse Signal Representation (SSR) model.

CSVS senses compressively each spectral frame as independent SIs, obtaining only a few

measurements per spectral frame. Then, a full version of the SV is recovered from the compressed

measurements using a spatial-spectral-temporal orthonormal basis, ΨΨΨ, following the sparse signal

representation model (SSR). Correa-Pugliese et. al. in (?) proposes to sparsely represent an SV

using the Kronecker basis (?) along with the discrete cosine transform (DCT) for temporal com-

pression, as ΨΨΨ = 2D Wavelet⊗DCT ⊗DCT . Then, s = ΨΨΨθθθ , where θθθ ∈ RMNLT are the sparse

coefficients.

The sensing matrix H for CSVS is a block diagonal concatenation of independent sensing
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matrices
{

Ht , t = 1, ...,T | Ht ∈ RK×MNL,K ≪ MNL
}

, as (Leon-Lopez et al., 2019)



y1

...

yt

...

yT



=



H1 0 · · · 0 0

. . .

... Ht ...

. . .

0 0 · · · 0 HT





s1

...

st

...

sT



, (148)

where H ∈RKT×MNLT and y ∈RKT . Then, the recovery of an SV from compressed measurements

had been typically addressed as the minimization problem

argmin
θθθ

1
2
∥HΨΨΨθθθ −y∥2

2 +λ ∥θθθ∥1 , (149)

where λ is a regularization constant that controls the trade off between the data fitting term and

the sparsity inducing term (Arce et al., 2014). In order to improve the performance of the SSR

recovery model, Lopez et. al. (Leon-Lopez et al., 2019) recently proposed to include an additional

regularization term based on the optical flow as

argmin
θθθ

1
2
∥HΨΨΨθθθ −y∥2

2 +λ ∥θθθ∥1 +β ∥∆∥2
2 , (150)

where β is a regularization term and ∆ = Λ(f̄w)i, j −Λ(f̄z)i+u, j+v is expressed in terms of the ho-
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rizontal and vertical changes estimated from two upsampled and contiguous frames f̄w and f̄z,

obtained from a low-resolution reconstructed version of the original SV.

6.7. CSC4D and CSVS

The linear representation of CSC4D can be included within the CSVS recovery minimization in

Eq. (149), replacing the SSR model as a representation basis, as

argmin
x

1
2

∥∥HD̄x−y
∥∥2

2 +λ ∥x∥1 , (151)

and aims to learn a set of sparse coefficient maps x from compressed measurements y=Hvect(SSS ),

given a fixed convolutional dictionary D̄. Considering the specificity of the CSC model, the dictio-

nary elements must also be learned from the compressed measurements by solving the minimiza-

tion problem

argmin
d

1
2

∥∥HX̄d−y
∥∥2

2 + ιCZ(d). (152)

Eq. (151) is known as RU-CSVS and Eq. (152) as FE-CSVS, and both compose the CSC4D-

CSVS model. Again, both minimization problems are solved alternately in order to recover a full

version of the SV of interest from compressed measurements. It is worth noting that D̄ and X̄

should not be considered, under any circumstance, as bases. Due to its rectangular size, its inverse

must be obtained through a minimization scheme. Note that the proposed CSC4D-CSVS does not

require to estimate a low-resolution version of the original SV in order to include the optical flow

information, as in Equation 150, proposed by Lopez et. al. (Leon-Lopez et al., 2019). Having less
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elements in the mathematical formulation simplifies its solution.

The CSC4D-CSVS model shares a similar formulation with the CSC4D-SR model, with

the difference of matrix H and measurements y. For this reason, the closed-form solutions to each

of CSC4D-SR’s minimization problems can be repurposed with some changes in the optimized

numerical routines as stated in Appendices 2 to 4.

6.8. CSC4D-CSVS Synthetic Performance Evaluation

The performance of the proposed CSC4D in CSVS was tested following a two-step scheme:

A. Recovery quality from compressed measurements:. The first step was to assess the

recovery quality of the CSC4D from compressed measurements. For this case we use two collec-

tions of independent sensing matrices from two CSI architectures, 3D-CASSI (Cao et al., 2016)

and C-CASSI (?), without the presence of noise, and compared to the SSR model. Specifically,

we compared CSC4D to the classical CSVS recovery model, without the additional optical flow

regularization term, considering that CSC4D does not use the optical flow information either.

B. Robustness to acquisition noise:. The second step was to assess the recovery quality

of the CSC4D from compressed measurements in the presence of noise. We use two noise models,

Gaussian white noise and Poisson noise, at different intensities, the latter to simulate sensing noise.

Again, we compared the performance of the proposed CSC4D to the classical CSVS model.
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The two-step test scheme was conducted using the same two datasets used in section 5.5.1.

Both data sets have spatial resolution 128×128, 16 spectral bands and 8 frames. Considering that

convolutional dictionaries have a low performance for representing low-frequency components of

multidimensional signals (Wohlberg, 2016a), this work uses the high-frequencies versions of the

original datasets, which are obtained by performing a high-pass filtering stage to the image data.

For illustrative purposes, we add the low-frequency components to evaluate visually the recovered

SVs.

The CSC approach is compared against the state-of-the-art SSR approach in all three steps

of the performance test using the following metrics:

the peak signal-to-noise ratio (PSNR) for measuring the overall reconstruction quality,

the structural similarity index (SSIM) for edge sharpness, and

the percentage of non-zero elements (NNZ) for measuring sparsity.

Considering that the convolutional coefficient maps are in fact a collection of Md sparse

tetrahedrons ∈ RM×N×L×T , compared to the single sparse tetrahedron of the SSR model, then the

sparsity of the convolutional coefficient maps will be measured as

sparsity = maxMd
m=1

∥XXX m∥0
MNLT

. (153)
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This is, the sparsity of the convolutional solutions will be the maximum sparsity of the individual

coefficient maps. Following a series of previous experimental results, the sizes for the dictionary

collection were fixed to dM = dN = dL = 8, dT = 3 and Md = 30, for the entire scheme test.

Performance Using Noiseless Measurements from the 3D-CASSI and C-CASSI CSI

Architecture. The first step of the test scheme is to assess the performance of the CSC4D at reco-

vering full versions of compressed sensed SVs. First, we test CSC4D’s using compressed measure-

ments obtained using the 3D-CASSI CSI architecture. For this experiment we create collections of

independently generated sensing matrices {Ht , t = 1, ...,8 | Ht ∈RK·128·128×128·128·16}, where K =

{3,4} are the number of shots per spectral frame, resulting in a compression of 18.75% and 25%

respectively for both scenarios. Then, the sensing matrix can be defined as H∈RK·128·128·8×128·128·16·8,

according to Eq. (148). Table 11 presents the results of both the CSC4D+CSVS and the SSR mo-

del. CSC4D outperforms the SSR model at all ratios of compression, with both datasets.

Figures 40 and 41 show some example reconstructed frames as false RGB from compressed

measurements taken with K = 4. Figures 42 and 43 show the error between the original SVs and

the reconstructed versions from both models. Note the overall errors of the SSR model at recove-

ring both textures and border details; while the frames recovered by the CSC4D+CSVS framework

exhibit a higher overall quality and increased border sharpness, although still exist some missing

specific details.
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Dataset K Metric CSC4D+CSVS SSR
Cajas 3 PSNR 36,30 35,00

SSIM 0,960 0,929
4 PSNR 36,53 35,58

SSIM 0,961 0,943
Chiva 3 PSNR 51,83 50,76

SSIM 0,996 0,974
4 PSNR 54,60 52,91

SSIM 0,997 0,994

Table 11
Mean PSNR and mean SSIM of the simulated results at recovering the datasets using the 3D-
CASSI, for both the proposed CSC4D+CSVS and SSR framework, and two compression ratios.
The standard deviations for five repetitions were well bellow 1% for both mean PSNR and mean
SSIM, for this reason they are not shown.
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Figure 40. Example recovered frames of the simulated results from 3D-CASSI compressed
measurements, at K = 4, with the proposed CSC4D-CSVS and SSR methods for the dataset (a) Cajas and
(b) some close-up details. Note that the proposed CSC4D-CSVS outperforms the SSR method with sharper
edges, cleaner uniform areas and reduction of artifacts. I.e., note the stripes in the first close up and the dot
definitions in the third close up.
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Figure 41. Example recovered frames of the simulated results from 3D-CASSI compressed
measurements, at K = 4, with the proposed CSC4D-CSVS and SSR methods for the dataset (a)
Chiva and (b) some close-up details. Note that the proposed CSC4D-CSVS outperforms the SSR
method with sharper edges, cleaner uniform areas and reduction of artifacts.
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Figure 42. Reconstructed error frames of the simulated results recovered from 3D-CASSI
compressed measurements, at K = 4, with the proposed CSC4D-CSVS and SSR methods for the
dataset (a) Cajas and (b) some close-up details. Note that the proposed CSC4D-CSVS exhibits
fewer errors in the uniform areas and around edges. I.e., note the body decals in the first close up
and tire borders sharpness in the second close up.
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Figure 43. Reconstructed error frames of the simulated results recovered from 3D-CASSI
compressed measurements, at K = 4, with the proposed CSC4D-CSVS and SSR methods for the
dataset (a) Chiva and (b) some close-up details. Note that the proposed CSC4D-CSVS exhibits
fewer errors in the uniform areas and around edges.

Second, we test the performance of the proposed CSC4D at recovering SVs from com-

pressed measurements sensed using the C-CASSI CSI architecture. Again, we create a collection

of independently generated sensing matrices {Ht , t = 1, ...,8 | Ht ∈ RK·128·(128+16−1)×128·128·16},

where K = {3,4} are the number of shots per spectral frame, giving a compression of 20.94% and

27.92%, respectively, for both scenarios, according to γ = KM(N + L− 1)/MNL (?). Then, the

sensing matrix can be defined as H ∈RK·128·(128+16−1)·8×128·128·16·8, according to Eq. (148). Preli-

minary experiments showed that the CSC4D performs poorly when integrated with the C-CASSI

CSI architectures.

As with the CSC3D-CSI case, the linear operators D̄ and X̄ interact with the optical dis-

persion element represented in C-CASSI’s sensing matrix, creating off-site replicas, as shown in

Figure 19, adding noise to the recovery routine.To solve this issue, we recreated the side informa-
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CSC3D
CSI

Figure 44. Side information scheme. Taken from (Barajas-Solano et al., 2019a).

tion scheme used in (Barajas-Solano et al., 2019a). The proposed side information system creates

a gray-scale version of the original SV and replicates each gray-scale image at each band, so

S̃SS ∈ RM×N×L×T . Note that S̃SS contains all the spatial patterns, structures and correlations of the

original SV, but no spectral information. This additional information helps overcome the noise

generated by the dispersive element in C-CASSI. Optimal initial collections
{
D̃DDm
} {

X̃XX m
}

are

created from S̃SS and used as initializations for recovering SSS 1, as shown in Figure 44.

The results of recovering both datasets using C-CASSI plus the proposed side information

scheme are shown in Table 12, where the CSC4D model outperforms the state-of-the-art model.

Robustness to acquisition noise. The last step in the two-step test scheme is to assess the

performance of the CSC4D algorithm in presence of noise. Two noise models were used: Gaus-

sian white noise and Poisson noise, the latter for representing the acquisition noise. Three different

levels of noise were added to the compressed measurements: 10dB, 20dB, and 30dB PSNR for

Gaussian; 18dB, 23dB, and 28db for Poisson. Again, both CSI architectures were used, with two

compression ratios, for both SVs. The side information scheme was again coupled with the C-
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Dataset K Metric CSC4D-CSVS SSR
Cajas 3 PSNR 36,21 34,30

SSIM 0,935 0,905
4 PSNR 36,45 35,49

SSIM 0,957 0,919
Chiva 3 PSNR 45,53 39,11

SSIM 0,974 0,928
4 PSNR 46,75 41,69

SSIM 0,981 0,951

Table 12
Mean PSNR of the simulated results of the reconstructed datasets using the C-CASSI, for both the
proposed CSC4D-CSVS and SSR framework and two compression ratios. The standard deviations
for five repetitions were well bellow 1% for both mean PSNR and mean SSIM, thus are not shown.
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Figure 45. PSNR comparison of the simulated results at recovering the Cajas dataset for two CSVS
techniques and two noise types, for both the proposed CSC4D-CSVS and SSR. The proposed
CSC4D-CSVS matches the performance of the SSR method at high noise levels, and outperforms it and
medium and low noise levels.
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Figure 46. PSNR comparison of the simulated results at recovering the Chiva dataset for two CSVS
techniques and two noise types, for both the proposed CSC4D-CSVS and SSR. The proposed
CSC4D-CSVS matches the performance of the SSR method at high noise levels, and outperforms it and
medium and low noise levels.
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Figure 47. SSIM comparison of the simulated results at recovering the Cajas dataset for two CSVS
techniques and two noise types, for both the proposed CSC4D-CSVS and SSR. The proposed
CSC4D-CSVS matches the performance of the SSR method at high noise levels, and outperforms it and
medium and low noise levels.
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Figure 48. SSIM comparison of the simulated results at recovering the Chivas dataset for two CSVS
techniques and two noise types, for both the proposed CSC4D-CSVS and SSR. The proposed
CSC4D-CSVS matches the performance of the SSR method at high noise levels, and outperforms it and
medium and low noise levels.
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Figure 49. Example reconstructed frames of the simulated results at recovering from 3D-CASSI
compressed measurements, at K = 4 and 20dB SNR Gauss noise, with the proposed CSC4D-CSVS and
SSR methods for the dataset (a) Cajas and (b) and some close-up details. Note that the proposed
CSC4D-CSVS outperforms the SSR method with sharper edges, cleaner uniform areas, reduction of
artifacts, even in presence of noise. I.e., note the stripes and dots definition in all close up panels



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 163

Dataset Noise (dB) K Metric CSC4D SSR
Cajas 10 3 PSNR 32,27 33,31

SSIM 0,815 0,875
4 PSNR 32,39 33,48

SSIM 0,822 0,896
20 3 PSNR 35,67 34,99

SSIM 0,941 0,928
4 PSNR 35,87 35,24

SSIM 0,947 0,914
30 3 PSNR 36,22 35,31

SSIM 0,957 0,928
4 PSNR 36,46 35,48

SSIM 0,963 0,944
Chiva 10 3 PSNR 41,41 42,41

SSIM 0,937 0,944
4 PSNR 41,84 42,50

SSIM 0,941 0,951
20 3 PSNR 48,90 47,83

SSIM 0,989 0,973
4 PSNR 49,78 48,18

SSIM 0,991 0,985
30 3 PSNR 51,43 50,65

SSIM 0,995 0,991
4 PSNR 53,92 52,70

SSIM 0,997 0,993

Table 13
Mean PSNR and SSIM of the reconstructed datasets using the 3D-CASSI in presence of Gaussian
white noise, for both the proposed CSC4D-CSVS and SSR framework and two compression ratios.
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Dataset Noise (dB) K Metric CSC4D SSR
Cajas 18 3 PSNR 35,33 35,00

SSIM 0,945 0,927
4 PSNR 35,53 35,09

SSIM 0,951 0,935
23 3 PSNR 36,56 35,29

SSIM 0,964 0,927
4 PSNR 36,80 35,31

SSIM 0,966 0,936
28 3 PSNR 36,60 35,29

SSIM 0,967 0,934
4 PSNR 36,61 35,31

SSIM 0,971 0,940
Chiva 18 3 PSNR 47,67 47,53

SSIM 0,989 0,973
4 PSNR 48,82 47,73

SSIM 0,992 0,982
23 3 PSNR 49,92 48,24

SSIM 0,993 0,976
4 PSNR 51,54 48,60

SSIM 0,996 0,989
28 3 PSNR 51,27 49,85

SSIM 0,995 0,992
4 PSNR 53,90 51,71

SSIM 0,997 0,994

Table 14
Mean PSNR and SSIM of the reconstructed datasets using the 3D-CASSI in presence of Poisson
noise, for both the proposed CSC4D-CSVS and SSR framework and two compression ratios.
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Dataset Noise (dB) K Metric CSC4D SSR
Cajas 10 3 PSNR 31,60 31,83

SSIM 0,817 0,802
4 PSNR 31,88 32,27

SSIM 0,835 0,816
20 3 PSNR 33,67 33,45

SSIM 0,918 0,886
4 PSNR 34,20 33,51

SSIM 0,939 0,918
30 3 PSNR 36,19 34,30

SSIM 0,930 0,904
4 PSNR 36,41 35,43

SSIM 0,949 0,919
Chiva 10 3 PSNR 40,89 37,81

SSIM 0,925 0,877
4 PSNR 40,93 38,32

SSIM 0,927 0,893
20 3 PSNR 44,47 39,65

SSIM 0,969 0,924
4 PSNR 45,18 41,51

SSIM 0,972 0,950
30 3 PSNR 45,47 39,80

SSIM 0,972 0,927
4 PSNR 46,50 41,71

SSIM 0,979 0,951

Table 15
Mean PSNR and SSIM of the reconstructed datasets using the C-CASSI in presence of Gaussian
white noise, for both the proposed CSC4D-CSVS and SSR framework and two compression ratios.
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Dataset Noise (dB) K Metric CSC4D SSR
Cajas 18 3 PSNR 32,52 32,95

SSIM 0,819 0,879
4 PSNR 33,05 33,17

SSIM 0,842 0,916
23 3 PSNR 33,80 33,52

SSIM 0,927 0,898
4 PSNR 34,39 34,10

SSIM 0,951 0,918
28 3 PSNR 36,26 34,28

SSIM 0,930 0,902
4 PSNR 36,46 35,40

SSIM 0,950 0,943
Chiva 18 3 PSNR 44,29 39,21

SSIM 0,965 0,918
4 PSNR 44,77 41,22

SSIM 0,970 0,946
23 3 PSNR 44,94 39,67

SSIM 0,968 0,924
4 PSNR 45,58 41,23

SSIM 0,974 0,951
28 3 PSNR 45,19 39,73

SSIM 0,970 0,927
4 PSNR 45,93 41,58

SSIM 0,976 0,951

Table 16
Mean PSNR and SSIM of the reconstructed datasets using the C-CASSI in presence of Poisson
noise, for both the proposed CSC4D-CSVS and SSR framework and two compression ratios.
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Figure 50. Example reconstructed frames of the simulated results at recovering from 3D-CASSI
compressed measurements, at K = 4 and 20dB SNR Gauss noise, with the proposed CSC4D-CSVS and
SSR methods for the dataset (a) Chiva and (b) and some close-up details. Note that the proposed
CSC4D-CSVS outperforms the SSR method with sharper edges, cleaner uniform areas and reduction of
artifacts, even in presence of noise. I.e., note the body and tire decals in all close up panels.
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Figure 51. Example reconstructed frames of the simulated results at recovering from C-CASSI
compressed measurements, at K = 4 and 23dB SNR Poisson noise, with the proposed CSC4D-CSVS and
SSR methods for the dataset (a) Cajas and (b) some close-up details. Note that the proposed CSC4D-CSVS
outperforms the SSR method with sharper edges, cleaner uniform areas, reduction of artifacts, even in
presence of noise. I.e., note the triangular shapes in the second close up and the orange areas in the third
and fourth close up.
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CASSI architecture. The results of the performance tests are shown in Figures 45 to 48 and Tables

13 to 16.

Just as in the CSC3D framework, the CSC4D model down-performs in the pressence of

excessive noise (10dB Gaussian and 18dB Poisson), matching the performance of the SSR model.

However, it outperforms the state-of-the-art model in medium and low noise levels, at all compres-

sion ratios, in up to 4dB. On the other hand, the SSIM values for the CSC4D model are higher

than SSR’s SSIM values at almost all compression and noise levels. This means that, although the

CSC4D fails to recover all the SV’s spatial-spectral-temporal features in presence of noise, the

recovered SV has sharper and more defined borders than the SSR model.

Figures 49 to 52 show some example reconstructed frames as false RGB, recovered from

compressed measurements taken with K = 4 and 20dB SNR Gauss and 23dB SNR Poisson noise,

respectively. Note the overall quality of the recovered individual spectral frames, and the border

sharpness, of the CSC4D model when compared to the SSR model.

Algorithm Convergence. To illustrate the good convergence of Algorithm 3, a typical

evolution of cost function (151) as a function of the iteration number was selected. Considering

that the indicator function in (152) only has values 0 or ∞, it is not included in the estimation of the

cost function. The high-frequencies version of the Cajas dataset was used for this experiment, and

the compressive measurements were simulated with the 3D-CASSI system, with 20dB SNR white
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Gaussian noise, and K = 4. Fig. 53 confirms the convergence of the algorithm to a critical point of

the objective function.

To analyze the sensitivity to initialization, we ran the proposed algorithm with 100 different

random initializations for the collection of dictionary elements, and all-zeros coefficient maps. The

histogram of the corresponding values of the objective function is shown in Fig. 54, showing a sin-

gle mode, confirming the convexity of the proposed algorithm. The mode of the objective function

histogram corresponds to a PSNR of 35.61dB.

Conclusions

The proposed 4D framework results from increasing the dimensionality of the CSC3D operator

from a 3D cyclic convolution to a 4D cyclic convolution. This additional dimension takes into

account the temporal correlation within SVs, without additional modifications. For example, the

SSR model needs to carefully choose the more appropriate representation basis for the additional

temporal dimension, while the CSC4D includes the temporal correlations as another convolution

operation.

Being a direct scalation of the CSC3D operator, the CSC4D operator can be also represented

as a matrix-vector multiplication, and included within a ℓ2-linear restriction convex formulation.

The formulation fot CSC3D and CSC4D are quite similar, being the only difference the dimensions

of the convolutional equivalent operators. Now, despite these similitudes, the CSC3D’s optimized
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numerical routines can be modified and scaled in order to solve CSC4D with feasible resources.

The proposed CSC4D is able to sparsely represent SVs, improving on the SSR framework

by up to 20dB. The proposed CSC4D framework can be also used within a SR and CSVS formu-

lation, also improving on the SSR framework in both PSNR and SSIM metrics. However, as with

the CSC3D framework, the CSC4D is also sensible to the band shifting of CSVS techniques as

C-CASSI and must rely on a side-information scheme.
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7. Dissertation Conclusions

ND-Convolutional Sparse Dictionary Representation

The CSDR proposed by Papyan et. al. for representing 1D signals can be generalized as the N-

dimensional operator

SSS =
Md

∑
m=1

DDDm
N∗XXX m +ΩΩΩ . (154)

In order to obtain both the overcomplete set of convolutional elements and sparse coefficient

maps we can transform Eq. (154) into a matrix-vector multiplication and solve the dual linear

optimization scheme

argmin
x

1
2

∥∥D̄x− s
∥∥2

2 +λ ∥x∥1 , (155)

argmin
x

1
2

∥∥X̄d− s
∥∥2

2 + ιCP(d). (156)

It is worth noting that Eqs. (155) (156) have no consideration for the dimension of the sig-

nal of interest s. This dual lineal optimization scheme can be adapted to any N-dimension by only

modifying the size of operators D̄, X̄ and arrays x and d.

This doctoral dissertation takes the formulation proposed in Eqs. (155) (156) further from

the 2D case to the 3D dimension, and also to the 4D dimension, without proposing any changes.

On the other hand, this dissertation proposes the necessary adjustments for the solution of the 3D
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and 4D convolutional operations, besides the corresponding reorganization of the ND-dimensional

elements. The proposed solution and reorganization algorithms are necessary in order to keep the

numerical complexity within reasonable and feasible limits.

There are advantages in using a signal-specific convolutional sparse representation over a

traditional basis. First, we have the intrinsic robustness to translation and deformation of the convo-

lutional operator; second, the signal specificity allows for higher detail in the reconstructed image,

with fewer artifacts and sharper borders; third, and this is the most interesting one, we only need

to increase the dimension of the convolutional operator in order to represent higher order signals,

instead of creating custom basis with Kronecker products. However, it comes with the disadvanta-

ge of a dual optimization formulation instead of a single one. Nonetheless, the proposed numerical

optimization routines keep this associated cost within feasible limits.

ND-CSC in Compressed Sensing

Proving the flexibility of the ND-convolutional sparse representation, and the robustness of the

dual lineal optimization framework, is a result worth mentioning by itself. However, the main

contribution of this doctoral dissertation is the application of the ND-convolutional framework

in CSI and CSVS, replacing state-of-the-art represen- tation frameworks. Even more, this can be

achieved without changing the proposed formulation as

argmin
x

1
2

∥∥HD̄x−y
∥∥2

2 +λ ∥x∥1 , (157)



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 173

argmin
d

1
2

∥∥HX̄d−y
∥∥2

2 + ιCZ(d). (158)

In this regard, this doctoral dissertation presents the following results:

1. It is possible to replace the state-of-the-art Kronecker basis ΨΨΨ with the CSC formulation for

recovering compressed sensed spectral images without altering the formulation. However,

this change a dual lineal optimization formulation.

2. The proposed CSC3D operator is a simple convolution operator, easily scalable, not a custom

basis created from simpler basis, i.e. the Kronecker Basis.

3. The proposed CSC4D is a logical scalation of the CSC3D operator, while the Kronecker

basis for SVs comes after trial and error of different basis.

4. The synthesis signal-based convolutional representation improves the performance of the

Kronecker basis ΨΨΨ at recovering compressed sensed SIs and SVS, even in the presence of

noise.

5. Although the numerical routines for CSC3D-CSI and CSC4D-CSVS are more than just an

scalation of CSC3D’s and CSC4D’s, both set of routines follow the same logical formulation

making them modular and reusable to certain extent.

However, there are certain observations when using the CSC framework within a compres-

sive sensing formulation, such as



DICTIONARY DESIGN FOR SPARSE REPRESENTATION IN COMPRESSIVE SPECTRAL IMAGING 174

1. The CSC formulation work with the high frequency components of a signal, which is why

we must perform a high-pass filtering prior to the CSC framework.

2. The CSC formulation seems to perform poorly in the presence of band shifting elements (i.e.

C-CASSI CSI architecture), creating artifacts and reducing the performance.

3. Although the CSC framework outperforms the Kronecker basis in the presence of noise, it is

worth noting that with higher noise levels the averaging nature of the convolutional operation

down-performs compared to the Kronecer basis.

Future Work

The proposed CSC3D and CSC4D frameworks were barely tested beyond its applicability in CSI

and CSVS, respectively. For example, the CSC4D framework was tested for spatial SR, but not

the CSC3D. This leaves a whole field of probable applications such as image fusion, spectral SR,

temporal SR and similar ones.

On the other hand, we evaluated the creation of an overcomplete set of convolutional dictio-

nary elements and sparse coefficient maps for a signal of interest. We didn’t evaluate the scenario

of creating a library of pre-learned dictionary collections and its use with new signals. This scena-

rio is valid for all ND-CSC, CSI and CSVS applications.

Finally, one of the biggest issues of the proposed CSC frameworks is the interaction with

band-shifting compressed sensing architectures. Although this doctoral dissertation proposes an
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ad-hoc solution in the form of the side-information scheme, this problem is worth studying in

depth.
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Appendices

Appendix A. Efficient Solution Of The N̄-Dimensional Convolutional Sparse Coding Repre-

sentation In The Fourier Domain

Let there be a collection of convolutional dictionary elements {DDDm, m= 1, ...,Md |DDDm ∈Rd1×...×dN̄},

and a collection of sparse coeffiecient maps {XXX m, m = 1, ...,Md |XXX m ∈ RL1×...×LN̄}. Each ele-

ment DDDm and XXX m has dimensionality N̄, and di´Li. Then, a N̄-dimensional signal SSS ∈ RL1×...×LN̄

can be represented as

SSS =
Md

∑
m=1

DDDm
N̄∗XXX m +ΩΩΩ , (159)

The sum of cyclic convolutions in Eq. (159) can be solved effectively in the Fourier domain

as

SSS = F−1
N̄

{
Md

∑
m=1

FN̄{DDDm}⊙FN̄{XXX m}

}
. (160)

The sum of Hadamard products Eq. (160) can be simplified as a matrix-vector product by

performing the following rearrangements:

obtain the collections {D̂DDm} and {X̂XX m} from {DDDm} and {XXX m} respectively, following Al-

gorithm 10.

create matrix ˆ̄D = CM̄×M̄Md following Algorithm 6.

create vector x̂ =∈ CM̄Md following Algorithm 4.
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Finally we obtain the vectorization of the Fourier transform of the signal of interest as

ŝ = vec

(
Md

∑
m=1

FN̄{DDDm}⊙FN̄{XXX m}

)
= ˆ̄Dx̂ ∈ CM̄. (161)

In order to recover SSS ∈ RL1×...×LM̄ from ŝ ∈ CM̄ we must:

fold ŝ into ŜSS ∈ CL1×...×LM̄ following Algorithm 7

obtain the inverse Fourier transform following Algorithm 11.
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Appendix B. Woodbury matrix identity

Consider the linear system

Ax =
(
αI+HT H

)
x = b, (162)

with I ∈ RN×N , H ∈ RK×N , K < N, b and x ∈ RN . The inversion of matrix A in Eq. 162 can be

solved using the Woodbury formula (Henderson and Searle, 1981)

(A+UCV)−1 = A−1 −A−1U
(
C−1 +VA−1U

)−1 VA−1, (163)

with A ∈RN×N , U ∈RN×K , V ∈RK×N and C ∈RK×K . We can rewrite Eq. 162 in the form of Eq.

163 by making C = I and factorizing α as

x =
1
α

[
b−HT (

αI+HHT)−1 Hb
]
. (164)

In our problem the matrix HHT is diagonal, which simplifies the complexity for solving

(αI+HHT )−1, and overall Eq. 164, to O(K2N).
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Appendix C. Optimal solution for a concatenated system

Consider the linear system (
αI+AHA

)
x = b, (165)

with I ∈ RN̄M̄×N̄M̄, A = [A1...AM̄] ∈ CN̄×N̄M̄, Am ∈ CN̄×N̄ is a diagonal matrix, m = 1, ...,M̄, AH

is the conjugated transpose of A, and both x and b ∈CN̄M̄. Applying the Woodbury formula in 163

and factorizing α , Eq. 165 can be rewritten as

x =
1
α

[
b−AH (

αI+AAH)−1 Ab
]
. (166)

The product AAH is always a diagonal matrix with complexity O(N̄3M̄). This product, and

its inverse, determinate the overall complexity of solving Eq. 166. However, we can reduce this

complexity by profiting on the concatenated diagonal structure of A.

Below we present our three step solution for the optimal solution of the inverse E1 =(
αI+AAH)−1, the right hand product E2 = E1Ab and the left hand product E3 = AHE2. Each

step consists of a series of numerical rearrangements in order to reduce the overall complexity,

while considering that the rearrangements themselves have no numerical cost.

Inverse E1 =
(
αI+AAH)−1. A = [A1...AM̄] is a concatenation of diagonal matrices Am.

In essence, only 1
N̄ -th of A is non-zero. Then we begin by eliminating all the zero-elements in A.
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Lets rearrange A ∈CN̄×N̄M̄ into Ȧ = [ȧ1...ȧM̄]∈CN̄×M̄, where each column ȧm = vec(Am)∈

CN̄ , and vec(.) vectorize a diagonal matrix as its main diagonal.

Now, solve c= sum(Ȧ⊙conj(Ȧ))∈CN̄ , where sum(.) denotes the row-wise sum, ⊙ denotes

the Hadamard product and conj(.) denotes the element-wise conjugate.

Finally, solve d ∈CN̄ where each di = 1/(α +ci). The diagonal matrix D = diag(d)∈CN̄×N̄

is equal to (αI+AAH)−1.

The rearrangements and operations explained above solves the matrix inversion with a frac-

tion of memory space and computing time. The complexity of this first step is given by the Hada-

mard product as O(M̄N̄).

Right product E2 = E1Ab. The same dimensions rearrange strategy can be used to solve

the product at the right hand of the inverse.

Considering e = Ab ∈ CN̄ , fold the vector b ∈ CN̄M̄ into the matrix Ḃ ∈ CN̄×M̄.

Solve e = sum(Ȧ⊙ Ḃ).

Finally, we can solve f = (αI+AAH)−1Ab ∈ CN as f = d⊙ e.

Again, the complexity of the second step is given by the Hadamard product as O(N̄M̄).
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Left product E3 = AHE2. Finally, we can solve the product at the left hand of the inverse.

First, consider g = AH(αI+AAH)−1Ab ∈ CN̄M̄ and Ġ = [ġ1...ġM].

Fold Ȧ into the 3D array Ā ∈ CN̄×1×M̄, with each CN̄×1 layer as ȧm.

Solve Ḡ ∈ CN̄×1×M̄ per layer as ġm = conj(ȧm)⊙f ∈ CN̄ .

Fold Ḡ into Ġ = [ġ1...ġM̄] ∈ CN̄×M̄.

Finally the solution is given by g= vec(Ġ)∈CN̄M̄. The complexity of the third step is given

by the Hadamard product as O(N̄M̄).

In conclusion, the concatenated diagonal structure of matrix A allows to rearrange it down

to a N̄th of its original size. This way the matrix products can be simplified to Hadamard products

and row-wise sums, reducing the computational time.
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Appendix D. Dimension Adjustments for the 4D case

As stated in Appendix 3, the lineal problem

(
αI+AHA

)
x = b, (167)

has solution

x =
1
α

[
b−AH (

αI+AAH)−1 Ab
]
, (168)

with I ∈ CN̄M̄×N̄M̄, A = [A1...AM̄] ∈ CN̄×N̄M̄, Am ∈ CN̄×N̄ is a diagonal matrix, m = 1, ...,M̄, AH

is the conjugated transpose of A, and both x and b ∈ CN̄M̄.

For the 3D case, N̄ states the spatial-spectral dimensions and M̄ states the number of con-

volutional elements to use in the collection of dictionaries and sparse coefficients. Following the

notation XXX = {XXX m ∈ RM×N×L|m = 1, ...,Md}, with XXX m the same size as the SI of interest, then

N̄ = NML and M̄ = Md , with N,M,L as the spatio-spectral dimensions and Md as the size of the

collection of convolutional elements.

For the 4D case, N̄ changes to the spatial-spectral-temporal dimensions of the SV, while M̄

states the number of convolutional elements. Following the notation XXX = {XXX m ∈RM×N×L×T |m=

1, ...,Md}, with XXX m the same size as the SV of interest, then N̄ = NMLT and M̄ = Md , with

N,M,L,T as the spatio-spectral-temporal dimensions.
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Note that the algorithm presented in Appendix 3 doesn’t take into consideration the di-

mensions of the signal beyond the N̄ and M̄ parameters. This means that the optimized routines

proposed in Appendix 3 can be used for the N-dimensional case as proposed in section 4.5, with the

correspondent dimension adjustments. Again, although the proposed formulation doesn’t change

with an increment in the dimensions, the computational load and arrays size increase exponentially.

This factors must be taking into consideration when working with a ND-formulation.
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Appendix E. Extra Material on the Performance Evaluation of CSC3D

In (Barajas-Solano et al., 2019a) we compared the performance of the proposed CSC3D against

the Kronecker basis and the CBPDN algorithm, as described next.

Test Images. The chosen SIs for the performance evaluation were the Pavia University and

the Beads spectral scenes. This work uses three (E = 3) 128×128×16 sections of the full spectral

scenes which includes spectral bands 1 to 16 for both the Pavia SI (?) (see Fig. (55(a))) and Beads

SI (?) (see Fig. (55(b))). Wolhberg et al. (Wohlberg, 2016c) reported that the convolutional dictio-

naries perform better when reconstructing the high frequency components of an image. Therefore,

the high-frequency components for the SIs sections were extracted using a high pass filter, and

included as test images (see Fig. 55(c) and 55(d)). The proposed algorithm was compared against

an equivalent Kronecker-ADMM scheme as reference

argmin
θθθ e

∥ΨΨΨθθθ e − sn,e∥2
2 +λ ∥θθθ e∥1 , (169)

where sn,e = se +σηηη , ηηη is a standard white Gaussian noise, σ > 0 is a noise level and se ∈ RMNL

is the noise-free vectorized version of each e-SI. The noisy test images were obtained using

MATLAB’s awgn routine and three levels of noise: 10dB, 15dB and 20dB of SNR.

Performance Metrics. The performance metrics used were the Peak Signal to Noise Ratio

(PSNR) for measuring the recovery quality, and the ℓ0 norm for measuring the sparsity of the

solutions. Considering that the convolutional coefficient maps are in fact a collection of Md sparse
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cubes RM×N×L×Md , compared to the single sparse cube RM×N×L of the Kronecker basis, then the

sparsity of the convolutional coefficient maps will be measured as

sparsity = maxMd
m=1 ∥ΘΘΘm∥0 . (170)

This is, the sparsity of the convolutional solutions will be the maximum sparsity of the in-

dividual coefficient maps.

Initializations and Regularizer Parameters. The initial values for the collection of coef-

ficients were set to zero for the three schemes, and the initial dictionary was established as a

collection of random Md = 30 dictionary elements of cubic size d = 8 for both the proposed and

CBPDN algorithms. The proposed algorithm has proven to be sensible to the initialization of the

dictionary, with the heuristic initialization strategy with the best results in terms of PSNR as

Dm(i, j,k) =


N (0,1) if 3 ≤ i, j,k ≤ 6

0 otherwise.

(171)

The initial dictionary for the CBPDN algorithm as established according to (Wohlberg, 2016b).

The regularizer parameter λ , for the three solution schemes, was allowed to vary freely, choosing

the value with optimal results in terms of PSNR for each SNR level.

Results

The proposed algorithm performs better than the state-of-the-art, in sparse representa- tion, Kro-

necker basis in presence of noise, improving both the reconstruction quality and sparsity levels.
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When dealing with higher levels of noise (i.e. 10dB SNR), the proposed algorithm needs to be

modified to improve its performance. When dealing with high-frequencies SIs, the proposed algo-

rithm outperforms the state-of-the-art in all the scenarios.
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Figure 52. Example reconstructed frames of the simulated results at recovering from C-CASSI
compressed measurements, at K = 4 and 23dB SNR Poisson noise, with the proposed CSC4D-CSVS and
SSR methods for the dataset (a) Chiva and (b) some close-up details. Note that the proposed CSC4D-CSVS
outperforms the SSR method with sharper edges, cleaner uniform areas, reduction of artifacts, even in
presence of noise. I.e., note the tire decals in the second close up, and the body decal in the third close up.
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Figure 53. Mean behavior of the cost function of the proposed CSC4D-CSVS after 100
realizations.
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Figure 54. Histogram of the cost function of the proposed CSC4D-CSVS at random
initializations.
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Figure 55. Example of the chosen spectral bands for one of the selected sections of (a)(c) the
Pavia and (b)(d) Beads SIs, full-frequencies and high-frequencies versions respectively.
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Figure 56. Performance comparison of the reconstruction quality for the 4 data sets (a) Pavia, (b)
Beads, (c) Pavia high-frequencies and (d) Beads high-frequencies, using the proposed
convolutional algorithm using two different random dictionary initilizations approaches
(Proposed and Proposed2), the Kronecker basis, and the CBPDN algorithm.
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